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Abstract 

The design of new materials with useful properties is becoming increasingly 

important. Machine-learning tools Materials Genome Integration System Phase and 

Property Analysis (MIPHA) and rMIPHA (based on the R programming environment) 

have been independently developed to accelerate the process of materials discovery via 

a data-driven materials research approach. In the present work, MIPHA and rMIPHA 

are applied to steel, where machine-learning-based 2D/3D microstructural analysis, 
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direct analysis of property predictions, and properties-to-microstructure inverse analysis 

were conducted. The results demonstrate that the prediction models deliver satisfactory 

performance. The inverse exploration of microstructures related to desired target 

properties (e.g., stress–strain curve, tensile strength, and total elongation) was realized. 

MIPHA and rMIPHA are still under improvement. The microstructure-to-processing 

inverse analysis is expected to be realized in the future. 

 

Keywords: 3D microstructural analysis, property prediction, inverse analysis, machine 

learning, steels 
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1. Introduction   

Science is in an exponential world in which the amount of scientific data is doubly 

increased every year, which drives the evolution of scientific methods from traditional 

paper notebooks toward enormous online databases [1]. As data volumes increase, the 

ability to efficiently extract knowledge from the huge amount of data becomes 

increasingly important. In response to such a data deluge, the highly efficient and 

systematic use of databases has become an integral part of the scientific process. 

Machine learning, which is an artificial intelligence approach to analyzing data and 

making predictions and decisions based on a huge data volume through various models 

and algorithms [2, 3], has already been successfully applied in many scientific fields [4]. 

Examples include cognitive game theory (e.g., computer chess) [5, 6], pattern 

recognition (e.g., facial or fingerprint recognition) [7-9], and event forecasting [10].  

Because of the staggering compositional and configurational degrees of freedom in 

materials, the chemical space of materials is far from being exhausted; an enormous 

number of new materials with useful properties are yet to be discovered [11]. In the 

traditional experimental science, a material is generally designed from a given chemical 

composition and processing conditions, followed by microstructure analysis and 

property evaluation, which is high-cost, low-efficiency, and insufficient for designing a 
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novel material with desired properties. Therefore, machine learning is now attracting 

increasing attention in the materials research field to explore unknown information 

about materials and thus accelerate advances in materials discovery [12, 13]. One 

proposed approach is known as materials informatics, which is scientific and technical 

and seeks to establish structure–property relationships in a high-throughput, statistically 

robust, and physically meaningful manner using computational science [13]. 

The application of machine learning to materials research has led to numerous 

achievements: predictions of phase diagrams [14], crystal structures [15, 16], and 

materials properties [11, 17-19]; developments of interatomic potentials [20-22] and 

energy functionals [23]; and mapping of materials behavior to process variables [24]. 

However, these applications are mainly restricted to a direct analysis from structure to 

property under given chemical compositions and processing conditions. An inverse 

analysis method that starts from the desired property and predicts the required structural 

features and processing conditions has not yet been developed.  

In the most current materials research, microstructures of materials are studied in 

two dimensions. However, the two-dimensional (2D) approach gives rise to some 

criticism because real materials are three-dimensional (3D). For example, flow curves in 

ferrite–martensite dual phase steel has been reported to be underestimated compared 
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with the flow curves obtained by prediction from 2D plane strain modeling and those 

obtained experimentally [25]. Thus, 3D microstructural data of materials appear to be 

necessary for data-driven materials research. 

The present work is aimed at developing a new machine-learning tool, Materials 

Genome Integration System Phase and Property Analysis (MIPHA), which can realize 

2D/3D microstructural analysis and direct and inverse analyses simultaneously. 

Furthermore, a machine-learning program of rMIPHA based on R script has also been 

developed; it mainly focuses on analysis of the data obtained from MIPHA. The 

purpose of this work is to provide materials researchers with a new avenue for 

data-driven materials design and thus accelerate the materials discovery process. 

 

2. MIPHA and rMIPHA 

This section introduces MIPHA and rMIHPA. Fig. 1 shows the primary functions 

and characteristics of MIPHA, including image recognition, image processing, 2D/3D 

analysis, and direct and inverse analyses. Deep learning [26] and Trainable Weka 

Segmentation (TWS) [27] approaches are adopted for image recognition and processing 

functions, respectively. Deep learning can extract image features using an artificial 

neural network (ANN) with multiple layers, acquiring abstractive features that represent 
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the original image features. Here, GoogLeNet model is used for deep learning, and 

dropout and average image extraction techniques are employed to suppress overlearning 

and clear image, respectively. TWS is a machine-learning tool that can realize 

segmentation of large image datasets automatically after training a classifier by a 

limited number of manual annotations [27]. Twenty alternative training features (e.g., 

Gaussian blur, mean, min/max, and anisotropic diffusion) are supplied in TWS to ensure 

training accuracy. The functions of image recognition and image processing are 

implemented through a free software of Fiji. In 2D and 3D analysis functions, 

microstructural characteristics (2D: count fraction, area fraction, circularity, solidity, and 

ferret’s diameter/angle; 3D: count fraction (CF: count/total volume), volume fraction 

(VF), surface area, Gauss curvature, ferret’s diameter, sphericity, genus, Euler-Poincare, 

piercing particle, isolated inner particle, and branching point) can be analyzed and 

quantified with help of free and commercial software called the Amira, which is 

designed for high-dimensional data visualization, processing, and analysis [28]. 

Property prediction is the main function in direct analysis, where an ANN classifier 

is used to fit the prediction model. Since an excess of model variables often leads to 

overlearning [29], a function of data transformation and variable selection [30, 31] is 

installed in the MIPHA. The data of the explanatory variables are first subjected to 
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multiple transformations, such as linear, logarithmic, exponential, square, root, 

tangential. A logistic regression is employed to identify the correlation between the 

explanatory and objective variables, where the transformations that contributes to a high 

correlation are defined by a gene pattern of 1, while the either ones are defined as 0. 

Then, a set of efficient transformations that leads to the highest correlation is extracted 

using a genetic algorithm (GA) [32], which is a metaheuristic inspired by the process of 

natural selection using for various optimization problems, especially with incomplete or 

imperfect information or limited computation capacity. The explanatory variables that 

provide efficient transformations are thereby selected into the input layer of the neural 

network. In addition, sigmoid function was used as the activation function with the 

MIPHA in this study. In inverse analysis, a direct analysis model should be established 

in advance, followed by inverse analysis using the GA, where the population size of 

2000, generation of 50, crossover rate of 0.1, and mutation rate of 0.85 were used in this 

work. 

Fig. 2 shows the main functions of rMIPHA that works in the R programming 

environment, including variable selection, dimension reduction, regression analysis, and 

direct and inverse analyses. In the variable selection function, the Akaike information 

criterion (AIC) [33], Bayesian information criterion (BIC) [34], and the least absolute 
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shrinkage and selection operator (LASSO) [35] packages are installed, which are 

designed for selecting a subset of relevant variables for model construction, so as to 

simplify the model, shorten the training time, reduce overlearning, as well as make the 

model easier to interpret. The AIC and BIC are formally as AIC = 2k – 2ln(L) and BIC 

= ln(n)k – 2ln(L), respectively, where k and n are the number of the explanatory 

variables and observations estimated by the model, respectively; and L is the maximum 

value of the likelihood function for the model. The variables that result in the lowest 

AIC or BIC value for the model are preferred. LASSO is a regression analysis method, 

which forces regression coefficients of certain variables to be 0, and then effectively 

chooses a simpler model with those variables whose corresponding absolute values of 

the coefficient are larger than 0.  

In the dimension reduction function, principal component analysis (PCA) [36] and 

Autoencoder [37] packages are used to convert the high-dimension dataset to a low 

dimension. PCA normalizes the high-dimension dataset with correlated variables and 

convert it into a set of linearly uncorrelated vectors that describe the variances of the 

observations in the dataset, where two principle components PC1 and PC2 are generally 

used to evaluate the primary variances of the observations. Autoencoder is a type of 

ANN used to compress a high-dimension dataset into a low-dimension code that can be 
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uncompressed into something closely matching the original dataset.  

In the regression analysis function, ANN [38], support vector machine (SVM) [39], 

random forest (RF) [40], and multiple regression (MR) [41] classifiers with 

hyper-parameter Bayesian optimization (BO) are installed for fitting data to models. On 

the basis of the regression models, the property prediction and inverse analysis can be 

realized using the BO algorithm in direct and inverse analysis functions. In the present 

work, sigmoid function was used as the activation function in the ANN model. The node 

number of hidden layer and weight decay, as hyper-parameters, were optimized under a 

learning rate of 0.01. In the RF model, the hyper-parameters of the numbers of tree and 

feature in each tree were optimized, where 1000 trees and maximum feature value of 7 

were used. In the SVM model, the radial basis function (RBF) was used as the kernel. 

The penalty coefficient of cost and parameter gamma were optimized in a range of 0.25

～4. 

Fig. 3 compares the functions between MIPHA and rMIPHA. MIPHA was 

developed as dependent software using the Visual Basic language. rMIPHA works in 

the R language, which is extensively used for statistical computing and data analysis. 

The functions of image processing and 2D/3D microstructural analysis are unique for 

MIPHA, whereas rMIHPA shows obvious advantages in regression analysis for its 
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selectable classifiers with hyper-parameter BO. In inverse analysis functions, GA and 

BO are used for MIPHA and rMIPHA with maximum objective variables of 2 and 3, 

respectively. In addition, rMIPHA has more options for variable selection and 

dimension reduction in sparse studies. Further details descripting the work of these 

functions have been introduced in our previous work [42]. 

 

3. Application of MIPHA and rMIPHA in steels 

Mechanical properties are the foundation of various steels and are highly sensitive 

to their microstructure. Fig. 4 maps the primary microstructural factors in materials that 

influence their strength and plasticity. These microstructural factors are classified into 

first descriptors and second descriptors. The former mainly describes characteristics of 

the second phase, grain size, crystal orientation, grain boundaries, and dislocations. The 

latter describes factors derived from the former, such as lattice friction, mobile and 

immobile dislocation densities, residual stress, elastic anisotropy, and Schmidt factor. To 

thoroughly understand the relationship between microstructure and properties, 

estimations of such numerous microstructural factors on the basis of traditional 

experimental science are insufficient. In addition, the microstructure also strongly 

depends on chemical compositions and processing conditions of the materials, which 
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makes the estimation more difficult. Thus, machine learning is a powerful approach to 

exploring the potential relationships among processing conditions, microstructure, and 

mechanical properties. 

In this section, MIPHA and rMIPHA are applied to steels. Direct analysis of 

property prediction and properties-to-microstructure inverse analysis are carried out. 

One of the objectives is to study the relationship between microstructure and properties 

by machine learning; the other objective is to demonstrate the functions of MIPHA and 

rMIPHA. 

 

3.1 Experimental procedure 

Cold-rolled (CR) low-carbon steels with different chemical compositions and 

processing conditions were studied in the present work. The CR steel samples were 

austenitized at 1000°C or 1400°C and cooled at 1, 3, 10, or 30°C/s to room temperature. 

The chemical compositions of the raw materials and processing parameters are detailed 

in Table 1. 

Continuous cooling transformation (CCT) curves were measured by the thermal 

expansion method. Tensile tests were performed to evaluate the mechanical properties 

of the samples. The microstructures of the samples were observed on their sections 
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parallel to the rolling direction using a proprietary serial-sectional 3D microscope 

(Genus_3D) [43], where approximately 100 images were serially observed at 0.53～

0.96 µm per interval for each sample. Microstructural analysis was performed by 

MIPHA. Direct analysis of property prediction and properties-to-microstructure inverse 

analysis were carried out with MIPHA and rMIPHA. 

 

3.2 Machine-learning-based microstructural analysis  

Fig. 5 illustrates the 2D and 3D microstructures of sample A10-01. Fig. 5(a) shows 

an image as an example observed using Genus_3D. According to the contrast, 

morphology, and CCT curve, the microstructure was recognized as being composed of 

four phases: polygon ferrite (PF), Widmanstatten ferrite (WF), pearlite (P), and 

degenerated pearlite (DP), which were observed as white polygonal, white acicular, 

dark, and light features, respectively. In addition, in the samples cooled at higher rates 

of 10 and 30°C/s, bainite (B) and martensite (M) were observed. Fig. 5(b) shows a 

cropped image with local contrast normalization corresponding to the area highlighted 

by the red box in subfigure (a). The cropping and local contrast normalization were 

carried out to ensure that the subsequent phase segmentation proceeded well. Fig. 5(c) 

shows a phase-extracted image corresponding to (b), in which the four aforementioned 
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phases are marked in different colors. Figs. 5(d) and (e) show the 3D images 

reconstructed from the serial images in (b) and (c), which intuitively and proximately 

present the real microstructure of the sample. Furthermore, Fig. 5(f) shows a 3D image 

segmented from (e) as an example, clearly displaying the morphology and distribution 

of the P phase.  

In the present work, the aforementioned 2D and 3D microstructure characteristics 

of each phase were analyzed and quantified with help of deep learning and TWS, 

supplying sufficient topological microstructure information that approaches to a real 

material. The obtained average information of each microstructure feature was 

automatically summarized to a CSV file. In addition, the microstructure information of 

each phase was also statistic to separated CSV files. This indicates that MIPHA has a 

powerful 2D/3D microstructural analysis function.  

 

3.3 Construction of datasets 

In order to avoid a complex model and reduce overlearning resulting from excess 

model variables, BIC estimation was performed to identify the importance of the above 

3D microstructure features for the property (stress). The results demonstrated that the 

CF and VF of the most of phases exhibited high importance for the stress, by which the 
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CF and VF were thereby chosen as the microstructure features for fitting the models in 

this study. 

The quantitative CF and VF of each phase are detailed in Table 2. In addition, the 

mechanical properties of tensile strength (TS) and total elongation (tEL) estimated from 

the stress-strain curves are also included (the experimental information of strain and 

stress is listed in Table S1). These obtained microstructure and property data constitute 

the “material genomes” used for subsequent direct and inverse analyses. In the present 

work, two datasets were constructed: one was used for predicting stress-strain curve, 

and the other was used for inversely exploring a balanced property of TS and tEL. The 

former contained 111 observations depending on the number of the overall strain/stress 

data items of the samples (Table S1) with 14 features in each observation (6 CFs, 6 VFs, 

strain, and stress). The latter contained 12 observations depending on the number of the 

studied samples (Table 2) with 14 features in each observation (6 CFs, 6 VFs, TS, and 

tEL). 

In machine learning, overfitting often occurs when a statistical model accurately 

fits the data at hand but fails to describe the underlying data, which results in inaccurate 

predictions for the novel material characteristics. One approach to avoiding overfitting 

is to separate the datasets for training a model and for testing it. Therefore, in the 
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present work, the 75% of the data in each dataset was used for training and the 

remaining 25% was used for testing. It should be pointed out that the training and 

testing datasets were split using a round-robin algorithm in MIPHA, while they were 

randomly split in rMIPHA with a 10-fold cross validation for the training data. 

 

3.4 Direct analysis of property prediction 

Fig. 6 shows the direct analysis results obtained by MIPHA without variable 

selection, including the neural network of the prediction model and the predicted 

stress–strain curve of the A10-01 sample in its plastic deformation period. As shown in 

Fig. 6(a), in this prediction model, all microstructures (CF and VF) and true strain were 

used as the explanatory variables (input layer) and the true stress was used as the 

objective variable (output layer). A hidden layer with nine variables was created 

between the input and output layers. The correlation coefficients (CCs) of the training 

and testing datasets were evaluated as 0.98987 and 0.96062 for the present model, 

indicating a good linear correlation between the experimental data and the estimated 

data. As illustrated in Fig. 6(b), the experimental and predicted curves of sample A10-01 

were well fit to each other. In addition, by comparison for all samples, the experimental 

and predicted curves were still keep a good fitness (Fig. S1). These results suggest 
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satisfactory performance of this model. 

As mentioned above, an excess of model variables can also lead to overfitting. 

Therefore, a prediction model with variable selection was also established by MIPHA. 

Fig. 7(a) shows the neural network of the fitted model. The variables in the hidden layer 

were reduced to seven after variable selection; however, this simplified model still had 

an accuracy approximately equal to that achieved without variable selection (Fig. 6). A 

comparison of the experimental and predicted stress–strain curves also indicates good 

performance of this model, as illustrated by the A10-01 sample in Fig. 7(b) (Fig. S2 

presents the predicted results of all samples). The aforementioned results demonstrate 

that variable selection is beneficial in the case of numerous model variables.  

The obtained “materials genomes” were also studied by rMIPHA using different 

classifiers with and without variable selection. Fig. 8 shows the direct analysis results 

without variable selection. The dataset was pre-estimated by ANN, SVM, and RF 

classifiers with hyper-parameter BO. Fig. 8(a) shows the performance of the fitted 

models, as indicated by CC and root-mean-square error (RMSE). The results 

demonstrate that the ANN model exhibited the best accuracy on the basis of its high CC 

and low RMSE. By contrast, substantial overfitting occurred in the SVM model. Fig. 

8(b) shows the hyper-parameter BO result for the ANN model under the search 
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conditions of 20 initial points and 10 iterations. The size of 4 and decay of 0.0091 are 

the best-fit hyper parameters for model, as indicated by the lowest RMSE. Fig. 8(c) 

shows the neural network of the ANN model, which describes the degree of sensitivity 

of objective variables to explanatory variables. Red and blue colors express positive and 

negative sensitivity, respectively, and a wider connection line expresses a larger value. 

The quantitative degrees of sensitivity of the objective variable to each explanatory 

variables are listed in Table 3; these values were automatically generated during the 

model fitting process. The results show that the explanatory variable of true strain was 

the factor most sensitive to the objective variable of true stress. Fig. 8(d) illustrates the 

experimental and ANN-predicted true stress–strain curves of the A10-01 sample. The 

experimental and predicted curves are shown to almost coincide. Similar predictions 

were also almost observed in the remaining samples (Fig. S3), which indicates excellent 

model performance resulting from the hyper-parameter BO.  

Fig. 9 shows the direct analysis results with variable selection. Here, BIC was 

adopted to evaluate the degree of importance of the explanatory variables. Fig. 9(a) 

shows the results of BIC variable selection (highlighted in the blue box) and a 

performance estimation of the BIC variables. Notably, this model was fitted by ANN 

without hyper-parameter optimization. The results show that the model still provided a 
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satisfactory performance indicated by its high CC and low RMSE values for the training 

data and testing data. However, when the BIC data was estimated by ANN, SVM, and 

RF with hyper-parameter BO, RF became the best model, as shown in Fig. 9(b). Fig. 

9(c) shows the degree of importance explanatory variables evaluated by an RF classifier. 

True strain is shown to be the most important variable for true stress in this model, as 

indicated by its largest IncNodePurity (Increase of Node Purity: an index to express the 

variable importance). Fig. 9(d) illustrates the experimental and RF-predicted true 

stress–strain curves for the A10-01 sample. The predictions for all samples are shown in 

Fig. S4. By comparison, a satisfactory result was still obtained although it was not as 

good as that achieved without variable selection (Fig. 8).  

 

3.5 Properties-to-microstructure inverse analysis 

Because of longer training time for finding the best hype-parameters using BO, in 

this work, inverse analysis was conducted by MIPHA using GA with exploration 

targets: stress–strain curve, and TS/tEL. 

a. Exploration of a target stress–strain curve  

As an example, a target stress–strain curve was arbitrarily written. The stress–strain 

prediction model in Fig. 6 was inversely analyzed with a target stress–strain search, 
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which was to explore the microstructure candidate that relates to the written curve. As a 

result, the microstructure corresponding to the target curve was obtained, as listed in 

Table 4. Moreover, the explored and target stress–strain curves well fit with each other, 

as shown in Fig. 10.  

b. Exploration of targets TS and tEL 

Generally, the quality of steel is evaluated by its strength and plasticity, which are 

characterized by TS and tEL, respectively. Therefore, a direct analysis model with 

explanatory variables of microstructure and objective variables of TS and tEL was first 

established by MIPHA; the resultant model showed a CC of 0.95957. This model was 

then inversely analyzed with a TS×tEL maximum search, which was designed to 

explore the microstructure that relates to the best balance of strength and plasticity. 

Table 5 lists the explored potential TS and tEL as well as the corresponding 

microstructure. The potential TS and tEL are much higher than the experimental results 

listed in Table 2. The potential TS×tEL can reach 62300.86, which is 1.27 times larger 

than the largest experimental result of 48984.90 (A14-30). In addition, in the explored 

microstructure, hard phase M and soft phase PF can be considered the primary phases 

that impart better strength and plasticity to the present steels. 

It should be pointed out that the given examples of inverse analysis here explored 
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the microstructures corresponding to desired properties. However, systematical 

evaluation of the inverse analysis model performance and microstructure-to-processing 

inverse analysis were not performed in this work restricted by the present functions of 

MIPHA and rMIPHA, which are still yet under improvement. A 

properties-to-microstructure-to-processing inverse analysis with evaluation of inverse 

analysis model performance will be demonstrated in future work. Moreover, the 

explored results of properties, and its corresponding microstructure and processing will 

also be evaluated by both experiment and finite element method [44] in the future. 

In this study, data science was applied to steels, which exhibited remarkable 

advantages compared to the experimental science, such as savings of labor, time and 

cost, and a more thorough estimation of the relationship between the microstructure and 

properties. In particular, the proposed properties-to-microstructure inverse analysis 

explored the potential properties of the studied steels as well as the corresponding 

microstructure. Since microstructure is a junction connecting the processing and 

properties, an adequate properties-to-microstructure-to-processing inverse analysis is 

expected to effectively accelerate the materials discovery process.  

 

4. Conclusions 
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Independently developed machine-learning tools MIPHA and rMIPHA were 

applied in steels, where machine-learning based microstructural analysis, property 

prediction, and properties-to-microstructure inverse analysis were conducted. The 

microstructural components of the samples were quantified, constituting the “materials 

genomes”. Stress–strain curves were predicted on the basis of the materials genomes. 

The prediction models showed satisfactory accuracies. The microstructures 

corresponding to desired properties (a target stress–strain curve and target TS/tEL) were 

inversely explored by MIPHA successfully, where the explored and the target 

stress–strain curves well matched each other; and the inversely explored potential TS 

and tEL were much larger than the experimental results. The results presented in this 

work are expected to provide a new approach in materials design to accelerate the 

materials discovery process. 

 

Acknowledgements 

The authors would like to thank the SIP-M project. This research did not receive 

any specific grant from funding agencies in the public, commercial, or not-for-profit 

sectors. 



22 

 

References 

[1] S. Alexander and J. Gray: 2020 Computing: Science in an exponential world. Nature, 

2006, vol. 440, pp. 413-414. 

[2] R.S. Michalski, J.G. Carbonell and T.M. Mitchell: Machine learning: An artificial 

intelligence approach. Springer Science and Business Media, Palo Alto, 2013, pp. 

41-81. 

[3] N.M. Nasrabadi: Pattern recognition and machine learning. J. Electron. Imaging, 

2007, vol. 16, 049901. 

[4] A.L. Samuel: Computer games I. Springer, New York, 1988, pp. 335-365.  

[5] J.H. Holland: Emergence: from chaos to order. OUP, Oxford, 2000, pp. 16-26. 

[6] N. Jones: Quiz-playing computer system could revolutionize research. Nature News, 

http://dx.doi.org/10.1038/news.2011.95, February 2011. 

[7] N. MacLeod, M. Benfield and P. Culverhouse: Time to automate identification. 

Nature, vol. 467, 2010, pp. 154-155. 

[8] J.P. Crutchfield: Between order and chaos. Nat. Phys., vol. 8, 2012, pp. 17-24. 

[9] L. Chittka and A. Dyer: Your face looks familiar. Nature, vol. 481, 2012, pp. 

154-155. 

[10] W.C. Hong: Rainfall forecasting by technological machine learning models. Appl. 

Math. Comput., vol. 200, 2008, pp. 41-57. 

http://dx.doi.org/10.1038/news.2011.95


23 

 

[11] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran and R. Ramprasad: Accelerating 

materials property predictions using machine learning. Sci. Rep., vol. 3, 2013, 2810. 

[12] R. LeSar: Materials informatics: an emerging technology for materials 

development. Stat. Anal. Data Min., vol. 1, 2009, pp. 372-374.  

[13] K. Rajan: Materials informatics. Mater. Today, vol. 8, 2005, pp. 38-45. 

[14] C.J. Long, J.H. Simpers, M. Murakami, R.C. Srivastava, I. Takeuchi, V.L. Karen 

and X. Li: Rapid structural mapping of ternary metallic alloy systems using the 

combinatorial approach and cluster analysis. Rev. Sci. Instrum., vol. 78, 2007, 072217. 

[15] G. Hautier, C.C. Fischer, A. Jain, T. Mueller and G. Ceder: Finding nature’s 

missing ternary oxide compounds using machine learning and density functional theory. 

Chem. Mater., vol. 22, 2010, pp. 3762-3767. 

[16] D. Morgan, S. Curtarolo, K. Persson, J. Rodgers and G. Ceder: Predicting crystal 

structures with data mining of quantum calculations. Phys. Rev. Lett., vol. 91, 2003, 

135503. 

[17] K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von 

Lilienfeld, A. Tkatchenko and K.R. Müller: Assessment and validation of machine 

learning methods for predicting molecular atomization energies. J. Chem. Theory 

Comput., vol. 9, 2013, pp. 3404-3419.  



24 

 

[18] K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.R. 

Müller and A. Tkatchenko: Machine learning predictions of molecular properties: 

accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett., 

vol. 6, 2015, pp. 2326-2331. 

[19] T.D. Huan, A.M. Kanakkithodi and R. Ramprasad: Accelerated materials property 

predictions and design using motif-based fingerprints. Phys. Rev. B, vol. 92, 2015, 

014106. 

[20] T. Morawietz and J. Behler: A density-functional theory-based neural network 

potential for water clusters including van der Waals corrections. J. Phys. Chem. A, vol. 

117, 2013, pp. 7356-7366. 

[21] J. Behler: Neural network potential-energy surfaces in chemistry: a tool for 

large-scale simulations. Phys. Chem. Chem. Phys., vol. 13, 2011, pp. 17930-17955. 

[22] A.P. Bartók, M.C. Payne, R. Kondor and G. Csányi: Gaussian approximation 

potentials: the accuracy of quantum mechanics without the electrons. Phys. Rev. Lett., 

vol. 104, 2010, 136403. 

[23] J.C. Snyder, M. Rupp, K. Hansen, K.R. Müller,and K. Burke: Finding density 

functionals with machine learning. Phys. Rev. Lett., vol. 108, 2012, 253002. 

[24] H.K.D.H. Bhadeshia: Neural networks and information in materials science. Stat. 



25 

 

Anal. Data Min., vol. 1, 2009, pp. 296-305. 

[25] C. Thomser: Modelling of the mechanical properties of dual phase steels based on 

microstructure. Ph.D. Thesis, RWTH-Aachen, Germany, 2009. 

[26] Y. LeCun, Y. Bengio and G. Hinton G: Deep learning. Nature, vol. 521, 2015, pp. 

436-444. 

[27] I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. 

Cardona and H. Sebastian Seung: Trainable Weka Segmentation: a machine learning 

tool for microscopy pixel classification. Bioinformatics, vol. 33, 2017, pp. 2424-2426. 

[28] D. Stalling, M. Westerhoff and H.C.Hege: Amira: A highly interactive system for 

visual data analysis. The Visualization Handbook, vol. 38, 2005, 749-767. 

[29] N. Wagner and J.M. Rondinelli: Theory-guided machine learning in materials 

science. Front. Mater., vol. 3, 2016, 28. 

[30] J.W. Tukey: Exploratory Data Analysis. Addison-Wesley, Indianapolis, 1977. 

[31] S. Chatterjee and B. Price: Regression analysis by example. John Wiley & Sons, 

New Jersey, 1991. 

[32] M. Mitchell: An introduction to genetic algorithms. MIT Press, Cambridge, 1998. 

[33] H. Akaike: A new look at the statistical model identification. IEEE T. Automat. 

Contr, vol. 19, 1974, pp. 716-723. 



26 

 

[34] H.S. Bhat and N. Kumar: On the derivation of the Bayesian information criterion. 

School of Natural Sciences, University of California, 2010. 

[35] R. Tibshirani: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 

vol. 58, 1996, pp. 267-288. 

[36] H. Hotelling: Analysis of a complex of statistical variables into principal 

components. J. Educ. Psychol., vol. 24, 1993, pp. 417-441. 

[37] G. Hinton and R. Salakhutdinov: Reducing the dimensionality of data with neural 

networks. Science, vol. 313, 2006, pp. 504-507. 

[38] R.J. Schalkoff: Artificial neural networks. McGraw-Hill, New York, 1997, vol. 1. 

[39] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt and B. Scholkopf: Support vector 

machines. IEEE Intell. Syst. App., vol. 13, 1998, pp. 18-28. 

[40] A. Liaw and W. Matthew: Classification and regression by random Forest. R news, 

vol. 2, 2002, pp. 18-22. 

[41] J. Cohen, P. Cohen, S.G. West and L.S. Aiken: Applied multiple 

regression/correlation analysis for the behavioral sciences. Routledge, London, 2013. 

[42] Y. Adachi: Cutting edge of steel informatics and future prospects. ISIJ Newsletter, 

vol. 23, 2018, No. 6. 

https://www.researchgate.net/publication/325596024_Cutting_Edge_of_Steel_Informati



27 

 

cs_and_Future_Prospects. 

[43] Y. Adachi, N. Sato, M. Ojima, M. Nakayama and Y.T. Wang: Development of fully 

automated serial-sectioning 3D microscope and topological approach to pearlite and 

dual-phase microstructure in steels. Proc. of First Int. Conf. 3D Mater. Sci., 2012, pp. 

37-42. 

[44] O.C. Zienkiewicz, and R.L. Taylor: The finite element method. McGraw-hill, 

London, 1977. 

 



 

 

Fig. 1 Functions and characteristics of MIPHA. 
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Fig. 2 Functions and characteristics of rMIPHA. 
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Fig. 3 Function comparison between MIPHA and rMIPHA. 
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Fig. 4 Microstructural factors that influence the mechanical properties of materials. 
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Fig. 5 Microstructures of sample A10-01: (a) an original image observed by Genus_3D; 

(b) an image with local contrast normalization corresponding to the area highlighted by 

the red box in (a); (c) a phase-extracted image corresponding to (b); (d) and (e) 

reconstructed 3D images from the serial images of (b) and (c), respectively; and (f) a 3D 

image segmented from (e) with P phase only. 
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Fig. 6 Direct analysis results without variable selection by MIPHA: (a) neural network of 

the fitted model and (b) experimental and predicted true stress−strain curves of sample 

A10-01. 
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Fig. 7 Direct analysis results with variable selection by MIPHA: (a) neural network of the 

fitted model and (b) experimental and predicted true stress−strain curves of sample A10-

01. 
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Fig. 8 Direct analysis results without variable selection by rMIPHA: (a) performance 

comparison of different models; (b) hyper-parameter BO result for the ANN model; (c) 

neural network of the ANN model; and (d) experimental and predicted true stress−strain 

curves of sample A10-01. 
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Fig. 9 Direct analysis results with variable selection by rMIPHA: (a) the result of BIC 

variable selection and performance estimation of the BIC variables by ANN; (b) a 

performance comparison of different models; (c) the degree of importance of explanatory 

variables evaluated by an RF classifier; and (d) experimental and predicted true 

stress−strain curves of sample A10-01.  
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Fig. 10 Comparison of the inversely explored and target stress−strain curves. 
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Fig. S1 Stress-strain curves of experiment and predicted by ANN without variable 

selection using MIPHA. 
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Fig. S2 Stress-strain curves of experiment and predicted by ANN with variable selection 

using MIPHA. 
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Fig. S3 Stress-strain curves of experiment and predicted by ANN without variable 

selection using rMIPHA. 

 

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08
T

ru
e 

st
re

ss
 (

M
P

a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1 0.12

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1 0.12

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

800

0 0.02 0.04 0.06 0.08 0.1

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

800

0 0.01 0.02 0.03 0.04 0.05 0.06

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

800

900

0 0.01 0.02 0.03 0.04 0.05

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08 0.1

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

0 0.02 0.04 0.06 0.08

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

0

100

200

300

400

500

600

700

800

900

0 0.02 0.04 0.06 0.08

T
ru

e 
st

re
ss

 (
M

P
a)

True strain

Experimental

Predicted

A10-01

A10-03

A10-10

A14-01

A14-03

A14-10

B10-01

B10-03

B10-10

B10-30A10-30 A40-30



 

Fig. S4 Stress-strain curves of experiment and predicted by RF with BIC variable 

selection using rMIPHA. 
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Table 1 Chemical compositions and processing conditions of the studied steels. 

  

Steel Chemical composition (wt.%, N, O: ppm) Process 

A10-01 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000oC for 5 s→ cooling at 1oC/s 

A10-03 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000oC for 5 s→ cooling at 3oC/s 

A10-10 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000oC for 5 s→ cooling at 10oC/s 

A10-30 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000oC for 5 s→ cooling at 30oC/s 

A14-01 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→annealed at 1400oC for 5 s→cooling to 1000oC at 50oC/s→cooling at 1oC/s 

A14-03 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1400oC for 5 s→ cooling to 1000oC at 50oC/s→ cooling at 3oC/s 

A14-10 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1400oC for 5 s→ cooling to 1000oC at 50oC/s→ cooling at 10oC/s 

A14-30 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1400oC for 5 s→ cooling to 1000oC at 50oC/s→ cooling at 30oC/s 

B10-01 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000oC for 5 s→ cooling at 1oC/s 

B10-03 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000oC for 5 s→ cooling at 3oC/s 

B10-10 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000oC for 5 s→ cooling at 10oC/s 

B10-30 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000oC for 5 s→ cooling at 30oC/s 

 



Table 2 Mechanical properties and quantitative microstructures of the samples. 

 

Steel TS(MPa) tEL(%) CFPF CFP CFWF CFDP CFB CFM VFPF VFP VFWF VFDP VFB VFM 

A10-01 481 80.6 3.30E-05 5.16E-05 0.000165 1.83E-05 0 0 0.4047 0.2005 0.0845 0.3104 0 0 

A10-03 489 76.4 5.43E-05 9.07E-05 1.28E-06 9.24E-05 0 0 0.2608 0.118 0.5537 0.0674 0 0 

A10-10 591 71.1 5.17E-05 0.000136 0.000126 0 1.54E-06 0 0.1836 0.0452 0.1414 0 0.6297 0 

A10-30 663 63.9 8.63E-05 0 0.00027 0 9.26E-07 4.42E-05 0.1576 0 0.0842 0 0.5765 0.1817 

A14-01 516 64.4 7.67E-05 5.15E-05 4.04E-06 3.21E-05 5.30E-06 0 0.1573 0.0212 0.3938 0.0379 0.3897 0 

A14-03 561 67.5 4.40E-05 4.67E-05 3.12E-05 5.94E-05 5.93E-06 0 0.0808 0.0143 0.2572 0.1232 0.5245 0 

A14-10 688 61.5 0 2.27E-05 0 0 1.08E-05 1.73E-05 0 0.0094 0 0 0.6249 0.3657 

A14-30 807 60.7 0 0 0 0 0 3.00E-05 0 0 0 0 0 1 

B10-01 550 70.4 0.002244 0.000637 0.001005 0 0 0 0.373652 0.06523 0.561117 0 0 0 

B10-03 600 66.3 0.00325 0.000344 0.005683 0 0.000477 0 0.109254 0.006947 0.022508 0 0.861291 0 

B10-10 691 61.5 0.000185 0.000215 0 0 2.76E-05 0 0.118045 0.006877 0 0 0.875078 0 

B10-30 725 58.4 0 0 0 0 7.43E-05 1.52E-07 0 0 0 0 0.160882 0.839118 

 



Table 3 Sensitive degrees of the objective variable to explanatory variables. 

 

Variable CFPF CFP CFWF CFDP CFB CFM VFPF VFP VFWF VFDP VFB VFM 
True 

strain 

Degree of 

sensitivity 
0.51599 0.54173 0.31269 0.54976 0.50816 0.37722 0.18469 0.98668 0.35119 0.17412 0.44629 0.33054 1.02794 

 



Table 4 Inversely explored microstructure related to the explored stress−strain curve in 

Fig. 10. 

 

CFPF CFP CFWF CFDP CFB CFM VFPF VFP VFWF VFDP VFB VFM 

0.000975 0.000153 0.003751 0.000085 0.000448 3.54E-06 0.012221 0.021191 0.160972 0.182781 0.079276 0.543559 

 



Table 5 Inversely explored potential TS and tEL as well as the corresponding microstructure. 

 

CFPF CFP CFWF CFDP CFB CFM VFPF VFP VFWF VFDP VFB VFM TS (MPa) tEL (%) TS×tEL 

0.002015 0.000612 0.002614 1.29E-05 0.000372 3.45E-05 0.223769 0.113381 0.014103 0 0.03299 0.615758 780.662 79.80517 62300.86 

 



Table S1 True stress and true strain in the plastic deformation period of the samples.  

Steel True strain True stress (MPa) Steel True strain True stress (MPa) Steel True strain True stress (MPa) Steel True strain True stress (MPa) 

A10-01 0.002198 324.0282 A10-03 0.004789 309.5443 A10-10 0.004191 391.7979 A10-30 0.004789 445.8137 

A10-01 0.010346 319.9499 A10-03 0.010148 347.6578 A10-10 0.010148 467.5023 A10-30 0.010148 526.8914 

A10-01 0.020391 362.6852 A10-03 0.020195 390.5254 A10-10 0.020391 520.6202 A10-30 0.020391 593.5219 

A10-01 0.030335 395.6559 A10-03 0.030141 429.0506 A10-10 0.030141 557.724 A10-30 0.030141 631.6508 

A10-01 0.040182 423.7481 A10-03 0.040182 453.0676 A10-10 0.040182 582.9039 A10-30 0.040182 661.8569 

A10-01 0.050313 449.8599 A10-03 0.050123 474.6 A10-10 0.050313 603.06 A10-30 0.050503 682.5952 

A10-01 0.060154 468.8956 A10-03 0.060342 492.6911 A10-10 0.060342 617.3847 A10-30 0.060154 696.8786 

A10-01 0.070086 485.3615 A10-03 0.070086 505.7891 A10-10 0.070086 629.0702 A10-30 0.070086 708.6386 

A10-01 0.080104 498.6359 A10-03 0.080473 517.8129 A10-10 0.080104 638.3887 A10-30 0.080289 717.7935 

A10-01 0.090389 510.8979 A10-03 0.090206 527.2346 A10-10 0.090024 646.1226 A10-30 0.083422 720.5867 

A10-01 0.100026 520.8134 A10-03 0.100026 535.7378 A10-10 0.091302 647.2237 A10-30 - - 

Steel True strain True stress (MPa) Steel True strain True stress (MPa) Steel True strain True stress (MPa) Steel True strain True stress (MPa) 

A14-01 0.0004 353.6885 A14-03 0.005584 414.5048 A14-10 0.007373 525.0748 A14-30 0.006777 624.7891 

A14-01 0.010742 435.9908 A14-03 0.010148 472.3089 A14-10 0.010148 595.7951 A14-30 0.010148 722.5876 

A14-01 0.020195 471.8805 A14-03 0.020587 515.6096 A14-10 0.020391 663.7306 A14-30 0.020195 801.5458 

A14-01 0.030141 497.5439 A14-03 0.030529 545.2894 A14-10 0.030141 693.7011 A14-30 0.030335 826.7185 

A14-01 0.040182 517.976 A14-03 0.040182 567.5232 A14-10 0.040182 711.9022 A14-30 0.040374 840.0037 

A14-01 0.050123 532.1206 A14-03 0.050313 582.2557 A14-10 0.050313 723.0982 A14-30 0.042485 842.0394 

A14-01 0.060342 543.4502 A14-03 0.060154 593.8649 A14-10 0.054678 726.7898 A14-30 - - 

A14-01 0.070272 551.8345 A14-03 0.070458 602.1657 - - - - - - 

A14-01 0.080104 558.6462 A14-03 0.073065 604.0065 - - - - - - 

A14-01 0.08526 561.8071 - - - - - - - - - 

Steel True strain True stress (MPa) Steel True strain True stress (MPa) Steel True strain True stress (MPa) Steel True strain True stress (MPa) 

B10-01 0.006777 377.9297 B10-03 0.004589 435.9009 B10-10 0.005385 485.3781 B10-30 0.005385 491.4087 

B10-01 0.010148 422.2976 B10-03 0.010148 512.7357 B10-10 0.010346 588.4434 B10-30 0.010148 593.4675 

B10-01 0.020195 480.8418 B10-03 0.020195 560.6035 B10-10 0.020195 652.1322 B10-30 0.020195 662.3455 

B10-01 0.030335 514.97 B10-03 0.030335 589.8169 B10-10 0.030529 684.0004 B10-30 0.030141 706.6619 

B10-01 0.040182 540.1787 B10-03 0.040182 611.0401 B10-10 0.040182 706.8296 B10-30 0.040182 733.3525 

B10-01 0.050503 559.7706 B10-03 0.050503 625.548 B10-10 0.050123 722.8609 B10-30 0.050313 753.7289 

B10-01 0.060154 573.1934 B10-03 0.060342 636.257 B10-10 0.060154 733.3464 B10-30 0.060154 766.7702 

B10-01 0.070458 584.7844 B10-03 0.067285 642.0294 B10-10 0.065413 737.7492 B10-30 0.070458 777.1316 

B10-01 0.080104 593.7145 - - - - - - B10-30 0.071017 777.8351 

B10-01 0.090024 601.555 - - - - - - - - - 

B10-01 0.092214 603.1496 - - - - - - - - - 
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