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Abstract—When the selected harmonic elimination PWM 

(SHEPWM) is adopted to three level neutral point clamped 
(TL-NPC) converters to reduce the switching frequency, 
the neutral point potential (NPP) problem becomes more 
severe compared with other modulations. It is because 
there is no degree of freedom for SHEPWM to control the 
NPP. SHEPWM realizes a better harmonic performance by 
calculating the switching angles offline based on harmonic 
requirements. Since it is harsh to solve the angles online, 
we cannot change the angles to control the NPP. Aiming at 
the low frequency NPP fluctuation minimum, a novel 
current harmonic minimum method based on the optimal 
3-order/9-order harmonic is proposed in this paper. The 
optimal 3-order/9-order harmonic is derived based on the 
relationships among the 3-order/ 9-order harmonic and the 
NPP. They can be utilized to realize the low frequency NPP 
fluctuation minimum without changing any switching angle 
online. Moreover, some comparisons, such as the solution 
ranges, weighted total harmonic distortion (WTHD), the 
initial value of iteration calculation, show that the proposed 
method has a good output performance. Lastly, the 
experimental results are given to verify the validity of the 
proposed method. 
 

Index Terms—Low frequency fluctuation, neutral point 
potential, SHEPWM, three level, 3-order harmonic. 
 

I. INTRODUCTION 
ECENTLY, multilevel converters and the low switching 
frequency (SF) modulation technologies play the vital 

roles in medium and high voltage high power applications. In 
this paper, three level neutral point clamped (TL-NPC) 
converter, as shown in Fig. 1, is discussed in detail. It is widely 
used in wind power generation, rail transport, naval propulsion, 
etc. Compared with two level converters, three level converters 
can generate more sinusoidal output voltages and reduce the 
required rated voltages of the switch devices. Furthermore, by 
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reducing the du/dt of the output voltages, the electromagnetic 
interference (EMI) problem is also improved [1-3]. 

Pulse width modulation (PWM) is the core technology for 
power electronics. There are many modulation methods for 
different applications, such as sinusoidal PWM (SPWM), space 
vector PWM (SVPWM), square wave modulation, etc [4-6]. 
Especially since TL-NPC converter is usually utilized in 
medium and high voltage high power applications, it is vital to 
decrease the SF for reducing the loss and heat of switch devices. 
It directly affects the system design. Some low SF modulation 
methods have been put forward to improve output performance 
for two level converters, such as intermediate 60° SPWM [7-9], 
selected harmonic elimination PWM (SHEPWM) [10-15], 
optimal PWM [16-18]. SHEPWM can eliminate the selected 
low-order harmonics by solving the Fourier equations of 
SHEPWM waveforms based on the harmonic requirements. 
Optimal PWM has the similar theory as SHEPWM, which tries 
to make weighted total harmonic distortion (WTHD) minimum. 
Although these modulation methods can be applied to TL-NPC 
converters, the neutral point potential (NPP) control becomes 
difficult. 

For TL-NPC converters, the NPP problem is the first issue 
that should be solved. It can be divided into the NPP drift 
problem and the low frequency NPP fluctuation problem. The 
NPP drift problem is derived from the dead time, asymmetrical 
loads, the inconsistency of switch devices, etc. It may ruin the 
switch devices and the DC-link capacitors [19-21]. The NPP 
drift problem under SHEPWM has been analyzed in [22, 23]. 
The authors balance the NPP drift by revising the switching 
angles slightly. If the adjustment values of switching angles are 
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Fig. 1.  Three-level NPC converter topology (IGBTs). 
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large, the modulation will be deteriorated and deviate from the 
real SHEPWM. If the adjustment values are small, it may not be 
able to deal with serious NPP drift problem. Furthermore, the 
method is powerless for the low frequency NPP fluctuation 
problem. Actually, the problem becomes more and more 
serious with the SF decreasing. As original from modulation 
technologies, NPP problem is inevitable for SPWM, SVPWM, 
SHEPWM and optimal PWM essentially [20].  

Under the low SF, SHEPWM and optimal PWM are the 
mainstream choices for improving the output performances. 
However, the calculation of the switching angles is too difficult 
to realize online. The traditional method to realize SHEPWM 
and optimal PWM is to calculate the switching angles offline 
and look up the angle tables. Compared with SPWM/SVPWM, 
the number of switching angles (N) are few. And to ensure the 
harmonic requirements, the angles cannot be changed for the 
NPP control. However, the low frequency NPP fluctuation 
problem makes the capacitors’ reduction become impossible, 
which is key to reduce the weight and volume of converters. 
The realization of low frequency NPP fluctuation minimum is 
expected even under SHEPWM and optimal PWM.  

A current harmonic minimum PWM (CHMPWM) aiming at 
the low frequency NPP fluctuation minimum is proposed in this 
paper. For traditional SHEPWM, the switching angles are 
calculated offline based on the harmonic requirements and 
cannot be achieved online. This paper analyzes the essential 
reasons that cause the low frequency NPP fluctuation under 
SHEPWM and shows that it evolves fundamental component 
and 3n-order harmonic components. By setting the 3&9-order 
harmonic components to optimal values, the low frequency 
NPP fluctuation minimum can be realized naturally without 
changing any switching angle online. However, since proposed 
method sacrifices 2 switching angles to ensure the optimal 
3&9-order harmonic components, it means fewer switching 
angles can be used to eliminate other low-order harmonics. 
Thus, the optimal 3&9-order harmonic components and 
WTHD are defined as the objective function to realize the 
current harmonic minimum and low frequency NPP fluctuation 
minimum simultaneously. It is noted that the calculation of 
switching angles for proposed method at this time becomes 
easier than traditional optimal PWM. 

The contribution of this paper is to figure out the optimal 
3&9-order harmonic components, which can be used to 
overcome the low frequency NPP fluctuation problem under 
SHEPWM or optimal PWM. It is noteworthy that SHEPWM 
and optimal PWM are not the central issue. The optimal PWM 
is adopted just for improving the output performance, because 
the fewer switching angles can be used to eliminate the 
low-order harmonics. 

The section II introduces the basic principles of three level 
SHEPWM and optimal PWM, the NPP problem and the 
existing method. The CHMPWM aiming at the low frequency 
NPP fluctuation minimum is explained in section III. Then, the 
comparisons on the solution range of switching angles, WTHD 
and iteration initial value between the traditional SHEPWM 
and proposed method are carried out in section IV. Finally, 
some experimental results are shown in section V to verify the 

validity and feasibility of proposed method.  

II. THE NPP PROBLEM AND THE EXISTING METHOD 
UNDER THREE LEVEL SHEPWM AND OPTIMAL PWM 

Although 3n-order harmonic components have no effect on 
the output performance in three phase three line systems, they 
could serve as an important degree of freedom to deal with the 
NPP problem. As a key point of this paper, the optimal 3n-order 
harmonic components are discussed and utilized to solve the 
low frequency NPP fluctuation problem.  

A. Three Level SHEPWM and Optimal PWM 
Firstly, the basic principles of SHEPWM and optimal PWM 

are introduced. By calculating the switching angles of PWM 
waveforms based on the harmonic requirements, the selected 
low-order harmonics are eliminated. The SHEPWM waveform 
is shown as Fig. 2, taking phase u as an example. 

Equation (1) can be obtained by the Fourier analysis of the 
SHEPWM waveform, which has the quarter wave symmetry. 

( ) 1

1
1

[ sin( ) cos( )]

2
( 1) cos( ), ( 1,3,5, )

0, ( 2,4,6, )
0, ( 1,2,3, )

n nn

N idc
n ii

n

n

f t a n t b n t

u
a n n

n
a n
b n

ω ω ω

α
π

+∞

=

+
=

= +

= − =

= =

= =

∑
∑ L

L
L

           (1) 

Assume the fundamental component as u1 and define the 
modulation ratio as m=u1/(2udc/π). Thus, the maximum m is 
0.866, 0.9 and 1.0 for SPWM without zero-sequence voltage 
injection, SVPWM and square wave modulation respectively. 
For SHEPWM, we set the fundamental component to m and set 
the other low-order harmonic components to zero, as (2). 
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It is an issue for solving nonlinear equations. Since it is harsh 
to get the algebraic solutions of (2), some numerical methods, 
such as newton iteration, homotopy algorithm and genetic 
algorithm [12-15], are raised to solve switching angles. Thus, 
the algorithm convergence and initial value are important.  

For optimal PWM, we usually define objective function as, 
22 2
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Thus, it becomes the constrained optimization problem for 
the objective function. It becomes more difficult to calculate 

 

Fig. 2.  The SHEPWM waveform (phase u). 
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the switching angles, compared with SHEPWM. As a result, it 
is usually used when N is few. 

B. The NPP Problem under Three Level SHEPWM 
The NPP problem is unavoidable for TL-NPC converters. 

Ignoring the harmonic components, assume the three phase 
fundamental voltages and currents as (4).  io can be achieved as 
(5) [19-21] for nearest three vector PWM (NTV-PWM).  
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Here, io is completely determined by the phase voltage and 

current. In fact, the NPP has a self-balancing characteristic and 
a low frequency fluctuation characteristic. The NPP is the 
integration of io. We calculate it from 0 to 2π/3, as shown in (6). 
It is noted that s(io) comes back to zero during each 2π/3. In 
other word, it means the fundamental voltage causes the 
3-order NPP fluctuation during 2π. However, if the voltages 
and currents in (4) cannot keep the sinusoidal waveforms due to 
a long dead time or strong asymmetrical loads, the NPP drift 
problem appears. At that moment, it is necessary to give some 
methods to amend the phase voltage for solving the NPP drift 
problem. 
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C. The Existing Method for The NPP Drift Problem 
As mentioned above, the switching angles of SHEPWM and 

optimal PWM are calculated based on the harmonic 
requirements offline, owing to the computational complexity. 
Although to change the switching angles seems a bad choice, 
there is no other choice to solve the NPP drift problem. 
Reference [22, 23] deals with the NPP drift problem by 
adjusting the switching angles subtly, as Fig. 3. 
 Thus, the duty cycle of the voltage (0), which is linked to the 
NPP, is amended by Δα. The NPP is also adjusted by Δα, of 
which the sign depends on the sign of the phase current and the 
NPP error (Δvo). Δα is vital for the method. If Δα is small, the 
control ability for the NPP drift is weak. If Δα is large, the 

output performance will be worsen, since the PWM waveform 
deviates from real SHEPWM. Switching angles based on the 
harmonic requirements become meaningless, since switching 
angles are changed obviously. Due to the limit of Δα, even if 
the method [22, 23] can solve the NPP drift to some extent, the 
control ability is so weak that it cannot suppress low frequency 
NPP fluctuation mentioned above. Since low frequency NPP 
fluctuation exists under SHEPWM and optimal PWM, it makes 
the capacitors’ reduction become difficult. However, it is key to 
reduce the weight and volume of the converters. 

III. THE PROPOSED CHMPWM AIMING AT LOW 
FREQUENCY NPP FLUCTUATION MINIMUM 

According to the principle of SHEPWM and optimal PWM, 
we can know that the optimal harmonic performance is based 
on the switching angles. However, it is difficult to change these 
angles for the NPP control online, since they are calculated 
based on the harmonic requirements offline. Therefore, we 
must consider the low frequency NPP fluctuation problem 
before calculating these angles. In this paper, the optimal angles, 
which generate the smallest low frequency NPP fluctuation, are 
achieved. Since these angles are not changed online, a good 
output performance of SHEPWM or optimal PWM is ensured. 

The traditional SHEPWM uses (2) to obtain the switching 
angles. The selected low-order harmonic components can be 
eliminated. Here, 3n-order harmonic components are not 
considered, since they have no effect on the line voltage for 
three phase three line systems. However, the 3n-order harmonic 
components are analyzed cautiously in this paper, as (7).  
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For the low frequency NPP fluctuation minimum, the ideal is 
to search the optimal 3n-order harmonic components, which 
can neutralize the NPP fluctuation from the fundamental 
component. Thereby, the relationships of 3n-order harmonic 
components and the NPP (or io) should be illustrated firstly. 

A. The Relationship Between io and 3-Order Harmonic 
In this part, the 3-order harmonic component is discussed at 

first, which is assumed as (8). 
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Substituting (4) and (8) into (5), io can be written as follow. 
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Fig. 3.  The method [22, 23] to the NPP drift problem  
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It can be seen from (9) that io can be adjusted by k3. If the 
optimal k3 is found to keep io minimal, the low frequency NPP 
fluctuation is also minimal. However, it is difficult to get the 
optimal k3 directly from (9). Especially, if k3 changes the sign of 
the absolute calculation in (9), it becomes harsher to simplify 
the relationship between io and k3. Thus, the limit range of k3, 
which does not change the sign of the absolute calculation, is 
discussed at first. Equation (10) should be met to ensure the 
sign of absolute calculation in (9) is not changed. 

31 3 1k− < <                                    (10) 
When the optimal k3 is in the limit range of (10), we can 

easily simplify (9), since the sign of the absolute calculation 
does not change. If we divide 2π into 6 parts (r1-r6), the 
relationship between io and k3 can be achieved as (11).  
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io1 is the neutral point current generated from the 
fundamental voltage. io3 is the neutral point current derived 
from the 3-order harmonic voltage. The frequencies of io1 and 
io3 are both three times larger than the fundamental frequency. 
Fig. 4 shows the waveforms of io, io1 and io3 under different 
power factors (PF). It is noted from Fig. 4 that io3 is opposite to 
io1 on the whole, especially when PF is large. Therefore, if we 
can set io3 to a reasonable value, io1 can be neutralized. As a 
result, io and the NPP will become small. 

The integration of io1 and io3 are solved as (12).  
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If s(io1) is equal to -s(io3), the optimal k3 can be got as, 
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It is noteworthy that the optimal k3 of (13) is the optimum not 
only when the sign of absolute calculation is unchanged, but 
also when the sign of absolute calculation is changed, which 
can be verified via computer-solving.  

We can obtain the NPP (vo, vo1, vo3) by integrating io, io1 and 
io3 via (11), as shown in Fig. 5. Furthermore, define the 
suppression coefficient (gsc) of low frequency NPP fluctuation 
as vo_k326/vo_k30, where vo_k326 and vo_k30 are the maximum value 
of the NPP fluctuation when k3=0.2636 and 0 respectively. 
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Fig. 4.  The waveforms of io, io1 and io3 under different power factors. (a) PF=0.6. (b) PF=0.8. (c) PF=1.0 
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Fig. 5.  The waveforms of vo, vo1 and vo3 under different power factors. (a) PF=0.6. (b) PF=0.8. (c) PF=1.0 
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Fig. 6.  The suppression coefficient of low frequency NPP fluctuation. 
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Thus, the gsc is calculated as Fig. 6. It can be seen from Fig. 6 
that low frequency NPP fluctuation is suppressed dramatically, 
with the PF increasing. On the other hand, since we are not able 
to ensure that io3 is opposite to io1 for all the PF, it is not 
effective when the PF is small. However, io3 is indeed effective 
to suppress low frequency NPP fluctuation when the PF is 
larger than 0.6. it is very suitable for a majority of motor drives, 
such as induction motors and permanent magnet synchronous 
motors.  

B. The Relationship Between io and 9-Order Harmonic 
If 3-order harmonic component is assigned to the optimal k3 

forcedly, it may push the energy to 9-order harmonic 
component. Thus, a larger 9-order harmonic component may be 
generated compared with the traditional SHEPWM. It also has 
a large effect on the NPP. Therefore, the 9-order harmonic 
component is discussed in this part.  

Similarly, the limit of k9 in (14) is necessary to ensure that 
the sign of absolute calculation in (5) is not changed.  
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Thus, the relationship between io and k9 is expressed as (15). 
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The waveforms of io, io1 and io9 under different PF can be 
obtained as Fig. 7. Here, io9 is the neutral point current derived 
from the 9-order harmonic voltage. As an example in Fig. 7, k9 
is also set to 0.2636. It can be found from Fig. 7 that the 
frequency of io9 is three times larger than that of io1. And the 
difference between the phase angles of io1 and io9 can only been 
adjusted to 0 or π. Thus, it is difficult to utilize io9 to neutralize 
io1, no matter how to set the k9. A large k9 may deteriorate io, 
like the example in Fig. 7. Therefore, we can only set k9 to near 
zero to suppress the low frequency NPP fluctuation derived 
from io9. In this paper, as the optimal values to cope with low 
frequency NPP fluctuation, the k3 is set to 0.2636 and the k9 is 
set to near zero.  

C. The Switching Angles Calculation Based on The 
Current Harmonic Minimum and Low Frequency NPP 
Fluctuation Minimum 

For SHEPWM, two switching angles should be sacrificed to 
realize the low frequency NPP fluctuation minimum. There are 
fewer switching angles for eliminating other low-order 
harmonics. Therefore, instead of SHEPWM, CHMPWM is 
adopted here to realize the current harmonic minimum and low 
frequency NPP fluctuation minimum simultaneously. Since the 
new harmonic requirements as (16)-(17) are different from that 
of the traditional optimal PWM, the switching angle calculation 
becomes easier unexpectedly. The new harmonic requirements 
have a better convergence for the existing algorithms, which 
are used in the traditional optimal PWM.  
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It is a minimization problem of (17) with the constraints of 
(16) essentially. Moreover, flfm must be within a permissible 
range. If k3 and k9 are unreasonable values, there may be no 
solutions to the problem. The solution range of switching 
angles, the iteration initial value and the algorithm convergence 
are different from traditional SHEPWM and optimal PWM. 
The detail comparisons will be introduced in section IV. 

IV. THE COMPARISONS OF TRADITIONAL SHEPWM, 
TRADITIONAL OPTIMAL PWM AND PROPOSED 

CHMPWM 
 In order to realize the current harmonic minimum and the 

low frequency NPP fluctuation minimum at the same time, the 
harmonic requirements of the proposed method have been 
changed compared with traditional SHEPWM and optimal 
PWM. In this section, the comparisons on the solution range of 
switching angles, the iteration initial value, the algorithm 
convergence and output performances are carried on. 

A. The Solution Range of Switching Angles 
Although the optimal k3 and k9 have been achieved in section 
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Fig. 7.  The waveforms of io, io1 and io9 under different power factors. (a) PF=0.6. (b) PF=0.8. (c) PF=1.0 
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III, it is difficult for the traditional numerical methods to ensure 
the solutions. If we use the optimal k3 and k9 to calculate the 
switching angles, there may be no solution when m is large. Fig. 
8 shows the maximum m range, in which the switching angles 
can be achieved for SVPWM, the traditional SHEPWM, the 
traditional optimal PWM, the proposed CHMPWM with the 
optimal k3 (CHM(3-order)) and with the optimal k3 and k9 
(CHM(3&9-order)).  

When N is equal to 1, since all the modulations go back to 
square wave modulation, the maximum m can reach to 1. 
Actually, SVPWM does not need to calculate the switching 
angles, so the maximum m can reach to 0.9 for all the N. 
Although the maximum m of SHEPWM can also reach to 0.9 
when N is odd, it can be about 0.5 when N is even and bigger 
than 4. Meantime, considering the algorithm convergence and 
complexity of optimal PWM, the maximum m is discussed only 
when N is not bigger than 4. And in the subsequent 
comparisons, the traditional optimal PWM is not discussed 
neither. However, if we introduce optimal k3 and k9 to revise the 
harmonic requirements, it is easy to calculate the switching 
angles when N is bigger than 4. What’s more, the maximum m 
can reach to 0.9 for all the N. It is noted that when N is smaller 
than 3, there is no solution for proposed method with optimal k3 
and k9, because 2 switching angles have been used to control 
3&9-order harmonic components and no switching angle can 
be utilized to control fundamental component. Thus, from the 
view of the maximum m, proposed method has an advantage 
over the traditional SHEPWM and traditional optimal PWM. 
But proposed method can only be used when N is larger than 4.  

B. The Initial Value and The Algorithm Convergence 

For the traditional SHEPWM, the initial value problem and 
numerical methods [12-15] have been deeply discussed, such as 
newton iteration method, homotopy algorithm and genetic 
algorithm. Although the newton iteration method is stricter 
about the initial value than the homotopy algorithm and genetic 
algorithm, it can obtain more exact solutions. Meantime, the 
initial value can be given as (18). 

2 1 2

2 1 2

30 120 / ( 1)
,

90 , 1,2,3,..., ( 1) / 2
120 / , 1,2,3,..., / 2,

k k

N

k k

a a k N
if N is odd

a k N
a a k N k N if N is even

−

−

= = ° + ° +
 = ° = −

= = ° =

     (18) 

For the traditional optimal PWM, we must use the genetic 
algorithm to get an inaccurate initial value and then solve a 
constrained optimization problem for the objective function. 
Because of the algorithm complexity, the solutions are rarely 
discussed when N is large. 

Fortunately, the proposed CHMPWM with the optimal k3 
and k9 has a stronger algorithm convergence. Therefore, the 
initial values can be easily achieved by a few attempts. The 
initial values of the proposed method are given as Table. I.  

C. The Output performance 
As mentioned in section III, if the switching angles are 

calculated based on the new harmonic requirements of (16) and 
(17), the low frequency NPP fluctuation minimum can be 
realized naturally. However, it means we need to control the 
3&9-order harmonic components by sacrificing some degrees 
of freedom. It may make the output performance worse. Given 
that SVPWM and SHEPWM have been deeply discussed in 
some reference [12], the comparisons on λWTHD of the 

 
Fig. 8.  The maximum m range of different modulation methods. 
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TABLE I 

THE INITIAL VALUES OF THE PROPOSED METHOD 

[rad] N5 N6 N7 N8 N9 N10 N11 

α1 0.87 0.54 0.33 0.50 0.33 0.26 0.26 
α2 0.89 0.57 0.36 0.54 0.36 0.27 0.27 
α3 1.22 0.85 0.62 0.85 0.69 0.52 0.76 
α4 1.23 0.89 0.71 0.89 0.71 0.54 0.78 
α5 1.57 1.37 1.11 1.11 0.95 0.80 0.87 
α6 -- 1.41 1.15 1.15 0.97 0.82 0.89 
α7 -- -- 1.57 1.37 1.22 0.95 1.04 
α8 -- -- -- 1.41 1.23 0.97 1.06 
α9 -- -- -- -- 1.57 1.37 1.22 
α10 -- -- -- -- -- 1.41 1.23 
α11 -- -- -- -- -- -- 1.55 

 
 

  

 
(a)                                                                   (b)                                                              (c)                                                        (d) 

   Fig. 9.  The comparisons on λWTHD of the traditional SHEPWM, the CHM(3-order) and the CHM(3&9-order). (a) N=11. (b) N=9. (c) N=7. (d) N=5. 
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traditional SHEPWM, CHM(3-order) and CHM(3&9-order)  
are carried on in this paper, which are shown in Fig. 9. 

Since the switching angles for SHEPWM can be solved in 
the whole linear modulation range when N is odd, the 
comparisons of SHEPWM, CHM(3-order) and CHM(3&9- 
order) are also done when N is odd. It is noted from Fig. 9 that 
CHM(3-order) has the best performance for all the N. However, 
since it cannot control the 9-order harmonic component, the 
control ability for the NPP is weaker than CHM(3&9-order). 
The CHM(3&9-order) can keep the similar performance like 
CHM(3-order) when N is bigger than 5, which is better than 
that of SHEPWM. However, compared with SHEPWM and 
CHM(3-order), the output performance of CHM(3&9-order) 
deteriorates obviously when N is smaller than 5, since there are 
few degrees of freedom that can be used to improve the 
harmonics. Fortunately, if m is bigger than 0.8, the CHM(3&9- 
order) has a similar performance as CHM(3-order) and 
SHEPWM even when N is equal to 5 or 4. It is very vital for 
motor driving. This is because the output frequency is usually 
proportional to m. Thus, the small N are only chosen when m is 
large for reducing the SF.  

V. THE EXPERIMENTAL VERIFICATION 
In this section, some experiments under a small power 

prototype are carried on to verify the correctness of proposed 
method by comparing the output performance and the NPP 
control performance. The experimental setup is based on the 
DSP/TMS320C6657 and FPGA/XC6SLX45, shown as Fig. 10. 
DC-link voltage is set to 220 V. The upper and bottom 
capacitors are 1800 uF. The SF is 245 Hz and dead time is set to 
4 us. The PF of the R-L load (R=10 Ω, L=5 mH) is about 0.99. 

The experimental results of the SHEPWM, the optimal 
PWM, the proposed CHM(3-order) and CHM(3&9-order) are 
given in Fig. 11, 12, 13 and 14, when N is equal to 7 and m is 
equal to 0.6. Firstly, it can be seen from Fig. 11(c) that the 
amplitude of 3-order harmonic component is about 0.38. And 
the difference between the phase angles of fundamental 
component and 3-order harmonic component is π. Thus, if we 
assume the fundamental component is 1, 3-order harmonic 
component (k3) would be -0.38. Similarly, we can see from Fig. 
12(c) that the amplitude of 3-order harmonic component is 
about 0.3. And the difference between the phase angles of 
fundamental component and 3-order harmonic component is π. 
Thus, if we assume the fundamental component is 1, 3-order 
harmonic component (k3) would be -0.3. It can also be found 
from Fig. 13(c) that the amplitude of 3-order harmonic 
component is about 0.2636. And the difference between the 
phase angles of fundamental component and 3-order harmonic 
component is 0. 3-order harmonic component (k3) would be 
0.2636.  

Since the k3 for the traditional SHEPWM is about -0.38, it 
causes a big low frequency NPP fluctuation as Fig. 11(b), 
which is about 3.8 V. By the FFT analysis of the NPP as Fig. 
11(f), we can find the frequency of low frequency NPP 
fluctuation is three times larger than output frequency, which is 
consistent with the theoretical analysis shown in section III. 
From Fig. 11(d)(e), it can be seen that the selected 5, 7, 11, 13, 

17, 19-order harmonic components voltages are eliminated 
completely. It keeps a good performance under the low SF.  

For traditional optimal PWM, k3 and k9 are about -0.3 and 
0.35 respectively. They deviate from the optimal k3 and k9 
greatly. As a result, low frequency NPP fluctuation is about 
3.5V. Its frequency mainly focus on 3, 9-order harmonic 
components, as shown in Fig. 12(f). It should be noted that 
different quasi-optimal solutions may be obtained according to 
different numerical algorithms and initial values, especially 
when N is large. Thus, we should choose a good solution from 
multiple quasi-optimal solutions when N is large. If a careful 
choice is made, a better output performance in THD of vuv can 
be obtained, which are about 32.1%. However, a large low 
frequency NPP fluctuation appears. We must make a trade-off 
sometimes, whether to keep a good output performance in THD 
or NPP problem.  

For proposed CHM(3-order), 3-order harmonic component 
is forced to change from k3=-0.38 to the optimal k3=0.2636. As 
a result, low frequency NPP fluctuation has been suppressed 
obviously to about 1.5V. By the FFT analysis of the NPP as Fig. 
13(f), we can know the low frequency NPP fluctuation focuses 
on 9, 15-order harmonic components, which are original from 
the 9, 15-order voltage harmonic components in Fig. 13(c). The 
3-order harmonic component of the NPP has been improved 
obviously. 

On the other hand, it can be seen from Fig.11(c) and 
Fig.13(c) that THD of phase voltages for SHEPWM and CHM 
(3-order) are 61.50% and 87.01% respectively. THD of phase 
voltage for CHM(3-order) is larger than that for SHEPWM. 
However, since the applications we are concerned about, are 
motor drives or other three phase three line systems, phase 
current is decided by line voltage, not phase voltage. As the 
energy is transferred to 3n-order harmonic components, which 
would be eliminated automatically in line voltage for three 
phase three line systems, THD of phase voltage for CHM(3 
-order) is even smaller than that for SHEPWM, as shown in Fig. 
11(d) and Fig. 13(d). At the same time, THD of phase current 
for CHM(3-order) is 11.59%, which is also smaller than that for 
SHEPWM (13.00%). Thus, even if we use one switching angle 
as the degree of freedom to suppress the low frequency NPP 
fluctuation, it does not cause the deterioration of the output 
performances. It is an effective method to control the low 
frequency NPP fluctuation.  

 
Fig. 10.  The experimental setup. 
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 Moreover, if the 3&9-order harmonic components are 
forced to the optimal k3 and k9 like CHM(3&9-order), the low 
frequency NPP fluctuation can be further reduced to 1.3 V as 
Fig. 14(b). From Fig. 14(f), it is also known that the low 
frequency NPP fluctuation concentrates in 15-order harmonic 
component and the 9-order harmonic component of the NPP is 
also eliminated well as demonstrated in section III. Even 

though the proposed method cannot eliminate all the 5, 7, 11, 
13, 17, 19-order harmonic components voltages, it does still 
have a better output performance than SHEPWM, from the 
perspective of THD of line voltage (vuv) and current (iu), which 
are 34.25% and 12.12% respectively. The proposed method can 
achieve a good output performance and control performance of 
low frequency NPP fluctuation simultaneously.  

    
(a)                                                                        (b)                                                                          (c) 

 
(d)                                                                           (e)                                                                          (f) 

Fig. 11.  The experimental results of the traditional SHEPWM. (a) vu, vuv, iuvw. (b) The NPP. (c) the FFT analysis of vu. (d) the FFT analysis of vuv. (e) the 
FFT analysis of iu. (f) the FFT analysis of the NPP. 
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(d)                                                                              (e)                                                                          (f) 

The Fig. 12.  The experimental results of the traditional optimal PWM. (a) vu, vuv, iuvw. (b) The NPP. (c) the FFT analysis of vu. (d) the FFT analysis of 
vuv. (e) the FFT analysis of iu. (f) the FFT analysis of the NPP. 
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VI. THE CONCLUSIONS 
For the low frequency NPP fluctuation problem of TL-NPC 

converters, a novel CHMPWM based on the optimal 3&9-order 
harmonic components is proposed in this paper. Some 
conclusions can be achieved as follows.  
1) According to the theoretical analysis of the NPP problem, 

it can be known that the low frequency NPP fluctuation is 
inevitable for those PWM methods based on NTV-PWM. 
And it is severer for SHEPWM, since the SF is very low. 

2) It is very hard to solve the low frequency NPP fluctuation 
problem for SHEPWM, since there is no degree of freedom 
remained to control the NPP online. From theoretical 
analysis of low frequency NPP fluctuation, we can know it 
is derived from fundamental component and 3n-order 
harmonic components for SHEPWM. 

3) The optimal 3-order harmonic component is about 0.2636, 
which can be used to suppress the low frequency NPP 
fluctuation to the minimum. Utilizing the optimal PWM 
method, the output performance is also good.  

    
(a)                                                                             (b)                                                                             (c) 

 
(d)                                                                           (e)                                                                          (f) 

Fig. 13.  The experimental results of the proposed CHM(3-order). (a) vu, vuv, iuvw. (b) The NPP. (c) the FFT analysis of vu. (d) the FFT analysis of vuv. (e)
the FFT analysis of iu. (f) the FFT analysis of the NPP. 
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(a)                                                                         (b)                                                                        (c) 

 
(d)                                                                          (e)                                                                        (f) 

Fig. 14.  The experimental results of the proposed CHM(3&9-order). (a) vu, vuv, iuvw. (b) The NPP. (c) the FFT analysis of vu. (d) the FFT analysis of vuv. 
(e) the FFT analysis of iu. (f) the FFT analysis of the NPP. 
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4) The proposed method gives a new way to solve the low 

frequency NPP fluctuation problem as well as maintain a 
good output performance.  
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