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1. Introduction

Chapter 1 Introduction

1.1 Hydrogen gas

Hydrogengas (H,) was firstly discovered and produced in the earl{} éntury
from the single displacement reaction of metals and acids. Because it produces water
after burningH, was named as Ohydr ofpenerdH, wtheée c h me an
lightest gasknown in the world, whose density is 0.0899 g/L under the standard
atmospheric pressuif@-3]. It holds a stable chemical stability at room temperature
and is commonly used as a reducing agent in chemical reaction and industry process.
With the increasing concerning itne exhaustion of fossil fuels andé global
warming [4-6], renewable energy sources including solar energy, wind energy,
geotermal energy and hydroelectric energy have attracted a lot of attefifjons
Among theseH, is believed to one of the most promising choices because of its
several unusual properties. Firstl; holds an extremely high heat of combustion
(141.80 MJ/kg) which is twice higher than that of fossil il This meandH; is a
suitable fuel for long distance. Secondly, water is the only produdts biurning,
which meandH, is a pollutionfree fuel and will not cause greenhouse effect. Thirdly,
H, and raw material foH, production are widely existed in naturedathere is no
concern of exhaustigj®]. Besides, new technologies for hydrogen production such as
photoelectrochemical hydrogen production have been developed to replace the
traditional methods including steam reforming from fossil fy&&14]. Therefore,
H, becomes the optimal choice for next generation of energy and the numbgr of
application increases year by yed5-19]. For example, automobile companies,
including Toyota, Hyundai and Honda, successively introduced their hydrogen fuel
cell vehicles which generated blyet chemical reaction between compresdednd
oxygen from the air.

However, there are still risks for the massive usE0H; is combustible gas with

1



1. Introduction

an ignition temperature of 5&C [20], extremelyfast burnimg velocitiy in the air[21]

and a wide flammable range from 4% to 7§2A]. This brings potential risks during

the production, storage and usageéHef Moreover, because of its colorless, odorless
and tasteless proper{23], H, can be hardly noticed by human beings. Hydrogen
explosion has already caused a lot of tragedies all over the world. It has been proved
that the explosions in Fukushima Daiichi nuclear disaster were hydedgen
explosions[24]. Therefore H, detection will become more and more important and
the demand oH; sensos with high gas sensing performance is predicted to increase

significantly.

1.2 Hydrogen sensors

1.2.1 Existed types of hydrogen sensors

Hydrogen sensor is a device which can produce a measurable electrical signal when
the hydrogen gas concentration changes in the environment. For decades, many
hydrogen sensors based on various mechanisms and methods have been developed
and commercially aviable. Figure 1 shows the number of published researches
related with hydrogen sensors from 1975 to 2017 according to ISI Web of Knowledge.

It can be found that a boom occurred since 2003 which indicates the large demand of
hydrogen sensor§heseresearbes focus on not only improving the response but also
realizing advantages including lower cost, higher stability, smaller size and faster
responseTill now, there are four main types of methods for hydrogen detection:
catalytic sensorsgas chromatograph dectrochemical sensorand semiconductor

Sensors.
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Figure 1.1 Number of the publications related with hydrogen sensor

Catalytic sensors are a very common type of hydrogen sensors. Catalytic sensor
usually consist of two platinum coils: the surface of one is covered with catalyst while
the surface of the other has no catalyst. When combustible gas contacts with oxygen
on the surface of the coil with catalyst, reaction is operated and releases heat. The
temperature rise leads to a resistance change of the coil with catalyst and the
concentration of combustible gas can be indicated by measuring the difference
between two caod. Catalytic sensor was first used in 1923 for methane detg2b6on
26] and has been well developed in combustible gas detecting applications including
hydrogen detectiofi27-30]. This type of sensor is widely with an ability to detect
wide range of hydrogen up to 4%. However, there are some significant disadvantages.
Firstly, catalytic sensor shows no selectivity towards hydrogen, which rtieatitsis
unable to distinguish hydgen with other combustible gases like carbon monoxide
and methane. Secondly, catalytic sensor suffers from the poison effect. Due to an
irreversible reaction of catalyst, the sensor may show an obvious response decrease

for long time use. Thirdly, cataigt sensor operates at a high temperature which
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causes high power consumption. Moreover, catalytic sensor must works with the exist
of oxygen to induce the oxidation reaction. These disadvantages limit the future
development of catalytic sensors.

Another m#n method to detect hydrogen is gas chromatography. Because of the
different thermodynamic properties, different gases are separated when flow through
the column[31, 32] After the separation, detectors such as flame ionization detector
[33, 34] and thermal conductivity detect¢85] are used to achieve the accurate
quantitative measurement of every component. This method obtains the highest
accuracy and lowest detection limit. However, gas chromatographs usuallyerequir
extremely large and expensive instruments and the sampling time is also relative long.
Therefore, this kind of method is usually used only in the laboratory.

Electrochemical sensors are sensors which measure the electrical properties or
charge transportbrought from the electrochemical reactiorf86-38]. An
electrochemical seos usually has a working electrode and a counter electrode. The
electrodes are commonly made of platinum which can be a catalyst of the hydrogen
oxidation reaction. The sensing electrode is covered diffusion barrier consisting of
perfluorinated polymer whkh allows hydrogen gas diffusing through and being
oxidized. Thus electrons transfer through electrolyte to counter electrode and lead to
the reduction of oxygen. By measuring the current passing through two electrodes,
hydrogen concentration can be detered. This kind of sensor is possible to work at
a low temperature, which reduces the power consumption. However, it suffers from
the aging of electrolytes so that the lifetime is restricted.

With the development of semiconducting technology, semiconduatietaloxide
sensors attract me and more attention recenf$9-41]. When hydrogen absorbs
onto the surface, oxidation reactions happen and electrons release. The electrons
donated from hydrogen molecules transferred to thecegmucting materials. For
n-type semiconducting materials, this leads to a decrease of resistance and the
hydrogen concentration can be inferred by measuring the resistance phangg]

Till now, various metal oxides have been applied for hydrogen sensors including ZnO

[44-46], SNQ [47-49], TiO, [50-52], Ga&0;s [53-55], Bi.Os [56, 57] and so on. The
4
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semiconducting metalxide based sensors have a high sensitivity, fast response and
relatively simple structure so that many metside sensors have been
commercialized. However, most metalide hydrogensensors operate at a high

temperature and have a poor selectivity.

1.2.2 Nanostructures for hydrogen detection

With the development of nanoanufacturing technology, hydrogen sensors based
on nanostructures have attracted a lot of attentions for past dgé&des9] The
nanostructure significantly increases thefaceto-volume ratio which is a key factor
influencing gas sensing performance. With the decrease of the size, some materials
show special nansize properties which also greatly enhance the gas sensing
performance. Besides, nanostructure is a promisahgtion to meet the requirement
of miniaturization. Till now, hydrogen sensors have been developed based on various
materials and various nanostructufé8-66]. For example, Shen Y et al. reported a
Ptdoped Sn@nanowires based sensor with a sensitivity of 118 towards 100Hppm
at 100 °C[67]. Qurashi A et al. developed ZnO nanowires based hydrogen sensor by
ultra-fast microwave synthesis and reached a response of 78% towards 106} ppm
at 200 °C[68]. Tran N A et al. fabricated polysilicon nanobelt device for hydrogen
gas detection and achieved a response of 6% ati;lf9]. Zhen Y et al. reported a
sersor based on chemically modified graphene/poly -éd/lenedioxythiophene)
polystyrene sulfonate nanocomposite films and realized a response of 4.2% at 30 ppm

H,[70].
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1.3 Multiwall carbon nanotube sheet based hydrogen sensor

1.3.1 Carbonnanotube

Carbon nanotube (CNT) is a cylindrical, hollow structure made of one or several
layers of graphite. It is firstly discovered from the product of arc discharge by Prof.
ljima in 1991[71]. According to the layers of graphite sheet, CNT can be divided into
singlewall carbon nanotube (SWCNTJ2, 73]and multi-wall nanotube (MWCNT)

[74, 75] Compared with the MWCNT, SWCNT momposed of only one layer of
graphite with narrower diameter, less defect and better uniformity. CNT has a large
length to diameter ratio and a diameter of 0.4 ~ 6 nm for SWCNT and 1.4 ~ 100 nm
for MWCNT [76]. After the discovery, CNT has been successively proved obtaining
unigue mechanical, electrical, physical and chemical properties. CNT has an elastic
modulus of 1 TPa which is 5 times higher than that of steel and a tensile strength of
150 GPa which is 100 times higher than that of t#l. The thermal conductivity of

CNT is calculated to be from 1750 ~ 5800 W/ni#8], which is higher than that of
diamond. It has also been reported that CNT obtains a better electrical conductivity
than silver[79] and is extremely stable towards chemicals up to 2800 °C in vacuum
[80].

Because of its superior gperties, CNT has been applied to many fields including
composite materia[81], catalyst carrief[82], nanesemiconductor materigl83],
nearfield emission materigl84] and so on. For example, Chen HW et al. coated a
CNT and Nafion film onto the electrode of a Quartz Crystal Microbalance and gained
a satisfied humidity sensing performance with an excellent sensitivity and linearity
[85]. Venkatesan N et al tried different nanoparticulate solid adsorberasdasg
delivery tool for the administration of erythropoietin (EPO) and CNTs showed the
highest serum EPO level of 62.7+3.6 mIU[@6]. Yu X et al. developed a transparent
thin film acoustic transducers which can work as both speakers and microphones by
acid treatment and laydxy-layer surface modification of the polyvinylidene fluoride

6
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(PVDF) substrate@87].

1.3.2 CNT in gas detection

CNT is composed entirely of surface atoms and even small changes liocshe
chemical environment will result in measurable changes in the conductance of CNTs.
This characteristic makes CNTs becoming some of the most promising materials for
the development of the next generation of chemical gas s@®&orThe literature
number of CNIbased gas sensor has greatly increased recently. To date, CNTs have
shown sensitivity towards such gases as; [89], NO, [90], C,H4 [91], CO;, [92],

SO [93], HoS [94] and Q [95], etc. For example, Collins PG et a.l| demonstrated

C N B extremely high sensitivity towards oxygen in electrical resistance by exposure
to air or oxygen environmeri®5]. Cui SM et al. developed momtemperature
MWCNT-based sensor with Ag namparticles as a promoter, which shows a high
sensitivity and fast response time towards,d@d NH; [89]. Esser B eal. developed

a reversible resistive sensor relying on CNTs which was able to detegipsub
concentrations of £, [91].

The mechanism for CNT gas -tge semiconduaing i s
characteristics. According to chirality, CNT can be classified into metallic type CNT
and semiconducting CNT. Metallic type CNTs allow eleatucrent flows freely like
simple metal. Semiconducting type CNTs are typicayge semiconductorf96]. If

free holes account for a majority which means the holes are charge carriers, the doped
semiconductor is called-fype semiconductor. The number of free holes -type
semiconductor will greatly change the electric property such as resistance. Therefore,
when electrordonating or electro@ccepting gas molecules adsorb onto or desorb
from the CNT, electron transfer happens and further leads to a resistance change of
CNT. In the situation of hydrogen, because hydrogen is typical reducing gas,
hydrogen molecules tend to release electrons when adsorbing to the CNT surface.

Electrons fill in the neutral structures, or called holes, so that the concentration of
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charge carars falls as Figure 1.2 shows. The decrease of carrier concentration finally
results in an increase of electrical resistance. By measuring the change of resistance,

the concentration of hydrogen in the environment can be determined.

- .

H-

H
@0 0 00 E' @0 0 00
te'e o'l ™ t4'e’e'e'e®

+ Holes
@ Neutral Structures

-e~ Electrons
Figure 1.2 Mechanism ohydrogengas detection by CNT

For past decades, there are a lot of researches about CNT based hydrogen sensor have
been reportefP7-108]. Li X et al. reported a hydrogen sensor with a response of 100%
at 1% H, using SWCNT ropes functionalized by séinm Pd nanoparticle®7].

Rumiche F et al. developed a fassponse hydrogen sensor with a high response of
65% at 1%, based on double wall CNT (D®@NT) nanostructur98]. De Luca L et

al. synthesized Pt/TiO2/MWCNTs composites for hydrogen detection bgetol
method and reached a response of 8% at H@%t 50 °C[99]. According to these
researches, CNT based hydrogen sensors show advantages of haiseggpst

response time, no poison effect and room temperature operation.

1.3.3Limits of existed CNT basedsensors

Although CNT based sensors have already showed a lot of advantages, there are
disadvantages which limit their practical applicatiOme of the biggest challenges is

that the existednethod to fabricateCNT based gas sensors are not suitable for mass
production. Till now, CNT based sensors are commonly fabricated by two methods.

The first method is to directly synthesize single CNTbandles of CNTs on the
8
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specially designed and fabricated electrdd@9-112]. Nguyan DH et al. synthesized
porous CNT films by in situ ardischarge deposition on a colike interdigitated
electrodg110]. Dai H et al. used controlled chemical vapora&pon (CVD) method

to synthesize CNT between silicon towers to form a suspended CNT Ipiitigje

This method involves complicated process to prepare the special designedielectro
such as deam lithography and photolithography. This greatly raises the cost and is
difficult to synthesize in large scale due to the complexed process. The second method
is to dip or spray CNT dispersions onto prepared electrode or substrate awd dry t
form a film [113-115]. Ahmed A et al. used a nozzle to spray CNT solution to an
electrode array and deposit a CNT layer as the active layer for gas spirisShg
Pascual NB et al. dips MWCNT suspension through a micropipette between two
copper strips to form a sengdi03]. This method is relatively simple comparing to

the former one whilét results in random CNT alignment and agglomeration which
would lead to the uneven distributiai CNTs and further decrease the gas sensing
performance. To solve this problem, some researches introduced another
dielectrophoretic (DEP) trapping processiethapplied alternating electric field to the

CNT suspension so that CNTs were trapped and aligned along the electric field line
[116, 117] However random alignment and agglomeration can still be found in
DEP-trapped CNTs. Besides, DEP process requires special designed electrodes and
can hardly assemble largeale film. Thereforea simple, inexpensive, reproducible

and high vyield fabrication method is urgently needed for the commercialization of
CNT based gas sensors.

In addition, the response of CNT based sensor still have space to improve, especially
the MWCNT based sensors. Altugh MWCNT can be easilgynthesized by CVD
method,the response toward hydrogeri MWCNT is obviously lower tharthat of
SWCNT due to more defects, larger range of diameters and lower uniformity of
MWCNT. Besides, in the film type CNT sensors, not orie tintrinsic CNT
properties, but also the extrinsic conditions can affect the sensor sensitivity. The
extrinsic conditions include CNT film thickness, density and porosity in relation to

gas permeability, the CNTs alignment (parallel and vertical) anchgetaent in
9
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relation to the CN¥o-CNT contacts that determine the current paths. Thus, better
synthesis of CNT and effort to enhance the CNT film microstructure is required for

the improvement of hydrogen response.

1.3.4.MWCNT sheet

MWCNT sheet is MWCNT film in which MWCNTSs are joined entb-end structure

and aligned nearly parall¢118]. MWCNT sheet can be drawn from a sidewall of
spinnable vertically aligned CNT (VACNT) arrays which are synthesized by CVD
method[119-121]. Compared with the ordinary VACNT arrays, CNTs in spinnable
VACNT array have a much better alignment, higher nucleation density and narrower
diameter distribution. It has been reported that MWCNT sheet can be easily prepared
for meters by drawing from the spinnable VACNT array and transferred without extra
processsuch as dispersing CNT in organic solvents. Moreover, a complexed
purification process is not required for MWCNT sheet. Therefore, MWCNT sheet is a
suitable choice for loveost mass production of CNT based sensors. On the other
hand, the high alignment d@runiformity of MWCNT sheet also bring better electric
conductivity, thermal conductivity and mechanical property. The -tewhd
entanglement in MWCNT sheet also offers more sites for the gas molecules
adsorption. This indicates MWCNT sheet may show befés sensing performance
than ordinary MWCNT film when used as the sensor.

However, although MWCNT sheet obtains a lot of advantages, the number of the
MWCNT sheet based applications, especially gas sensors, is limited. One of the
reasons is that the ditlty to synthesize the spinnable VACNT array. In order to
enhance the alignment of VACNT array, it is necessary to adjust the parameters during
the CVD process including catalyst thickness, heating condition and gas flow ratio.
Even VACNT array with a Ilgh alignment is not spinnable due to some other
unknown properties, which makes it more difficult to synthesize spinnable VACNT
array. On the other hand, some works reported some MWCNT based hydrogen

sensing [122-124]. However, most of these reports focused on adjgsthe
10
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conditions of functionalizing and few researches mentioned a more fundamental level
such as investigation of the sheet microstructure and the structure design of gas sensor.
This results that the response of the reported MWCNT sheet based hydrogenis

still at a relative level (6% &% H,[122]) and the potential of MWCNT sheet in

hydrogen sensing remains to be explored.

1.4 Researclobjectives

In this study, we aimed at developing a hydrogen sensor based on MWCNT sheet with
high sensing performance. Thevestigation of functionalizing condition and the
design of sensor structure have also been operated. Moreover, the mechanism of how
new structures affect hydrogen sensing performance is investigated by studying the
gas adsorption microstructure in theests. Hence, this research is intended to be
carried out through the following objectives

1) Investigate the optimal condition for the synthesis of spinnable MWCNT array and
the fabrication of MWCNT sheet

The synthesis of spinnable VACNT array is thetfatep for the MWCNT sheet based
hydrogen sensor. The controllable, reliable and efficient fabricating process is the key
point to push the mass production and commercialization. To achieve this goal, a
comprehensive investigation of the VACNT array growtbnditions has been
operated. Besides, the mechanism of the growth of spinnable VACNT array needs to
be clarified for precise control of the synthesis process.

2) Fabrication ohydrogensensobasedon multi-layer structurd MWCNT sheet

Because the prepared MWCNT sheeatdatinuousand robust with a high uniformity,

it is possible to fabricate a sensor by directly transferring the sheet on to the electrodes.
In this research, a sensor based on a #ayér structure has been developed b
stackingthe sheets in the same direction. The influence of the staciingture

toward hydrogen sensing will be studied. In addition, the functionalizing condition

will also be investigated to achieve a better gas sensing performance.

11
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3) Fabrication 6 the sensor based on a suspended structure ofsteadsed sheets

In order to further improve the hydrogen sensing performance, novel structures
including the suspended structure and the estesked structure are raised in this
research. The effects tie new structures will be evaluated through the gas sensing
experiments. Besides, a tvfanctionalizationwill be operated to further improve the
detection capability of the sensors.

4) Sensing mechanism clarification of MWCNT shkased sensors

Since new structures have been introduced to fabricate MWCNT sheet based
hydrogen sensors, it is necessary to clarify the mechamkthem. This mayuide

the further desigof the MWCNT sheet based gas sensors.

1.5 Thesis organization

In this thesis, a sysmatic study on the fabrication and investigation of MWCNT
sheet based hydrogen sensor is presented. Two novel structursapstrate
multilayer structure and suspended crstegked structure, have been demonstrated in
this thesis. In order to improvéd gas sensing performance, the conditions during
spinnable VACNT array synthesis, functionalization and stacking process have been
investigated. The relationship between characteristic of MWCNT sheet and gas
sensing performance has also been evaluateldrify the mechanism.

Chapter 1 introduces the background of this research, which includes the importance
of hydrogen detection, current situation of hydrogen sensors, advantages and limits of
CNT based hydrogen sensors and the objectives of this study.

Chapter2 presents the synthesis of spinable VACNT array toed fabrication of
MWCNT sheet. The conditions including the catalyst thickness, heating condition and
gas flow ratio were investigated and the spinnability of the VACNT array were
evaluated. Accaling to the experiment results, an optimal condition for MWCNT
sheet synthesis has been achieved.

Chapter3 reports a fabrication method of MWCNT sheet based hydrogen sensor on a

12
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stacking mui-layer structure. Various functionalizing conditipis&zesand numbers

of the stacking layemhave been evaluated in the hydrogen sensing t&sis.
mechanism how the stacking process influences the gas adsorption microstructure has
also been studied in this chapter.

Chapter4 reports a novel suspended structureciafssstacked sheets for hydrogen
sensing. The effects of suspended structure, -Gtas&ing process and twgide
functionalization have beemvestigatedaccording to the results of gas sensing
measurement. The reliability, including reproducibilitypeatability selectivityand
stability, has also been evaluated.

Chapter5 presents the summary of the most important conclusions achieved in this

research.

13
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Chapter 2 Synthesis of Spinnable MWCNT Array
and Fabrication of MWCNT Sheet

2.1 Introduction

In this chaper, we focused on the synthesis of spinnald/CNT array and
fabrication of MWCNT sheet. To datthere have been various methods to synthesize
CNTs including arc discharge meth¢t+3], laser ablation methof#] and CVD
method [5-7]. The CNTs of arc discharge method and laser ablation method are
usually tangled in poor aligned mat. These methods also neetehigleraturaip to
5000°C which makes the process high cost and difficult to be controlled. On the other
hand, CVD method shows outstanding performance v cost high yield and
vertical alignmentThus, CVD method is believed to be the best method for the mass
production of QITs [8]. Therefore, wehoseCVD method to synthesize the VACNT
array.

The synthesis of MWCNT sheet involves three steps:goagion of the substrate,
synthesis of spinnable VACNT array by CVD method and MWCNT sheet drawing.
The effects of the conditions including the temperature, heating rate, gas flow ratio
and Fe layer thickness have been investigated in this chapter. Itomdd

characteristic evaluation of the fabricated MWCNT sheet has also been operated.
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2.2 Experimental conditions

2.2.1Synthesismethod of spinnable MWCNT array

In this research, a polished silicon wafer with a diameter of 100 mm was used as
the substrate for CVD process. A-1in ultrasonic cleaning in acetone was operated
to ensure the purity of the surface. After the wash treatment of ethanol and deionized
water, the silicon wafer was set in the chamber of Electron Beam (EB) evaporation
instrument (EBVV6DH). EB evaporation is a physical vapor deposition method to
form a film. As Figure 2.1 shows, after the acceleration of field electron emission, the
electron beam earns a high energy and guided to the evaporation material under the
magnetic fiell. Because of the high energy of electron beams, the materials are
rapidly evaporated into gas phase and deposited to form a film on the substrate fixed
on the top of the chamber. The thickness of the film can be controlled precisely by the

crystal type fim thickness meter.
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Figure 2.1 Schematic diagram of EB instrument.

After the settlemenbf the substrate, the chamber is evacuated to a pressure of 6
10*Pa. Then Si@ Al,O; and Fe were deposited onto the substrate to form a catalyst
layer as Figure 2.2 shows. A 200 nm thick Si@yer was firstly deposited onto the
substrate at a rate of 0.2 nm/s. AfterwardsQAwas evaporated at a rate of 0.1 nm/s
as the buffer which pwents the catalyst layer agglomerating into too larger particles.
Finally, Fe, which acts as the catalyst during the CVD process, was deposited at a rate
of 0.1 nm/s. The thicknesses of,@k and Fe were supposed to greatly affect the

growth of CNT and vaous thicknesses were prepared to find the optimal condition.
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Figure 2.2 Schematic diagram of the substrate coated by EB evaporation.

After the preparationof the substrate the CVD process was operated in the
MPCVD-50 thermal CVD instrument produced MICROPHASE CO. LTD. After
EB deposition, the wafer was cut into 10 x 10 fahips which act as the substrate
for CNT growth. The substrate transferred into the center of a cylinder quartz tube
chamber whose diameter is 50 mm as Figure 2.3 shows. In onggnove the air, the
chamber was pumped to vacuum following a 400 sccm Ar gas washing for 15 minutes.
Afterwards, a mixed gas flow of Ar,and GH,4 was introduced into the chamber.
The total flow was fixed as 520 sccm and the Ar flow was fixed as 4€8. sthe
ratio of H, and GH4 was investigated in the experiment to achieve an optimal one for
spinnable VACNT array. The chamber was then heated up to the temperature around
700 ~ 800 °C and maintained for 15 minutes. The optimal operating temperature and
temperature rising time were studied in this research. Then the chamber was cooled
down with the shut off of Hand GH4 gas. When the temperature was cooled down to
the room temperature, the substrate was taken out from the chamber. The relationship

amongtemperature, gas flow and time can be found in Figure 2.4.
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Figure 2.4Relationship among temperature, gas flow and time during CVD process.
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To date the mechanism of thermal CVD procdes CNT growth has been widely
studied [9-11]. During the temperature rising periodatalytic layer is heated and
started to crack when the temperature rises t60Be aggregates into nanopatrticles
which act as thaucleation seeslfor CNT growth After the formation of Fe particles,
C,Ha, which is the carbon source gas, dissolves on the surface of Fe particles as
Figure 2.5(a) shows. The carbon quick diffuses into the particles and reaches the
saturation. The carboprecipitatesand forms graphene film on the surface of Fe
particle (Figure2.5(b)). With the growth of graphene, the graphene is curled into the
tube structure and becomes the CNT as Figure 2.5(c) shows. At the same time,
amorphous carbon is deposited on the particle surface and blocks the saubomn
dissolves into the parte. H, gas, which acts as a reducing agent, dacompose
amorphous carbon during the CVD process. When the amorphous carbon fully covers
the surface, the catalytic particle loses its activity so that the CNT growth stops. On
the other hand, CNTs synthesizby CVD method grow in the vertical direction with
high alignmentcomparingthe products by other methods. This is believed to be the
effectsof the Van der Waals force among the CNI2-14]. At the initial stage of
CVD process, the CNTs grow irelativdy random directions due to the lack of
guidane from Van der Vaal force. With the growth of CNTs, the density of CNTs
increases and CNTs start to push each offte. Van der Vaal force among the too
close CNTs force the CNTs grow in the same direction which is vertical to the
substrate as Figure 2.6 shows. This explains the mechanism\adrtival alignment

of CVD-synthesized CNT array
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C:2Ha4
® Molecule

Figure 2.5Mechanism of GIT synthesis during CVD process: (h$solveof carbon

sourcemolecules(b) formation ofgraphene an¢t) growthof CNT.

Figure 2.6 The vertical alignment of CNTsynthesizedy CVD method.
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2.2.2Fabrication method of MWCNT sheet

2.2.2Fabrication method of MWCNT sheet

After Jiang K et al. reported a method to draw continuous CNT yarns from
superaligned CNT arrayl5], the spiming ability of CNT arrays have been studied in
recent yearg16-18]. The spinning ability of CNT arrays idetermined by the
alignment and density of the CNTs in the arBgcause the CNTs in the spinnable
array align very closely and have very clean surfaces, the van der Waals interactions
among CNTs arevery strong so that the CNTs will not split during the drawing
process The CNTsare joined endo-end and aligned nearly parallel the draw
direction,which forms a continuousnidirectionalMWCNT film called as MWCNT
sheetas shown in Figure 2.7 (aJhe actualexperimental process is shown in Figure
2.7(b) shows. The sticky tape is attached to the edge of the array and pulled away
horizontally to start the drawing process. Then a continuous MWCNT sheet is
prepared during the drawing proce3sis metlod does notinvolve complexed
instruments and the prepared MWCNT film isiitarge scaldonger than 10 ciilrhis
indicates that the MWCNT sheet drawing process is a promising method to fabricate

MWCNT film rapidly and massively.
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(a) / CNT array
CNT sheet

Drawing direction
e

Figure 2.7MWCNT sheet drawing(a) Schematic diagram of mechanism;

(b) Photographs of the actual experimemiacess.
2.2.3Evaluation method

To evaluate the synthesized arrays, the length and alignment of the array were
investigated in this study. The lengthtle distance between the top side and bottom
side of the array. Thelignment describes the CNdparallelism in the array and
better alignment means that CNTs in the array align more parallel. Both of them can
be evaluated from the scanning electron oscope (SEM,700F JEOI image as
shown in Figure 2.8According to the mechanism of sheeawing, the alignment of
the arrayis more important for the synthesis of spinnable aifrays,the alignmentof
thearrayis the main parameter during teealuation of the synthesized arrays.

The spinnability of the array is evaluated by trying to drawing sheet from the array.
If the sheet can be drawn from the array continuously longer than 20 cm for several

times, the array is spinnable. A Ramspectrum(JEOL, inVia Reflex)has been
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operated to evaluate the purity of the spinnable MWCNT array. After the fabrication
of the sheethigh resolution transmission electron microscopy {HEV, JEOL,
JEM-2100 plu$ was used to observe the CNTs in the sheet. litiaddthe electrical
resistance of the sheet has been measured through thedeping test.
Ali"gnmemg EVQ’ uati '
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Figure 2.8 Evaluation of the array based on SEM image.
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2.3 Evaluations of spinnable MWCNT array synthesizedby
CVD method

2.3.1 Effect of temperature orarray synthesis

To study the effect of temperatuom array synthesjghe operating temperature
during the CVD process was set to 700, 720, 750, 780 an®C308spectively. Table

2.1 shows the detail experimental conditions of the array synthesis.

Table 2.1Experimental conditions: Different temperatures.

Temperature  Heating rate CoHg H> Fe thickness

(°C) (°C/min) (sccm) (sccm) (nm)

700
720
750 18.5 30 90 15
780
800

Figure 2.9 shows the lengths of the arrays synthesized under different temperatures.
It can be observed that the largest length of 6300is achieved for the sample
heated at 758C. When the temperature is 700 and 830the CNT arrays tend to be
in abnormal structure with very small length as Figure 2.10 shows. This indicates that

the suitable temperature range for the synthesize CNT arra@+38@°C.
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Figure 2.9Relationship between array length @achperature.

Figure 2.10Abnormal structures of the arrays synthesized under (29@8a6d (b)
800°C.

Figure 2.11 shows therass sectional SEM images of the arrafsthe arrays
synthesized under the temperatures of 720, 750 an8(Z80can be found that the

CNTs synthesizit at 780°C align in a much more random way than those at 720 and
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750°C. The alignments of the arrays at 720 and 9G@re relatively good while the
CNTs in these arrays are still in an obviously wavy structure. MWCNT sheebt
be drawn from all thesthree arrays. Because the array synthesized atG@%the
longest one and has a relatively better alignment,°Z56 considered to be the best

temperature for synthesis of spinnable array.

Figure 2.11 Cross sectional SEM images of the arrsysthesiedunder different
temperatures: (a) 72C; (b) 750°C; (c) 780°C.
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2.3.2 Effect of heating rate on array synthesis

Heating rate is the speed for CVD instrument to increase the temperature from
room temperature to thegperatingtemperature. In this section, three different heating
rates have been operated to investigate the effect of heating rate on array synthesis.
The detail experimental conditions can be found in Table 2.2. Limited by the power of

the CVD instrument, the fast heating rate can be achieved at@min.

Table 2.2Experimental conditions: Different heating rates.

Temperature  Heating rate CoHg H, Fe thickness
(°C) (°C/min) (sccm) (sccm) (nm)
18.5
750 25 30 90 15
40

As Figure 2.12 shows, the array length decreases with the increase of heating rate.
An average length of 432.&7 mhas been achieved at the rate 0P@0@min. However,
as mentioned above, alignment is the key factor which determines the spinning ability
of the array and the morphology of the CNTs in the array can be found in Figure 2.13.
As Figure 2.13 showghe CNTs showvavelike shaps and theres a lot of space
among themnat the rate of 18.8C /min. On the other hand, CNTs at 4C /min are
straighter in thegrowth direction and stand much more closely. Thusan be
concluded thabetter alignment is achieved with the increase of heatingldaweever,
all these three samples failed in the sheet drawing tests, which mains othepnenditi
still need furtheradjusting Because the array synthesized at the rate GICABnIn
obtains the best alignment, 40 /min is considered to be the optimal heating rate for

the synthesis of spinnable array.
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Figure 2.12Relationship between array length @achperature.

e T

Figure 2.13 Cross sectional SEM images of the arrays syntbdsiader different

heating rates: (a) 18% /min; (b) 25°C /min; (c) 40°C/min.
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It can be found that the heating rate greatly influences the alignment of the array.
As mentioned in section 2.2.1, the CNT grows on thep&iticle during the CVD
process and the vertical alignment is because of the interaction amorndehgjty
CNTs. Trerefore, the alignment is determined by the density of CNTs which is finally
determined by the density of Fe particles. Figure 2.14 shows the SEM images of the
Fe patrticles at the heating rates of 1@l 40°C /min. It can be observed that when
the heatg rate is slow, the sizes of particles tend to become larger and uneven
comparing to the fast rate. The large and uneven sizes decrease the density of particles
and further lead to the poor alignment in the array. This phenomenon is considered to
be causeé by the Ostwald ripening effef19-21]. Ostwald ripening effect is an effect
that dissolution of small particleendsto redeposion the surfaces of larger particles.

As shown in Figure 2.15, the Fe film is split into Fe particles during the heating
period. Due to the Ostwald ripening effethe Fe migration takes place and Fe
migrates from smaller particles to larger particles. This causes that the larger particles
become even larger. Because Ostwald ripening continuously takes place, the longer
heating time aggravates this effect. Therefdhe slow heat rate leads to the smaller

density of Fe particle arfdrtherresults in the poor alignment of the MWCNT array.

Figure 2.14SEM images offte Fe particleat the heating rates of
(a) 18.5 andb) 40 °C/min.
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