The Journal of Horticultural Science & Biotechnology

Upregulation of *MdMYB110a* is responsible for ABAmediated coloration of type 2 red-fleshed apples

Journal:	The Journal of Horticultural Science & Biotechnology
Manuscript ID	THSB-2017-0260.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	06-Mar-2018
Complete List of Authors:	Sato, Hideto; Nagoya University, Graduate School of Bioagricultural Sciences Otagaki, Shungo; Nagoya University, Graduate School of Bioagricultural Sciences Ono, Yuma; Nagoya University, Graduate School of Bioagricultural Science Shiratake, Katsuhiro; Nagoya University, Graduate School of Bioagricultura Sciences Matsumoto, Shogo; Nagoya University, Graduate School of Bioagricultural Sciences
Keywords:	Malus, MdMYB, type 2, ABA, anthocyanin
Abstract:	Type 2 red-fleshed apples are attractive to consumers due to their sweet taste, which is not present in type 1 apples, in addition to their vivid color and the accumulation of health-promoting polyphenol compounds to a greater degree than in white apples. Although the red pigmentation of typ 2 apples is caused by the expression of <i>MdMYB110a</i> at coloring initiation, the endogenous factors that induce the expression of <i>MdMYB110a</i> are poorly understood. In this study, we investigated the effect of two phytohormones, ethylene and abscisic acid (ABA), on <i>MdMYB110a</i> expression and flesh pigmentation in type 2 red-fleshed apples. Although induction of the expression of the ethylene biosynthetic gene <i>MdACO1</i> coincided with the onset of flesh pigmentation, no obvious correlation was found between treatment with ethylene or its inhibitor 1-methylcyclopropene and the expression pattern of <i>MdMYB110a</i> . However, homologues of ABA-induced genes in apple were differentially expressed between pigmented and nonpigmented flesh derived from a single fruit, and ABA treatment in type 2 red-fleshed fruits led to the upregulation of <i>MdMYB110a</i> , the gene responsible for the type 2 red-flesh trait.

1	Upregulation of <i>MdMYB110a</i> is responsible for ABA-mediated coloration of type 2
2	red-fleshed apples
3	
4	H. Sato ⁺ , S. Otagaki ⁺ , Y. Ono, K. Shiratake and S. Matsumoto*
5	
6	Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya
7	464-8601, Japan
8	⁺ These authors contributed equally to this work.
9	(e-mail: shogo@agr.nagoya-u.ac.jp)
10	(C-man: shogo(u/agr:magoya-u.ac.jp)
11	Keywords: <i>Malus</i> ; <i>MdMYB</i> ; type 2; ABA; anthocyanin
12	Keywords. <i>Matus</i> , <i>Maw1D</i> , type 2, ADA, antioeyanin
	The total word count is 4.022. The number of Table and Figure is 2 (including 1
13	The total word count is 4,922. The number of Table and Figure is 2 (including 1
14	supplement Table) and 8 (including 2 supplement Figure), respectively.
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	*Author for correspondence.

25 ABSTRACT

26	Type 2 red-fleshed apples are attractive to consumers due to their sweet taste, which		
27	is not present in type 1 apples, in addition to their vivid color and the accumulation of		
28	health-promoting polyphenol compounds to a greater degree than in white apples.		
29	Although the red pigmentation of type 2 apples is caused by the expression of		
30	MdMYB110a at coloring initiation, the endogenous factors that induce the expression of		
31	MdMYB110a are poorly understood. In this study, we investigated the effect of two		
32	phytohormones, ethylene and abscisic acid (ABA), on MdMYB110a expression and		
33	flesh pigmentation in type 2 red-fleshed apples. Although induction of the expression of		
34	the ethylene biosynthetic gene MdACO1 coincided with the onset of flesh pigmentation,		
35	no obvious correlation was found between treatment with ethylene or its inhibitor		
36	1-methylcyclopropene and the expression pattern of MdMYB110a. However,		
37	homologues of ABA-induced genes in apple were differentially expressed between		
38	pigmented and nonpigmented flesh derived from a single fruit, and ABA treatment in		
39	type 2 red-fleshed fruits led to the upregulation of MdMYB110a expression and the		
40	enhancement of anthocyanin production. These results strongly suggest that ABA, not		
41	ethylene, induced upregulation of MdMYB110a, the gene responsible for the type 2		
42	red-flesh trait.		

44	Apple (Malus x domestica Borkh.) is one of the most widely planted fruit trees, and
45	77,573,743 metric tons were produced worldwide in 2016–17 (USDA,
46	http://apps.fas.usda.gov/psdonline/). Although procyanidins and other polyphenols in
47	apple possess health benefits for chronic diseases (Eberheadt et al., 2000; Wolfe et al.,
48	2003), both growers and consumers desire new cultivars of higher quality. Red-fleshed
49	apples may answer this demand because of their vivid new color caused by the high
50	accumulation of the anthocyanin cyanidene-3-0-galactoside, as well as high contents of
51	health-promoting phenolic compounds such as chlorogenic acid, phloridzin, quercetin,
52	catechin, and epicatechin in the flesh (Sato et al., 2017). Anthocyanin possesses
53	antioxidative activity (Butelli et al., 2008; Toufektsian et al., 2008), and is mainly
54	present in the skin of white-fleshed apples. However, Japanese consumers peel their
55	apples before eating.
56	Two types of red-fleshed apples exist: type 1 and 2. The coloring of type 1 is caused
57	by the MdMYB10 gene located on chromosome (ch.) 9, while the coloring of type 2 is
58	caused by the MdMYB110a gene located on ch. 17. MdMYB10 is an allele of
59	MdMYBA/MdMYB1, which are responsible for the coloration of fruit skin (Lin-Wang et
60	al., 2010), and possesses five tandem MdMYB10 binding sites in its promoter region.
61	Because $MdMYB10$ ($R_6:MdMYB10$) positively autoregulates its own transcription
62	through this minisatellite-like structure, red coloration occurs not only in the flesh of
63	type 1 apples but also in the fruit skin and vegetative tissues, including leaves and stems
64	(Espley et al., 2009). However, MdMYB110a expression is observed only at the cortex,
65	and the red coloration in type 2 apples is independent of the color of the fruit skin or
66	vegetative tissues (Chagné et al., 2013; Umemura et al., 2013). In Japan, type 2
67	red-fleshed apple cultivars with low acidity and high sugar contents, including 'Irodori'

68	('Jonathan' x 'Pink pearl'), 'Enbu' ('Irodori' x 'Fuji'), 'Nakano Shinku' ('Irodori' x
69	'Fuji'), 'Nakano no Kirameki' ('Irodori' x 'Orin'), 'Moonrouge' ('Irodori' x 'Fuji'),
70	'Ruby Sweet' (JP114069 x 'Fuji'), and 'Rose Pearl' ('Fuji' x 'Pink Pearl'), have
71	recently been registered or submitted for registration. Type 2 apples are superior to type
72	1 when breeding for flesh use because a quantitative trait loci for astringent taste is
73	tightly linked with the R_6 : MdMYB10 locus of type 1 apples (Volz et al., 2013).
74	The red coloration of apple skin has been shown to be affected by sunlight irradiatio
75	UV-B irradiation of the red-skinned cultivar 'Tsugaru' induced the upregulation of
76	MdMYBA, whereas MdMYB1 protein was degraded through a ubiquitin-dependent
77	pathway under dark conditions (Ban et al., 2007; Li et al., 2012). However, although
78	anthocyanin biosynthesis in red-fleshed apples was inhibited by a double-layered paper
79	bagging treatment that almost completely shielded out light, some accumulation of
80	anthocyanin was still observed in the flesh (Umemura et al., 2011; Honda et al., 2016).
81	These results suggest that sunlight does not trigger the initiation of anthocyanin
82	biosynthesis in red-fleshed apples.
83	Phytohormones are endogenous factors that also affect fruit ripening and coloring. Ir
84	general, an overall decrease in auxin, gibberellin, and cytokinin, as well as a
85	simultaneous increase in abscisic acid (ABA) and ethylene, are observed at the
86	maturation and ripening stages of fruits (McAtee et al., 2013). Exogenous ethylene or
87	ABA treatment in tomato, a climacteric plant like apple, accelerates color change from
88	green to orange or red (Su et al., 2015; Mou et al., 2016). Using the green-skinned,
89	white-fleshed apple cultivar 'Granny Smith', Lara & Vendrell (2000) revealed that both
90	ABA and the ethylene biosynthetic enzyme ACC start to accumulate around 160 days
91	after full bloom (DAFB) in the flesh, with peaks occurring at approximately 10 days

92 before commercial harvest for ABA and at commercial harvest for ACC. However,

93 whether these two phytohormones contribute to triggering the induction of

MdMYB110a expression and onset of pigmentation in type 2 red-fleshed apples remains
 unknown.

In the present study, we revealed that ethylene does not contribute to the induction of flesh pigmentation in type 2 red-fleshed apples through treatment with ethylene and its inhibitor 1-methylcyclopropene (1-MCP). In contrast, genes induced by ABA were more highly expressed in pigmented flesh than in unpigmented flesh, and exogenous ABA treatment induced the upregulation of *MdMYB110a* expression and increased anthocyanin accumulation. These results suggest that ABA, not ethylene, causes the coloring of apple flesh and upregulation of *MdMYB110a*.

elie

104 MATERIALS AND METHODS

105 Plant material

Samples of the type 2 red-fleshed cultivars 'Nakano Shinku' and 'Nakano no Kirameki' were taken from collections at the Nagano Fruit Tree Experimental Station, Japan, and samples of 'Ruby Sweet' and 'Rose Pearl' were taken from collections at the Apple Research Center of the National Institute of Fruit Tree Science, Japan, Fruits at 60, 90, 120, 133, 150, and 180 DAFB during the 2013 and 2015 growing seasons were used for expression analyses of MdMYB110a, MdACO1, and MdNECD1. For the ethylene and 1-MCP treatments, fruits of 'Nakano Shinku' and 'Nakano no Kirameki' were collected at 90, 105, and 130 DAFB at Yoshiie Orchard, Japan during the 2014 growing season. 'Nakano no Kirameki,' which shows red and white colors on different sides, were harvested at 130 DAFB at Yoshiie Orchard, Japan during the 2014 growing

 season and used for differential display analysis. For the ABA treatment, fruits of
'JPP35' and 'Nakano no Kirameki' were collected at 90 DAFB at Yoshiie Orchard,
Japan during the 2016 growing season.

120 Total RNA extraction and cDNA synthesis

The cortices of peeled apple fruits were subjected to total RNA extraction, essentially as described in Chang et al. (1993). Total RNA extractions were performed on three independent apple fruits. cDNA was synthesized from 500 ng of total RNA using the PrimeScript RT Reagent Kit with gDNA Eraser (Perfect Real Time) kit (TaKaRa Bio Inc., Japan) according to the manufacturer's protocol. Complete elimination of the genomic DNA from cDNA was confirmed by PCR using an *MdActin* primer pair spanning the intron sequence.

129 Quantitative real-time PCR (qPCR) expression analyses of MdMYB110a, MdACO1,

130 and MdNECD1

Quantitative real-time PCR (qPCR) for quantification of the transcripts for MdMYB110a, MdACO1, MdNECD1, MdMYC2, and MdJAZ2 was conducted using the SYBR Premix Ex Tag II (Tli RNaseH Plus) (TaKaRa Bio Inc., Japan) and Thermal Cycler Dice Real Time System TP800 (TaKaRa Bio Inc., Japan). Gene expression was detected using the primers from An et al. (2015, 2016), Hamada et al. (2015), Kondo et al. (2012), and Yang et al. (2013) (described in Supplemental Table S1). qPCR conditions were as follows: preheating for 30 s at 95 °C, followed by 50 cycles of 5 s at 95 °C, 10 s at 60 °C, and 15 s at 72 °C. The data were analyzed with Thermal Cycler Dice Real Time System Software Ver.3.00D (TaKaRa Bio Inc., Japan). The relative

expression of each sample was normalized to expression of the *MdActin* gene. qPCR expression analysis was performed on three independent fruits (three biological replicates) per stage, and data are shown as means \pm SE. PCR efficiency was determined for each gene by analyzing serial dilutions of cDNA. All PCRs displayed efficiencies between 93% and 100%.

Ethylene and 1-MCP treatment

Fruits of 'Nakano Shinku' and 'Nakano no Kirameki' at 90, 105, and 130 DAFB were harvested in 2013 and 2015. All of the fruits were kept for 24 hours at room temperature, except for those in the 1-MCP treatment. In the 1-MCP treatment, SmartFreshSM (Rohm and Haas, Japan) was sprayed on the fruits, which were left to stand for 24 hours at room temperature under 1000 ppb 1-MCP. After 24 hours, both control and 1-MCP treatment fruits were sprayed with water and left to stand for 48 hours in sealed containers at 17 °C under dark conditions. Fruits in the ethylene treatment were sprayed with Ethephon (Wako Pure Chemical Industries, Ltd., Japan) and left to stand for 48 hours under 1000 ppm ethylene. After each treatment, all fruits were kept at 17 °C under dark conditions, and flesh at 10, 25, and 40 days after treatment was analyzed. This experimental design is also summarized in Supplemental Fig. S1.

160 Differential display analysis

161 Differential display analysis was conducted using a GeneFishingTM DEG Premix Kit

162 (Seegene, Inc., Korea). A 3 µg total RNA sample from each part was mixed with 2 µl

163 dT-ACP1 [5'CTGTGAATGCTGCGACTACGATXXXX(T)₁₈-3'] to a final

164	concentration of 2.11 μM and adjusted to 9.5 μl with RNase-free water. Each tube stood
165	for 3 min at 80 °C, cooled on ice for 2 min, and was then brought to a final volume of
166	20 μl with a final concentration of 1x RT buffer, 0.5 mM dNTP, 20 U RNaseOUT
167	(Invitrogen, USA), 5 mM DTT, 1 μ M dT-ACP1, and 200 U SuperScript® III Reverse
168	Transcriptase (Invitrogen). The reaction was performed for 90 min at 42 °C before
169	heating at 94 °C for 2 min to inactivate the reaction. First-strand cDNAs were chilled on
170	ice for 2 min before the addition of 80 μ l RNase-free water.
171	Second-strand cDNA synthesis was performed in a reaction mixture containing 3 μ l
172	of the first-strand cDNAs, 0.5 µM arbitrary ACP (one of the 10 arbitrary ACPs provided
173	in the GeneFishing TM kit), 0.5 μ M dT-ACP2
174	[5'CTGTGAATGCTGCGACTACGATXXXXX(T) ₁₅ -3'], 1x SeeAmp TM ACP TM Master
175	Mix, and 4 μ l of distilled water, for a final volume of 20 μ l. PCR conditions were as
176	follows: preheating at 94 °C for 5 min, 50 °C for 3 min and 72 °C for 1 min for a single
177	cycle, followed by 40 cycles of 94 °C for 40 s, 65 °C for 40 s, and 72 °C for 40 s, after
178	which extension was performed at 72 °C for 5 min.
179	The PCR products were then electrophoresed on 2.0% agarose gel and stained with 1
180	μ g/ml ethidium bromide. Potential differentially expressed genes (DEGs) were
181	identified and excised from the agarose gels with a clean scalpel and purified using
182	MagExtractor TM -PCR & Gel Clean up- (TOYOBO CO., LTD., Japan). The amplified
183	potential DEG inserts were cloned into the T-vector pMD20 (TaKaRa Bio. Inc., Japan),
184	and their sequences were determined by performing a dideoxy chain termination with
185	M13M4 or M13RV primer on an Applied Biosystems 3130-Avant Genetic Analyzer
186	(Life Technologies Japan Co., Ltd., Japan) using the BigDye Terminator v3.1Cycle
187	Sequencing Kit (Life Technologies Japan Co., Ltd.).

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
2∓ 25	
25 26	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51 52	
53	
54	
55	
56	
57	
58	
59	
60	

> 188 Clone identity was determined according to sequence homology with the National 189 Center for Biotechnology Information (NCBI) database using the Basic Local 190 Alignment Search Tool (BLAST) (http://www.ncbi.nlm.nih.gov/). The BLASTX 191 algorithm was used for similarity searching against the translated amino acid sequences 192 in the database.

- 193
- 194 Expression analyses (RT-PCR)

195 RT-PCR was performed using Ex Taq HS (TaKaRa Bio. Inc., Japan). The primer sets 196 for the expression analysis are listed in Table 1. MdActin was used as a housekeeping 197 gene to calculate the relative expression. PCR conditions were as follows: initial heating 198 at 98 °C for 1 min, followed by 28 cycles for MdMYB1R1, 36 cycles for MdNECD1, 30 199 cycles for MdMYB110a, and 30 cycles for MdActin, each consisting of 98 °C for 10 s,

102

60 °C for 10 s, and 72 °C for 20 s. 200

201

202 ABA treatment

203	Fruits of 'JPP35' and 'Nakano no Kirameki' were harvested at 90 DAFB in 2015 and
204	2016. All of the fruits were cut into two portions: one was used as the control, and the
205	other was used for ABA treatment. For ABA treatment, the cut surface of side was
206	dipped into a mixture of 2.5 mM ABA (Sigma, USA) solution containing 0.6%
207	methanol and 1% (v/v) Tween 20 and 2.5 mM fluridone containing 10% methanol and
208	1% (v/v) Tween 20. The sample was then left to stand for 96 hours at 17 $^{\rm o}C$ under dark
209	conditions. A 2-mm cut of flesh from the dipped surface was removed, and a 3-mm cut
210	of flesh from the cut section was used for analysis.
211	

212 RESULTS AND DISCUSSION

213 Ethylene and ethylene inhibitor treatment do not induce either MdMYB110a expression

or flesh pigmentation in type 2 red-fleshed apples

Previously, we have clarified that pigmentation in the cortex of type 2 red-fleshed apples begins during the immature stage and increases with fruit maturity (Umemura et al., 2011). The red flesh pigmentation of type 2 apples progresses without ultraviolet rays, which are essential for the development of red skin color by upregulation of *MdMYB1* (Umemura et al., 2011). Because increases in ethylene and ABA occur during fruit maturation for climacteric and non-climacteric fruit, respectively, ethylene synthesis is essential for apple fruit ripening. Therefore, we first focused on ethylene as a trigger for upregulation of *MdMYB110a*. We investigated the expression pattern of MdACO1, responsible for ethylene production, and *MdMYB110a* to determine the correlation between ethylene production and *MdMYB110a* upregulation. For all of the analyzed type 2 red-fleshed apples, except for 'Rose Pearl', both genes expressed in the flesh at some point between 90 and 120 DAFB, likely just before coloring time (Supplemental Fig. S2). In case of 'Rose Pearl', the expression of *MdACO1* was earlier than that of *MdMYB110a*. To confirm the upregulation of *MdMYB110a* by ethylene, we conducted ethylene treatment using

230 'Nakano Shinku' and 'Nakano no Kirameki' fruits at 90 and 105 DAFB. Both fruit

231 pigmentation and *MdMYB110a* expression were not observed in fruits at 90 DAFB

232 (results not shown). For fruits at 105 DAFB, expression of *MdMYB110a* associated with

that of *MdACO1* was observed in both the control and ethylene treatment conditions

234 (Fig. 1 A, B and D, E), but fruit pigmentation was not observed. Moreover, expression

235 of *MdMYB110a* without *MdACO1* expression under the 1-MCP treatment was detected

1 2	
3	
4	
5 6	
/	
8	
9 10	
11	
12	
13 14	
15	
16 17	
18	
19	
20 21	
22	
23 24	
24 25	
26 27	
27 28	
20 29	
30	
31 32	
33	
34 35	
36	
37	
38 39	
40	
41 42	
42 43	
44	
45 46	
47	
48	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59	
60	

236	in 'Nakano no Kirameki' flesh at 10 days after 1-MCP treatment (Fig. 1 F), and little to
237	no induction of MdMYB110a was observed at 40 days after 1-MCP treatment, at which
238	point ethylene production may restart (Fig. 1 C and F). Although we analyzed the
239	contribution of exogenous ethylene against the upregulation of MdMYB110a, the
240	correlation between ethylene production and MdMYB110a expression was unclear.
241	
242	Cloning of genes using chimeric colored fruits through the differential display method
243	Because no pigmentation of flesh and unclear upregulation of MdMYB110a by
244	ethylene were observed in the previous experiments, ethylene appeared not to be a clear
245	trigger for flesh pigmentation. We then used a fruit of 'Nakano Shinku,' which has red
246	and white flesh color on opposite sides, to isolate the genes responsible for
247	pigmentation besides MdMYB110a (Fig. 2A).
248	As shown in Fig. 2B, the expression level of MdMYB110a in the red part was
249	significantly higher than that in the white part. From this result, we expected that the
250	expression level of other genes related to flesh coloring would also be upregulated, and
251	we conducted differential display analysis to isolate the genes specifically expressed in
252	the red part of the flesh. We succeeded in isolating four DEG bands of 250 bp, 500 bp,
253	600 bp, and 500 bp, which corresponded to transcription factor MYB1R1-like
254	(XM_008362597), protein MIZU-KUSSEI 1-like (XM 008353781), vacuolar protein
255	sorting-associated protein 2 homolog 1 (XM 008390315), and
256	enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic-like (XM 008352051),
257	respectively. We investigated the relationships of the expression pattern of MdMYB1R1
258	with those of the gene for 9-cis-epoxycarotenoid dioxygenase (MdNECD1) responsible
259	for ABA biosynthesis, and MdMYB110a, because the genes of MYB1R1-like and

protein MIZU-KUSSEI 1-like are known to be induced by ABA (Shin et al., 2011; Miyazawa et al., 2012). As shown in Fig. 3, expression of all genes was detected only in the red part of the fruits. Moreover, we found an ABRE motif, an ABA responsive element, at 1.4 kbp upstream, likely in the promoter region of *MdMYB110a* (Table 1). Based on these results, we investigated the degree of upregulation of *MdMYB110a* by ABA treatment. Change of color and RNA expression levels of MdMYB110a and biosynthetic genes responsible for phenolic compounds in the cortex of type 2 red-fleshed apples by ABA treatment After we succeeded in isolating ABA response genes using the differential display method, we focused on ABA as a trigger of pigmentation. As shown in Fig. 4, upregulation of *MdMYB110a* occurred in the flesh of ABA treatment fruits, and anthocyanin accumulation was higher than in the control, suggesting that ABA may induce *MdMYB110a* expression. The elevated expression pattern of *NCED1*, which catalyzes the first step in the ABA biosynthesis pathway, from 90 to 120 DAFB in the flesh of 'Nakano Shinku' and 'Nakano no Kirameki' fruits was in accordance with that of *MdMYB110a* (Fig. 5). ABA is responsible for the ripening and/or pigmentation of both non-climacteric and climacteric fruits, such as tomato and peach (Sun et al., 2012a, b; Zhang et al., 2009a). However, its role in apple is unclear, despite the ABA accumulation in white-fleshed apples that occurs from late maturity to harvesting time (Vendrell & Buesa, 1989; Lara & Vendrell, 2000). In the case of type 2 red-fleshed apples, our experimental data suggest that expression of *MdMYB110a* may be induced by ABA; previous research has found that the expression of *PacMYB10* and *LcMYB*,

	The Southar of Horneardard Science & Diotechnology
28	4 responsible for the pigmentation of cherry flesh and lychee skin, respectively, is
28	5 induced by ABA (Lai et al., 2014; Shen et al., 2014).
28	In the climacteric fruits tomato and banana, ABA has been shown to increase before
28	7 the increase of ethylene, and exogenous application of ABA has been shown to induce
28	8 ethylene through the biosynthesis genes (Jiang et al., 2000; Zhang et al., 2009b).
28	9 However, because no upregulation by ethylene treatment was observed in red-fleshed
29	apples, <i>MdMYB110a</i> upregulation induced by ABA may not occur through the ethylene
29	1 pathway. Instead, jasmonic acid (JA) may be related to anthocyanin accumulation
29	2 through the upregulation of <i>MdMYB110a</i> . Previous research has shown that ABA
29	3 treatment of discs from the pulp of 'Tsugaru' apples at the climacteric stage results in
29	4 increased JA concentration (Kondo et al., 2001). In addition to the ABA motif, the JA
29	5 response motif was also found in the 5' upstream region of <i>MdMYB110a</i> (Table 1), and
29	6 we observed increased and decreased expression levels of <i>MdMYC2</i> and <i>MdJAZ2</i> ,
29	7 respectively, after ABA treatment of the flesh of 'Nakano no Kirameki' (Fig. 6). The
29	8 results seemed to reflect JA accumulation by ABA in type 2 flesh because <i>MdMYC2</i>
29	9 transcripts, which act as a master regulator of JA signaling, have been shown to be
30	0 induced by methyl jasmonate treatment, and MdJAZ2 protein acts as a repressor protein
30	in the JA signaling pathway (Kondo et al., 2001; An et al., 2016). To prove that
30	2 <i>MdMYB110a</i> is upregulated by JA, an experiment with JA treatment is necessary.
30	3
30	4
30	5 ACKNOWLEDGEMENTS
30	6 We are indebted to T. Maejima, K. Naramoto, K. Yoshiie, and Y. Hamada for their
30	7 valuable technical assistance.
	13

60

1		
2 3		
4 5	308	
6 7 8	309	DISCLOSURE STATEMENT
o 9 10	310	No potential conflict of interest is reported by the authors.
11 12	311	
13 14	312	FUNDING
15 16	313	This research was supported by a Grant-in-Aid for Scientific Research from the Japan
17 18	314	Society for the Promotion of Science (No. 16K07594), Grant-in-Aid for Young
19 20	315	Scientists (B) (No. 26850015), research funding from The OGAKI KYORITSU BANK,
21 22 23	316	Ltd. (OKB Agribusiness), and a JSBBA Innovative Research Program Award.
23 24 25	317	
26 27	318	REFERENCES
28	319	REFERENCES
29 30 31	320	An, J.P., Li, H.H., Song, L.Q., Su, L., Liu, X., You, C.X., Wang, X.F. & Hao, Y.J.
32 33	321	(2016). The molecular cloning and functional characterization of MdMYC2, a
34 35	322	bHLH transcription factor in apple. Plant Physiology and Biochemistry, 108, 24–31.
36 37	323	doi:10.1016/j.plaphy.2016.06.032
38 39	324	An, X.H., Tian Y., Chen, K.Q., Liu, X.J., Liu, D.D., Xie, X.B., Chen, C.G., Cong, P.H.
40 41	325	& Hao, Y.J. (2015). MdMYB9 and MdMYB11 are involved in ., the regulation of the
42 43	326	JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant &
44 45 46	327	Cell Physiology, 56, 650-662. doi:10.1093/pcp/pcu205
47 48	328	Ban, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H. & Moriguchi, T. (2007).
49 50	329	Isolation and functional analysis of a MYB transcription factor gene that is a key
51 52	330	regulator for the development of red coloration in apple skin. Plant & Cell
53 54	331	Physiology, 48, 958-970. doi:10.1093/pcp/pcm066
55 56		
57 58		14

3		
4 5	332	Butelli, E., Titta, L., Giorgio, M., Mock, HP., Matros, A., Peterek, S., Schijlen,
6 7 8	333	E.G.W.M., Hall, R.D., Bovy, A.G., Luo, J. & Martin, C. (2008). Enrichment of
9 10	334	tomato fruit with health-promoting anthocyanins by expression of select
11 12	335	transcription factors. Nature Biotechnology, 26, 1301-1308. doi:10.1038/nbt.1506
13 14	336	Chagné, D., Lin-Wang, K., Espley, R.V., Volz, R.K., How, N.M., Rouse, S., Brendolise,
15 16	337	C., Carlisle, C.M., Kumar, S., De Silva, N., Micheletti, D., McGhie, T., Crowhurst,
17 18	338	R.N., Storey, R.D., Velasco, R., Hellens, R.P., Gardiner, S.E. & Allan, A.C. (2013).
19 20	339	An ancient duplication of apple MYB transcription factors is responsible for novel
21 22	340	red fruit-flesh phenotypes. Plant Physiology, 161, 225–239. doi:
23 24 25	341	10.1104/pp.112.206771
25 26 27	342	Chang, S., Puryear, J. & Cairney, J. (1993). A simple and efficient method for isolating
28 29	343	RNA from pine trees. <i>Plant Molecular Biology Reporter</i> , 11, 113–116.
30 31	344	Eberhardt, M.V., Lee, C.Y. & Liu, R.H. (2000). Antioxidant activity of fresh apples.
32 33	345	Nature, 405, 903–904.
34 35	346	Espley, R.V., Brendolise, C., Chagné, D., Kutty-Amma, S., Green, S., Volz, R., Putterill,
36 37	347	J., Schouten, H.J., Gardiner, S.E., Hellens, R.P. & Allan, A.C. (2009). Multiple
38 39		
40 41	348	repeats of a promoter segment causes transcription factor autoregulation in red
42	349	apples. The Plant Cell, 21, 168–183. doi:10.1105/tpc.108.059329
43 44	350	Hamada, Y., Sato, H., Otagaki, S., Okada, K., Abe, K. & Matsumoto, S. (2015).
45 46	351	Breeding depression of red flesh apple progeny containing both functional
47 48	352	MdMYB10 and MYB110a_JP genes. Plant Breeding, 134, 239–246.
49 50	353	doi:10.1111/pbr.12255
51 52 53	354	Honda, C., Iwanami, H., Naramoto, K., Maejima, T., Kanamaru, K., Moriya-Tanaka, Y.,
54 55	355	Hanada, T. & Wada, M. (2016) Thinning and bagging treatments and the growing
56 57		
58		15
59 60		URL: https://mc.manuscriptcentral.com/thsb_E-mail: THSB-peerreview@journals.tandf.co.uk

356	region influence anthocyanin accumulation in red-fleshed apple fruit. The
357	Horticulture Journal, advance publication. doi:10.2503/hortj.OKD-010
358	Jiang, Y., Joyce, D. C. & Macnish, A.J. (2000). Effect of abscisic acid on banana fruit
359	ripening in relation to the role of ethylene. Journal of Plant Growth Regulation, 19,
360	106–111. doi:10.1007/s003440000011
361	Kondo, S., Tsukada, N., Niimi, Y. & Seto, H. (2001). Interactions between jasmonates
362	and absisic acid in apple fruit, and stimulative effect of jasmonetes on anthocyanin
363	accumulation. Journal of the Japanese Society for Horticultural Science, 70,
364	546–552.
365	Kondo, S., Sugaya, S., Sugawa, S., Ninomiya, M., Kittikorn, M., Okawa, K., Ohara, H.,
366	Ueno, K., Todoroki, IY., Mizutani, M. & Hirai, N. (2012). Dehydration tolerance in
367	apple seedlings is affected by an inhibitor of ABA 8-hydroxylase CYP707A.
368	Journal of Plant Physiology, 169, 234-241. doi:10.1016/j.jplph.2011.09.007
369	Lai, B., Li, XJ., Hu, B., Qin, YH., Huang, XM., Wang, HC. & Hu, GB. (2014).
370	LcMYB1 is a key determinant of differential anthocyanin accumulation among
371	genotypes, tissues, developmental phases and ABA and light stimuli in Litchi
372	chinensis. PLoS One, 9, e86293. doi:10.1371/journal.pone.0086293
373	Lara, I. & Vendrell, M. (2000). Changes in abscisic acid levels, ethylene biosynthesis,
374	and protein patterns during fruit maturation of 'Granny Smith' apples. Journal of the
375	American Society for Horticultural Science, 125, 183–189.
376	Li, Y.Y., Mao, K., Zhao, C., Zhao, X.Y., Zhang, H.L., Shu, H.R. & Hao, Y.J. (2012)
377	MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced
378	anthocyanin biosynthesis and red fruit coloration in apple. Plant physiology, 160,
379	1011-1022. doi:10.1104/pp.112.199703

С	
2	
3	
4	
5	
6	
7	
3 4 5 6 7 8 9	
8	
9	
10	
11	
12	
13	
14	
15	
13 14 15 16	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37 38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
60	

380	Lin-Wang, K., Bolitho, K., Grafton, K., Kortstee, A., Karunairetnam, S., McGhie, T.K.,
381	Espley, R.V., Hellens, R.P. & Allan, A.C. (2010). An R2R3 MYB transcription
382	factor associated with regulation of the anthocyanin biosynthetic pathway in
383	Rosaceae. BMC Plant Biology, 10, 50. doi:10.1186/1471-2229-10-50
384	McAtee, P., Karim, S., Schaffer, R. & David, K. (2013). A dynamic interplay between
385	phytohormones is required for fruit development, maturation, and ripening.
386	Frontiers in Plant Science, 4, Article 79 (1-7). doi:10.3389/fpls.2013.00079
387	Miyazawa, Y., Moriwaki, T., Uchida, M., Kobayashi, A., Fujii, N. & Takahashi, H.
388	(2012). Overexpression of MIZU-KUSSEI1 enhances the root hydrotropic response
389	by retaining cell viability under hydrostimulated conditions in Arabidopsis thaliana.
390	Plant & Cell Physiology, 53, 1926–1933. doi:10.1093/pcp/pcs129
391	Mou, W., Li, D., Bu, J., Jiang, Y., Khan, Z.U., Luo, Z., Mao, L. & Ying, T. (2016).
392	Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling
393	during tomato fruit ripening. PLoS One, 11, e0154072.
394	doi:10.1371/journal.pone.0154072
395	Sato, H., Otagaki, S., Saelai, P., Kondo, S., Shiratake, K. & Matsumoto, S. (2017).
396	Varietal differences in phenolic compounds metabolism of type 2 red-fleshed apples.
397	Scientia Horticulturae, 219, 1-9. doi:10.1016/j.scienta.2017.02.041
398	Shen, X., Zhao, K., Liu, L., Zhang, K., Yuan, H., Liao, X., Wang, Q., Guo, X., Li, F. &
399	Li, T. (2014). A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in
400	red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant & Cell
401	Physiology, 55, 862-880. doi:10.1093/pcp/pcu013
402	Shin, D., Moon, SJ., Han, S., Kim, BG., Park, S.R., Lee, SK., Yoon, HJ., Lee,
403	H.E., Kwon, HB., Baek, D., Yi, B.Y. & Byun, MO. (2011). Expression of

1	
2 3	
3 4	
5 6	
7	
8 9	
9 10	
11	
12 13	
14	
15 16	
17	
18 19	
20	
21 22	
23	
22 23 24 25	
26	
27 28	
29	
30	
31 32	
33 34	
35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	
59 60	

eases 34 uzayen, to fruit 114. Li, Q.,
uzayen, to fruit 114. Li, Q.,
to fruit 114. i, Q.,
114. .i, Q.,
li, Q.,
ıcid
ncid
ne and
-3108.
, L.,
, C.,
injury.
sion
7 i

428	and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red
429	flesh, not skin color in apple fruit. Planta, 238, 65-76. doi:
430	10.1007/s00425-013-1875-3
431	Vendrell, M. & Buesa, C. (1989). Relationship between abscisic acid content and
432	ripening of apples. Acta Horticulturae, 258, 389-396.
433	Volz, R.K., Kumar, S., Chagné, D., Espley, R., McGhie, T.K. & Allan, A.C. (2013).
434	Genetic relationships between red flesh and fruit quality traits in apple. Acta
435	Horticulturae, 976, 363–368.
436	Wolfe, K., Wu, W. & Liu, R.H. (2003). Antioxidant activity of apple peels. Journal of
437	Agricultural and Food Chemistry, 51, 609–614.
438	Yang, X., Song, J., Campbell-Palmer, L., Fillmore, S. & Zhang, Z. (2013). Effect of
439	ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and
440	perception during ripening of apple fruit. Postharvest Biology and Technology, 78,
441	55–66. doi:10.1016/j.postharvbio.2012.11.012
442	Zhang, M., Leng, P., Zhang, G. & Li, X. (2009a). Cloning and functional analysis of
443	9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during
444	abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology,
445	166, 1241–1252. doi:10.1016/j.jplph.2009.01.013
446	Zhang, M., Yuan, B. & Leng, P. (2009b). The role of ABA in triggering ethylene
447	biosynthesis and ripening of tomato fruit. Journal of Experimental Botany, 60,
448	1579–1588. doi:10.1093/jxb/erp026
449	

1	
2	
3 ⊿	
3 4 5 6 7 8	
6	
7	
8	
9	
10	
11	
12	
14	
12 13 14 15 16 17	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
26	
20 21 22 23 24 25 26 27 28	
29	
30 31 32 33 34	
31	
32	
33 24	
34	
35 36 37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

45	0 Figure legends
45	1
45	FIG. 1 Expression profiles of <i>MdMYB110a</i> and <i>MdACO1</i> on 'Nakano Shinku' (A, B, C)
45	and 'Nakano no Kirameki' (D, E, F) flesh after ethylene (B, E) and 1-MCP (C, F)
45	4 treatment. Control of no treatment was shown on A and D. DAT, days after
45	5 treatment.
45	6 FIG. 2 A: Fruits of 'Nakano Shinku' used for differential display analysis. B:
45	7 Expression level of <i>MdMYB110a</i> at red and white parts of 'Nakano Shinku'. Error
45	8 bars indicate the standard deviations $(n = 3)$.
45	9 FIG. 3 Expression analyses of <i>MdMYBR1</i> , <i>MdNECD1</i> and <i>MdMYB110a</i> at red and
46	0 white parts of 'Nakano Shinku' flesh. MdActin was used as control.
46	1 FIG. 4 Corelation between antyocyanin accumulation and <i>MdMYB110a</i> expression by
46	ABA treatment. Flesh of 'JPP35' (A) and 'Nakano no Kirameki' (B) were kept 96
46	hours at 17°C with (circle) or without (square) ABA treatment.
46	4 FIG. 5 Expression profile of <i>MdNECD1</i> and <i>MdMYB110a</i> on flesh of 'Nakano Shinku'
46	5 and 'Nakano no Kirameki' at 90, 120, 150 and 180 DAFB.
46	6 FIG. 6 Expression of <i>MdMYC2</i> and <i>MdJAZ2</i> on 'Nakano no Kirameki' after ABA
46	7 treatment. Flesh of 'Nakano no Kirameki' was kept 96 hours at 17°C with (ABA
46	8 treatment) or without (control) ABA treatment.
46	9
47	0

5
5
7
/ 0
8
9
10 11
12
13
14
15 16 17 18
16
17
18
19
19 20
21
22
23
24
25
25
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
47
40 49
49 50
50 51
52

Table 1	Motifs related to ABA and MeJA found in 1.5 kb up-stream region of		
MdMYB110a			

MdMYB110a				
Motif	Position	Strand	Sequence	Function
ABRE	-632	-	CACGTG	abscisic acid-responsive element
CGTCA-motif	-635	+	CGTCA	MeJA-responsive element
CGTCA-motif	-162	+	CGTCA	MeJA-responsive element

254x366mm (72 x 72 DPI)

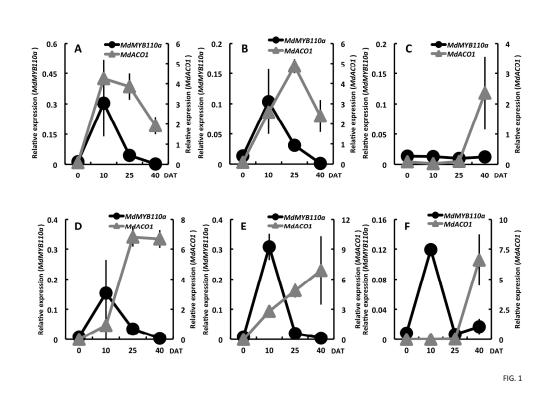


FIG. 1. Expression profiles of *MdMYB110a* and *MdACO1* on 'Nakano Shinku' (A, B, C) and 'Nakano no Kirameki' (D, E, F) flesh after ethylene (B, E) and 1-MCP (C, F) treatment. Control of no treatment was shown on A and D. DAT, days after treatment.

952x714mm (72 x 72 DPI)

А

В

Red

8

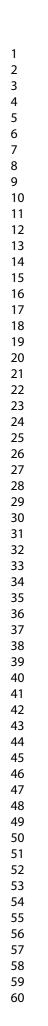
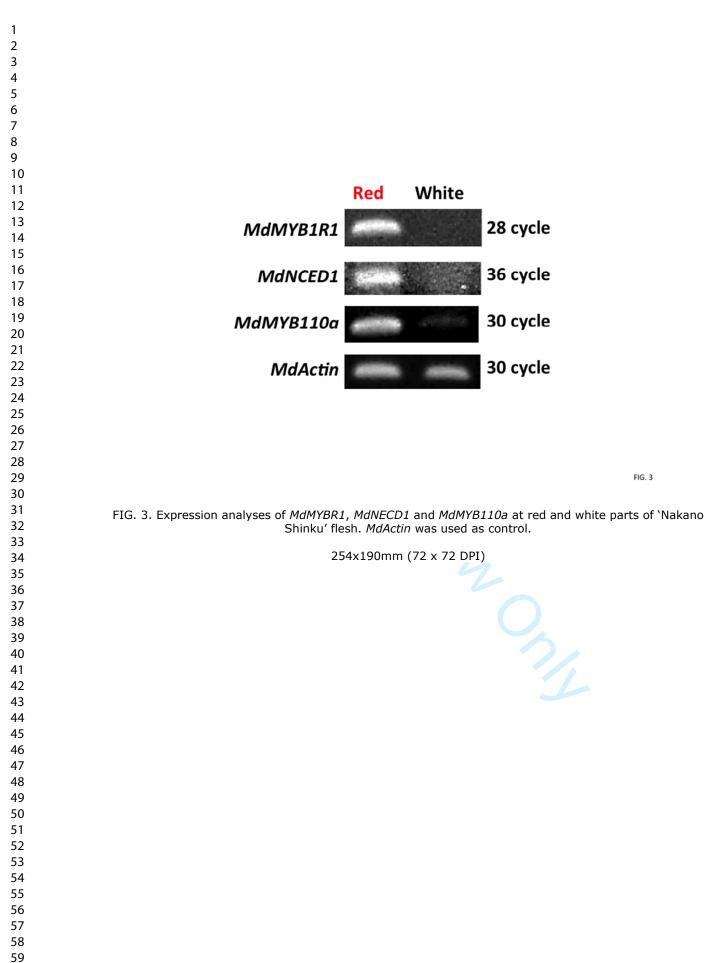
Relative expression (*MdMYB110*a)

White

Red

White

White

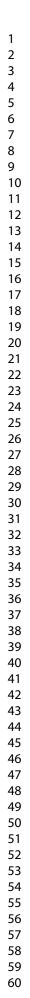

FIG. 2

Fig. 2. Fruits of 'Nakano Shinku' used for differential display analysis. B: Expression level of MdMYB110a at red and white parts of 'Nakano Shinku'. Error bars indicate the standard deviations (n = 3).

Red

150x112mm (300 x 300 DPI)

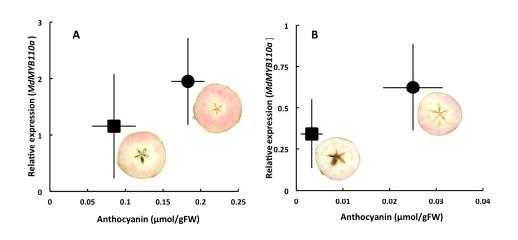
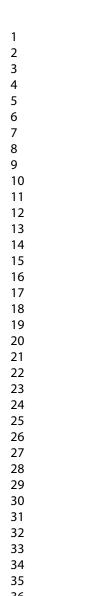



FIG. 4

FIG. 4. Corelation between antyocyanin accumulation and *MdMYB110a* expression by ABA treatment. Flesh of 'JPP35' (A) and 'Nakano no Kirameki' (B) were kept 96 hours at 17°C with (circle) or without (square) ABA treatment.

952x714mm (72 x 72 DPI)

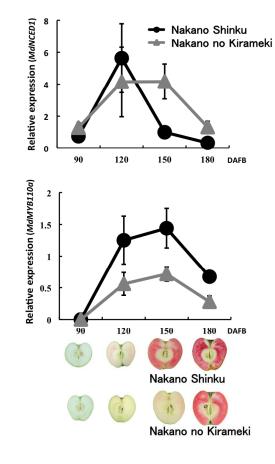
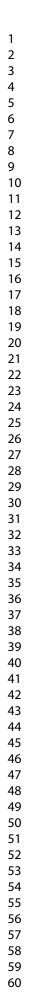



FIG. 5

FIG. 5. Expression profile of *MdNECD1* and *MdMYB110a* on flesh of 'Nakano Shinku' and 'Nakano no Kirameki' at 90, 120, 150 and 180 DAFB.

549x793mm (72 x 72 DPI)

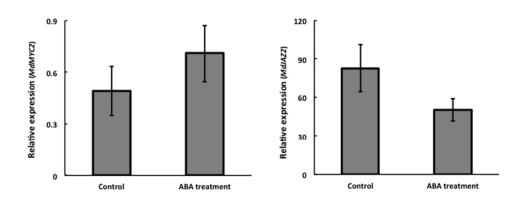


FIG. 6

FIG. 6. Expression of *MdMYC2* and *MdJAZ2* on 'Nakano no Kirameki' after ABA treatment. Flesh of 'Nakano no Kirameki' was kept 96 hours at 17°C with (ABA treatment) or without (control) ABA treatment.

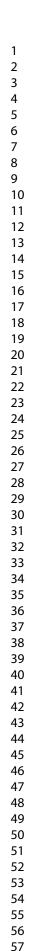
254x190mm (72 x 72 DPI)

URL: https://mc.manuscriptcentral.com/thsb E-mail: THSB-peerreview@journals.tandf.co.uk

Table S1 Primers used in this study

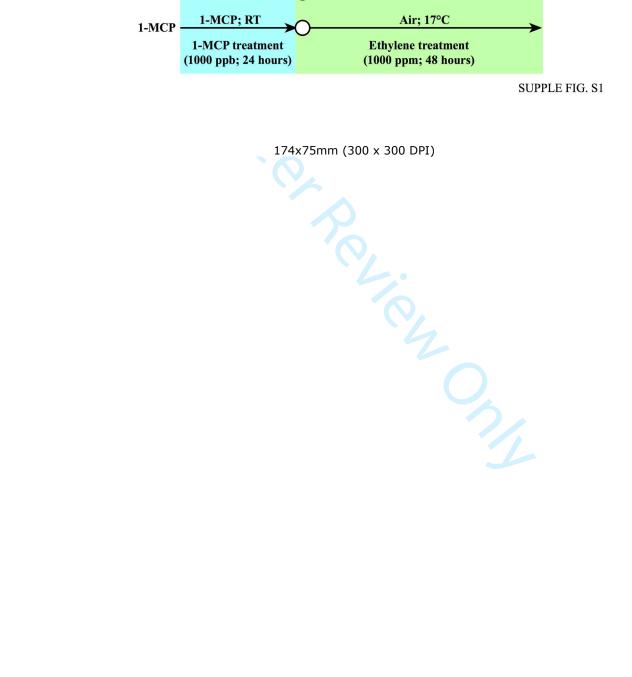
Gene nameAccession No.Forward PrimerReverse PrimerReferenceMdMYB110aAB743999AAGACCTTGTTAGAAAGACGACGATGCCGACTGTTGCATATCATHamada et al., 2013MdACO1DQ137850ATCAATGATGCTTGTGAGAACTGGGTCTTCTTGTAGTGATCCTTGGCYang et al., 2013MdMYB1111XM_008362597AACTCAACGACGGACACATCTCAAGGGAACTGATCCATGCThis articleMdNCED1AB593328GTATCACGTCCAAATCACTGAAACATTTGAGGTATGGCTTCTGAACGKondo et al., 2013MdMYC2NM_001328944TTGGAGGTCGGTTCTTGGCGGGCTTGGGTTCTCGGATAAGAn et al., 2015Md1/422KU179650CGTGGAACAATGTCAAGACCAGCACTAGAGGAGTTAGAACAn et al., 2015MdActinCN938023CCTTCGTCTTCGGCTTGTTCGGAGCATCATCACCAGCAAAThis article	MdMYB110a AB743999 AAGACCTTGTTAGAAAGACGACGA TGCCGACTGTTGCATATCAT Hamada et al., 201 MdACO1 DQ137850 ATCAATGATGCTTGTGAGAACTG GGTCTTCTTGTAGTGATACTAT Hamada et al., 2013 MdACO1 DQ137850 ATCAATGATGCTTGTGAGAACTG GGTCTTCTTGTAGTGATCCTTGG Yang et al., 2013 MdMYB1R1 XM_008362597 AACTCAACGACGGACACATC TCAAGCGACATGCATCATGC This article MdNCED1 AB593328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et al., 2012 MdMYC2 NM_001328944 TTGGAGGTCGTTTTGGC GGGCTTGGGTTCTGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2015	MdMYB110a AB743999 AAGACCTTGTTAGAAGACGACGA TGCCGACTGTTGCATATCAT Hamada et MdACO1 DQ137850 ATCAATGATGCTTGTGAGAACTG GGTCTTCTTGTAGTGATCCTTGG Yang et al., MdMYB1R1 XM_008362597 AACTCAACGACGGACACATC TCAAGGGACACTGGATCATGC This article MdNCED1 AB593328 GTATCACGTCCAAATCACTGAAACA ATTTGAGGTATGGCTTCTGAACG Kondo et a MdMYC2 NM_001328944 TTGGAGGTCGGTTCTTGGC GGGCTTGGGGTTCTGGGATAAG An et al., 2 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGGTTAGAAC An et al., 2
MdACO1 DQ137850 ATCAATGATGCTTGTGAGAAACTG GGTCTTCTTGTAGTGATCCTTGG Yang et al., 2013 MdMYB1R1 XM_008362597 AACTCAACGACGGACACATC TCAAGCGACACTGATCATGC This article MdNCED1 ABS93288 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et al., 2012 MdNYC2 NM_001328944 TGGAGGTCGTTCTGACG GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGCAAAGAC CAGCACTAGAGGAGTTAGAAAC An et al., 2015	MdACO1 DQ137850 ATCAATGATGCTTGTGAGAACTG GGTCTTTGTAGTGATCCTTGG Yang et al., 2013 MdMYB1R1 XM_008362597 AACTCAACGACGGACACATC TCAAGCGACACTGATCATGC This article MdNCED1 AB53328 GTATCACGTCCAAATCACTGAACA ATTTGAGGTATGGCTTCTGAACG Kondo et al., 2012 MdNYC2 NM_001328944 TTGGAGGTCGTTCTTGAC GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2015	Md4CO1 DQ137850 ATCAATGATGCTTGTGAGAACTG GGTCTTCTTGTAGTGATCCTTGG Yang et al., MdMYB1R1 XM_008362597 AACTCAATGATGCTGGTGAGAACTG TCAAGCGACACTGATCATGC This article MdMCED1 AB593328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et a MdMYC2 NM_001328944 TTGGAGGTCGGTTCTGGC GGGCTTGGGTTCTGGAAAGA An et al., 2 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGGTTAGAAAC An et al., 2
MdMYB1R1 XM_008362597 AACTCAACGACGGACACATC TCAAGCGACACTGATCATCG This article MdNCED1 AB593328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et al., 2012 MdMYC2 NM_001328944 TTGGAGGTCGTTCTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGCAAAGAC CAGCACTAGAGGAGTTAGAAAC An et al., 2015	MdMYB1R1 XM_008362597 AACTCAACGACGGACACATC TCAAGCGACACTGATCATGC This article MdNCED1 AB593328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et al., 2012 MdMYC2 NM_001328944 TGGAGGTCGTTCTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACATGTCAAGAC CAGCACTAGAGGAGGTTAGAAC An et al., 2015	MdMYB1R1 XM_008362597 AACTCAACGACGGACACACTC TCAAGCGACACTGATCATGC This article MdMCED1 AB593328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGGAACG Kondo et al MdMYC2 NM_001328944 TTGGAGGTCGGTTCTTGGC GGGCTTGGGTTCTCGGATAAG An et al, 2 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGGTTAGAAC An et al, 2
MdNCED1 ABS93328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et al., 2012 MdMYC2 NM_001328944 TTGGAGGTCGTTCTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGGTTAGAAAC An et al., 2015	MdNCED1 ABS93328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et al., 2012 MdMYC2 NM_001328944 TTGGAGGTCGGTTCTTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2015	MdNCED1 AB593328 GTATCACGTCCAAATCACTGAAAC ATTTGAGGTATGGCTTCTGAACG Kondo et a MdMYC2 NM_001328944 TTGGAGGTCGTTCTTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGGTTAGAAC An et al., 2
MdMYC2 NM_001328944 TTGGAGGTCGGTTCTTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2015	MdMYC2 NM_001328944 TTGGAGGTCGGTTCTTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2016 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2015	MdMYC2 NM_001328944 TTGGAGGTCGGTTCTTGGC GGGCTTGGGTTCTCGGATAAG An et al., 2 MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGGTAGAAC An et al., 2
MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2015	MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2015	MdJAZ2 KU179650 CGTGGAACAATGTCAAGAC CAGCACTAGAGGAGTTAGAAC An et al., 2
MdActin CN938023 CCTTCGTCTTCGGCTTGTTC GGAGCATCATCACCAGCAAA This article	MdActin CN938023 CCTTCGTCTTCGGCTTGTTC GGAGCATCATCACCAGCAAA This article	MdActin CN938023 CCTTCGTCTTCGGCTTGTTC GGAGCATCATCACCAGCAAA This article
		254x366mm (72 x 72 DPI)

0 days after


the treatment

O: Water spray

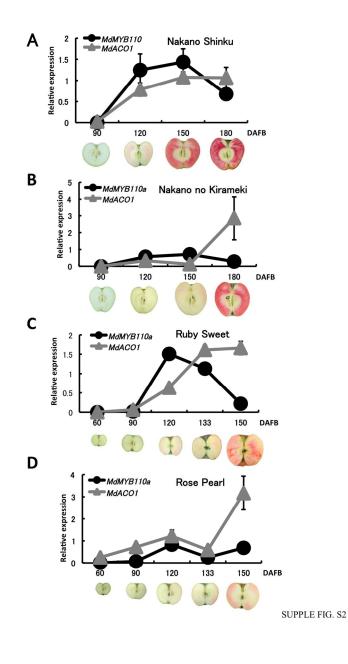
Air; 17°C


Ethylene; 17°C

•: Ethephon spray

58 59

60



Air; RT

Air; RT

Control

Ethylene

549x793mm (72 x 72 DPI)

SUPPLE Figure legends

SUPPLE FIG. S1 Experimental design for the ethylene and 1-MCP treatment.

SUPPLE FIG. S2 Expression profile of *MdMYB110a* and *MdACO1* on flesh of 'Nakano

Shinku' (A), 'Nakano no Kirameki (B), 'Ruby Sweet' (C) and 'Rose Pearl' (D) at

(60), 90, 120, 150 and 180 DAFB.

, 90, 120, 150 and 150 E.