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Abstract8

The Bohr-Jessen limit theorem is a probabilistic limit theorem on the value-
distribution of the Riemann zeta-function in the critical strip. Moreover
their limit measure can be written as an integral involving a certain density
function. The existence of the limit measure is now known for a quite general
class of zeta-functions, but the integral expression has been proved only for
some special cases (such as Dedekind zeta-functions). In this paper we give
an alternative proof of the existence of the limit measure for a general setting,
and then prove the integral expression, with an explicitly constructed density
function, for the case of automorphic L-functions attached to primitive forms
with respect to congruence subgroups Γ0(N).
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1. Introduction11

Let s = σ + it be a complex variable, ζ(s) the Riemann zeta-function.12

Let R be a fixed rectangle in the complex plane C, with the edges parallel13

to the axes. By μk we mean the k-dimensional usual Lebesgue measure. For14

σ > 1/2 and T > 0, define15

Vσ(T,R; ζ) = μ1{t ∈ [−T, T ] | log ζ(σ + it) ∈ R}. (1.1)
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(The rigorous definition of log ζ(σ + it) will be given later, in Section 3.) In16

their classical paper [4], Bohr and Jessen proved the existence of the limit17

Wσ(R; ζ) = lim
T→∞

1

2T
Vσ(T,R; ζ). (1.2)

This is now called the Bohr-Jessen limit theorem. Moreover they proved that18

this limit value can be written as19

Wσ(R; ζ) =

∫
R

Mσ(z, ζ)|dz|, (1.3)

where z = x + iy ∈ C, |dz| = dxdy/2π, and Mσ(z, ζ) is a continuous non-20

negative, explicitly constructed function defined on C, which we may call the21

density function for the value-distribution of ζ(s).22

This work is a milestone in the value-distribution theory of ζ(s), and var-23

ious alternative proofs and related results have been published; for example,24

Jessen and Wintner [9], Borchsenius and Jessen [5], Guo [6], and Ihara and25

the first author [7].26

An important problem is to consider the generalization of the Bohr-Jessen27

theorem. The first author [13] proved that the formula (1.2) can be general-28

ized to a fairly general class of zeta-functions with Euler products. However,29

(1.3) has not yet been generalized to such a general class. The reason is as30

follows.31

The original proof of (1.2) and (1.3) by Bohr and Jessen depends on a32

geometric theory of certain ”infinite sums” of convex curves, developed by33

themselves [3]. In later articles [9] and [5], the effect of the convexity of curves34

was embodied in a certain inequality due to Jessen and Wintner [9, Theorem35

13]. Using this method, the Bohr-Jessen theory was generalized to Dirich-36

let L-functions (Joyner [10]) and Dedekind zeta-functions of Galois number37

fields (the first author [14]). These generalizations are possible because these38

zeta-functions have ”convex” Euler products in the sense of [13, Section 5].39

But this convexity cannot be expected for more general zeta-functions. For40

example, we cannot apply Jessen-Wintner theorem to each Euler factor of41

logL(f, s) or (L′/L)(f, s), where L(f, s) is the L-function associated with a42

primitive cuspform f . But Lebacque and Zykin [12] studied logL(f ⊗ χ, s)43

and (L′/L)(f⊗χ, s) as modulas aspect in the way similar to [8] using Murty’s44

result [20].45

In [13], the first author developed a method of proving (1.2) without using46

any convexity, so succeeded in generalizing the theory. However, the method47

in [13] cannot give a generalization of (1.3).48
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So far, there is no proof of (1.3) or its analogues without using the convex-49

ity, or the Jessen-Wintner type of inequalities. For example, [7] gives a differ-50

ent argument of constructing the density functions for Dirichlet L-functions,51

but the argument in [7] also depends on the Jessen-Wintner inequality. Addi-52

tionally, authors [18] studied the value-distribution of the difference between53

the logL(symm
f , s) and logL(symm−2

f , s) in level aspect, where L(symm
f , s)54

is the symmetric mth power L-function associated with a primitive cusp-55

form f . The argument in [18] is similar to one in [7] and it depends on the56

Jessen-Wintner inequality.57

In [16] [17], the first author obtained certain quantitative results on the58

value-distribution of Dedekind zeta-functions of non-Galois fields and Hecke59

L-functions of ideal class characters, whose Euler products are not convex.60

But in these cases, they are ”not so far” from the case of Dedekind zeta-61

functions of Galois fields. In fact, a simple generalization of the Jessen-62

Wintner inequality is proved ([17, Lemma 2]) and is essentially used in the63

proof.64

Actually, analyzing the proof of [9, Theorems 12, 13] carefully, we can65

see that the convexity of curves is not essential. The indispensable tool is66

the inequality of the Jessen-Wintner type. (However the convex property is67

probably of independent interest; see Section 8.)68

It is the purpose of the present paper to obtain an analogue of (1.3) in69

the case of automorphic L-functions. The main result (Theorem 2.1) will be70

stated in the next section. The key is Proposition 7.1, which is an analogue71

of the Jessen-Wintner inequality for the automorphic case. The novelty of72

this proposition will be discussed in Section 6.73

Except for the proof of this inequality, the argument can be carried out in74

more general situation. In Section 3 we will introduce a general class of zeta-75

functions, and in Sections 4 to 6 we will generalize the method in [14] to that76

general class. Then in Section 7 we will prove the Jessen-Wintner inequality77

for the automorphic case to complete the proof of the main theorem.78

2. Statement of the main result79

Let f be a primitive form of weight κ and level N , that is a normalized80

Hecke-eigen new form of weight κ with respect to the congruence subgroup81
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Γ0(N), and write its Fourier expansion as82

f(z) =

∞∑
n=1

λf(n)n
(κ−1)/2e2πinz,

where the coefficients λf(n) are real numbers with λf (1) = 1. Denote the83

associated L-function by84

Lf (s) =

∞∑
n=1

λf(n)n
−s.

This is absolutely convergent when σ > 1, and can be continued to the85

whole plan C as an entire function. We understand the rigorous meaning of86

logLf (s) and of87

Vσ(T,R;Lf) = μ1{t ∈ [−T, T ] | logLf (σ + it) ∈ R}

in the sense explained in Section 3. The following is the main theorem of the88

present paper.89

Theorem 2.1 (Main Theorem). For any σ > 1/2, the limit90

Wσ(R;Lf) = lim
T→∞

1

2T
Vσ(T,R;Lf ) (2.1)

exists, and can be written as91

Wσ(R;Lf ) =

∫
R

Mσ(z, Lf )|dz|, (2.2)

where Mσ(z, Lf ) is a continuous non-negative function (explicitly given by92

(6.4) below) defined on C.93

The above function Mσ(w,Lf) can be called the density function for the94

value-distribution of Lf (s). The integral expression involving the density95

function is useful for quantitative studies; for example, in [14] [16] [17] we96

used such expressions to evaluate the speed of convergence of (3.4) below97

in the case of Dedekind zeta-functions and Hecke L-functions. Therefore98

we may expect that (2.2) can be used for quantitative investigation on the99

value-distribution of Lf(s) (see also Remark 6.2).100
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Let P be the set of all prime numbers. Since f is a common Hecke eigen
form, Lf (s) has the Euler product

Lf(s) =
∏
p∈P
p|N

(1− λf(p)p
−s)−1

∏
p∈P
p�N

(1− λf (p)p
−s + p−2s)−1

=
∏
p∈P
p|N

(1− λf(p)p
−s)−1

∏
p∈P
p�N

(1− αf (p)p
−s)−1(1− βf (p)p

−s)−1, (2.3)

where αf(p) + βf(p) = λf (p), βf (p) = αf(p), and101

|αf (p)| = |βf(p)| = 1. (2.4)

Also we know102

|λf(p)| ≤ 1 (if p|N) (2.5)

(see [19, Theorem 4.6.17]).103

It is known that, for any ε > 0, there exists a set of prime Pf(ε) of positive104

density in P, such that the inequality105

|λf(p)| >
√
2− ε (2.6)

holds for any p ∈ Pf(ε) (M. R. Murty [20, Corollary 2 of Theorem 4] in106

the full modular case, and M. R. Murty and V. K. Murty [21, Chapter 4,107

Theorem 8.6] for general Γ0(N) case). This fact is used essentially in the108

course of the proof.109

3. The general formulation110

A large part of the proof of our Theorem 2.1 can be carried out under111

a more general framework, that is, for general Euler products introduced in112

[13]. We begin with recalling the definition of those Euler products.113

Let N be the set of all positive integers, and g(n) ∈ N, f(j, n) ∈ N114

(1 ≤ j ≤ g(n)) and a
(j)
n ∈ C. Denote by pn the n-th prime number. We115

assume116

g(n) ≤ C1p
α
n, |a(j)n | ≤ pβn (3.1)

with constants C1 > 0 and α, β ≥ 0. Define117

ϕ(s) =
∞∏
n=1

An(p
−s
n )−1, (3.2)
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where An(X) are polynomials in X given by118

An(X) =

g(n)∏
j=1

(1− a(j)n Xf(j,n)).

Then ϕ(s) is convergent absolutely in the half-plane σ > α+ β + 1 by (3.1).119

Definition. We denote by M the set of all ϕ satisfying the following three120

conditions.121

(i) ϕ(s) can be continued meromorphically to σ ≥ σ0, where α+β+1/2 ≤122

σ0 < α + β + 1, and all poles in this region are included in a compact123

subset of {s | σ > σ0},124

(ii) ϕ(σ + it) = O((|t|+ 1)C) for any σ ≥ σ0, with a constant C > 0,125

(iii) It holds that126 ∫ T

−T

|ϕ(σ0 + it)|2dt = O(T ). (3.3)

Remark 3.1. Here we note that Lf (s) defined in the preceding section be-127

longs to M. In fact, the Euler product is given by (2.3). The condition (3.1)128

is satisfied with α = β = 0 by (2.4), (2.5). It is entire, so (i) is obvious. Since129

it satisfies a functional equation, (ii) follows by using the Phragmén-Lindelöf130

convexity principle. Lastly, (iii) follows (with any σ0 > 1/2) by Potter’s131

result [22].132

Now let us define logϕ(s). First, when σ > α+β+1, it is defined by the133

sum134

logϕ(s) = −
∞∑
n=1

g(n)∑
j=1

Log(1− a(j)n p−f(j,n)s
n ),

where Log means the principal branch. Next, let135

B(ρ) = {σ + i�ρ | σ0 ≤ σ ≤ �ρ}
for any zero or pole ρ with �ρ ≥ σ0. We exclude all B(ρ) from {s | σ ≥ σ0},136

and denote the remaining set byG(ϕ). Then, for any s ∈ G(ϕ), we may137

define logϕ(s) by the analytic continuation along the horizontal path from138

the right. Define139

Vσ(T,R;ϕ) = μ1{t ∈ [−T, T ] | σ + it ∈ G(ϕ), logϕ(σ + it) ∈ R}.
Then, as a generalization of (1.2), the first author [13] proved the following140
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Theorem 3.1 ([13]). Let ϕ ∈ M. For any σ > σ0, the limit141

Wσ(R;ϕ) = lim
T→∞

1

2T
Vσ(T,R;ϕ) (3.4)

exists.142

This theorem may be regarded as a result on weak convergence of prob-143

ability measures, and Prokhorov’s theorem in probability theory is used in144

the proof given in [13].145

In [14], the first author presented an alternative argument of proving146

such a limit theorem, again without using any convexity. This argument is147

based on Lévy’s convergence theorem. The method in [14] is more suitable148

to discuss the matter of density functions, so in the present paper we follow149

the method in [14].150

In [14], only the case of Dedekind zeta-functions is discussed, but, as151

mentioned in [15], the idea in [14] can be applied to any ϕ ∈ M. Such a152

generalization has, however, not yet been published, so we will give a sketch153

of the argument in the following Sections 4 and 5.154

4. The method of Fourier transforms155

Let σ > σ0, and N ∈ N. The starting point of the argument is to consider156

the finite truncation of ϕ(s), that is157

ϕN(s) =
∏
n≤N

An(p
−s
n )−1 =

∏
n≤N

g(n)∏
j=1

(
1− r(j)n p−if(j,n)t

n

)−1
,

where r
(j)
n = a

(j)
n p

−f(j,n)σ
n . Then158

logϕN(s) = −
∑
n≤N

g(n)∑
j=1

log
(
1− r(j)n e−itf(j,n) log pn

)
. (4.1)

Note that159

|r(j)n | ≤ |a(j)n |p−f(j,n)σ
n ≤ pβ−σ

n ≤ pβ−(α+β+1/2)
n ≤ p−1/2

n ≤ 1/
√
2.

Let Z be the set of all integers, R the set of all real numbers,TN = (R/Z)N160

be the N -dimensional unit torus, and define the mapping SN : TN → C,161
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attached to (4.1), by162

SN (θ1, . . . , θN ) = −
∑
n≤N

g(n)∑
j=1

log
(
1− r(j)n e2πif(j,n)θn

)
. (4.2)

(Though SN depends on σ and ϕ, we do not write explicitly in the notation,163

for brevity. Similar abbreviation is applied to the notation of λN , Λ, Kn be-164

low.) We write z
(j)
n (θn) = − log(1−r(j)n e2πif(j,n)θn) andzn(θn) =

∑g(n)
j=1 z

(j)
n (θn).165

Then166

SN(θ1, . . . , θN) =
∑
n≤N

zn(θn). (4.3)

For any Borel subset A ⊂ C, we define WN,σ(A;ϕ) = μN(S
−1
N (A)). Then167

WN,σ is a probability measure on C.168

Let R ⊂ C be any rectangle with the edges parallel to the axes. The169

idea of considering the inverse image S−1
N (R) ⊂ TN goes back to Bohr’s work170

(Bohr and Courant [2], Bohr [1], and Bohr and Jessen [4]). Also let E be171

any strip, parallel to the real or imaginary axis. We have the following two172

facts, whose proofs are exactly the same as the proofs of [14, Lemma 1].173

Fact 1. The sets S−1
N (R), S−1

N (E) are Jordan measurable.174

Fact 2. For any ε > 0, there exists a positive number η such that, for any175

strip E whose width is not larger than η, it holds that WN,σ(E;ϕ) < ε.176

Now define177

VN,σ(T,R;ϕ) = μ1{t ∈ [−T, T ] | logϕN (σ + it) ∈ R}.
We see that logϕN (σ + it) ∈ R if and only if178 ({

− t

2π
log p1

}
, . . . ,

{
− t

2π
log pN

})
∈ S−1

N (R)

(where {x} means the fractional part of x). Since log p1, . . . , log pN are lin-179

early independent over the rational number fieldQ, in view of Fact 1, we can180

apply the Kronecker-Weyl theorem to obtain181

Proposition 4.1. For any N ∈ N, we have182

WN,σ(R;ϕ) = lim
T→∞

1

2T
VN,σ(T,R;ϕ). (4.4)
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This is the ”finite truncation” version of Theorem 3.1. Therefore, the183

remaining task to arrive at Theorem 3.1 is to discuss the limit N → ∞. For184

this purpose, we consider the Fourier transform185

ΛN(w) =

∫
C

ei〈z,w〉dWN,σ(z;ϕ),

where 〈z, w〉 = �z�w + �z�w. Our next aim is to show the following186

Proposition 4.2. As N → ∞, ΛN(w) converges to a certain function Λ(w),187

uniformly in{w ∈ C | |w| ≤ a} for any a > 0.188

Proof. The proof is quite similar to the argument in [14, Section 3]. It is189

easy to see that190

ΛN(w) =

∫
TN

ei〈SN (θ1,...,θN ),w〉dμN(θ1, . . . , θN ),

so in view of (4.3) we can write191

ΛN(w) =
∏
n≤N

Kn(w) (4.5)

with192

Kn(w) =

∫ 1

0

ei〈zn(θn),w〉dθn.

Noting |z(j)n (θn)| � |r(j)n | ≤ pβ−σ
n and (3.1), we have193

|zn(θn)|2 =
∣∣∣∣∣∣
g(n)∑
j=1

z(j)n (θn)

∣∣∣∣∣∣
2

� p2(α+β−σ)
n .

Therefore, analogously to [14, (3.2)], we obtain194

|Kn(w)− 1| � |w|2p2(α+β−σ)
n , (4.6)

which implies195

|Λn+1(w)− Λn(w)| = |Λn(w)| · |Kn+1(w)− 1| � |w|2p2(α+β−σ)
n+1 . (4.7)
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Therefore, for M > N ,

|ΛM(w)− ΛN(w)| ≤
M−1∑
n=N

|Λn+1(w)− Λn(w)|

�|w|2
M−1∑
n=N

p
2(α+β−σ)
n+1 ≤ |w|2

∞∑
n=N

p
2(α+β−σ)
n+1 . (4.8)

Since σ > σ0 ≥ α + β + 1/2, the last sum tends to 0 as N → ∞, uniformly196

in the region |w| ≤ a. This implies the assertion of the proposition.197

From Proposition 4.2, in view of Lévy’s convergence theorem, we imme-198

diately obtain199

Corollary 4.1. There exists a regular probability measureWσ(· ;ϕ), to which200

WN,σ(· ;ϕ) converges weakly as N → ∞, and201

Λ(w) =

∫
C

ei〈z,w〉dWσ(z;ϕ). (4.9)

Moreover, taking the limit M → ∞ on (4.8), we obtain202

|Λ(w)− ΛN(w)| � |w|2
∞∑

n=N

p
2(α+β−σ)
n+1 . (4.10)

5. Proof of Theorem 3.1203

In this section we show how to prove Theorem 3.1 in the framework of our204

present method. The argument is very similar to that given in [14, Sections205

3 and 4], so we omit some details.206

First, using Fact 2 in Section 4, we can show (analogously to the argument207

in the last part of [14, Section 3]) that R is a continuity set with respect to208

Wσ, and hence209

Wσ(R;ϕ) = lim
N→∞

WN,σ(R;ϕ). (5.1)

Now, following the method in [14, Section 4], we prove Theorem 3.1. Put210

RN(s;ϕ) = logϕ(s)− logϕN(s), fN(s;ϕ) =
ϕ(s)

ϕN(s)
− 1.
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When σ > α + β + 1, since211

RN(s;ϕ) �
∑
n>N

g(n)∑
j=1

|a(j)n |p−f(j,n)σ
n �

∑
n>N

pα+β−σ
n (5.2)

which tends to 0 as N → ∞, the assertion of the theorem directly follows212

from Proposition 4.1 and (5.1).213

In the case σ0 < σ ≤ α+β+1, naturally we have to discuss more carefully.214

Let δ > 0, and define215

Kδ
N(T ;ϕ) =

{
t ∈ [−T, T ]

∣∣∣∣∣ σ + it ∈ G(ϕ),

| logϕ(σ + it)− logϕN(σ + it)| ≥ δ

}
,

and kδN(T ;ϕ) = μ1(K
δ
N(T ;ϕ)). We will prove that kδN(T ;ϕ) is negligible,216

that is, for any ε > 0 we can choose N0 = N0(δ, ε) for which217

lim sup
T→∞

T−1kδN(T ;ϕ) ≤ ε (5.3)

holds for any N ≥ N0.218

Let α0 = σ−ε, α1 = σ−2ε. We choose ε so small that σ0 < α1 < α0 < σ.219

For any t0 ∈ [−T, T ], put220

H(t0) = {s | σ > α0, t0 − 1/2 < t < t0 + 1/2},

and define ψδ
N (t0;ϕ) = 0 if H(t0) ⊂ G(ϕ) and|RN(s;ϕ)| < δ for any s ∈221

H(t0), and ψ
δ
N (t0;ϕ) = 1 otherwise. Then clearly222

kδN(T ;ϕ) ≤
∫ T

−T

ψδ
N(t0;ϕ)dt0. (5.4)

Using (5.2) we can find β0 = α + β + 1 + Cδ−1 (with an absolute positive223

constant C) for which |RN(s;ϕ)| < δ holds for any s satisfying σ ≥ β0. Let224

Q(t0) = H(t0) ∩ {s | σ < β0}.225

Lemma 5.1. If |fN(s;ϕ)| < δ/2 for any s ∈ Q(t0), then ψ
δ
N (t0;ϕ) = 0.226

This is a generalization of [14, Lemma 2], which further goes back to227

Bohr [1, Hilfssatz 5]. Bohr’s proof in [1] can be applied without change to228

the above general case, so we omit the proof.229
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Let β1 = 2β0, and let P (t0) be the rectangle given by α1 ≤ σ ≤ β1,230

t0 − 1 ≤ t ≤ t0 + 1. Put231

FN(t0;ϕ) =

∫∫
P (t0)

|fN(s;ϕ)|2dσdt.

(This can be defined only when P (t0) does not include a pole of ϕ(s).) We232

use Lemma 5.1 and [14, Lemma 3] (which is [1, Hilfssatz 4]) to see that if233

FN(t0;ϕ) < π (ε/2)2 (δ/2)2

then ψδ
N (t0;ϕ) = 0. Therefore234

1

2T

∫ T

−T

ψδ
N (t0;ϕ)dt0 ≤ b+

μ1(S)
2T

, (5.5)

where S is the set of all t ∈ [−T, T ] for which we can find a pole s′ ofϕ(s)235

satisfying |t− �s′| ≤ 2, and236

b =
1

2T
μ1

({
t0 ∈ [−T, T ] \ S

∣∣∣∣ FN (t0;ϕ) ≥ π(ε/2)2(δ/2)2
})

.

From the definition of b we obtain

π(ε/2)2(δ/2)2b

≤ 1

2T

∫
t0∈[−T,T ]\S

FN (t0;ϕ)dt0 =
1

2T

∫ β1

α1

∫ T+1

−T−1

|fN(s;ϕ)|2
∫ #

dt0dtdσ,

where the innermost integral (with the # symbol) is on t0 ∈ [−T, T ] \ S,237

t − 1 ≤ t0 ≤ t + 1. This innermost integral is trivially ≤ 2, and is equal to238

0 if there exists a pole s′ of ϕ(s) such that |t − �s′| ≤ 1 (because then all239

t0 ∈ [t− 1, t+ 1] belongs to S). Therefore240

π(ε/2)2(δ/2)2b ≤ 1

T

∫ β1

α1

∫
J(T+1)

|fN(s;ϕ)|2dtdσ, (5.6)

where241

J(T ) = {t ∈ [−T, T ] | |t−�s′| > 1 for any pole s′ of ϕ(s)}.
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From (5.4), (5.5) and (5.6) we now obtain242

1

2T
kδN(T ;ϕ) ≤

1

π(ε/2)2(δ/2)2T

∫ β1

α1

∫
J(T+1)

|fN(s;ϕ)|2dtdσ +
μ1(S)
2T

. (5.7)

On the double integral on the right-hand side, as an analogue of [14,243

Lemma 4], we can show the following lemma.244

Lemma 5.2. For any η > 0, There exists N0 = N0(η), such that245

1

T

∫ β1

α1

∫
J(T+1)

|fN(s;ϕ)|2dtdσ < η (5.8)

for any N ≥ N0 and any T ≥ T0 with some T0 = T0(N).246

Proof. Write the Dirichlet series expansion of ϕ(s) in the region σ > α+β+1247

as248

ϕ(s) =
∞∑
k=1

ckk
−s.

Then the Dirichlet series expansion of fN (s) is249

fN (s;ϕ) =
∑
k

′
ckk

−s,

where the symbol
∑′ means that the summation is restricted to k > 1 which250

is co-prime with p1p2 · · · pN . In [11, Appendix] it has been shown that, for251

any ε > 0, we can choose a sufficiently large N = N(ε) such that252

ck = O(kα+β+ε) (5.9)

for all k co-prime with p1p2 · · ·pN .253

By (3.3) and the convexity principle we have254 ∫
J(T )

|ϕ(σ + it)|2dt = O(T ) (5.10)

for any σ ≥ σ0. On the other hand, using (4.1) we have255

ϕN (σ + it)−1 ≤ exp

⎛
⎝C∑

n≤N

g(n)∑
j=1

|a(j)n |p−f(j,n)σ
n

⎞
⎠ ≤ exp

(
C ′Nα+β+1−σ

)
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(where C,C ′ are positive constants). Combining this estimate with (5.10)256

we obtain257

1

T

∫
J(T )

|fN(σ + it;ϕ)|2dt� exp
(
2C ′Nα+β+1−σ

)
,

which is O(1) with respect to T . Therefore by Carlson’s mean value theorem258

(see [23, Section 9.51])259

lim
T→∞

1

T

∫
J(T )

|fN(σ + it;ϕ)|2dt =
∑
k

′
c2kk

−2σ, (5.11)

uniformly in σ. Using (5.9), we can estimate the right-hand side of (5.11) as260

�
∑

k≥pN+1

k2(α+β+ε−σ) � N1+2(α+β+ε−σ),

whose exponent is negative for σ > σ0 (if ε is sufficiently small). This261

immediately implies the assertion of the lemma.262

Now, applying Lemma 5.2 with η = πδ2ε3/16 to (5.7), we arrive at (5.3).263

The assertion of the theorem in the case σ0 < σ ≤ α+ β + 1 then follows by264

the same argument as in the last part of [14, Section 4].265

6. The density function266

In this section σ is any real number larger than σ0. We discuss when it is267

possible to show that Wσ(·;Lf) is absolutely continuous. Then by measure268

theory we can write269

Wσ(R;ϕ) =

∫
R

Mσ(z, ϕ)|dz| (6.1)

with the Radon-Nikodým density function Mσ(z;ϕ).270

For this purpose, we aim to show271

ΛN(w) = O(|w|−(2+η)) (|w| → ∞) (6.2)

uniformly in N , with some η > 0.272

If (6.2) is valid, then273 ∫
C

|ΛN(w)||dw| <∞.
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Therefore WN,σ is absolutely continuous, and the Radon-Nikodým density274

function MN,σ(z;ϕ) is given by275

MN,σ(z;ϕ) =

∫
C

e−i〈z,w〉ΛN(w)|dw| (6.3)

and is continuous (see [9, p.53], [5, p.105]). Moreover, the above uniformity276

in N implies that the same estimate as (6.2) is valid for the limit function277

Λ(w). Therefore Wσ is also absolutely continuous, hence (6.1) is valid with278

the continuous density function given by279

Mσ(z;ϕ) =

∫
C

e−i〈z,w〉Λ(w)|dw|. (6.4)

The following proposition reduces the problem to the evaluation ofKn(w):280

Proposition 6.1. If there are at least five n’s, say n1, . . . , n5, for which281

Kn(w) = On(|w|−1/2) holds as |w| → ∞, then (6.2) is valid for any N ≥282

max{n1, . . . , n5}, and so (6.1) and (6.4) are also valid.283

Remark 6.1. The proof of (6.2) in the above proposition is simple: just ap-284

plyKn(w) = On(|w|−1/2) (for n1, . . . , n5) and the trivial estimate |Kn(w)| ≤ 1285

to the product formula (4.5). The result is (6.2) with η = 1/2, uniform in N .286

Remark 6.2. The existence of the density function is useful for quantitative287

studies. For instance, if there are at least ten n’s with Kn(w) = O(|w|−1/2),288

then ΛN(w) = O(|w|−5) for large N . This fact with (4.6), (4.10) leads the289

estimate290

|Wσ(R;Lf )−WN,σ(R;Lf)| = O(μ2(R)N
1+2(α+β−σ)(logN)2(α+β−σ)) (6.5)

for σ > σ0, as an analogue of [14, (6.4)].291

In [14], when ϕ = ζK (the Dedekind zeta-function of a Galois number field292

K), the key estimate (6.2) was proved by using [9, Theorem 13]. In this case,293

ζK has the Euler product of the form (3.2) with f(1, n) = · · · = f(g(n), n)294

(= f(n), say, the inertia degree) and a
(j)
n = 1 (and hencer

(1)
n = · · · = r

(g(n))
n =295

p
−f(n)σ
n (= rn, say)). Therefore296

zn(θn) = −g(n) log(1− rne
2πif(n)θn),
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which describes a curve when θn moves from 0 to 1. This curve is convex,297

so the original Jessen-Wintner inequality ([9, Theorem 13]) can be directly298

applied. In this case we encounter only one type of curve, that is, the curve299

− log(1− ξ) (ξ ∈ C, |ξ| = rn).300

WhenK is non-Galois, f(1, n), . . . , f(g(n), n) are not necessarily the same301

as each other, so302

zn(θn) = −
g(n)∑
j=1

log(1− r(j)n e2πif(j,n)θn).

However, still in this case, the number of relevant types of curves303

−
g(n)∑
j=1

log(1− ξf(j,n)) (ξ ∈ C, |ξ| = p−σ
n )

is finite, because there are only finitely many patterns of the decomposition of304

prime numbers into prime ideals in K. Because of this finiteness, we can use305

[17, Lemma 2] (which is a simple generalization of [9, Theorem 13]) to show306

(6.2) in this case. The case of Hecke L-functions of ideal class characters can307

be treated in a similar way.308

However in the automorphic case, we encounter infinitely many types of309

curves, because in this case zn(θn) describes a curve310

− log(1− αf(pn)ξ)− log(1− βf(pn)ξ) (ξ ∈ C, |ξ| = p−σ
n ), (6.6)

which depends on αf (pn), βf(pn). Therefore we have to prove a new type of311

Jessen-Wintner inequality, suitable for the automorphic case. This will be312

done in the next section.313

7. An analogue of the Jessen-Wintner inequality for automorphic314

L-functions315

Now we restrict ourselves to the case of automorphic L-functions. Except316

for the (finitely many) prime factors of N , the Euler factor of Lf (s) is of the317

form318

(1− αf(pn)p
−s
n )−1(1− βf (pn)p

−s
n )−1,

so zn(θn) = An(p
−σ
n e2πiθn) with319

An(X) = − log(1− αf(pn)X)− log(1− βf(pn)X).
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When θn moves from 0 to 1, the points zn(θn) describes a curve (6.6) on the320

complex plane, which we denote by Γn.321

Let xn(θn) = �zn(θn) and yn(θn) = �zn(θn). Writing w = |w|eiτ (τ ∈322

[0, 2π)) we have w = |w| cos τ + i|w| sin τ . Then323

〈zn(θn), w〉 = |w|gτ,n(θn), (7.1)

where324

gτ,n(θn) = xn(θn) cos τ + yn(θn) sin τ.

Therefore325

Kn(w) =

∫ 1

0

ei|w|gτ,n(θn)dθn. (7.2)

Lemma 7.1. Let n ∈ N such that pn � N . For any fixed τ , the function326

gτ,n(θn) (as a function in θn) is a C
∞-class function. Moreover, if pn ∈ Pf(ε)327

and n is sufficiently large, then g′′τ,n(θn) has exactly two zeros on the interval328

[0, 1).329

Proof. Hereafter, for brevity, we write pn = p, p−σ
n = q, 2πθn = θ, zn(θn) =330

z(θ), gτ,n(θn) = gτ (θ), xn(θn) = x(θ), and yn(θn) = y(θ). Since the Taylor331

expansion of An(x) is given by332

An(x) =

∞∑
j=1

ajx
j with aj =

1

j
(αf(p)

j + βf(p)
j),

we have333

z(θ) =

∞∑
j=1

ajq
jeijθ.

Therefore, putting bj = �aj and cj = �aj , we have334

x(θ) =
∞∑
j=1

qjuj(θ), y(θ) =
∞∑
j=1

qjvj(θ),

where335

uj(θ) = bj cos(jθ)− cj sin(jθ), vj(θ) = bj sin(jθ) + cj cos(jθ).

Differentiate these series termwise with respect to θ; for example336

x′(θ) = −
∞∑
j=1

jqjvj(θ), y′(θ) =
∞∑
j=1

jqjuj(θ)
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and so on. From (2.4) we have |aj | ≤ 2/j, so337

|bj | ≤ 2/j, |cj| ≤ 2/j. (7.3)

Noting these estimates and q < 1, we see that these differentiated series are
convergent absolutely. Therefore x(θ), y(θ) are belonging to the C∞-class,
and so is gτ (θ). In particular the above termwise differentiation is valid, and
we have

g′τ (θ) = −
∞∑
j=1

jqjvj(θ) cos τ +
∞∑
j=1

jqjuj(θ) sin τ

= −qv1(θ) cos τ + qu1(θ) sin τ + E1(q; θ, τ), (7.4)

where E1(q; θ, τ) denotes the sum corresponding to j ≥ 2, and

|E1(q; θ, τ)| ≤ 2
∑
j≥2

jqj(|bj|+ |cj|)

≤ 2
∑
j≥2

jqj
(
2

j
+

2

j

)
= 8

∑
j≥2

qj =
8q2

1− q
. (7.5)

Since q = p−σ
n ≤ 2−1/2 = 1/

√
2, we find that E1(q; θ, τ) = O(q2) as q → 0338

(that is, n → ∞), where the implied constant is absolute. Therefore from339

(7.4) we have340

g′τ (θ) = −qb1 sin(θ − τ)− qc1 cos(θ − τ) +O(q2).

Write γ1 = arg a1. Then b1 = |a1| cos γ1, c1 = |a1| sin γ1, and so

g′τ (θ) = −q|a1|(cos γ1 sin(θ − τ) + sin γ1 cos(θ − τ)) +O(q2)

= −q(|a1| sin(γ1 + θ − τ) +O(q)). (7.6)

Similarly, one more differentiation gives

g′′τ (θ) = −
∞∑
j=1

j2qjuj(θ) cos τ −
∞∑
j=1

j2qjvj(θ) sin τ

= −q|a1| cos(γ1 + θ − τ) + E2(q; θ, τ), (7.7)
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where E2(q; θ, τ), the sum corresponding to j ≥ 2, satisfies

|E2(q; θ, τ)| ≤ 2
∑
j≥2

j2qj(|bj|+ |cj|)

≤ 2
∑
j≥2

j2qj
(
2

j
+

2

j

)
= 8

∑
j≥2

jqj =
8q2(2− q)

(1− q)2
. (7.8)

(The proof of the last equality: Put J =
∑

j≥2 jq
j, and observe that J =341 ∑

j≥1(j+1)qj+1 = q
∑

j≥1 jq
j +
∑

j≥1 q
j+1 = q2+ qJ+ q2/(1− q).) Therefore342

E2(q; θ, τ) = O(q2) with an absolute implied constant (by using again q ≤343

1/
√
2), and hence344

g′′τ (θ) = −q(|a1| cos(γ1 + θ − τ) +O(q)). (7.9)

Furthermore345

g′′′τ (θ) = q|a1| sin(γ1 + θ − τ) + E3(q; θ, τ) (7.10)

with

|E3(q; θ, τ)| ≤ 2
∑
j≥2

j3qj(|bj |+ |cj|)

≤8
∑
j≥2

j2qj = 8q2
(

3

1− q
+

1

1− q2
+

2q(2− q)

(1− q)3

)
= O(q2) (7.11)

with an absolute implied constant. (The evaluation of
∑

j≥2 j
2qj can be done346

similarly to the last equality of (7.8).)347

Now we assume that pn ∈ Pf (ε), where ε is a small positive number.348

Recall a1 = αf(p) + βf(p) = λf(p). Therefore from (2.6) we have |a1| >349 √
2 − ε. On the other hand, the term O(q) can be arbitrarily small when n350

is sufficiently large. Therefore from (7.9) we find that, for sufficiently large351

n, if θ = θ0 is a solution of g′′τ (θ) = 0, then cos(γ1 + θ0 − τ) is to be close to352

0. That is, writing θ = θc1, θ
c
2 be two solutions of cos(γ1 + θ − τ) = 0 in the353

interval 0 ≤ θ < 2π, we see that θ0 is close to θc1 or θc2.354

Now consider g′′′τ (θ). From (7.10) and (7.11) we have355

g′′′τ (θ) = q(|a1| sin(γ1 + θ − τ) +O(q)).

Since356

| sin(γ1 + θc1 − τ)| = | sin(γ1 + θc2 − τ)| = 1,
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we see that g′′′τ (θ) �= 0 around θ = θcj (j = 1, 2), if pn ∈ Pf (ε) and n357

is sufficiently large. This implies that g′′τ (θ) is monotone around θ = θcj .358

Therefore we conclude that there is at most one solution θ = θ0 of g′′τ (θ) = 0359

around θcj .360

Moreover, from (7.9) we see that g′′τ (θ) is negative around the value of θ361

satisfying cos(γ1+ θ− τ) = 1, and is positive around the value of θ satisfying362

cos(γ1 + θ − τ) = −1. Therefore g′′τ (θ) changes its sign twice in the interval363

0 ≤ θ < 1, so that the above solution θ0 indeed exists both around θc1 and364

around θc2. We denote those solutions by θ′′1 and θ′′2 , respectively. That is,365

g′′τ (θ) = 0 has exactly two solutions in the interval 0 ≤ θ < 2π.366

Remark 7.1. By the same reasoning as above, we can show that, if pn ∈367

Pf(ε) and n is sufficiently large, g′τ (θ) = 0 also has exactly two solutions368

θ′1 and θ′2 in the interval 0 ≤ θ < 2π. In fact, there exists two solutions369

θ = θs1, θ
s
2 of sin(γ1 + θ− τ) = 0 in the interval 0 ≤ θ < 2π, and θ′j is close to370

θsj (j = 1, 2). (We can further show that, for any l ∈ N, there exist exactly371

two solutions of g
(l)
τ (θ) = 0.)372

Now we can prove an analogue of the Jessen-Wintner inequality for au-373

tomorphic L-functions. In the rest of this section, we follow the argument374

in the proof of [9, Theorem 12]. We use the notation defined in the proof of375

Lemma 7.1 and in Remark 7.1. The integral (7.2) can be rewritten as376

Kn(w) =
1

2π

∫ 2π

0

ei|w|gτ (θ)dθ. (7.12)

Proposition 7.1. If pn ∈ Pf(ε) and n is sufficiently large, we have377

Kn(w) = O

(
1

q1/2|w|1/2 +
1

q|w|
)
,

with the implied constant depending only on ε.378

Proof. When θ moves between θsi and θ
c
j (1 ≤ i, j ≤ 2) (mod 2π), the values379

of sin(γ1 + θ− τ) and cos(γ1 + θ− τ) varies continuously and monotonically,380

and there exists a unique value θ = θij between θ
s
i and θcj at which381

| sin(γ1 + θij − τ)| = | cos(γ1 + θij − τ)| = 1/
√
2

holds. We split the interval 0 ≤ θ < 2π (mod 2π) into four subintervals at382

the values θij (1 ≤ i, j ≤ 2). Then on two of those subintervals (which we383
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denote by IA and IB) the inequality| sin(γ1 + θ − τ)| ≥ 1/
√
2 holds, while384

on the other two subintervals (which we denote by IC and ID) the inequality385

| cos(γ1 + θ − τ)| ≥ 1/
√
2 holds.386

Since pn ∈ Pf(ε) and n is sufficiently large, we can again use the facts387

|a1| >
√
2− ε and the term O(q) is small. Therefore from (7.6) we find388

|g′τ (θ)| ≥ q((
√
2− ε)(1/

√
2)− ε) ≥ q(1− 2ε) (7.13)

for θ ∈ IA ∪ IB. Similarly from (7.9) we find that, for sufficiently large n,389

|g′′τ (θ)| ≥ q(1− 2ε) (7.14)

for θ ∈ IC ∪ ID.390

The number θc1 is included in IA or IB, say IA. Then θ
c
2 ∈ IB. Therefore391

also θ′′1 ∈ IA and θ′′2 ∈ IB. We split IA into two subintervals at θ = θ′′1 . Then392

in the both of those subintervals, g′τ (θ) is monotone. Therefore, applying393

the first derivative test (Titchmarsh [24, Lemma 4.2]) with (7.13) to those394

subintervals we have395 ∣∣∣∣
∫
IA

ei|w|gτ(θ)dθ

∣∣∣∣ ≤ 2 · 4

min{|w||g′τ(θ)|}
≤ 8

q|w|(1− 2ε)
,

and the same inequality holds for the integral on IB.396

As for the integrals on the intervals IC and ID, we use the second deriva-397

tive test ([24, Lemma 4.4]). The monotonicity is not required for the second398

derivative test, so we need not divide IC into subintervals. Using (7.14), we399

have400 ∣∣∣∣
∫
IC

ei|w|gτ (θ)dθ

∣∣∣∣ ≤ 8√|w|q(1− 2ε)
,

and the same for ID. Collecting these inequalities, we obtain the assertion401

of the proposition.402

Proposition 7.1 implies that403

Kn(w) = On,ε(|w|−1/2) (|w| → ∞) (7.15)

if pn ∈ Pf(ε) and n is sufficiently large. The set Pf(ε) is of positive density,404

especially it includes infinitely many elements (so surely includes five ele-405

ments). Therefore we can obviously apply Proposition 6.1 to ϕ(s) = Lf (s),406

and the proof of Theorem 2.1 is now complete.407
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8. The convexity408

In our proof of Theorem 2.1, the convexity of relevant curves plays no role.409

However the geometric property of the curve Γn is of independent interest.410

We conclude this paper with the following411

Proposition 8.1. If pn ∈ Pf (ε) for a small positive number ε and n is412

sufficiently large, the curve Γn is a closed convex curve.413

Remark 8.1. Using [9, Theorem 13] we have that each curve Γn is convex if414

|ξ| is sufficiently small. But their theorem does not give any explicit bound415

of |ξ| (which may depend on n), so we cannot deduce the above proposition416

from their theorem.417

Proof of Proposition 8.1. Assume pn ∈ Pf (ε) and n is large. Then418

u1(θ)
2 + v1(θ)

2 = b21 + c21 = |a1|2 = |αf(p) + βf(p)|2 > (
√
2− ε)2

by (2.6). Therefore at least one of |u1(θ)|2 and |v1(θ)|2 is larger than (
√
2−

ε)2/2, that is, at least one of |u1(θ)| and |v1(θ)| is larger than (
√
2−ε)/√2 >

1− ε. Let

Θ(u1, n) = {θ ∈ [0, 2π) | |u1(θ)| > 1− ε},
Θ(v1, n) = {θ ∈ [0, 2π) | |v1(θ)| > 1− ε}.

Then Θ(u1, n) ∪Θ(v1, n) = [0, 2π).419

First consider the case when θ ∈ Θ(v1, n). The curve Γn consists of the420

points z(θ) = x(θ) + iy(θ). We identify C with the R2-space {(x, y) | x, y ∈421

R}, and identify z(θ) with (x(θ), y(θ)). We study the behavior of the tangent422

line of the planar curve Γn at z(θ), when θ varies. By Ξ(θ) we denote the423

tangent of the angle of inclination of the tangent line z(θ). Then424

Ξ(θ) =
y′(θ)
x′(θ)

= −
( ∞∑

j=1

jqjuj(θ)

)/( ∞∑
j=1

jqjvj(θ)

)
. (8.1)

It is to be noted that the denominator is qv1(θ) + O(q2), so this is non-425

zero for sufficiently small q (that is, sufficiently large n), because now we426

assumeθ ∈ Θ(v1, n).427

We evaluate Ξ′(θ). First, by differentiation we have428

Ξ′(θ) = X1(θ) +X2(θ) +X3(θ) +X4(θ), (8.2)
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say, where

X1(θ) = qv1(θ)

/( ∞∑
j=1

jqjvj(θ)

)
,

X2(θ) =

( ∞∑
j=2

j2qjvj(θ)

)/( ∞∑
j=1

jqjvj(θ)

)
,

X3(θ) = (qu1(θ))
2

/( ∞∑
j=1

jqjvj(θ)

)2

,

and429

X4(θ) =

⎛
⎜⎜⎝ ∑

j,k∈N
j+k≥3

jk2qj+kuj(θ)uk(θ)

⎞
⎟⎟⎠
/( ∞∑

j=1

jqjvj(θ)

)2

.

We write430 ∞∑
j=1

jqjvj(θ) = qv1(θ)(1 + Y (θ)), (8.3)

where431

Y (θ) =

∞∑
j=2

jqj−1 vj(θ)

v1(θ)
.

Since |v1(θ)| > 1− ε, using (7.3) we have432

|Y (θ)| ≤ 4

1− ε

∞∑
j=2

qj−1 =
4q

(1− ε)(1− q)
= O(q)

(noting q is small). Therefore

( ∞∑
j=1

jqjvj(θ)

)−1

=
1

qv1(θ)

(
1− Y (θ)

1 + Y (θ)

)

=
1

qv1(θ)
+O

(
1

q(1− ε)

|Y (θ)|
1− |Y (θ)|

)
=

1

qv1(θ)
+O(1). (8.4)

This implies433

X1(θ) = 1 +O(q). (8.5)
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The numerator of X2(θ) can be evaluated, as in (7.8), by O(q2). Therefore434

with (8.4) (whose right-hand side is O(q−1)) we have435

X2(θ) = O(q2 · q−1) = O(q). (8.6)

As for X3(θ), again using |v1(θ)| > 1− ε and (8.4) we obtain436

X3(θ) =
u1(θ)

2

v1(θ)2

(
1− Y (θ)

1 + Y (θ)

)2

=
u1(θ)

2

v1(θ)2
+O(q). (8.7)

Lastly, we have437

X4(θ) �
∑
j,k∈N
j+k≥3

kqj+k · q−2 � q, (8.8)

because∑
j,k∈N
j+k≥3

kqj+k =
∑
j≥1

qj
∑

k≥max{1,3−j}
kqk = q

∑
k≥2

kqk +
∑
j≥2

qj
∑
k≥1

kqk

= qJ + (q + J)
∑
j≥2

qj = O(q3)

(where J was defined just after (7.8)). Collecting (8.2), (8.5), (8.6), (8.7)438

and (8.8), we obtain439

Ξ′(θ) = 1 +
u1(θ)

2

v1(θ)2
+O(q). (8.9)

Note that all the implied constants in the above formulas are absolute. When440

n is large, O(q) becomes small, so (8.9) implies that Ξ′(θ) > 0. That is, if pn ∈441

Pf(ε), n is sufficiently large, and θ ∈ Θ(v1, n), then Ξ(θ) is monotonically442

increasing.443

In the case when θ ∈ Θ(u1, n), we change the roles of the axes. That444

is, now we identify z(θ) ∈ C with (−y(θ), x(θ)) ∈ R2. Instead of Ξ(θ),445

we consider Ξ∗(θ) = x′(θ)/y′(θ). (The denominator y′(θ) is non-zero for446

large n because θ ∈ Θ(u1, n).) Then −Ξ∗(θ) is the tangent of the angle of447

inclination of the tangent line, under this new choice of the axes. We can448

proceed similarly, and obtain, analogously to (8.9),449

(−Ξ∗(θ))′ = 1 +
v1(θ)

2

u1(θ)2
+O(q), (8.10)

hence −Ξ∗(θ) is monotonically increasing when θ ∈ Θ(u1, n). Therefore the450

tangent of the angle of inclination is always increasing, which implies that451

the curve Γn is convex.452
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[4] H. Bohr and B. Jessen, Über die Werteverteilung der Riemannschen466

Zetafunktion, I, Acta Math. 54 (1930), 1-35; II, ibid. 58 (1932), 1-55.467

[5] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann468

zeta function, Acta Math. 80 (1948), 97-166.469

[6] C. R. Guo, The distribution of the logarithmic derivative of the Riemann470

zeta function, Proc. London Math. Soc. (3)72 (1996), 1-27.471

[7] Y. Ihara and K. Matsumoto, On certain mean values and the value-472

distribution of logarithms of Dirichlet L-functions, Quart. J. Math. (Ox-473

ford) 62 (2011), 637-677.474

[8] Y. Ihara and K. Matsumoto, On logL and L′/L for L-functions and the475

associated “M-functions”:Connections in optimal cases, Moscow Math.476

J. 11 (2011), 73–111.477

[9] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta478

function, Trans. Amer. Math. Soc. 38 (1935), 48-88.479

[10] D. Joyner, Distribution Theorems of L-functions, Longman Sci.&Tech.,480

1986.481

25
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