
Noname manuscript No.
(will be inserted by the editor)

Shape optimization approach to defect-shape identification
with convective boundary condition via partial boundary
measurement

Julius Fergy T. Rabago · Hideyuki Azegami

Received: date / Accepted: date

Abstract We aim to identify the geometry (i.e., the shape and location) of a cavity inside
an object through the concept of thermal imaging. More precisely, we present an identifi-
cation procedure to determine the geometric shape of a cavity with convective boundary
condition in a heat-conducting medium using the measured temperature on a part of the
surface of the object. The inverse problem of identifying the cavity is resolved by shape op-
timization techniques, specifically by minimizing a least-squares type cost functional over
a set of admissible geometries. The computation of the first-order shape derivative or shape
gradient of the cost is carried out through minimax formulation, which is then justified by
the Correa-Seeger theorem coupled with function space parametrization technique. We fur-
ther characterize its boundary integral form using some identities from tangential calculus.
Then, we utilize the computed expression for the shape gradient to implement an effec-
tive boundary variation algorithm for the numerical resolution of the shape optimization
problem. To avoid boundary oscillations or irregular shapes in our approximations, we exe-
cute the gradient-based scheme using the H1 gradient method with perimeter regularization.
Also, we propose a novel application of the said method in computing the mean curvature
of the free boundary appearing in the shape gradient of the cost functional. We illustrate
the feasibility of the proposed method by testing the numerical scheme to several cavity
identification problems. Additionally, we also give some numerical examples for the case of
corrosion detection since its inverse problem interpreted in the framework of electrostatic
imaging is closely related to the focused problem.
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1 Introduction

In this work we are primarily concern with a nonlinear inverse-geometry heat transfer prob-
lem where the shape solution is found based on the temperature measured on a part of the
boundary of the object. Our particular interest is the identification of the shape and location
of a defect with convective boundary condition.

1.1 Background of the Study

The means of recovering the shape of a defect, i.e., a cavity, corrosion, etc., using inter-
nal thermal properties of an object is called thermal imaging (the static temperature and
heat flow are measured). Such a procedure is popular in the fields of civil and mechanical
engineering, and is widely employed in non-destructive testing and evaluation. It has the
additional advantage of allowing defect inspection via existing surfaces [38]. Under this
setup, the specimen is heated on a part of its surface becoming an assigned temperature and
the resulting temperature response on the remaining part is observed. Such arrangement for
an identification task corresponds to a partially overdetermined boundary data (whereas a
complete use of the specimen’s surface for inspection or measurement results to a complete
overdetermined boundary data). Another process of detecting defects that is closely related
to thermal imaging is called electrostatic imaging. In this case, the static voltage and sur-
face current measurements are used to determine the conductivity distribution in the interior
of the specimen (see, e.g., [41]). This technique is usually applied to corrosion detection
problems. Both methods are widely used in engineering sciences, and have already gained
considerable interests from many mathematicians and researchers working in the area of
geometric inverse problems. As we have witnessed, these problems still continue to attract
attentions of scientists and researchers as they remain challenging both in terms of their
mathematical and numerical aspects.

Quite recently, concerning the theoretical aspect of a related problem, Bacchellli [11]
studied the problem of determining the corroded portion of the boundary of an n-dimensional
body (n= 2,3) and the impedance by two measures on the accessible portion of the boundary.
In her study, a Robin homogeneous condition was assumed on the unknown boundary part.
Meanwhile, Pagani and Pierotti [44] studied the inverse problem of recovering the shape of
a cavity or of a crack contained in a connected domain Ω, and the problem of reconstructing
part of the boundary ∂Ω itself, when a condition of the third kind or Robin condition is
prescribed on the defects. These authors proved a result of uniqueness by two measures.

In terms of experimental and numerical treatment of the problem, we have a very re-
cent work of Kurahashi et al. [38] on three-dimensional shape identification of defects in
a structure using the temperature history on the specimen’s surface. The authors applied a
finite element method to simulate the temperature distribution in the test piece, and the ad-
joint variable method was employed to identify the cavity’s shape. On the other hand, in
[36], Kazemzadeh-Parsi and Daneshmand presented a system identification scheme to de-
termine the geometric shape of a cavity with convective boundary condition, again, under
the context of thermal imaging. In their work, the authors proposed a new approach based
on non-boundary-fitted meshes and gradient smoothing technique to deal with the direct
problem and shape sensitivity analysis. Afterwards, the authors used a conjugate gradient
method for the optimization algorithm. The new approach, called as smoothed fixed-grid
finite-element method or SFGFEM, used in [36] was actually used only for the solution of
the forward problem. The main objective of the SFGFEM is to improve the accuracy of the
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formulation of the boundary-intersecting elements. In the said method, the homogenization
technique is disregarded and the element matrices for the boundary-intersecting elements
are expressed as domain integrals over the internal parts of these elements. The gradient
smoothing technique is then used to evaluate these integrals numerically via transferring
them to the line integration (see [36] for further details).

In this study, we shall use shape optimization techniques to solve a geometric inverse
problem inspired by the two above-mentioned investigations, thereby providing an alterna-
tive computational strategy in solving the inverse problem. Additionally, in the course of
resolving the inverse problem, we shall demonstrate how the primary information used in
the inversion procedure can be exploited to obtain the best result for the inversion process.

1.2 The Mathematical Model

In Kurahashi et al.’s work on shape identification of defects [38], the mathematical model
is formulated in the following fashion. The whole domain of the material or test piece with
a cavity is denoted by Ω ⊂ R3. Its boundary ∂Ω consists of the outside boundary Γ and
the boundary of the cavity ΓC. Furthermore, Γ consists of the heated boundary ΓP with a
prescribed temperature and the measurement boundary ΓM. The temperature distribution,
which we denote here by u, was assumed to satisfy the heat transfer equation ρc∂tu− k∆u =
0 having the following initial and boundary conditions:


u = u0 in Ω,

u = uP on ΓP,

−k∂nu = hM(u−u∞) on ΓM,

−k∂nu = hC(u−uC) on ΓC.

(1)

The constants ρ, c, k, hM, hC, u∞, uC and uP denote the density, specific heat, thermal con-
ductivity, the convective heat transfer coefficient of the outside boundary, the convective heat
transfer coefficient of the space inside the cavity, the ambient temperature, the temperature
inside the cavity and the prescribed temperature on the heated boundary ΓP, respectively.
Moreover, n represents the normal outward direction to the boundary and ∂nu := ∇u ·n de-
notes the normal derivative of u.

In this study, we shall instead consider a general steady-state heat transfer problem de-
fined on a two-dimensional connected bounded domain Ω. Similar to [38], its boundary ∂Ω
consists of two disjoint components; the outer boundary Γ, which is accessible for inspection
or measurements, and the boundary of an inner cavity ΓC. The boundary Γ is divided into
two parts, namely, ΓM and ΓP. Moreover, n represents the normal outward direction to the
boundary. The boundaries ΓP, ΓM and ΓC, respectively, denote the heated surface (or bound-
ary in the two-dimensional case), the outside surface where measurement is performed and
the surface of the cavity. Here we adopt the set of boundary conditions given in [38], specif-
ically taking into account the assumptions made by the authors on ΓC. We emphasize that
the convective boundary condition on ΓC was in fact due to the influence of the convective
heat transfer from the air within the cavity. This indication was based on the observation
made by Kurahashi et al. [38] on the experiment they conducted using the non-destructive
thermal testing method. In addition, we also include prescribed heat fluxes on the boundaries
ΓM and ΓC to cover a similar mathematical formulation considered in [36]. As a result, the
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governing equation and the boundary conditions are given as follows:
−k∆u = 0 in Ω,

u = uP on ΓP,

−k∂nu = hM(u−u∞)−QM on ΓM,

−k∂nu = hC(u−uC)−QC on ΓC.

(2)

The definitions of the constants are the same as before, but, in addition, QM and QC are
the respective prescribed heat fluxes on ΓM and ΓC. At this juncture, it is worth mentioning
that the governing equation for the case of corrosion detection problem can be obtained by
slightly modifying equation (2). In the literature, such problem is modelled by supposing
that a Laplace’s equation holds in the interior of the specimen and the effect of corrosion
is described by means of a boundary condition of the Robin condition. More precisely,
the detection problem may be stated as follows. We assume a bounded connected planar
domain Ω whose boundary ∂Ω is composed of two open disjoint parts, one of which is
available for observation (i.e., accessible for input and output measurements) and the other
one is inaccessible and in fact is unknown a priori. Then, by denoting the known portion by
Γ and the remaining part by ΓC = ∂Ω \ Γ̄, one describes the corresponding system of partial
differential equation (PDE) for the corrosion detection problem as follows:

−∆uD = 0 in Ω, uD = f on Γ, ∂nuD +λuD = 0 on ΓC, (3)

where n is the exterior unit normal to ΓC, f . 0 is an assigned function, and λ ⩾ 0 is a fixed
number. In (3), we put the subscript D in the variable u to emphasize that we are prescribed
with the Dirichlet data f on the accessible boundary Γ. In contrast, the variable uN will be
introduced in later discussion. Such problem has been examined, for instance, in [29]. The
study of such a model stems from a number of indications. A first indication is based on the
observation that corrosion tends to roughen a surface, which can be modeled by the intro-
duction of a thin coating characterized by rapid oscillations. In the limit where the thickness
of the coating goes to zero and the rapidity of the oscillations diverges, a Robin condition
has been derived as was shown in [16]. Meanwhile, in the context of electrochemical cor-
rosion processes, the study can be based on Faraday’s law which says that the mass loss
is proportional to the normal current flux (see, e.g., [32, Section 3.1]). In [50], a potential
model of this kind of process is proposed, and as pointed out in [28], linearizing with respect
to the transfer coefficient, the nonlinear boundary conditions in [50] will eventually lead to
a Robin condition.

1.3 Shape Optimization Formulation

In the formulation of forward (or direct) problems, the geometric profile of the domain is
assumed to be known; i.e., the shape and the location of the defect are specified. Clearly,
in this situation, the mathematical problem is well-posed and the temperature distribution
over the entire solution domain can easily be determined. Conversely, in the case of inverse-
geometry problems, the shape and the location of the cavity is unknown a priori and must
be fully resolved using extra temperature measurements on a part of the outer boundary.
Such an additional information allows us to conduct inverse analyses for the given inverse
problem.
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In reference to problem (2), the additional temperature measurement, which we denote
here by uM, on the boundary ΓM will result to an overdetermined boundary condition of ΓM,
and therefore making it an ill-posed problem. The solution to the PDE system (2) with the
additional boundary condition u = uM on ΓM can be found by employing the methods of
shape optimization (see, e.g., the books [22,48]). This can be done by either tracking the
Dirichlet or Neumann data in a least-squares sense relative to L2(ΓM). In our case, since
we are prescribed with the Robin condition on ΓM, we shall track the Dirichlet data in a
least-squares sense relative to L2(ΓM) and consider the minimization problem

min
ΓC∈Oad

{
J (ΓC) :=

1
2

∫
ΓM

(u−uM)2 ds
}
, (4)

where Oad is some admissible set of geometries and the state variable u := u(Ω) satisfies the
mixed boundary value problem (BVP) (2). In this work, we shall consider Ck,1-domains,
k ⩾ 1. Particularly, in the case of cavity identification problem, we assume that Ω has C1,1

regularity in order to establish the shape derivative of the cost functional J (ΓC).
In the case of corrosion detection problem, if, for instance, Ω is a Ck,1 domain, we may

let g ∈ Hk−1/2(Γ) be an admissible boundary measurement for the Neumann data, i.e., g be-
longs to the image of the Dirichlet-to-Neumann operator defined by ΛΓ : u|Γ ∈ Hk+1/2(Γ) 7→
∂nu ∈ Hk−1/2(Γ), where u is the unique solution of (2). The additional boundary condition
∂nu = g on ΓC again results to an overdetermined boundary problem, which, as we have
mentioned, can be treated by shape optimization techniques. In this situation, one may opt
to track the Neumann data in the L2(Γ) least-squares sense and consider the optimization
problem

min
ΓC∈Õad

{
JN(ΓC) :=

1
2

∫
Γ

(∂nuD −g)2 ds
}
, (5)

where Õad denotes some admissible set of geometries. However, such option for the cost
functional requires more regularity of the state variable u to be well defined. For instance,
an H3-regularity (k = 2) of the state u is sufficient to obtain the shape derivative of JN with
respect to Ω. As a consequence, it may be impractical to use this functional in numerical
experiments where higher regularity of the state variables is not guaranteed.

Shape optimization strategies have already been applied in resolving geometric inverse
problems, particularly in identifying cavities in linear elasticity [13,30,31,39] and thermo-
elasticity [14], as well as in recovering an inclusion through the notion of electrostatic imag-
ing [1]. In [13] and [14], the inverse problem in linear elasticity was examined using a
complete overdetermined boundary data, while in [1,30,31] and [39], the overdetermined
condition only appears on a part of the boundary. Recently, a related problem concerning a
shape optimization approach for the inverse obstacle problem with generalized impedance
boundary conditions was investigated in [19]. In the aforementioned study, however, a com-
plete boundary measurement was used for solving the inverse problem and, in addition,
a Neumann-tracking type cost functional was utilized in realizing the shape identification
procedure. Furthermore, a closely similar problem, but nevertheless the same, was also ex-
amined in [49]. The author consider a boundary detection problem inspired by the notion of
electrostatic imaging. The mathematical model involves a boundary condition of the third
kind on a part of the accessible and unknown boundary of the planar domain, and the geom-
etry of the inaccessible boundary was determined using the Cauchy data on the other part of
the accessible boundary. Also, a Neumann-tracking type cost functional was used to exam-
ine the inverse problem wherein the main purpose of the study is to address the question of
existence of solution for the given shape optimization problem. We mentioned that there are
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other known approaches in resolving inverse problems. One approach that is based on the
method of fundamental solutions was used in [33,34] to solve an inverse problem in linear
elasticity setting.

Noting in mind the above-mentioned works, and to the best of our knowledge, this
present work is the first to examine a geometric inverse problem with partial boundary mea-
surement consisting of a convective boundary condition on the unknown boundary under the
framework of shape optimization with a Dirichlet-tracking type cost functional. We stress
that the present formulation and methodology in treating the given inverse problem closely
mimics actual experimental procedure such as that seen in [38]. These facts further warrant
the necessity to accomplish the present investigation. In this work, we shall focus our at-
tention to the computation of the first-order shape derivative or shape gradient of the cost
functional J (ΓC) since our ultimate goal is to carry out a shape optimization approach for
the cavity identification problem. Nevertheless, the shape derivative of the cost functional
JN(ΓC), as well as the shape derivative of the corresponding cost functional for tracking
the Dirichlet data for the corrosion detection problem, can easily be established following
the same line of arguments in exhibiting the case for the focused problem.

The rest of the paper is structured as follows. In Section 2, we briefly discuss the requi-
sites of our present investigation. The minimax formulation and formal computation of the
shape gradient is presented in Section 3. Then, in Section 4, we give details on an iterative
solution procedure based on the so-called H1 gradient method. A variety of numerical stud-
ies are then discussed in Section 5. Lastly, in Section 6 a conclusion is stated and topics for
future investigation are offered.

2 Preliminaries

In this section we provide the requisites of our investigation. First, we briefly discuss the
variational form of the state problem. Then, we give a short discussion of the velocity
method from shape optimization which can be used to compute the shape derivative of the
functional J (ΓC). We end the section by giving out some useful identities from tangential
calculus. The formal analysis of these topics are delivered, for instance, in [22,48].

2.1 Variational Form of the State Problem

In this work, we consider the Hilbert space

W(Ω) = {φ ∈ H1(Ω) : φ|ΓP = 0},

endowed with the norm

∥φ∥2
W (Ω) := ∥∇φ∥2

L2(Ω) + ∥φ∥
2
L2(ΓM) + ∥φ∥

2
L2(ΓC), (6)

and a linear manifold defined by

Wv(Ω) = {φ ∈ H1(Ω) : φ|ΓP = v},

for v ∈ H
1
2 (ΓP).
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Given the above definition, the variational formulation of (2) is given as follows: find
u ∈ H1(Ω) such that∫

Ω

k∇u · ∇φdx+
∫
ΓM

{hM(u−u∞)−QM}φds+
∫
ΓC

{hC(u−uC)−QC}φds = 0, (7)

for all φ ∈ W(Ω), and u = uP on ΓP. Equation (7) can be shown to have a unique solution
through Lax-Migram lemma.

2.2 The Velocity (or Speed) Method

Let V be an element of C([0, ε);Dk (R2,R2)), for some integer k ⩾ 2 and a small real number
ε > 0, where Dk (R2,R2) denotes the space of k-times continuously differentiable functions
with compact support contained in R2. The field V(t)(x) = V(t, x), x ∈ R2, is an element of
Dk (R2,R2) which may depend on t ⩾ 0. It generates the transformations Tt (V)(X) :=Tt (X)=
x(t; X), t ≥ 0, X ∈ R2, through the differential equation

d
dt

x(t; X) = V(t, x(t; X)), x(0; X) = X,

with the initial value X given. We denote the ‘transformed domain’ Tt (V)(Ω) at t ⩾ 0 by
Ωt (V), or simply Ωt =: Tt (Ω). In the case of (single) cavity identification problem, the do-
main Ω = Ω0 in consideration is of annular type with boundary ∂Ω which is the union of
two disjoint sets: the known (accessible) boundary Γ := ΓM ∪ ΓP and the unknown (inac-
cessible) boundary ΓC. In this work, the evolutions of the domain Ω are described using
time-independent velocity fields

V ∈ Θk := {V ∈ (Ck,1(Ω),R2) : V|Γ = 0}. (8)

In above definition, every admissible deformation field V forces Γ to remain invariant. For
t ∈ [0, ε], where ε is some sufficiently small number, one can show, following the line of
arguments in [9, Lemma 11], that Tt is invertible, and that Tt,T−1

t ∈D1(R2,R2). Furthermore,
the quantity It := det DTt (X) is strictly positive, where DTt (X) is the Jacobian matrix of the
transformation Tt = Tt (V) associated with the velocity field V. In this paper, for simplicity,
we write At = It (DT−1

t )(DTt )−T and wt = It |(DTt )−Tn| (referred to as the Jacobian matrix
of Tt with respect to the boundary ∂Ω), where (DTt )−1 and (DTt )−T denote the inverse and
inverse transpose of the the Jacobian matrix DTt , respectively.

2.3 Some Useful Lemmas

The following lemmas will be essential to our analysis.

Lemma 1 Let φt ∈ L1(Ωt ) and ψt ∈ L1(∂Ωt ), then φt ◦Tt ∈ L1(Ω) and ψt ◦Tt ∈ L1(∂Ω),
respectively. Moreover, the following domain and boundary transformations hold:∫

Ωt

φt dxt =
∫
Ω

φt ◦Tt It dx,
∫
∂Ωt

ψt dst =
∫
∂Ω
ψt ◦Ttwt ds.
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Lemma 2 Let Ω be a C1,1-domain with boundary ∂Ω = Γ ∪ ΓC and V ∈ Θ1. For φ,ψ ∈
H2(Ω), we have∫

Ω

k A′
0∇φ · ∇ψ dx =

∫
Ω

k∆φ(V · ∇ψ)dx+
∫
Ω

k∆ψ(V · ∇φ)dx+
∫
ΓC

k(∇φ · ∇ψ)V ·nds

−
∫
ΓC

k∂nφ(V · ∇ψ)ds−
∫
ΓC

k∂nψ(V · ∇φ)ds,

where A′
0 = divVI2 −DV−(DV)T and I2 denotes the second-order identity matrix.

Proof The identity can be confirmed without any difficulty following the proof of [9, Lemma
32]. Alternatively, we may proceed briefly as follows. Since φ,ψ ∈ H2(Ω), we have ∇2φ,∇2ψ ∈
L2(Ω), ∆φ,∆ψ ∈ L2(Ω), and we infer that ∇φ · ∇ψ ∈ W1,1(Ω). Moreover, we have the classi-
cal identity (see, e.g., [1, Eq. (3.10)])

∇φ · A′
0∇ψ = (∇φ ·V)∆ψ+ (∇ψ ·V)∆φ−divB,

where B = (∇φ ·V)∇ψ + (∇ψ ·V)∇φ− (∇φ · ∇ψ)V. Then, the desired result easily follows
from the application of the divergence theorem (which is allowed since Ω is a bounded C1,1

domain) together with the definition of elements of the set Θ1.

Here, we stress that we do not actually have the higher regularity H2(Ω) for the unique
solution u of the variational equation corresponding to our state problem (2). This lack of
regularity is primarily due to the fact that the solution may be ‘singular’ around the transition
points between ΓP and ΓM (see, e.g, [6] and the references therein), even if we have a C1,1

regularity on the boundary ∂Ω. We point out that we need an H2 regularity for the state
solution u (as well as an H2 regularity for the adjoint solution p which we will describe later
on) for us to be able to write the shape gradient of the cost in terms of just a boundary integral
through the aid of Lemma 2. In this work, we will utilize the boundary expression for the
shape gradient to formulate a boundary variation algorithm for the numerical realization
of the minimization problem (4). We emphasize, however, that, away from the point of
singularities, the solution to (2) in fact has the higher regularity H2. So, to get around the
difficulty of having the desired regularity for the state solution, we can instead subtract off
the singularities appearing at the points of transition between ΓP and ΓM from the solution
of (2) and then consider the solution of a related Laplace equation which satisfies related
boundary conditions, now having an H2 regularity, as our new state solution. This remedy
could be realized by combining the ideas issued in [12,42,51].

Finally, to end this section, we recall the so-called tangential Green’s formula (cf. [22,
Eq. 5.27, p. 498]) which is a key identity in computing the boundary expression for the
shape derivative of J (ΓC).

Lemma 3 (Tangential Green’s formula) Let U be a bounded domain of class C1,1 and
Ω ⊂ U with boundary Γ. Also, let V ∈ C1,1(U,R2) and f ∈ W2,1(U) be given, then∫

Γ

( f divΓV +∇Γ f ·V)ds =
∫
Γ

κ f V ·nds, (9)

where κ is the mean curvature of Γ and the tangential gradient ∇Γ is given by

∇Γ f = ∇ f |Γ −(∂n f )n.
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3 Shape Gradient by Minimax Differentiability

In this section we shall demonstrate how the shape gradient of the cost functional can be
established through a minimax of a suitable Lagrangian functional.

3.1 Minimax formulation

In the sequel, we present the minimax formulation of the cost functional J (ΓC). To begin
with, we define the functionals F and L as follows:

F (Ω, φ) = 1
2

∫
ΓM

(φ−uM)2 ds,

L (Ω, φ,ψ) =
∫
Ω

k∇φ · ∇ψ dx+
∫
ΓP

(φ−uP)µds+
∫
ΓM

{hM(φ−u∞)−QM}ψ ds

+

∫
ΓC

{hC(φ−uC)−QC}ψ ds, (10)

where µ := ∂nψ ∈ H
1
2 (ΓP) is a Lagrangian multiplier.

Next, we construct the functional G (Ω, φ,ψ) as

G (Ω, φ,ψ) =F (Ω, φ)+L (Ω, φ,ψ),

where φ ∈ H1(Ω) and ψ ∈ W(Ω). Given this definition, one can check that

J (ΓC) = min
φ∈H1(Ω)

sup
ψ∈W (Ω)

G (Ω, φ,ψ)

since

sup
ψ∈W (Ω)

G (Ω, φ,ψ) =
{
F (Ω, φ), if φ = u,
+∞, else.

The Lagrangian G is convex continuous with respect φ and is concave continuous with
respect to ψ. Therefore, in accordance with the result issued in [24, Proposition 1.6, pp.
169-170] by Ekeland and Temam, the functional has a saddle point (u, p) if and only if (u, p)
solves the following system of equations:

L (Ω,u, φ) = 0, ∀φ ∈ W(Ω), (11)

dφF (Ω,u;φ)+dφL (Ω,u, p;φ) = 0, ∀φ ∈ W(Ω). (12)

The first equation is actually equivalent to the state problem (2), hence the notation u. Mean-
while, the second one can easily be shown to be equivalent to the adjoint state system

−k∆p = 0 in Ω,

p = 0 on ΓP,

−k∂np = hMp+u−uM on ΓM,

−k∂np = hCp on ΓC.

(13)

The variational formulation of equation (13) reads as follows: find p ∈ W(Ω) such that∫
Ω

k∇p · ∇φdx+
∫
ΓM

(hMp+u−uM)φds+
∫
ΓC

hCpφds = 0, (14)
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for all φ ∈ W(Ω). The existence of unique solution to system (14) can easily be verified
through the application of Lax-Milgram lemma.

In summary, the following result is established.

Proposition 1 The functional J (ΓC) given by

J (ΓC) = min
φ∈H1(Ω)

sup
ψ∈W (Ω)

G (Ω, φ,ψ) (15)

has the unique saddle point (u, p) which is completely characterized by systems (2) and (13).

The previous analysis also holds in the transformed domainΩt under the action of a velocity
field V for t ⩾ 0, i.e., we have

J (ΓCt ) = min
φ∈H1(Ωt )

sup
ψ∈W (Ωt )

G (Ωt, φ,ψ) (16)

whose unique saddle point (ut, pt ) ∈ H1(Ωt )×W(Ωt ) is characterized by

L (Ωt,ut, φ) = 0, ∀φ ∈ W(Ωt ), (17)

dφF (Ωt,ut ;φ)+dφL (Ωt,ut, pt ;φ) = 0, ∀φ ∈ W(Ωt ). (18)

In the next section we discuss how the right side of equation (16) can be utilized to find the
shape derivative of J (ΓC).

3.2 Formal application of Correa-Seeger theorem.

The first-order shape derivative dJ (ΓC)[V] of J (ΓC), along the velocity field V, can be
obtain by evaluating the limit d j(0) = limt↘0[ j(t)− j(0)]/t where j(t) :=J (ΓCt ). In view of
(15) and (16), this can be accomplished by taking the derivative of the min-max functional
G (Ωt, φ,ψ) with respect to the parameter t ⩾ 0. Such technique is, in particular, applicable to
linear PDEs and convex cost functions (see, e.g., [46,47]). To accomplish the task, we need
a theorem that would give the derivative of the minimax with respect to the parameter t ⩾ 0
at t = 0. Fortunately, a theorem due to Correa and Seeger [21] is already at our disposal,
providing us a powerful tool to fulfil the task. However, the theorem cannot be directly
applied to our case because of the ‘time’ dependence of the underlying function spaces
appearing in the minimax formulation (16) (note that the Sobolev spaces H1(Ωt ) and W(Ωt )
both depend on t). To address this issue and obtain an infimum with respect to a function
space that is independent of t, we can use one of the two strategies offered in [22], namely:
(i) function space parametrization technique and (ii) function space embedding technique.

For the computation of the shape gradient, we shall use the first mentioned technique.
The technique consists of transporting the quantities defined in the variable domain Ωt back
onto the reference domainΩ. Once it is employed, the usual methods in differential calculus
can now be applied since the functionals involved are now defined in a fixed domain Ω. The
idea is to parametrize the functions in H1(Ωt ) by elements of H1(Ω) through the transforma-
tion φ 7→ φ◦T−1

t : H1(Ω)→ H1(Ωt ). Since Tt and T−1
t are diffeomorphisms (cf. [9, Theorem

7]), it transforms the domain Ω onto Ωt and changes the boundary ΓCt to ΓC, noting Γ is
fixed. In particular, since V is a C1,1 regular, we have φ ◦T−1

t ∈ H1(Ωt ) for all φ ∈ H1(Ω),
and conversely, ψ ◦Tt ∈ H1(Ω) for all ψ ∈ H1(Ωt ). Also, we introduce the parametrization
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H1
ΓP,0(Ωt ) = {φ ◦T−1

t : φ ∈ W(Ω)}. These parametrizations do not affect the value of the
minimum of J (ΓCt ) but changes the Lagrangian functional G :

J (ΓCt ) = min
φ∈H1(Ω)

sup
ψ∈W (Ω)

G (Ωt, φ ◦T−1
t ,ψ ◦T−1

t ).

Given the above functional, we define the new Lagrangian

G̃ (t, φ,ψ) := G (Ωt, φ ◦T−1
t ,ψ ◦T−1

t ) =F (Ωt, φ ◦T−1
t )+L (Ωt, φ ◦T−1

t ,ψ ◦T−1
t ), (19)

for φ ∈ H1(Ω) and ψ ∈ W(Ω). The unique saddle point (ut, pt ) ∈ H1(Ω)×W(Ω) of this new
Lagrangian satisfies the equations

L (Ωt,ut ◦T−1
t , φ ◦T−1

t ) = 0, (20)

dφF (Ωt,ut ◦T−1
t ;φ ◦T−1

t )+dφL (Ωt,ut ◦T−1
t , pt ◦T−1

t ;φ ◦T−1
t ) = 0, (21)

for all φ ∈ W(Ω).

Remark 1 Comparing these expressions with the characterization of the minimizing element
(ut, pt ) of G (Ωt, ·, ·) on H1(Ωt )×W(Ωt ) which satisfies equations (17) and (18), we see that
ut = ut ◦T−1

t , ut = ut ◦Tt , pt = pt ◦T−1
t and pt = pt ◦Tt . So, (ut, pt ) is actually the solution

(ut, pt ) of equations (17) and (18) in Ωt transported back onto the fixed domain Ω by the
change of variables induced by the transformation Tt . In particular, since ut ∈ WuP (Ωt ), we
see that ut is in WuP (Ω).

Using domain and boundary transformations from Lemma 1, we can rewrite the Lagrangian
G̃ on Ω as

G̃ (t, φ,ψ) = F̃ (t, φ)+ L̃ (t, φ,ψ), (22)

where

F̃ (t, φ) = 1
2

∫
ΓM

wt (φ−uM)2 ds

L̃ (t, φ,ψ) =
∫
Ω

k At∇φ · ∇ψ dx+
∫
ΓP

wt (φ−uP)∂nψ ds+
∫
ΓM

wt [hM(φ−u∞)−QM]ψ ds

+

∫
ΓC

wt [hC(φ−uC)−QC]ψ ds.

The unique saddle point of this Lagrangian still satisfies equations (20) and (21) whose
domain of integration can also be transported back to Ω using Lemma 1. More precisely, the
unique saddle point (ut, pt ) ∈ H1(Ω)×W(Ω) of G̃ satisfies

L̃ (t,ut, φ) = 0, ∀φ ∈ W(Ω), (23)

dφF̃ (t,ut ;φ)+dφL̃ (t,ut, pt ;φ) = 0, ∀φ ∈ W(Ω). (24)

Henceforth we will employ the theorem of Correa and Seeger [21] (see Theorem 1 in Ap-
pendix) to establish the shape derivative of J (ΓC). The theorem actually provides condi-
tions which allows to conclude the equality dJ (ΓC)[V]= ∂t G̃ (t,u, p)|t=0 without employing
the material derivative of the state variable (see, e.g., [9, Definition 12]). The application of
the theorem particularly demands the verifications of four conditions (H1)–(H4) in Theorem
1. Following the ideas issued in [22, Section 5.5], these conditions of the theorem are easily
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satisfied as attested in the Appendix. Hence, we can conclude from Theorem 1 that the shape
derivative of J (ΓC), along a deformation field V ∈ Θ1, is given by

dJ (ΓC)[V] = ∂t G̃ (t,u, p)|t=0 =

∫
Ω

k A′
0∇u · ∇pdx+

∫
ΓC

w′
0{hC(u−uC)−QC}pds, (25)

where A′
0 = divVI2 − DV− (DV)T and w′

0 = divΓV. Notice that the above expression for
the shape gradient of J (ΓC) is composed of a volume and a boundary integral. This ex-
pression, however, can be further simplified and expressed in terms of just a boundary in-
tegral, but this additional property requires higher regularity of the state and adjoint state
variables u and p. We emphasize that the derivative dJ (ΓC)[V] does exist for all V ∈ Θ1
and the mapping V → dJ (ΓC)[V] : Θ1 → R is linear and continuous (cf. [10]). Hence, ac-
cording to Zolésio-Hadamard structure theorem [22, Theorem 3.6, Section 3.4], there is a
function GΩ defined on the boundary ΓC (i.e., a scalar distribution g in D1(ΓC)′) such that
dJ (ΓC)[V] =

∫
ΓC
GΩV ·nds. The boundary expression for the shape gradient can be ob-

tained by applying the identities in Lemma 2 and Lemma 3. The application of Lemma 2,
however, is not straightforward because of the singularity appearing at the transition points
between ΓP and ΓM. To handle such issue, we can combine the ideas developed in [12,42,
51] to control the singularities appearing on the fixed boundary Γ and arrive at a related
problem corresponding to (2) and (13) with the same boundary condition on ΓC. As a re-
sult, the weak formulation corresponding to these new PDE systems respectively admits a
unique solution possessing the higher regularity H2. Since the perturbation field V vanishes
on Γ, then, even if we subtract off the singularities on the boundary condition specified on
the known boundary Γ, the resulting expression for the shape gradient will still consists of
only the integrals defined over the free boundary ΓC. Denoting the H2 regular solutions of
the controlled PDE systems corresponding to (2) and (13) by ũ and p̃, respectively, we can
show that, on the free boundary ΓC, we have ũ = u and p̃ = p. By these arguments, we can
now apply Lemma 2 and Lemma 3 to (25), and finally write dJ (ΓC)[V] as the boundary
integral

dJ (ΓC)[V] =
∫
ΓC

k(∇u · ∇p)V ·nds+
∫
ΓC

(hC(u−uC)−QC)(V · ∇p)ds

+

∫
ΓC

hCp(V · ∇u)ds+
∫
ΓC

∂n[(hC(u−uC)−QC)p]V ·nds

+

∫
ΓC

κ(hC(u−uC)−QC)pV ·nds−
∫
ΓC

V · ∇[(hC(u−uC)−QC)p]ds

=

∫
ΓC

k(∇u · ∇p)V ·nds+
∫
ΓC

∂np(hC(u−uC)−QC)V ·nds

+

∫
ΓC

[hCp∂nu+ κ(hC(u−uC)−QC)p]V ·nds.

By writing G := GΩ as

G = k∇u · ∇p+ k∂np(hC(u−uC)−QC)+ hCp∂nu+ κ(hC(u−uC)−QC)p, (26)

we see that, indeed, the shape derivative of the cost function J (ΓC) along a deformation
field V over Ω can be expressed as dJ (ΓC)[V] =

∫
ΓC
GV ·nds.

We formalize our result in the following proposition.
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Proposition 2 Let Ω ⊂ R2 be a doubly connected, bounded C1,1 domain with boundary
∂Ω = Γ̄P ∪ Γ̄M ∪ΓC and V ∈ Θ1. Then, the cost functional

J (ΓC) =
1
2

∫
ΓM

(u−uM)2 ds,

where u satisfies the state problem (2), is shape differentiable. Moreover, for a given velocity
field V ∈ Θ1, its derivative dJ (ΓC)[V] in boundary integral form is given by

dJ (ΓC)[V] =
∫
ΓC

k(∇u · ∇p)V ·nds+
∫
ΓC

∂np(hC(u−uC)−QC)V ·nds

+

∫
ΓC

[hCp∂nu+ κ(hC(u−uC)−QC)p]V ·nds, (27)

where the adjoint state p satisfies the adjoint state problem (13), and κ represents the mean
curvature of ΓC.

The computational strategy issued above can easily be adapted to establish the shape gradi-
ent of the Neumann-data-tracking cost functional JN (ΓC) for the corrosion detection prob-
lem. Indeed, considering that the solution uD of the state problem (3) has an H3 regularity,
then one establishes the following result.

Proposition 3 Let Ω ⊂ U ⊂ R2 be a connected, bounded C2,1 domain with boundary ∂Ω =
Γ∪ΓC. For a given velocity field V ∈ ΥN, where

ΥN := {V(t, x) ∈ C2,1([0, εN]×Ω,R2) : V|Γ∪∂U = 0},

the shape functional JN(ΓC) = 1
2

∫
Γ
(∂nuD −g)2 ds is shape differentiable with

dJN(ΓC)[V] =
∫
ΓC

[∇uD · ∇pD + (κλ−2λ2)uDpD]V ·nds. (28)

Here, the state variable uD is the unique solution of (3) with f ∈ H
1
2 (Γ), and pD represents

the adjoint state variable which is the only solution to the BVP

−∆pD = 0 in Ω, pD = −(∂nuD −g) on Γ, ∂npD +λpD = 0 on ΓC. (29)

In above result, the set U is a connected bounded domain in R2 containing all deformations
of Ω under the transformation Tt and hence, is called as the hold-all or universal domain.
We point out that the H3 regularity of the state solution uD and the adjoint state solution pD
can only be guaranteed when Ω is C2,1 regular and, in addition, the observable boundary is
disjoint with the unknown boundary ΓC, i.e., dist(Γ,ΓC) > 0. If, however, ΓC = ∂Ω \ Γ̄, then
uD and pD do not have higher regularity and are only elements of H1(Ω). Nevertheless, a
similar treatment (removing the singularities appearing on Γ) in the case of cavity detection
problem can be applied to get higher regularity for uD and pD.

Meanwhile, when the Neumann problem

−∆uN = 0 in Ω, ∂nuN = g on Γ, ∂nuN +λuN = 0 on ΓC, (30)

is given, the Dirichlet data can be tracked in a least-squares sense relative to L2(Γ) and we
may consider the minimization problem

min
ΓC∈Õad

{
JD(ΓC) :=

1
2

∫
Γ

(uN − f )2 ds
}
, (31)
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where Õad is some admissible set of geometries. In this case, the assumption that Ω is of
class C1,1, with boundary ∂Ω = Γ∪ ΓC where Γ∩ ΓC = ∅, and g ∈ H3/2(Γ), is sufficient to
establish the boundary expression for the shape gradient of JD(ΓC); that is, we have the
following proposition.

Proposition 4 Let Ω ⊂ U ⊂ R2 be a connected, bounded C1,1 domain with boundary ∂Ω =
Γ∪ΓC. For a given velocity field V ∈ ΥD, where

ΥD := {V(t, x) ∈ C1,1([0, εD]×Ω,R2) : V|Γ∪∂U = 0},

the shape functional JD(ΓC) = 1
2

∫
Γ
(uN − f )2 ds is shape differentiable with

dJD(ΓC)[V] =
∫
ΓC

[∇uN · ∇pN + (κλ−2λ2)uNpN]V ·nds. (32)

Here the state variable uN is the unique solution of (30) with g ∈ H3/2(Γ), and pN denotes
the adjoint state variable which is the only solution to the BVP

−∆pN = 0 in Ω, pN = −(uN − f ) on Γ, ∂npN +λpN = 0 on ΓC. (33)

Again, we point out that the assumption that ΓC and Γ are disjoint is vital in securing higher
regularity for the solutions of the variational formulations corresponding to the PDE systems
(30) and (33). In the case when ΓC = ∂Ω\ Γ̄, the lack of higher regularity of uN and pN again
arise. Nevertheless, and as we mentioned before, such issue can be treated with the aid of
the results exhibited in [12,42,51]. Further investigation regarding this problem will be the
subject of our future work.

Now, the computed boundary expression for the shape gradient of the cost function
J (ΓC) (resp. JN(ΓC) and JD(ΓC)) allows us to numerically solve the minimization prob-
lem (4) (resp. (5) and (31)) by means of a gradient-based scheme. In the next section, we
will describe an iterative process, employing a boundary variation algorithm based on the
H1 gradient method, to solve the minimization problem (4). Then, we will illustrate its fea-
sibility by solving various numerical examples.

4 Numerical Approximation

It is well-known that geometric inverse problems, such as the identification of defects, are
ill-posed. In most cases, especially when detection is carried out only through boundary
measurements, one can expect a severely ill-posed problem without too accurate recon-
structions of the exact solution [15].

Here we shall not tackle the issue of identifiability, rather we shall proceed directly on
the numerical approximation procedure of the optimization problem. Nonetheless, we shall
see in our numerical results that a single measurement provides good enough identifications
of the cavities. As alluded in Introduction, an identifiability result concerning a related prob-
lem was recently proved by Bacchelli in [11] for Robin boundary conditions, and in the case
of generalized impedance boundary condition, the problem was addressed by Cakoni et al.
in [17]. Meanwhile, the question of existence of optimal solution for the shape optimization
problem (4) subject to (2) can be treated in a similar fashion as in [49], exploiting the ideas
furnished in [25] (but whose details will not be further issued here).

In the next section we discuss the method we use for the numerical realization of the
optimization problem.
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4.1 The H1 Gradient Method

The iterative algorithm we use in our numerical experiment is based on the H1 gradient
method [3] (see also [4,5,7,8]) which was motivated by the traction method introduced
in [2]. For more details of this method (such as its application to optimal shape design
problems), we refer the readers to the aforementioned papers.

As in most situations, the numerical solution of the minimization (4) comprises in adopt-
ing an iterative process that decreases the cost value J (ΓC) at each iteration. Let us denote
by ΓkC the boundary of the cavity at the k-th iteration. Then, at the (k+1)-th iterative step, the
boundary Γk+1

C becomes Γk+1
C = {x+ tVk (x) : x ∈ ΓkC}, where t ⩾ 0 is a sufficiently small step

size parameter. The deformation field V is chosen such that it provides a decent direction
for the cost functional J (ΓC). Referring to [5], if such a V exists, then it should satisfy

⟨V, φ⟩X = −⟨Gn, φ⟩L2(ΓC), (34)

where G denotes the kernel of the shape gradient given by (26), for all φ taken from some
appropriately chosen functional space X. The choice of the scalar product in (34) is crucial
for the development of an efficient numerical scheme for shape optimization problems. In
[4], the authors proposed the traction method [2] to address some irregularity issues in shape
optimization problems. This approach is based from the regularization of the descent direc-
tion by means of a scalar product inspired by the linear elasticity equation. Quite recently,
a comparison of the L2, H1 and H−1 scalar products defined on a surface was presented in
[23]. The authors, however, commented that the best choice is strongly dependent on the
application of interest. In [35], for instance, the author chose X := H1(Ω) to numerically
solve a shape optimization problem derived from a free-surface problem.

If one chooses, for instance, X := L2(ΓC), then V|ΓC = −Gn, and for this choice of the
function space, the shape gradient (27) is strictly negative. However, choosing V in this
way may result in subsequent loss of regularity of ΓC, hence creating oscillations of ΓC (cf.
[45]). In fact, it is generally known that direct application of gradient method often leads to
oscillating shapes [27] and these oscillations are actually caused by a lack of smoothness
of the shape gradient [4,45]. To address such issue in our numerical treatment, we need
to apply regularization methods. This is usually achieved by adding additional stabilizing
terms to the objective function, such as perimeter. Hence, taking into account these issuing
facts, we compute V through the H1 gradient method introduced in [5], given as

⟨V,φ⟩H1(Ω) = −⟨Gn,φ⟩L2(ΓC), ∀φ ∈ H1(Ω), (35)

where H1(Ω) := {φ = (φ1, φ2) : φ1, φ2 ∈ H1(Ω)}, coupled with perimeter penalization, to
get rid of the irregularity issues arising in the shape optimization problem. With perimeter
penalization, the cost function becomes J (ΓC)+ βP(Ω), where P(Ω) :=

∫
∂Ω

1ds, whose
corresponding first-order shape derivative, along some deformation field V ∈ Θ1, is easily
computed as dP(Ω)[V] =

∫
ΓC
κV · n ds. Here, β ⩾ 0 is some small fixed parameter. Given

this new cost function, we define the kernel G̃ as

G̃ := G+ βκ. (36)

Here, we remark that the resulting deformation field V (also referred to in some literature
as the Sobolev gradient [43]) calculated using (34) with X := H1(Ω) actually produces an
extension ofGn over the entire domain, which may be shown to have not only a regularizing
effect on the boundary (cf. [45]) but also preconditions the descent direction [35].
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4.2 The Boundary Variation Algorithm

Before giving the optimization algorithm, we remark that in view of the previous discus-
sions, the exact minimization problem now reads as

min
Ω∈Oad

{
1
2

∫
ΓM

(uΩ −uM)2 ds+ β
∫
∂Ω

1ds
}
, (37)

where the state variable uΩ satisfies the mixed BVP (2), and Oad denotes admissible set of
geometries defined as

Oad =
{
Ω ⊂ R2 :Ω is a connected bounded C1,1 domain, with boundary ∂Ω = Γ∪ΓC

such that dist(Γ,ΓC) > d0, for some small number d0 > 0} .

Now we give the optimization algorithm which is structured as follows:

Algorithm The boundary variation algorithm

1: Choose an initial shape Ω0;
2: Solve the state equation (2) and adjoint state equation (13) on the current

domain Ωk using finite element;
3: Compute the descent direction Vk by using (35), which amounts to solving

the following system

−∆V+V = 0 in Ω, V = 0 on Γ, ∂nV = −G̃n on ΓC,

with Ω =Ωk ;
4: Modify the current domain by Vk to obtain a new domain Ωk+1, i.e., set
Ωk+1 := {x+ tkVk (x) : x ∈ Ωk }, for some sufficiently small scalar tk > 0.

We implement the above algorithm in FREEFEM++ [26] with the following general
setup. In Step 2, we use a P2 finite elements discretization to solve the state equation (2)
and adjoint state equation (13). In Step 3, we choose the penalization parameter β ⩾ 0 by trial
and error, and we set its value as small as possible. Meanwhile, the choice of the descent step
size tk is not an easy task. If tk is too big, the algorithm is unstable and causes the solver to
crash; if it is too small, the rate of convergence is insignicant. To overcome this difficulty, we
will choose the step size tk in Step 4 on the basis of the scalar product ⟨Vk,Vk−1⟩H1(Ω) =: η.
We explained this as follows. We suspect that when η takes a negative value, the algorithm
is becoming unstable. In this case, we reduce tk (exactly by half) and initialize the next
iteration with the previous shape Ω(k−1). Contrary-wise, if η is positive, we increase the
step size parameter tk (i.e., we set tk+1 = (1+ ρ)tk, t0 = ρ/10, ρ ∈ {0.1,0.01}). Moreover, the
step tk is also decreased whenever there are reversed triangles within the mesh after the
update (this is done through the built-in function adaptmesh which is use to refine and avoid
degeneracy of the triangles in the meshes). Lastly, we vary the shape of Ω using movemesh
(which is also a function in FREEFEM++ that applies a global diffeomorphism to the mesh).

Regarding the computation of the deformation field V in Step 3, notice that the kernel
G̃ given in (36) involves the expression for the mean curvature κ of the boundary of the
cavity ΓC. In this work, we propose to apply the idea of the H1 gradient method with Robin
condition [5] in order to obtain a smooth extension of the normal vector field n for the
computation of the mean curvature κ. The working equation is similar to the one used in
[35] in computing the mean curvature in the context of free surface problems, but differs,
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however, in the domain of integration for the bilinear form of the first derivative. To state
more precisely, we evaluate the mean curvature as

κ := divΓC (nε),

where nε ∈ H1(Ω) is the smoothed (harmonic) extension of the normal vector field satisfying∫
Ω

ε∇nε : ∇φ dx+
∫
ΓC

nε ·φ ds =
∫
ΓC

n ·φ ds, ∀φ ∈ H1(Ω), (38)

and ε > 0 is some fixed small parameter, and the tensor scalar product ∇nε : ∇φ is given by
∇nε : ∇φ =∑2

i, j=1
∂nε j

∂xi

∂φ j

∂xi
∈ R. In all test cases we present here, we set ε = 0.0001 in (38)

for the computation of the mean curvature κ.

4.3 Stopping Criterion

Finally, to complete the algorithm, we need to specify how the iteration process shall be ter-
minated. Typically, an optimization loop for shape optimization problems is stopped when
the cost function reaches a certain small value or whether the shape gradients in some suit-
able norm are small enough. However, in the case of geometric inverse problems, it would
be better to rely on the notion of distances between sets. The most common choice would
be the concept of Hausdorff distance. It is defined for two sets Ω1,Ω2 ⊂ R2 by

distH(Ω1,Ω2) = sup

{
sup
x∈Ω1

dist(x,Ω2), sup
y∈Ω2

dist(Ω1, y)
}

where dist(x,Ω2) =miny∈Ω2 |x− y |. Hence, a good candidate for the stopping criterion of the
algorithm would be the inequality condition distH(ΓkC,Γ

k−1
C ) < C(δx)2, where C is a constant

independent of the grid parameter δx. Here, noting that ΓkC = {x+tk−1Vk−1(x) : x ∈ Γk−1
C }, we

use the H1 norm of V and the step size parameter t as a stopping criterion for the algorithm;
that is, we terminate the algorithm as soon as the inequality condition

tk ∥Vk ∥H1(Ω) < θ, (39)

is satisfied for some small value θ > 0.

5 Numerical Results

For the numerical experiments, we consider the shape optimization problem (1) subject to
(2) with the following broad assumptions. The object being examined has a circular shape
having a unit radius (centered at the origin). We assume that the two dimensional object
has thermal conductivity k of 1.0 W/mK, and its outer boundary ΓM has a convective heat
transfer with hM = 1.1 W/mK and surrounding temperature of u∞ = 27 ◦C. Meanwhile,
the remaining outer part ΓP is heated with prescribed temperature uP = 40 ◦C. Moreover,
in the interior part of the cavity, the convective heat transfer measures hC = 0.7 W/mK, and
uC = 22 ◦C. Lastly, zero heat fluxes QM and QC are assumed in all of the following examples.

For the extra temperature measurements on the outer part ΓM of the boundary, we use
synthetic data; that is, the temperature distribution uM measured on the accessible boundary
ΓM is generated by numerically solving the forward problem (1) using finite element method.
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To avoid ‘inverse crimes’ (see comments by Colton and Kress [20, p. 133]) in producing the
measurements, we generate the synthetic data with a different numerical scheme (i.e., using
a different number of discretization points and applying P3 finite element basis functions in
the FREEFEM++ code) than in the inversion process. Then, we extract the measurement uM
by computing u on ΓM. For the tests with noise, we perturbed the data by Gaussian noise.
Moreover, for simplicity, we assume that the unknown cavity ΓC can be represented in polar
coordinates.

Finally, to illustrate the feasibility of the proposed method as described in previous sec-
tions, the identification procedure is tested by several cavity detection problems which we
detail in the following test cases.

5.1 First case: influence of the initial guess

First we examine the effect of the initial shape on the identified cavity. We let the boundary
of the exact cavity ΓC := Γexact

C be parametrically given as

ΓC =

{(
0.3+0.3cos t

0.3sin t

)
,∀t ∈ [0,2π)

}
.

The numerical results, with different initial guesses, are shown in Figure 1. Here, we
ignore, for the meantime, the stopping criterion (39) and fix the number of iterations. This
simple condition, however, permits us to obtain effective results for the present objective.
In these test cases, we observed that the different choices of the initial guess will affect the
required number of iterations. In these situations, however, the solutions finally converge
to the exact location of the cavity within a finite number of iterations. Figure 1a shows the
history of (selected) approximated shapes until 300 iterations wherein the initial guess is
given by

Γ
0
C =

{
0.9

(
cos t
sin t

)
, t ∈ [0,2π)

}
.

With this initial guess, we are able to obtain a reasonable identification of the cavity. Mean-
while, referring to Figure 1b, setting the initial shape to

Γ
0
C =

{
0.5

(
cos t
sin t

)
, t ∈ [0,2π)

}
,

only provides a good location of the identified cavity. After 100 iterations we obtained a
cavity shape (almost) indistinguishable from the one depicted in Figure 1b where it shows
the reconstructed cavity after 300 iterations. Based on the history of values for the rela-
tive residuum ∥u − uM∥L2(ΓM)/∥uM∥L2(ΓM) (computed during each iterative step, including
the reinitialization of Ω(k)) shown in Figure 1c, further iterations of our numerical scheme
beyond 100 iterative steps will no longer provide better reconstruction of the cavity since
the value of the residuum only oscillates at some fixed number at larger iterations. This
observation is further confirmed by the history of values for the Hausdorff distance of the
approximate shapes against the exact shape of the cavity represented by Γexact

C at each itera-
tion (refer to Figure 1c). We believe that this difficulty is due to how the synthetic data was
generated in the numerical computations and the severity of the ill-posedness of the prob-
lem. Building on this illustrated example, we hypothesize that it is difficult to guarantee that
in all cases the final shape will be independent of the initial guess. Nevertheless, we can at
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Fig. 1: (a)-(b), (e)-(f): Detection of a circular cavity with different initial guesses; (c) history
of relative residuum ∥u−uM∥L2(ΓM)/∥uM∥L2(ΓM) and Hausdorff distance distH(ΓkC,Γ

exact
C ) for

the test result depicted in (b); (d) temperature pattern on the observable boundary ΓM.
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least reduce the number of iterations and possibly obtain better approximations by setting a
good location for the initial guess. This can be done by exploiting the temperature pattern on
the observable boundary ΓM where measurement is performed. Using this thermal pattern,
we can guess which section of the specimen the cavity might be located, however, we cannot
exactly estimate how deep the cavity is.

In the present test case, the temperature distribution on the boundary ΓM is shown in
Figure 1d. At approximately x = 0.31, we see a minimum value of 29.18 ◦C for the tem-
perature. This indicates (at least in the case of noised-free synthetic data) that a cavity is
present along this axis. Hence, it would be ideal to set an initial guess along this section of
the object. Two additional identification processes with initial guesses given by

Γ
0
C =

{(
0.2+0.6cos t
0.2+0.7sin t

)
, t ∈ [0,2π)

}
, Γ

0
C =

{(
0.3+0.3cos t

0.3sin t

)
, t ∈ [0,2π)

}
are respectively shown in Figure 1e and Figure 1f. These choices of the initial shape for the
identification process improved the computed shape of the cavity as evident in the latter two
figures.

A priori information about the size and depth of the cavity. In practice, the size and
depth of the defect makes the imaging process more difficult (see [38]) especially when only
a part of the specimen is subject for testing and evaluation. In the first test case above, we
have already used the thermal distribution on ΓM to guess which section of the specimen the
cavity might be located. This information can be further exploited, at least to some extent,
to obtain some knowledge about the size and depth of the cavity. To do so, we first examine
some few test cases and see the effect of the size and location of the cavity on the observed
thermal pattern on ΓM. For this purpose, we consider, for k ∈ {0,1,2,3,4} and l ∈ {0,1,2},
the following parametrization of the exact cavities:

Γ
SV
C,k =

{(
0.15cos t,

−0.8+0.4k +0.15sin t

)
, t ∈ [0,2π)

}
,

Γ
SH
C,k =

{(
(−0.8+0.4k)+0.15cos t,

0.15sin t

)
, t ∈ [0,2π)

}
,

Γ
LV
C,l =

{(
0.45cos t,

0.5(l −1)+0.45sin t

)
, t ∈ [0,2π)

}
,

Γ
LH
C,l =

{(
0.5(l −1)+0.45cos t,

0.45sin t

)
, t ∈ [0,2π)

}
.

The exact geometries of the above shapes for all values of k and l are shown in Figure
2a and Figure 3a, for small and large cavities, respectively. The temperature patterns for
the cavities ΓSV

C,k and ΓSH
C,k (running the values of k) are shown in Figure 2b and Figure

2c, respectively. On the other hand, the respective temperature patterns for the cavity ΓLV
C,l

and ΓLH
C,l are depicted in Figure 3b and Figure 3c. The computed least temperature values

on the boundary ΓM for each of these test cases is depicted in Figure 2d for the first two
test cases and Figure 3d for the last two scenarios. From these results, we have drawn the
following observations (at least in the case of trivial shapes). Looking at Figure 2b and
Figure 3b, we notice that as the cavity becomes closer to the region of measurement, the
‘flatness’ of the parabolic thermal plot at its vertex decreases, while its ‘curvature’ increases
(i.e., becomes more pointed). In other words, the measured least temperature value on the
section where the cavity might be situated is much lower compared to the measurements
in its neighboring points of observation. Moreover, comparing the results shown in Figure
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Fig. 2: (a): Exact geometries of the cavities ΓSV
C,k and ΓSH

C,k , for all the given values of k;
(b): temperature pattern on ΓM when the cavity is given by ΓSV

C,k , for all the given values of
k; (c): temperature pattern on ΓM when the cavity is given by ΓSH

C,k , for all the given values
of k; (d): computed least value for each of the measured temperatures shown in (b) and (c).

2b and Figure 3b, we observe that a smaller size cavity produces a sharper temperature
pattern compared to cavities with larger size. However, it seems that the size of cavity is
more difficult to guess when the cavity is far from the region of measurement. Meanwhile,
referring to Figure 2c and Figure 3c, we see that the temperature pattern clearly indicates
which section of the specimen the cavity might be located. We shall use these informations
in the numerical approximations of the succeeding test cases, particularly in specifying the
stopping condition of the iterative process.

5.2 Second case: influence of the location and size of the cavity

For the second test case, we want to know the accuracy of the identification process with re-
spect to the location and size of the cavity. We consider four different scenarios, the first two
of which contains a large cavity with different locations, and the last two having a smaller
cavity, again, with different locations. In particular, we consider the following descriptions
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Fig. 3: (a): Exact geometries of the cavities ΓLV
C,l and ΓLH

C,l , for all the given values of l;
(b): the temperature pattern on ΓM when the cavity is given by ΓLV

C,l , for all given values of l;
(c): the temperature pattern on ΓM when the cavity is given by ΓLH

C,l , for all given values of l;
(d): the computed least value for each of the measured temperatures shown in (b) and (c).

of the exact cavities:

Γ
LN
C =

{(
0.6cos t

0.4+0.3sin t

)
, t ∈ [0,2π)

}
, Γ

LF
C =

{(
0.6cos t

−0.4+0.3sin t

)
, t ∈ [0,2π)

}
,

for the first two test cases, and

Γ
SN
C =

{(
0.4+0.2cos t
0.4+0.1sin t

)
, t ∈ [0,2π)

}
, Γ

SF
C =

{(
−0.4+0.2cos t,
−0.4+0.1sin t

)
, t ∈ [0,2π)

}
,

for the last two situations. The temperature patterns for the first two test cases are shown in
Figure 4a and Figure 4b while the temperature pattern for the last two test cases are depicted
in Figure 5a and Figure 5b. We initialize the geometry of the cavity base on these thermal
patterns. Moreover, by taking into account the idea built from the discussion issued in the
previous example, we terminate the algorithm with θ = 10−3 for cases with large cavities
and set θ = 10−4 for cases where only a relatively small cavity is expected in the interior of
the specimen.
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Fig. 4: (a)-(b): Respective temperature patterns on ΓM for the elliptical cavities ΓLN
C and ΓLF

C ;
(c)-(d): respective results of the identifications of the elliptical cavities ΓLN

C and ΓLF
C ; (e)-(f):

respective histories of relative residuums and histories of Hausdorff distances for the test
results depicted in (c) and (d).
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Fig. 5: (a)-(b): Respective temperature patterns on ΓM for the elliptical cavities ΓSN
C and ΓSF

C ;
(c)-(d): respective results of the identifications of the elliptical cavities ΓSN

C and ΓSF
C ; (e)-(f):

respective histories of relative residuums and histories of Hausdorff distances for the test
results depicted in (c) and (d).
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Remark 2 As pointed out earlier, the value of θ is decided depending on the size of the
expected cavity. To overcome the difficulty in estimating the size of the defect when it is
situated far from the region of measurement, we can perform several boundary measure-
ments, changing the region where measurement is made, and then examine the resulting
temperature patterns. In this way, we can possibly obtain a plot for the temperature profile
that has a pointed vertex, and then infer from it the size of the cavity. However, this idea
only works well when the entire surface of the specimen (or at least a large part of it) is
accessible for measurement. In all of the remaining test cases we consider here, although
we only use a single boundary measurement to carry out the iterative procedure, we suppose
that additional boundary measurements were performed to decide the value of θ.

For large cavities ΓLN
C and ΓLF

C , the stopping criterion is met after 127 and 168 iterations,
respectively. The respective computed cavities for these two cases are shown in Figure 4c
and Figure 4d. In both situations, we obtain reasonable identifications of the cavities regard-
less of its location.

On the other hand, for small cavities ΓSN
C and ΓSF

C , near and far from the region of
measurement, the stopping criterion is met after 205 and 1131 iterations, respectively. The
respective reconstructed cavities for these two cases are depicted in Figure 5c and Figure 5d.
As one can observe, the identification process gives better result for the test case wherein
the cavity is near the region of measurement. The result for the other case, however, is still
acceptable as we have obtained a good location of the exact cavity.

Meanwhile, referring to the last two plots in Figure 4 and Figure 5, we observe that
for cavities near the region of measurement, the Hausdorff distance at each iterative step
remains below a certain value after some number of iterations (see, in particular, Figure
4e and Figure 5e). In contrary, for cases where cavities are far from the boundary where
measurements are performed, the computed Hausdorff distance increases a bit after a certain
number of iterations is reached (refer to Figure 4f and Figure 5f). We believe this come from
the inherent ill-posedness of the inverse problem and could also be due to the ill-posedness
of the shape optimization formulation. Further, we remark that these latter plots indicate
that the computed shapes are the best reconstruction we can obtain from the identification
process (i.e., the approximations can no longer be improved even we go beyond 168 and
1131 iterations for the case of ΓLF

C and ΓSF
C , respectively).

5.3 Third case: identification of cavities with noised synthetic data

Next, we test the effectiveness of the identification process for cases wherein the synthetic
data is contaminated with some level of noise. Here, we stress that the least-squares formu-
lation of the cavity identification problem is ill-posed; that is, arbitrarily small perturbations
in the measurements may result into arbitrarily large differences in the identified cavities.
Hence, we only perform some tests with small noise levels (e.g., γ = 1%,3%). We consider
the same geometries of the cavities given in the second test case. The thermal patterns in the
case when the defect is described by ΓLN

C , ΓLF
C , ΓSN

C , ΓSF
C , with synthetic data under noise lev-

els γ = 1%,3%, are shown in Figure 6a, Figure 6b, Figure 7a and Figure 7b, respectively. In
view of these aforementioned figures, we notice that it is quite difficult to determine which
observation point has the least temperature value. To succeed in dealing with this problem,
we apply several polynomial interpolations (with odd degree) on the set of thermal mea-
surements on the observable boundary ΓM and then find the mean location from the set of
minimum values computed from these interpolations. For each of the present test cases, the
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estimated mean location where the least temperature occurs is marked by a vertical line in
the previously mentioned figures. Again, we initialize the geometry of the cavity base on
these observations and we stop the algorithm under the same conditions specified in the pre-
vious test case. The results of the reconstructions under noise levels γ = 1%,3% are shown
in Figure 6c, Figure 6d, Figure 7c and Figure 7d, where the number of iterations are also
indicated. Notice that even at the given noise levels we are still able to obtain reasonable
identifications of the cavities. Note that these approximations cannot be further improve
based on Figures 6e, Figures 6f, Figures 7e and Figures 7f; that is, the data does not pro-
vide more information to get better identifications, since the cost values are already in the
magnitude of the noise levels.

5.4 Fourth case: identification of cavities with non-trivial shapes

As we saw from the previous test cases, the identification process seems to be effective to
reconstruct cavities having ‘simple shapes’. Now, we aim to identify cavities that have non-
trivial shapes. More precisely, we want to detect a triangular-like shape cavity with rounded
corners Γ∆

C (with small concavities) and a kite shape cavity ΓK
C respectively represented by

Γ
∆
C =

{(
−0.5+0.25cos t +0.15cos2t

0.35sin t

)
, t ∈ [0,2π)

}
,

Γ
K
C =

{
0.6(1+0.15cos(3t + π/2))

(
cos t
sin t

)
, t ∈ [0,2π)

}
.

The thermal patterns measured on the boundary ΓM when the cavity is described by Γ∆
C

and ΓK
C are shown in Figure 8a and Figure 8b, respectively. Using these measurements we

initialize the geometry of the cavities as depicted in Figure 8c and Figure 8d, and use the
value θ = 10−3 in our stopping condition (39). The identified shapes are also shown in the
latter two figures where the number of iterations for each of the test cases (with 1% and 3%
noised data) are indicated. Looking at the identified shapes for Γ∆

C and ΓK
C , we see reasonable

reconstructions of the target geometries for the given cavities. Moreover, we observe the
non-convexity of the approximate shapes even for a noise level of 3%, and, in addition,
the algorithm predicts at least positive and negative curvatures at the correct positions (at
least on parts of the defect near the region of measurement). Again, since the reconstructed
cavities results in values of the objective function in the magnitude of the noise levels (refer
to Figure 8e and Figure 8f), we cannot expect to get better results with the noisy data.

Remark 3 (Some comments on the choice of θ) In the previous test cases, the reason behind
the choice of θ is that when θ is set to 10−4 instead of 10−3 in cases when the specimen
contains a large defect, we obtain a more ‘flat’ reconstruction of the unknown cavity. This
result could be due to the instability of the shape optimization formulation of the inverse
problem which is evident, for instance, from the history of the Hausdorff distances plotted
in Figure 6f and Figure 8e.

Remark 4 (Some remarks on the value of the penalization parameter) We mentioned in the
previous section that we choose the penalization parameter β by trial and error. In above test
cases, β is taken in the interval (0,1]. Testing several values of β, we notice that when it is
set too small, the interior boundary of Ω (representing the surface of the cavity) becomes
too rough or ‘jagged’ after several iterations, causing a problem in the remeshing process.
On the other hand, taking β too big causes the reconstructed boundary to become too ‘flat’.
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Fig. 6: (a)-(b): Respective temperature patterns on ΓM when the defect is described by the
elliptical cavities ΓLN

C (γ) and ΓLF
C (γ) with synthetic data under noise levels γ = 1%,3%; (c)-

(d): respective results of the identifications of the elliptical cavities ΓLN
C (γ) and ΓLF

C (γ) when
the synthetic data is prescribed with noise levels γ = 1%,3%; (e)-(f): respective histories of
relative residuums and histories of Hausdorff distances for the test results depicted in (c)
and (d).
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Fig. 7: (a)-(b): Respective temperature patterns on ΓM when the defect is described by the
elliptical cavities ΓSN

C (γ) and ΓSF
C (γ) with synthetic data under noise levels γ = 1%,3%;

(c)-(d): respective computed shapes of the elliptical cavities ΓSN
C (γ) and ΓSF

C (γ) when the
synthetic data is prescribed with noise levels γ = 1%,3%; (e)-(f): respective histories of
relative residuums and histories of Hausdorff distances for the test results depicted in (c)
and (d).
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Fig. 8: (a)-(b): Respective temperature patterns on ΓM when the defect is described by the
triangular-shaped cavity Γ∆

C(γ) and kite-shaped cavity ΓK
C (γ) with synthetic data under noise

levels γ = 1%,3%; (c)-(d): respective identified shapes for the cavities Γ∆
C(γ) and ΓK

C (γ)
when the synthetic data is prescribed with noise levels γ = 1%,3%; (e)-(f): respective histo-
ries of relative residuums and histories of Hausdorff distances for the test results depicted in
(c) and (d).
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Remark 5 (A comment about the above inverse analyses) As is known, the inverse prob-
lems, such as the ones being considered here, are inherently lacking in information. Hence,
additional information is necessary to conduct the inverse analyses. In the test cases exam-
ined above, the temperature output on ΓM was used as primary information to conduct the
inverse analyses. In addition, a priori information such as the knowledge based on experi-
ence about the influence of the location of the cavity on the thermal pattern observed on ΓM
was effectively used to improve the result of the inverse process. This kind of information is
called secondary or subsidiary information as stated by Kubo in [37], and in actuality, such
use of priori knowledge is recommended by experts in the field.

5.5 Fifth case: influence of the input data

As for our last test case for the cavity identification problem, we want to examine the in-
fluence of the input data on the resulting identifications. To address this objective, we shall
consider two different scenarios where we have a large difference between the prescribed
temperature on the edges and midsection of the specimen. More precisely, we examine the
effect of the following prescribe temperature values

uP1 = 40(1.5+0.5cos2x), uP2 = 40(1.5−0.5cos2x),

on the resulting identified shapes. The geometries of the cavities are again given by Γ∆
C

and ΓK
C . The computed thermal patterns for the two scenarios with prescribed temperatures

uP = uP1,uP2 (and also uP = uP0 = 40◦C for comparison) are shown in Figure 9a and Figure
9b, respectively. We notice that even under the prescribed temperatures we are able to iden-
tify which section of the specimen the cavity might be located. So, we initialize the geometry
of the cavity based on these informations and terminate the iteration process with θ = 10−3.
The reconstructed boundaries for the present test cases are depicted in Figure 9c and Figure
9d, respectively. As one can observe from the aforementioned figures, the reconstruction is
much worse in the case of identifying Γ∆

C . On the other hand, we obtain a reasonable re-
construction for ΓK

C as evident in Figure 9d. Similar to the previous test cases, the algorithm
still predicts positive and negative curvatures at the correct positions, at least on parts of the
cavity near the region of measurement. Meanwhile, the histories of the relative residuums
and Hausdorff distances for these test cases are shown in Figure 9e and Figure 9f. Based
on these results, it turns out that prescribing higher temperature values on the midsection
of the specimen is much more practical and produces better results compared to prescribing
higher temperature values on the edges of the specimen. We believe that this holds because
in the midsection of the specimen occurs the largest distance between the region where heat
is prescribed and the surface where measurement is performed. It seems that, in our case,
and more likely in general, it is much reasonable to prescribe a uniform heat on the (bot-
tom) surface of the specimen to obtain the best possible and more stable reconstructions.
Nevertheless, we believe that even more research is required in order to fully understand the
influence of the input data on the resulting reconstructions.

5.6 Numerical experiments for the corrosion detection problem

Here we provide some numerical results for the case of corrosion detection. The iterative
algorithm is essentially the same with the one used for the cavity identification problem.
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Fig. 9: (a)-(b): Temperature patterns on ΓM when the cavity is described by Γ∆
C(γ) and ΓK

C (γ),
respectively, with synthetic data under the noise level γ = 3% for various input data uP =

uP0,uP1,uP2; (c)-(d): respective identified shapes for the cavities Γ∆
C(γ) and ΓK

C (γ); (e)-(f):
respective histories of relative residuums and histories of Hausdorff distances for the test
cases depicted in (c) and (d).
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Fig. 10: (a): Reconstructions of Γ1
C for λ = 10 with 3% noisy data by tracking the Dirichlet

data and tracking the Neumann data; black line with circle marker: Γ; red line: Γ1
C; magenta

line: Γ0
C; (b): histories of relative residuums for the case of tracking the Dirichlet data and

tracking the Neumann data.

As in the previous section, we can generate the synthetic data by solving the forward
problem (3) for the case of tracking the Neumann data and system (30) to the case of tracking
the Dirichlet data. However, in both of the optimization problems (5) and (31), we shall only
use system (30) to generate the synthetic data with g = 2. Nevertheless, we can resolve (3) by
taking f as u|Γ obtained from solving the PDE system (30). We shall examine the accuracy
of the two shape optimization formulations by looking at the relative residuums computed
using the ratio ∥u− f ∥L2(Γ)/∥ f ∥L2(Γ). Also, similar to the case of cavity identification, we
use a different number of discretization points with higher polynomial degree for the finite
element basis functions when generating the Cauchy pair ( f ,g) than the inversion process
(Step 2 of the algorithm) to again avoid inverse crimes. Moreover, the stopping time for
the iterative process is again dictated by the inequality condition (39). In all test cases we
consider below, we set θ = 10−4. Furthermore, for simplicity, we assume that the corroded
part of the object can again be represented in polar coordinates.

We begin by presenting numerical examples with λ = 10. First, we assume that the
observable boundary Γ and the exact geometry of the corroded part Γ1

C of ∂Ω are respectively
described as

Γ =

{(
0.3cos t
0.2sin t

)
, t ∈ [0, π)

}
, Γ

1
C =

{(
0.3cos t

0.1sin t +0.01sin2 6t

)
, t ∈ [π,2π)

}
.

We start the iteration process with Γ0
C as the initial guess for Γ1

C, where

Γ
0
C =

{(
0.3cos t
0.2sin t

)
, t ∈ [π,2π)

}
.

The reconstructed corroded part of ∂Ω using JD(ΓC) and JN(ΓC) for 3% Gaussian noise
added to the synthetic data are shown in Figure 10a. In both cases, the reconstruction process
results in values of the objective function in the magnitude of the noise levels as depicted
in Figure 10b. Hence, the results obtained were the best reconstruction we can get from the
noisy data.

Influence of the number of oscillations on the unknown boundary and effect of the value
of λ. We examine the influence of the number of oscillations on the unknown boundary
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Fig. 11: (a) Reconstructions of Γ2
C(λ), for λ = 10,50,100, with 3% noisy data in the case of

tracking the Dirichlet data; (b) reconstruction of Γ2
C(λ), for λ = 10,50,100, with 3% noisy

data in the case of tracking the Neumann data; (c) histories of relative residuums, under the
different values of λ, for the case of tracking the Dirichlet data shown in (a); (d) histories
of relative residuums, under the different values of λ, for the case of tracking the Neumann
data shown in (b).

as well as the effect of the value of λ on the reconstructed boundary. For this purpose, we
consider the following geometry for the unknown boundary of ∂Ω:

Γ
2
C =

{(
0.3cos t

0.1sin t +0.01sin4 12t

)
, t ∈ [0, π)

}
.

The boundaries Γ and Γ0
C are the same with the previous example. The result of the recon-

struction process under 3% noisy data, with values λ = 10,50,100, are shown in Figure 11a
for the case of tracking the Dirichlet data. Meanwhile, Figure 11b shows the reconstructed
boundaries for the same values of λ, again with 3% noisy data, but for the case of tracking
the Neumann data. We observe that the number of oscillations on the corroded part does not
much affect the result of the reconstruction process. The histories of the relative residuums
for each of the test cases under the two formulations are shown in Figure 11c and Figure
11d, respectively. Clearly, the values of the cost functions are already below the magnitude
of the noise level, so, the reconstructions cannot be further improved under the noisy data.

Reconstruction of the lower half of a kite-shape object. We examine a few more exam-
ples with the following descriptions for the accessible and exact geometry of the unknown
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boundary:

Γ =

{(
0.3cos t +0.1cos2t

0.2sin t

)
, t ∈ [0, π)

}
, Γ

3
C =

{(
0.3cos t +0.1cos2t

0.3sin t +0.01sin4 12t

)
, t ∈ [π,2π)

}
.

For the initial guess we set Γ0
C as

Γ
0
C =

{(
0.1+0.3cos t

0.45sin t

)
, t ∈ [π,2π)

}
.

The reconstructed boundaries for the case of Dirichlet-tracking formulations are shown in
Figure 13a when λ = 10,50,100. Meanwhile, under the same situations, but for the case
of tracking the Neumann data, the results are shown in Figure 13b. Again, as depicted in
Figure 13c and Figure 13d, the reconstructions result in values of the objective function in
the magnitude of the noise levels. Hence, the results shown in Figure 13a and Figure 13b
are the best reconstructions we can get from the noisy data.

Influence of the initial guess. For our final test case, we examine the influence of the
initial guess to the resulting reconstructions. In this regard, we consider the following initial
profile of ΓC:

Γ
0new
C =

{(
0.1+0.3sign(cos t)

√
| cos t |

0.4sign(sin t)
√
| sin t |

)
, t ∈ [π,2π)

}
,

where sign(·) denotes the signum function. The results of the reconstructions are depicted in
Figure 13a and Figure 13b for the case of tracking the Dirichlet data and tracking the Neu-
mann data, respectively. The corresponding history of relative residuums for the two formu-
lations are shown in Figure 13c and Figure 13d, respectively. We notice that the choice of
initial guess does not have much effect on the result of the reconstructions (except, of course,
on the number of iterations) when using the tracking Dirichlet data functional. However, a
slight difference of results can be observed when the tracking Neumann data functional is
used. In fact, with the new initial guess Γ0new

C , the reconstructions were somehow improved
based on the relative residuum shown in Figure 13d. Nevertheless, the reconstructed bound-
aries for both of the test cases are reasonable under the given noise.

Remark 6 In above examples, we tested several values for β and we observed that it suf-
fices to take β from the interval [0.0001,0.01] when the cost functional JD(ΓC) is used.
Meanwhile, for cases where the cost functional JN(ΓC) is being utilized, β has to be cho-
sen from the interval [1,10] depending on the value of λ. We stress that this high value of
the penalization parameter β might be an indication of the ill-posedness of the least-squares
cost functional JN(ΓC). We notice that when β is taken much higher compared to these
aforementioned values, the iteration process becomes unstable and Ω becomes too flat (i.e.,
degenerates in shape) after several iterations. On the other hand, when β is set too small, the
rate of convergence of the iteration process becomes insignificant.

Summarizing, the numerical experiments show rather satisfying reconstructions for larger
values of λ. It appears that for smaller values of λ the reconstructions start to deteriorate
which, as pointed out in [18], could be due to the way the synthetic data were created since
for small λ we get close to the not uniquely solvable Neumann problem.
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Fig. 12: (a) Reconstructions of Γ3
C(λ), for λ = 10,50,100, with 3% noisy data in the case of

tracking the Dirichlet data; (b) reconstruction of Γ3
C, for λ = 10,50,100, with 3% noisy data

in the case of tracking the Neumann data; (c) histories of relative residuums, under different
values of λ, for the case of tracking the Dirichlet data shown in (a); (d) histories of relative
residuums, under different values of λ, for the case of tracking the Neumann data shown in
(b).

6 Summary, Conclusion and Recommendations

We have obtained fair reconstructions of a defect by minimizing a least-squares functional
using partial boundary measurements inspired by the concept of non-destructive testing and
evaluation. In the focused problem, the object was assumed to be a heat-conducting medium
having an interior cavity with convective boundary condition and the problem was exam-
ined under the notion of thermal imaging. In addition, the case where the defect appears
on a part of the surface of the specimen was also considered. The inverse problem was in-
terpreted in the context of corrosion detection where the reconstruction of the impenetrable
boundary was carried out using partial (electrostatic) Cauchy data. The respective solutions
to these geometric inverse problems were sought through the methods of shape optimiza-
tion using Dirichlet-data-tracking functionals, and also by tracking the Neumann data on the
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Fig. 13: (a) Reconstructions of Γ3
C with initial guess Γ0new

C with λ = 10,50,100 under 3%
noisy data for the tracking the Dirichlet data; (b) reconstruction of Γ3

C with initial guess Γ0new
C

with λ = 10,50,100 under 3% noisy data for the tracking the Neumann data; (c) histories of
relative residuums, under different values of λ, for the case of tracking the Dirichlet data
shown in (a); (d) histories of relative residuums, under different values of λ, for the case of
tracking the Neumann data shown in (b).

accessible part of the boundary for the case of corrosion detection. The computation of the
first-order shape derivative of the cost functionals were carried out through minimax formu-
lation, employing the function space parametrization technique and an important theorem
due to Correa and Seeger [21] for the differentiation of the min-max functional. Then, using
the computed boundary expression for the shape gradients, we were able to formulate and
successfully implemented a boundary variation scheme for the numerical realization of the
shape optimization problems. The proposed identification procedure produced reasonable
reconstructions of the unknown boundaries even at 3% noisy data.

The investigations delivered in this paper still leave space for further studies towards
several directions. First, we only considered objects having a single cavity which might not
be the case in most real situations. In fact, in reality, we do not know whether a given spec-
imen contains only a single cavity. Nevertheless, for situations such as the ones examined
in this present investigation, a numerical scheme based on a Lagrangian approach is enough
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to identify the geometry of the unknown defect. For cases wherein more than one cavity is
expected, an Eulerian approach such as the level-set method is more appropriate. Moreover,
we note that the penalization perimeter was chosen by trial and error, and thus may not be
optimal. Hence, it is also of interest to know how the penalization parameter can be de-
cided analytically. The fully time-dependent case of the problem, as well as its extension to
three-dimensional situations, will also make an interesting study. Furthermore, the compu-
tation of the deformation field was based on the H1 gradient method, utilizing the computed
expression for the shape gradient. It is also possible to formulate an H1 Newton method
to numerically solve the shape optimization problem which may improve the identification
process. However, the numerical procedure for this method requires the knowledge of the
second-order shape derivative of the cost functional which, as a consequence, may compli-
cate the computation of the descent direction. Still, it would also be of interest to exhibit the
expression for the shape Hessian of the cost functional and implement an iteration scheme
using an H1 Newton method to numerically solve the given geometric inverse problem.

7 Appendix

For completeness, we state here a theorem due to Correa and Seeger [21], which is key result
for differentiating a minimax with respect to a parameter.

7.1 A theorem of Correa and Seeger

We first introduce some notations. Consider a functional

G : [0, τ]× X ×Y → R,

for some τ > 0 and topological spaces X and Y . For each t in [0, τ], we define

g(t) =min
x∈X

sup
y∈Y

G(t, x, y) and h(t) = sup
y∈Y

min
x∈X

G(t, x, y)

and the associated sets

X(t) =
{

x̂ ∈ X : sup
y∈Y

G(t, x̂, y) = g(t)
}

and Y (t) =
{
ŷ ∈ Y : min

x∈X
G(t, x, ŷ) = h(t)

}
.

Given the above definitions, we introduce the set of saddle points

S(t) = {(x̂, ŷ) ∈ X ×Y : g(t) = G(t, x̂, ŷ) = h(t)},

which may be empty. In general, we always have the inequality h(t) ⩽ g(t). Further, for a
fixed t in [0, τ], and for all (xt, yt ) = (x̂, ŷ) in X(t)×Y (t), h(t) ⩽ G(t, xt, yt ) ⩽ g(t), and when
h(t) = g(t), the set of saddle points S(t) is exactly X(t) ×Y (t). Here, we are particularly
interested on the situation when G admits saddle points for all t in [0, τ].

The objective of this method is to seek realistic conditions under which one can guaran-
tee the existence of the limit

dg(0) = lim
t↘0

g(t)−g(0)
t

.

We now quote the improved version [22, Theorem 5.1, pp. 556–559] of the theorem of
Correa and Seeger. The result also applies to situations when the state equation admits no
unique solution and the Lagrangian admits saddle points. The proof of this theorem is also
given in the said reference.
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Theorem 1 ([21]) Let the sets X and Y, the real number τ > 0, and the functional

G : [0, τ]× X ×Y → R

be given. Assume that the following assumptions hold:

(H1) for 0 ⩽ t ⩽ τ, the set S(t) is non-empty;
(H2) for all (x, y) ∈ [∪{X(t) : 0 ⩽ t ⩽ τ} ×Y (0)] ∪ [X(0)×∪{Y (t) : 0 ⩽ t ⩽ τ}], the partial

derivative ∂tG(t, x, y) exists everywhere in [0, τ];
(H3) there exists a topology TX on X such that for any sequence {tn : 0 < tn ⩽ τ}, tn → t0 = 0,

there exist an x0 ∈ X(0) and a subsequence {tnk } of {tn}, and for each k ⩾ 1, there exists
xnk ∈ X(tnk ) such that
(i) xnk → x0 in the TX -topology, and

(ii) for all y in Y (0), the following inequality holds:

liminf
t↘0
k→∞

∂tG(t, xnk , y) ⩾ ∂tG(0, x0, y);

(H4) there exists a topology TY on Y such that for any sequence {tn : 0 < tn ⩽ τ}, tn → t0 = 0,
there exist y0 ∈ Y (0) and a subsequence {tnk } of {tn}, and for each k ⩾ 1, there exists
ynk ∈ Y (tnk ) such that
(i) ynk → y0 in the TY -topology, and

(ii) for all x in X(0), the following inequality holds:

limsup
t↘0
k→∞

∂tG(t, x, ynk ) ⩽ ∂tG(0, x, y0).

Then, there exists (x0, y0) ∈ X(0)×Y (0) such that

dg(0) = min
x∈X(0)

sup
y∈Y(0)

∂tG(0, x, y) = ∂tG(0, x0, y0) = sup
y∈Y(0)

min
x∈X(0)

∂tG(0, x, y).

Thus, (x0, y0) is a saddle point of ∂tG(0, x, y) on X(0)×Y (0).

7.2 Proof of Proposition 2: Verifications of assumptions (H1)–(H4)

In what follows, we formally prove Proposition 2 by verifying the four conditions of Theo-
rem 1. As we have mentioned in passing, the arguments used in the proof follow the ideas
issued in [22, Section 5.5] and are similar to [46,47].

Verification of (H1). First, we show that S(t) , ∅. Let V ∈ Θ1. In reference to [9, Lemma
6], we can find a sufficiently small number ε > 0, such that, for all t ∈ [0, ε], there exists
constants α1, α2, β1 and β2 satisfying 0 < α1 ⩽ α2, 0 < β1 ⩽ β2 and such that

α1 |ξ |2 ⩽ Atξ · ξ ⩽ α2 |ξ |2, (40)

for all ξ ∈ R2 and

β1 ⩽ wt ⩽ β2. (41)
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We define the following sets:

X(t) :=

{
xt ∈ H1(Ω) : sup

y∈W (Ω)
G̃ (t, xt, y) = min

x∈H1(Ω)
sup

y∈W (Ω)
G̃ (t, x, y)

}
,

Y (t) :=

{
yt ∈ H1(Ω) : min

x∈H1(Ω)
G̃ (t, x, yt ) = sup

y∈W (Ω)
min

x∈H1(Ω)
G̃ (t, x, y)

}
.

The functions ut and pt satisfy the inequality G(t,ut,ψ) ⩽ G(t,ut, pt ) ⩽ G(t, φ, pt ). Hence,
it is evident that X(t) and Y (t) are non-empty, since, in particular, we have X(t) = {ut } and
Y (t) = {pt }. Thus, we have, for all t ∈ [0, ε], S(t) := X(t)×Y (t) = {(ut, pt )} , ∅. This verifies
condition (H1).

Verification of (H2). Next, we compute the partial derivative ∂t G̃ (t, φ,ψ):

∂t G̃ (t, φ,ψ) = 1
2

∫
ΓM

w′
t (φ−uM)ds+

∫
Ω

k A′
t∇φ · ∇ψ dx+

∫
ΓP

w′
t (φ−uP)∂nψ ds

+

∫
ΓM

w′
t [hM(φ−u∞)−QM]ψ ds+

∫
ΓC

w′
t [hC(φ−uC)−QC]ψ ds,

where A′
t = dAt/dt and A′

0 = divVI2−(DV+ (DV)T). Since V ∈ Θ1, then t 7→ DTt is contin-
uous in [0, ε] (cf. [9, Lemma 11]). This implies that ∂t G̃ (t, φ,ψ) exists everywhere in [0, ε].
Hence, condition (H2) is also satisfied.

Verification of (H3) and (H4). To check the last two assumptions (H3) and (H4), we first
show the boundedness of (ut, pt ). We only sketch the proof for the case of ut , but we discuss
in detail the case for pt since the equations involved are simpler. The argument follows the
same reasoning as in [22, Section 5.5, p. 560]. The idea is to take φ = ut (resp. φ = pt ) in
equation (23) (resp. (24)) and use the boundedness of At and wt given in (40) and (41),
respectively. In the case of ut , we need to prove that we can find a constant C1 such that

∥ut ∥2
H1(Ω) ⩽ C1

(
∥∇ut ∥2

L2(Ω) + ∥ut ∥2
L2(ΓM) + ∥ut ∥2

L2(ΓP) + ∥ut ∥2
L2(ΓC)

)
.

Defining the norm ∥ · ∥∂ using the left-hand side of this inequality, one can show that it is
actually equivalent to the usual H1-Sobolev norm ∥ · ∥H1(Ω), i.e., we can find constants c1
and c2 (0 < c1 ⩽ c2) such that

c1∥ut ∥∂ ⩽ ∥ut ∥H1(Ω) ⩽ c2∥ut ∥∂. (42)

To confirm the validity of the above claim, one can follow the line of arguments in the proof
of Proposition 2 in [40]. The first inequality c1∥ut ∥∂ ⩽ ∥ut ∥H1(Ω) follows from the fact that
the trace map ut 7→ ut |∂Ω is a bounded linear operator (by Trace theorem). Meanwhile, the
second inequality ∥ut ∥H1(Ω) ⩽ c2∥ut ∥∂ is shown by way of contradiction. The details of the
proof is based on the validation of [40, Proposition 2] and is standard, so we omit it.

On the other hand, the proof for the boundedness of pt in W(Ω) is laid out as follows.
Firstly, we recall the definition of the norm on W(Ω) given by (6):

∥φ∥2
W (Ω) = ∥∇φ∥2

L2(Ω) + ∥φ∥
2
L2(ΓM) + ∥φ∥

2
L2(ΓC).

Taking φ = pt in equation (24) yields∫
Ω

k At |∇pt |2 dx+
∫
ΓM

hMwt (pt )2 ds+
∫
ΓC

hCwt (pt )2 ds =
∫
ΓM

wt (ut −utM)pt ds.



40 Julius Fergy T. Rabago, Hideyuki Azegami

Hence, in view of (40), (41) and the fact that Tt (x) = x, wt = 1 on Γ, together with the
Cauchy-Schwarz inequality, we obtain

min{β1k, hM, hCα1}∥pt ∥2
W (Ω) ⩽ β1k

∫
Ω

|∇pt |2 dx+ hM

∫
ΓM

wt (pt )2 ds+ hC

∫
ΓC

wt (pt )2 ds

⩽ ∥ut ∥L2(ΓM)∥pt ∥L2(ΓM) + |uM |∞ |ΓM | 1
2 ∥pt ∥L2(ΓM)

⩽
(
c4∥ut ∥H1(Ω) + |uM |∞ |ΓM | 1

2

)
∥pt ∥W (Ω),

for some constant c4 > 0. Therefore, since ut is bounded in H1(Ω), then we can conclude that
pt is bounded in W(Ω), i.e., there exists a constant c > 0 such that the inequality ∥pt ∥W (Ω) ⩽ c
holds. This confirms the first part.

The next step is to show the continuity of the pair (ut, pt ). To prove the continuity of ut ,
we subtract in (23) at t > 0, t = 0 and let φ = ut −u. Hence, owing to the fact that Tt (x) = x
and wt = 1 on Γ, we get∫
Ω

k∇(ut −u) · ∇φdx+
∫
ΓC

hC(ut −u)φds

= −
∫
Ω

k(At − I2)∇ut · ∇φdx−
∫
ΓC

hC(wt −1)utφds+
∫
ΓC

(wt −1)(hCuC −QC)φds,

where φ = ut − u. Utilizing the bound (41), and the equivalence of the norms ∥ · ∥∂ and
∥ · ∥H1(Ω), we know that there exists a constant c3 > 0 such that

c3∥ut −u∥2
H1(Ω) ⩽ |k |∥At − I2∥L∞(Ω)∥∇ut ∥L2(Ω)∥∇(ut −u)∥L2(Ω)

+ |hC | |α2 −1|∥ut ∥L2(ΓC)∥ut −u∥L2(ΓC)

+ |α2 −1| |hCuC −QC | |ΓC |
1
2 ∥ut −u∥L2(ΓC).

Using the boundedness of ut in H1(Ω), the trace theorem, and the estimate (42), we get
∥ut −u∥H1(Ω) ⩽ c5, for some constant c5 > 0. Furthermore, because of the strong continuity
of At as a function of the parameter t, we infer that ut → u in H1(Ω) as t → 0. By the same
technique, we can prove the strong convergence pt → p in W(Ω). So, conditions (H3)(i) and
(H4)(i) are satisfied. Finally, assumptions (H3)(ii) and (H4)(ii) follows from the strong con-
tinuity of the maps (t, φ) 7→ ∂t G̃ (t, φ,ψ) and (t,ψ) 7→ ∂t G̃ (t, φ,ψ). Therefore, all assumptions
of Theorem 1 are now satisfied. In concluding, the expression for the first-order shape deriva-
tive of J (ΓC) along the velocity field V over Ω is given by dJ (ΓC)[V] = ∂t G̃ (t,u, p)|t=0.
This proves Proposition 2.
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