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Abstract. We give a criterion for the global boundedness of integral operators
which are known to be locally bounded. As an application, we discuss the global
Lp-boundedness for a class of Fourier integral operators. While the local Lp-
boundedness of Fourier integral operators is known from the work of Seeger, Sogge
and Stein [SSS91], not so many results are available for the global boundedness on
Lp(Rn). We give several natural sufficient conditions for them.

1. Introduction

Let K be an integral operator of the form

Ku(x) =
∫
Rn

K(x, y, x− y)u(y) dy (x ∈ Rn)

with the kernel K(x, y, z) on Rn
x × Rn

y × Rn
z . When K(x, y, z) = K0(z), it is just the

operator of convolution withK0. But if we localise it by multiplication by a function χ
then we immediately have such a generalised form with K(x, y, z) = χ(x)χ(y)K0(z).
A more interesting example is the case when K(x, y, z) is an oscillatory integral, and
then K is called a Fourier integral operator.

Our primary objective is to give a criterion for the global boundedness

K : Lp(Rn) → Lp(Rn), 1 < p <∞,

when we only know the local boundedness

K : Lpcomp(Rn) → Lploc(R
n), 1 < p <∞,

or its endpoint boundedness

K : H1
comp(Rn) → L1

loc(Rn).

Here and everywhere H1 = H1(Rn) denotes the Hardy space introduced by Fefferman
and Stein [FS72]. Let us collectively call such discussion a local-to-global boundedness
argument. For example, if we further know the global L2-boundedness and that the
endpoint local boundedness is uniform with respect to the translation of localised
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regions, then our main result (Theorem 2.2) states that we also have the global Lp-
boundedness if the kernel K(x, y, z) is finely controlled on a set away from its singular
support. We will give the precise statement and its proof in Section 2.

As an important application of such local-to-global boundedness argument, we will
discuss the global Lp-boundedness of the Fourier integral operators

(1.1) Pu(x) =
∫
Rn

∫
Rn

eiϕ(x,y,ξ)a(x, y, ξ)u(y) dydξ (x ∈ Rn).

Here ϕ(x, y, ξ) is a real-valued function that is called a phase function while a(x, y, ξ)
is called an amplitude function. Following the theory of Fourier integral operators by
Hörmander [Hör71], we originally assume that ϕ(x, y, ξ) is positively homogeneous
of order 1 and smooth at ξ ̸= 0, and that a(x, y, ξ) is smooth and satisfies a growth
condition in ξ with some κ ∈ R:

sup
(x,y)∈B

∣∣∂αx∂βy ∂γξ a(x, y, ξ)∣∣ ≤ CB
αβγ⟨ξ⟩

κ−|γ| (∀α, β, γ) ; ⟨ξ⟩ =
(
1 + |ξ|2

)1/2
for any compact set B ⊂ Rn×Rn. Then the operator P is just a microlocal expression
of the corresponding Lagrangian manifold, and with the local graph condition, it is
microlocally equivalent to the special form

(1.2) Pu(x) =

∫
Rn

∫
Rn

ei(x·ξ−φ(y,ξ))a(x, y, ξ)u(y) dydξ

by an appropriate microlocal change of variables, with possibly another amplitude.
The local Lp mapping properties of Fourier integral operators have been extensively

studied, and can be generally summarised as follows:

• P is L2
comp-L

2
loc-bounded when κ ≤ 0 (Hörmander [Hör71], Eskin [Esk70]);

• P is Lpcomp-L
p
loc-bounded when κ ≤ −(n− 1)|1/p− 1/2|, 1 < p < ∞ (Seeger,

Sogge and Stein [SSS91]);
• P is H1

comp-L
1
loc-bounded when κ ≤ −n−1

2
(Seeger, Sogge and Stein [SSS91]);

• P is locally weak (1, 1) type when κ ≤ −n−1
2

(Tao [Tao04]).

The sharpness of the order −(n− 1)|1/p− 1/2| was shown by Miyachi [Miy80] and
Peral [Per80] (see also [SSS91]). Therefore, the question also addressed in this paper
is when Fourier integral operators are globally Lp-bounded. Although the operator
P or P is just a microlocal expression of the corresponding Lagrangian manifold due
to the Maslov cohomology class (see e.g. Duistermaat [Dui96]), we still regard it as a
globally defined operator since it is still important for the applications to the theory
of partial differential equations. Indeed, the operator P is used to:

• express solutions to Cauchy problems of hyperbolic equations;
• transform operators/equations to other simpler ones (Egorov’s theorem).

The typical two types of phase functions for each analysis above are

(I) φ(y, ξ) = y · ξ + |ψ(ξ)|, (II) φ(y, ξ) = y · ψ(ξ),
where ψ(ξ) is a real vector-valued smooth function which is positively homogeneous
of order 1 for large ξ. (See Definition 3.3 for the precise meaning of this terminology).
As for the global L2-boundedness of Fourier integral operators, the following result

by Asada and Fujiwara [AF78] is fundamental:
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Theorem 1.1 ([AF78]). Let ϕ(x, y, ξ) and a(x, y, ξ) be C∞-functions, and let

D(ϕ) :=

(
∂x∂yϕ ∂x∂ξϕ
∂ξ∂yϕ ∂ξ∂ξϕ

)
.

Assume that | detD(ϕ)| ≥ C > 0. Also assume that every entry of the matrix D(ϕ),
a(x, y, ξ) and all their derivatives are bounded. Then operator P defined by (1.1) is
L2(Rn)-bounded.

The result of [AF78] was used to construct the solution to the Cauchy problem of
Schrödinger equations by means of the Feynman path integrals in Fujiwara [Fuj79].
For the operator P defined by (1.2), the conditions of Theorem 1.1 are reduced to a
global version of the local graph condition

(1.3) |det ∂y∂ξφ(y, ξ)| ≥ C > 0,

and the growth conditions

(1.4)

∣∣∣∂αy ∂βξ φ(y, ξ)∣∣∣ ≤ Cαβ (∀ |α + β| ≥ 2, |β| ≥ 1),∣∣∂αx∂βy ∂γξ a(x, y, ξ)∣∣ ≤ Cαβγ (∀α, β, γ),
for all x, y, ξ ∈ Rn. Note that the local graph condition is required even for the local
L2-boundedness of Fourier integral operators of order zero, so it is rather natural to
assume (1.3) for the global L2-boundedness. We also note that the phase functions
of the type (I) satisfy the growth condition (1.4), but the type (II) does not. We
mention that other types of growth conditions were introduced by the authors in
[RS06a] to obtain the global L2-boundedness for operators with phase functions of
the type (II), and such result was then used to show global smoothing estimates for
dispersive equations in a series of papers [RS06b], [RS12b] and [RS12a].

As for the global Lp-boundedness, it is deduced by our local-to-global argument
from the global L2-boundedness (Theorem 1.1) and the local endpoint result given
by Seeger, Sogge and Stein [SSS91]. Indeed, in this paper we establish the following
generalised result:

Theorem 1.2. Let φ(y, ξ) and a(x, y, ξ) be C∞-functions. Assume that φ(y, ξ) is
positively homogeneous of order 1 for large ξ and satisfies (1.3). Also assume that∣∣∣∂αy ∂βξ (y · ξ − φ(y, ξ))

∣∣∣ ≤ Cαβ⟨ξ⟩1−|β| (∀α, |β| ≥ 1),∣∣∂αx∂βy ∂γξ a(x, y, ξ)∣∣ ≤ Cαβγ⟨ξ⟩−(n−1)|1/p−1/2|−|γ| (∀α, β, γ),
hold for all x, y, ξ ∈ Rn. Then operator P defined by (1.2) is Lp(Rn)-bounded, for
every 1 < p <∞.

Theorem 1.2 together with some related results will be restated in Section 3 in a
different form (in particular, Theorem 1.2 follows from Corollary 3.4), emphasising
that they are given as an application of our local-to-global argument discussed in
Section 2. We remark that Theorem 1.2 with p = 2 was also given by Kumano-go
[Kg76]. For the special cases φ(y, ξ) = φ(ξ) and a(x, y, ξ) = a(ξ), Theorem 1.2 was
given by Miyachi [Miy80] under the assumptions that φ > 0 and that the compact
hypersurface

Σ = {ξ ∈ Rn \ 0 : φ(ξ) = 1}
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has non-zero Gaussian curvature. Beals [Bea82] and Sugimoto [Sug92] discussed the
case when Σ might have vanishing Gaussian curvature but is still convex.

We also mention that phase functions of the type (I) again satisfy the assumption
of Theorem 1.2, but type (II) does not. Unfortunately our local-to-global argument
does not work for the type (II) and the linear growth in y causes an extra requirement
for the growth order of amplitude functions. This is rather natural since one knows
that in general, in the type (II) case, there is a loss in weight in global Lp estimates
for p ̸= 2, see Coriasco and Ruzhansky [CR10, CR14] for global bounds for Fourier
integral operators in this case.

To complement some references on the local and global boundedness properties of
Fourier integral operators, we refer to the authors’ paper [RS11] for the weighted L2-
and to Dos Santos Ferreira and Staubach [DSFS14] for other weighted properties of
Fourier integral operators, to Rodŕıguez-López and Staubach [RLS13] for estimates
for rough Fourier integral operators, to [Ruz01] for Lp-estimates for Fourier integral
operators with complex phase functions, as well as to [Ruz09] for an earlier overview of
local and global properties of Fourier integral operators with real and complex phase
functions. We note also that if one uses complex phase functions, global parametri-
sation of Fourier integral operators are possible, see [LSV94]. The Lp-boundedness
of bilinear Fourier integral operators has been also investigated, see e.g. Hong, Lu,
Zhang [HLZ15] and references therein.

2. A Local-to-global boundedness argument

We discuss when the local boundedness of an integral operator induces the global
one. Let K be an integral operator of the form

(2.1) Ku(x) =
∫
Rn

K(x, y, x− y)u(y) dy (x ∈ Rn)

with a measurable function K(x, y, z) on Rn
x ×Rn

y ×Rn
z . The formal adjoint K∗ of K

is given by

(2.2) K∗u(x) =

∫
Rn

K∗(x, y, x− y)u(y) dy, K∗(x, y, z) = K(y, x,−z).

We introduce a notion of the local boundedness. By χB we denote the multiplication
by the smooth characteristic function of the set B ⊂ Rn. As before, H1(Rn) denotes
the Hardy space introduced by Fefferman-Stein [FS72].

Definition 2.1. We say that the operator K is H1
comp(Rn)-L1

loc(Rn)-bounded if the

localised operator χBKχB is H1(Rn)-L1(Rn)-bounded for any compact set B ⊂ Rn.
Furthermore, if the operator norm of χBh

KχBh
is bounded in h ∈ Rn for the translated

set Bh = {x+ h : x ∈ B} of any compact set B ⊂ Rn, i.e. if

sup
h∈Rn

∥χBh
KχBh

∥H1(Rn)→L1(Rn) <∞,

we say that the operator K is uniformly H1
comp(Rn)-L1

loc(Rn)-bounded.

If we introduce the translation operator τh : f(x) 7→ f(x−h) and its inverse (formal
adjoint) τ ∗h = τ−h, we have the equality χBh

= τhχBτ
∗
h . Since L1 and H1 norms are

translation invariant, K is uniformly H1
comp-L

1
loc-bounded if and only if χB(τ

∗
hKτh)χB

4



is H1-L1-bounded for any compact set B ⊂ Rn and the operator norms are bounded
in h ∈ Rn. We remark that the operator τ ∗hKτh has the expression

(2.3) τ ∗hKτhu(x) =
∫
Rn

Kh(x, y, x− y)u(y) dy, Kh(x, y, z) = K(x+ h, y + h, z)

We have the following main result:

Theorem 2.2. Suppose that operator K defined by (2.1) is L2(Rn)-bounded and uni-
formly H1

comp(Rn)-L1
loc(Rn)-bounded. Assume that there exits a measurable function

H(x, y, z) which satisfies the following condition:

(A1) There exist constants d > 0 and k > n such that

sup
H(x,y,z)≥d

∣∣H(x, y, z)kK(x, y, z)
∣∣ <∞.

Furthermore, we set

H̃(z) := inf
x,y∈Rn

H(x, y, z).

and assume also the following two conditions:

(A2) There exist constants A > 0 and A0 > 0 such that

H̃(z) ≥ A0|z| whenever |z| ≥ A.

(A3) There exist constants b > 0 and b0 > 0 such that

H̃(z) ≤ b0H̃(z − z′) whenever H̃(z) ≥ b|z′|.
Then K is H1(Rn)-L1(Rn)-bounded. If in addition operator K∗ defined by (2.2) is
uniformly H1

comp(Rn)-L1
loc(Rn)-bounded, then K∗ is also H1(Rn)-L1(Rn)-bounded.

Theorem 2.2 means that the global L2-boundedness and some additional assump-
tions induce the global H1-L1-boundedness form the local one. Then, if we want,
we can have the global Lp-boundedness for 1 < p < ∞ by the interpolation and the
duality argument. Immediate examples to which Theorem 2.2 can be applied are
pseudo-differential operators

Psu(x) =
∫∫

Rn×Rn

ei(x−y)·ξa(x, y, ξ)u(y) dydξ

=

∫
Rn

K(x, y, x− y)u(y) dy,

where

K(x, y, z) =

∫
Rn

eiz·ξa(x, y, ξ) dξ.

(Indeed, we can take H(x, y, z) = |z| in this case if a(x, y, ξ) belongs to a stan-
dard symbol class.) More interesting examples for which Theorem 2.2 yields new Lp

boundedness results are Fourier integral operators which include pseudo-differential
operators as special ones. They will be intensively discussed in the next section.

Now we give the proof of Theorem 2.2. We only show the assertion for K because
conditions (A1)–(A3) induce corresponding conditions for the kernel K∗(x, y, z) in
(2.2) of K∗ if we take H∗(x, y, z) = H(y, x,−z). Furthermore, we may take d = 1 in
(A1) otherwise replace H by H/d, and we may also take b = b0 in (A3) otherwise
replace the smaller one by the bigger.
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We introduce the notations

∆r := {(x, y, z) ∈ Rn × Rn × Rn : H(x, y, z) ≥ r}
and

∆̃r := {z ∈ Rn : H̃(z) ≥ r}.
Clearly we have the monotonicity of ∆r and ∆̃r in r > 0, that is, ∆r1 ⊂ ∆r2 ,

∆̃r1 ⊂ ∆̃r2 for r1 ≥ r2 ≥ 0. On account of them, we have the following:

Lemma 2.1. Let r ≥ 1 and let h ∈ Rn. Suppose supp f ⊂ {x ∈ Rn : |x| ≤ r}. Then
we have

∥τ ∗hKτhf∥L1(∆̃br)
≤ C ∥f∥L1 ,

where C is a positive constant independent of r and h.

Proof. First we consider the case h = 0. For x ∈ ∆̃br and |y| ≤ r, we have H̃(x) ≥ br

by the definition of ∆br, and hence we also have H̃(x) ≥ b|y|. Then from (A3) with
b = b0, we obtain

br ≤ H̃(x) ≤ bH̃(x− y) ≤ bH(x, y, x− y)

which implies (x, y, x− y) ∈ ∆r and H̃(x, y, x− y)−1 ≤ bH̃(x)−1. Then we have

|Kf(x)| ≤ bkH̃(x)−k
∫
|y|≤r

∣∣H(x, y, x− y)kK(x, y, x− y)f(y)
∣∣ dy

≤ bkH̃(x)−k
∥∥H(x, y, z)kK(x, y, z)

∥∥
L∞(∆r)

∥f∥L1 ,

for x ∈ ∆̃br. Hence, by the monotonicity ∆br ⊂ ∆b and ∆̃r ⊂ ∆̃1 (r ≥ 1), we have

∥Kf∥L1(∆̃br)
≤ bk

∥∥∥H̃(x)−k
∥∥∥
L1(∆̃br)

∥∥H(x, y, z)kK(x, y, z)
∥∥
L∞(∆r)

∥f∥L1

≤ bk
∥∥∥H̃(x)−k

∥∥∥
L1(∆̃b)

∥∥H(x, y, z)kK(x, y, z)
∥∥
L∞(∆1)

∥f∥L1

≤ C∥f∥L1 ,

for k > n, where we have used (A2) to justify the estimate∥∥∥H̃(z)−k
∥∥∥
L1(∆̃b)

≤
∥∥∥H̃(z)−k

∥∥∥
L1(∆̃b∩{|z|≤A})

+
∥∥∥H̃(z)−k

∥∥∥
L1(∆̃b∩{|z|≥A})

≤ b−k∥1∥L1(|z|≤A) + A−k
0

∥∥|z|−k∥∥
L1(|z|≥A)

≤ C,

and also (A1) with d = 1.
For general h ∈ Rn, we apply the same argument for Kh in (2.3) and

Hh(x, y, z) = H(x− h, y − h, z)

instead of K and H, respectively. We remark that conditions (A1), (A2) and (A3)
in Theorem 2.2 are invariant in h ∈ Rn in the sense that we have

sup
Hh(x,y,z)≥d

∣∣Hh(x, y, z)
kKh(x, y, z)

∣∣ = sup
H(x,y,z)≥d

∣∣H(x, y, z)kK(x, y, z)
∣∣,

H̃h(z) = inf
x,y∈Rn

Hh(x, y, z) = H̃(z).
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Then we have the same estimates with the same constants but K replaced by τ ∗hKτh.
This finishes the proof. □

Lemma 2.2. Let r ≥ 1. Then there exists a constant c > 0 independent of r such

that Rn \ ∆̃br ⊂ {z : |z| < c r}.

Proof. Let z ∈ Rn \ ∆̃br, that is, H̃(z) < br. By the definition of H̃(z), there

exist x0, y0, ξ0 ∈ Rn such that H(x0, y0, z) ≤ 2H̃(z), and by (A2) we have A0|z| ≤
H(x0, y0, z) for |z| ≥ A. Hence we have |z| ≤ (2b/A0) r for |z| ≥ A. On the other
hand, we always have |z| ≤ Ar for |z| ≤ A since r ≥ 1, and we have the conclusion.

□

Now we are ready to prove the H1-L1-boundedness. We use the characterisation
of H1 by the atomic decomposition proved by Coifman and Weiss [CW77]. That is,
any f ∈ H1(Rn) can be represented as

f =
∞∑
j=1

λjgj, λj ∈ C, gj : atom,

and the norm ∥f∥H1 is equivalent to the norm
∥∥∥{λj}∞j=1

∥∥∥
ℓ1
=

∑∞
j=1 |λj|. Here we call

a function g on Rn an atom if there is a ball B = Bg ⊂ Rn such that supp g ⊂ B,
∥g∥L∞ ≤ |B|−1 (|B| is the Lebesgue measure of the ball B) and

∫
g(x) dx = 0. From

this, all we have to show is the estimate

∥Kg∥L1(Rn) ≤ C,

with some constant C > 0 for all atoms g. By an appropriate translation, it is further
reduced to the estimate

∥τ ∗hKτhf∥L1(Rn) ≤ C, f ∈ Ar,

where Ar is the set of all functions f on Rn such that

(2.4) supp f ⊂ Br = {x ∈ Rn : |x| ≤ r}, ∥f∥L∞ ≤ |Br|−1,

∫
f(x) dx = 0.

Here and hereafter in this section, C always denotes a constant which is independent
of h ∈ Rn and 0 < r <∞, and which may differ from one formula to another.

Suppose f ∈ Ar with r ≥ 1. Then we split Rn into two parts ∆̃br and Rn \ ∆̃br.

For the part ∆̃br, we have by Lemma 2.1 that

∥τ ∗hKτhf∥L1(∆̃br)
≤ C∥f∥L1 ≤ C.

For the part Rn \ ∆̃br, we have by Lemma 2.2 and the Cauchy-Schwarz inequality

∥τ ∗hKτhf∥L1(Rn\∆̃br)
≤ ∥1∥L2(|x|<c r) ∥τ ∗hKτhf∥L2(Rn)

≤ Crn/2∥f∥L2(Rn) ≤ C,

where we have used the assumption that K is L2-bounded, and (2.4) in the last
inequality.
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Suppose now f ∈ Ar with r ≤ 1. Then we split Rn into the parts ∆b and Rn \∆b.
For the part ∆b, we have by Lemma 2.1 with r = 1 and the inclusion supp f ⊂ Br ⊂
B1

∥τ ∗hKτhf∥L1(∆̃b)
≤ C∥f∥L1 ≤ C.

For the part Rn \∆b, we have by Lemma 2.2 that

∥τ ∗hKτhf∥L1(Rn\∆b)
≤ ∥τ ∗hKτhf∥L1(|x|<c)

≤ C∥f∥H1 ≤ C,

where we have used the fact that K is uniformly H1
comp-L

1
loc-bounded. Thus the proof

of Theorem 2.2 is complete.

3. Fourier integral Operators

A typical example of integral operators (2.1) which we have in mind is Fourier
integral operators of the form

(3.1) Pu(x) =
∫
Rn

∫
Rn

eiϕ(x,y,ξ)a(x, y, ξ)u(y) dydξ (x ∈ Rn).

For convenience, we introduce the function Φ(x, y, ξ) to write

(3.2) ϕ(x, y, ξ) = (x− y) · ξ + Φ(x, y, ξ),

and then we have the kernel representation

Pu(x) =
∫
Rn

K(x, y, x− y)u(y) dy

with

(3.3) K(x, y, z) =

∫
Rn

ei{z·ξ+Φ(x,y,ξ)}a(x, y, ξ) dξ.

In particular, P is a pseudo-differential operator when Φ(x, y, ξ) = 0. We remark
that the formal adjoint P∗ of P is of the same form (3.1) with the replacement

(3.4)
Φ(x, y, ξ) 7−→ Φ∗(x, y, ξ) = −Φ(y, x, ξ),

a(x, y, ξ) 7−→ a∗(x, y, ξ) = a(y, x, ξ),

and also the operator τ ∗hPτh with

(3.5)
Φ(x, y, ξ) 7−→ Φh(x, y, ξ) = Φ(x+ h, y + h, ξ),

a(x, y, ξ) 7−→ ah(x, y, ξ) = a(x+ h, y + h, ξ),

as special cases of the general rules (2.2) and (2.3).
We introduce a class of amplidtude functions a(x, y, ξ):

Definition 3.1. For κ ∈ R, Sκ denotes the class of smooth functions a = a(x, y, ξ) ∈
C∞(Rn × Rn × Rn) satisfying the estimate∣∣∂αx∂βy ∂γξ a(x, y, ξ)∣∣ ≤ Cαβγ⟨ξ⟩κ−|γ|

for all x, y, ξ ∈ Rn and all multi-indices α, β, γ.
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Let us now try to apply Theorem 2.2 from the previous section for Fourier integral
operators defined by (3.1). Our natural choice of H(x, y, z) is a defining function of
the singular support of the kernel. For example, the kernels of pseudo-differential
operators (that is, (3.3) with Φ(x, y, z) = 0) is singular only when z = 0, and we
can take H(x, y, z) = |z|. Indeed we can easily see that it satisfies assumptions
(A1)–(A3) in Theorem 2.2 if a(x, y, ξ) belongs to a class Sm. For general Fourier
integral operators, we can find H(x, y, z) corresponding to Φ(x, y, z) by the same
consideration:

Lemma 3.1. Assume that a = a(x, y, ξ) ∈ Sκ with some κ ∈ R, and assume also
that Φ(x, y, ξ) is a real-valued C∞-function and that ∂γξΦ(x, y, ξ) ∈ S0 for |γ| = 1.
Let

H(x, y, z) := inf
ξ∈Rn

|z +∇ξΦ(x, y, ξ)|,

and let
H̃(z) := inf

x,y∈Rn
H(x, y, z) = inf

x,y,ξ∈Rn
|z +∇ξΦ(x, y, ξ)|.

Then K(x, y, z) defined by (3.3) satisfies assumptions (A1)–(A3) in Theorem 2.2.

Proof. The expression (3.3) is justified by the integration by parts

K(x, y, z) =

∫
Rn

ei{z·ξ+Φ(x,y,ξ)} (L∗)n+1 a(x, y, ξ) dξ

outside the set

Σ = {(x, y,−∇ξΦ(x, y, ξ)) ∈ Rn × Rn × Rn : x, y, ξ ∈ Rn}
= {(x, y, z) ∈ Rn × Rn × Rn : H(x, y, z) = 0},

where L∗ is the transpose of the operator

L =
(z +∇ξΦ) · ∇ξ

i|z +∇ξΦ|2
.

Noticing that d ≤ H(x, y, z) implies d ≤ |z +∇ξΦ(x, y, ξ)| for all ξ ∈ Rn, we easily
have (A1). On the other hand, we have

|z| ≤ |z +∇ξΦ(x, y, ξ)|+ |∇ξΦ(x, y, ξ)| ≤ |z +∇ξΦ(x, y, ξ)|+N,

with some constant N > 0 for any x, y, ξ ∈ Rn, hence |z| ≤ H̃(z) + N . Then for

|z| ≥ 2N we have |z| ≤ H̃(z) + |z|/2, hence H̃(z) ≥ |z|/2, that is, (A2). Finally, if

H̃(z) ≥ 2|z′|, then we have

H̃(z) ≤ H(x, y, z) ≤ |z +∇ξΦ(x, y, ξ)| ≤ |z − z′ +∇ξΦ(x, y, ξ)|+ |z′|

≤ |z − z′ +∇ξΦ(x, y, ξ)|+ H̃(z)/2

hence H̃(z) ≤ 2|z − z′ +∇ξΦ(x, y, ξ)| for all x, y, ξ ∈ Rn, hence H̃(z) ≤ 2H̃(z − z′)
that is, we have (A3). □
From Lemma 3.1, we immediately obtain the following result from Theorem 2.2:

Theorem 3.2. Let P be a operator defined by (3.1) with (3.2). Let 1 < p < ∞, let
κ1 ≤ 0, and let κ ≤ 2κ1|1/p− 1/2| Assume the following conditions:

(B1) Φ(x, y, ξ) is a real-valued C∞-function and ∂γξΦ(x, y, ξ) ∈ S0 for |γ| = 1.

9



(B2) P is L2(Rn)-bounded whenever a(x, y, ξ) ∈ S0.
(B3) P and P∗ are uniformly H1

comp(Rn)-L1
loc(Rn)-bounded whenever a = a(x, y, ξ) ∈

Sκ1.

Then P is Lp(Rn)-bounded for any a = a(x, y, ξ) ∈ Sκ.

Indeed, by Theorem 2.2 and Lemma 3.1, assumptions (B1)–(B3) induce the H1-
L1-boundedness of the operators P and P∗ for a = a(x, y, ξ) ∈ Sκ1 if we notice that
Sκ1 ⊂ S0. Then by the duality and the complex interpolation argument, we have the
Lp-boundedness of P with the critical case a = a(x, y, ξ) ∈ S2κ1|1/p−1/2|, hence also
for a = a(x, y, ξ) ∈ Sκ since Sκ ⊂ S2κ1|1/p−1/2|. We remark that we can also conclude
the L∞-BMO-boundedness of P if a = a(x, y, ξ) ∈ Sκ1 .

Assumptions (B2) and (B3) in Theorem 3.2 are essentially the requirements for
phase functions Φ(x, y, ξ). A condition for (B2) is given by Asada and Fujiwara
[AF78], while (B3) is given by Seeger, Sogge and Stein [SSS91]. We state further
conclusions based on them by restricting our phase functions to the form

ϕ(x, y, ξ) = x · ξ − φ(y, ξ) (in other words Φ(x, y, ξ) = y · ξ − φ(y, ξ)).

First we make precise the notion of homogeneity:

Definition 3.3. We say that φ = φ(y, ξ) is positively homogeneous of order 1 if

(3.6) φ(y, λξ) = λφ(y, ξ)

holds for all y ∈ Rn, ξ ̸= 0 and λ > 0. We also say that φ = φ(y, ξ) is positively
homogeneous of order 1 for large ξ if there exist a constant R > 0 such that (3.6)
holds for all y ∈ Rn, |ξ| ≥ R and λ ≥ 1.

For the operator of the form

(3.7) Pu(x) =

∫
Rn

∫
Rn

ei(x·ξ−φ(y,ξ))a(x, y, ξ)u(y) dydξ (x ∈ Rn),

we have the following boundedness:

Corollary 3.4. Let 1 < p < ∞ and let κ ≤ −(n − 1)|1/p − 1/2|. Assume that
a = a(x, y, ξ) ∈ Sκ. Assume also the following conditions:

(C1) φ(y, ξ) is a real-valued C∞-function and ∂γξ (y · ξ − φ(y, ξ)) ∈ S0 for |γ| = 1.
(C2) There exists a constant C > 0 such that |det ∂y∂ξφ(y, ξ)| ≥ C for all y, ξ ∈ Rn.
(C3) φ(y, ξ) is positively homogeneous of order 1 for large ξ.

Then operator P defined by (3.7) is Lp(Rn)-bounded.

Proof. Let us induce assumptions (B1)–(B3) of Theorem 3.2 with κ1 = −(n − 1)/2
from the assumptions (C1)–(C3) of Corollary 3.4 for the special case ϕ(x, y, ξ) =
x · ξ−φ(y, ξ) or, in other words, for Φ(x, y, ξ) = y · ξ−φ(y, ξ). We remark that (B1)
is just an interpretation of assumption (C1). As for (B2), a sufficient condition for the
L2-boundededness of P is known from Asada and Fujiwara [AF78], that is, Theorem
1.1 in Introduction. In particular, (B2) is fulfilled if (C1) and (C2) are satisfied.

Let us discuss (B3). A sufficient condition for the H1
comp-L

1
loc-boundedness of P

is known by the work of Seeger, Sogge and Stein [SSS91], that is, P is H1
comp-L

1
loc-

bounded for a = a(x, y, ξ) ∈ S−(n−1)/2 if φ(y, ξ) is a real-valued C∞-function on
Rn × (Rn \ 0) and positively homogeneous of order 1. If we carefully trace the
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argument in [SSS91], we can say that χKPχK is H1(Rn)-L1(Rn)-bounded for any
compact set K ⊂ Rn and its operator norm is bounded by a constant depending only
on n, K and quantities

Mℓ =
∑

|α|+|β|+|γ|≤ℓ

sup
x,y,ξ∈Rn

|∂αx∂βy ∂
γ
ξ a(x, y, ξ)⟨ξ⟩

(n−1)/2+|γ|)|,

Nℓ =
∑
|β|≤ℓ

1≤|γ|≤ℓ

sup
x,y∈Rn

ξ ̸=0

|∂βy ∂
γ
ξ (y · ξ − φ(y, ξ))|ξ|−(1−|γ|)|,

with some large ℓ. The same is true for P ∗ if we trace the argument in [Ste93]
instead but we require (C2) in this case. Then P and P ∗ are uniformly H1

comp-L
1
loc-

bounded if Mℓ and Nℓ are finite since the quantities Mℓ and Nℓ are invariant under
the replacements (3.4) and (3.5).

Based on this fact, P and P ∗ are uniformly H1
comp-L

1
loc-bounded if a ∈ S−(n−1)/2

under the assumptions (C1)–(C3). In fact, let us split a(x, y, ξ) into the sum of
a(x, y, ξ)g(ξ) and a(x, y, ξ)(1 − g(ξ)) with an appropriate smooth cut-off function
g ∈ C∞

0 (Rn) which is equal to 1 near the origin. Then for the terms P1 and P ∗
1

corresponding to a(x, y, ξ)(1−g(ξ)), we can regard φ(y, ξ) as a positively homogeneous
function of order 1 by a modification near ξ = 0, and they are uniformly H1

comp-

L1
loc-bounded by the above observation. On the other hand, the terms P2 and P ∗

2

corresponding to a(x, y, ξ)g(ξ) are L1-bounded (hence uniformly H1
comp-L

1
loc-bounded)

because

P2u(x) =

∫
K(x, y)u(y) dy, P ∗

2 u(x) =

∫
K(y, x)u(y) dy,

K(x, y) =

∫
Rn

ei(x·ξ−ϕ(y,ξ))a(x, y, ξ)g(ξ) dξ,

and the integral kernel K(x, y) is integrable in both x and y. This fact can be verified
by the integration by parts

K(x, y) = (1 + |x− y|2)−n
∫
Rn

(1−∆ξ)
nei(x−y)·ξ · ei(y·ξ−ϕ(y,ξ))a(x, y, ξ)g(ξ) dξ

= (1 + |x− y|2)−n
∫
Rn

ei(x−y)·ξ · (1−∆ξ)
n{ei(y·ξ−ϕ(y,ξ))a(x, y, ξ)g(ξ)} dξ

followed by the the conclusion

|K(x, y)| ≤ C(1 + |x− y|2)−n

because of assumptions (C1), a ∈ S−(n−1)/2, and g ∈ C∞
0 .

As a conclusion, (B3) is fulfilled if (C1)–(C3) are satisfied, and the proof of Corol-
lary 3.4 is complete. □

We can admit positively homogeneous phase functions which might have singularity
at the origin for a special kind of operators of the form

(3.8) Tu(x) =

∫
Rn

ei(x·ξ+ψ(ξ))a(x, ξ)û(ξ) dξ (x ∈ Rn).

For such operators we have the following boundedness:
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Corollary 3.5. Let 1 < p < ∞ and let κ ≤ −(n − 1)|1/p − 1/2|. Assume that
a = a(x, ξ) ∈ Sκ and that ψ = ψ(ξ) is a real-valued C∞-function on Rn \ 0 which is
positively homogeneous of order 1. Then the operator T defined by (3.8) is Lp(Rn)-
bounded.

Proof. Again we spilt the amplitude a(x, ξ) into the sum of a(x, ξ)g(ξ) and a(x, ξ)(1−
g(ξ)) as in the proof of Corollary 3.4. We remark that the operator T defined by (3.8)
is the operator P defined by (3.7) with φ(y, ξ) = y · ξ − ψ(ξ) and a(x, y, ξ) = a(x, ξ)
independent of y. For the term T1 corresponding to a(x, ξ)(1 − g(ξ)), we just apply
Corollary 3.4. For the term T2 corresponding to a(x, ξ)g(ξ), we have

T2u(x) =

∫
Rn

ei(x·ξ+ψ(ξ))a(x, ξ)g(ξ)û(ξ) dξ = a(X,Dx)e
iψ(Dx)g(Dx)u(x).

The pseudo-differential operator a(X,Dx) is Lp-bounded (see Kumano-go and Na-
gase [KgN70]) and the Fourier multiplier eiψ(Dx)g(Dx) is also Lp-bounded by the
Marcinkiewicz theorem (see Stein [Ste70]) since

∣∣∂α(eiψ(ξ)g(ξ))∣∣ ≤ Cα|ξ|−|α| for any
multi-index α. The proof of Corollary 3.5 is complete. □
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