Title:

A femto-molar range suicide germination stimulant for the parasitic plant Striga hermonthica

Authors:
Daisuke Uraguchi ${ }^{1^{*}}$, Keiko Kuwata ${ }^{2}$, Yuh Hijikata ${ }^{2,3}$, Rie Yamaguchi ${ }^{2}$, Hanae Imaizumi ${ }^{2}$, Sathiyanarayanan AM ${ }^{2}$, Christin Rakers ${ }^{3 \dagger}$, Narumi Mori ${ }^{4}$, Kohki Akiyama ${ }^{4}$, Stephan Irle $^{2,3 \ddagger}$, Peter McCourt ${ }^{5}$, Toshinori Kinoshita ${ }^{2,3}$, Takashi Ooi ${ }^{1,2,6^{*}}$, Yuichiro Tsuchiya ${ }^{2 *}$

Affiliations:
${ }^{1}$ Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 4648603, Japan.
${ }^{2}$ Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
${ }^{3}$ Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
${ }^{4}$ Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
${ }^{5}$ Department of Cell \& Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada.
${ }^{6}$ CREST, Japan Science and Technology Agency (JST), Nagoya University, Nagoya 4648601, Japan.
${ }^{\dagger}$ Present address: Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29
Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
${ }^{\ddagger}$ Present address: Computational Sciences and Engineering Division \& Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
*Correspondence to:
Daisuke Uraguchi: uraguchi@chembio.nagoya-u.ac.jp
Takashi Ooi: tooi@chembio.nagoya-u.ac.jp
Yuichiro Tsuchiya: yuichiro@itbm.nagoya-u.ac.jp

Abstract

:

The parasitic plant Striga hermonthica has been causing devastating damages to the crop production in Africa. As Striga requires host-generated strigolactones to germinate, the identification of selective and potent strigolactone agonists could help control these noxious weeds. Herein, we developed a selective agonist, sphynolactone-7, a hybrid molecule originated from chemical screening, containing two functional modules derived from a synthetic scaffold and a core component of strigolactones. Cooperative action of these modules in the activation of a high affinity strigolactone receptor ShHTL7 allows sphynolactone-7 to provoke Striga germination with potency in the femtomolar range. We demonstrate that sphynolactone-7 is effective for reducing Striga parasitism without impinging on host strigolactone-related processes.

One Sentence Summary:

A hypersensitive hybrid molecule agonist for a key strigolactone receptor in the parasitic weed Striga hermonthica.

Main text:

Striga hermonthica (Striga) parasitizes crops widely across various parts of sub-Saharan Africa, causing loss in crop yields that result in economic pressure on millions of smallholder farmers and lead to annual losses of billions of dollars (1). Protecting crops from the numerous tiny Striga seeds buried in the soil requires integration of various approaches to suppress infestation (1). A group of host-generated small molecule hormones, called strigolactones (SLs), provoke germination of Striga seeds. Because Striga is an obligate parasite, germination in the absence of a host is lethal and this has prompted researchers to develop SL agonists as inducers of suicidal germination to purge the soil of viable Striga seeds (2). This approach requires the development of potent and accessible compounds that only act on Striga and do not impede normal crop development. For example, SLs are also plant chemical cues that attract root symbiotic arbuscular mycorrhizal fungi (AM fungi) that supply host plants with nutrients (3, 4). Herein, we report the development of a Striga-selective SL agonist acting in the femtomolar range.

SLs are a group of plant-derived molecules whose structures consist of butenolide rings (Dring), which are connected to cyclic moieties, usually three-ring systems (ABC-ring), through an enol-ether bridge (Fig. 1A). In vascular plants, SLs are plant hormones that optimize plant body architectures through the DWARF14 (D14) family of α / β hydrolasefold receptors (5). D14 defines a non-canonical receptor because it initiates signal transduction by utilizing enzymatic activity. Upon binding, SLs undergo cleavage of the enol-ether bridge through hydrolysis to leave the D-ring as a covalently-linked intermediate
molecule (CLIM) at the catalytic histidine residue in the receptor (6-8). Previous studies suggest that the ABC -portion of the SL is released from the D 14 pocket, and the receptorCLIM complex alters D14 conformation to recruit downstream negative regulators such as the SCF $^{\text {MAX2 }}$ protein (7). In Striga, it is thought that SLs trigger seed germination through 11 members of an independently diverged α / β hydrolase-fold receptors called Striga HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE2 (ShHTL/KAI2 herein called ShHTLs) (9-11). The hydrolytic activity of ShHTLs was exploited in the development of fluorogenic SL probes to uncover an ethylene-mediated amplification of a wave-like pattern of SL perception initiated during Striga germination (10). Moreover, in vitro binding suggests that the divergence of ligand preferences in ShHTLs is beneficial for Striga seeds to detect the blend of SLs exuding from preferred host species (10). Among these ShHTL isoforms, we have focused on ShHTL7, as this receptor is sensitive to picomolar levels of SLs when heterologously expressed in Arabidopsis, and its large binding pocket ensures a response to structurally diverse molecules (11, 12). These characteristics make ShHTL7 a suitable target for the development of agonists for stimulating Striga germination.

Chemical analysis on SLs over the past 40 years suggests that the structure of the D-ring is essential to SL activity (2, 3). By contrast, structural flexibility in the ABC-portion has led to the development of various synthetic SLs or SL-mimics including GR24 or simplified phenol-D-ring derivatives called debranones $(2,13)$. However, the structural element of the ABC-portion that contributes to both potency and specificity to Striga remains elusive. To
further explore the chemical characteristics that define species selectivity towards Striga, we performed a small molecule screen for compounds that germinate Striga seeds (harvests from sorghum fields in Sudan). The screening of 12,000 synthetic molecules was followed by additional synthesis of 60 analogs of hit compounds that were found from the initial screening. Based on median inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ using the fluorogenic SL-mimic Yoshimulactone Green (YLG) resulted in the identification of N -arylsulfonylpiperazine as a molecular scaffold that selectively bound to ShHTL7 (Fig. 1A-B, fig. S1, and table S1). A representative molecule, SAM690, which contains the arylsulfonylpiperazine moiety, exhibited potency towards Striga germination at the $\mu \mathrm{M}$ level. The mode of action of SAM690 was similar to (+)-GR24, in that germination activity was suppressed by inhibition of ethylene production (Fig. 1C). However, unlike (+)-GR24, SAM690 was not hydrolyzed by ShHTL7 (fig. S2) (10). These observations indicate that SAM690 stimulates Striga germination by selective activation of ShHTL7 through a mechanism independent of hydrolysis.

During a series of above assays, we noticed inconsistency in stimulant activities of several SAM690 derivatives depending on the purification method due to active impurity. This byproduct, while only 0.01% of the total product, appeared to be an unusually oxidized molecule that has a hybrid structure resembling SAM690 with a D-ring-like butenolide moiety (Fig. 1A and fig. S3). In order to verify the structure and potency of this derivative, we established a three-step synthetic procedure and the resulting oxygenated SAM690 exhibited potency comparable to that of $(+)$-GR24, as evident from its minimum effective
concentration (MEC) of 10 pM (Fig. 1D). As expected from its structure, oxygenated SAM690 was hydrolyzed by ShHTL7 (fig. S2). The structural similarity of this compound to SLs led us to hypothesize that attaching a methyl group to the C 4 ' position may enhance the potency of the molecules. Indeed, this modification improved MEC from 10 pM to 10 fM (Fig. 1A and 1D). We named the D-ring/sulfonylpiperazine-hybrid molecule sphynolactone-7 (SPL7) and it's demethylated analog H-SPL7 (sulfonylpiperazine hybrid strigolactone mimic of ShHTL7) (stability and toxicology of SPL7 is summarized in fig. S5). The name is derived from the sphinx, a mythical creature with the head of a human and the body of a lion, to represent the hybrid nature of the molecule. The IC_{50} values of SPL7 improved from SAM690 $(0.31 \mu \mathrm{M}$ vs $8.9 \mu \mathrm{M})$ and our LC-MS analysis revealed that SPL7 was hydrolyzed by ShHTL7 to form CLIM at the catalytic histidine residue (Fig. 1E, fig. S2 and S4) (7, 14). The potency of SPL7 is comparable to that of (+)-5-deoxystrigol (5DS), a natural SL that is currently the most potent commercially available germination stimulant for Striga.

Despite their high potencies, the presence of the N -arylsulfonylpiperazine scaffold allows SPL7 to retain selectivity towards ShHTL7, whereas 5DS binds to all the SL receptors with different ranges of IC_{50} values (Fig. 1E) (10). To gain insight into this difference in selectivity, we replaced 16 active site residues of ShHTL7 with those of ShHTL5 (11). Using the YLG binding assay, we identified seven residues essential for the binding with SPL7 (M139, T142, T157, L161, Y174, C194, and M219) (Fig. 2A-B and fig. S6). The combination of these mutations led to a distribution of IC_{50} values of SPL7, which was
correlated with that of $\mathrm{H}-\mathrm{SPL} 7(\mathrm{R}=0.81)$, but not with that of $5 \mathrm{DS}(\mathrm{R}=0.15)($ Fig. 2C $)$. These results indicate that SPL molecules utilize a different subset of residues for binding compared to natural SLs, thereby displaying selectivity. Our computational investigation supports the hypothesis that SPL7 could fit to the active site of the homology model of ShHTL7, while changes in polarity and volume through active site mutations may impair its fit (Fig. 2A and fig. S7). These seven amino acids as a combination are unique in ShHTL7 among known HTL/KAI2 homologs including those from a parasitic plant Orobanche minor, which also utilizes SLs as germination stimulants (fig. S8) (3, 9). Consistently, SPL7 exhibits nM level potency to O. minor, and is effective at fM -range for several S. hermonthica ecotypes that parasitize to different hosts (fig. S8).

As SPL7 and GR24 have identical D-ring structures, the selectivity to ShHTL7 and the fM-range potency must be encoded in the ABC-portion of SPL7 (Fig. 3A). In light of an activation model solely dependent on CLIM formation as proposed in D14, the ABCportion of SPL7 possibly contributes to efficient CLIM formation on the receptor (7, 14). Alternatively, the ABC-portion may have additional functions other than accelerating CLIM formation. We assessed these possibilities through investigation of the relationship between potencies and D-ring hydrolysis using various SPL7 analogs. The potencies of two hydrolysis-resistant analogs, carba-H-SPL7 and 1'-carba-SPL7, were $\geq 100 \mathrm{nM}$, implying that the hydrolysis of D-ring is dispensable for activity, yet essential to gain the fM-level potency (Fig. 1A and fig. S9). Next, to investigate quantitative relationship between potencies and the hydrolysis reaction rate, we performed a kinetic analysis similar
to that involving surface plasmon resonance, which allows estimation of reaction rate constants k_{l} and k_{-1} independently (15). Briefly, we obtained the parameter $k_{l}{ }^{C L I M}$ and $\left(k_{-1}{ }^{C L I M}+k 2\right)$ by fitting an equation formularized from a reaction scheme in Fig. 3B to experimentally obtained time-dependent CLIM formation curves (supplementary methods) (8). We assumed $\left(k_{-1}{ }^{C L I M}+k_{2}\right) \approx k_{-1}^{C L I M}$, as observed stability of CLIM-ShHTL7 complex over 30 minutes theoretically limited k_{2} to $<1 \%$ fraction of $\left(k_{-1} C^{C L I M}+k_{2}\right)$ in our analysis. The kinetic analysis with SPL7 analogs allowed us to observe only vague trend between potency and $k_{l}{ }^{\text {CLIM }}(\mathrm{R}=-0.32)$, indicating that the rate of CLIM formation, while important, was not a sole factor for determining potency (Fig. 3B and fig. S10-S11). This interpretation was supported by the observation with GR24, where the reaction rate of the CLIM formation was higher $\left(k_{1}{ }^{C L I M}=316 \times 10^{-3} / \mu \mathrm{M} / \mathrm{s}\right)$ than SPL7 $\left(k_{1}{ }^{C L I M}=43.5 \mathrm{x}\right.$ $10^{-3} / \mu \mathrm{M} / \mathrm{s}$) despite a potency 1,000 times lower than that of SPL7 (Fig. 1D and Fig. 3B-C). These results are contradictory to the model proposed for D14, and thus indicating that the ABC-portion of SPL7 has additional functions other than accelerating CLIM formation for delivering the difference in potency $(7,14)$. Although difference in the uptake or stability in Striga seeds could account for differences in potency, we obtained no positive results supporting this assumption (fig. S12). Based on these observations, we hypothesized that the function of the ABC-portion after the hydrolysis is essential to deliver fM-level potency (fig. S13). Verification of this model will require detailed studies on the metabolic fate of SPL7 and crystallization of SPL7-ShHTL7 complex.

We next tested the utility of SPL7 as a Striga-selective suicide germination stimulant, using three organism-based bioassays. First, we applied $10 \mu \mathrm{M}$ SPL7 to a SL biosynthetic mutant, more axillary growth4-1 (max4-1), to see whether SPL7 restore the increased branching phenotype (16). SPL7 failed to rescue max4-1 branching defects, while a similar concentration of GR24 did suppress axillary branch emergence (Fig. 4A). SPL7 also failed to induce root hair elongation or induce SL-inducible gene expressions in wild type Arabidopsis (Fig. 4B-C) (17, 18). Thus, SPL7 exhibits no hormonal SL activity in Arabidopsis assays. Second, we evaluated the effect of SPL7 on AM fungi, which are agronomically important microbes that support the growth of crops. While SLs induced multiple 3° hyphal branches as in Medicago root extract, SPL7 exhibited only a mild effect at the highest concentration showing 800 times less activity than (+)-GR24 (Fig. 4D) (19). Lastly, we evaluated the ability of SPL7 to induce suicide germination of Striga in a pot infestation assay (Fig. 4E-F). In the DMSO control, Striga seeds parasitized maize and emerged from the soil at an average of one seedling per host. Soil treatment with SPL7 at a concentration of 100 pM or higher for a week before planting maize reduced the emergence of Striga and protected the host plants from senescence caused by parasitism. In contrast, GR24 requires 10 nM to obtain similar effect. Taken together, we concluded that SPL7 is effective as a Striga-selective suicide germination stimulants at least in laboratory experiments.

The discovery of SPL7 reinforced the design principle of SL-mimics as a hybrid of two functional modules, a modifiable synthetic scaffold responsible for both receptor selectivity
and potency as the ABC-portion and the D-ring component of natural SLs. Implications of the strategy for basic science includes direct dissection of the roles of specific SL receptors in experimentally intractable organisms like Striga. For practical purpose, the strategy appears applicable to other noxious parasitic weeds including Orobanche or Phelipanche species.

References:

1. G. Ejeta, Integrating New Technologies for Striga Control. (World Scientific Publishing, 2007), pp. 3-16.
2. S. C. Wigchert et al., Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen 1. J. Agric. Food Chem. 47, 1705-1710 (1999).
3. X. Xie, K. Yoneyama, Strigolactone story. Annu. Rev. Phytopathol. 48, 93-117 (2010).
4. K. Akiyama, K. Matsuzaki, H. Hayashi, Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827 (2005).
5. T. Arite et al., d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50, 1416-1424 (2009).
6. C. Hamiaux et al., DAD2 is an α / β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032-2036 (2012).
7. R. Yao et al., DWARF14 is a non-canonical hormone receptor for strigolactone.

Nature 536, 469-473 (2016).
8. A. de Saint Germain et al., A histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat. Chem. Biol. 12, 787-794 (2016).
9. C. E. Conn et al., Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540-543 (2015).
10. Y. Tsuchiya et al., Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864-868 (2015).
11. S. Toh et al., Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350, 203-207 (2015).
12. D. Holbrook-Smith, S. Toh, Y. Tsuchiya, P. McCourt, Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat. Chem. Biol. 12, 724729 (2016).
13. K. Fukui, D. Yamaguchi, S. Ito, T. Asami, A taylor-made design of phenoxyfuranone-type strigolactone mimic. Front. Plant Sci. 8, 1-11 (2017).
14. R. Yao et al., ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Res. 27, 838-841 (2017).
15. R. Karlsson, A. Michaelsson, L. Mattsson, Kinetic analysis of monoclonal antibodyantigen interactions with a new biosensor based analytical system. J. Immunol. Meth. 145, 229-240 (1991).
16. K. Sorefan et al., MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469-74 (2003).
17. Y. Kapulnik et al., Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta. 233, 209-216 (2011).
18. D. C. Nelson et al., F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 108, 88978902 (2011).
19. K. Akiyama, S. Ogasawara, S. Ito, H. Hayashi, Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51, 1104-1117 (2010).

References in supplementary materials:

20. I. M. Wallace et al., Compound prioritization methods increase rates of chemical probe discovery in model organisms. Chem. Biol. 18, 1273-1283 (2011).
21. H. Samejima et al., Identification of Striga hermonthica-Resistant Upland Rice Varieties in Sudan and Their Resistance Phenotypes. Front. Plant Sci. 7, 1-12 (2016).
22. H. Samejima et al., Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manag. Sci. 72, 2035-2042 (2016).
23. H. Norén, P. Svensson, B. Anderson, A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiol. Plant 121, 343-348 (2004).
24. A. Bordoli et al., The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201 (2006).
25. M. A. Larkin et al., Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948 (2007).
26. T. A. Halgaren et al., Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 47, 17501759 (2004).
27. W. Sherman et al., Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49, 534-553 (2006).
28. S. Schnell, C. Mendoza, Closed Form Solution for Time-dependent Enzyme Kinetics. J. Theor. Biol. 187, 207-212 (1997).
29. Computer code MAPLE, Waterloo Maple Inc., Waterloo, Ontario, Canada, https://www.maplesoft.com/

Acknowledgments:

We thank A. Babiker, S. Runo, and P. Matana for providing the S. hermonthica seeds, K. Yoneyama for providing O. minor seeds, and S. Hagihara and M. Yoshimura for providing YLG. We thank N. Nakamichi for instructing RT-qPCR analysis and J.X. Yap for supporting biochemistry works. We thank A. Miyazaki for proof reading. Authors contributions: The chemical aspect of the research was managed by D.U. and T.O. Conceptualization of the project and the management of biological aspect of the research was performed by Y.T. Chemical screening was performed by Y.T. under the supervision of P.M. and T.K. Y.T. and H.I. performed Striga germination assays and YLG assays. S.AM. synthesized analog series of initial hits, and R.Y. synthesized SPL7 analogs under
the supervision of D.U. and T.O. Arabidopsis assays, RT-qPCR, and suicide germination assay were performed by H.I. under supervision of Y.T. N.M. performed hyphal branching assay with AM fungi under the supervision of K.A. K.K. performed LC- MS analyses for small molecules and proteins. Mathematical characterization of CLIM formation was performed by Y.H. Homology model and docking simulations were performed by C.R. under supervision of S.I. Y.T. wrote the overall story of the manuscript. The manuscript was edited by D.U., P.M., T.K. and T.O. All the authors discussed for the manuscript. Funding: This work was supported by a Grant in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (15KT0031 and 15K07102 to Y.T. and 15 H 059556 to T.K.), and a grant from the Advanced Low Carbon Technology Research and Development Program from the Japan Science and Technology Agency (T.K.). Support for CR from the Japan Society for the Promotion of Science (JSPS) and the Alexander von Humboldt Foundation (AvH) is gratefully acknowledged. P.M. were funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). ITbM is supported by the World Premier International Research Center Initiative (WPI), Japan. Competing interests: Nagoya U. has filed for patents regarding the following topics: "Regulators for germination in Striga species" Inventors: Tsuchiya, Y., Uraguchi, D., Sathiyanarayanan, AM, Hagihara, S., Yoshimura, M., Kinoshita, T., Ooi, T., and Itami, K. (patent publication no. WO 2017/002898 and JP 2017-014149); "Regulators for germination in parasitic plants". Inventors: Tsuchiya, Y., Uraguchi, D., Ooi, T., Kinoshita, T. and Kuwata, K. (patent application no. PCT/JP2018/36785 and JP 2017-193773). We declare no financial conflicts of interest in relation to this work. Data and materials
availability: All data are available in the manuscript or the supplementary material. The complete sets of raw data underlying all figures in the main text and supplement can be found in the Supplementary Materials.

Supplementary Materials:

Materials and Methods

Table S1

Figures S1-S13

References (20-30)

Figure legends:

Fig. 1. Development of a femtomolar-range germination stimulant for Striga. (A)
Scheme of structure development. MEC represents the lowest concentration of compound that produces any seed germination. (B) SAM690 induces Striga seed germination at 10 $\mu \mathrm{M}$. Bar $=1 \mathrm{~mm}$. (C) $10 \mu \mathrm{M}$ aminoethoxyvinyl glycine (AVG) suppresses (+)-GR24 and SAM690. (D) Striga germination in dilution series of SPL7, H-SPL7, 5DS, and (+)-GR24. (E) Competitive bindings to ShHTLs and AtD14. IC S $_{50}$ value $(\mu \mathrm{M})$ in the YLG assay is presented as a heat map with s.d. ($n=3$ technical replicates). Data for 5DS was obtained from (10). Error bars in (C) and (D) indicate s.d. ($n=3$ biological replicates).

Fig. 2. Active-site residues differentiating selectivity of SPL7 and 5DS. (A) Homology models of ShHTL7 and its septuple mutant with mutated amino acids located in the active sites. Brown circles indicate polar to non-polar mutations. The yellow circle indicates reduction of the pocket volume by T 157 Y . (B) IC_{50} values $(\mu \mathrm{M})$ in the YLG assay with the mutant series of ShHTL7. Sixteen active-site residues were replaced with those corresponding to ShHTL5. Quadruple, hextuple, and septuple mutants are shown with s.d. ($n=3$ technical replicates). (C) Distribution of IC_{50} values $(\mu \mathrm{M})$ in the series of ShHTL7 mutants.

Fig. 3. Mode of action of SPL7. (A) Annotation of structural modules identified from the structure-activity-relationship study. (B) Relationship between reaction rate constants and MEC among SPL7 analogs. Reaction scheme (top) and scatter plot of $k_{1}{ }^{\text {CLIM }}$ or $k_{-1}{ }^{\text {CLIM }}$ against MEC of Striga germination (bottom) are presented. (C) Time-dependent CLIM formation quantified by LC-MS. T_{50} indicates the half-maximal time. Error bar indicates s.d. ($n=3$ technical replicates).

Fig. 4. Bioassays with SPL7. (A) SPL7 does not suppress shoot branching phenotype of Arabidopsis SL biosynthetic mutant, max4-1, at $10 \mu \mathrm{M}$. Arrows indicate axillary branches. Average numbers of axillary branches are indicated with s.e. n indicates number of plants tested. Bar $=5 \mathrm{~cm}$. (B) SPL7 fails to enhance root hair elongation in Arabidopsis wild-type at $10 \mu \mathrm{M}$. Average length of root hair is presented with s.d. ($n=7$ biological replicates). Bar $=100 \mu \mathrm{~m}$. (C) SPL7 fails to induce SL-inducible BRANCHED1 (BRC1) expression in

Arabidopsis wild-type at $10 \mu \mathrm{M}$. Average expression obtained from quantitative RT-PCR analysis is presented as relative value to DMSO control with s.d. ($n=3$, biological replicates). (D) SPL7 shows 800 -fold lower potency for AM fungi than that of (+)-GR24. MEC represents the lowest concentration of compound that induces multiple 3° hyphae. Data for $(+)$-GR24 were obtained from (19). Bar $=1 \mathrm{~mm}$. (E) Suicide germination assay. Representative pictures taken after 2 months (left) or 3 months (right) of co-cultivation of maize with Striga. The soil was pre-treated with DMSO or 10 nM of SPL7. Arrows indicate emerged Striga. Bar $=5 \mathrm{~cm}$. (F) Number of emerged Striga after 2 months of cocultivation. n indicates number of hosts tested. Error bar indicates s.e.

Figure 1

A

synthetic
by-product

sis-resistant analogs

B

E

ShHTL2	$\stackrel{10}{<}$	$\stackrel{10}{<}$	-	8.9
ShHTL3	$\stackrel{10}{<}$	$\stackrel{10}{2}$	$\stackrel{10}{<}$	9.3
ShHTL4	$\stackrel{10}{<}$	$\stackrel{10}{<}$	$\stackrel{10}{<}$	O.30
ShHTL5	$\stackrel{10}{<}$	$\stackrel{10}{<}$	$\stackrel{10}{<}$	3.6
ShHTL6	$\stackrel{\substack{10 \\<}}{ }$	$\stackrel{10}{<}$	$\stackrel{10}{<}$	p. 19
ShHTL7	8.9	0.75	0.31 cose coser	0.122
ShHTL8	$\stackrel{10}{<}$	$\stackrel{10}{<}$	1.2	0.0.6.
ShHTL9	$\stackrel{10}{\substack{<}}$	$\stackrel{\substack{10 \\<}}{ }$	$\stackrel{10}{<}$	(1.22
ShHTL10	$\begin{aligned} & 10 \\ & < \end{aligned}$	$\underset{\substack{10 \\<}}{ }$	$\stackrel{10}{<}$	${ }_{\substack{0.62 \\ \text { and }}}^{\substack{\text { a }}}$
ShHTL11	$\stackrel{10}{<}$	$\stackrel{\substack{10 \\<}}{ }$	$\underset{\substack{7.8 \\-208}}{\substack{2}}$	cos
AtD14	$\stackrel{10}{<}$	$\stackrel{10}{<}$	$\stackrel{10}{<}$	(0.44

Fig. 1. Development of a femtomolar-range germination stimulant for Striga. (A) Scheme of structure development. MEC represents the lowest concentration of compound that produces any seed germination. (B) SAM690 induces Striga seed germination at $10 \mu \mathrm{M}$. $\mathrm{Bar}=1 \mathrm{~mm}$. (C) 10 $\mu \mathrm{M}$ aminoethoxyvinyl glycine (AVG) suppresses (+)-GR24 and SAM690. (D) Striga germination in dilution series of SPL7, H-SPL7, 5DS, and (+)GR24. (E) Competitive bindings to ShHTLs and AtD14. IC_{50} value ($\mu \mathrm{M}$) in the YLG assay is presented as a heat map with s.d. ($n=3$ technical replicates). Data for 5DS was obtained from (10). Error bars in (C) and (D) indicate s.d. ($n=3$ biological replicates).

Figure 2

Fig. 2. Active-site residues differentiating selectivity of SPL7 and 5DS. (A) Homology models of ShHTL7 and its septuple mutant with mutated amino acids located in the active sites. Brown circles indicate polar to non-polar mutations. The yellow circle indicates reduction of the pocket volume by T157Y. (B) IC_{50} values ($\mu \mathrm{M}$) in the YLG assay with the mutant series of ShHTL7. Sixteen activesite residues were replaced with those corresponding to ShHTL5. Quadruple, hextuple, and septuple mutants are shown with s.d. ($n=3$ technical replicates). (C) Distribution of IC_{50} values $(\mu \mathrm{M})$ in the series of ShHTL7 mutants.

Figure 3

Figure 4

A
B

D

C

MEC (ng / disc)	
(+)-GR24	0.1
SAM690	$>8,000$
H-SPL7	$>8,000$
SPL7	80

Fig. 4. Bioassays with SPL7. (A) SPL7 does not suppress shoot branching phenotype of Arabidopsis SL biosynthetic mutant, max4-1, at $10 \mu \mathrm{M}$. Arrows indicate axillary branches. Average numbers of axillary branches are indicated with s.e. n indicates number of plants tested. Bar $=5 \mathrm{~cm}$. (B) SPL7 fails to enhance root hair elongation in Arabidopsis wild-type at $10 \mu \mathrm{M}$. Average length of root hair is presented with s.d. ($n=7$ biological replicates). $\mathrm{Bar}=100 \mu \mathrm{~m}$. (C) SPL7 fails to induce SL-inducible BRANCHED1 (BRC1) expression in Arabidopsis wild-type at $10 \mu \mathrm{M}$. Average expression obtained from quantitative RT-PCR analysis is presented as relative value to

DMSO control with s.d. ($n=3$, biological replicates). (D) SPL7 shows 800 -fold lower potency for AM fungi than that of (+)GR24. MEC represents the lowest concentration of compound that induces multiple 3° hyphae. Data for (+)-GR24 were obtained from (19). Bar $=1 \mathrm{~mm}$. (E) Suicide germination assay. Representative pictures taken after 2 months (left) or 3 months (right) of co-cultivation of maize with Striga. The soil was pretreated with DMSO or 10 nM of SPL7. Arrows indicate emerged Striga. Bar $=5 \mathrm{~cm}$. (F) Number of emerged Striga after 2 months of co-cultivation. n indicates number of hosts tested. Error bar indicates s.e.

Supplementary Materials for

A femto-molar range suicide germination stimulant for the parasitic plant Striga hermonthica

Daisuke Uraguchi, Keiko Kuwata, Yuh Hijikata, Rie Yamaguchi, Hanae Imaizumi, Sathiyanarayanan AM, Christin Rakers, Narumi Mori, Kohki Akiyama, Stephan Irle, Peter McCourt, Toshinori Kinoshita, Takashi Ooi, Yuichiro Tsuchiya

Correspondence to: uraguchi@chembio.nagoya-u.ac.jp, tooi@chembio.nagoya-u.ac.jp, yuichiro@itbm.nagoya-u.ac.jp

This PDF file includes:

Materials and Methods
Figs. S1 to S13
Table S1

Materials and Methods

Germination assay

Germination assays in Striga were described previously (10). Unless specified, we used Striga hermonthica seeds corrected from plants growing on sorghum in the Gadarief State Eastern Sudan. S. hermonthica seeds from Mbutu region in Tanzania (harvested from mixed stands of sorghum, finger millet and maize field) or Alupe region in Kenya (harvested from maize fields) were used for germination assay in fig. S8. All experiments using Striga were conducted under permissions from the plant protection station of the Japanese Ministry of Agriculture. For Orobanche minor germination assay, dry seeds were first washed with small amount of chloroform to remove wax on the seed coat, followed by surface sterilization with 20% commercial bleach for 10 min . After extensive wash with sterilized MilliQ water, the seeds were conditioned at room temperature on moist blotting paper for two weeks in the dark. The procedure after conditioning was identical to that for S. hermonthica except for the incubation at room temperature.

Chemical screening

A total of 12,000 synthetic small molecules from the Yeast Active (20) and Tripos libraries (Tripos Discovery Research) were screened in 96-well plates for germination of Striga. Around 30 seeds/well were treated with library small molecules at concentration of $25 \mu \mathrm{M}$ in $100 \mu \mathrm{~L}$ of MilliQ water with the final concentration of 1% DMSO for 2 days and germination was monitored under a microscope. The screening was performed in duplicate
and small molecules reproducibly stimulated Striga germination were selected as initial hits.

Suicide germination assay

The pot suicide germination assay was developed by modifying methods reported by Samejima et al. $(21,22)$. Plastic pots (130-mm diameter, 113-mm depth, perforated at the bottom) were filled with 0.7 L of dry autoclaved soil composed of equal amounts of vermiculite and compost. Then, 5 mg of S. hermonthica seeds were mixed into the top 5 cm of the soil, watered from bottom, covered with a plastic bag and conditioned at $30^{\circ} \mathrm{C}$ for 11 days. The soil was treated with 350 mL of distilled water containing SPL7 or (+)-GR24 with 0.0001% DMSO, followed by an additional 6-day incubation. Five maize seeds were sown in each pot after it was uncovered. All pots were watered from the bottom at 2-3-days intervals throughout the growing period (about 3 months). The number of Striga plants that emerged per pot was counted after 2 months of co-cultivation under constant light condition at $30^{\circ} \mathrm{C}$ and divided by the number of germinated hosts. S.d. was calculated from replication experiments in 3 pots for DMSO control or 5 pots for small molecule treatments.

Arabidopsis phenotype assays

Our growth room for Arabidopsis was set under a 16 h white light $\left(50 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) / 8 \mathrm{~h}$ dark cycle at $24^{\circ} \mathrm{C}$ under relative humidity of $55-70 \%$. For shoot branching assay in Arabidopsis, wild-type (Col-0) and max4-1 seeds were surface sterilized with 20\%
commercial bleach in 70% ethanol, rinsed with ethanol, and dried on a clean bench. The seeds were incubated on agar media containing $0.5 \times$ Murashige-Skoog (MS) salts for 18 days. The seedlings were transferred to a plastic plate floater and grwon on hydroponic culture containing (+)-GR24 or SPL7 at $10 \mu \mathrm{M}$ concentration (0.1% DMSO) for 3 weeks (23). The container was covered with plastic wrap until the apical shoot reached it. The number of axillary buds (1 cm or longer) was counted 20 days after transferred to hydroponic culture. For root hair assay, seeds of Col-0 were surface-sterilized and germinated on $0.5 \times \mathrm{MS}$ plates containing $10 \mu \mathrm{M}$ GR24, $10 \mu \mathrm{M}$ SPL7 (both initially dissolved in DMSO) or equal amount of DMSO (0.1%) as control. Plates were kept vertically in the dark at $4{ }^{\circ} \mathrm{C}$ for 2 days then incubated in the growth room, tilted by approximately 60 degrees for 13 days. Pictures of roots were taken under a microscope (ZEISS stemi 508) equipped with a WRAYMER WRAYCAM NOA 2000. Root-hair length was measured using ImageJ2 (https://imagej.net/ImageJ2) and presented as average of 5 root hairs per a plant. Average length from 7 plants with s.d. is shown in Fig. 4B.

Hyphal branching assay in AM-fungi

Hyphal branching activity on germinating spores of Gigaspora margarita Becker \& Hall (MAFF 520054) was evaluated as reported previously (4). Test samples were first dissolved in chloroform at concentration of $800 \mu \mathrm{~g} / \mathrm{mL}$ then serially diluted with ethyl acetate. After being loaded with test sample solutions ($10 \mu \mathrm{~L}$), paper discs (6 mm in diameter; ADVANTEC) were dried by placing on a filter paper at room temperature for at least 1 h , and then placed in front of the tips of the secondary hyphae. The hyphal branch
patterns were observed 24 h after treatment. The control was mock-treated with solventdried paper discs. An ethyl acetate-soluble neutral fraction prepared from root exudates of Medicago truncatula was used as a positive control.

YLG assay

YLG is commercially available from Tokyo Chemical Industry (\#E1238). Protein expression and an in vitro competition assay with YLG were performed as described previously (10). Site-specific mutation to ShHTL7 in p15TV-L was introduced by PCR. For the high-throughput assay shown in fig. S1B, a single concentration of $10 \mu \mathrm{M}$ of each analog was tested. IC_{50} values were calculated through fitting of a sigmoid curve in ImageJ2.

RNA extraction and quantitative RT-qPCR

Seeds of Col- 0 were surface-sterilized and germinated on $0.5 \times$ MS plates containing 0.1% DMSO. Six-day seedlings were transferred to $0.5 \times$ MS plates containing $10 \mu \mathrm{M}(+)$-GR24, $10 \mu \mathrm{M}$ SPL7 or 0.1% DMSO. After 24 h , total RNAs were extracted and purified using illustra RNAspin Mini (GE Healthcare). Each RNA sample was prepared from 6 whole seedlings. Reverse transcription from 450 ng of total RNA was carried out using ReverTra Ace (TOYOBO) according to the instruction provided by the manufacture. qPCR was performed using the Power SYBER Green PCR Master Mix and StepOnePlus Real-Time PCR system (Applied Biosystems). For gene-specific amplifications of BRC1 transcripts, the following primer set was used: 5’-CCAGTGATTAACCACCATCG-3' (forward) and

5'-TGCATGAGGTCTCTTGGTTT-3' (reverse) (18). Relative quantification was carried out using comparative cycle threshold method using ISOPENTENYL PYROPHOSPHATE: DIMETHYLALLYL PYROPHOSPHATE ISOMERASE 2 (IPP2) gene transcripts, which are amplified with the primers 5'-GAGACGTCTCATCATGTTTGAGGATG-3' (forward) and 5'-GGAGAAGCAACTCATACTTCGAG-3' (reverse), as an initial control. The relative expression level to the DMSO-treated seedlings is shown in Fig. 4C.

Small molecule analysis by LC-MS

Hydrolysis reaction analysis: $1 \mu \mathrm{M}$ of SPL7 analog was reacted with $1 \mu \mathrm{~g}$ of $6 \times$ Histagged ShHTL7 in reaction buffer (100 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$) at final volume of $100 \mu \mathrm{~L}$ for 30 min , and the reaction mixture was injected to a Dionex Ultimate 3000 HPLC system by an autosampler (Thermo Fisher Scientific). The HPLC system was interfaced with an Exactive Plus Fourier transfer mass spectrometer (Thermo Fisher Scientific) with an electrospray ionization source. The chromatography mobile phases were solvent A (aqueous 0.1% formic acid) and solvent B (acetonitrile). The column was developed at a flow rate of $200 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$ with the following concentration gradient of acetonitrile: from 5\% B to 95% B in 10 min , hold at 95% B for 2 min , from 95% B to 5% B in 0.1 min , and finally, re-equilibrate at 2% B for 7 min . The electrospray ionization source was operated in positive ion mode. Data acquisition and analysis were performed through Xcalibur software (version 2.2). A PLRP-S column ($3 \mu \mathrm{~m}, 2.1 \times 150 \mathrm{~mm}$, Agilent) was used. Quantification of uptake in Striga seeds: Mixture of SPL7 and (+)-GR24 (10 nM each) were incubated with 50 mg of conditioned Striga seeds in 1 mL distilled water for 1
h. After 3 times of washes with distilled water, small molecules were extracted from the seeds with 1 mL of acetone overnight. The acetone extract was split into two aliquots and 2 pmol of the two small molecules were added to one of them as an internal standard.

Quantification was carried out by measuring peak area relative to that corresponding to 2 pmol. The acetone extracts were concentrated in vacuo prior to LC-MS analysis. Stability of SPL7, (+)-GR24, and 5DS under various $\mathbf{p H}$ conditions: The three small molecules were mixed in single HPLC vial at the final concentration of $1 \mu \mathrm{M}(1 \% \mathrm{DMSO})$ in following aqueous buffers at 100 mM ; potassium phosphate (pH 5.5 or 6.5), HEPES (pH 7.0, 7.5 or 8.2) or Tris (pH 9.0). The time course of degradation was monitored by LC-MS analysis using an Inertsil ODS-5 column $(\phi 2.1 \times 100 \mathrm{~mm}, 5 \mu \mathrm{~m}$, COSMOSIL, nakalai tesque), eluted by a linear gradient from 5 to 90% acetonitrile in water containing 0.1% formic acid within 3 min at a flow rate of $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$. Compounds eluted from the column were detected with an ESI positive ion mode. Peak area corresponding to these small molecules were measured and presented as relative value to $t=0$.

Quantification of time-dependent CLIM formation

For quantification of CLIM formation, $0.6 \mu \mathrm{M}$ ShHTL7 protein was reacted with $1 \mu \mathrm{M}$ SPL7 analogs in reaction buffer (100 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$) at $100 \mu \mathrm{~L}$ scale for the indicated reaction time at room temperature. The reaction was stopped by adding trifluoroacetic acid to the final concentration at 1%. The mixture was centrifuged $\left(25^{\circ} \mathrm{C}\right.$, $15,000 \mathrm{rpm}, 5 \mathrm{~min}$), and the supernatant was used for LC-MS analysis. The HPLC condition was modified from the method for the hydrolysis reaction analysis as a flow rate
of $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$ with the following concentration gradient of acetonitrile: from $5 \% \mathrm{~B}$ to 95% B in 5 min . Quantification was carried out by measuring peak area of ShHTL7 and ShHTL7•CLIM $(z=29)$ using ImageJ2, and the relative value of ShHTL7•CLIM against total protein (ShHTL7 + ShHTL7•CLIM) is presented in Fig. 3C and fig. S10-11. The obtained data was used for kinetic analysis.

Mass spectrometric analysis of covalent modification via digestion in solution

ShHTL7 protein was reacted with (+)-GR24 or SPL7 for 30 min as described above. The reaction mixture was diluted with 8 M urea (dissolved in 250 mM ammonium bicarbonate; ABC), reduced with 25 mM TCEP, alkylated with 12.5 mM iodoacetamide and digested by LysC (Wako pure chemical). After the solution was diluted with ABC (in order to reduce the concentration of urea below 2 M), digestion with trypsin (Promega) was carried out at $37^{\circ} \mathrm{C}$ overnight. The reaction was stopped by adding trifluoroacetic acid to a final concentration of 0.4%, and the pH of the solution was adjusted to <2. The solution was desalted through GL-Tip SDB micropipette tips (GL Science), dried, and then re-dissolved in 0.1% trifluoroacetic acid. For LC-MS/MS analysis, peptides were separated using a 115min gradient elution at a flow rate of $0.5 \mu \mathrm{~L} \mathrm{~min}^{-1}$ with a Thermo-Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific), which was directly interfaced with a Q Exactive mass spectrometer (Thermo Fisher Scientific). A capillary C18 reverse phase column (NTCC-360/100-3-125, $125 \times 0.1 \mathrm{~mm}$, Nikkyo Technos) was used as the analytical column. Mobile phase A consisted of 0.5% acetic acid, and mobile phase B consisted of 80% acetonitrile and 0.5% acetic acid, with the following concentration gradient of
acetonitrile: from 5% B to 40% B in $100 \mathrm{~min}, 40 \%$ B to 95% B in 0.1 min , hold at 95% B for 3 min , from 95% B to 5% B in 0.1 min , and finally re-equilibrate with 5% B for 12 min . The Q Exactive mass spectrometer was operated in the data-dependent acquisition mode using Xcalibur 4.0 software, with a single full-scan mass spectrum in the Orbitrap (350$1,800 \mathrm{~m} / \mathrm{z}, 70,000$ resolution) followed by 10 data-dependent MS/MS scans in the Orbitrap at 35% normalized collision energy $(\mathrm{HCD})=27$. MS/MS spectra from each LC-MS/MS run were queried against the ShHTL7 protein database using the Proteome Discoverer (Version 2.2) search algorithm. The search criteria were as follows: full tryptic specificity was required, two missed cleavages were allowed, carbamidomethylation (C) was set as a fixed modification, oxidation (M) and substitution of a proton with $\mathrm{D}-\mathrm{ring}(\Delta \mathrm{MS}=96.0211$ $\left.\mathrm{Da}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right)(\mathrm{H}, \mathrm{K}, \mathrm{S}, \mathrm{T})$ were set as a variable modification, the precursor ion mass tolerance was 10 ppm for all MS acquired in the Orbitrap mass analyzer, and the fragment ion mass tolerance was 0.02 Da for all $\mathrm{MS} / \mathrm{MS}$ spectra acquired in the Orbitrap. A highconfidence score filter (FDR $<1 \%$) was used to select the "hit" peptides, and their corresponding MS/MS spectra were manually inspected.

Molecular modeling

Based on the Protein Data Bank (PDB) entry 5CBK for Striga receptor ShHTL5 (monomeric X-ray structure with $2.46 \AA$ Å resolution), a homology model of ShHTL7 was constructed using the SWISS-MODEL server (11,24). The sequence similarity between the two proteins is 68.89%, and the structural alignment of homology model between ShHTL7 and ShHTL5 had a $0.49 \AA$ root-mean-square deviation. Sequence alignments were
performed through the EBI ClustalW web server (25). The homology model of ShHTL7 was further refined and minimized using the OPLS3 force field as implemented in the SCHRÖDINGER suite (Small-Molecule Drug Discovery Suite 2017-4, Schrödinger) (26). The final model was then evaluated using the UCLA metaserver SAVES (Structural Analysis and Verification Server; https://services.mbi.ucla.edu/SAVES/), obtaining ERRAT and VERIFY3D quality factors of 98.1 and 95.2%, respectively. The obtained QMEAN score (model reliability) from SWISS-MODEL (24) was 0.77 . Based on the final model, mutants of ShHTL7 were constructed and minimized for further computational investigations. In all in silico simulations, histidine 246 was assumed to be in the "HID" state (i.e. hydrogen present on the δ-nitrogen of histidine) to ensure potential hydrogen bonding with serine 95 of the catalytic triad His-Ser-Asp of ShHTLs. The 3D structures of small molecules including 5DS and SPL7 derivatives were built using SMILES, processed through SCHRÖDINGER's ligand preparation protocol and docked via Glide into the receptors (ShHTL5, ShHTL7, and ShHTL7sept-mutant), utilizing induced fit docking protocols with default settings (27, 28).

Kinetic analysis of the hydrolysis reaction

The activation of the SL receptors is a dynamic process with a series of steps involving the ligand hydrolysis reaction. The current receptor-activation model in D14, in which the formation of CLIM triggers the conformational change of the receptor, is proposed based on a crystallographic study of D14/MAX2 complex and LC-MS detection of the existence of CLIM (7, 8, 14). However, these static data do not allow us to distinguish whether the

CLIM formation is the trigger of the receptor activation or is a consequence of the receptor activation. To gain insight into the process from a dynamic point of view, we performed a kinetic analysis of the CLIM formation reactions between ShHTL7 and SPL7 analogs. We anticipated that, by fitting experimentally obtained reaction curves of time-dependent CLIM formation to a reaction kinetic model, we will be able to obtain reaction rate constants for each analog. If there is a rate-limiting step in the activation of ShHTL7, obtained constants corresponding to the step may correlate with the physiological activity of the analogs.

1. Modeling the hydrolysis reaction of strigolactone

We observed that SPL7 analogs gave variable time-dependent reaction curves with unique reaction rates (represented by T_{50}) and steady-state levels (fig. S10-S11). For example, replacement of piperazine in SPL7 to 7-membered ring slowed down T_{50} from 15.1 seconds to 3.3 min without changing the steady state level. By contrast, modification of 4 '-methyl in the D-ring of SPL7 to 4'-butyl reduced the steady state level by one half. To gain deeper insights into the relationship between reaction curves and stimulant activities, we first constructed a reaction scheme of the enzymatic hydrolysis reaction of SL, referring to previously proposed scheme as follows (8).

$$
\begin{aligned}
\mathrm{ShHTL} 7+\mathrm{SL} & \stackrel{k_{a}}{\rightleftarrows}[\mathrm{ShHTL} 7 \cdots \mathrm{SL}] \xrightarrow{k_{-a}}[\mathrm{ShHTL} 7-\mathrm{D}+\mathrm{ABC}] \\
& \xrightarrow{k_{c}}[\mathrm{ShHTL} 7 \cdots \mathrm{D}]+\mathrm{ABC} \xrightarrow{k_{d}} \mathrm{ShHTL} 7+\mathrm{D}+\mathrm{ABC}
\end{aligned}
$$

[ShHTL7 \cdots SL]: complex of ShHTL7 and SL without a covalent bond [ShHTL7-D]: complex of ShHTL7 and D-ring with a covalent bond (CLIM) [ShHTL7 \cdots D]: complex of ShHTL7 and D-ring without covalent bond

Scheme 1. The hydrolysis reaction of SL in ShHTL7. In the SL = SPL7 case, ABC corresponds to the N -sulfonylpiperazine fragment.

The $k_{x}(x=a,-a, b, c, d)$ values indicate kinetic constants for the above reaction steps. Theoretically, it is essential to quantify all the intermediate state molecules in order to obtain all the five constants in Scheme 1. As it is impossible at this moment to estimate all five kinetic constant values from experiment, we simplified Scheme 1 by splitting it into two parts before and after the covalent adduct (CLIM) formation between ShHTL7 and the D-ring. Consequently, Scheme 1 was rewritten as shown in Scheme 2.

ShHTL7 + SL $\underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}}\left[\right.$ ShHTL7-D + ABC] $\xrightarrow{k_{2}}$ ShHTL7 + D + ABC

Scheme 2. Simplified hydrolysis reaction of SL in ShHTL7.

The k_{l}, k_{2}, and k_{-1} in Scheme 2 correspond to $\min \left(k_{a}, k_{b}\right)$ and $\min \left(k_{c}, k_{d}\right)$, and the k_{a} in Scheme 1, respectively. Description of [ShHTL7-D] ${ }_{t}$ by the initial concentration of $[\text { ShHTL7] }]_{0},[\mathrm{SL}]_{0}$, and two parameters, K and k_{1}, under quasi-initial condition $\left([\mathrm{SL}]_{t} \approx\right.$
$[\mathrm{SL}]_{0}$) led an analogous equation to that used in a kinetic analysis of ligand-receptor interactions by surface plasmon resonance (SPR) as below (15),

$$
[S h H T L 7-D]_{t}=\frac{[S h H T L 7]_{0}[S L]_{0}}{K+[S L]_{0}}\left\{1-e^{-\left(K+[S L]_{0}\right) k_{1} t}\right\}, K=\frac{k_{-1}+k_{2}}{k_{1}} \text { (Eq. 1). }
$$

The parameters of k_{l} and K can be obtained by fitting the equation to the experimental time evolution data [ShHTL7-D] ${ }_{t}$, and $\left(k_{-1}+k_{2}\right)$ can be obtained by multiplying K with k_{1}. Under the assumption that the release rate of CLIM from ShHTL7 is slow (approximation of $\left.k_{2}=0\right),\left(k_{-1}+k_{2}\right)$ reduces to k_{-1}. This analysis is different from the Michaelis Menten scheme where the dependency of $[\mathrm{SL}]_{0}$ on the reaction rate is analyzed under the quasisteady state (QSS) approximation.

We could obtain Eq. 1 by another approach with further simplification of Scheme 2. Under the assumption of $k_{2}=0$, Scheme 2 can be simplified as shown in Scheme 3 below.

$$
\mathrm{ShHTL7}+\mathrm{SL} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}}[\text { ShHTL7-D + ABC] }
$$

Scheme 3. Further simplified hydrolysis reaction of SL in ShHTL7.

Scheme 3 (Eq. 1) can be formulated to Eq. 2 below,

$$
\begin{equation*}
[S h H T L 7-D]_{t}=\frac{[S h H T L 7]_{0}[S L]_{0}}{\frac{k_{-1}}{k_{1}}+[S L]_{0}}\left\{1-e^{-\left(\frac{k_{-1}}{k_{1}}+[S L]_{0}\right) k_{1} t}\right\} \tag{Eq.2}
\end{equation*}
$$

Eq. 2 is identical to Eq. 1 with k_{2} substituted with 0 , thus revealing that Eq. 1 is compatible with Scheme 3.

Based on Eq. 1, variations in T_{50} values and steady-state levels can be expressed with the difference in k_{1} and k_{-I} under the approximation of $k_{2}=0$ as shown in Scheme 4.

Scheme 4. Relationship between kinetic constants and reaction curve

D-ring analogs	SPL7	Et-SPL7	H-SPL7	"Bu-SPL7	'Bu-SPL7	$\begin{gathered} \text { 3'Me-H- } \\ \text { SPL7 } \end{gathered}$	$\begin{aligned} & \text { 3'Me- } \\ & \text { SPL } \end{aligned}$	Bn-SPL7	sat-H- SPL SPL7	
$\frac{k_{2}}{\left(k_{-1}+k_{2}\right)} \times 10^{5}$	11.7	3.1	6.5	5.3	5.5	962.7	n.d	n.d	n.d	
ABC-portion analogs	Im-SPL7	${ }^{\text {Diazepine }}$	Bz-SPL7	$\begin{gathered} { }^{c} \mathrm{HexSO}_{2-} \\ \text { SPLL }^{-} \end{gathered}$	$\begin{gathered} { }^{\mathbf{i} \mathrm{PrSO}_{2-}-} \\ \mathrm{SPPL}^{-} \end{gathered}$	Ms-SPL7	$\begin{aligned} & \text { pPent- } \\ & \text { SPL7 } \end{aligned}$	$\begin{aligned} & \text { pMeO- } \\ & \text { SPLL } \end{aligned}$	pPento- SPL7	GR24
$\frac{k_{2}}{\left(k_{-1}+k_{2}\right)} \times 10^{5}$	8.2	256.7	770.2	137.5	385.1	n.d	1.3	12.8	6.8	0.8

All the obtained relative values of k_{2} were $<1 \%$ of total fraction even in the hypothetical conditions. We therefore concluded that our approximation of $k_{2}=0$ is reasonable, as experimentally obtained k_{2} value should occupy smaller than 1% fraction of $\left(k_{-1}+k_{2}\right)$.

2. Derivation of fitting equation

Based on the Scheme 2, we can obtain nonlinear differential equations (the reaction rate equations) as follows:

$$
\begin{aligned}
& \frac{d[S h H T L 7]_{t}}{d t}=-k_{1}[\text { ShHTL } 7]_{t}[S L]_{t}+k_{-1}[\text { ShHTL } 7-D]_{t}+k_{2}[\text { ShHTL } 7-D]_{t} \\
& \frac{d[S h H T L 7-D]_{t}}{d t}=k_{1}[\text { ShHTL } 7]_{t}[S L]_{t}-k_{-1}[\text { ShHTL } 7-D]_{t}-k_{2}[S h H T L 7-D]_{t} \\
& \frac{d[P]_{t}}{d t}=k_{2}[\text { ShHTL7 }-D]_{t} \\
& \frac{d[S L]_{t}}{d t}=-k_{1}[\text { ShHTL } 7]_{t}[S L]_{t}+k_{-1}[\text { ShHTL } 7-D]_{t}
\end{aligned}
$$

where $[X]_{t}(\mathrm{X}=$ ShHTL7, SL, ShHTL7-D, P , and SL $)$ denotes the concentration of X at time t, and P is either D or ABC . According to the conservation low, we obtain the following equations:

$$
\begin{aligned}
& {[\text { ShHTL7 }]_{0}=[\text { ShHTL } 7]_{t}+[\text { ShHTL7 }-D]_{t}} \\
& {[S L]_{0}=[S L]_{t}+[\text { ShHTL7 }-D]_{t}+[P]_{t}}
\end{aligned}
$$

$[\text { ShHTL7-D }]_{0}$ under the quasi-initial condition $\left([S L]_{t} \approx[\mathrm{SL}]_{0}\right)$ can be described as follows (29):

$$
[S h H T L 7-D]_{t}=\frac{[S h H T L 7]_{0}[S L]_{0}}{K+[S L]_{0}}\left\{1-e^{-\left(K+[S L]_{0}\right) k_{1} t}\right\}, K=\frac{k_{-1}+k_{2}}{k_{1}} \quad \text { (Eq. 1). }
$$

We employed these equations to analyze measured $[\text { ShHTL7-D] }]_{t}$ data. K and k_{l} are fitting parameters, and fitting of the equation to the measured [ShHTL7-D] $]_{t}$ analysis was performed using Fit function in statistics package in Maple 18 (30). After obtaining K and k_{1} through fitting, we estimated k_{-1} under the assumption that $k_{2}=0$, which was rationalized in the modeling section.

3. Limitations

Despite the similarity to the kinetic analysis involving SPR, our analysis employed specific conditions and simplifications to analyze the unique reaction between SLs and ShHTL7.

We assume that our analysis involves the following general or specific limitations.
I. Quantification of CLIM formation in the time-dependent manner is essential. As with SPR, our analysis applies to experimental procedures where direct measurement of ligand-receptor complex (equivalent to a substrate-enzyme complex [ES] in Michaelis Menten kinetics) are possible. Those with products [P] as outputs are not applicable to this analysis.
II. The analysis is not applicable to distinguish reaction processes.

Although the obtained k_{l} value represents the smaller value between rate of ligandreceptor binding or hydrolysis reaction rate, distinguishing these two processes is out of the scope of the analysis due to the simplification in Scheme 2.
III. CLIM-receptor complex must be stable.

The analysis estimates reaction rate constants under an ideal condition where release of CLIM from ShHTL7 does not occur $\left(k_{2}=0\right)$. Precautions should be taken to interpret obtained k_{-1} value with careful consideration of the reasonability of k_{2}. Notably, in the case when it takes long time to reach the steady-state (when k_{l} is small), the significance of k_{2} could be nonnegligible even when the release of CLIM is slow.
IV. Precise knoledge of reaction time is critical.

Since Eq. 1 includes the variable t as a reciprocal of the exponent, experimental errors in reaction time are exponentially amplified. Thus, prescision in the values for the reaction time relative to the experimental time scale is critical to obtain reliable results. For example, in a reaction where a ligand quickly reacts with ShHTL7 and reaches to steady levels (when k_{1} is large), small timing errors in measurements amplify errors in the fitting parameter k_{l} and consequently K.

Chemical synthesis

General Information: Infrared spectra were recorded on a Shimadzu IRAffinity-1 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JNM-ECZ400S (400 MHz, JEOL) or JNM-ECA600II (600 MHz , JEOL) spectrometer. Chemical shifts are reported in ppm, using tetramethylsilane $(0.0 \mathrm{ppm})$ resonance $\left(\mathrm{CDCl}_{3}\right)$ or solvent resonance (acetone- d_{6};
2.05 ppm) as the internal standard. Data are reported as follows: chemical shift, integration, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad})$ and coupling constant (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JNM-ECS500 (121 MHz, JEOL) or JNM-ECA600II (151 MHz , JEOL) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm, using solvent resonance as the internal standard (acetone- $d_{6} ; 29.84 \mathrm{ppm}, \mathrm{CDCl}_{3} ; 77.16 \mathrm{ppm}$). High-resolution mass spectra were obtained using Exactive (Thermo Fisher Scientific) for electrospray ionization (ESI). Analytical thin layer chromatography (TLC) was performed on precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$, Merck). Flash column chromatography was conducted on silica gel 60 (spherical, $40-50 \mu \mathrm{~m}$; Kanto Chemical), silica gel 60 N (spherical, $40-50 \mu \mathrm{~m}$; Kanto Chemical), and PSQ60AB (spherical, av. $55 \mu \mathrm{~m}$; Fuji Silysia Chemical). Recycling preparative HPLC was performed using HPLC LC-forte/R (YMC) equipped with a silica gel column [$\phi 20 \mathrm{~mm} \times 250 \mathrm{~mm}$, YMC-Pack SIL SL12S05-2520WT]. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and tetrahydrofuran (THF) were supplied from Kanto Chemical in "dehydrated" form and further purified by passage through neutral alumina under a nitrogen atmosphere. Other simple chemicals were purchased and used without purification.

Procedure for the preparation of SAM690:

A mixture of piperazine $(516.8 \mathrm{mg}, 6.0 \mathrm{mmol})$ and ethyl furan-2-carboxylate (280.3 $\mathrm{mg}, 2.0 \mathrm{mmol}$) was melted at $110^{\circ} \mathrm{C}$ under argon atmosphere and stirred for 3 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with 0.5 M hydrochloric acid. The aqueous layer was adjusted to pH 10 using an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with CHCl_{3} three times. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$ as eluent) to furnish the requisite furan-2-yl(piperazin-1-yl)methanone in 53% yield ($191.0 \mathrm{mg}, 1.06 \mathrm{mmol}$) as a syrupy liquid. Furan-2-yl(piperazin-1-
yl)methanone: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(1 \mathrm{H}$, brs $), 6.98(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 6.48$ $(1 \mathrm{H}, \mathrm{dd}, J=3.6,1.5 \mathrm{~Hz}), 3.78(4 \mathrm{H}, \mathrm{br}), 2.93(4 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), \mathrm{N}-\mathrm{H}$ proton was not found probably due to broadening; ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,148.1,143.7,116.4$, $111.4,46.5$, one carbon atom was not found probably due to broadening; IR (film) 3453, $3298,3109,2913,2850,1609,1568,1483,1429,1275,1184,1141,1120,1013,945 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$203.0791, Found 203.0790.

A solution of furan-2-yl(piperazin-1-yl)methanone (191.0 mg, 1.06 mmol$), 4-$ butoxybenzenesulfonyl chloride ($289.8 \mathrm{mg}, 1.17 \mathrm{mmol}$), and triethylamine ($0.22 \mathrm{~mL}, 1.59$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C} \sim$ ambient temperature overnight and the reaction was then quenched by adding a saturated aqueous solution of NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phases were washed with a saturated aqueous solution of NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, removal of volatiles under reduced pressure followed by purification of the residue on a silica gel column (hexane/ethyl acetate as eluent) furnished SAM690 in 80\% yield (332.8
$\mathrm{mg}, 0.85 \mathrm{mmol})$. SAM690: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.45$ $(1 \mathrm{H}, \mathrm{brs}), 7.00(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{s}), 6.47(1 \mathrm{H}, \mathrm{dd}, J=$ $3.2,2.0 \mathrm{~Hz}), 4.02(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.90(4 \mathrm{H}, \mathrm{br}), 3.05(4 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 1.80(2 \mathrm{H}$, quintet, $J=6.7 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, $J=6.7 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(121$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1,159.0,147.6,144.1,130.0,126.4,117.4,115.0,111.7,68.3,46.3$, $31.2,19.3,13.9$, one carbon atom was not found probably due to overlapping; IR (film) $2958,2932,2871,1623,1594,1486,1430,1346,1263,1160,1110,1010,942 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$415.1298, Found 415.1294.

Procedure for the preparation of SAM-M10:

To a solution of 2-morpholinemethanol ($315.9 \mathrm{mg}, 2.7 \mathrm{mmol}$) and triethylamine ($0.45 \mathrm{~mL}, 3.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 2-furoyl chloride $(0.27 \mathrm{~mL}, 2.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C} \sim$ ambient temperature overnight and quenched by adding a saturated aqueous solution of NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phases were washed with a saturated aqueous solution of NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, evaporation of the solvent followed by purification of the residue on a silica gel column (hexane/ethyl acetate as eluent) furnished furan-2-yl(2-(hydroxymethyl)morpholino)methanone in 60% yield ($341.8 \mathrm{mg}, 1.62 \mathrm{mmol}$) as a colorless oil. Furan-2-yl(2-
(hydroxymethyl)morpholino)methanone: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(1 \mathrm{H}, \mathrm{dd}, J$ $=1.8,0.9 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{dd}, J=3.5,0.9 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}), 4.43(2 \mathrm{H}, \mathrm{brd}$, $J=12.8 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{dd}, J=11.6,2.4 \mathrm{~Hz}), 3.78-3.59(4 \mathrm{H}, \mathrm{m}), 3.20(2 \mathrm{H}, \mathrm{br}), 1.99(1 \mathrm{H}$, m); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,147.8,144.0,117.1,111.6,76.1,66.8,63.6$, 46.7, 44.5; IR (film) 3406, 2923, 2860, 1611, 1485, 1433, 1279, 1184, 1115, 1070, 1037, $886 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{NNaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$234.0737, Found 234.0737. To a stirred solution of furan-2-yl(2-(hydroxymethyl)morpholino)methanone (19.0 $\mathrm{mg}, 0.09 \mathrm{mmol})$, triphenylphosphine ($28.8 \mathrm{mg}, 0.11 \mathrm{mmol}$), and 2-tert-butylphenol (16.8 $\mu \mathrm{L}, 0.11 \mathrm{mmol})$ in THF (3 mL) was added di-tert-butyl azodicarboxylate (DTAD, 25.3 mg , $0.11 \mathrm{mmol})$ in THF $(0.1 \mathrm{~mL})$ dropwise and the resulting mixture was stirred at ambient temperature for 48 h . The reaction mixture was quenched by adding water and extracted with ethyl acetate. The organic layer was then washed with a saturated aqueous solution of NaCl , dried and concentrated in vacuo. The residue obtained was purified by silica gel column chromatography (hexane/ethyl acetate as eluent) to furnish SAM-M10 in 16\% yield $(4.95 \mathrm{mg}, 0.014 \mathrm{mmol})$ as a viscous liquid. SAM-M10: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47$ $(1 \mathrm{H}, \mathrm{brs}), 7.29(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{td}, J=8.4,1.5 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}, J=3.6$ $\mathrm{Hz}), 6.92(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{dd}, J=3.6,1.2 \mathrm{~Hz}), 4.75$ $(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \operatorname{brd}, J=12.6 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{dd}, J=9.3,4.5 \mathrm{~Hz}), 4.08-3.99$ $(2 \mathrm{H}, \mathrm{m}), 3.99-3.94(1 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{td}, J=11.4,1.8 \mathrm{~Hz}), 3.25(2 \mathrm{H}, \mathrm{br}), 1.38(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,157.2,147.8,144.0,138.2,127.2,126.9,121.0,117.2$, 112.0, 111.5, 74.3, 68.4, 66.9, 50.0, 42.9, 34.9, 30.0; IR (film) 2954, 2915, 2863, 1623,

1489, 1429, 1269, 1231, 1181, 1122, 1055, 1032, $941 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{NNa}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$366.1676, Found 366.1675

Representative procedure for the preparation of SPL7:

To a solution of piperazine $(0.19 \mathrm{~g}, 2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.4 \mathrm{~mL})$ were added 4butoxybenzenesulfonyl chloride $(0.13 \mathrm{~g}, 0.54 \mathrm{mmol})$ and triethylamine $(0.11 \mathrm{~mL}, 0.81$ mmol) at ambient temperature. The reaction mixture was stirred for 18 h and quenched by addition of a saturated aqueous solution of NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$ as eluent) to afford 4-butoxyphenyl(piperazin-1-yl)sulfone in 93% yield ($0.15 \mathrm{~g}, 0.5 \mathrm{mmol}$) as a white solid. 4-Butoxyphenyl(piperazin-1-yl)sulfone: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.67(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 4.02(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.96(4 \mathrm{H}, \mathrm{t}, J=$ $4.8 \mathrm{~Hz}), 2.92(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 1.80(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 1.57-1.45(4 \mathrm{H}, \mathrm{m}), 0.99$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), \mathrm{N}-\mathrm{H}$ proton was not found probably due to broadening; ${ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,130.0,126.9,114.7,68.3,47.1,45.5,31.2,19.3$, one carbon atom was not found probably due to broadening; IR (film) 2952, 2930, 2872, 1593, 1576, 1497,

1468, 1339, 1256, 1153, 1095, 942, $876 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{NaS}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 321.1243$, Found 321.1243.

4-Butoxyphenyl(piperazin-1-yl)sulfone ($0.15 \mathrm{~g}, 0.50 \mathrm{mmol}$) and triethylamine (0.2 $\mathrm{mL}, 1.50 \mathrm{mmol})$ were introduced to a solution of triphosgene $(0.15 \mathrm{~g}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere and the solution was stirred for 2 h . A solution of 5-hydroxyfuran-2(5 H)-one ($0.17 \mathrm{~g}, 1.5 \mathrm{mmol}$), triethylamine ($0.2 \mathrm{~mL}, 1.50$ mmol), and N, N-dimethyl-4-aminopyridine (DMAP, $6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.0 mL) was added to the resulting mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to gradually warm up to ambient temperature during 18 h of stirring. The reaction was quenched upon addition of a saturated aqueous solution of NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford the crude residue. Purification of the residue was performed by silica gel column chromatography (hexane/ethyl acetate as eluent) to furnish 0.19 g of SPL7 in 87% yield ($190.7 \mathrm{mg}, 0.44 \mathrm{mmol}$) as a white solid. SPL7: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(2 \mathrm{H}, \mathrm{dt}, J=9.0,1.8 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{dt}, J=9.0,1.8 \mathrm{~Hz}), 6.85-6.83(1 \mathrm{H}$, m), 6.83-6.82 $(1 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{br}), 3.12(1 \mathrm{H}, \mathrm{br})$, $2.84(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 1.97(3 \mathrm{H}, \mathrm{s}), 1.80(2 \mathrm{H}, \mathrm{td}, J=7.2,6.0$ $\mathrm{Hz}), 1.51(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.1, 163.2, 152.4, 142.1, 134.7, 130.0, 126.4, 115.0, 93.9, 68.4, 45.8, 43.7, 43.4, 31.2, 19.3, 14.0, 10.8, one carbon atom was not found due to overlapping; IR (film) 2940, 2872,

1776, 1717, 1593, 1435, 1346, 1242, 1159, 1092, 1015, 955, $930 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$461.1353, Found 461.1356.

H-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, $6.99(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{m}), 6.28(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.03(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $3.76(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{t}, J$ $=9.0 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{br}), 3.12(1 \mathrm{H}, \mathrm{br}), 2.85(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz})$, $1.80(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.6,163.2,152.2,149.7,130.0,126.4,125.5,115.0,95.4$, $68.4,45.8,43.7,43.5,31.2,19.3,13.9$, one carbon atom was not found due to overlapping; IR (film) 2961, 2934, 2872, 1792, 1719, 1595, 1435, 1348, 1242, 1161, $1092 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$447.1196, Found 447.1193.

carba-H-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, J=$ $6.0 \mathrm{~Hz}), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 5.42(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.03$ $(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.81-3.78(1 \mathrm{H}, \mathrm{m}), 3.64-3.59(1 \mathrm{H}, \mathrm{m}), 3.56-3.46(2 \mathrm{H}, \mathrm{m}), 3.11-3.03$ $(2 \mathrm{H}, \mathrm{m}), 2.98-2.90(3 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{dd}, J=16.2,8.4 \mathrm{~Hz}), 1.80(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz})$, $1.51(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.5,166.7,163.2,156.8,130.0,126.4,121.8,115.0,79.9,68.4,46.1,45.9,45.2,41.1$,
36.9, 31.2, 19.3, 13.9; IR (film) 2959, 2929, 2873, 1786, 1757, 1647, 1595, 1498, 1465, 1448, 1346, 1260, 1160, $1096 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 445.1404, Found 445.1396.

1'-carba-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{br}), 6.99$ $(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{br}), 4.02(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.70-3.45(4 \mathrm{H}, \mathrm{m}), 3.10-2.84$ $(4 \mathrm{H}, \mathrm{br}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=19.2,6.0 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{dd}, J=19.2,1.8 \mathrm{~Hz}), 1.81(3 \mathrm{H}, \mathrm{s}), 1.80$ $(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 205.2,163.1,154.3,153.0,145.7,130.0,126.6,114.9,71.7,68.4$, $45.9,43.5,43.2,41.6,31.2,19.3,13.9,10.2$, one carbon atom was not found probably due to overlapping; IR (film) 2958, 2932, 2872, 1696, 1594, 1498, 1458, 1430, 1347, 1241, 1158, 1125, 1088, 986, $924 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 459.1560, Found 459.1548.

Et-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $6.85-6.83(1 \mathrm{H}, \mathrm{m}), 6.81-6.80(1 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz})$, $3.67(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{t}, J=$ 6.6 Hz), $3.13(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 2.34(2 \mathrm{H}$,
q, $J=7.4 \mathrm{~Hz}), 1.80(2 \mathrm{H}$, quintet, $J=6.6 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, $J=6.6 \mathrm{~Hz}), 1.18(3 \mathrm{H}, \mathrm{t}, J=$ $7.4 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,163.2,152.4$, 140.7, 140.6, 130.0, 126.4, 115.0, 94.1, 68.4, 45.8, 43.7, 43.4, 31.2, 19.3, 18.9, 13.9, 11.5, one carbon atom was not found due to overlapping; IR (film) 2961, 2936, 2874, 1778, 1721, 1595, 1464, 1435, 1350, 1242, 1161, 1125, 1092, 1020, $947 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 475.1509$, Found 475.1505 .

${ }^{n}$ Bu-SPL7: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}), 6.83(1 \mathrm{H}, \mathrm{br}), 6.80(1 \mathrm{H}, \mathrm{br}), 4.03(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.66$ $(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{t}, J=9.9 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{t}, J=9.9 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{brs}), 3.12$ ($1 \mathrm{H}, \mathrm{brs}$), $2.84(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 2.31(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 1.80$ (2 H , quintet, $J=7.2 \mathrm{~Hz}$), 1.55 (2 H , quintet, $J=7.2 \mathrm{~Hz}$), $1.51(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}$), 1.37 (2 H , sextet, $J=7.2 \mathrm{~Hz}$), 0.99 ($3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$), $0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,163.2,152.4,141.1,139.3,129.9,126.4,115.0,94.0,68.4,45.8$, $43.6,43.4,31.2,29.3,25.0,22.4,19.3,13.9,13.8$, one carbon atom was not found due to overlapping; IR (film) 2957, 2932, 2872, 1776, 1717, 1593, 1497, 1433, 1348, 1240, 1159, 1092, 1015, $955 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$503.1822, Found 503.1802.

${ }^{i}$ Bu-SPL7: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, J=9.0$ $\mathrm{Hz}), 6.85(1 \mathrm{H}, \mathrm{s}), 6.83-6.81(1 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz})$, $3.66(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{t}, J=9.9 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{t}, J=9.9 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{br})$, $3.13(1 \mathrm{H}, \mathrm{br}), 2.84(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.2$ $\mathrm{Hz}), 2.19(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}), 1.93(1 \mathrm{H}$, nonet, $J=7.2 \mathrm{~Hz}), 1.80(2 \mathrm{H}$, quintet, $J=7.2$ $\mathrm{Hz}), 1.51(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.94(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,163.2,152.4,142.2,137.9,130.0,126.4,115.0,93.9$, $68.4,45.8,43.7,43.4,34.2,31.2,26.9,22.4,19.3,13.9$, two carbon atoms were not found due to overlapping; IR (film) 2957, 2932, 2872, 1776, 1717, 1593, 1497, 1433, 1348, 1240, 1159, 1092, 1013, $964 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 503.1822, Found 503.1816.

3'Me-H-SPL7: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.00(2 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{brs}), 5.93(1 \mathrm{H}, \mathrm{brs}), 4.03(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz})$, $3.70(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 3.50-3.39(2 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{brs}), 3.18(1 \mathrm{H}, \mathrm{brs}), 2.80(1 \mathrm{H}, \mathrm{t}, J=$ $8.7 \mathrm{~Hz}), 2.76(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}), 2.05(3 \mathrm{H}, \mathrm{s}), 1.80(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, d, $J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,163.2$, $162.7,152.5,129.9,126.3,119.7,115.0,96.1,68.3,45.8,43.6,43.5,31.1,19.3,13.9,13.4$,
one carbon atom was not found due to overlapping; IR (film) 2961, 2932, 2872, 1792, 1717, 1593, 1435, 1348, 1240, 1159, 1088, 1022, $978 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$461.1353, Found 461.1349.

3'Me-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, J=9.0$ $\mathrm{Hz}), 6.67(1 \mathrm{H}, \mathrm{s}), 4.03(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{d}, J=12.3$ $\mathrm{Hz}), 3.44(1 \mathrm{H}, \mathrm{t}, J=10.4 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{t}, J=10.4 \mathrm{~Hz}), 3.25(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 3.18(1 \mathrm{H}$, $\mathrm{d}, J=9.3 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.85(3 \mathrm{H}, \mathrm{s})$, $1.80(2 \mathrm{H}$, quintet, $J=6.6 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, $J=6.6 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,163.2,153.3,152.8,129.9,127.4,126.4,115.0,95.4$, $68.4,45.8,43.7,43.5,31.2,19.3,13.9,11.5,8.7$, one carbon atom was not found due to overlapping; IR (film) 2959, 2928, 2872, 1775, 1722, 1595, 1435, 1348, 1310, 1240, 1161, 1123, 1084, $989 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 475.1509$, Found 475.1506.

Bn-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $7.27(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{s})$, $6.62(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 4.02(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.66-3.57(3 \mathrm{H}$,
m), $3.46(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 3.41(1 \mathrm{H}, \mathrm{t}, J=10.2 \mathrm{~Hz}), 3.15(1 \mathrm{H}, \mathrm{brs}), 3.09(1 \mathrm{H}, \mathrm{brs}), 2.83$ $(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 1.80(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,163.2,152.3$, $142.5,139.0,136.3,129.9,129.1,129.0,127.3,126.4,115.0,94.1,68.4,45.8_{2}, 45.7_{7}, 43.6$, 43.4, 31.9, 31.2, 19.3, 13.9; IR (film) 2959, 2932, 2872, 1778, 1717, 1595, 1497, 1435, 1348, 1240, 1161, 1092, 1015, $962 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$537.1666, Found 537.1662.

sat-H-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 4.03(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 3.64(1 \mathrm{H}$, d, $J=10.2 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{br}), 3.15(1 \mathrm{H}, \mathrm{br}), 3.11(1 \mathrm{H}, \mathrm{br}), 2.83(2 \mathrm{H}, \mathrm{br}), 2.68-2.62(1 \mathrm{H}$, $\mathrm{m}), 2.55-2.46(2 \mathrm{H}, \mathrm{m}), 2.26-2.20(1 \mathrm{H}, \mathrm{m}), 1.80(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 1.51(2 \mathrm{H}$, sextet, J $=7.2 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,163.2,152.4$, $130.0,126.4,115.0,96.8,68.4,45.8,43.6,43.2,31.2,28.0,26.1,19.3,13.9$, one carbon atom was not found probably due to overlapping; IR (film) 2959, 2932, 2871, 1792, 1710, 1594, 1498, 1436, 1346, 1245, 1158, 1123, 1048, 951, $927 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$449.1353, Found 449.1346.

pMeO-H-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(2 \mathrm{H}, \mathrm{dt}, J=9.0,2.4 \mathrm{~Hz}), 7.27(1 \mathrm{H}$, dd, $J=7.2,1.8 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{dt}, J=9.0,2.4 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 6.29(1 \mathrm{H}, \mathrm{d}, J=$ $7.2 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{t}, J=$ $11.0 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{t}, J=11.0 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{br}), 3.14(1 \mathrm{H}, \mathrm{br}), 2.85(1 \mathrm{H}, \mathrm{t}, J=11.0 \mathrm{~Hz})$, $2.81(1 \mathrm{H}, \mathrm{t}, J=11.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,163.6,152.2,149.7,130.0$, $126.8,125.5,114.7,95.4,55.8,45.8,43.7,43.5$, one carbon atom was not found due to overlapping; IR (film) 2982, 2847, 1792, 1719, 1595, 1499, 1437, 1348, 1242, 1161, 1092, 1018, $926 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$405.0727, Found 405.0721.

pMeO-SPL7: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.01(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 6.85-6.84(1 \mathrm{H}, \mathrm{m}), 6.83(1 \mathrm{H}, \mathrm{brs}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \operatorname{brd}, J=12.2 \mathrm{~Hz}), 3.66(1 \mathrm{H}$, $\operatorname{brd}, J=12.2 \mathrm{~Hz}), 3.52-3.40(2 \mathrm{H}, \mathrm{m}), 3.19(1 \mathrm{H}, \mathrm{brs}), 3.13(1 \mathrm{H}, \mathrm{brs}), 2.84(1 \mathrm{H}, \mathrm{t}, J=8.4$ $\mathrm{Hz}), 2.79(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 1.97(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,163.4$, $152.3,142.1,134.4,129.8,126.6,114.5,93.7,55.7,45.7,43.5,43.3,10.6$, one carbon atom was not found due to overlapping; IR (film) 2895, 2855, 1780, 1717, 1595, 1435, 1346, 1242, 1192, 1061, 1016, $955 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 419.0883, Found 419.0871.

pPentO-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.99(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 6.85(1 \mathrm{H}$, brs $), 6.82(1 \mathrm{H}, \mathrm{brs}), 4.02(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz})$, $3.66(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 3.18(1 \mathrm{H}, \mathrm{br})$, $3.12(1 \mathrm{H}, \mathrm{br}), 2.84(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}), 1.96(3 \mathrm{H}, \mathrm{s}), 1.82(2 \mathrm{H}$, quintet, $J=7.0 \mathrm{~Hz}), 1.45(2 \mathrm{H}$, quintet, $J=7.0 \mathrm{~Hz}), 1.40(2 \mathrm{H}$, sextet, $J=7.0 \mathrm{~Hz}), 0.94(3 \mathrm{H}$, $\mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,163.2,152.4,142.1,134.6,129.9$, $126.4,115.0,93.8,68.7,45.8,43.6,43.4,28.8,28.2,22.5,14.1,10.7$, one carbon atom was not found due to overlapping; IR (film) 2936, 2922, 1769, 1722, 1595, 1433, 1348, 1242, 1165, 1092, 1015, $957 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 475.1509, Found 475.1507.

pPent-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 6.84(1 \mathrm{H}, \mathrm{brs}), 6.83(1 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.48$ $(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 3.15(1 \mathrm{H}, \mathrm{t}, J=6.0$ $\mathrm{Hz}), 2.86(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 2.68(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.96(3 \mathrm{H}, \mathrm{s})$, $1.65(2 \mathrm{H}$, quintet, $J=7.2 \mathrm{~Hz}), 1.39-1.30(4 \mathrm{H}, \mathrm{m}), 0.91(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,152.4,149.3,142.1,134.7,132.5,129.4,127.9,93.9,45.8,43.7$, $43.5,36.0,31.6,30.8,22.6,10.8$, one carbon atom was not found due to overlapping; IR
(film) 2928, 2857, 1780, 1721, 1435, 1350, 1242, 1167, 1126, 1092, 1015, $955 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$459.1560, Found 459.1558.

Ms-SPL7: ${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6}) $\delta 7.19(1 \mathrm{H}, \mathrm{q}, J=1.5 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{s}), 3.67$ $(2 \mathrm{H}, \mathrm{br}), 3.63-3.45(3 \mathrm{H}, \mathrm{m}), 3.33-3.15(3 \mathrm{H}, \mathrm{m}), 2.86(3 \mathrm{H}, \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, acetone- d_{6}) $\delta 171.9,153.3,144.1,134.4,94.7,46.1,44.6,44.3,34.6$, 10.5, one carbon atom was not found probably due to overlapping; IR (film) 2933, 2854, $1776,1716,1437,1340,1324,1284,1241,1206,1153,1096,1064,1047,1012,957,945$ cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$327.0621, Found 327.0616.

${ }^{i} \mathbf{P r S O}_{2}$-SPL7: ${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6}) $\delta 7.19(1 \mathrm{H}, \mathrm{br}), 6.88(1 \mathrm{H}, \mathrm{s}), 3.59(2 \mathrm{H}, \mathrm{br})$, $3.51(2 \mathrm{H}, \mathrm{br}), 3.44-3.32(4 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}$, septet, $J=6.6 \mathrm{~Hz}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.29(6 \mathrm{H}, \mathrm{d}, J$ $=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, acetone- d_{6}) $\delta 171.9,153.4,144.1,134.4,94.7,53.5,46.5$, $45.4,45.1,17.0,10.5$, one carbon atom was not found probably due to overlapping; IR (film) 2985, 2927, 2863, 1772, 1716, 1432, 1319, 1282, 1240, 1206, 1142, 1095, 1014, 984, $954 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$355.0934, Found 355.0932 .

${ }^{c} \mathbf{H e x S O}_{2}-\mathrm{SPL} 7:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(2 \mathrm{H}, \mathrm{br}), 3.72(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz})$, $3.61(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 3.52-3.37(4 \mathrm{H}, \mathrm{m}), 3.35-3.24(2 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{tt}, J=13.2,3.6$ $\mathrm{Hz}), 2.10(2 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 1.99(3 \mathrm{H}, \mathrm{s}), 1.89(2 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 1.71(1 \mathrm{H}, \mathrm{d}, J=13.2$ $\mathrm{Hz}), 1.50(2 \mathrm{H}, \mathrm{qd}, J=13.2,3.0 \mathrm{~Hz}), 1.27(1 \mathrm{H}, \mathrm{qt}, J=13.2,3.0 \mathrm{~Hz}), 1.90(1 \mathrm{H}, \mathrm{qt}, J=13.2$, 3.0 Hz); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,152.7,142.2,134.7,93.9,61.9,46.0,44.9$, $44.6,26.7,25.3,25.2,10.8$, one carbon atom was not found probably due to overlapping; IR (film) 2933, 2860, 1772, 1716, 1429, 1319, 1282, 1240, 1206, 1144, 1094, 1014, 984, $951 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$395.1247, Found 395.1244.

Bz-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.39(5 \mathrm{H}, \mathrm{m}), 6.91(2 \mathrm{H}, \mathrm{br}), 4.00-3.30(8 \mathrm{H}$, m), $1.99(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,170.8,152.8,142.1,135.2,134.7$, $130.3,128.8,127.2,94.0,47.2,44.3,42.0,10.8$, one carbon atom was not found probably due to overlapping; IR (film) $2929,2864,1773,1717,1635,1461,1429,1242,1230,1008$, $959 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 353.1108$, Found 353.1103.

Im-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ rotamer $A \delta 7.73(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{d}, J$ $=9.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{s}), 6.81(1 \mathrm{H}, \mathrm{s}), 4.68(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, 4.09-4.01 ($2 \mathrm{H}, \mathrm{m}$), $3.57(1 \mathrm{H}, \mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}), 3.53-3.48(1 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{dt}, J=9.6$, $6.6 \mathrm{~Hz}), 3.26-3.18(1 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.84-1.77(2 \mathrm{H}, \mathrm{m}), 1.51(2 \mathrm{H}$, sextet, $J=7.8 \mathrm{~Hz})$, $0.99(3 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}) ;$ rotamer $B \delta 7.76(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.00(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.81$ $(1 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{s}), 4.72(2 \mathrm{H}, \mathrm{s}), 4.09-4.01(2 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}), 3.53-$ $3.48(1 \mathrm{H}, \mathrm{m}), 3.26-3.18(2 \mathrm{H}, \mathrm{m}), 1.96(3 \mathrm{H}, \mathrm{s}), 1.84-1.77(2 \mathrm{H}, \mathrm{m}), 1.51(2 \mathrm{H}$, sextet, $J=7.8$ $\mathrm{Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of rotamers $\delta 171.1$, $171.0,163.6_{3}, 163.58,150.9,150.6,141.89,141.86,134.9,134.7,130.0,129.8,127.2_{3}$, $127.1_{8}, 115.4,115.2,93.5,68.5_{1}, 68.4_{8}, 62.5,61.9,47.2,46.4,44.2,44.0,31.1,19.3,13.9$, 10.8, 10.7; IR (film) 2959, 2874, 1778, 1726, 1593, 1422, 1348, 1260, 1157, 1092, 959 $\mathrm{cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$447.1196, Found 447.1191.

Diazepine-SPL7: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of rotamers $\delta 7.71-7.66(2+2 \mathrm{H}, \mathrm{m})$, $6.97(2+2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{q}, J=1.2 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{q}, J=1.2 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{s})$, $6.86(1 \mathrm{H}, \mathrm{s}), 4.02(2+2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.74-3.67(1 \mathrm{H}, \mathrm{m}), 3.65-3.39(5+6 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}$, ddd, $J=13.8,7.8,3.6 \mathrm{~Hz}), 3.12-3.01(1+2 \mathrm{H}, \mathrm{m}), 2.01-1.93(4+4 \mathrm{H}, \mathrm{m}), 1.93-1.86(1+1 \mathrm{H}$, m), $1.79(2+2 \mathrm{H}$, quintet, $J=6.6 \mathrm{~Hz}), 1.50(2+2 \mathrm{H}$, sextet, $J=6.8 \mathrm{~Hz}), 0.98(3+3 \mathrm{H}, \mathrm{t}, J=6.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of rotamers $\delta 171.3_{2}, 171.29,162.7,153.6$, $153.2,142.4,142.3,134.5,134.4,130.4_{0}, 130.3_{7}, 129.0_{7}, 129.0_{5}, 114.9,93.8,68.3,49.8$,
49.7, 48.9, 47.8, 47.7, 46.5, 46.0, 31.2, 28.3, 27.8, 19.3, 13.9, 10.7; IR (film) 2957, 2872, 1780, 1721, 1713, 1595, 1423, 1331, 1256, 1153, 1092, 1013, $959 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{NaS}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 475.1509$, Found 475.1510.

Identification of the byproduct of SAM molecules

During the structure-activity relationship (SAR) study, we found that some of SAM compounds exhibited markedly decreased germination activity after gel permeation chromatography (GPC) purification. For example, while silica gel column-purified SAM8 possessing a $4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$ moiety showed moderate activity ($\mu \mathrm{M}$ level), the GPCpurified one did not induce any germination of Striga seeds, despite of nearly identical purities of the two samples in ${ }^{1} \mathrm{H}$ NMR analysis (Fig. S3A). We anticipated that SAM8 was contaminated with a very small amount of an extremely active impurity and decided to pursue isolation of the impurity with the aim of determining its structure. N-Furyl carbonyl piperazine ($2.3 \mathrm{~g}, 13.0 \mathrm{mmol}$) was treated with $4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}(2.8 \mathrm{~g}, 13.7 \mathrm{mmol})$ and triethylamine ($2.7 \mathrm{~mL}, 19.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$ for 19 h at room temperature (see above for the detailed procedure). The reaction mixture was quenched upon addition of a saturated aqueous solution of NaHCO_{3} and the aqueous phase was extracted with ethyl acetate twice. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford a crude mixture which was subjected to fractional silica gel column chromatography (ethyl acetate/hexane $=1: 1$ as eluent) to remove most of SAM8 (Fig. S3B). The remainder was combined and concentrated under reduced pressure to form a residual sample that indeed exhibited moderate germination activity. The residue was re-
subjected to silica gel column chromatography (ethyl acetate $/$ hexane $=3: 1$ to ethyl acetate as eluent) and divided into eight fractions. A subsequent germination assay of each fractions indicated that fractions \#2 and \#3 stimulated germination. A combined sample of these two fractions was concentrated in vacuo to obtain 0.6 mg of the residue, which was analyzed using liquid chromatography-mass spectrometry (LC-MS; Fig. S3C). The analysis revealed that the sample contained several unidentified compounds and SAM8 as major components and thus the germination activity of all the detected compounds was evaluated. Compound $\mathrm{X}(\mathrm{m} / \mathrm{z} 382)$, which showed a peak at 10.2 min , exhibited the highest germination activity, but the quantity of X isolated through preparative HPLC was insufficient for reliable ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis for precise structural determination (Fig. S3D). Considering the difference in m / z units between X and SAM8 ($m / z 350$), we hypothesized that X may be formed through oxidative degradation of SAM8, and promptly treated SAM8 with various oxidants. Eventually, treatment of SAM8 ($262.8 \mathrm{mg}, 0.75$ mmol) with singlet oxygen under dye-sensitized photo-irradiative conditions (methylene blue, 3.0 mg) in $\mathrm{MeOH}(7.5 \mathrm{~mL})$ at room temperature for 27 h gave a compound $(2.6 \%$ yield), analytically identical to X based on HPLC, MS, and NMR analysis. Careful spectroscopic analysis allowed us to determine its structure, as shown in Fig. S3A, where the furyl carbonyl moiety in SAM8 was converted into a butenolide structure similar to the D-ring subunit of SLs. The structure of X as an oxygenated SAM8 was finally confirmed through straightforward synthesis from piperazine (see above for detailed procedure). One of the two nitrogen atoms of piperazine ($459.4 \mathrm{mg}, 0.8 \mathrm{mmol}$) was selectively sulfonylated by reacting with $4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}(41.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ and triethylamine $(0.042 \mathrm{~mL}, 0.3$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at room temperature. The remaining nitrogen atom was converted into carbamoyl chloride by treatment with triphosgene ($30.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) in the presence of triethylamine $(0.042 \mathrm{~mL}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.38 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The desired oxygenated SAM8 (pMeO-H-SPL7) was obtained in 55% yield from the reaction between the carbamoyl chloride and 5-hydroxyfuran-2(5H)-one ($30.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) with triethylamine ($0.042 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and N, N-dimethyl-4-aminopyridine (DMAP, 10 $\mathrm{mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at room temperature. Its derivative, oxygenated SAM690 (HSPL7) with the $4-{ }^{n} \mathrm{BuOC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$ moiety, was prepared following the same procedure and used for biological studies described in the main text.

Figure S1

A

B

Fig. S1. Structures of germination stimulants for Striga identified through chemical screening. (A) Initial hits from chemical screening. Furan connected to six-membered heterocycles through a carbonyl group was common to all the structures as indicated by red. Based on extended structures, these stimulants were grouped into sulfonamide, morpholine or pyrimidine analogs. (B) Relationship between Striga germination and in vitro binding to ShHTL proteins in
newly synthesized analogs. The top panel indicates Striga germination with $10 \mu \mathrm{M}$ of analogs. Error bar indicates s.d. ($n=3$ biological replicates). The bottom panel represents bindings indicated by YLG competition assay with $10 \mu \mathrm{M}$ of compounds. Average of technical replicates was presented as a heat map $(n=2)$. Structures and numeric data for synthesized analogs in (B) are presented in table S1.

Figure S2

A

B

Fig. S2. Hydrolysis of SPL7 by ShHTL7. (A) Structures of SAM690 and SPL7 molecules. (B) LC chromatogram after reaction with ShHTL7. The grey line presents an extracted ion chromatogram corresponding to m / z at 393.1459-393.1499 for SAM690, 425.1356-425.1398 for HSPL7 and 439.1511-439.1555 for SPL7. The blue
chromatogram presents alylsuflonylpiperazine fragment in m / z at 299.1409-299.14390 as a result of hydrolysis. $1 \mu \mathrm{M}$ of small molecules were reacted with $0.6 \mu \mathrm{M}$ of the recombinant ShHTL7 protein for 30 min . Equivalent amount of buffer was added for control experiments.

Figure S3

Figure S4

Fig. S4. Detection of CLIM on the histidine residue of the catalytic triad on ShHTL7. (A) Mass spectrum of ShHTL7 protein reacted with SPL7. A reaction with SPL7 shifts the peak by $\mathrm{m} / \mathrm{z} 96$ corresponding to substitution of a proton (H $=1.0000 \mathrm{Da})$ with D -ring $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{2}=97.0284 \mathrm{Da}\right)$. D-ring adduct is also observed in alpha- N -gluconoylated ShHTL7. From left, $z=29,28$ and 27. (B) Detection of D-ring adduct at histidine 246 residue in ShHTL7. MS/MS spectra of a
quadruply charged peptide (231-
NLGGPSVVEVMPTEGHLPHLSMPEVTIPVVLR-262) of ShHTL7 at $m / z 875.9340$ corresponding to the mass of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}$ modification of H 246 . The reaction mixture of ShHTL7 with (+)-GR24 or SPL7 was digested by trypsin before MS/MS analysis. Labelled peak corresponds to mass of y and b ions of the modified peptide. The D-ring adduct was not detected in DMSO control.

Figure S5

A
pH 9.0

pH 8.2

Hours
pH 7.5

B

Dose (mg/kg)	Number of samples (female rat)	Clinical sign	Body weight (8 days)	Necropsy
$\mathbf{5}$	5	No abnormal signs	No abnormal change	No abnormal change
$\mathbf{5 0}$	5	No abnormal signs	No abnormal change	No abnormal change
$\mathbf{3 0 0}$	5	No abnormal signs	No abnormal change	No abnormal change

C

S9 mix	Test material dose ($\mu \mathrm{g} /$ plate)	Number of Base-pai	ts (number	colonies / plate) Frame-shift type
		TA100	WP2 uvrA	TA98
With S9 mix	Negative control	93	22	23
		84	23	24
	4.9	88	34	26
		79	24	28
	19.5	89	23	18
		80	34	28
	78.1	104	23	25
		101	30	30
	312.5*	84	22	21
		83	26	22
	1250*	99	18	30
		96	25	28
	5000*	95	26	22
Without S9 mix	Negative control	96	24	38
		116	37	34
	4.9	95	24	36
		119	21	30
	19.5	148	24	33
		115	34	40
	78.1	138	28	34
		107	37	32
	312.5	120	27	33
		108	36	39
	1250*	91	32	33
		106	27	34
	5000*	109	21	32
Positive control not requiring S9 mix	Name	AF-2	AF-2	AF-2
	Dose ($\mu \mathrm{g} / \mathrm{plate}$)	0.01	0.01	0.1
	number of colonies/ plate	824	265	649
		805	187	613
Positive control requiring S9 mix	Name	$2-A A$	2-AA	2-AA
	Dose ($\mu \mathrm{g} / \mathrm{plate}$)	1	10	0.5
	number of colonies/ plate	1843	877	780
		1866	947	751

Fig. S5. Stability and toxicology of SPL7 (A) Stability of SPL7 at various pH conditions. Similar to 5DS or GR24, SPL7 is not stable at high pH range. (B) Acute toxicity test of SPL7. Single oral administration of SPL7 to female rats did not cause detectable change in clinical sign, body weight, and necropsy within 14 days. The analysis suggests that the lethal dose of SPL7 for the rat is $>300 \mathrm{mg} / \mathrm{kg}$. (C) Ames test of SPL7. TA100: Salmonella typhimurium strain TA100, WP2 uvrA: Escherichia coli WPA2 uvrA, TA98: Salmonella typhimurium strain TA98, AF-2: 2-(furyl)-3-(5-nitro-2furyl)acrylamide, and 2-AA: 2-aminoanthracene. Asterisk indicates observing precipitation. Mutagenicity assays (Ames tests) using Salmonella typhimurium and Escherichia coli were negative for SPL7. The analyses were outsourced to an analysis company.

139-142-
157-161
(Q)

Q+194+219

Q+194+219
$+174$
30< 10< 10<< }0.0
30< 10< 10<< }0.0

Fig. S6. Binding of SPL7 molecules and 5DS to mutant series of ShHTL7. Mutations were introduced to the amino acid residues on the binding pocket of ShHTL7, corresponding to residues on ShHTL5. IC50 values $(\mu \mathrm{M})$ in YLG competition assay was presented by a heat map with s.d. Seven mutations affecting the IC_{50} values of SAM690 were combined to generate multiple mutants up to septuple.
Correlation among the IC_{50} values were presented as 2D scatter plots in Fig. 2B. $\mathrm{Q}=$ quadruple mutant. ($n=3$, technical replicates).

Figure S7

Fig. S7. Computational investigation on protein-ligand interactions of SPL7 in ShHTL7. (A) The process of the enzymatic reaction mechanism of SL hydrolysis catalyzed through the amino acid triad Ser-His-Asp. H246 in ShHTL7 acts as base that facilitates the nucleophilic attack to the carbonyl carbon of the D-ring by serine. (B) Putative binding
modes of SPL7 in S - and R-configuration in ShHTL7 obtained via IFD simulations (i.e. amino acid residues were treated flexibly during docking). The docking scores and ranks are as follows; (S)-SPL7, $-10.196 \mathrm{kcal} / \mathrm{mol}$ (rank \#2), (R)-SPL7,
$-8.763 \mathrm{kcal} / \mathrm{mol}$ (rank \#3).

Figure S8

A

C

S. hermonthica (Alupe)

B

Orobanche minor

Fig. S8. Alignment of 7 essential active site residues responsible for ShHTL7 selectivity among HTL/KAl2 homologs. (A) HTL/KAI2 homologs in parasitic or nonparasitic plants from Orobanchaceae (left) or from other family (center and right) were shown. Sequence data was obtained
from (9). (B) Frequency plot of the seven amino acids created in WEBLOGO. (C) Germination of S. hermonthica ecotypes and Orobanche minor in response to SPL7. Mbutu, a harvest from mixed stands of sorghum, finger millet and maize filed in in Tanzania. Alupe, a harvest from maize filed in in Kenya.

Figure S9

A

Figure S10

Fig. S10. SAR study with D-ring modified analogs of SPL7. (A) Germination of Striga. Error bar indicates s.d. ($n=$ 3 biological replicates). While the MEC of the nonsubstituted version, H-SPL7, was at the pM level, the presence of a small linear alkyl group ($<\mathrm{C}_{4}$) at the C4' position enhanced its MEC to the fM level. Increase in steric bulkiness of the C4'-substituent or methylation at the C3' position diminished its MEC to the nM level. Introducing benzyl group to the C4' position (Bn-SPL7) or saturating the double bond between C3'and C4' (sat-H-SPL7) caused a marked drop in germination activity (MEC $=\mu \mathrm{M}$ level). (B) Production of the N-sulfonylpiperazine fragments. The quantity of liberated the piperazine fragments upon treatment of the analogs with ShHTL7 for 30 min was quantified by LC-MS. Relative values to complete digestion with KOH were shown. Error bar indicates s.d. ($n=3$ technical replicates). Clear correlation of piperazine formation with MEC, except for sat-H-SPL7, indicated that the observed difference in potency is associated with the efficiency of the D-ring transfer. For sat-H-SPL7, while the
highest production of the piperazine fragment was observed, the CLIM formation process could not be traced by HPLC analysis under similar conditions, implying that the very short lifetime of sat-H-SPL7-derived CLIM led to low potency. (C) Time dependence of CLIM formation quantified by LC-MS. Error bar indicates s.d. ($n=3$ technical replicates). Halfmaximal time (T_{50}) was determined as time-of-arrival to 50% conversion of the steady state level. This analysis allowed directly assessing the correlation between potency and the D-ring transfer efficiency. Although CLIM formation was not detected in 3',4'-dimetyl, 4'-benzyl, or saturated analogs, T_{50} values of other analogs were proportional to their MEC. (D) Biochemical parameters for interaction with ShHTL7. IC 5_{50} values ($\mu \mathrm{M}$) in the YLG assay with s.d. ($n=3$, technical replicates) and reaction rate constants $k_{1} C L I M\left(10^{-3} / \mu \mathrm{M} / \mathrm{s}\right)$ and $k_{-1} C L I M\left(10^{-3} / \mathrm{s}\right)$ are presented as a heat map. n.d. $=$ not detected. All IC_{50} values are comparable except for sat-HSPL7. Similar to $\mathrm{T}_{50}, k_{1} C L I M$ values near linearly correlate with MEC while $k_{-1} C L I M$ seems to be unconnected to MEC.

Fig. S11. SAR study with piperazine scaffold (the ABCring analog subunit) modified analogs of SPL7. The bar graph in the top panel represents germination of Striga. Error bar indicates s.d. ($n=3$ biological replicates). The middle panel displays time-dependence of CLIM formation on ShHTL7, which was quantified by LC-MS. Error bar indicates s.d. ($n=3$ technical replicates). Half-maximal time (T_{50}) was determined as time-of-arrival to 50\% conversion of the steady state level. The bottom panel presents IC_{50} values ($\mu \mathrm{M}$) with ShHTL7 in the YLG assay with s.d. ($n=3$, technical replicates) and reaction rate constants $k_{1} C L M$ (10-3/ $\mu \mathrm{M} / \mathrm{s}$) and $k_{-1} C L M M\left(10^{-3} / \mathrm{s}\right)$ as a heat map. n.d. $=$ not detected. In the case of modification of N-arylsulfonylpiperazine scaffold of SPL7s without altering the D-ring structure, not only $k_{-1} C L I M$ but also the other parameters, MEC, $\mathrm{IC}_{50}, \mathrm{~T}_{50}$, and $k_{1} C L I M$ values, were not correlated. Regarding the piperazine unit of SPL7, the MEC was not sensitive to the ring size, as 5 - and 7-membered ring derivatives resulted in equal losses in MEC to the pM level without affecting IC_{50}. However, this ring-size modification made a large difference in the T_{50} or k_{1} CLIM values. The importance of the hydrogen-
bond-accepting SO_{2} group was confirmed by changing it to a carbonyl moiety, leading to marked decreases in MEC and IC_{50} with significant reduction of the rate of CLIM formation. Structural modifications of the p-butoxyphenyl group on the SO_{2} moiety caused uncorrelated changes in the parameters. For instance, replacement of the aromatic nuclei with an aliphatic alkyl group generally reduced MEC to the nM range, although the $\mathrm{IC}_{50}, \mathrm{~T}_{50}$, and $k_{1} C L I M$ values gradually decreased as the steric demand of the sulfonyl substituent was reduced. Finally, CLIM formation from N -methylsulfonyl derivative (Ms-SPL7) could not be traced by LC-MS within the experimental timescale. Furthermore, even slight alteration to the length of the para-alkoxy group in the arylsulfonyl unit decreased MEC by three orders of magnitude with concomitant retardation of the CLIM formation rate, while IC_{50} values were not significantly affected. In contrast, replacing the oxygen atom in the parabutoxy appendage with a methylene group kept all parameters constant.

Figure S13

Fig. S13 Cumulative activation model of SPL7. (Left)
Proposed model for activation of D14 SL receptor (7, 14). As a consequence of hydrolysis of SLs, the D-ring is covalently attached to catalytic histidine residue to form CLIM. On the other hand, $A B C$-ring is released from the pocket before activating downstream ubiquitin-dependent proteasomal
pathway. (Right) Cumulative activation model in SPL7 hypothesized in this study. In contrast to the SL-D14 model, ShHTL7 can be partially activated without CLIM formation. The ABC-portion of SPL7 has additional functions after CLIM formation to gain fM -range potency.

Table S1. Structure and numeric data for fig. S1B

