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Abstract 1 

Although the detection of predictive biomarkers is of particular importance for the 2 

development of accurate molecular diagnostics, conventional statistical analyses based 3 

on gene-by-treatment interaction tests lack sufficient statistical power for this purpose, 4 

especially in large-scale clinical genome-wide studies that require an adjustment for 5 

multiplicity of a huge number of tests. Here we demonstrate an alternative efficient 6 

multi-subgroup screening method using multi-dimensional hierarchical mixture models 7 

developed to overcome this issue, with application to stroke and breast cancer 8 

randomized clinical trials with genomic data. We show that estimated effect size 9 

distributions of single nucleotide polymorphisms (SNPs) associated with outcomes, 10 

which could provide clues for exploring predictive biomarkers, optimizing 11 

individualized treatments, and understanding biological mechanisms of diseases. 12 

Furthermore, using this method we detected three new SNPs that are associated with 13 

blood homocysteine levels, which are strongly associated with the risk of stroke. We 14 

also detected six new SNPs that are associated with progression-free survival in breast 15 

cancer patients.  16 

Keywords: predictive biomarker; randomized clinical trial; genome-wide association 17 

study; multidimensional hierarchical mixture model; optimal discovery procedure 18 
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Introduction 1 

The development of accurate molecular diagnostics for choosing the best treatment to 2 

maximize benefits or minimize risks in a particular individual is a crucial issue for the 3 

realization of precision medicine. This will require predicting therapeutic responses, and 4 

to this end, it is of particular importance to efficiently explore predictive biomarkers that 5 

successfully classify patients so that treatment effects differ between subgroups. One of 6 

the most promising study designs for this purpose is the genome-wide association study 7 

(GWAS), as this approach allows for the investigation of medical traits such as drug 8 

metabolism, efficacy, and toxicity1–3. In these studies, detection of gene-by-treatment 9 

interactions is one of the crucial issues for developing predictive biomarkers4. Despite 10 

the significant effort that has been devoted to GWASs, most published studies have 11 

failed to identify such effective predictive biomarkers. 12 

One of the most fundamental problems of gene-by-treatment interaction tests is 13 

their lack of sufficient statistical power. In general, these tests are based on ordinary 14 

regression models and have low statistical power compared to tests for detecting genetic 15 

main effects. The reason is that unreliability is compounded in the interaction term of 16 

the models since the tests assess the difference of magnitudes of gene effects between 17 

treatment groups rather than simply assessing the magnitudes of the gene effects 18 

themselves. A rule of thumb to detect interaction effects has been suggested, whereby 19 

the detection requires a sample size at least four times larger than that required for the 20 

detection of a main effect of comparable magnitude4,5. In addition, most GWASs strictly 21 

control the conservative genome-wide significance level (p < 5 × 10ି଼ ) for the 22 

interaction tests to adjust multiplicity. These conventional analysis strategies potentially 23 

set serious limits on the value of these studies’ outcomes. While we in fact identified a 24 
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small number of useful biomarkers via these GWASs, the primary purpose of 1 

large-scale data analyses should be to effectively screen for genes that should be further 2 

investigated as candidate biomarkers in individualized precision medicine. 3 

To overcome the lack of statistical power, an alternative effective multi-subgroup 4 

gene screening method6 using a multidimensional semi-parametric hierarchical mixture 5 

model7,8 has been developed by Matsui et al. (Figure 1). This method efficiently reveals 6 

the existence of predictive genes that are differently associated with outcomes between 7 

subgroups (treatment and control groups in a randomized clinical trial, for example), 8 

and prognostic genes that are similarly associated with outcomes irrespective of 9 

subgroups. To this end, the method eliminates two types of nuisance factors in 10 

association analysis results: (i) genes that are not associated with outcomes and (ii) 11 

random variation irrespective of association with outcomes. The method achieves these 12 

goals by using the hierarchical mixture model, and reveals the underlying effect size 13 

distribution of genes that are associated with outcomes. The denoised distribution itself 14 

could provide clues for exploring predictive biomarkers, optimizing individualized 15 

treatments, and understanding the biological mechanisms of diseases. One can 16 

demonstrate the existence of predictive/prognostic gene subgroups and their effect sizes 17 

from the distribution rather than by identifying individual genes using interaction tests 18 

with a conservative significance criterion. Furthermore, effect size estimates adjusted 19 

for overestimation error arising from association analyses, the so-called winner’s curse 20 

phenomenon9, can be obtained based on the distribution. The adjusted estimates would 21 

serve as fundamental information for developing appropriate therapeutic strategies. In 22 

addition, an efficient test can also be developed using the optimal discovery procedure 23 

(ODP)10,11, which can provide an optimal ranking of genes as well as the most powerful 24 
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test for detecting disease-related genes with control of multiplicity, e.g., the false 1 

discovery rate (FDR). Note that the primary purpose of the newly developed method is 2 

to use a different principle than that underlying conventional gene-by-treatment 3 

interaction tests in order to provide an alternative strategy to more effectively identify 4 

predictive biomarkers, one that will overcome the issue of low statistical power and 5 

facilitate precision medicine research from a data analytic perspective. 6 

In this article, we demonstrate the important strengths of these newly available 7 

tools by applying them to two large randomized clinical trials, the vitamin intervention 8 

stroke prevention (VISP) trial12 and the SUCCESS-A trial, which study stroke and 9 

breast cancer, respectively, using genomic data (see Descriptions of GWAS Datasets and 10 

Section A in the Supplementary Notes) to detect single nucleotide polymorphisms 11 

(SNPs) that can be used to predict responses to therapeutics. We present the denoised 12 

effect size distributions of SNPs that are associated with medical outcomes, so as to 13 

assess the existence of predictive SNPs; disease-related SNPs detected by the ODP, 14 

along with their characteristics; and the results of a genomic investigation of these 15 

disease-related SNPs conducted using publicly available tools and databases, for the 16 

purposes of biological investigation and validation of the new method. 17 

Materials and methods 18 

Descriptions of GWAS datasets 19 

The two datasets used in this analysis were deposited in the dbGaP database (available 20 

at https://www.ncbi.nlm.nih.gov/gap) and derived from the VISP trial (study accession 21 

number: phs000343.v3.p1) and the SUCCESS-A trial (study accession number: 22 

phs000547.v1.p1). For details, see Section A in the Supplementary Notes. 23 

The VISP trial was a multi-center, double-blind, randomized, controlled clinical 24 
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trial that enrolled patients aged 35 or older with homocysteine levels above the 25th 1 

percentile at screening and a non-disabling cerebral infarction within 120 days of 2 

randomization. The trial was designed to determine if daily intake of a multivitamin 3 

tablet containing high-dose folic acid, vitamin B6, and vitamin B12 reduced recurrent 4 

cerebral infarction as well as nonfatal myocardial infarction or mortality. Subjects were 5 

randomly assigned to receive daily doses of the high-dose formulation (treatment group) 6 

or the low-dose formulation (control group). A total of 1533 subjects (760 assigned to 7 

the treatment group and 773 assigned to the control group) with 774670 SNPs passed a 8 

quality control filter (see Section B in the Supplementary Notes). In this study, we used 9 

this dataset to investigate SNPs associated with blood homocysteine levels which are 10 

strongly associated with the risk of stroke. We took as outcome the difference in blood 11 

homocysteine levels between baseline and the first post-baseline measurements, as in 12 

the study of Wakefield et al.13. Association tests were conducted using a linear 13 

regression model (see Section C in the Supplementary Notes). 14 

The SUCCESS-A trial was a randomized phase III study of treatment response of 15 

early primary breast cancer to adjuvant therapy after surgical resection. The trial was 16 

designed to determine if adjuvant chemotherapy with gemcitabine, an antimetabolite 17 

frequently used in the treatment of pancreatic cancer and other diseases14, improved 18 

progression-free survival, overall survival, and toxicity. Subjects were randomly 19 

assigned to chemotherapy with gemcitabine (treatment group) or without gemcitabine 20 

(control group). A total of 3289 subjects (1621 assigned to the treatment group and 1668 21 

assigned to the control group) with 424121 SNPs passed the quality control filter (see 22 

Section B in the Supplementary Notes). In this study, we used this dataset to investigate 23 

SNPs associated with progression-free survival in breast cancer patients. Association 24 
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tests were conducted using a proportional hazards regression model (see Section C in 1 

the Supplementary Notes). 2 

Multi-subgroup gene screening method 3 

In this analysis, we used the efficient multi-subgroup gene screening method6 (Figure 1) 4 

developed to overcome the problem of insufficient power to detect interaction effects 5 

(see Section D in the Supplementary Notes for details). Contrary to standard 6 

gene-by-treatment interaction tests using regression models with interaction terms 7 

between genes and treatments, this method first separates control and treatment groups. 8 

Then, association analyses using regression models without interaction terms are 9 

independently conducted for each group. As a result, summary statistics, i.e., estimated 10 

gene main effect sizes and their standard errors, are obtained for each group. After that, 11 

using the summary statistics, this method reveals the proportion of genes that are 12 

disease related and the underlying effect size distribution of disease-related genes across 13 

treatment and control groups via empirical Bayes estimation under the multidimensional 14 

hierarchical mixture model. Furthermore, posterior probabilities of association and 15 

effect size estimates adjusted for gene selection errors and overestimation for each SNP 16 

are obtained based on the estimated distribution. Finally, based on the optimal gene 17 

ranking and posterior probabilities of association for each gene derived from the fitted 18 

model, disease-related genes are detected by the ODP with control of FDR. 19 

Genomic annotation 20 

For biological investigation of detected SNPs and for validation of the new analysis 21 

method, we conducted genomic annotations on LD surrogates of SNPs detected by our 22 

analysis using the publicly available ENCODE (Encyclopedia of DNA Elements) tools. 23 

Genomic annotation on LD surrogates (ݎଶ > 0.6, 1000 Genomes Project EUR data) of 24 
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newly detected SNPs was conducted using HaploReg15,16 v4.1 (available at 1 

http://archive.broadinstitute.org/mammals/haploreg/haploreg.php) and RegulomeDB17 2 

v1.1 (available at http://regulomedb.org/). 3 

Results 4 

Blood homocysteine levels 5 

We conducted ordinary association analyses for control and treatment groups using the 6 

linear regression model and obtained effect size estimates (regression coefficients) and 7 

their standard errors for each SNP (Supplementary Fig. S1a). We then eliminated 8 

nuisance factors in these results using the hierarchical mixture model and obtained the 9 

effect size distribution of SNPs associated with homocysteine levels (Figures 2a and 10 

2c). 11 

The estimated distribution identifies the multi-subgroup SNPs that can be 12 

classified as possible prognostic or predictive biomarkers; peaks on the diagonal line in 13 

the first and third quadrants of the distribution correspond to prognostic markers, while 14 

others correspond to predictive markers. The proportion of disease-related SNPs was 15 

estimated to be 0.001. This suggests that 793 SNPs are associated with outcomes; note 16 

that the number of independently associated SNPs should be much smaller since some 17 

SNPs are in linkage disequilibrium (LD). The denoised distribution suggests that almost 18 

all SNPs have small effects on homocysteine levels regardless of control and treatment 19 

assignments, although the large peak is shifted slightly in the negative direction, 20 

corresponding to a decrease in homocysteine levels in the treatment group. The slight 21 

shift of the peak is due to the effect of high-dose administration of multivitamin tablets 22 

and is not related to any genetic properties. 23 

In addition to the large peak, there is a small peak that deviates from the low-effect 24 
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area, suggesting the existence of SNPs that will predict the benefit of high-dose 1 

administration of multivitamin tablets. This peak has a small positive effect on low-dose 2 

administration (effect size of 0.2) but has a large negative effect on high-dose 3 

administration (effect size of -3.3). The location of the peak suggests the existence of 4 

strong interaction effects between particular SNPs and high-dose administration that 5 

drastically decrease homocysteine levels. The marginal distribution for control and 6 

treatment groups clearly shows this difference (Figure 2c). The deviant peak is shown 7 

for the high-dose formulation (treatment) group, while no corresponding peak exists for 8 

the low-dose formulation (control) group. 9 

We next detected SNPs associated with homocysteine levels using the ODP (Table 10 

1), based on the optimal ranking via posterior probabilities of association (Figure 3) 11 

obtained from the estimated effect size distribution. The ODP detected five independent 12 

SNPs (FDR<5%) that are associated with outcomes. Of these, rs12631354, rs2367209, 13 

and rs10017302 are newly detected in this analysis while others have previously been 14 

suggested as being associated with homocysteine levels13. In particular, rs12631354 and 15 

rs10017302 might significantly change the effect of the administration of multivitamin 16 

tablets. These have strong interaction effects with the high-dose administration of 17 

multivitamin tablets, drastically decreasing homocysteine levels. From the therapeutic 18 

point of view, these two SNPs might be useful predictive biomarkers. 19 

The ODP also detected SNPs that have been suggested as being associated with 20 

homocysteine levels13, as well as rs3736238, which has been previously reported as the 21 

most statistically significant SNP13 and which reached genome-wide significance 22 

(p < 5 × 10ି଼) using the standard regression model with interaction terms (see Section 23 

E in the Supplementary Notes and Supplementary Fig. S2a). According to the adjusted 24 
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effect size estimates, rs3736238 shows the largest benefit for the high-dose 1 

administration group but demonstrates a harmful effect for the low-dose administration 2 

group (Table 1 and Supplementary Fig. S3a). Although the biological mechanisms of 3 

the harmful effect with low-dose administration are unclear, this result suggests the need 4 

for high-dose administration of multivitamin tablets in stroke patients. Another SNP, 5 

rs1739317, which has also been reported previously13 and which reached a suggestive 6 

level (p < 10ି଺) using the standard regression model (Supplementary Fig. S2a), was 7 

also detected. As with the newly detected SNPs, this SNP has a strong interaction effect 8 

with the high-dose administration that drastically decreases homocysteine levels and 9 

results in neither benefit nor harm with the low-dose administration. On the other hand, 10 

rs16893296 on chromosome 6, which has been suggested as being associated with 11 

homocysteine levels13, was not detected by the ODP. 12 

Breast cancer 13 

As with the analysis of homocysteine levels, we conducted ordinary association 14 

analyses for control and treatment groups using the proportional hazards regression 15 

model and obtained estimated regression coefficients (log hazard ratios) and their 16 

standard errors for each SNP (Supplementary Fig. S1b). We then applied the 17 

hierarchical mixture model to the analysis results and obtained the effect size 18 

distribution of SNPs associated with progression-free survival in breast cancer patients 19 

(Figures 2b and 2d). The proportion of disease-related SNPs was estimated to be 0.002; 20 

although some of these SNPs are in LD, this finding suggests that 903 SNPs are 21 

associated with outcomes. 22 

The estimated distribution is more spread out in the gemcitabine (treatment) group, 23 

although since the peak of the distribution is centered almost at 0, almost all 24 
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disease-related SNPs have small effects on progression-free survival in patients 1 

irrespective of treatment assignments. The difference in spread of effect size 2 

distributions between the control group and the treatment group is clearly revealed by 3 

the marginal distribution (Figure 2d). The spread in the treatment group suggests the 4 

existence of “beneficial” and “harmful” SNPs, i.e., some SNPs might increase survival 5 

rate with gemcitabine administration while others might do the opposite. These 6 

estimates suggest that careful evaluations of effect sizes for each predictive SNP are 7 

necessary to develop appropriate therapeutic strategies. 8 

We next applied the ODP to detect SNPs associated with progression-free survival 9 

in breast cancer patients based on the posterior probability of association (Figure 4). The 10 

ODP detected new six SNPs (FDR<5%) associated with progression-free survival in 11 

breast cancer patients (Table 1). Since the existence of harmful SNPs was suggested by 12 

the denoised distribution, we assessed the effect sizes of these SNPs adjusted for errors 13 

arising from the association analysis. The adjusted effect size estimates (Table 1 and 14 

Supplementary Fig. S3b) suggest that rs6712299 and rs17367673 have beneficial effects 15 

on progression-free survival with gemcitabine administration while rs4690351 and 16 

rs12449931 have harmful effects. Although further investigations are necessary, these 17 

SNPs might be useful predictive biomarkers to determine whether or not gemcitabine 18 

treatment should be conducted. On the other hand, rs12620133 and rs7311993 have 19 

beneficial effects in both the control and treatment groups. These SNPs might be used as 20 

prognostic biomarkers for developing risk-stratification systems. 21 

External validation 22 

We conducted genomic annotations on LD surrogates of SNPs detected by our analysis. 23 

For homocysteine level analysis, three SNPs (rs12631354, rs2367209, and rs10017302) 24 
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were used as queries, while for breast cancer analysis, six SNPs (rs12620133, 1 

rs6712299, rs4690351, rs7311993, rs12449931, and rs17367673) were used. Summaries 2 

of the results are presented in Supplementary Tables S1 to S9. 3 

For blood homocysteine levels, we queried the three newly detected SNPs and 4 

obtained lists of LD surrogates with their characteristics (Supplementary Tables S1 to 5 

S3). As a high-LD surrogate of rs12631354, we identified rs4450813 (ݎଶ = 1 based on 6 

1000 Genomes Project European population), which has an expression quantitative trait 7 

locus (eQTL) effect on the RYK gene in the liver18 (Supplementary Table S1). This 8 

result seems biologically plausible because homocysteine is metabolized in the liver. 9 

For rs2367209, we identified the LD surrogate rs4679904 (ݎଶ = 0.66), which has an 10 

eQTL effect on the AF038199 gene in liver tissue19 and is associated with primary 11 

biliary cirrhosis20 (Supplementary Table S2). The association between rs4679904 and 12 

primary biliary cirrhosis is strongly supported by existing evidence and is recorded in 13 

the National Human Genome Research Institute (NHGRI) GWAS catalog21 (available at 14 

https://www.genome.gov/gwastudies/). This result suggests the existence of an actual 15 

regulatory variant, despite the fact that the effect size of rs2367209 on the high-dose 16 

administration of multivitamin tablets is comparably small (Table 1), and further 17 

investigation should be conducted. According to epigenomic information for another 18 

high-LD surrogate, rs1879797 (ݎଶ = 0.84), there is a cluster of active transcription start 19 

site/enhancer in digestive. This result might indicate the contribution of the variant to 20 

digestion of homocysteine. For rs10017302, the high-LD surrogates rs2126029 21 

ଶݎ) = 0.94) and rs1460781 (ݎଶ = 0.94) were found, both of which have an eQTL effect 22 

for the GPM6A gene in peripheral blood monocytes22 (Supplementary Table S3). Since 23 

the purpose of this study was to investigate associations with the transcriptome of 24 
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circulating monocytes, a key cell type involved in immunity-related diseases and 1 

atherosclerosis, the SNPs might consistently be associated with cardiovascular diseases. 2 

These results support the biological validity of the testing method under the hierarchical 3 

mixture models. 4 

We also investigated SNPs that were associated with progression-free survival in 5 

breast cancer patients. As with the stroke trial, we queried six independent SNPs (Table 6 

1) detected by our analysis and obtained lists of LD surrogates with their characteristics 7 

(Supplementary Tables S4 to S9). Some of these indicated the existence of biological 8 

mechanisms and might be truly associated with outcomes. Genomic annotation 9 

identified rs3821340 (ݎଶ = 0.88 ), which has eQTL effects for the AC073464.7, 10 

CYP4F32P, and ZNF514 genes in the pancreas23, as a surrogate of rs6712299 11 

(Supplementary Table S5), as well as rs4690439 (ݎଶ = 0.64), which has an eQTL effect 12 

for the WDR17 gene in the ovary23, as a surrogate of rs4690351 (Supplementary Table 13 

S6). Although existing pharmacogenomic/pharmacogenetic genome-wide studies have 14 

identified SNPs that are associated with responses to gemcitabine24–27 and their results 15 

are recorded in the NHGRI GWAS catalog21, the newly detected SNPs did not match 16 

any records, partly because the previous studies focused on drug responses in pancreatic 17 

cancer, neutropenia, and/or leucopenia rather than breast cancer. Epigenomic 18 

information also suggests an association between some of the detected SNPs and breast 19 

cancer; enhancer activities in breast variant human mammary epithelial cells (vHMEC) 20 

exist for rs4690351, rs7311993, and rs17367673. Although there is still no strong 21 

evidence of an association with gemcitabine response and further validations are 22 

necessary, these results suggest the possibility of associations between these SNPs and 23 

breast cancer. 24 
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Discussion 1 

In this analysis, we demonstrated an efficient multi-subgroup gene screening method 2 

using hierarchical mixture models and the ODP, with applications to molecular data 3 

from randomized clinical trials of stroke and breast cancer to detect predictive 4 

biomarkers. We found three new SNPs that were associated with blood homocysteine 5 

levels, and six new SNPs that were associated with progression-free survival in breast 6 

cancer patients. These SNPs have not been reported by existing GWASs. 7 

This new method can more effectively detect predictive disease-related SNPs than 8 

conventional association tests that use regression models with interaction terms. For 9 

comparison, we conducted association tests based on standard regression models with 10 

interaction terms for each trial (see Section E in the Supplementary Notes). In the 11 

association analysis for homocysteine levels, only one SNP, rs3736238, reached a 12 

genome-wide significance level of p < 5 × 10ି଼, while rs16893296 and rs1739317 13 

reached the suggestive level of p < 10ି଺  (Supplementary Fig. S2a). Three other 14 

predictive SNPs detected by our analysis did not reach the suggestive level. On the 15 

other hand, rs16893296, which has been suggested as being associated with 16 

homocysteine levels13, was not detected by our analysis. No signal peak corresponding 17 

to this SNP was found in the estimated effect size distribution, and the posterior 18 

probability of association was estimated as only 13%. Also, the adjusted effect size 19 

estimates suggest that this SNP does not have a large effect on homocysteine levels 20 

(Supplementary Fig. S3a). This result may indicate the possibility of a false positive in 21 

the existing study or a false negative in our analysis, and further validation is necessary. 22 

In the breast cancer trial, no SNPs reached the suggestive level (Supplementary Fig. 23 

S2b), while our analysis detected six independent SNPs consisting of four predictive 24 
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SNPs and two prognostic SNPs. We also conducted a comparison of the number of 1 

detected SNPs between the standard association tests and the new method under 2 

specified FDR levels (see Section E in the Supplementary Notes). The new method 3 

detected more SNPs associated with homocysteine levels than the standard method 4 

under the same FDR levels, and also, unlike the standard method, effectively detected 5 

several SNPs associated with progression-free survival in breast cancer patients 6 

(Supplementary Table S10). Note that categorization of SNPs as predictive markers or 7 

prognostic markers was conducted in a subjective manner. Basically, SNPs that have 8 

different effect sizes between control and treatment groups would be categorized as 9 

predictive markers, while others would be categorized as prognostic markers. However, 10 

a specific criterion to categorize SNPs will be subjectively determined (see Matsui et 11 

al.6, for example). In addition, we assessed the performance of the ODP through a 12 

simulation study based on the two clinical trials (see Section F in the Supplementary 13 

Notes). The ODP detected larger numbers of significant SNPs with controlling FDR 14 

accurately, compared with the conventional methods (Supplementary Tables S11 and 15 

S12). 16 

As demonstrated in this analysis, the denoised distribution can be used to explore 17 

the existence of predictive biomarkers and identify the best therapeutic strategies using 18 

a different approach than the ordinary gene identification scheme that uses 19 

gene-by-treatment interaction tests. For example, because the daily intake of high-dose 20 

multivitamin tablets has no serious harmful effects, such as increasing homocysteine 21 

levels, it can be administered to stroke patients according to the obtained distribution 22 

with no risk (Figures 2a and 2c). Also, in the low-dose formulation (control) group, all 23 

disease-related SNPs have effect sizes of nearly zero, corresponding to no impact on 24 
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homocysteine levels, and no peaks in the distribution deviate either positively or 1 

negatively (Figures 2c). This result means that low-dose administration does not 2 

maximize response or minimize side effects. From the therapeutic point of view, these 3 

findings suggest that high-dose multivitamin tablets should be administered to stroke 4 

patients irrespective of their genetic variations. On the other hand, the use of 5 

gemcitabine requires careful assessment of patients’ genetic characteristics because the 6 

estimated distribution suggests that the drug might cause serious side effects in breast 7 

cancer patients with particular genetic variants and might decrease survival rates 8 

(Figures 2b and 2d). From a therapeutic point of view, these results indicate that 9 

individualized gemcitabine administration is necessary to improve survival rates and 10 

avoid side effects. Note that although this analysis strategy can reveal the existence of 11 

predictive/prognostic biomarkers as shown in the above examples, follow-up studies are 12 

necessary to definitively identify all of these markers, although some of them were 13 

successfully detected by our analysis using the ODP. 14 

Although we demonstrated the two dimensional hierarchical mixture model to 15 

analyse molecular data consisting of two subgroups in this study, models with three or 16 

more dimensions can also be developed to explore higher order interactions. The 17 

existence of such interactions can be evaluated by the multidimensional models defining 18 

subgroups according to combinations of specific values of multiple variables. 19 

The denoised distribution and the estimated proportion of disease-related SNPs can 20 

also be used for designing future medical genomics studies to identify predictive 21 

biomarkers. In particular, using the estimated results, we can obtain required sample 22 

sizes to find predictive biomarkers under a specified power and FDR7. Furthermore, the 23 

estimated proportions of disease-related SNPs suggest the existence of other underlying 24 
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markers that might have smaller effect sizes. Although efforts to obtain adequate 1 

numbers of samples are naturally crucial, it is equally important to develop more 2 

efficient association tests on gene-by-treatment interactions, as demonstrated in this 3 

analysis, as these tests would be serve as a realistic approach to discovering predictive 4 

markers. 5 
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Titles and legends to figures 1 

Figure 1. Workflow of the gene screening method using multidimensional hierarchical 2 

mixture models. The top panels show the genotypic and phenotypic data of control and 3 

treatment groups. The sample sizes of control and treatment groups are denoted by 4 

଴ܰ	and		 ଵܰ, and ܯ is the total number of SNPs. The middle panels show the summary 5 

statistics consisting of estimated effect sizes ܾ(଴), ܾ(ଵ) and their standard errors for the 6 

main effect of SNPs derived from association analyses using regression models without 7 

interaction terms. The bottom panels show the denoised effect size distribution of SNPs 8 

that are associated with outcomes, posterior probabilities of association, and adjusted 9 

effect size estimates for each SNP. Significant SNPs are detected by the optimal 10 

discovery procedure based on the distribution and posterior probabilities. 11 

 12 

Figure 2. Effect size distributions of SNPs associated with blood homocysteine levels or 13 

progression-free survival in breast cancer patients. (a and b) Two-dimensional 14 

distributions of homocysteine levels (a) and breast cancer (b). The x axis represents the 15 

effect size for the control group and the y axis represents the effect size for the treatment 16 

group. (c and d) Marginal distributions of homocysteine levels (c) and breast cancer (d). 17 

The x axis represents the effect size and the y axis represents the probability density, and 18 

distributions marginalized by the control group and the treatment group are plotted. 19 

 20 
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Figure 3. Plots of posterior probabilities of association with blood homocysteine levels 1 

for each SNP based on the estimated effect size distributions. Posterior probabilities for 2 

each SNP (y axis) are plotted by chromosomal position (x axis) in a similar way as with 3 

a Manhattan plot. Red points with rsIDs denote the probabilities of significant SNPs 4 

detected by the ODP (FDR<5%) and are not in LD. 5 

 6 

Figure 4. Plots of posterior probabilities of association with progression-free survival in 7 

breast cancer patients for each SNP based on the estimated effect size distributions. 8 

Posterior probabilities for each SNP (y axis) are plotted by chromosomal position (x 9 

axis) in a similar way as with a Manhattan plot. Red points with rsIDs denote the 10 

probabilities of significant SNPs detected by the ODP (FDR<5%) and are not in LD. 11 



Table 1. New significant loci of blood homocysteine levels and breast cancer detected through the optimal discovery procedure. 

   
  

Effect size (95% CI) Adjusted effect size (95% CI) Posterior   

SNP Chr. Position A12 MAF Control Treatment Control Treatment probability Gene Distance 

Blood homocysteine levels 

rs12631354 3 134195045 CT 0.01 -0.07 (-1.41 to 1.28) -3.90 (-5.24 to -2.56) 0.21 (0.19 to 0.42) -3.30 (-3.46 to -1.55) 0.989 RYK Intragenic 

rs2367209 3 160681097 TG 0.27 0.14 (-0.28 to 0.56) -0.99 (-1.40 to -0.58) 0.07 (-0.23 to 0.15) -0.51 (-0.54 to -0.47) 0.871 ARL14 2.7 kb 3' 

rs10017302 4 114563671 CT 0.02 0.52 (-0.85 to 1.89) -3.63 (-4.89 to -2.37) 0.22 (0.20 to 0.69) -3.30 (-3.63 to -1.17) 0.990 UGT8 35 kb 5' 

rs1739317 6 24947873 TC 0.03 0.25 (-0.61 to 1.11) -2.86 (-3.74 to -1.98) 0.22 (0.19 to 0.24) -3.28 (-3.38 to -0.66) >0.999 FAM65B Intragenic 

rs3736238 17 28881308 TC 0.01 1.88 (0.31 to 3.44) -4.75 (-6.46 to -3.04) 1.35 (0.28 to 1.80) -4.22 (-4.61 to -2.05) 0.982 FLOT2 Intragenic 

Breast cancer 

rs12620133 2 3879585 AC 0.20 0.39 (0.14 to 0.64) 0.54 (0.28 to 0.80) 0.22 (0.09 to 0.36) 0.33 (0.20 to 0.47) 0.938 DCDC2C 32 kb 3' 

rs6712299 2 95369055 CA 0.40 0.11 (-0.10 to 0.32) 0.58 (0.34 to 0.81) 0.07 (-0.07 to 0.22) 0.40 (0.28 to 0.50) 0.924 KCNIP3 Intragenic 

rs4690351 4 176498757 GA 0.17 -0.05 (-0.35 to 0.25) -0.69 (-0.95 to -0.44) 0.01 (-0.10 to 0.11) -0.42 (-0.59 to -0.33) 0.963 SPCS3 167 kb 3’ 

rs7311993 12 11778652 AG 0.22 0.40 (0.14 to 0.66) 0.58 (0.33 to 0.84) 0.22 (0.08 to 0.36) 0.36 (0.25 to 0.51) 0.971 ETV6 Intragenic 

rs12449931 17 79279996 GA 0.42 0.03 (-0.19 to 0.25) -0.69 (-0.94 to -0.43) 0.03 (-0.07 to 0.14) -0.44 (-0.59 to -0.33) 0.965 RBFOX3 Intragenic 

rs17367673 19 46894238 AG 0.17 -0.14 (-0.41 to 0.14) 0.64 (0.39 to 0.89) -0.06 (-0.18 to 0.08) 0.41 (0.31 to 0.53) 0.942 ARHGAP35 24 kb 5’ 

Effect size estimates and their 95% confidential intervals were obtained from association analyses under linear regression models for 
homocysteine levels and proportional hazards models for breast cancer. Effect size estimates for breast cancer correspond to log hazard 
ratios. Adjusted effect size estimates were calculated based on the denoised effect size distributions under the hierarchical mixture models. 
Positions based on hg38 were obtained from dbSNP build 141. Allele frequencies are based on 1000 Genomes Project European population 
and gene annotations are based on GENCODE version 13. Chr., chromosome. A12, reference and alternate alleles. 
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