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Abstract

For a given index k, this thesis presents a numerical algorithm for computing the k-th eigenvalue and
its associated eigenvector of a Hermitian definite generalized eigenproblem of large sparse matrices,
or the k-th eigenvalue problem, and its applications.

Eigenvalue problems are a fundamental problem in numerical linear algebra, and their numerical
solution is essential to various areas of computational science and engineering. Of practical interest
is often a subset of eigenvalues and eigenvectors, and a variety of algorithms have been proposed for
or have been found to be effective for computing a specific type of subsets, such as a small number
of eigenvalues closest to a given point and their associated eigenvectors.

The k-th eigenvalue problem has originated from electronic structure calculations of materials,
where the eigenvalue and eigenvector of a material-specific index k play a fundamental role in the
research of various material properties. The k-th eigenvalue and its associated eigenvector do not
fall into a typical subset at which the existing algorithms are aimed, and all or a substantial number
of eigenvalues and eigenvectors have been computed to obtain the k-th eigenvalue and eigenvector.

This thesis proposes an efficient algorithm for computing the k-th eigenvalue and eigenvector
with validation of their index, based on Sylvester’s law of inertia and the bisection algorithm and by
utilizing the Lanczos method and a sparse direct linear solver. Closely related to eigenvalue problems
are singular value problems, and the k-th singular value and its associated left and right singular
vectors of a large sparse matrix are computed based on the proposed algorithm. Contributions of
the thesis are discussed from the perspective of Real-World Data Circulation.
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Chapter 1

Introduction

1.1 Eigenvalue problems

Eigenvalue problems are a fundamental problem in numerical linear algebra. In their general form,
eigenvalue problems can be written as follows:

A(λ)x = 0.(1.1)

Here, A : C→ Cn×n is a matrix-valued function. Scalars λ ∈ C and nonzero vectors x ∈ Cn satisfying
(1.1) are referred to as eigenvalues and eigenvectors, respectively. The pairs (λ, x ) are referred
to as eigenpairs. The goal of solving eigenvalue problems is to find all or a subset of eigenvalues,
eigenvectors, or eigenpairs.

Eigenvalues problems are classified into several classes by their structure and properties. A stan-
dard eigenvalue problem (SEP), also referred to as simply an eigenvalue problem, is of the simplest
structure:

Ax = λx .

If matrix A∈ Cn×n has special properties, eigenvalues and eigenvectors enjoy attractive features that
make the problem more tractable than the case of general A. For example, if A is Hermitian, the
matrix has n real eigenvalues and n eigenvectors that can be selected to be orthogonal to each other,
which has made possible to develop numerous effective algorithms to solve the problem. This class
of SEP with Hermitian A is referred to as a Hermitian eigenvalue problem (HEP).

Closely related to HEP is a singular value problem (SVP):
¨

Av = σu,

uHA= σv .
(1.2)

Here, A∈ Cm×n. Non-negative scalars σ ∈ R and nonzero vectors u ∈ Cm, v ∈ Cn satisfying (1.2) are
referred to as singular values and left and right singular vectors, respectively. The triplets (σ, u, v)
are referred to as singular triplets. SVP of a general matrix A leads to HEP. Gram matrices AHA and
AAH have σ as their eigenvalues and have v and u as their eigenvectors, respectively. The extended
matrix

� O A
AH O

�

has±σ as its eigenvalues and [±u
v ] as its eigenvectors. Because of this relation between

SVP and HEP, algorithms for HEP have been applied to solution of SVP, and vice versa.
A straightforward generalization of SEP is a generalized eigenvalue problem (GEP):

Ax = λBx .

Here, A, B ∈ Cn×n. GEP of A and B is also referred to as the eigenvalue problem of linear matrix pencil
(A, B), which is a family of matrices A− zB, z ∈ C. If B equals the identity matrix I , GEP is nothing
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1 Introduction

but SEP of A. If B is of full rank, GEP can be reduced to SEP of B−1A. In the case of rank-deficient
B, GEP has notable differences with SEP [5, Chapter 8.7], such as possible appearance of infinite
eigenvalues. Similar to SEP, GEP becomes more tractable if A and B have special properties. For
example, if A is Hermitian and B is Hermitian positive definite, the pencil has n real eigenvalues and
n eigenvectors that can be selected to be orthogonal to each other with respect to B-inner product
(a, b)B = aHBb. This class of GEP is referred to as a Hermitian definite generalized eigenvalue problem
(HDGEP). HDGEP can be reduced to HEP of, e.g., Ã= L−1AL−H in which L is the Cholesky factor of
positive definite B = LLH. Eigenpairs of Hermitian Ã are (λ, LHx ). Because of this relation between
HDGEP and HEP, algorithms for HDGEP have been developed on the basis of those for HEP in general,
and algorithms for HEP have been applied to solution of HDGEP.

Further generalizations of SEP and GEP include quadratic eigenvalue problems with A(λ) = A+
λB + λ2C ∈ Cn×n, polynomial eigenvalue problems with A(λ) =

∑d
i=0λ

iAi ∈ Cn×n, other classes of
nonlinear eigenvalue problem [6,63], and multiparameter eigenvalue problems [25].

1.2 Existing algorithms

This thesis is about HDGEP of large sparse A and B of size n¦ 106. Studies of algorithms for solving
eigenvalue problems date back at least to work of Jacobi in 1846, and a variety of numerical algo-
rithms have been proposed for or can be applied to computing all or a specific subset of eigenpairs
of HDGEP [5,57].

A standard way to compute all eigenpairs is to reduce HDGEP to an equivalent HEP of Ã =
L−1AL−H by using the Cholesky factorization of B = LLH (Section 1.1) and compute eigenpairs of the
equivalent HEP. The reduction of HDGEP to the equivalent HEP does not preserve sparsity structure
of pencil (A, B) of HDGEP in general, and the resulting Hermitian matrix Ã can be much denser than
the pencil and may become fully dense even if A and B are sparse. Eigenpairs of dense matrix Ã
are usually computed in a three-stage manner. The first stage reduces Ã to tridiagonal matrix T in
a finite number of algebraic operations by, e.g., Householder transformations, which requires O(n3)
times of floating point operations (FLOPs). The second stage computes eigenpairs of T iteratively
by, e.g., the QR iteration, the divide-and-conquer method, or MRRR, which requires O(n2) to O(n3)
FLOPs depending on algorithms [15]. The third stage is for the back-transformation of eigenvectors
of T to those of A, requiring O(n3) FLOPs.

A subset of eigenpairs of large sparse pencil (A, B) are generally computed by algorithms based on
subspace projection, often referred to as subspace methods. Subspace methods generate a sequence
of subspaces and project the pencil to the subspaces in order to find a specific subset of eigenvectors
from the subspaces and their associated eigenvalues. Subspace projection involves two subspaces in
general. One is the right subspace, or the search subspace, from which approximate eigenvectors
are constructed. In other words, an approximate eigenvector is a linear combination of a basis
of the search subspace. The other is the left subspace, or the test subspace, to which a residual of
approximate eigenpairs is imposed to be orthogonal. An approximate eigenvalue and the coefficients
for the linear combination are determined from this orthogonality constraint. The two subspaces
for the projection can be either identical (Ritz–Galerkin approach) or different (Petrov–Galerkin
approach). By the subspace projection, the original pencil (A, B) is reduced to a small pencil whose
size is equal to the dimension of the subspaces, and all eigenpairs of the small pencil are computed
by the aforementioned dense procedures and algorithms.

Subspace methods differ from one another mainly in their generation of the search subspace. For
example, a Krylov subspace and its B-orthonormal basis are generated in Lanczos method [43] and
the shift-and-invert (SI) Lanczos method [18] in order to find extreme (smallest or largest) eigen-
values or eigenvalues closest to a given point and their associated eigenvectors. Jacobi–Davidson
method [59] solves its correction equation to find a new search vector and to expand a subspace and
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1.3 The k-th eigenvalue problem

is capable of computing extreme eigenvalues and eigenvalues closest to a given point and their associ-
ated eigenvectors. Sakurai–Sugiura method [58] utilizes a contour integral to extract the eigenspace
(span of the eigenvectors) associated with the eigenvalues in the region bounded by the contour.

1.3 The k-th eigenvalue problem

Among all eigenpairs of large sparse HDGEP, this thesis is aimed at the k-th eigenpair (λk, x k),

Ax k = λkBx k,(1.3)

where λ1 ≤ λ2 ≤ · · · ≤ λn. It is assumed here that given index k satisfies 1� k� n such that λk is
close to neither λ1 nor λn. This type of HDGEP is referred to as the k-th eigenvalue problem (k-EP)
in this thesis.

The study of k-EP has been originally motivated by computational materials science. Specifically,
k-EP has arisen in large-scale electronic structure calculations [33], where eigenvalues correspond
to the energy of an electron and eigenvectors represent an electronic wave function. In such ap-
plications, eigenpairs are associated with either occupied or unoccupied states that have a different
physical meaning. The occupied states include (λ1, x 1), . . . , (λk, x k), while (λk+1, x k+1), . . . , (λn, x n)
belong to the unoccupied states. The target eigenpair (λk, x k) is associated with the highest occu-
pied state whose index k is a material-specific value and is approximately 10–50% of the matrix
size [49, 66], e.g., (n, k) = (2 040000, 1020 000), thereby satisfying 1 � k � n. The index of the
eigenpair must be validated because several of the physical properties of materials, such as those
of optoelectronic device materials, are governed by the eigenpair with the material-specific index
k. In particular, mistakenly computing another eigenvector, e.g., x k−1 or x k+1, rather than x k leads
to a completely unreliable result because eigenvectors are B-orthogonal to each other. A further
explanation of eigenvalue problems in electronic structure calculations is provided in Chapter 5.

This thesis also considers computing the k singular triplet (σk, uk, v k),

Av k = σkuk,(1.4)

of large sparse A ∈ Cm×n (m ≥ n). Here, the singular values are index in decreasing order, or σ1 ≥
σ2 ≥ · · · ≥ σn ≥ 0, and a given index k satisfies 1 � k � n such that σk is not at either end of
[σn,σ1]. This type of SVP is referred to as the k-th singular value problem (k-SVP) in this thesis and
is studied as a special case of k-EP, based on relation between HDGEP, HEP, and SVP (Section 1.1).

1.4 Contributions

The k-th eigenpair of large sparse HDGEP is different from typical subsets of eigenpairs that can
be computed by existing subspace methods. Some eigenvalues at the ends of [λ1,λn] and their
associated eigenvectors can be computed by the Lanczos [43] and LOBPCG [39]methods, and some
eigenvalues closest to a given target point and their eigenvectors are computed by the SI Lanczos [18]
and Jacobi–Davidson [59] methods. In addition, eigenvalues in a given target interval and their
eigenvectors are computed by the Sakurai–Sugiura method [58], FEAST method [56], and filtering
methods [48]. However, none of these methods aim at computing the eigenpair of a given target
index k with 1� k� n.

One possibility to compute the k-th eigenpair with validation of its index is computing all or
substantial portion of eigenpairs based on dense linear algebra of O(n3) FLOPs in massively paral-
lel environment. Recently, a one-million-dimensional generalized eigenvalue problem, the world’s
largest, was solved by a dense eigensolver [17,35] using the full K computer. The elapsed time was
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1 Introduction

5516 seconds to compute all eigenpairs [30], indicating the practical size limit of eigenpair compu-
tation by a dense eigensolver. This thesis proposes a numerical algorithm for k-EP which requires
significantly less execution time and computational resources than dense eigensolvers and is able to
cope with problems of size n¦ 106.

1.5 Relation to data circulation

Contributions of this thesis are discussed in terms of their role in the context of Real-World Data
Circulation (RWDC)1. The concept of RWDC can be briefly explained as follows. To begin with, a set
of data is acquired by measurement and observation of natural phenomena and social activities, or
by experiments in short, using specific devices and systems. Next, the acquired data set is analysed
to figure out useful information for scientific discoveries and social decision makings, or to figure
out underlying principles of the data, improving our or computers’ understanding of the real-world.
Then, the improved understanding of the nature and society is utilized to predict and control the
real-world by means of products and services implemented in the world, completing a circulation of
real-world data. All three processes of data acquisition, data analysis, and data implementation are
indispensible to the circulation.

The thesis is focused on a new type of matrix eigenvalue problems, which has emerged from
large-scale simulations (numerical experiments) of materials, and proposes a numerical algorithm
for solving the problems. By the proposed algorithm, physical quantities of industrial importance
are able to be computed for more large-scale materials while requiring significantly less execution
time and computational resources than currently available algorithms. In materials simulations,
being larger in scale means being more accurate and realistic, and the proposed algorithm enables
generation of more accurate and realistic materials data in a fast and efficient manner, which can
lead to the acceleration and scaling-up of computational and data-driven studies of materials.

1.6 Outline

The rest of this thesis is organized as follows. Chapter 2 provides preliminaries for the subsequent
chapters, including a priori and a posteriori eigenvalue bounds, Sylvester’s law of inertia, the bi-
section algorithm, and the Lanczos method. Chapter 3 brings together theoretical background and
algorithms explained in the previous chapter in order to propose a numerical algorithm for k-EP.
Chapter 3 is based on the following papers and is the main contribution of the thesis.

[44] Lee, D., Hoshi, T., Sogabe, T., Miyatake, Y. and Zhang, S.-L., Solution of the k-th eigenvalue
problem in large-scale electronic structure calculations, J. Comput. Phys., 371 (2018), 618–
632.

[46] Lee, D., Miyata, T., Sogabe, T., Hoshi, T. and Zhang, S.-L., An interior eigenvalue problem from
electronic structure calculations, Jpn. J. Ind. Appl. Math., 30 (2013), 625–633.

Chapter 4 is about solution of k-SVP, which is an application of the proposed algorithm in the previous
chapter and is based on the following paper.

[47] Lee, D., Sogabe, T., Miyatake, Y. and Zhang, S.-L., On computing the k-th singular triplet (in
Japanese), Trans. Jpn. Soc. Ind. Appl. Math., accepted.

Chapter 5 discusses contributions of the thesis from the perspective of RWDC. Chapter 6 summarizes
the thesis with remarks on future work.

1RWDC is a systematic study of integrating data acquisition, data analysis, and data implementation processes to
generate circulation of real-world data for creation of novel social values, initiated by the Graduate Program for Real-
World Data Circulation Leaders [20], one of the Nagoya University Leading Graduate School Programs.
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Chapter 2

Preliminaries

This chapter provides preliminaries for the subsequent chapters. Section 2.1 considers HEP and ex-
plains some classical eigenvalue bounds, the inertia of a Hermitian matrix, and inertia computation.
Section 2.2 considers HDGEP and explains the bisection algorithm and the Lanczos method.

2.1 Hermitian eigenvalue problems

This section considers HEP of matrix A∈ Cn×n :

Ax = λx .

The eigenvalues of A are the roots of the characteristic equation det(A−λI) = 0. An eigenvalue λ has
algebraic multiplicity m if λ is a root of multiplicity m of det(A−λI) = 0. Eigenvalues are simple if their
algebraic multiplicity equals one. Otherwise, eigenvalues are multiple. The set of all eigenvalues is
the spectrum of A, denotedΛ(A). Nontrivial solution x of linear system (A−λI)x = 0 is an eigenvector
associated with λ. The null space of A−λI is the eigenspace associated with λ, and its dimension is
the geometric multiplicity of λ. All eigenvalues of a Hermitian matrix have the same geometric and
algebraic multiplicities, or are semi-simple, and thus Hermitian matrices are diagonalizable by the
eigenvectors.

All eigenvalues of Hermitian A are real and are indexed in the increasing order, or λ1 ≤ λ2 ≤
· · · ≤ λn, in the thesis unless otherwise stated. Eigenvectors are indexed accordingly such that Ax i =
λi x i . Eigenvectors associated with distinct eigenvalues, or x i and x j with λi 6= λ j , are orthogonal.
Eigenvectors associated with the same eigenvalue, or x i and x j with λi = λ j , i 6= j, can be selected to
be orthogonal, leading to unitary diagonalization X HAX = Λ and spectral decomposition A= XΛX H.
Here, Λ= diag(λ1, . . . ,λn), and X = [x 1 . . . x n] is unitary.

The eigenvalues of a Hermitian matrix have the following variational characterization from which
the index of eigenvalues can be defined.

Definition 2.1 (Rayleigh quotient). Let A∈ Cn×n be Hermitian and x ∈ Cn be nonzero. The Rayleigh
quotient ρ(A, x ) of A and x is ρ(A, x ) = x HAx

x Hx .

Theorem 2.2 (Courant–Fischer [27, Theorem 4.2.6]). Let A ∈ Cn×n be Hermitian and λ1 ≤ λ2 ≤
· · · ≤ λn be its eigenvalues. Let i ∈ {1, . . . , n} and Si denote any i-dimensional subspace of Cn. Then,

λi =min
Si

max
x∈Si\{0}

ρ(A, x ) = max
Sn−i+1

min
x∈Sn−i+1\{0}

ρ(A, x ).

2.1.1 Eigenvalue bounds

This subsection explains some classical results on eigenvalue location. The first result to introduce
is by Gershgorin, which provides an a priori bound of the spectrum of a matrix.
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2 Preliminaries

Definition 2.3 (row sum and column sum). Let A ∈ Cm×n. Let i ∈ {1, . . . , m} and j ∈ {1, . . . , n}.
Row sums ri(A) =

∑

j

�

�Ai j

�

� . Deleted row sums r ′i (A) = ri(A)− |Aii| . Column sums c j(A) =
∑

i

�

�Ai j

�

� .

Deleted column sums c′j(A) = c j(A)−
�

�A j j

�

� .

Theorem 2.4 (Gershgorin [27, Theorem 6.1.1]). Let A ∈ Cn×n and i ∈ {1, . . . , n}. Consider discs
Gi(A) =

�

x ∈ C
�

� |x − Aii| ≤ r ′i (A)
	

. Then, spectrum Λ(A) is included in the union of the n discs, G(A) =
⋃

i Gi(A).

Because A ∈ Cn×n and AT have the same eigenvalue, by applying Theorem 2.4 to AT, it follows
that Λ(A) ⊂ G(A)

⋂

G(AT). Here, G(AT) =
⋃

i Gi(AT), where Gi(AT) =
�

x ∈ C
�

� |x − Aii| ≤ c′i(A)
	

. If A
is Hermitian, since its diagonal elements Aii are real and r ′i (A) = c′i(Ā), it follows that G(A) = G(AT).
In addition, since its eigenvalues are real, spectrum Λ(A) ⊂ R⋂G(A).

The next result provides an a posteriori eigenvalue error bound in terms of the residual r =
Ax̃ − λ̃x̃ of approximate eigenpairs (λ̃, x̃ ).

Theorem 2.5 (Bauer–Fike [27, Theorem 6.3.14]). Let A ∈ Cn×n be diagonalizable and suppose that
A= XΛX−1 with diagonal Λ. Let λ̃ ∈ C and x̃ ∈ Cn be nonzero. Then, there exists an eigenvalue λ of
A such that

�

�λ− λ̃
�

�≤ ‖X‖2
‖X−1‖2

· ‖Ax̃ − λ̃x̃‖2
‖x̃‖2

.

For Hermitian A, since it is diagonalizable by unitary X and ‖X‖2 = 1, it follows from Theorem 2.5
that there exist an eigenvalue λ of A such that

�

�λ− λ̃
�

�≤ ‖Ax̃ − λ̃x̃‖2
‖x̃‖2

(2.1)

for any λ̃ ∈ C and nonzero x̃ ∈ Cn. Therefore, the small residual norm implies that an approximate
eigenvalue is close to an eigenvalue. Note that the small residual norm does not imply that an
approximate eigenvector is close to an eigenvector [27, p. 411].

The last result is about interlacing of eigenvalues by adding or deleting a row and column of a
Hermitian matrix.

Theorem 2.6 (Cauchy [27, Theorem 4.3.17]). Let A ∈ Cn×n be Hermitian and λ1 ≤ λ2 ≤ · · · ≤ λn

be its eigenvalues. Let y ∈ Cn and a ∈ R. Let Ã=
�

A y
yH a

�

and λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n+1 be its eigenvalues.

Then, λ̃i ≤ λi ≤ λ̃i+1 for i = 1, . . . , n.

2.1.2 Congruence and inertia

This subsection explains a congruence, which is an equivalence relation on the set of Hermitian
matrices of the same size, and the inertia of a Hermitian matrix.

Definition 2.7 (congruence). Let A, B ∈ Cn×n be Hermitian and C ∈ Cn×n be invertible. A congru-
ence is the linear transformation A 7→ CHAC . Two matrices A, B are congruent if there exists C such
that B = CHAC .

Definition 2.8 (inertia). The inertia of Hermitian A is the triple

(n(A), z(A), p(A)),

where n(A), z(A), and p(A) are the number of negative, zero, and positive eigenvalues of A, respec-
tively.
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For Hermitian A, its rank and signature are n(A) + p(A) and p(A) − n(A), respectively. The inertia
uniquely determines the rank and signature, and vice versa.

An important result about the inertia is the following theorem by Sylvester, which is generally
referred to as Sylvester’s law of inertia.

Theorem 2.9 (Sylvester [27, Theorem 4.5.8]). The inertia of a Hermitian matrix is invariant under
a congruence. Namely, for Hermitian A and invertible C ,

(n(CACH), z(CACH), p(CACH)) = (n(A), z(A), p(A)).

In other words, Hermitian matrices are congruent if and only if they have the same inertia.

A standard way to compute the inertia of a Hermitian matrix is to perform Gauss elimination
to generate an LDLH factorization. In principle, any Hermitian A can be factored into the form of
PAPT = LDLH by using an appropriate permutation P, where L is a lower triangular matrix with its
diagonal elements equal to one (and thus is invertible) and D is a block diagonal matrix with block
size one or two. An LDLH factorization of possibly indefinite matrices, unlike the Cholesky factor-
ization of positive definite matrices, is not unique and depends mainly on the choice of permutation
P. Once an LDLH factorization of A is computed, because of Sylvester’s law of inertia, it follows that
(n(A), z(A), p(A)) = (n(D), z(D), p(D)), and the inertia of A is obtained by counting negative, zero,
and positive eigenvalues of block diagonal D.

2.2 Hermitian definite generalized eigenvalue problems

This section considers HDGEP of Hermitian A, B ∈ Cn×n,

Ax = λBx ,(2.2)

or equivalently the eigenvalue problem of definite pencil (A, B). Pencil (A, B) definite if there exist
α,β ∈ R such that αA+ βB > O (positive definite). When considering HDGEP, it can be assumed
without loss of generality that B > O. This is because the eigenvalue problem of (A, B) can be reduced
to the eigenvalue problem of (A,αA+βB), or Ax = λ̃(αA+βB)x with λ̃= λ

αλ+β , provided that β is
nonzero. If A> O and thus β can be zero, the problem of (A, B) is reduced to that of (B, A). Therefore,
unless otherwise stated, it is assumed that B > O in this thesis.

The eigenvalues of definite pencil (A, B) are the roots of the characteristic equation det(A−λB) =
0. Nontrivial solution x of linear system (A−λB)x = 0 is an eigenvector associated with λ, and the
null space of A− λB is the eigenspace associated with λ. All eigenvalue of (A, B) are real and are
indexed in the increasing order, or λ1 ≤ λ2 ≤ · · · ≤ λn, in the thesis. Eigenvectors are indexed
accordingly such that Ax i = λiBx i . Eigenvectors associated with distinct eigenvalues, or x i and x j
with λi 6= λ j , are B-orthogonal, or (x i , x j)B = 0. Eigenvectors associated with the same eigenvalue,
or x i and x j with λi = λ j , i 6= j, can be selected to be B-orthogonal, leading to simultaneous
diagonalization X HAX = Λ, X HBX = I . Here, Λ= diag(λ1, . . . ,λn), and X = [x 1 . . . x n].

HDGEP can be reduced to HEP. For example, let C be either the Cholesky factor L or the principal
square root S of B = LLH = (S)2. Then, HDGEP (2.2) can be reduced to HEP Ãx̃ = λx̃ in which
Ã = C−1AC−H and x̃ = CHx . Note that eigenvalues λ do not change by the reduction. Because of
this relation between HDGEP and HEP, theoretical results on HEP and numerical algorithms for HEP
can often be extended and applied to HDGEP in a straightforward manner. For example, Theorem 2.9
for HEP carries over to HDGEP as follows.

Definition 2.10. The inertia of definite pencil (A, B), B > O is the triple

(n(A, B), z(A, B), p(A, B)),

7
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where n(A, B), z(A, B), and p(A, B) are the number of negative, zero, and positive eigenvalues of
(A, B), respectively.

Corollary 2.11. Let (A, B) be a definite pencil with B > O. Let X , Y be invertible. Then,

(n(XAX H, Y BY H), z(XAX H, Y BY H), p(XAX H, Y BY H)) = (n(A, B), z(A, B), p(A, B)).

In particular, (n(A), z(A), p(A)) = (n(A, B), z(A, B), p(A, B)).

HDGEP of (A, B) is equivalent to a real symmetric definite GEP. Let A= A1+iA2 with real symmetric
A1 and real skew symmetric A2. In the same way, let B = B1 + iB2 with B1 = BT

1 and B2 = −BT
2 .

Assume that (λ, x ) is an eigenpair of (A, B), and let x = x 1+ ix 2 with real vectors x 1 and x 2. Then,
�

λ,
� x 1

x 2

��

and
�

λ,
�−x 2

x 1

��

are eigenpairs of symmetric definite pencil
��

A1 AT
2

A2 A1

�

,
�

B1 BT
2

B2 B1

��

. Because of
this equivalence, HDGEP can be solved by algorithms using only real arithmetic.

2.2.1 Bisection algorithm

This subsection explains the bisection algorithm for computing the k-th eigenvalue of HDGEP. Given
interval [α,β) ⊂ R containing λk, the bisection algorithm computes the number of eigenvalues
smaller than µ = α+β

2 , denoted nµ(A, B). If nµ(A, B) ≥ k, the current interval [α,β) is narrowed
down to the left half-interval [α,µ). Otherwise (if nµ(A, B) < k), interval [α,β) is narrowed down
to the right half-interval [µ,β). Because of Corollary 2.11, nµ(A, B) = n(A−µB, B) = n(A−µB) and
thus number nµ(A, B) can be computed by LDLH factorization of shifted matrix A−µB.

Algorithm 2.1 shows the bisection algorithm. When an interval [µlower,µupper) containing λk
is given, the midpoint µ of the interval is calculated in line 2, and then nµ(A, B) is computed by
utilizing LDLH factorization of A−µB in lines 3–4. Here, A−µB is indefinite; thus, permutation P is
necessary for the existence and numerical stability of factorization and is generated based on pivoting
strategies by, e.g, Bunch–Kaufman [9] and Duff–Reid [16]. L and D are a unit lower triangular
matrix and a block diagonal matrix of block size one or two, respectively. Depending on n(D) =
nµ(A, B), either the left or right half-interval is selected as the next interval in line 5. Approximately
dlog2[(µupper − µlower)/τ]e iterations are required until the interval becomes narrower than a given
tolerance τ. Thus, a narrower initial interval will result in fewer required iterations to locate λk.

Algorithm 2.1: Bisection for computing the k-th eigenvalue of HDGEP
Input : matrices A, B of HDGEP (2.2), target index k ∈ N,

interval [µlower,µupper) ⊂ R containing the k-th eigenvalue, tolerance τ ∈ R.
Output: approximate eigenvalue λ̂k := (µlower +µupper)/2, where |λ̂k −λk|< τ/2.

1 repeat until µupper −µlower < τ do
2 µ := (µlower +µupper)/2,
3 LDLH← P(A−µB)PT, . P : permutation for numerical stability
4 ν := n(D), . n(D) : number of negative eigenvalues of block diagonal D
5 if k ≤ ν then µupper := µ else µlower := µ.
6 end

2.2.2 Lanczos method

The Lanczos method [43] is a subspace projection method in which approximate solutions are con-
structed within a Krylov subspace and are determined to be optimal in the sense of the Galerkin
condition. The subspace and its orthonormal basis are generated by the Lanczos process, which can
be expressed in the matrix form:

AVj = BVj T j + Bv j+1β je
T
j .(2.3)

8
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Here, Vj = [v1 · · · v j] is an n× j matrix whose columns span a Krylov subspace and are B-orthonormal.
Matrix T j = V H

j AVj is real symmetric tridiagonal and has non-zero off-diagonal elements (irre-
ducible). Vector v j+1 is B-orthogonal to the columns of Vj and is normalized with respect to the
B-norm by scale factor β j . Vector e j is the last column of the identity matrix of size j. In this thesis,
(2.3) is referred to as j-step Lanczos decomposition whose algorithm is shown in Algorithm 2.2.

Algorithm 2.2: j-step Lanczos decomposition in B-inner product [5, Chapter 5.5]
Input : matrices A, B of HDGEP (2.2), parameter j ∈ N .
Output: matrix Vj ∈ Cn× j , vector v j+1, real symmetric tridiagonal T j ∈ R j× j , scalar β j ∈ R.

1 V0 := [], w 0 := 0, set random starting vector v1.

2 w 1 := Bv1, β0 := (w H
1 v1)

1
2 , v1 := v1/β0, w 1 := w 1/β0,

3 for i = 1,2, . . . , j do
4 Vj := [Vj−1v j], w i+1 := Av i , w i+1 := w i+1 − βi−1w i−1,
5 αi := w H

i+1v i , w i+1 := w i+1 −αi w i ,
6 solve linear system Bv i+1 = w i+1, βi := (w H

i+1v i+1)1/2,
7 v i+1 := v i+1/βi , w i+1 := w i+1/βi ,
8 end

9 T j :=









α1 β1

β1 α2

...
... ... β j−1

β j−1 α j









.

From the Galerkin condition, the standard eigenvalue problem of T j is derived:

T j y
( j)
i = θ

( j)
i y ( j)i , y ( j)i 6= 0.(2.4)

Since T j is irreducible, eigenvalues θ ( j)i are distinct from each other [52, Chapter 1.3] and can be

indexed in increasing order, i.e., θ ( j)1 < θ
( j)
2 < · · · < θ ( j)j . The Lanczos method can be considered a

Rayleigh–Ritz procedure, and eigenvalues θ ( j)i are referred to as Ritz values.

Shift-and-invert Lanczos method

A small number of eigenvalues closest to a target point µ ∈ R and their associated eigenvectors can
be computed by the shift-and-invert (SI) Lanczos method [18]. The SI Lanczos method applied to
the original HDGEP (2.2) can be considered as applying the original Lanczos method to the shift-
and-inverted (SI) problem:

(A−µB)−1 x̃ = λ̃B−1 x̃ , x̃ 6= 0.(2.5)

Here, it is assumed that shift µ does not coincide with an eigenvalue of (2.2), i.e., µ 6= λi . The
eigenvalues of the original and SI problems have the relationship λ̃= (λ−µ)−1, while eigenvectors
satisfy both x̃ = Bx and x̃ = (A−µB)x because Bx and (A−µB)x are collinear. Based on these rela-
tionships, approximate eigenpairs for the SI problem (2.5) are transformed to those for the original
HDGEP (2.2).

The matrix form of j-step SI Lanczos decomposition is given as follows:

(A−µB)−1Ṽj = B−1Ṽj T̃ j + B−1 ṽ j+1β̃ je
T
j .(2.6)

Here, Ṽj is an n × j matrix whose columns span a Krylov subspace and are B−1-orthonormal, and
T̃ j is real symmetric tridiagonal and irreducible. ṽ j+1 is B−1-orthogonal to the columns of Ṽj and is
normalized with respect to the B−1-norm by scale factor β̃ j .

9
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From the Galerkin condition, the standard eigenvalue problem of T̃ j is derived:

T̃ j ỹ
( j)
i = θ̃

( j)
i ỹ ( j)i , ỹ ( j)i 6= 0.(2.7)

Here, eigenvalues θ̃ ( j)i are indexed in increasing order, and eigenvectors ỹ ( j)i are assumed to be

normalized with respect to the 2-norm in the thesis. Using the i-th eigenpair (θ̃ ( j)i , ỹ ( j)i ) of T̃ j , the
approximate eigenvalues for (2.2) are expressed as follows:

λ
( j)
i = µ+ 1/θ̃ ( j)i .(2.8)

Approximate eigenvectors can be expressed in two different ways.

1. Using the first relationship x̃ = Bx , approximate eigenvectors are given as:

x ( j)i,1 = B−1Ṽj ỹ
( j)
i .(2.9)

2. From the second relationship x̃ = (A−µB)x ,

x ( j)i,2 = (A−µB)−1Ṽj ỹ
( j)
i .(2.10)

In this thesis, x ( j)i,2 in (2.10) is utilized as an approximate eigenvector, although it is common

to use x ( j)i,1 in (2.9). This is because, as will be shown in Proposition 3.1, x ( j)i,2 allows economical
evaluation of an eigenvalue error bound that can be utilized to validate the index of approximate
eigenpairs. Other perspectives on approximate eigenvectors and their further treatment can be found
in the literature [18] and [5, Chapter 7.6.8], in which x ( j)i,2 is considered a modification of x ( j)i,1.

The rest of this subsection provides theoretical results that support the utilization of x ( j)i,2 as an

approximate eigenvector. Proposition 2.12 shows that x ( j)i,2 converges to the same eigenvector of

(2.2) at the same iteration of the SI Lanczos method as x ( j)i,1. Proposition 2.13 shows that x ( j)i,2 with
1≤ i ≤ j become B-orthogonal to each other as the SI Lanczos method proceeds.

Proposition 2.12. Approximate eigenvectors x ( j)i,1 in (2.9) and x ( j)i,2 in (2.10) are collinear if and only
if ṽ j+1 = 0 in (2.6).

Proof. We first prove the sufficiency. By post-multiplying (2.6) by ỹ ( j)i and from the sufficient condi-
tion ṽ j+1 = 0, we have:

x ( j)i,2 = (A−µB)−1Ṽj ỹ
( j)
i = B−1Ṽj T̃ j ỹ

( j)
i = θ̃

( j)
i x ( j)i,1.

The third equality follows from (2.7). This proves the sufficiency. Now, we prove the necessity. By
post-multiplying (2.6) by ỹ ( j)i , we have:

x ( j)i,2 = θ̃
( j)
i x ( j)i,1 + B−1 ṽ j+1(β̃ je

T
j ỹ ( j)i ).

Here, x ( j)i,1 and x ( j)i,2 are collinear from the necessary condition; thus, the last term B−1 ṽ j+1(β̃ je
T
j ỹ ( j)i )

must be collinear with x ( j)i,1 and x ( j)i,2. In addition, the last term is B-orthogonal to x ( j)i,1 because ṽ j+1

is B−1-orthogonal to the columns of Ṽj:

(x ( j)i,1)
HB
�

B−1 ṽ j+1(β̃ je
T
j ỹ ( j)i )

�

= (ỹ ( j)i )
HṼ H

j B−1 ṽ j+1(β̃ je
T
j ỹ ( j)i ) = 0.

Due to this B-orthogonality and the positive-definiteness of B, the last term can never be collinear
with x ( j)i,1 unless it is the zero vector. Therefore, ṽ j+1 = 0 (thus, β̃ j = 0) or eT

j ỹ ( j)i = 0. However, eT
j ỹ ( j)i

is non-zero because it is the last element of an eigenvector of an irreducible tridiagonal matrix [55,
Theorem 7.9.3]. This proves the necessity.
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Note that x ( j)i,2 with 1 ≤ i ≤ j do not have exact B-orthogonality. Their B-orthogonality can be
measured by (2.11) in Proposition 2.13, which is the cosine similarity of two approximate eigenvec-
tors in the B-inner product.

Proposition 2.13. The following holds for 1≤ l < m≤ j:

|(x ( j)l,2)
HBx ( j)m,2|

‖x ( j)l,2‖B · ‖x ( j)m,2‖B

=
|β̃ je

T
j ỹ ( j)l /θ̃

( j)
l |

r

1+ |β̃ je
T
j ỹ ( j)l /θ̃

( j)
l |2

·
|β̃ je

T
j ỹ ( j)m /θ̃

( j)
m |

r

1+ |β̃ je
T
j ỹ ( j)m /θ̃

( j)
m |2

.(2.11)

Proof. For 1≤ l ≤ m≤ j,

(x ( j)l,2)
HBx ( j)m,2 =

�

(A−µB)−1Ṽj ỹ
( j)
l

�H
B
�

(A−µB)−1Ṽj ỹ
( j)
m

�

=
�

Ṽj T̃ j ỹ
( j)
l + ṽ j+1β̃ je

T
j ỹ ( j)l

�H
B−1BB−1

�

Ṽj T̃ j ỹ
( j)
m + ṽ j+1β̃ je

T
j ỹ ( j)m

�

=
�

Ṽj T̃ j ỹ
( j)
l

�H
B−1

�

Ṽj T̃ j ỹ
( j)
m

�

+
�

ṽ j+1β̃ je
T
j ỹ ( j)l

�H
B−1

�

ṽ j+1β̃ je
T
j ỹ ( j)m

�

= θ̃ ( j)l θ̃
( j)
m

�

δlm + (β̃ je
T
j ỹ ( j)l /θ̃

( j)
l )(β̃ je

T
j ỹ ( j)m /θ̃

( j)
m )
�

.(2.12)

Here, δlm denotes the Kronecker delta. The second equality follows from (2.6), and the third and
fourth are due to the B−1-orthonormality of the columns of Ṽj and ṽ j+1. (2.11) is an immediate result
of (2.12) with l 6= m.

Scalars |β̃ je
T
j ỹ ( j)i /θ̃

( j)
i | in (2.11) are simply the B−1-norm of the residual vectors:

r ( j)i,2 ≡ (A−λ( j)i B)x ( j)i,2 =
�

A− (µ+ 1/θ̃ ( j)i )B
�

(A−µB)−1Ṽj ỹ
( j)
i = −ṽ j+1(β̃ je

T
j ỹ ( j)i /θ̃

( j)
i ).(2.13)

Since the residual norm |β̃ je
T
j ỹ ( j)i /θ̃

( j)
i | � 1 as the SI Lanczos method proceeds, (2.11) converges to

zero and approximate eigenvectors x ( j)i,2 become B-orthogonal to each other. Therefore, approximate

eigenvectors x ( j)i,2 have B-orthogonality in a practical sense.
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Chapter 3

An algorithm for the k-th eigenvalue problem

This chapter presents a three-stage algorithm with the following features for solving k-EP (1.3),
which is based on theoretical background and algorithms in the previous chapter.

In the first stage of the algorithm, we propose an efficient way of finding an interval containing
the k-th eigenvalue (1� k� n)with a non-standard application of the Lanczos method. A standard
approach is to utilize some Gershgorin-type theorems so that the interval includes the entire spectrum
and thus contains λk. The proposed approach iteratively generates a sequence of disjoint intervals
until an interval validated as containing λk is obtained. For our problem with the target index
1 � k � n, the numerical results show that information conventionally considered useless in the
Lanczos method, i.e., Ritz values of the first few steps of the method, is of paramount importance to
generate a narrow initial interval.

In the second stage, bisection for large sparse problems is realized using a sparse direct linear
solver to narrow down the interval of the k-th eigenvalue. Each bisection iteration requires computa-
tion of nµ(A, B), or the number of eigenvalues smaller than µ, which is based on LDLH factorization
of a shifted matrix A− µB and thus requires O(n2) memory in general. In the proposed approach,
number nµ(A, B) is computed by utilizing a sparse direct linear solver to save memory to realize
bisection for large sparse problems. Once a fill-reducing ordering and symbolic factorization are
obtained for some A− µB, they can be recycled for other shifted matrices because they depend on
only the sparsity structure of a matrix.

In the third stage, we switch to a modified shift-and-invert Lanczos method to reduce bisection
iterations and compute the k-th eigenpair with validation. As will be shown in Proposition 3.1, the
index is validated by utilizing an eigenvalue error bound that can be evaluated from the residual
vector at negligible cost.

The remainder of this chapter is organized as follows. In Section 3.1, after explaining our ap-
proach to set an initial interval and compute the k-th eigenvector, we present the three-stage algo-
rithm for k-EP. Section 3.2 reports numerical results of several real research problems and a com-
parison of the three-stage algorithm and dense eigensolvers in order to examine the accuracy and
efficiency of the proposed algorithm. Concluding remarks are given in Section 3.3.

3.1 A three-stage algorithm

3.1.1 An efficient initial interval for bisection

To utilize bisection, it is necessary to set an initial interval that contains the k-th eigenvalue. A
common approach is to set an interval that includes the entire spectrum, which necessarily contains
λk. For SEP, one of the most economical ways to set such an interval is to use the Gershgorin theorem
(Theorem 2.4). Several Gershgorin-type theorems have been proposed for GEP [42, 54, 60]. These
theorems provide an inclusion set of the spectrum that is guaranteed to be bounded only when

13
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at least one of A and B is diagonally dominant for each row [54]. Unfortunately, such diagonal
dominance of the matrices is not always assumed to be the case. The remainder of this subsection
presents a systematic way to set an initial interval based on an application of the Lanczos method
(Section 2.2.2).

Ritz values by the Lanczos method become more accurate by expanding the subspace, exhibiting
the interlacing property (Theorem 2.6). By denoting the i-th Ritz value at the j-th iteration of the
method as θ ( j)i as in (2.4), the interlacing property can be formally expressed as follows: θ ( j+1)

i <

θ
( j)
i < θ

( j+1)
i+1 for i ≤ j < n. The monotonic convergence follows from this property, which states that

the i-th smallest (resp. largest) Ritz value decreases (resp. increases) monotonically and converges
to the i-th smallest (resp. largest) eigenvalue. We utilize this monotonicity of Ritz values to set an
initial interval.

Algorithm 3.1 shows how we set an interval containing λk by utilizing Ritz values, and this
process is illustrated in Figure 3.1. Here, we utilize either the smallest θ ( j)1 or largest Ritz values

θ
( j)
j with j ≥ 1. We begin by computing θ (1)1 , which is equal to the generalized Rayleigh quotient

vH
1 Av1/v

H
1 Bv1 of a random starting vector v1. The quotient is expected to be the average of the

eigenvalues of (1.3). It is advantageous to begin from approximately the middle of the eigenvalue
distribution when the target index satisfies 1 � k � n. We then compute ν(1) = n

θ
(1)
1
(A, B). If

k ≤ ν(1), it follows that λk < θ
(1)
1 < θ

( j)
j for j > 1. Therefore, in the subsequent iterations, the

smallest Ritz values θ ( j)1 are utilized as the points for setting an interval containing λk. On the other
hand, if k > ν(1), the largest Ritz values are selected as the endpoints of an interval. Accordingly, a
sequence of disjoint intervals, i.e., either [θ ( j)1 ,θ ( j−1)

1 ) or [θ ( j−1)
j−1 ,θ ( j)j ) with j > 1, is generated until

an interval validated as containing λk is obtained.

Algorithm 3.1: Setting an interval containing the k-th eigenvalue
Input : matrices A, B of HDGEP (2.2), target index k ∈ N.
Output: interval [µlower,µupper) ⊂ R containing the k-th eigenvalue,

νlower = nµlower
(A, B), νupper = nµupper

(A, B).
1 set a random starting vector v1, v1 := v1/‖v1‖B, ν(0) := 0,
2 for j = 1, 2, . . . do
3 compute j-step Lanczos decomposition (2.3),
4 solve standard eigenvalue problem (2.4),

5 if k ≤ ν( j−1) then µ( j) := θ ( j)1 else µ( j) := θ ( j)j ,

6 LDLH← P(A−µ( j)B)PT, . P : permutation for numerical stability
7 ν( j) := n(D), . n(D) : number of negative eigenvalues of block diagonal D
8 if j 6= 1 and (ν( j) < k ≤ ν( j−1) or ν( j−1) < k ≤ ν( j)) then break,
9 end for

10 µlower :=min{µ( j−1),µ( j)}, µupper :=max{µ( j−1),µ( j)},
11 νlower :=min{ν( j−1),ν( j)}, νupper :=max{ν( j−1),ν( j)}.

An advantage of utilizing Ritz values is that an initial interval is necessarily included in and can
be much narrower than [λ1,λn], which leads to a reduction of the number of bisection iterations.
However, we must consider the cost of setting the interval, i.e., j iterations of the Lanczos method and
j LDLH factorizations. The interlacing property provides a theoretical upper bound of the iteration
count required to set an interval. Here, since θ (n−k+1)

1 < λk < θ
(k)
k , at most n− k+ 1 iterations are

required for the k ≤ ν(1) case, and k iterations are required for the k > ν(1) case. In practice, j can
be very small because eigenvalues at the ends of [λ1,λn] are rapidly approximated by the Lanczos
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λ1 θ
(1)
1 θ

(2)
2
λk θ

(3)
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λn
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Figure 3.1: Illustration of Algorithm 3.1. [θ (1)1 ,θ (2)2 ) does not contain λk but [θ (2)2 ,θ (3)3 ) does
(hatched).

method and the target index k is approximately 10–50% of the matrix size n, thereby satisfying
1� k � n. In the numerical results presented in Section 3.2.3, the iteration count j is two for all
experiments.

3.1.2 Bisection for large sparse problems

We utilize a sparse direct linear solver [13] for computing nµ(A, B) of large sparse A, B in order
to realize bisection for narrowing down an initial interval. Algorithm 3.2 shows a modification
of Algorithm 2.1 (bisection). The main difference can be found in line 3, where a fill-reducing
ordering Q based, e.g., on minimum degree or nested dissection [1, 38], is utilized to handle large
sparse matrices, in addition to permutation P for numerical stability. In contrast to P, ordering Q is
independent from shift µ because it depends on only the sparsity structure of A− µB. Thus, once
ordering and symbolic factorization are obtained for some shifted matrix, they can be recycled for
other shifted matrices with varying shifts in the subsequent iterations. Computation of nµ(A, B) in
Algorithm 3.1 can be performed in the same manner by utilizing a sparse direct linear solver.

Algorithm 3.2: Bisection for narrowing down an interval of the k-th eigenvalue
Input : matrices A, B of HDGEP (2.2), target index k,

interval [µlower,µupper) ⊂ R containing the k-th eigenvalue,
νlower = nµlower

(A, B), νupper = nµupper
(A, B), stopping criterion mmax ∈ N.

Output: interval [µlower,µupper), νlower, νupper.
1 repeat until νupper − νlower ≤ mmax . νupper − νlower: number of eigenvalues in the interval
2 µ := (µlower +µupper)/2,
3 LDLH← PQ(A−µB)QTPT, . Q : fill-reducing ordering for sparse matrices
4 ν := n(D),
5 if k ≤ ν then µupper := µ, νupper := ν else µlower := µ, νlower := ν.
6 end

3.1.3 Computation of the k-th eigenpair with validation

Once an initial interval is set for bisection, it is narrowed down until it contains the k-th eigenvalue
and some nearby eigenvalues. We then compute the k-th eigenpair along with the other eigenpairs
of the interval while validating their index. The eigenpairs of the interval can be computed by a
variety of methods (Section 1.2). We utilize a modified SI Lanczos method (Section 2.2.2), where
approximate eigenvectors x ( j)i,2 are computed based on (2.10) and have B-orthogonality, as shown in
Proposition 2.13.
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3 An algorithm for the k-th eigenvalue problem

In Proposition 3.1, we explain that an eigenvalue error bound for validating the index of the
eigenpairs can be evaluated from the residual vector of the SI Lanczos method at negligible cost.

Proposition 3.1. With the same notation as (2.6)–(2.8) in Section 2.2.2, there is an eigenvalue λl( j)i

of problem (2.2) such that:

λl( j)i
∈ Γ ( j)i ≡ [λ( j)i −η( j)i ,λ( j)i +η

( j)
i ], η

( j)
i ≡

1

|θ̃ ( j)i |
·

|β̃ je
T
j ỹ ( j)i /θ̃

( j)
i |

r

1+ |β̃ je
T
j ỹ ( j)i /θ̃

( j)
i |2

.(3.1)

Proof. According to a classical result of the perturbation theory [55, Theorem 15.9.1], which is a
direct extension of (2.1), there is an eigenvalue λl of problem (2.2) for a scalar µ and non-zero
vector u such that:

|λl −µ| ≤
‖(A−µB)u‖B−1

‖Bu‖B−1
.(3.2)

By substituting (µ, u) in (3.2) with an approximate eigenpair (λ( j)i , x ( j)i,2) obtained by the SI Lanczos
method, we have from (2.12) and residual (2.13) that:

|λl( j)i
−λ( j)i | ≤

‖(A−λ( j)i B)x ( j)i,2‖B−1

‖Bx ( j)i,2‖B−1

=
‖r ( j)i,2‖B−1

‖x ( j)i,2‖B

=
1

|θ̃ ( j)i |
·

|β̃ je
T
j ỹ ( j)i /θ̃

( j)
i |

r

1+ |β̃ je
T
j ỹ ( j)i /θ̃

( j)
i |2

.(3.3)

By rewriting inequality (3.3), we have an eigenvalue error bound Γ ( j)i for λ( j)i that includes an eigen-
value λl( j)i

of problem (2.2).

When bound (3.1) becomes sufficiently narrow, we can associate λ( j)i with an eigenvalue of prob-
lem (2.2) and thus validate the index of the approximate eigenpairs. Here, assume that an interval
[µlower,µupper) contains m eigenvalues. If there are m error bounds in the interval that are mutually
disjoint, as illustrated in Figure 3.2, then each bound contains only one of the m eigenvalues of the
interval. When the approximate eigenpairs have one-to-one correspondence with the eigenvalues of
the interval, the index of each approximate eigenpair can be validated readily because we already
know the index range of the eigenpairs of the interval from the bisection.
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Γ
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Γ
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Γ
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i4

Γ
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Γ
( j)
i1

µlower µupper

(a) Γ ( j)i1
and Γ ( j)i5

are not included in the interval (crosshatched). Γ ( j)i2
and Γ ( j)i3

overlap, so do Γ ( j)i4
and Γ ( j)i5

(hatched).
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Γ
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( j)
i2

Γ
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Γ
( j)
i5

Γ
( j)
i1

Re.

(b) m= 5 mutually disjoint bounds in the interval

Figure 3.2: Error bounds (3.1) for m= 5

Algorithm 3.3 shows an implementation example, where the midpoint µ = (µlower + µupper)/2
of the interval is selected as the shift for the SI Lanczos method. In line 8, we sort the approximate
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3.1 A three-stage algorithm

eigenpairs (λ( j)i , x ( j)i,2) of the method and re-index them for simplicity:

|λ( j)1 −µ| ≤ |λ( j)2 −µ| ≤ · · · ≤ |λ( j)j −µ|, or equivalently |θ̃ ( j)1 | ≥ |θ̃ ( j)2 | ≥ · · · ≥ |θ̃ ( j)j |.(3.4)

Then, if the following two conditions hold, each λ( j)i best approximates a distinct eigenvalue of the
interval:

inclusion: Γ
( j)
i ⊂ [µlower,µupper) for 1≤ i ≤ m.(3.5)

disjointness: Γ
( j)
i1
∩ Γ ( j)i2

=∅ for 1≤ i1 < i2 ≤ m.(3.6)

When (3.5) and (3.6) hold, we test for convergence in line 10. The algorithm is assumed to reach
convergence when the relative residual 2-norm of each approximate eigenpair of the interval be-
comes less than a given tolerance τres. We also utilize the following criterion for the convergence
test, which we refer to as the relative difference 2-norm between the approximate eigenvectors at
the ( j − 1)-st and j-th iterations:

‖x ( j)i,2 − x ( j−1)
i,2 ‖2/‖x ( j−1)

i,2 ‖2 < τdiff for 1≤ i ≤ m.(3.7)

Here, x ( j−1)
i,2 and x ( j)i,2 are normalized to satisfy ‖x ( j−1)

i,2 ‖2 = ‖x ( j)i,2‖2. Criterion (3.7) is required be-
cause, as mentioned in Section 2.1.1 and will be discussed in Section 3.2.3, a small relative residual
2-norm does not necessarily imply that an approximate eigenvector is close to convergence. After
the convergence test, we sort the approximate eigenpairs of the interval to the original order in line
13 to obtain the k-th eigenpair in line 14.

Algorithm 3.3: Computing the k-th eigenpair in the interval
Input : matrices A, B of HDGEP (2.2), target index k,

interval [µlower,µupper) ⊂ R containing the k-th eigenvalue,
νlower = nµlower

(A, B), νupper = nµupper
(A, B),

tolerances τres,τdiff ∈ R for relative residual and difference 2-norms.
Output: approximate eigenpair (λ̂k, x̂ k), where ‖(A− λ̂kB)x̂ k‖2/‖x̂ k‖2 < τres.

1 l := k− νlower, m := νupper − νlower, µ := (µlower +µupper)/2,
2 set a random starting vector ṽ1, ṽ1 := ṽ1/‖ṽ1‖B−1 ,
3 for j = 1, 2, . . . do
4 compute j-step SI Lanczos decomposition (2.6) with reorthogonalization,
5 if j ≥ m then
6 solve standard eigenvalue problem (2.7),

7 for i = 1 to j do compute approximate eigenpairs (λ( j)i , x ( j)i,2) as (2.8) and (2.10),

8 sort (λ( j)i , x ( j)i,2) with 1≤ i ≤ j to index as (3.4),
9 for i = 1 to m do compute the i-th eigenvalue error bound (3.1),

10 if (3.5) and (3.6) and (‖(A−λ( j)i B)x ( j)i,2‖2/‖x ( j)i,2‖2 < τres for 1≤ i ≤ m) and (3.7)
then break,

11 end if
12 end for

13 sort (λ( j)i , x ( j)i,2) with 1≤ i ≤ m to index in increasing order λ( j)1 < λ
( j)
2 < · · ·< λ( j)m ,

14 (λ̂k, x̂ k) := (λ( j)l , x ( j)l,2).
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3 An algorithm for the k-th eigenvalue problem

3.1.4 Overview of the three-stage algorithm

Algorithm 3.4 presents a three-stage algorithm for solving k-EP. We first run Algorithm 3.1 to set
an interval [µlower,µupper) containing the k-th eigenvalue. We then run Algorithm 3.2 to narrow
down the interval until it contains less than or equal to mmax eigenvalues that include λk. Compared
with further narrowing down the interval to isolate λk from the other eigenvalues, approximately
log2 mmax bisection iterations can be reduced. Finally, we run Algorithm 3.3 to compute the k-th
eigenpair along with the other eigenpairs of the interval while validating their index.

Algorithm 3.4: Three-stage algorithm for solving the k-th eigenvalue problem
Input : matrices A, B of HDGEP (2.2), target index k ∈ N, stopping criterion mmax ∈ N,

tolerances τres,τdiff ∈ R for relative residual and difference 2-norms.
Output: approximate eigenpair (λ̂k, x̂ k).

1 run Algorithm 3.1 to set an interval [µlower,µupper) containing λk and obtain
νlower = nµlower

(A, B) and νupper = nµupper
(A, B),

2 run Algorithm 3.2 to narrow down the interval [µlower,µupper) until it contains less than or
equal to mmax eigenvalues that include λk,

3 run Algorithm 3.3 to obtain the k-th eigenpair (λ̂k, x̂ k) with its relative residual and
difference 2-norms less than τres and τdiff, respectively.

Here, mmax is an important parameter that influences the overall performance of the three-stage
algorithm because there is a trade-off between the second and third stages (Algorithms 3.2 and 3.3),
i.e., greater mmax results in fewer required bisection iterations, while more iterations are required
for the SI Lanczos method. mmax was set the same for each problem in the numerical experiments.
Tuning this parameter will be the focus of future work.

In the presence of multiple eigenvalues or a cluster of eigenvalues around λk, modification to
Algorithm 3.4 is necessary because the algorithm is ineffective in detecting them and may end up in
misconvergence; the stopping criterion (line 1 of Algorithm 3.2) for bisection and a convergence cri-
terion (3.6) for the SI Lanczos method may not be satisfied. In addition, from the SI Lanczos method,
only a one dimensional representation is obtained for the eigenspace associated to a multiple eigen-
value. To detect multiple or a cluster of eigenvalues during bisection, the length of the interval can
be used along with the current stopping criterion. If detected, they and their associated eigenspace
can be computed by, e.g., a block SI Lanczos method [21] whose block size can be determined from
the number of eigenvalues in the interval. When a block eigensolver is used, the convergence criteria
(line 10 of Algorithm 3.3) need to be modified accordingly to take account of the multiplicity or the
cluster. Further investigation of the modification will be future work.

3.2 Numerical experiments

This section reports the numerical results of several real research problems from electronic structure
calculations and a comparison of the proposed three-stage algorithm (Algorithm 3.4) and dense
eigensolvers. In Section 3.2.1, we describe the matrix data used in the numerical experiments.
Section 3.2.2 provides implementation details of dense eigensolvers and the three-stage algorithm.
The numerical results are reported in Section 3.2.3.

3.2.1 Matrix data

Table 3.1 shows the matrix data used in the numerical experiments, which were generated by the
ELSES quantum mechanical nanomaterial simulator [33] and obtained from the ELSES Matrix Li-
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brary (http://www.elses.jp/matrix/). Here, the two n × n matrices A and B of each matrix
data are real symmetric and real symmetric positive definite, respectively. A and B have the same
sparsity structure shown in Figure 3.3 with #nz non-zero elements (in their lower triangular part)
in Table 3.1. The target index k is associated with the HO state. The entire spectrum is included in
the interval [λ1,λn]. Footnotes below Table 3.1 describe the origin of the matrix data.

Table 3.1: Matrix data

Data n #nz k [λ1,λn]

APF46861 4686 53 950 2343 [−1.157, 5.581]

AUNW91802 9180 1 783 313 5610 [−0.210, 0.883]

CPPE323463 32 346 861 764 16 173 [−1.169, 7.953]

NCCS4300804 430 080 10 696 416 215 040 [−1.195,13.602]

VCNT15120005 1 512 000 294 953 351 336 000 [−1.098, 0.475]
1 amorphous-like conjugated polymer, poly(9,9-dioctyl-fluorene) [33]
2 helical multishell gold nanowire with defects [29]
3 condensed polymer systems, poly(phenylene-ethynylene) [30,36]
4 sp2–sp3 nano-composite carbon solid [28]
5 vibrating carbon nanotube within a supercell with spd orbitals [10]

APF4686 AUNW9180 CPPE32346 NCCS430080 VCNT1512000

Figure 3.3: Sparsity structures of matrix data

3.2.2 Implementation details

As dense eigensolvers, we used the LAPACK [4] and ScaLAPACK [7] routines. Specifically, the LA-
PACK dsygvd routine was used to solve APF4686 and AUNW9180. In dsygvd, a generalized eigen-
value problem is transformed to a standard eigenvalue problem of a tridiagonal matrix, and then
eigenpairs of the tridiagonal matrix are computed by the divide and conquer method [11, 22, 62].
To date, there is no single ScaLAPACK routine to perform the same task as dsygvd in parallel.
Therefore, to solve CPPE32346 and NCCS430080, the ScaLAPACK pdpotrf, pdsygst, pdsytrd,
pdstedc, and pdormtr routines were utilized through EigenKernel [17, 35]. Note that the results
for VCNT1512000 are not provided because the problem size prevents it from being solved by a
dense eigensolver in practical time.

In the three-stage algorithm (Algorithm 3.4), nµ(A, B) and solution of linear systems in the Lanc-
zos and SI Lanczos methods were computed based on LDLH factorization by the MUMPS sparse
direct linear solver [2,3] with the METIS fill-reducing ordering [38]. The bisection narrowed down
the initial interval until the number of eigenvalues in the interval became less than or equal to
mmax = 20. Tolerances for the relative residual and difference 2-norms in the SI Lanczos method
were set to τres = 10−10 and τdiff = 10−10, respectively. All codes were written in Fortran 90, and
the numerical experiments were performed in double-precision.
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3.2.3 Results

In this subsection, we first compare the k-th eigenpair computed by Algorithm 3.4 with that obtained
by the dense eigensolvers described in Section 3.2.2 and report the computation time with some
details about the computational environment and implementation. Then, in Sections 3.2.3 to 3.2.3,
we present the detailed results of each algorithm (i.e., Algorithms 3.1, 3.2, and 3.3) of the three-stage
algorithm.

Table 3.2 compares the k-th eigenpair of the three-stage algorithm (λ̂k, x̂ k) and that of the dense
eigensolvers (λ(d)k , x (d)k ). As can be seen, at least 15 digits were the same for λ̂k and λ(d)k . The last

column shows the relative error 2-norm, where x̂ k and x (d)k were normalized to satisfy ‖x̂ k‖2 =
‖x (d)k ‖2. The error norm had an order of magnitude less than−10, indicating that the k-th eigenvector
of the three-stage algorithm agrees well with that of the dense eigensolvers.

Table 3.2: k-th eigenpair

Data k λ̂k λ
(d)
k

|λ̂k−λ(d)k |
|λ(d)k |

‖x̂ k−x (d)k ‖2
‖x (d)k ‖2

APF4686 2343 −0.4258775547956963 −0.4258775547956963 0 4× 10−14

AUNW9180 5610 0.1305388835941175 0.1305388835941177 2× 10−15 1× 10−12

CPPE32346 16 173 −0.4332412034185730 −0.4332412034185731 2× 10−16 7× 10−14

NCCS430080 215 040 −0.3689638375042860 −0.3689638375042869 2× 10−15 4× 10−11

VCNT1512000 336 000 −0.5517499297808635 n/a n/a n/a

Table 3.3 shows the total computation time and computational resources consumed by Algorithm
3.4 (Alg. 4), its variant (Ger.), and the dense eigensolvers (Dense). In the variant, line 1 of Algorithm
3.4 was changed to set an interval including the entire spectrum based on the Gershgorin circle
theorem1. Here, #Core is the number of cores used in the experiments, and superscripts (w) and (K)

represent a workstation and the K computer, respectively. Memory indicates peak memory usage.
Actual measurement of the memory usage was performed using the GNU time command. Estimation
(in italics) shows the memory required to store 4n2 double-precision numbers, which is based on the
memory requirement of the LAPACK dsygvd routine.

Details about the computation time and implementation of the three-stage algorithm are shown
in Figure 3.4, where the total time is scaled to one. As described in the figure legend, our implemen-
tation can be divided into the following seven major computational tasks. (i) B is pre-processed in a
symbolic manner to produce a fill-reducing ordering and an elimination tree for its LDLH factoriza-
tion. The ordering is recycled for the LDLH factorization of shifted matrices A−µB because matrices
A and B have the same sparsity structure in our numerical experiments. (ii) Based on the symbolic
factorization, the numerical factorization of B is computed to solve linear systems in the Lanczos
method. (iii) Ritz values are computed to set an initial interval. (iv–vi) Numerical factorization of
shifted matrices is computed to set an initial interval, bisect the interval, and solve the linear systems
in the SI Lanczos method. (vii) The k-th eigenpair is computed.

As can be seen in Figure 3.4, the second stage dominated computation time as the problem size
increases. This is because, as the problem size increases, more bisection iterations are expected to
be required to narrow down an initial interval in order to make the number of eigenvalues in the

1Instead of some Gershgorin-type theorem, an inclusion set of the spectrum of B−1A was computed based on the original
theorem because the diagonal dominance of A and B (described in Section 3.1.1) does not hold for all matrix data. To
compute the inclusion set, columns of B−1A were obtained by solving linear systems with MUMPS, and then Gershgorin
disks were calculated from the columns. In the VCNT1512000 case, the linear systems were solved in single-precision to
reduce the time to solution.
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interval less than or equal to mmax = 20, which was the same value regardless of the problem size.

Table 3.3: Computation time and computational resources consumed by Algorithm 3.4, its variant,
and dense eigensolvers

Data
Time (s) #Core Memory (MB)

Alg. 4 Ger. Dense Alg. 4 Ger. Dense Alg. 4 Ger. Dense

APF4686 0.3 0.8 82.1

1(w) 1(w)

1(w) 13 12 629

AUNW9180 19.4 69.0 655.2 1(w) 267 245 2836

CPPE32346 4.4 194.0 1366.8 32(K) 121 116 33 480

NCCS430080 2024 109 597 10 586 180 000(K) 5069 5055 5 919 002

VCNT1512000 5132 602 525 n/a n/a 38 242 31 618 n/a
(w) workstation with Xeon E5-2690 (2.90 GHz)
(K) K computer with SPARC64 VIIIfx (2.00 GHz) and Tofu interconnect
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Figure 3.4: Computation time of stages and computational tasks
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Figure 3.5: Computation time vs. number of non-zero elements in factors L and D of LDLH factor-
ization

Figure 3.5 shows the relationship between total computation time and the number of non-zero
elements in factors L and D of LDLH factorization, denoted #nzf, in log–log scale. Here, #nzf is the
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average of the factorizations of B and shifted matrices A−µB with varying µ. The dotted line in the
figure is of slope one, which corresponds to the linear scaling O(#nzf). As can be seen, computation
time is proportional to #nzf (the slope for linear least squares fitting of the data points is 1.06).
This is because the most time-consuming tasks in the three-stage algorithm, i.e., computation of
nµ(A, B) and solving linear systems in the Lanczos and SI Lanczos methods, are performed based on
factorizations by a sparse direct linear solver. Generally, the estimation of #nzf can be obtained in
the symbolic factorization stage, which can be utilized to predict total computation time.

Initial interval

Table 3.4 shows the initial interval [µlower,µupper) obtained by Algorithm 3.1. The fourth column
shows the length µupper−µlower of the interval, which contains m eigenvalues with their index ranging
from ilower to iupper. The seventh column shows the average gap between the eigenvalues in the
interval defined as Length/m. In the last column, we compare the length of the initial interval with
that of [λ1,λn] in Table 3.1 by calculating the ratio of (λn − λ1)/Length. The initial intervals were
3.2 to 29.5 times narrower than [λ1,λn], i.e., the tightest interval that can be obtained from some
Gershgorin-type theorem in general. Note that all problems required two iterations of Algorithm
3.1 (thus, two LDLH factorizations) to set the interval, which is the minimum required iterations to
obtain an interval validated as containing λk.

Bisection

The initial interval in Table 3.4 was narrowed down to the interval [µlower,µupper) in Table 3.5 based
on Algorithm 3.2. Figure 3.6 shows the number of eigenvalues in the interval after each bisec-
tion iteration in log scale. The horizontal dotted line in the figure indicates the stopping criterion
mmax = 20 for the bisection. In most cases, the number of eigenvalues was approximately halved
after each iteration. However, the number remained unchanged after the fifth iteration of APF4686
and the sixth iteration of CPPE32346. In addition, there was a sharp decrease in the number of
eigenvalues at the final iteration of CPPE32346, in which the number decreased by more than an
order of magnitude. This convergence behavior implies that eigenvalues are distributed in a highly
non-uniform manner and that there are clusters of eigenvalues or large gaps between eigenvalues.
Indeed, in the CPPE32346 case, Gap in Table 3.5 is approximately 40 times greater than that shown
in Table 3.4.

Here, we note that the straightforward bisection2 required 47 to 49 iterations, which were
roughly 4 to 8 times greater than those required for the three-stage algorithm shown in Figure 3.6
(6 to 12 iterations), to compute the k-th eigenvalue to the accuracy very similar to that in Table 3.2.

Computation of the k-th eigenpair

In Table 3.6, we show the iteration counts of Algorithm 3.3 for computing m eigenvalues in the
interval [µlower,µupper) of Table 3.5. The third column is the iteration count required for (3.5) and
(3.6) to be satisfied such that the index of each approximate eigenpair of the interval is validated.
The fourth and fifth columns represent the iteration counts required for the relative 2-norm of the
residual and difference (3.7) of each approximate eigenpair of the interval to become less than
τres = 10−10 and τdiff = 10−10, respectively.

Figure 3.7 shows the convergence history of the k-th eigenpair (k = 215 040) of NCCS430080.
(λ̂( j)k , x̂ ( j)k ) in the figure legend denotes the k-th eigenpair computed at the j-th iteration of Algorithm

2In the straightforward bisection, line 1 of Algorithm 3.2 was changed to use the length of the interval as a stopping
criterion. Specifically, the stopping criterion was set to (µupper−µlower)/max{|µlower|, |µupper|}< 10−14. The k-th eigenvalue
was computed using only bisection and from the equation λ̂k = (µlower +µupper)/2.
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Table 3.4: Initial interval

Data k [µlower,µupper) Length [ilower, iupper] m Gap Ratio

APF4686 2343 [−0.777, 0.475) 1.252 [751,3458] 2708 5× 10−4 5.4

AUNW9180 5610 [−0.079, 0.186) 0.265 [877,5853] 4977 5× 10−5 4.1

CPPE32346 16 173 [−0.731, 1.023) 1.754 [5586,26 409] 20 824 8× 10−5 5.2

NCCS430080 215 040 [−0.777,−0.275) 0.502 [64 252,224 635] 160 384 3× 10−6 29.5

VCNT1512000 336 000 [−0.920,−0.429) 0.491 [84 320,422 420] 338 101 1× 10−6 3.2

Table 3.5: Interval narrowed down by bisection

Data k [µlower,µupper) Length [ilower, iupper] m Gap

APF4686 2343 [−0.44450,−0.42494) 0.01956 [2334,2343] 10 2× 10−3

AUNW9180 5610 [ 0.12826, 0.13240) 0.00414 [5601,5615] 15 3× 10−4

CPPE32346 16 173 [−0.43657,−0.42971) 0.00685 [16 172,16 173] 2 3× 10−3

NCCS430080 215 040 [−0.36897,−0.36884) 0.00013 [215 040,215 049] 10 1× 10−5

VCNT1512000 336 000 [−0.55178,−0.55166) 0.00012 [335 995,336 010] 16 8× 10−6
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Figure 3.6: Number of eigenvalues in an interval after each bisection iteration
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3 An algorithm for the k-th eigenvalue problem

3.3. x (d)k represents the k-th eigenvector computed by the dense eigensolver. As described in the
legend, the figure shows the relative 2-norm history of (i) the residual, (ii) the difference between the
( j−1)-st and j-th iterations defined in (3.7), and (iii) the error compared with the dense eigensolver.
The figure also shows (iv) the pairwise B-orthogonality (2.11) between the k-th eigenvector and the
other m− 1 eigenvectors of the interval in Table 3.5. Here, the three vertical dotted lines indicate the
iteration counts of Bound, Residual, and Difference in Table 3.6. The horizontal dotted line indicates
the convergence criteria τres = 10−10 and τdiff = 10−10.

As can be seen in Figure 3.7, a small residual norm does not necessarily imply that eigenvector
x̂ ( j)k is close to convergence. Indeed, the residual norm converged first, and convergence of the error
and difference norms followed. Since the error norm cannot be measured in general, the difference
norm (3.7) is utilized in Algorithm 3.3 to test for convergence.

Table 3.6: Iteration counts of the SI Lanczos method

Data m
Iteration

Bound Residual Difference

APF4686 10 24 33 37

AUNW9180 15 26 42 48

CPPE32346 2 7 19 23

NCCS430080 10 23 31 41

VCNT1512000 16 27 39 50

20 25 30 35 40 45 50

1
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10−12

10−14

10−16

Bound Residual Difference

Iteration j

(i) relative residual 2-norm:

‖(A− λ̂( j)k B)x̂ ( j)k ‖2/‖x̂ ( j)k ‖2.
(ii) relative difference 2-norm:

‖x̂ ( j)k − x̂ ( j−1)
k ‖2/‖x̂ ( j−1)

k ‖2.
(iii) relative error 2-norm:

‖x̂ ( j)k − x (d)k ‖2/‖x (d)k ‖2.
(iv) pairwise B-orthogonality:

max
i 6=k,

ilower≤i≤iupper

|(x̂ ( j)i )
HB x̂ ( j)k |

‖x̂ ( j)i ‖B ·‖x̂ ( j)k ‖B
.

Figure 3.7: Convergence history of the k-th eigenpair (k = 215040) of NCCS430080

3.3 Concluding remarks

The proposed three-stage algorithm obtained the validated k-th eigenpair (λk, x k) for large sparse
HDGEP with accuracy comparable with dense eigensolvers under limited computational resources.
The three-stage algorithm (Algorithm 3.4) consists of Algorithms 3.1, 3.2, and 3.3, each of which has
been found to be effective for computation of the eigenpair and validation of its index. In particular,
from the numerical experiments, we have learned the following.

1. Algorithm 3.1 can set a narrow interval containing λk. The resulting intervals were 3 to 29
times narrower than [λ1,λn], i.e., the tightest interval that can be obtained from some Gershgorin-
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3.3 Concluding remarks

type theorem in general. In all experiments, only two iterations of Algorithm 3.1 were required,
i.e., the minimum required iterations to obtain an interval validated as containing λk.

2. Algorithm 3.3 can compute the k-th eigenpair with high accuracy. The eigenpairs computed by
Algorithm 3.3 agreed well with the results of dense eigensolvers, including a result obtained
by a massively parallel eigenpair computation on the K computer. Specifically, the eigenvalues
were the same to at least 15 digits, and the relative error norms of the eigenvectors were less
than 10−10.

3. By utilizing a sparse direct linear solver, large sparse matrices can be handled with efficiency.
For example, a nano-composite carbon solid problem of size n = 430080 was solved in 0.6
hours using one core and 5.1 GB of memory on a workstation (a dense eigensolver required
2.9 hours using 180 000 cores and an estimated 5.9 TB of memory on the K computer).

Fortran codes for the three-stage algorithm are available online [37] as free and open source software
under the MIT license.

In future, we plan to examine parameter mmax. As explained in Section 3.1.4, this parameter
influences the overall performance of the three-stage algorithm because there is a trade-off between
the second and third stages (Algorithms 3.2 and 3.3). In addition, we plan to compare bisection
with its variants. As long as algorithms are derivative-free and a root is bracketed in the algorithms,
they can be readily applied to the second stage and can locate λk. Brent’s method [8] is one such
algorithm. Finally, we plan to modify the three-stage algorithm to deal with the presence of multiple
eigenvalues or a cluster of eigenvalues. Some possible modifications are described in Section 3.1.4.
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Chapter 4

An algorithm for the k-th singular value problem

This chapter is about solution of k-SVP (1.4) of a large sparse A∈ Cm×n (m ≥ n), which is based on
the three-stage algorithm proposed in the previous chapter. If m< n, we consider k-SVP of AH.

Several subspace methods have been proposed for computing a specific subset of singular triplets
and are in close relationship with methods for HEP. The Golub–Kahan bidiagonalization method [19],
which is equivalent to applying the Lanczos method to the extended matrix

� O A
AH O

�

with a special
initial vector, can compute the smallest and largest singular values and their associated left and right
singular vectors. JDSVD [23,24], which is a Jacobi–Davidson [59] type method exploiting the block
structure of the extended matrix, can compute singular values closest to a target point and their
associated left and right singular vectors. PHSVDS [65], which solves HEP of a Gram matrix AHA
or the extended matrix depending on the required accuracy, can compute the smallest and largest
singular values and their associated left and right singular vectors.

The k-th singular triplet is different from typical singular triplets that can be computed by existing
subspace methods. In addition, because of the required memory, it is infeasible to obtain the k-th
triplet of large matrices by computing their singular value decomposition (SVD).

Based on the relation between HEP and SVP and utilizing the three-stage algorithm of the previ-
ous chapter, this chapter presents an algorithm for computing the k-th singular triplet. The remainder
of this chapter is organized as follows. Section 4.1 recaps the three-stage algorithm (Algorithm 3.4)
for HDGEP with B = I (which means HEP). Section 4.2 explains relation between HEP and SVP and
presents a three-stage algorithm for k-SVP. Section 4.3 reports results of numerical experiments and
examines the accuracy and efficiency of the proposed algorithm for k-SVP. Concluding remarks are
given in Section 4.4.

4.1 A three-stage algorithm for Hermitian eigenvalue problems

Let H ∈ Cn×n be a large sparse Hermitian matrix with the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.1 For
1 � k � n, Algorithm 4.0 solves the problem of computing the k-th eigenpair (λk, x k) of H by
dividing the problem into three stages of independent purposes, as Algorithm 3.4.

Algorithm 4.0: Three-stage algorithm for computing the k-th eigenpair (HEP)
Input : Hermitian H ∈ Cn×n, target index k ∈ N, parameters l ∈ N and τ ∈ R.
Output: approximate eigenpair (λ̂k, x̂ k).

1 run Algorithm 4.1 to set an interval (α,β] containing λk,
2 run Algorithm 4.2 to narrow down (α,β] until it contains less than or equal to l eigenvalues,
3 run Algorithm 4.3 to compute (λk, x k) in (α,β] with its relative residual 2-norm less than τ.

1In contrast to the previous chapter in which eigenvalues of HDGEP are index in increasing order, eigenvalues of HEP
in this chapter are indexed in decreasing order, as singular values.
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4 An algorithm for the k-th singular value problem

Each line of Algorithm 4.0 corresponds to one of the three stages. Algorithm 4.1 in line 1 is for
finding a narrow interval containing λk in an efficient way. Algorithm 4.2 in line 2 narrows down
the interval containing λk until the number of eigenvalues in the interval becomes small enough.
Algorithm 4.3 in line 3 computes a small number of eigenvalues in the interval and their associated
eigenvectors. Here, parameter l is the stopping criterion for Algorithms 4.2, and τ is a parameter
for the convergence test in Algorithm 4.3.

The algorithm for each stage can be developed independently. The rest of the section shows
Algorithms 4.1, 4.2, and 4.3, which correspond to Algorithms 3.1, 3.2 and 3.3 of the previous chapter,
respectively.

The only notable difference between the three algorithms in the previous chapter and those in
the current section is that we now compute the number of eigenvalues of H greater than µ, denoted
pµ(H), instead of nµ(A, B). The tools of the trade are the same as Section 3.1.2. Based on Sylvester’s
law of inertia and by using a sparse direct linear solver, pµ(H) is computed from LDLH factorization
of shifted matrix H −µI ,

PQ(H −µI)QTPT = LDLH,(4.1)

from which we have pµ(H) = p(H − µI) = p(D). Here, P and Q are permutation for numerical
stability and fill-reducing, respectively. Matrix L is unit lower triangular, and D is a block diagonal
matrix with block size one or two. Once pµ(H) is computed, we can locate λk based on the following
relations:

pµ(H)≥ k ⇐⇒ µ < λk, pµ(H)< k ⇐⇒ µ≥ λk.(4.2)

Stage 1

As Algorithm 3.1, Algorithm 4.1 finds an initial interval containing λk by using the smallest or largest
Ritz values of the Lanczos method. We first recap the Lanczos method and the interlacing property
of the Ritz values. Let j-step Lanczos decomposition be

HWj =Wj T j +η j w j+1eT
j ,(4.3)

where Wj = [w 1 · · · w j] is an n× j matrix whose columns are orthonormal. Matrix T j = W H
j AWj

is real symmetric tridiagonal and irreducible. Vector w j+1 is orthogonal to the columns of Wj and is

normalized by scale factor η j . Eigenvalues θ ( j)i of T j (Ritz values) are indexed in decreasing order,

or θ ( j)1 > θ
( j)
2 > · · ·> θ ( j)j . Eigenvalues of T j and T j+1 have the following interlacing property:

θ
( j+1)
i > θ

( j)
i > θ

( j+1)
i+1 (1≤ i ≤ j).(4.4)

Algorithm 4.1 utilizes the interlacing property (4.4) for selecting the endpoints of an initial in-
terval. At its first iteration ( j = 1), Algorithm 4.1 computes µ(1) = θ (1)1 and p(1) = pµ(1)(H). For

the rest of the iterations ( j ≥ 2), by comparing a given index k with p( j−1), either the smallest θ ( j)j

or largest θ ( j)1 eigenvalue is selected as µ( j) in line 5, and it is checked in line 8 whether the inter-

val whose endpoints are µ( j) and µ( j−1) contains λk. Sequences of intervals {(θ (i−1)
1 ,θ (i)1 ]} j

i=2 and

{(θ (i)i ,θ (i−1)
i−1 ]} j

i=2 are disjoint, and (θ ( j)j ,θ ( j)1 ] converges to (λn,λ1] as j becomes large. Therefore,
for k 6= n, Algorithm 4.1 is able to find an interval containing λk.
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Algorithm 4.1: Setting an interval containing the k-th eigenvalue (HEP)
Input : Hermitian H ∈ Cn×n, target index k ∈ N.
Output: interval (α,β] containing λk, pα(H) and pβ(H).

1 set a random unit vector w 1 ∈ Cn, p(0) := 0,
2 for j = 1,2, . . . do
3 compute Lanczos decomposition (4.3),

4 compute eigenvalues θ ( j)i (1≤ i ≤ j) of T j ,

5 if p( j−1) ≥ k then µ( j) := θ ( j)1 else µ( j) := θ ( j)j ,

6 µ := µ( j), compute LDLH factorization (4.1),
7 compute eigenvalue count p( j) := p0(D),
8 if j 6= 1 and (p( j−1) ≥ k > p( j) or p( j) ≥ k > p( j−1)) then exit from the for-loop,
9 end for

10 α :=min{µ( j−1),µ( j)}, β :=max{µ( j−1),µ( j)},
11 pα(H) :=max{p( j−1), p( j)}, pβ(H) :=min{p( j−1), p( j)}.

Algorithm 4.2: Bisection for narrowing down an interval of the k-th eigenvalue (HEP)
Input : Hermitian H ∈ Cn×n, target index k ∈ N, parameter l ∈ N,

interval (α,β] containing λk, pα(H) and pβ(H).
Output: (α,β], pα(H), pβ(H).

1 while pα(H)− pβ(H)> l . pα(H)− pβ(H): number of eigenvalues in (α,β].
2 compute midpoint µ := (α+ β)/2,
3 compute LDLH factorization (4.1),
4 compute eigenvalue count p := p0(D),
5 if p ≥ k then α := µ, pα(H) := p else β := µ, pβ(H) := p.
6 end while

Algorithm 4.3: Computing the k-th eigenpair in the interval (HEP)
Input : Hermitian H ∈ Cn×n, target index k, parameter τ ∈ R,

interval (α,β] containing λk, pα(H) and pβ(H).
Output: approximate eigenpair (λ̂k, x̂ k).

1 l̃ := pα(H)− pβ(H), . pα(H)− pβ(H): number of eigenvalues in (α,β].
2 compute midpoint µ := (α+ β)/2, compute LDLH factorization (4.1),
3 set a random unit vector w̃ 1 ∈ Cn,
4 for j = 1,2, . . . do
5 compute Lanczos decomposition (4.5) using the LDLH factorization in line 2,
6 if j ≥ l̃ then
7 compute eigenpairs (θ̃ ( j)i , ỹ ( j)i ) (1≤ i ≤ j) of T̃ j , sort and index (θ̃ ( j)i , ỹ ( j)i ) as (4.9),

8 for 1≤ i ≤ l̃ do compute approximate eigenpair (λ( j)i , x ( j)i ) as (4.6),

. (λ( j)i , x ( j)i ) is indexed in increasing order (4.9) because of line 7.

9 for 1≤ i ≤ l̃ do compute interval Γ ( j)i as (4.7) and (4.8),

10 if (4.10) and (4.11) and (‖Hx ( j)i −λ( j)i x ( j)i ‖2/‖x ( j)i ‖2 < τ for 1≤ i ≤ l̃) then exit
from the for-loop,

11 end if
12 end for

13 sort and index (λ( j)i , x ( j)i ) (1≤ i ≤ l̃) in decreasing order λ( j)1 > λ
( j)
2 > · · ·> λ( j)

l̃
,

14 k̃ := k− pβ(H), (λ̂k, x̂ k) := (λ( j)
k̃

, x ( j)
k̃
).
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4 An algorithm for the k-th singular value problem

Stage 2

As Algorithm 3.2, Algorithm 4.2 narrows down an initial interval containing λk by bisecting the
interval based on the relations (4.2) and runs until the number of eigenvalues in the interval becomes
smaller than or equal to a given parameter l.

Stage 3

As Algorithm 3.3, Algorithm 4.3 computes eigenpairs of an interval based on a modified SI Lanczos
method (Section 2.2.2). We first consider j-step SI Lanczos decomposition,

(H −µI)−1W̃j = W̃j T̃ j + η̃ j w̃ j+1eT
j ,(4.5)

where µ 6= λi (1≤ i ≤ n) and W̃j = [w̃ 1 · · · w̃ j] is an n× j matrix whose columns are orthonormal.
Matrix T̃ j = W̃ H

j (H−µI)−1W̃j is real symmetric tridiagonal and irreducible. Vector w̃ j+1 is orthogonal

to the columns of W̃j and is normalized by scale factor η̃ j . Eigenvalues θ ( j)i of T̃ j are indexed in

decreasing order, or θ̃ ( j)1 > θ̃
( j)
2 > · · ·> θ̃ ( j)j , and their associated eigenvectors ỹ ( j)i are of unit norm,

or ‖ ỹ ( j)i ‖2 = 1. Approximate eigenpairs of H are set as follows:

(λ( j)i , x ( j)i )≡ (µ+ 1/θ̃ ( j)i , (H −µI)−1W̃j ỹ
( j)
i ) = (µ+ 1/θ̃ ( j)i , W̃j ỹ

( j)
i θ̃

( j)
i + w̃ j+1η̃ je

T
j ỹ ( j)i ).(4.6)

As Proposition 3.1, we now consider an a posteriori error bound (2.1) of approximate eigenvalues,
which leads to an interval

Γ
( j)
i ≡ [λ( j)i − ε( j)i ,λ( j)i + ε

( j)
i ],(4.7)

ε
( j)
i ≡

‖Hx ( j)i −λ( j)i x ( j)i ‖2
‖x ( j)i ‖2

=
1

|θ̃ ( j)i |
·

|η̃ je
T
j ỹ ( j)i /θ̃

( j)
i |

r

1+ |η̃ je
T
j ỹ ( j)i /θ̃

( j)
i |2

(4.8)

containing at least one eigenvalue of H.
Here, let interval (α,β] contain l̃ eigenvalues and the shift µ of the modified SI Lanczos method

be the midpoint of the interval, or µ = (α+ β)/2. For the sake of simplicity of exposition, we sort
approximate eigenvalues (θ̃ ( j)i , ỹ ( j)i ) and re-index them as follows:

|θ̃ ( j)1 | ≥ |θ̃ ( j)2 | ≥ · · · ≥ |θ̃ ( j)j | ⇐⇒ |λ( j)1 −µ| ≤ |λ( j)2 −µ| ≤ · · · ≤ |λ( j)j −µ|.(4.9)

Then, if intervals Γ ( j)i (1≤ i ≤ l̃ ≤ j) satisfy the following two conditions,

Γ
( j)
i ⊂ (α,β] for 1≤ i ≤ l̃,(4.10)

Γ
( j)
i1
∩ Γ ( j)i2

=∅ for 1≤ i1 < i2 ≤ l̃,(4.11)

each Γ ( j)i contains only one of l̃ eigenvalues in (α,β]. In other words, each eigenvalue in (α,β] is

isolated by interval Γ ( j)i and thus its index can be readily validated provided that we know the index
range of the eigenvalues in interval (α,β].

Algorithm 4.3 computes eigenpairs of an interval by utilizing conditions (4.10) and (4.11) for its
convergence test in line 10, along with the relative residual of approximate eigenpairs.
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4.2 A three-stage algorithm for singular value problems

Recalling Section 1.1, we know that SVP of general matrix A leads to HEP of the following Hermitian
matrices:

H1 ≡ AHA, H2 ≡ AAH, H3 ≡
� O A

AH O

�

whose k-th (1 ≤ k ≤ n) eigenpair is (σ2
k, v k), (σ2

k, uk), and (σk,
� uk

v k

�

), respectively. Because of this
relation between SVP and HEP, the three-stage algorithm (Algorithm 4.1) for HEP can been applied
to solution of k-SVP by plugging H1, H2, or H3 into H of the algorithm. Specifically, by selecting H
of Algorithms 4.1 to 4.3 as H1, H2, or H3, we may find an interval containing σk, narrow down the
interval, and compute the singular triplets of the interval.

In Section 4.2.1, we discuss which Hermitian matrix (H1, H2, or H3) to plug into each algorithm
of the previous section. Based on the discussion, we show a three-stage algorithm for k-SVP in
Section 4.2.2.

4.2.1 Selection of Hermitian matrices

In principle, it is possible to select H1, H2, or H3 as H of Algorithms 4.1 to 4.3, producing 33 different
algorithms from Algorithm 4.0. Table 4.1 shows the major computation tasks involving Hermitian
H in Algorithms 4.1 to 4.3, which we take into account for the selection of the Hermitian matrix for
each algorithm.

Table 4.1: Major computational tasks involving matrix H in Algorithms 4.1 to 4.3.

Algorithm Line Task

4.1
3 Matrix–vector multiplication Hw j in Lanczos decomposition (4.3)

6
LDLH factorization (4.1) for computing eigenvalue count pµ(H)

4.2 3

4.3 2
LDLH factorization (4.1) for computing (H − µI)−1w̃ j in Lanczos
decomposition (4.5)

Algorithm 4.1 utilizes approximate eigenvalues of H by the Lanczos method (Ritz values) as
the endpoints of an initial interval. If H1 is selected as H in line 3 of Algorithm 4.1, approximate
eigenvalues are located in interval [σ2

n,σ2
1], with the interlacing property (4.4). If H2 is selected,

approximate eigenvalues are located in [0,σ2
1]. Therefore, it is possible to set an initial interval

containing σk by utilizing the square root of approximate eigenvalues of H1 or H2 as the endpoints
of the interval. If H3 is selected, approximate eigenvalues are located in [−σ1,σ1] and can be used
for setting an initial interval. Algorithms for setting an initial interval that utilize H1, H2, or H3 will
be explained in Section 4.2.2.

Algorithm 4.1 and Algorithm 4.2 set an initial interval and narrow down the interval, respectively,
based on pµ(H). For non-negative µ, let πµ(A) be the number singular values of A greater than µ.
Then, we have the following relationship.

πµ(A) = pµ2(H1) = pµ2(H2) = pµ(H3).(4.12)

Because of the relationship (4.12), it is possible to compute πµ(A) by computing LDLH factorization
of either H1 − µ2 I , H2 − µ2 I , or H3 − µI in line 6 of Algorithm 4.1 and line 3 of Algorithm 4.2,
and thus it is possible to set an initial interval and narrow down the interval. In this chapter, we
compute πµ(A) by computing LDLH factorization of H3 − µI . This is because although the size of
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4 An algorithm for the k-th singular value problem

H3−µI is larger than that of H1−µ2 I and H2−µ2 I , it inherits the sparsity of A and does not require
matrix–matrix multiplication to explicitly form AHA or AAH.

Algorithm 4.3 computes all eigenvalues in interval (α,β] and their associated eigenvectors by a
modified SI Lanczos method with the shift µ= (α+β)/2. In line 2 of the algorithm, LDLH factoriza-
tion of (H − µI)−1 is computed for the computational task involving (H − µI)−1. If either H1 or H2
is selected as H and the shift is set as µ = ((α+ β)/2)2, it is possible to compute all singular values
in (α,β] and either right or left singular vectors associated with the singular values in the interval.
If H3 is selected, it is possible to compute all singular values in (α,β] and their associated left and
right singular vectors. In this chapter, we compute eigenpairs of the interval by selecting H3 as H of
Algorithm 4.3 because it inherits the sparsity of A.

To summarize this subsection, we select H3 as H of the second and third tasks in Table 4.1. For
H of the first task, H is selected from H1, H2, and H3, producing three out of 33 algorithms from
Algorithm 4.0.

4.2.2 Algorithms for the k-th singular value problem

Based on the discussion of the previous subsection, we show a three-stage algorithm for k-SVP and
four different algorithms for finding an initial interval.

Algorithm 4.4 shows a three-stage algorithm for computing (σk, uk, v k). In the first stage, de-
pending on parameter i ∈ {1,2, 3,4}, Algorithm 4.1(i) is selected to set an initial interval containing
σk. In the following two stages, Algorithm 4.2 and Algorithm 4.3 narrow down the interval and com-
pute eigenpairs of the interval, respectively, by selecting H3 as H in both algorithms. At the end of
the third stage, approximate left and right singular vectors ûk and v̂ k are obtained from approximate
eigenvector x̂ k by Algorithm 4.3.

Algorithm 4.4: Three-stage algorithm for solving the k-th singular value problem
Input : A∈ Cm×n, target index k ∈ N, parameters i ∈ {1,2, 3,4}, l ∈ N, and τ ∈ R.
Output: approximate singular triplet (σ̂k, ûk, v̂ k).

1 run Algorithm 4.1(i) to set an interval (α,β] containing σk,
2 H :=

� O A
AH O

�

, pα(H) := πα(A), pβ(H) := πβ(A), run Algorithm 4.2 to narrow down (α,β]
until it contains less than or equal to l eigenvalues of H,

3 run Algorithm 4.3 to compute (λk, x k) of H in (α,β] with its relative residual 2-norm less

than τ, σ̂k := λ̂k,
�

ûk
v̂ k

�

:= x̂ k for ûk ∈ Cm and v̂ k ∈ Cn, ûk := ûk/‖ûk‖2, v̂ k := v̂ k/‖v̂ k‖2.

In the rest of the subsection, we explain Algorithms 4.1(i), i ∈ {1,2, 3,4}, for setting an initial
interval. Algorithms 4.1(1) to 4.1(3) are achieved by selecting H1, H2, and H3 as H in Algorithm 4.1.
Initial intervals by the three algorithms are included in (0,σ1] because of the interlacing property of
approximate eigenvalues (4.4). Algorithm 4.1(4) sets an initial interval by utilizing a norm of A and
a Gershgorin-type theorem2 applied to H3. The initial interval by the algorithm does not depend on
the value of the target index k and includes (0,σ1].

The essential difference between Algorithm 4.1 and Algorithms 4.1(1) and 4.1(2) is in line 5. In
Algorithms 4.1(1) and 4.1(2), Gram matrices AHA and AAH appear for matrix–vector multiplication in
line 3, respectively, and approximate eigenvalues of H1 and H2 are computed in line 4, respectively.
Because of this, we take the square root of approximate eigenvalues in line 5 and utilize it as the

2In contrast to the case of HDGEP (Section 3.1.1), an a priori bound of the spectrum of HEP by Gershgorin-type theorems
is guaranteed to be bounded.
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endpoints of an initial interval. For computing πµ(A), LDLH factorization of H3 −µI is utilized.

Algorithm 4.1(1): Setting an interval containing the k-th singular value (Gram matrix AHA)
Input : A∈ Cm×n, target index k ∈ N.
Output: interval (α,β] containing σk, πα(A) and πβ(A).

1 set a random unit vector w 1 ∈ Cn, W1 := [w 1], π(0) := 0, H :=
� O A

AH O

�

,
. H is utilized for the LDLH factorization in line 6.

2 for j = 1, 2, . . .

3 compute Lanczos decomposition AHAWj =Wj T j +η j w j+1eT
j , Wj+1 := [Wj w j+1],

4 compute eigenvalues θ ( j)i (1≤ i ≤ j) of T j ,

5 if π( j−1) ≥ k then µ( j) :=
Ç

θ
( j)
1 else µ( j) :=

r

θ
( j)
j ,

6 µ := µ( j), compute LDLH factorization (4.1),
7 compute singular value count π( j) := p0(D),
8 if j 6= 1 and (π( j−1) ≥ k > π( j) or π( j) ≥ k > π( j−1)) then exit from the for-loop,
9 end for

10 α :=min{µ( j−1),µ( j)}, β :=max{µ( j−1),µ( j)},
11 πα(A) :=max{π( j−1),π( j)}, πβ(A) :=min{π( j−1),π( j)}.

Algorithm 4.1(2): Setting an interval containing the k-th singular value (Gram matrix AAH)
Input : A∈ Cm×n, target index k ∈ N.
Output: interval (α,β] containing σk, πα(A) and πβ(A).

1 set a random unit vector w 1 ∈ Cm, W1 := [w 1], π(0) := 0, H :=
� O A

AH O

�

,
. H is utilized for the LDLH factorization in line 6.

2 for j = 1,2, . . .

3 compute Lanczos decomposition AAHWj =Wj T j +η j w j+1eT
j , Wj+1 := [Wj w j+1],

4 compute eigenvalues θ ( j)i (1≤ i ≤ j) of T j ,

5 if π( j−1) ≥ k then µ( j) :=
Ç

θ
( j)
1 else µ( j) :=

r

θ
( j)
j ,

6 µ := µ( j), compute LDLH factorization (4.1),
7 compute singular value count π( j) := p0(D),
8 if j 6= 1 and (π( j−1) ≥ k > π( j) or π( j) ≥ k > π( j−1)) then exit from the for-loop,
9 end for

10 α :=min{µ( j−1),µ( j)}, β :=max{µ( j−1),µ( j)},
11 πα(A) :=max{π( j−1),π( j)}, πβ(A) :=min{π( j−1),π( j)}.

The essential difference of Algorithm 4.1 and Algorithm 4.1(3) is in lines 8 and 11 of Algorithm
4.1(3). In Algorithm 4.1(3), the extended matrix

� O A
AH O

�

appears in line 3, and approximate eigen-
value of H3 are computed in 4. Approximate eigenvalues of H3 are located in [−σ1,σ1] and can
be negative. Because of this, if approximate eigenvalues are negative, the sign of the approximate
eigenvalues are flipped (and the smallest and largest approximate eigenvalues are interchanged) to
make the endpoints of an initial interval non-negative. In addition, if an initial interval happens to
contain the origin, the left endpoint of the interval is set as zero in line 11. For computing πµ(A), as
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4 An algorithm for the k-th singular value problem

in Algorithms 4.1(1) and 4.1(2), LDLH factorization of H3 −µI is utilized.

Algorithm 4.1(3): Setting an interval containing the k-th singular value (Extended matrix)
Input : A∈ Cm×n, target index k ∈ N.
Output: interval (α,β] containing σk, πα(A) and πβ(A).

1 set a random unit vector w 1 ∈ Cm+n, π(0) := 0, H :=
� O A

AH O

�

,
2 for j = 1, 2, . . .

3 compute Lanczos decomposition (4.3),

4 compute eigenvalues θ ( j)i (1≤ i ≤ j) of T j ,

5 if θ (1)1 ≥ 0 then
6 if π( j−1) ≥ k then µ( j) := θ ( j)1 else µ( j) := θ ( j)j ,

7 else

8 if π( j−1) ≥ k then µ( j) := −θ ( j)j else µ( j) := −θ ( j)1 ,

9 end if
10 if µ( j) < 0 then

11 µ( j) := 0, π( j) := n,

12 else
13 µ := µ( j), compute LDLH factorization (4.1),
14 compute singular value count π( j) := p0(D),
15 end if
16 if j 6= 1 and (π( j−1) ≥ k > π( j) or π( j) ≥ k > π( j−1)) then exit from the for-loop,
17 end for
18 α :=min{µ( j−1),µ( j)}, β :=max{µ( j−1),µ( j)},
19 πα(A) :=max{π( j−1),π( j)}, πβ(A) :=min{π( j−1),π( j)}.

In Algorithm 4.1(4), the left endpoint of an initial interval is fixed to zero, and the right endpoint
is set by utilizing upper bounds of σ1. Therefore, both endpoints are independent from the value of
the target index k.

Let nnz(A) be the number of non-zero elements of A. Algorithm 4.1(4) utilizes upper bounds of
σ1 that can be computed in O(nnz(A)) FLOPs. Specifically, either Frobenius norm ‖A‖F or an upper
bound of the largest eigenvalue of H3 by a Gershgorin-type theorem [53],

λN =max







max
1≤i≤m

√

√

√

∑

1≤ j≤n

|Ai j|c j(A), max
1≤ j≤n

√

√

∑

1≤i≤m

|Ai j|ri(A)







,(4.13)

is utilized. Here, as Definition 2.3, column sums c j(A) =
∑

1≤i≤m |Ai j|, and row sums ri(A) =
∑

1≤ j≤n |Ai j|. The equation (4.13) is derived in Appendix A. Because ‖A‖F can be a sharper upper
bound of σ1 than λN, and vice versa, both ‖A‖F and λN are computed in line 1, and the sharper one
is selected as the right endpoint of an initial interval in line 2. Note that Appendix A also discusses
the sharpness of some upper bounds of σ1 that can be computed in O(nnz(A)) FLOPs.

Algorithm 4.1(4): Setting an interval containing all non-zero singular values
Input : A∈ Cm×n.
Output: interval (α,β] containing σi 6= 0 (1≤ i ≤ n), πα(A) and πβ(A).

1 compute Frobenius norm ‖A‖F, compute Nakatsukasa bound (4.13),
2 α := 0, β :=min {‖A‖F,λN} , πα(A) := n, πβ(A) := 0.
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4.3 Numerical experiments

4.3 Numerical experiments

This section reports numerical results of Algorithm 4.4 and examines its accuracy and efficiency for
computing (σk, uk, v k). In Section 4.3.1, to examine the accuracy of Algorithm 4.4, we compare the
result of Algorithm 4.4 with that of SVD for matrices of size m + n ≤ 30000. In Section 4.3.2, to
examine the efficiency of Algorithm 4.4 for large-scale problems, we compute (σk, uk, v k) of matrices
of size m+ n> 30000.

Test matrices were achieved from The University of Florida Sparse Matrix Collection [12]. Codes
were written in Fortran and compiled by GNU Fortran compiler 4.8.2. Numerical experiments were
performed on Intel Xeon E5-2690 (2.90 GHz, using its one core) and memory 128 GB in double
precision. The stopping criterion for the second stage was set to l = 20, and the convergence criterion
for the third stage was τ= 10−10 for Algorithm 4.4. LDLH factorization (4.1) was computed by using
MUMPS 5.0.1 [2,3]with fill-reducing ordering by METIS 5.1.0 [38]. For computing SVD, the dgesvd
routine of Netlib’s LAPACK 3.5.0 [4] was utilized. The dgesvd routine computes SVD by reducing a
matrix into a bidiagonal matrix and applying QR method [14] to the bidiagonal matrix. For BLAS,
ATLAS 3.10.1 [64] was utilized.

4.3.1 Experiment 1

This section examines the accuracy of Algorithm 4.4. Real non-symmetric matrices of size m+ n ≤
30 000 were used as test matrices. The target index is set to k = b(min{m, n} + 1)/2c. The k-th
singular triplet was computed by Algorithm 4.4 and the LAPACK routine dgesvd.

Table 4.2 shows the test matrices. Figure 4.1 shows the comparison of the k-th singular triplet
by Algorithm 4.4 with that by SVD. The horizontal axis of Figure 4.1 shows No. of the test matrices
in Table 4.2. From Figure 4.1, the relative errors of singular values were about 10−15, and the error
2-norms of singular vectors were around 10−10. For each test matrix, the error 2-norms for left and
right singular vectors are almost the same.

Table 4.2: Test matrices and target indices. nnz denotes the number of non-zero elements.

No. Name m n nnz k

(1) dw2048 2048 2048 10 114 1024

(2) lp_bnl2 2324 4486 14 996 1162

(3) pde2961 2961 2961 14 585 1481

(4) deter4 3235 9133 19 231 1618

(5) ch 3700 8291 24 102 1850

(6) large 4282 8617 20 635 2141

(7) Maragal_5 4654 3320 93 091 1660

(8) gemat1 4929 10 595 46 591 2465

(9) add32 4960 4960 19 848 2480

(10) ge 10 099 16 369 44 825 5050

For each test matrix, the difference in setting an initial interval (Algorithm 4.1(i), i ∈ {1, 2,3, 4})
results in moderate difference of the relative error and error 2-norm. The largest difference of the
relative error was 4.4×10−1 for the test matrix No. (7), and the largest difference of the error 2-norm
was 2.4× 10−2 for the test matrix No. (3).
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|σ̂k −σk|/σk ‖ûk − uk‖2 ‖v̂ k − v k‖2

No. of test problems

i = 1
i = 2
i = 3
i = 4

Figure 4.1: Relative error |σ̂k −σk|/σk of singular values and error 2-norms ‖ûk − uk‖2 and ‖v̂ k −
v k‖2 of singular vectors. (σ̂k, ûk, v̂ k) and (σk, uk, v k) denote the k-th singular triplet computed by
Algorithm 4.4 and the LAPACK dgesvd routine, respectively. The parameter i ∈ {1,2, 3,4} indicates
that Algorithm 4.1(i) was selected for setting an initial interval.

4.3.2 Experiment 2

This sections examines the efficiency of Algorithm 4.4 for large-scale matrices. Real non-symmetric
matrices of size m+n> 30 000 were used as test matrices. The target index is set to k = b(min{m, n}+
1)/2c.

Table 4.3 shows test matrices. For the test matrices No. (11), (12), and (13), computation of SVD
by the LAPACK dgesvd routine was not converged (INFO > 0). For the test matrices No. (14) and
(15), computation of SVD by the dgesvd routine was impossible because of insufficient memory3.

Table 4.4 shows computational results of Algorithm 4.4. For each test matrix, the k-th singular
values σ̂k computed by Algorithm 4.4 with different algorithms (Algorithm 4.1(i), i ∈ {1,2, 3,4})
for setting an initial interval were the same at least 14 digits3. The residual 2-norms ‖r̂ k‖2 were
around 10−11. Peak memory consumption for test matrices (14) and (15) was 2.0 GB and 4.1 GB,
respectively.

In the fifth column of Table 4.4 is computation time of Algorithm 4.4, with its detail provided in
Figure 4.2. Overall, computation time for different i ∈ {1,2, 3,4} was similar to one another. When
compared to computation time of i = 4 (computation time of i = 4 is scaled to one in Figure 4.2),
difference in computation time was about 10% for each test matrix, and the largest difference was
32% in the case of the test matrix (14). As a whole, computation time of i = 1 was relatively short,
while that of i = 4 was relatively long. In addition, difference in computation time of i = 1 and i = 2
was notable especially for the case of non-square test matrices (13), (14), and (15).

In the sixth column of Table 4.4 were the numbers of iterations of each algorithm consisting of
Algorithm 4.4. In general, for each test matrix, the larger the iteration number of Algorithm 4.1(i)

is, the smaller the iteration number of Algorithm 4.2 is. As a whole, on the one hand, the iteration
number of Algorithm 4.1(i) was relatively small for i = 3, except the case of i = 4 in which the initial
interval was set regardless of the value of k. On the other hand, the iteration number of Algorithm
4.2 was relatively small for i = 1 and large for i = 4. In addition, for i = 1 and i = 2, the iteration
number of both Algorithms 4.1(i) and 4.2 were identical for the case of square test matrices (11)
and (12). For Algorithm 4.3, in general, it took about 40 iterations, accounting for about 10% of
computation time as shown in Figure 4.2.

3The LAPACK dgesdd routine (divide and conquer method [22] for SVD) was able to compute SVD of test matrices
No. (11) and (12). Computed k-th singular values were 4.415844009694552E+01 and 5.589031396650464E−02, re-
spectively, and were the same as those by Algorithm 4.4 at least 14 digits. For test matrices No. (13), (14), and (15),
computation of SVD by the dgesdd routine was impossible because of insufficient memory.
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Table 4.3: Test matrices and target indices. nnz denotes the number of non-zero elements.

No. Name m n nnz k

(11) af23560 23 560 23 560 460 598 11 780

(12) wang3 26 064 26 064 177 168 13 032

(13) tomographic1 73 159 59 498 647 495 29 749

(14) degme 185 501 659 415 8 127 528 92 751

(15) Rucci1 1 977 885 109 900 7 791 168 54 950

Table 4.4: Numerical results of Algorithm 4.4. The parameter i ∈ {1,2, 3,4} indicates that Algo-
rithm 4.1(i) was selected for setting an initial interval. (σ̂k, ûk, v̂ k) is the computed value of the k-th
singular triplet. ‖r̂ k‖2 denotes the residual 2-norm with r̂ k =

1p
2

�

Av̂ k−σ̂k ûk
AH ûk−σ̂k v̂ k

�

.

No. i σ̂k ‖r̂ k‖2 Time (s)

Iterations of

Algorithm

2(i) 3 4

(11) 1 4.415844009694546E+01 1E−11 45.2 7 6 47

2 4.415844009694555E+01 2E−11 45.2 7 6 46

3 4.415844009694559E+01 2E−11 44.6 2 11 35

4 4.415844009694549E+01 1E−11 49.7 1 15 36

(12) 1 5.589031396650460E−02 4E−14 48.8 3 8 35

2 5.589031396650459E−02 1E−13 49.4 3 8 44

3 5.589031396650448E−02 5E−11 56.9 2 11 25

4 5.589031396650465E−02 1E−11 56.0 1 13 34

(13) 1 3.409163952571004E−01 1E−12 133.9 8 6 40

2 3.409163952571005E−01 2E−12 128.8 7 6 48

3 3.409163952571011E−01 1E−12 128.1 2 11 52

4 3.409163952571015E−01 8E−13 140.4 1 15 31

(14) 1 1.706200039955296E+01 7E−13 642.6 3 12 40

2 1.706200039955296E+01 1E−12 938.8 2 21 42

3 1.706200039955296E+01 2E−12 680.8 2 14 38

4 1.706200039955296E+01 1E−12 926.7 1 23 31

(15) 1 2.065089627276347E+00 1E−12 1529.2 2 11 31

2 2.065089627276345E+00 1E−12 1774.2 2 13 44

3 2.065089627276347E+00 2E−12 1829.8 3 13 32

4 2.065089627276348E+00 2E−12 1766.5 1 15 42
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Stage 3: SI Lanczos

Figure 4.2: Computation time of stages and computational tasks

4.4 Concluding remarks

In this chapter, based on relation between HEP and SVP (Section 1.1), we presented a three-stage
algorithm for computing the k-th singular triplet of large sparse matrices.

In Experiment 1, we showed that Algorithm 4.4 can compute the k-th singular triplet with ac-
curacy comparable to the results of SVD. In Experiment 2, Algorithm 4.4 was able to compute the
k-th singular triplet of a large-scale matrix. For example, for a two million by one hundred thousand
matrix, the k-th singular triplet was computed by Algorithm 4.4 using 4.1 GB of memory, while SVD
could not be executed because of an estimated several TB of memory requirement.

Among at least 36 algorithms that can be derived from Algorithm 4.4, we have explored 4 algo-
rithms in this chapter. Other possible algorithms will be investigated in future.
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Chapter 5

Relation to data circulation

This chapter discusses contributions of the thesis in the context of RWDC. In particular, contributions
to data circulation in computational and data-driven studies of materials are discussed.

First-principles simulations of materials are based on quantum mechanics and enable studies of
materials and their properties at the nanoscopic level that are expensive or even impossible to be
conducted by theoretical and experimental approaches. As illustrated in Figure 5.1, fundamental
to the simulations are matrix eigenvalue problems and their numerical solution. Several properties
of materials, such as the electrical conductivity of flexible device materials [31], are analysed by
using eigenvalues and eigenvectors of the problems. In addition, as will be explained in Section 5.1,
eigenvectors are processed to be a descriptor, or a unique identifier of a material, for data-driven
studies of materials [32,34].

Material 
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Energy &
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Material
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Figure 5.1: Data circulation in computational (thick lines) and data-driven (dashed lines) studies of
materials based on first-principles simulations (shaded in gray). Numerical algorithms for eigenvalue
problems, which are the focus of this thesis, are fundamental to the simulations and circulation.
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5 Relation to data circulation

This thesis proposes a numerical algorithm for solving eigenvalue problems. The proposed algo-
rithm is able to compute eigenpairs of industrial importance in materials simulations with efficiency
and to cope with more large-scale eigenvalue problems than currently avaiable algorithms, which
can lead to the acceleration and scaling-up of computational and data-driven studies of materials.
Further discussion on contributions of the thesis to the studies of materials is provided in Section 5.2.

5.1 Data circulation

This section explains data circulation in computational and data-driven studies of materials that are
related to this thesis. In particular, studies of flexible device materials are considered based largely
on the recent literature [31] and references therein.

This section is divided into three parts. The first part provides background on eigenvalue prob-
lems in electronic structure calculations of materials. The second part illustrates the analysis of
material properties by using participation ratio (PR), which is calculated from eigenvectors. The
third part describes data-driven studies of materials in which PR is utilized as a material descriptor
to conduct cluster analysis of organic materials.

Eigenvalue problems in electronic structure calculations

Practical electronic structure calculations use effective independent-electron theories, such as density
functional theory [26, 40, 41], that are formulated with an effective Schrödinger-type equation for
electronic wave functions {ψi(r )}i≥1,

Ĥeffψi(r ) = εiψi(r )(5.1)

with the Hamiltonian operator Ĥeff ≡ − ħh
2

2me
∆+Veff(r ). Here, me is the electron mass, and ħh denotes

the Planck constant. The scalar function Veff(r ) is the potential function for electrons at coordinate r
and varies among materials. The solution of (5.1) gives the eigenpairs (εi ,ψi(r )). The eigenvalues
εi are the energy of electron and are real. The eigenvalues are indexed in increasing order in this
chapter. The square |ψi(r )|2 of a wave function is the probability density of an electron, and the
wave functions are normalized with respect to the L2-norm,

∫ |ψi(r )|2 dr = 1.
Independent-electron systems can be discretized by the Galerkin method and be formulated as a

matrix eigenvalue problem. When an electronic wave function ψi(r ) is expanded (more accurately,
approximated) by the linear combination of n non-orthogonal basis functions {χ j(r )}nj=1,

ψi(r ) =
n
∑

j=1

x (i)j χ j(r ),(5.2)

a generalized eigenvalue problem,

Ax i = λiBx i ,

appears with the n× n Hermitian matrices A and B whose i, j elements are defined as follows:

Ai j ≡
∫

χ̄i(r )Ĥeffχ j(r )dr , Bi j ≡
∫

χ̄i(r )χ j(r )dr .(5.3)

Here, χ̄ denotes the complex conjugate of function χ. Matrix B is positive definite from the definition,
and its diagonal elements all equal one provided that the basis functions are normalized with respect
to the L2-norm. Matrices A and B are referred to as Hamiltonian and overlap matrices, respectively.
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5.1 Data circulation

Eigenvalues λi correspond to the energy εi of an electron, and eigenvectors x i = [x
(i)
1 · · · x (i)n ]

T rep-
resent an electronic wave function ψi(r ). From the normalization condition of ψi(r ), eigenvectors
are normalized with respect to the B-norm,

q

x H
i Bx i = 1.

The size and structure of matrices A, B depend on the construction of the Hamiltonian operator
Ĥeff and the choice of the basis set {χ j(r )}. This chapter considers a first-principle-based modeled
(transferable tight-binding) theory [33] in which basis functions, referred to as atomic orbitals, are
localized in real space with their localization center being the position of an atom in a material. The
index j of the basis functions χ j can then be expressed as a composite of two indices l and m that
represent a localization center, or an atom, and the shape of an orbital, respectively. Using indices
l and m, an alternative expression for the expansion of wave functions (5.2) is obtained as follows:
ψi(r ) =

∑natom
l=1

∑nl
m=1 x (i)lmχlm(r ). Here, natom denotes the number of atoms in a material. nl is the

number of orbitals centered at the l-th atom and differs depending on the given atomic species. For
example, one s-type orbital is prepared for each hydrogen atom, while one s-type and three p-type
orbitals are utilized for a carbon atom. Therefore, the matrix size n is roughly proportional to the
number natom of atoms in a material. Since orbitals are localized in real space, the matrix elements
(5.3) decay rapidly as the distance between the localization centers of the orbitals increases. Thus,
the matrices become sparse. Further details about the physical origin of the problem can be found
in the literature [30].

Analysis of flexible device materials

Organic semiconductor materials form the foundation for flexible devices such as flexible displays and
wearable electronics. The organic materials have large degrees of freedom in their physical structure
because they consist of molecules that form a solid based on weak physical interactions [31]. In other
words, the structure of the materials is disordered in general.

The structural disorder affects the spatial extension of a quantum mechanical wave of an electron
in real space, which governs electrical and optical properties of the materials and is important for
the device performance. Specifically, electronic wave functions extended over a wide region of the
space (or a large number of molecules) are prefereable for the electrical conductivity, while those
localized in a narrow region of the space (or a small number of molecules) are prefereable for optical
properties [31]. Investigating the relation of the structure disorder to material properties by the spa-
tial extension of wave functions is crucial especially for the design and production of optoelectronic
devices that need to be electroconductive and to interact with light at the same time.

The spatial extension of wave function ψi is measured by molecular PR [31] that is calculated

from the associated eigenvector x i as follows: PR(mol)(x i)≡
�

∑nmol
j=1

�

�

�

∑

l∈M j

�

∑n
m=1 x (i)l Blm x (i)m

�

�

�

�

2�−1

.

Here, nmol denotes the number of molecules in a material, and M j is a set of indices associated with
the orbitals belonging to the j-th molecule in a material. A wave function with PR(mol) = p can be
considered to be extended over (or localized in) roughly p molecules in a material.

Large-scale simulations are required to invesitage the spatial extension of wave functions in de-
vice materials with a complicated disordered structure. Specifically, in order to investigate a wave
function extended over a few dozens of molecules, or PR(mol) = O(10), it is necessary to simulate
nmol� O(10)molecules. A recent study [31] conducted simulations of a thin organic film consisting
of nmol = 1800 pentacene molecules (natom = 64 800, n = 183 600), which is considered to be the
semiconducting layer in an organic field-effect transistor (OFET). A wave function with PR(mol) ≈ 35
was observed in the simulations, which is in accordance with an experimental observation [51] of
wave functions with PR(mol) = O(10).
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5 Relation to data circulation

Data-driven studies of flexible device materials

Sample materials with various disordered structures are required to be analysed in order to investi-
gate the device performance. Many eigenvalue problems have been solved to conduct data-driven
studies [31,32,34] of poly(phenylene-ethynylene) (PPE), a typical electroconductive polymer, with
disordered structures. Specifically, for the j-th sample polymer with j ∈ {1, . . . , nsample}, a general-
ized eigenvalue problem of size n,

A( j)x ( j)i = λ
( j)
i B( j)x ( j)i ,

is solved to compute all its eigenpairs. Each n-dimensional eigenvector x ( j)i is processed into PR,

which is calculated as PR(x ( j)i ) ≡ (‖x ( j)i ‖44)−1. Based on PR calculated from eigenvectors, the j-

th sample polymer is represented by n-dimensional vector d( j) ≡ [PR(x ( j)1 ) · · ·PR(x ( j)n )]T, which is
utilized as a descriptor for data-driven studies.

The set {d( j)} j=1,...,nsample
of material descriptors can be analysed by common methods for machine

learning and data mining. A recent study [34] solved nsample = 200 eigenvalue problems of PPE.
Each sample polymer consists of 20 monomers (natom = 240, n= 712) and has a rotational degree of
freedom between adjacent monomers. Based on the k-means clustering, the sample materials were
successfully clustered into two disordered structures, polymers with a small or large dihedral rotation
angle. Another recent study [32] solved nsample = 40 000 eigenvalue problems of PPE consisting of
100 monomers (natom = 1200, n= 3594). In addition to the rotational degree of freedom, adjacent
monomers of the sample polymers are now junctioned in two different ways, in a linear or zigzag
manner (para-junctioned or meta-junctioned [61]). The sample polymers of the study were clustered
into four different disordered structures based on the principal component analysis. Specifically, the
difference in the rotation angle and the way of junction in the monomers of the sample polymers
was able to be captured by the first and second principal components, and the material descriptors
d( j) projected to the linear span of the first and second principal components were separated into
four clusters of different rotation angles and ways of junction.

5.2 Contributions to data circulation

This section discusses how the proposed algorithm contributes to the data circulation in the compu-
tational and data-driven studies of materials (Section 5.1).

Various material properties are governed by a small number of eigenpairs near the eigenpair
associated with the highest occupied (HO) state [50, Chapter 2], denoted by (λk, x k)with a material-
specific index k. The value of k is determined by the number of electrons nelectron in a material.
Typically, in a para-spin material, the index k is defined as one-half the number of electrons, or
k ≡ dnelectron/2e, because each wave function ψi with i = 1,2, . . . , k is occupied by two electrons
in the ground (most stable) state. The next index (k + 1) is for the lowest unoccupied state. The
difference between the k-th and (k+1)-st eigenvalues, or λk+1−λk, corresponds to the energy gap,
which is crucial for electrical properties because the value is zero in metallic materials and non-zero
in semiconducting or insulating materials.

This thesis proposes a purpose-specific algorithm for computing only eigenpairs of practical in-
terest for large-scale electronic structure calculations. In particular, in contrast to currently avail-
able algorithms, the proposed algorithm is able to compute the material-specific k-th eigenpair in
a selective manner without requiring computation of all or a substantial portion of eigenpairs, re-
alizing efficient and large-scale simulations of materials. For the study of a pentacene thin film
(natom = 64 800, n = 183 600) in Section 5.1, for example, only a small number of eigenvectors
whose associated eigenvalue is close to and smaller than or equal to λk, k = 91 800 are neces-
sary [31]. A few dozens of necessary eigenpairs of the film have been able to be computed by the
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proposed algorithm in about 0.2 hours using 1 central processing unit [45], while all eigenpairs were
computed by a currently available algorithm in about 6 hours using 36 computational nodes [31].
In addition, the proposed algorithm has been able to solve an eigenvalue problem of nmol = 20 000
pentacene molecules (natom = 720000, n= 2 040000) [45], which is beyond the pracitial size limit
(n≈ 106) of the currently available algorithms.

The proposed algorithm can contribute to the acceleration and scaling-up of computational and
data-driven studies of materials. With the proposed algorithm, it is expected that more large-scale
simulations can be conducted to investigate complicated device materials and their properties, such
as the interface system of the semiconducting and insulating layers in OFET [31]. Also expected
is data-driven studies of polymer systems in which solution of more large-scale and larger num-
ber of eigenvalue problems is considered necessary, compared to the studies of a single polymer in
Section 5.1.
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Chapter 6

Conclusion

6.1 Summary

This thesis proposed a three-stage algorithm for computing the k-th eigenpair of a large sparse
HDGEP. Numerical experiments showed that the proposed algorithm is able to solve real-world prob-
lems with efficiency and to cope with problems whose size is beyond the practical limit of current
available dense eigensolvers. Singular value problems can be considered to be a special case of
HDGEP, and the proposed algorithm was applied to computation of the k-th singular triplet of a
large sparse matrix. A possible role of the proposed algorithm in studies of materials was discussed
in the context of Real-World Data Circulation.

6.2 Future work

• A first stage algorithm for finding an initial interval
The proposed Lanczos-based algorithm was able to find a narrow interval containing the k-th
eigenvalue in two iterations for k-EP from real-world applications. When applied to k-SVP,
the proposed algorithm required up to eight iterations to find an interval containing the k-th
singular value, which were almost comparable to and sometimes more than the number of
iterations required for the bisection algorithm in the second stage. As a remedy for a possible
case in which the proposed algorithm requires many iterations for k-EP, a first stage algorithm
that can find an initial interval at a fixed and moderate computational cost is necessary.

• Application of the three-stage algorithm
Performance evaluation on various and extensive real-world problems is necessary to clarify
capabilities and limitations of the proposed three-stage algorithm for its future improvement.
Ongoing motivation for the study of k-EP is electronic structure calculations of materials. It
is also important to discover k-EP and k-SVP from other areas of computational science and
engineering in order to broaden application areas of the proposed algorithm.
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Appendix A

Upper bounds of the largest singular value

This chapter compares the sharpness of several upper bounds of the largest singular value σ1 of
A ∈ Cm×n. In particular, two types of upper bounds are considered. The first type includes matrix
norms ‖A‖1, ‖A‖∞, and ‖A‖F. The second type includes upper bounds λG,λO,λB, and λN of the
largest eigenvalue λ1 of the extended matrix H ≡ � O A

AH O

�

, which are computed from Gershgorin-
type theorems by Gershgorin, Ostrowski, Brauer, and Nakatsukasa, respectively.

The following is the main result on the sharpness, which will be proved in the rest of the chapter:

‖A‖2 = σ1 = λ1 ≤ λN ≤
Æ

‖A‖1 · ‖A‖∞ ≤ λB ≤max{‖A‖1,‖A‖∞}= λO = λG.(A.1)

Also proved is that no inequality holds in general between ‖A‖F and λN; Depending on matrices,
‖A‖F can be a sharper upper bound of σ1 than λN, and vice versa.

As Definition 2.3, let ri(A) (r ′i (A)) be the (deleted) row sums and c j(A) (c′j(A)) be the (deleted)
column sums. The following theorems are extensions of Theorem 2.4 by Gerghgorin.

Theorem A.1 (Ostrowski [27, Theorem 6.4.1]). Forα ∈ [0,1], all eigenvalues of A∈ Cn×n are included
in

O(A)≡
⋃

1≤i≤n

Oi(A), Oi(A)≡
�

z ∈ C
�

� |z − Aii| ≤ r ′i (A)
α · c′i(A)1−α

	

.

Theorem A.2 (Brauer [27, Theorem 6.4.7]). All eigenvalues of A∈ Cn×n (n≥ 2) are included in

B(A)≡
⋃

1≤i< j≤n

Bi j(A), Bi j(A)≡
¦

z ∈ C
�

�

� |z − Aii| · |z − A j j| ≤ r ′i (A) · r ′j(A)
©

.

Theorem A.3 (Nakatsukasa [53, Theorem 11.1]). All eigenvalues of A∈ Cn×n are included in

N(A)≡
⋃

1≤i≤n

Ni(A), Ni(A)≡











z ∈ C \ D(A)

�

�

�

�

�

�

�

�

|z − Aii| ≤
∑

1≤ j≤n,
j 6=i

|Ai j|
r ′j(A)

|z − A j j|











∪ D(A),

where D(A)≡ {A11, . . . , Ann}.

Proof of (A.1) Because every diagonal element of H is zero, it follows from Theorem 2.4 and
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Theorems A.1 to A.3 that

G(H) = {z ∈ C | |z| ≤ λG} , λG ≡ max
1≤i≤m+n

r ′i (H),

O(H) = {z ∈ C | |z| ≤ λO} , λO ≡ max
1≤i≤m+n

r ′i (H)
αc′i(H)

1−α,

B(H) = {z ∈ C | |z| ≤ λB} , λB ≡ max
1≤i< j≤m+n

Ç

r ′i (H)r
′
j(H),

N(H) = {z ∈ C | |z| ≤ λN} , λN ≡ max
1≤i≤m+n

√

√

√

√

∑

1≤ j≤m+n,
j 6=i

|Hi j|r ′j(H).

From the 2× 2 block structure of H,

λG =max
§

max
1≤i≤m

r ′i (H), max
m+1≤i≤m+n

r ′i (H)
ª

(A.2)

=max
§

max
1≤i≤m

ri(A), max
1≤i≤n

ci(A)
ª

=max {‖A‖∞,‖A‖1} .

Because H is Hermitian,

λO = max
1≤i≤m+n

r ′i (H)
αr ′i (H)

1−α = max
1≤i≤m+n

r ′i (H) = λG.(A.3)

From the 2× 2 block structure of H,

λB =max







max
1≤i< j≤m

Ç

r ′i (H)r
′
j(H), max

m+1≤i< j≤m+n

Ç

r ′i (H)r
′
j(H), max

1≤i≤m,
m+1≤ j≤m+n

Ç

r ′i (H)r
′
j(H)







(A.4)

=max







max
1≤i< j≤m

q

ri(A)r j(A), max
1≤i< j≤n

q

ci(A)c j(A), max
1≤i≤m,
1≤ j≤n

q

ri(A)c j(A)







=max
§

max
1≤i< j≤m

q

ri(A)r j(A), max
1≤i< j≤n

q

ci(A)c j(A),
Æ

‖A‖∞ · ‖A‖1
ª

.

For the first and second terms in the parenthesis of equation (A.4),

max
1≤i< j≤m

q

ri(A)r j(A)≤ max
1≤i≤m,
1≤ j≤m

q

ri(A)r j(A) = max
1≤i≤m

ri(A) = ‖A‖∞,

max
1≤i< j≤n

q

ci(A)c j(A)≤ max
1≤i≤n,
1≤ j≤n

q

ci(A)c j(A) = max
1≤i≤n

ci(A) = ‖A‖1,

which leads to
Æ

‖A‖1 · ‖A‖∞ ≤ λB ≤max{‖A‖1,‖A‖∞}.(A.5)

From the 2× 2 block structure of H,

λN =max







max
1≤i≤m

√

√

√

∑

m+1≤ j≤m+n

|Hi j|r ′j(H), max
m+1≤i≤m+n

√

√

√

∑

1≤ j≤m

|Hi j|r ′j(H)






(A.6)

=max







max
1≤i≤m

√

√

√

∑

1≤ j≤n

|Ai j|c j(A), max
1≤i≤n

√

√

√

∑

1≤ j≤m

|A ji|r j(A)







.
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For the first and second terms in the parenthesis of equation (A.6),

max
1≤i≤m

√

√

√

∑

1≤ j≤n

|Ai j|c j(A)≤ max
1≤i≤m

√

√

√

∑

1≤ j≤n

|Ai j| · max
1≤ j≤n

c j(A)

= max
1≤i≤m

Æ

ri(A) · max
1≤ j≤n

q

c j(A) =
Æ

‖A‖∞ · ‖A‖1,

max
1≤i≤n

√

√

√

∑

1≤ j≤m

|A ji|r j(A)≤ max
1≤i≤n

√

√

√

∑

1≤ j≤m

|A ji| · max
1≤ j≤m

r j(A)

= max
1≤i≤n

Æ

ci(A) · max
1≤ j≤m

q

r j(A) =
Æ

‖A‖1 · ‖A‖∞,

which leads to

λN ≤
Æ

‖A‖1 · ‖A‖∞.(A.7)

The inequality (A.1) follows from equations (A.2), (A.3), (A.5), and (A.7). �

Finally, it is shown below that no inequality holds in general between ‖A‖F and λN.

• For rank–1 matrix A, ‖A‖F = σ1, while it is not necessarily true that λN = σ1.

• For diagonal matrix A, λN = σ1, while it is not necessarily true that ‖A‖F = σ1.
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