
 

Identification of differentiation regulators 

based on transcriptional heterogeneity 

 

転写の不均質性に基づく 

分化制御因子の特定 

 

 

Tatsuya Ando 

安藤 達哉 

 

 

Department of Biotechnology, Graduate School of Engineering,  

Nagoya University, Japan 

名古屋大学大学院 工学研究科 化学・生物工学専攻 

生物機能工学分野 

 

 



 

 

 

 

  

 

 

 

 

 

 

 

 



Contents 

Chapter 1: General Introduction 

1.1. Preface 1 

1.2. The current challenges for heterogeneity researches 3 

1.3. The current opportunities for heterogeneity analysis 5 

1.4. Aim of this research 10 

1.5. References 15 

 

Chapter 2: Differential variability and correlation of gene 

expression identifies key genes involved in neuronal 

differentiation 

2.1. Introduction 25 

2.2. Materials and Methods 29 

2.2.1 Transcriptional data 29 

2.2.2. Differential variance and co-expression analysis 30 

2.2.3. Enrichment analysis 31 

2.2.4. Statistical analysis 32 

2.3. Results 33 



2.3.1. Network dynamics detection in the differentiation process 33 

2.3.2. Genes with differential variance and correlation are involved in neural 

differentiation 34 

2.3.3 Gene expression variance and correlation are altered at a neuroectodermal 

stage 36 

2.3.4 DVC genes are genetically associated with the differentiation process 37 

2.3.5. DVC genes conserved in mouse ES and human iPS cells 38 

2.4. Discussion 39 

2.5. Summary 53 

2.6. References 55 

 

Chapter 3: Identification of an early cell fate regulator by 

detecting dynamics in transcriptional heterogeneity and 

co-regulation during astrocyte differentiation 

3.1. Introduction 64 

3.2 Materials and Methods 70 

3.2.1. Single cell RNA-seq data and its preprocessing 70 

3.2.2 Co-expression analysis 72 



3.2.3. Differential variability and correlation (DVC) analysis 72 

3.2.4. Functional enrichment analysis of candidate gene signature 73 

3.2.5. Cell culture and Ntsr2 inhibition assay 74 

3.2.6. Statistical analysis 75 

3.3. Results 76 

3.3.1. Comparison of transcriptional variability and correlation in three cell states 

(NSCs, TAPs, and astrocytes) 76 

3.3.2. DVC genes in the cell state transition of astrocyte differentiation 79 

3.3.3. Cell-fate marker genes found as DVC genes 81 

3.3.4. DVC genes are potentially regulated by Sox9, Ascl1 and Max 82 

3.3.5. Experimental validation of the role of the DVC candidate gene (Ntsr2) in 

determining cell fate 83 

3.4. Discussion 85 

3.5. Summary 100 

3.6. References 102 

 

Chapter 4: Concluding remarks 

List of publication of dissertation 112 



Acknowledgments 113 

 

 

 



1 

 

 

Chapter 1 

 

 

General Introduction 

 

 

1.1. Preface 

 

 Heterogeneity within cell populations has been difficult to be experimentally 

proven and neglected because it was often treated as technical noise rather than 

biological variability in biological experiments [1]. However, heterogeneity in cell 

populations is not a new concept. It has been studied as clonal populations of bacteria 

[2]. They described as non-genetic individuality that is variability in cell populations 

with the same genetic background. Cellular heterogeneity became partially 

measurable as differences in cellular phenotypes and intermediate phenotypes among 
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cell populations [3]–[5]. Some studies tried to uncover the sources of heterogeneity 

within cell populations [6],[7]. One of the simple explanations of the source is that 

phenotype heterogeneity comes from a mixture of a limited number of distinct 

subpopulations (Fig. 1-1A) [8]. The cellular states in the subpopulations are not static, 

which reflects biological complexity. The cellular states are changed or fluctuated 

dynamically across time due to cyclic biological processes such as cell cycle, circadian 

rhythm and ultradian rhythm (Fig. 1-1B) [9],[10]. The cyclic states vary across cell 

populations at any time points, which is another source of the heterogeneity. Although 

pioneering studies have explored heterogeneity in cell populations using a limited 

number of preselected genes [11]–[13], the complexity of cellular heterogeneity is not 

understood well. Understanding of the cellular phenotype heterogeneity and the 

underlying mechanism is one of the next frontiers of biological science. 
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Figure 1-1. The source of phenotype heterogeneity in cell populations. (A) Difference of 

cellular response in the distinct cell types. (B) Difference of cellular response by 

dynamic change of temporal cellular states 

 

1.2.  The current challenges for heterogeneity researches 

 

 More recently, phenotype heterogeneity in cell populations has been observed in 

diverse physiological processes, pathophysiological conditions, and responses to 

therapeutics [14]–[17], which poses challenges to develop treatment of diseases (Fig. 

1-1). Several research steps are considered to be required to achieve homogeneous 



4 

 

response against treatment at a cell population level. The first step is to understand 

the molecular mechanism underlying cellular heterogeneity. Then, we can identify 

regulators of cellular phenotype heterogeneity based on the regulatory mechanism. 

After that, modulating the regulators enables us to regulate cellular phenotypes and 

have effects on tissues in animals and humans. 

 One of the application fields is cancer drug development. Drug responses in 

cancer cells are heterogeneous [16],[17]. Drug-resistant cancer cells prevent effective 

treatments for cancer patients. Therefore, a deeper understanding of homogeneous 

drug responses in cancer is beneficial for better drug development for cancers. Another 

application field is regenerative medicine. It is difficult to supply cells suitable for the 

personalized cell therapy on demands because cellular differentiation is a 

time-consuming process, and differentiated cell populations can consist of heterogenic 

population of functionally undefinable cells which can lead to inefficient therapy [18]. 

Rapid and homogeneous differentiation systems could improve the efficacy and cost of 

cell therapy. 

 Although the molecular mechanism underlying cellular heterogeneity is largely 
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unknown, multiple clues have discovered in the cell differentiation and development 

research area. One of the potential mechanisms of cellular heterogeneity is considered 

to the diversity of cell cycle states. The differences between cell-cycle phases of each cell 

in a cell population, which considered as “heterogeneity of cell cycles”, can inhibit 

synchronous differentiation of stem cells [19]. The other mechanism is the oscillation of 

the differentiation regulators in the stem cells [9]. The oscillation of such regulator 

genes is commonly not synchronized even in individual cells, which makes the cellular 

heterogeneity more complex [20]. The important implication from these studies is that 

oscillation phenomenon itself is required for multi-potency and maintenance of stem 

cells [21]. Although these cell differentiation studies shed light on heterogeneity 

mechanism from the limited aspects, systematic and unbiased researches on cellular 

heterogeneity could not be performed until measurement and analytical methodologies 

have recently developed. 

 

1.3. The current opportunities for heterogeneity analysis 
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 The recent development of both measurement technologies and analytical 

theory has been accelerating the science of cellular heterogeneity. The first wave of 

advance in measurement technology was the development and spread of Omics 

technologies [22]. The genome sequences of humans and mice were reported and genes 

were annotated on the genomes with massive transcript sequences [23]–[25]. It 

enabled us to design the synthetic oligonucleotides which hybridize to the target 

transcripts and measure transcripts in genome-wide manner (transcriptome) [22]. The 

explosive development of sequencing technology offered an opportunity for quantitative 

measurement of transcripts by sequencing a huge number of RNAs and mapping to the 

genomes [26]. By applying these sequence technologies, epigenomics studies have been 

increased. The recent advances in mass spectrometry technology expanded the 

measurable molecules at once in proteomics and metabolomics experiments  [27],[28]. 

Among these omics technologies, the transcriptomics technology was advancing with 

its quantitative determination performance, reproducibility and low error rate [29]. 

 The second wave was an invention of single cell RNA-seq, which enabled 

quantitative genome-wide measurement of transcripts at the individual cellular level 
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compared to the previous population average level [30]. Transcriptional variability in 

cell populations became measurable with higher precision, which contributed to 

establishing an accurate evaluation of cellular heterogeneity [31],[32]. Single cell 

technology is now applying to epigenomics [33]. These applications will evaluate 

cellular heterogeneity from multiple layers of intermediates phenotypes such as 

transcriptomics and epigenomics. 

 In parallel with the development of measurement technology, analytical 

theories have been developed. Dynamical systems theory treats heterogeneity and 

oscillation as one of the patterns of fluctuations [34],[35]. The theory provides a 

uniform framework to describe an abrupt shift of a complex dynamic system from one 

state to another [35]. This “abrupt shift”, designated as “critical transition”, can be seen 

in various types of systems around us, not only in the cellular research field but also in 

other scientific fields: asthma attacks or epileptic seizures in our body system; systemic 

market crashes in finance in the economic system; changes in ocean circulation or 

climate on earth as a global system [36]–[38]. 

 Historically, dynamical systems theory has suggested indicators that the 
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system state starts to transit to another, especially just before the critical transition. 

Such indicators are known as ‘critical slowing down’ [39]. It was also suggested that the 

slowing down should lead to some pattern of certain characteristic changes of 

fluctuations in a system. There are two possible characteristics suggested being 

strengthened in such change of fluctuations accompanied by critical slowing down (Fig. 

1-2). One of the possible characteristic change is the increase of variance in the pattern 

of fluctuation [40], and the other is the increase of correlation between neighboring 

components [41]. A highly connected system shows an abrupt change by a strong 

perturbation because all components shift their state in synchrony. Such possible 

characteristics in the fluctuation can be mathematically shown [41]. In cellular biology, 

the components of a system are the genes/transcripts in the cell population. Therefore, 

as a hypothesis, the expression pattern of genes can show high variability (variance) 

and/or correlation. As a practical example, the Notch signaling genes (Hes1 and Dll1) 

are known to oscillate, and co-expressed before neuronal differentiation in the stem 

cells [20]. The oscillation is not synchronized among individual cells and could show 

high variability in the cells at a certain time point before differentiation. he analogy 



9 

 

between dynamical systems theory and the biological observation in the neuronal 

differentiation motivated us to further examine the dynamic state transition in the 

cellular system from the view point of cellura heterogeneity. The recent accumulation 

of transcriptome data in the cell differentiation process also provide us an opportunity 

for unbiased analysis of cell state transition with cellular heterogeneity. 

 

Far from transition Close to transition

Low variance High varianceLow correlation High correlation

 

Figure 1-2.  Characteristic changes as a system approaches a critical transition. Far 

from the transition, the system is characterized by low variance of fluctuations and low 

correlation between the system components. When the system is close to the transition, 

the system shows high variance of fluctuations and high correlation between the 
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system components as a consequence of the slowing down. The figure was modified 

from Scheffer et al. [34], [35]. 

 

G
e
n

e
 e

xp
re

s
s
io

n
 l

e
ve

l

time

Neural progenitor Neuron

Ngn2, Dll1

Hes1

 

Figure 1-3. The expression profile of Notch signaling genes during neuron 

differentiation in a single cell. Expression of Hes1, Ngn2 and Dll1 oscillates in dividing 

neural progenitors. In neurons, Hes1 is downregulated, whereas Ngn2 and Dll1 are 

upregulated. The figure was modified from Shimojo et al. [20]. 

 

1.4. Aim of this research 

  

 In this work, I aimed to identify the regulators in a cellular system, especially 

in the neuronal and glial differentiation, by investigating transcriptional variability 
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and co-regulation pattern of global gene expressions. The reason why I selected 

neuronal and glial differentiation is the accumulated biological knowledge from the 

pioneer studies and its feasibility of unbiased analysis with accumulated transcriptome 

data [21]. For the biologically validated target gene in this field, Notch signaling genes 

including Hes1 was found to oscillate during the neuronal differentiation from the 

prior works. Multiple transcriptome data sets in the neuronal and glial differentiation 

are also required to replicates the results from the unbiased analysis [42]–[45], which 

was another factor made me focus on this differentiation process. 

 I examined fundamental characteristics of transcriptional variability during 

neuronal and glial differentiation aiming to identify the novel regulators in the 

neuronal and glial differentiation process as a primary focus of this thesis. In Chapter 

2, I examined the cellular heterogeneity in neuronal differentiation. The primary 

purpose of this first study is to examine the existence of events according to the 

dynamical systems theory, by the variability analysis of transcriptome data reflecting 

the “averaged expressions of cell population” measured by microarray. After such 

evaluation, I also tried to identify the key neuronal differentiation regulators based on 
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the regulatory characteristics of highly variable genes. The preservation of the 

characteristics of identified regulators between humans and mice was also evaluated. 

In Chapter 3, the transcriptional heterogeneity in the astrocyte differentiation was 

examined. In this chapter, I expanded my formerly examined analysis concept, the 

evaluation of transcriptional variability analysis, to identify the differentiation 

regulators from the single cell RNA-seq the data, which can describe the heterogeneity 

of cell population in more detail. Through this work, I investigated the similarities of 

transcriptional variability changes between neuronal and astrocyte differentiations. 

The potential regulators in astrocyte differentiation could also be identified similarly to 

the analytical methods established in the Chapter 2. In this work, not only the data 

analysis but also the experimental validation was conducted to prove the potency of the 

identified regulator from the analysis. 
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Figure 1-4. Overview of this thesis. In Chapter 2, I identified key genes of neuron 

differentiation based on transcriptional variability and correlation using population 

level gene expression data during neurogenesis in mice and humans. In Chapter 3, I 

identified potential regulators of astrocyte differentiation by the method established in 

Chapter 2 using single cell gene expression data during mouse astrogenesis and 

validate them experimentally. 

 

I believe that the thesis opens new era of cellular heterogeneity research in cell 

differentiation and help us understand the molecular mechanism underlying cellular 

heterogeneity. I also believe that it will also contribute to improving the therapeutic 
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effects in the disease treatment and cell therapy process by controlling the cellular 

heterogeneity based on the findings from this work. 
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Chapter 2 

 

 

Differential variability and correlation of gene 

expression identifies key genes involved in neuronal 

differentiation 

 

 

2.1. Introduction  

 

Cell differentiation is a complex process requiring precise dynamic regulation of 

cellular components. The spatio-temporal heterogeneity of ES cells and iPS cells makes 

it hard to determine the molecular mechanisms of cell differentiation and establish 

efficient differentiation protocols [1,2]. From the standpoint of dynamic systems theory, 

differentiation processes, like societies and ecological or biological networks, are 
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systems that shifts abruptly from one state to another, often in response to external 

stimulation; such shifts are referred to as “critical transitions” [3-5]. ES and iPS cells 

are in a balanced stable state that can shift to multiple other states representing 

differentiated cell types [5,6]. Although it may exhibit little change beforehand, a 

system close to a critical transition usually shows signs of fragility. For example, high 

variance and correlation of system components are empirical indicators of upcoming 

transitions [4]. Thus, the mRNA and protein components of a gene regulatory network 

may exhibit highly variable expression and correlated expression patterns prior to ES 

and iPS cell differentiation. Such variance is thought to be related to spatio-temporal 

fluctuation (“noise”) in gene expression [7]. Controlled temporal fluctuation or 

oscillation is required for maintenance of stem cell self-renewal [8]. Some gene sets 

related to self-renewal not only oscillate, but are also co-expressed during neural 

differentiation [9]. The co-expression network provides a comprehensive picture of the 

correlation relationships between gene products and reveals the functional 

organization of the transcriptome [10,11]. The structure of the transcriptional 

regulatory network may be altered during ES cell differentiation. Fluctuations in the 
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levels of important differentiation regulators may affect network structure, thereby 

controlling cell fate decisions and population heterogeneity [12]. Recently developed 

systematic approaches can identify such changes in network structure[13]. These 

approaches identify regulators or marker genes of disease pathophysiology by 

comparing gene network structures and variances of the genes in the network between 

healthy and disease progression states [14]–[20]. Application of these methods to ES 

and iPS cell may reveal alterations in network structures and variance in gene 

expression levels during ES cell differentiation process, ultimately leading to 

identification of important regulators of differentiation. In support of this idea, several 

known regulators exhibit co-regulated fluctuations during differentiation [9]. 

Understanding of these gene regulatory networks could help dissect the complex 

molecular mechanisms underlying stem cell biology. Although pioneering work has 

revealed the behaviors of dynamic gene fluctuations, especially in developmental 

biology, genome-wide discovery of genes exhibiting dynamic fluctuation during 

differentiation has not been comprehensively performed. In this study, we developed an 

analytical framework for investigating the dynamics of transcriptional networks and 
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applied it to the differentiation processes of ES and iPS cells. Examination of the gene 

expression profile during mouse neural differentiation revealed that the variability of a 

group of genes that were co-expressed in the undifferentiated state decreased after 

neural differentiation. We then ranked the individual genes using an integrative 

scoring method (Fig. 1) that simultaneously assessed the changes in gene expression 

variances and co-expression relationships between the undifferentiated and 

differentiated states. This analysis identified 671 highly ranked genes, including Hes1, 

previously shown to oscillate prior to neural differentiation. The common biological 

functions among these genes are related to neural differentiation, and act downstream 

of pluripotency-related transcription factors. This group was also enriched in genes 

that cause phenotypic alternations of developmental processes in KO/Tg mice. We 

demonstrated that these genes significantly overlapped with the set of genes that 

exhibited differential variance and correlation during neural differentiation of human 

iPS cells. This study suggests that analysis of network dynamics can be used to identify 

genes important for the differentiation process, as well as yield insights into dynamic 

molecular mechanisms in both mice and humans. 
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2.2. Materials and Methods 

 

2.2.1 Transcriptional data 

Transcriptional data of neural differentiation in mouse ES cells were obtained 

from the ArrayExpress database (E-TABM-1108) [21]. Transcriptional data of neural 

differentiation in human iPS cells were obtained from the Gene Expression Omnibus 

(GSE25542) [22]. The raw transcriptional data were log2 transformed and subjected to 

quantile normalization. Probes corresponding to genes that were expressed (presence 

call > 50%) and exhibited variance (SD > 0) across replicates in each time point or 

differentiation stage were used in the analysis. Differential co-expression and variation 

analyses were performed based on 30,035 and 12,364 probes from mouse ES cell and 

human iPS cell data, respectively. The gene expression signals were standardized to 

the Z-score (average = 0, SD =1) for each gene across replicates of each time point or 

differentiation stage. 
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2.2.2. Differential variance and co-expression analysis 

The differential co-expression and variation analysis was conducted using the 

Bioconductor package in the R language [23]. To identify modules, hierarchical 

clustering was applied to the standardized expression values from mouse ES cells at 

day 0 or from human iPS cells. The hierarchical clustering was performed based on the 

Pearson correlation coefficient (PCC) and average linkage method. Modules were 

detected using a dynamic tree-cutting algorithm (hybrid mode, minimal module size of 

100). In each module, the average PCC of each gene with other genes in the module 

was calculated. Differential correlation was calculated as the absolute value of the 

difference between PCC after day 0 and PCC at day 0 in the module as defined on day 0. 

The average SD of each gene among replicates in each time point or cellular state was 

calculated. The differential variance was calculated as the absolute value of the 

difference between SD after day 0 and SD at day 0. The system transition score, based 

on a previously described composite index, was used to rank the genes and identify 

those with high differential correlation and variance during neural differentiation [15]. 

This score was calculated using in the following formula: 
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where OPCC is the average PCC of each gene with the genes outside the module. 

Highly ranked genes were defined those whose scores were 2 SDs higher than the 

average score over all genes. Highly ranked genes in the same module displayed in 

network representation using Cytoscape 3.1.2 [24]. Correlation coefficients above 0.95 

are shown as connections in the network visualization figure. 

 

2.2.3. Enrichment analysis 

Functional enrichment and upstream regulator analysis was performed using 

Ingenuity Pathways Analysis (IPA®, Qiagen, www.qiagen.com/ingenuity) software. Genes 

associated with differentiation-related phenotypes in knockout and transgenic mice 

were identified based on the Mouse Genome Informatics database [25]. Enrichment of 

genes associated with differentiation-related phenotypes among DVC genes was 

assessed by cumulative hypergeometric probability using the phyper function in R.  

 

http://www.qiagen.com/ingenuity
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2.2.4. Statistical analysis 

Welch’s t-test was applied to transcriptional data to identify genes differentially 

expressed between day 0 and subsequent days during neural differentiation process. 

F-test was carried out to evaluate differential variances of genes between day 0 and 

subsequent days. P-values were adjusted by the Benjamini–Hochberg method [26]. 

Differentially expressed genes were defined as those whose fold changes were more 

than 2 SDs higher than the mean of all genes, with adjusted p-value < 0.05, as in the 

definition of DVC genes. To compare the mouse ES cell and human iPS cell data, mouse 

orthologs of the DVC genes from the human iPS cell study were identified based on 

information in the HUGO Comparison of Orthology Predictions database [27]. Overlap 

analysis of DVC genes in mice and human was performed by hypergeometric test, as in 

the enrichment analysis.  
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2.3. Results 

 

2.3.1. Network dynamics detection in the differentiation process 

We analyzed microarray data collected at six time points (days 0, 3, 4, 5, 6, and 

7) from mouse ES cells undergoing neural differentiation; each time point was 

measured in eight replicates (E-TABM-1108) [21]. Two indicators were calculated to 

identify genes whose expression patterns predicted the transition from the 

undifferentiated state to the neural lineage (Fig. 1). One indicator was differential 

variance, representing the difference in gene expression variance between day 0 and 

each time point after day. The other was differential correlation, representing the 

difference between the average value of correlations within co-expressed gene sets at 

day 0 and those on subsequent days. These co-expressed gene sets, so-called ‘modules’, 

were defined at day 0 using hierarchal clustering. A system transition score was 

assigned to each gene by combining the differential variance and differential 

correlation (Fig. 2-1 and Methods). Hierarchical clustering analysis of gene expression 

data from ES cells at day 0 revealed 76 modules (Fig. 2-2). Comparisons of expression 
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variances between day 0 and subsequent days identified 315 differentially variable 

genes. Genes for which the variances decreased after day 0 were the most significantly 

enriched in the skyblue module (colored sky blue in Figure 2), which contained the 

most highly correlated genes at day 0 (p = 3.61e-50). This result indicates that genes 

specifically expressed in ES cells in the undifferentiated state were more variable than 

those expressed in differentiating cells, even though it is likely that multiple types of 

cells are present in the population during neural differentiation. On the other hand, 

the genes that were differentially expressed between day 0 and subsequent days were 

not enriched in the skyblue module (Fig. 2) as much as genes with differential variance. 

As noted above, high differential variance and correlation are observed in fragile 

systems before a critical transition [4], and these features may represent an early 

warning signal of imminent differentiation.  

 

2.3.2. Genes with differential variance and correlation are involved in neural 

differentiation 

To identify fluctuating genes that contribute to dynamic changes in the 
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transcriptional network, we ranked all genes based on their system transition scores. 

We referred to the highly ranked genes as DVC (differential variance and correlation) 

genes. We detected 671 such genes. One of the top-ranked DVC genes, Hes1, exhibited 

high variance at day 0 (Fig. 2-3C). Co-expression relationships with Hes1 were 

diminished at day 4 relative to day 0 (Fig. 2-3D). Functional analysis of the DVC genes 

revealed that genes involved in body axis development, neuron movement, and 

transcription were enriched among the DVC genes (Fig. 2-3A). There were 822 

differentially expressed genes that satisfied (1) p < 0.05 by t-test, and (2) fold change > 

mean + 2SD (standard deviation), when their mean expression levels were tested 

between differentiating states (Days 3, 4, 5, 6, and 7) and Day 0. Compared to the 

functions enriched in the DVC genes, the enriched functions of the differentially 

expressed genes included cancer-related functions (malignant solid tumor, proliferation 

of cells, digestive tumor, cell death of tumor). Moreover, the DVC and differentially 

expressed genes did not significantly overlap (p = 0.793), but the DVC genes did 

significantly overlap with the set of genes (Fig. 2-3B) regulated by the Yamanaka 

factors (Myc, Sox2, and Pou5f1(Oct4)) expressed at the highest levels in the 
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undifferentiated state (Day 0). Hoxb3, Fgf4, and Pax6 are downstream of both Pou5f1 

(Oct4) and Sox2. These results suggest that the DVC genes not only represent early 

warning signals for neural differentiation, but are also functionally involved in the 

differentiation process.  

 

2.3.3 Gene expression variance and correlation are altered at a neuroectodermal stage 

Next, we assessed the expression patterns of differentiation marker genes in 

order to understand when during the neuronal differentiation process their individual 

gene expression variance and co-expression relationship with associating genes 

changed. The cell populations initially expressed markers of the undifferentiated state, 

such as Pou5f1(Oct4) and Nanog, and began to express the primitive ectoderm marker 

Fgf5 on day 3 (Fig. 2-4). The early neuroectodermal marker Sox1 was expressed after 

day 4, and the neural markers Ascl1 (Mash1) and Tubb3 (Tuj1) were elevated after day 

5 under neural differentiation conditions. Over half (55.7%) of the DVC genes exhibited 

their largest changes in variability and correlation at Day 4. For instance, the 

expression variance of Hes1 decreased after day 4, when Sox1 was dramatically 
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up-regulated. The co-expression networks of six time points show that the correlations 

between the genes in the skyblue module decreased the most at day 4. Because the 

early neuroectodermal marker Sox1 was highly expressed at Day 4, we believe that 

this time point represents a neuroectodermal stage. Based on these results, we infer 

that the transition to the neuroectodermal stage may involve an abrupt genetic system 

shift in differentiating cells. 

 

2.3.4 DVC genes are genetically associated with the differentiation process  

We next performed enrichment analyses to determine whether the DVC genes 

play important roles in differentiation processes. To this end, we compared the DVC 

with the genes associated with differentiation-related phenotypes in knockout and 

transgenic mice. This analysis revealed that genes involved in embryogenesis, 

embryonic lethality, neural differentiation and neural progenitor cell differentiation 

were significantly more enriched among the DVC genes than among the differentially 

expressed genes (Fig. 2-5). Thus, the DVC genes could play important roles in neural 

differentiation. In other words, the genetic factors underlying neural differentiation 
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could control differentiation by affecting the transcriptional network and its 

fluctuations, which are measured as dynamic changes in correlations and variances. 

 

2.3.5. DVC genes conserved in mouse ES and human iPS cells 

Next, we assessed the conservation between humans and mice of differential 

variance and correlation during neural differentiation. To this end, the analysis used to 

detect network dynamics was applied to gene expression data collected at three 

differentiating states during neural differentiation of human iPS cells: iPS cells, neural 

precursor cells, and neurons [22]. We identified 284 DVC genes in neural 

differentiation of human iPS cells, which overlapped significantly with those in mice (p 

= 0.0204, Fig. 2-6A); for example, Hes1 and Ccng2 in the mouse co-expression network 

were also identified as DVC genes in neural differentiation of human iPS cells (Fig. 

2-3D). Proliferation- and morphology-related genes were over-represented both in 

mouse and human (Fig. 2-6B). Furthermore, in both species, DVC genes were 

commonly regulated by MYC and SOX1 (Fig. 2-6C). For example, SOX1 is a 

transcriptional factor for HES1 [28], and the abrupt up-regulation of SOX1 may drive 
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the dynamic changes of HES1 expression and co-expression relationships at day 4. 

Both genes play important roles in stem cell maintenance [29].  

 

2.4. Discussion 

 

 We carried out the first genome-wide analysis aimed at detecting dynamical 

changes in gene-expression variance and co-expression relationships during neural 

differentiation of mouse ES and human iPS cells. Our results demonstrate that genes 

that were highly correlated in ES cells exhibited significant changes in expression 

variance. Functional analysis revealed that genes exhibiting both differential 

variances and differential correlations may encode the regulators of neural 

differentiation. Although differentially expressed genes are normally used to identify 

genes that play important roles in differentiation [24-26], analysis of network dynamics 

allows us to identify potential key regulators that cannot be detected by differential 

expression analysis. 

The DVC genes tended to be downstream of the Yamanaka factors (Fig 2-3), and could 
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therefore be related to self-renewal of stem cells and maintenance of pluripotency. 

Hoxb3, Fgf4, and Pax6 are downstream of both Pou5f1 (Oct4) and Sox2. Hoxb3 plays a 

role in maintaining self-renewal [33], and Fgf4 is involved in pluripotency [34]. On the 

other hand, Pax6 is a master regulator of neuronal differentiation [35]. Sox1, one of the 

common transcription factors upstream of the DCV genes in both the mouse and 

human studies (Fig 2-6), promotes neurogenesis[28]. Hes1 and Pitx2 are downstream 

of Sox1. Hes1-null mice exhibit premature neurogenesis and neural tube defects during 

embryogenesis [36]. The Hes1 protein is a transcriptional repressor that inhibits 

differentiation of ES cells into the neural lineage and delays mesoderm and endoderm 

differentiation [37]. Pitx2 is important for mesodermal and neuroectodermal 

development in vivo [38]. These results suggest that the DVC genes include not only 

pluripotency genes but also the genes specifically related to neuronal differentiation. 

SOX1 also acts upstream of DVC genes in human iPS cells. HES1, FRZB, and WLS are 

common DVC genes downstream of SOX1 in both humans and mice. Reduction in 

FRZB expression is required for neural progenitor proliferation and the acceleration of 

neuron development [39]. FRZB can bind extracellular Wnt and inhibits Wnt signaling. 
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WLS is important for Wnt-mediated neuronal development [40]. These genes might 

have regulatory links and be involved in a neuronal differentiation. 

HES1 expression is dynamically regulated during neuronal differentiation. In 

particular, Hes1 expression oscillates in ES cells and neural progenitor cells, and is 

transiently down-regulated during the transition to epiblast stem cells (epiSCs) in 

neural and non-neural lineages [9,28,29]. The heterogeneity of Hes1 expression was 

greater in the ES cell population than in epiSCs. This heterogeneity may be due to 

oscillatory expression, observed as expression variances in ES cell populations. Our 

analysis was able to detect the change in expression variances during the transition 

from ES cells to the neural lineage.  

Inactivation of HES1 in ES cells promotes rapid and homogeneous differentiation into 

neural progenitors [41]. CCNG2 was also identified as a DVC gene in both mouse ES 

and human iPS cells. Both Hes1 and Ccng2 prolong G1 phase to reduce cell 

proliferation [30,31]. Smad2 is a transcriptional regulator of Hes1 and Ccng2, and the 

inhibition of Smad2 promotes immediate differentiation into functional neurons [44]. 

These findings suggest that modulation of the DVC genes might facilitate the 
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development of experimental protocols for rapid and homogeneous differentiation of 

neurons. Because the heterogeneities of ES and iPS cells preclude the use of these 

materials as a stable supply of rapidly differentiated neurons, such an approach could 

contribute greatly to the understanding of brain functions and the development of 

regenerative medicine. These heterogeneities could arise in part from the dynamical 

behaviors of cellular components such as protein expression and localization. Recently, 

a growing number of attempts have been made to control dynamical patterns by 

targeted perturbations using chemical compounds and other interventions [45]. 

Perturbation of the genes identified by the methods in this study could contribute 

further to understanding of the molecular basis of stem cell differentiation. Moreover, 

dynamical regulations of the genes by such perturbations might control neural 

differentiation. Specific dynamical patterns are associated with various cellular 

responses such as apoptosis and immune response; therefore, the application of this 

method to other biological responses could identify important regulators of specific 

cellular responses. 

However, it remains challenging to identify dynamic changes in molecular networks. 
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The approach used in this study might not detect all the early warning signals of 

upcoming transitions. For example, genes previously shown to exhibit oscillatory 

expression in stem cells, such as Ascl1 and Dll1, were not identified in this study. One 

possible reason for this is that we measured mean values of gene expression in cell 

populations, potentially resulting in underestimation of gene expression variance 

among individual cells. A single-cell analysis of gene-expression profiles with a large 

number of replicates would help us to observe the transcriptional distribution of each 

gene across individual cells. Characterizing the transcriptional distribution in this 

manner could provide more accurate estimation of a gene expression variance between 

cellular states. 

There are, of course, genetic and epigenetic differences between humans and mice. For 

example, the molecular machineries that maintain the stemness of ES and iPS cells 

are not completely identical [26,33]. In addition, various human iPS cell lines come 

from different genetic backgrounds [22]. Despite such differences, a significant number 

of common DVC genes were identified during neural differentiation in mouse ES and 

human iPS cells. This finding supports the idea that the machineries responsible for 
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dynamic changes in gene expression variances and correlations during neural 

differentiation are conserved between humans and mice.  

  

 

Figure 2-1. Methodological overview of system transition scoring based on network 

dynamics. Two indexes were used for system transition scoring: gene expression 

variance within replicates in each cellular state, and the co-expression relationship 

between genes in each cellular state. After calculating these indexes for each state, a 

differential analysis was performed to compare the indexes of the undifferentiated and 

differentiated states. A conceptual gene expression variance and co-expression network 

of three genes (genes A, B, and C) is shown. In the left panel, gene A (in red) exhibits 
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the largest change in expression variance within replicates at the undifferentiated 

state (US), however the variance greatly decreases following the shift to the 

differentiating state (DS). This change in variance is defined as differential variance. 

Co-expression relationship (grey lines connecting three genes) is defined as the 

correlation between genes within replicates; therefore, the relationship between gene A 

and gene B/C diminishes in the DS. Such a correlation difference between states is 

defined as differential correlation (blue line indicates “decrease” of correlation” in the 

right panel). When both the differential variance and differential correlation are large, 

the system transition score is high. Gene B (in grey) and gene C (in green) are member 

genes that co-express with gene A in the undifferentiated state. Although gene B 

exhibits differential variance, the differential correlation of gene B is smaller than that 

of gene A. The differential variance of gene C is much smaller than that of gene A. The 

system transition scores of genes B and C are lower than that of gene A. 
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Figure 2-2. Co-expression modules identified in the undifferentiated state (day 0) in 

mouse ES cells. Dendrogram shows modules of co-expressed genes identified by 
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hierarchical clustering of gene expression profiles on day 0. Individual colors represent 

single modules. The heatmap indicates fold change, differential variance, and 

differential correlation between day 3/4/5/6/7 and day 0. Differential variance indicates 

the absolute value of the difference between SD after day 0 and SD on day 0. 

Differential correlation indicates the absolute value of the difference between PCC 

after day 0 and PCC on day 0. 
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Figure 2-3. Functional analysis of DVC genes. (A) Functional categories enriched in the 

DVC genes during neural differentiation. (B) Upstream regulator analysis revealed 

transcriptional factors that could regulate the DVC genes. (C) Expression profile of a 

representative DVC gene, HES1. (D) Co-expression network of the module exhibiting 

the highest differential correlation and variance. Links between nodes represent strong 

correlation relationships (correlation coefficient ≥ 0.95). Green nodes indicate genes 

associated with differentiation-related phenotype in knockout or transgenic mice. Node 

size indicates system transition score. 
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Figure 2-4. Expression profiles of neural differentiation markers in mouse ES cells. 

The Z-score indicates relative expression differences in each marker gene throughout 

the neural differentiation period (day 0 to day 7). Pou5f1 (Oct4) and Nanog are 

undifferentiated pluripotency markers. Fgf5 is a primitive ectoderm marker. Sox1 is an 

early neuroectodermal marker. Ascl1 (Mash1) and Tubb3 (Tuj1) are neural 

differentiation markers. Mouse ES cells pass through the epiblast-like stage at day 3 
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and convert to neurons at day 6. 
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Figure 2-5. Genetic association of DVC genes with the differentiation process. 

Enrichment of gene sets associated with differentiation-related phenotypes in KO/Tg 

mice among the DVC and differentially expressed genes. 
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Figure 2-6. Common transcriptional regulators and functions of DVC genes in mouse 

ES and human iPS cells. (A) Venn diagram indicating the overlap between DVC genes 

from analyses of mouse ES and human iPS cells. DVC genes overlapped significantly 

between mouse ES and human iPS cells (p = 0.0204). (B) Functional categories 

enriched in overlapped DVC genes during neural development. (C) Upstream regulator 

analysis revealed transcriptional factors that could regulate the overlapping genes. 
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2.5. Summary 

 

Understanding the dynamics of stem cell differentiation processes at the 

molecular level is a central challenge in developmental biology and regenerative 

medicine. Although the dynamic behaviors of differentiation regulators have been 

partially characterized, the architecture regulating the underlying molecular systems 

remains unclear. System-level analysis of transcriptional data was performed to 

characterize the dynamics of molecular networks in neural differentiation of stem cells. 

Expression of a network module of genes tightly co-expressed in mouse embryonic stem 

(ES) cells fluctuated greatly among cell populations before differentiation, but became 

stable following neural differentiation. During the neural differentiation process, genes 

exhibiting both differential variance and differential correlation between 

undifferentiated and differentiating states were related to developmental functions 

such as body axis development, neuronal movement, and transcriptional regulation. 

Furthermore, these genes were genetically associated with neuronal differentiation, 

providing support for the idea they are not only differentiation markers but could also 
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play important roles in neural differentiation. Comparisons with transcriptional data 

from human induced pluripotent stem (iPS) cells revealed that the system of genes 

dynamically regulated during neural differentiation is conserved between mouse and 

human. The results of this study provide a systematic analytical framework for 

identifying key genes involved in neural differentiation by detecting their dynamical 

behaviors, as well as a basis for understanding the dynamic molecular mechanisms 

underlying the processes of neural differentiation. 



55 

 

2.6. References 

 

1 . Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz 

MB. Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells. 

Mol Cell 2014; 55: 319–331. 

2 . Kumar RM, Cahan P, Shalek AK, Satija R, Jay DaleyKeyser A, Li H, Zhang J, 

Pardee K, Gennert D, Trombetta JJ, Ferrante TC, Regev A, Daley GQ, Collins JJ. 

Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 

2014; 516: 56–61. 

3 . Scheffer M, Bascompte J, Brock W a, Brovkin V, Carpenter SR, Dakos V, Held H, 

van Nes EH, Rietkerk M, Sugihara G. Early-warning signals for critical 

transitions. Nature 2009; 461: 53–9. 

4 . Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de 

Koppel J, van de Leemput I a, Levin S a, van Nes EH, Pascual M, Vandermeer J. 

Anticipating critical transitions. Science 2012; 338: 344–8. 

5 . Macarthur BD, Ma’ayan A, Lemischka IR. Systems biology of stem cell fate and 



56 

 

cellular reprogramming. Nat Rev Mol Cell Biol 2009; 10: 672–81. 

6 . Huang S. Non-genetic heterogeneity of cells in development: more than just noise. 

Development 2009; 136: 3853–62. 

7 . Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature 2010; 

467: 167–73. 

8 . Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, 

Ishidate F, Kageyama R. Oscillatory control of factors determining multipotency 

and fate in mouse neural progenitors. Science 2013; 342: 1203–8. 

9 . Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate 

maintenance of neural progenitors. Neuron 2008; 58: 52–64. 

10 . Zhang B, Horvath S. A general framework for weighted gene co-expression 

network analysis. Stat Appl Genet Mol Biol 2005; 4: Article17. 

11 . Geschwind DH, Konopka G. Neuroscience in the era of functional genomics and 

systems biology. Nature 2009; 461: 908–15. 

12 . MacArthur BD, Sevilla A, Lenz M, Müller F-J, Schuldt BM, Schuppert A a, 

Ridden SJ, Stumpf PS, Fidalgo M, Ma’ayan A, Wang J, Lemischka IR. 



57 

 

Nanog-dependent feedback loops regulate murine embryonic stem cell 

heterogeneity. Nat Cell Biol 2012; 14: 1139–47. 

13 . Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol 2012; 8: 565. 

14 . Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov A a, Zhang 

C, Xie T, Tran L, Dobrin R, Fluder E, Clurman B, Melquist S, Narayanan M, 

Suver C, Shah H, Mahajan M, Gillis T, Mysore J, Macdonald ME, Lamb JR, 

Bennett D a, Molony C, Stone DJ, Gudnason V, Myers AJ, Schadt EE, Neumann 

H, Zhu J, Emilsson V. Integrated Systems Approach Identifies Genetic Nodes 

and Networks in Late-Onset Alzheimer’s Disease. Cell 2013; 153: 707–720. 

15 . Chen L, Liu R, Liu Z-P, Li M, Aihara K. Detecting early-warning signals for 

sudden deterioration of complex diseases by dynamical network biomarkers. Sci 

Rep 2012; 2: 342. 

16 . Liu R, Li M, Liu Z-P, Wu J, Chen L, Aihara K. Identifying critical transitions and 

their leading biomolecular networks in complex diseases. Sci Rep 2012; 2: 813. 

17 . Liu R, Wang X, Aihara K, Chen L. Early Diagnosis of Complex Diseases by 

Molecular Biomarkers , Network Biomarkers , and Dynamical Network 



58 

 

Biomarkers. 2013; : 1–24. 

18 . Liu R, Yu X, Liu X, Xu D, Aihara K, Chen L. Identifying critical transitions of 

complex diseases based on a single sample. Bioinformatics 2014; 30: 1579–86. 

19 . Li Y, Jin S, Lei L, Pan Z, Zou X. Deciphering deterioration mechanisms of 

complex diseases based on the construction of dynamic networks and systems 

analysis. Sci Rep 2015; 5: 9283. 

20 . Yu X, Zeng T, Wang X, Li G, Chen L. Unravelling personalized dysfunctional 

gene network of complex diseases based on differential network model. J Transl 

Med 2015; 13: 189. 

21 . Theunissen PT, Pennings JL a, Robinson JF, Claessen SMH, Kleinjans JCS, 

Piersma AH. Time-response evaluation by transcriptomics of methylmercury 

effects on neural differentiation of murine embryonic stem cells. Toxicol Sci 2011; 

122: 437–47. 

22 . Paşca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca AM, Cord 

B, Palmer TD, Chikahisa S, Nishino S, Bernstein J a, Hallmayer J, Geschwind 

DH, Dolmetsch RE. Using iPSC-derived neurons to uncover cellular phenotypes 



59 

 

associated with Timothy syndrome. Nat Med 2011; 17: 1657–62. 

23 . Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, 

Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, 

Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, 

Yang JYH, Zhang J. Bioconductor: open software development for computational 

biology and bioinformatics. Genome Biol 2004; 5: R80. 

24 . Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 

Schwikowski B, Ideker T. Cytoscape: a software environment for integrated 

models of biomolecular interaction networks. Genome Res 2003; 13: 2498–504. 

25 . Blake J a, Bult CJ, Eppig JT, Kadin J a, Richardson JE. The Mouse Genome 

Database: integration of and access to knowledge about the laboratory mouse. 

Nucleic Acids Res 2014; 42: D810-7. 

26 . Hochberg Y, Benjamini Y. More powerful procedures for multiple significance 

testing. Stat Med 1990; 9: 811–8. 

27 . Wright MW, Eyre T a, Lush MJ, Povey S, Bruford E a. HCOP: the HGNC 

comparison of orthology predictions search tool. Mamm Genome 2005; 16: 827–8. 



60 

 

28 . Kan L, Israsena N, Zhang Z, Hu M, Zhao L-R, Jalali A, Sahni V, Kessler J a. Sox1 

acts through multiple independent pathways to promote neurogenesis. Dev Biol 

2004; 269: 580–94. 

29 . Genethliou N, Panayiotou E, Panayi H, Orford M, Mean R, Lapathitis G, Gill H, 

Raoof S, De Gasperi R, Elder G, Kessaris N, Richardson WD, Malas S. SOX1 

links the function of neural patterning and Notch signalling in the ventral spinal 

cord during the neuron-glial fate switch. Biochem Biophys Res Commun 2009; 

390: 1114–20. 

30 . Evseenko D, Zhu Y, Schenke-Layland K, Kuo J, Latour B, Ge S, Scholes J, Dravid 

G, Li X, MacLellan WR, Crooks GM. Mapping the first stages of mesoderm 

commitment during differentiation of human embryonic stem cells. Proc Natl 

Acad Sci U S A 2010; 107: 13742–7. 

31 . Yung S, Ledran M, Moreno-Gimeno I, Conesa A, Montaner D, Dopazo J, Dimmick 

I, Slater NJ, Marenah L, Real PJ, Paraskevopoulou I, Bisbal V, Burks D, 

Santibanez-Koref M, Moreno R, Mountford J, Menendez P, Armstrong L, Lako M. 

Large-scale transcriptional profiling and functional assays reveal important roles 



61 

 

for Rho-GTPase signalling and SCL during haematopoietic differentiation of 

human embryonic stem cells. Hum Mol Genet 2011; 20: 4932–46. 

32 . Kim JJ, Khalid O, Namazi A, Tu TG, Elie O, Lee C, Kim Y. Discovery of 

consensus gene signature and intermodular connectivity defining self-renewal of 

human embryonic stem cells. Stem Cells 2014; 32: 1468–79. 

33 . Pazianos G, Uqoezwa M, Reya T. The elements of stem cell self-renewal: a 

genetic perspective. Biotechniques 2003; 35: 1240–7. 

34 . Yuan H, Corbi N, Basilico C, Dailey L. Developmental-specific activity of the 

FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 

1995; 9: 2635–2645. 

35 . Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical 

neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 2015; 9: 70. 

36 . Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: repressors and 

oscillators that orchestrate embryogenesis. Development 2007; 134: 1243–51. 

37 . Zhou X, Smith AJH, Waterhouse A, Blin G, Malaguti M, Lin C-Y, Osorno R, 

Chambers I, Lowell S. Hes1 desynchronizes differentiation of pluripotent cells by 



62 

 

modulating STAT3 activity. Stem Cells 2013; 31: 1511–22. 

38 . Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, 

Lemischka IR. Dissecting self-renewal in stem cells with RNA interference. 

Nature 2006; 442: 533–8. 

39 . Jang MH, Bonaguidi M a., Kitabatake Y, Sun J, Song J, Kang E, Jun H, Zhong C, 

Su Y, Guo JU, Wang MX, Sailor K a., Kim JY, Gao Y, Christian KM, Ming GL, 

Song H. Secreted frizzled-related protein 3 regulates activity-dependent adult 

hippocampal neurogenesis. Cell Stem Cell 2013; 12: 215–223. 

40 . Fu J, Ivy Yu HM, Maruyama T, Mirando AJ, Hsu W. Gpr177/mouse Wntless is 

essential for Wnt-mediated craniofacial and brain development. Dev Dyn 2011; 

240: 365–371. 

41 . Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R. The 

cyclic gene Hes1 contributes to diverse differentiation responses of embryonic 

stem cells. Genes Dev 2009; 23: 1870–5. 

42 . Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R. Persistent and 

high levels of Hes1 expression regulate boundary formation in the developing 



63 

 

central nervous system. Development 2006; 133: 2467–76. 

43 . Bennin D a, Don ASA, Brake T, McKenzie JL, Rosenbaum H, Ortiz L, 

DePaoli-Roach A a, Horne MC. Cyclin G2 associates with protein phosphatase 2A 

catalytic and regulatory B’ subunits in active complexes and induces nuclear 

aberrations and a G1/S phase cell cycle arrest. J Biol Chem 2002; 277: 27449–67. 

44 . Zhang M, Schöler HR, Greber B. Rapid and efficient generation of neurons from 

human pluripotent stem cells in a multititre plate format. J Vis Exp 2013; : 

e4335. 

45 . Purvis JE, Lahav G. Encoding and decoding cellular information through 

signaling dynamics. Cell 2013; 152: 945–56. 

46 . Wang A, Huang K, Shen Y, Xue Z, Cai C, Horvath S, Fan G. Functional modules 

distinguish human induced pluripotent stem cells from embryonic stem cells. 

Stem Cells Dev 2011; 20: 1937–50. 



64 

 

Chapter 3 

 

 

Identification of an early cell fate regulator by 

detecting dynamics in transcriptional heterogeneity 

and co-regulation during astrocyte differentiation  

 

 

3.1. Introduction  

 

 The variability in gene expression among individual cells is known to increase 

the complexity of cellular phenotypes due to the population effect [1]–[6]. Such an effect 

of cellular heterogeneity has been observed in various complex biological processes 

including disease progression, drug responses, and cell differentiation. To understand 

the complexity of biological processes, it is important to investigate the mechanism of 

variability in gene expression and the co-expression relationships. 
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 Transcriptional variability is caused by factors that greatly affected by the 

complexity of the cell population, such as individual differences in the cell state, the 

cell cycle, and in their biological profiles. One of the features which best describes such 

heterogenic states in a cell population is the mis-synchronization of oscillations in gene 

expression [7]. During neuronal and glial differentiation, genes in the notch signaling 

cascade have been reported to oscillate, however there is both spatio- and 

temporal-heterogeneity between cells [8]. In neuronal stem cells (NSCs), oscillations in 

gene expression are also less synchronized, therefore gene expression levels among 

individual cells show a large degree of diversity, resulting in a high degree of variability 

in gene expression in the cell population. 

 With such oscillation in gene expression, synchronization among different 

genes, even within a single cell, is another important feature that must be considered. 

During neuronal differentiation for example, it is known there are pairs of genes (e.g. 

Dll1 and Ngn2) that are co-expressed in order to synchronize their gene expression 

oscillations in a single cell [8],[9]. Such transcriptional co-regulation changes as the cell 

progresses from the progenitor cellular state toward the differentiation state is known 

to play an important role in the decision of cell fate [9]. 
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From the standpoint of dynamical system theory, an increase in both variability 

and a correlation of system components, such as gene expression, is a sign of an 

upcoming transition of the cellular state [10]–[12]. The dynamic change in the cellular 

differentiation process in response to external stimulation is thought to be determined 

by some critical cell state transitions, which rapidly shifts the cellular state from one 

state to another. We hypothesized that both high variability in gene expression and a 

high correlation of expression between genes are commonly observed in such a 

transition state during the differentiation process. By analyzing genome-wide 

transcriptional data from the differentiation process in embryonic stem (ES) cells and 

induced pluripotent stem (iPS) cells, we previously reported that gene sets 

co-expressed in the undifferentiated state showed a large difference of variability in 

expression levels during the transition from the undifferentiated state to the 

differentiated state. Detecting these dynamic changes in the variability of gene 

expressions was therefore proposed be an early signal capable of predicting the cellular 

transition in neural differentiation[13].  

 In order to evaluate the controlled heterogeneity in gene expression, we 

previously proposed the analytical concept of evaluating “differential variability and 
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correlation (DVC)” [13]. This analysis focuses on the differential transition of two index 

between the undifferentiated state and the differentiated state: (1) the variability of 

gene expression within the same state, which reflects the potential variation in the 

expression of a particular gene measured for a number of times using a single cell or 

bulk of cells, and (2) the correlation, which reflects a similar pattern of expression for 

multiple genes (co-expression) in the same state. The concept of DVC analysis is 

illustrated in Fig. 3-1. Briefly, each gene expression is evaluated by two indexes 

(“change of expression variability” and “change of co-expression pattern”) calculated 

from cells which change from one state to another (in our case undifferentiated sate to 

differentiated state). This DVC analysis was designed to identify specific biological 

responses in a group of cells according to the hypothesis that the responses of a group 

of cells are not homogeneous at the start of event but can harmonize as the stages of 

the event change. Changes in biological responses are typically expressed as the 

average of gene expression rates for specific genes. In these analyses, bulk group of 

cells are lysed and measured to obtain their average gene expression, and such 

expression data has been known to reflect their biological status. However, it is difficult 

to use this concept to explore genes expressed at low average levels but greatly impact 
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the biological event as such as a trigger. When gene expression rates are averaged 

within a group of cells, minor genes expressed only in few sub-populations of cells or 

over short time in individual cells, such gene effect detection is difficult. Considering 

that such genes have either large variance among groups of cells or exhibit the sudden 

appearance/disappearance among time series, our DVC analysis is designed to provide 

new aspects for analyzing transcriptomic data. Our previous work indicated that even 

using the average expression data from bulk cells, the gene sets identified by DVC 

analysis (DVC genes) were found to play important roles in neuronal differentiation 

[13] (illustrated in Fig. 3-1).  

Recently, single cell transcriptomics has been found to have sufficient 

sensitivity to interpret the heterogeneity of gene expression in cellular differentiation 

[14]–[18]. However, the importance of variability in the expression developmental 

regulator genes remains unclear. In this study, in order to extend our previous work on 

finding key functional genes in the neuronal differentiation process through a DVC 

analysis, we analyzed single cell RNA sequencing data obtained from mouse neural 

stem cells (NSCs), transit amplifying progenitors (TAPs), and astrocytes[19]. The 

astrocyte developmental process is still poorly defined due to a lack of lineage stage 
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specific markers[20]. We hypothesized that the controlled heterogeneity of gene 

expression profiles can be one of the key events to explain astrocyte differentiation. 

DVC genes, potentially including oscillatory genes, can be potential early marker genes 

for predicting upcoming astrocyte differentiation. Using our DVC analysis to compare 

three different cellular states, we found that the DVC gene signatures are a potential 

predictive biomarker to indicate an upcoming critical cell state transition. A functional 

analysis of the DVC gene signature suggested that these genes have an impact on the 

astrocyte differentiation process. In addition, from the study in which we used an 

antagonist to block Ntsr2, one of our DVC gene candidates, we found that this gene is 

involved in controlling the direction of astrocyte differentiation. We propose a 

framework for DVC analysis that can identify regulator genes that have an impact on 

upcoming cellular transition events, and have gained insights into the molecular 

mechanism underlying biological state transitions. 
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3.2 Materials and Methods 

 

3.2.1. Single cell RNA-seq data and its preprocessing 

The single cell RNA-seq data from three types of cells namely 92 NSCs, 27 

TAPs, and 22 astrocytes were obtained from the Sequence Read Archive (SRP057125). 

According to archived data, Glast+Prom+ cells (designated as NSCs) and 

Glast-Prom-Egfr+ cells (designated as TAPs) were isolated by FACS from the 

su-ventricular zone (SVZ). Glasthi (designated as astrocytes) were isolated from the 

striatum and somatosensory cortex according to archived data. NSCs can produce 

neural progenitor cells (TAPs or type C cells), which are a proliferative cell population 

expressing markers of early neuronal differentiation. Some NSCs can generate both 

neurons and astrocytes. TAPs are known to give rise to neuroblasts (type A cells) that 

differentiate into primarily interneurons. Although the complete lineages of neuronal 

and glial cells in the mammalian brain remains unclear, according to such lineage 

information, we hypothetically ordered the three types of cells (NSCs, TAPs, and 

astrocytes) from the early lineage to the differentiated state. Another dataset for 

validating our findings by DVC analysis included cell populations isolated by FACS 
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from GFAP-GFP transgenic mice: GFAP-GFP+PROM1+EGFR+ (astrocytes), 

GFAP-GFP+PROM1+ (NSCs) [21]. To further confirm our DVC analysis concept, we 

evaluated recent data (defined as the second dataset) from Llorens-Bobadilla et al. [19] 

which showed similar cell population data when representative biomarkers (Glast 

(Slc1a3) and Cd9) were compared. This data included 53 NSCs and 13 astrocytes after 

data filtering. The second dataset was preprocessed and DVC analysis was carried out 

in the same manner as for the first dataset. The reads were mapped to the mouse 

genome (ENSEMBL Release 83) using STAR [22]. FeatureCounts was used to count 

the mapped reads for genes [23]. TMM (trimmed mean of the M value) normalization 

and CPM (counts per million) transformations were performed using EdgeR to compare 

the expression levels across the samples [24]. A principal component analysis was 

applied to the CPM data to remove oligodendrocyte like cells from the NPCs. Filtering 

out the genes with low expression levels (a read count < 2) for each cell type resulted in 

the detection of 12,147 commonly analyzable genes within the three cell states, and 

was used for the following analyses. The CPM data were log2 transformed and 

standardized to the Z-score for each gene across individual cells for each cell type. 
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3.2.2 Co-expression analysis 

Hierarchical clustering was applied to identify co-expressed genes as cluster 

modules. The gene expression values were standardized within individual cells. For the 

clustering, only the single cell data in the NSC state, the first state in our analysis, 

were used to assemble the clustering tree. For the clustering, both the Pearson 

correlation coefficient (PCC) and Wald linkage method were used. For module detection, 

a dynamic tree-cutting algorithm (hybrid mode, minimal module size of 100) was used. 

All calculations were coded by R. 

 

3.2.3. Differential variability and correlation (DVC) analysis 

The detailed procedure for the differential variability and correlation (DVC) 

analysis has been described in our previous study [13]. The analysis was conducted 

using the Bioconductor package in the R language. The system transition score (STS) 

was used to rank the genes and identify those with high differential variability and 

correlation between two different cellular statuses (NSCs vs. TAPs, or NSCs vs. 

astrocytes). The detailed description of STS calculation is shown in the supplementary 

note. The co-expression network of the DVC genes included in the same module was 
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displayed using Cytoscape 3.1.2 [25]. PCCs above 0.7 were shown as the connection 

between genes in the network figure. 

 

3.2.4. Functional enrichment analysis of candidate gene signature 

The astrocyte differentiation related gene sets (GO:0048708) for the functional 

enrichment analysis were obtained from the Gene Ontology database [26],[27]. The 

ChIP-seq data showing the transcription factor binding sites and DNase-seq data 

showing open chromatin sites in NSCs were obtained from a previously published 

study [28]. The genomic regions overlapping between ChIP-seq and DNase-seq data 

were discovered using bedtools. The genes within 1M bases from the overlapping 

regions were used in the transcription factor enrichment analysis to incorporate 

potential enhancer regions into the analysis. The enrichment significance was assessed 

using the cumulative hypergeometric probability with the phyper function in R. The 

enrichment test is one-sided. Ingenuity Pathways analysis (IPA®, Qiagen, 

http://www.ingenuity.com) was used to examine the upstream regulators of the DVC 

genes. The reference data set was set as the 12,147 genes that represented all the 

genes used in the functional enrichment analyses. As a comparison, we applied a 
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functional enrichment analysis on the conventional “differently expressed genes 

(DEGs).” The DEG definition is described in the supplementary note. 

 

3.2.5. Cell culture and Ntsr2 inhibition assay 

Fetal-derived mouse NSCs (mNSCs, Cell Application Inc., San Diego, CA, USA) 

at passage two were seeded at a density of 1.0 × 105 cells/cm2 in T25 flasks coated with 

poly-L-ornithine hydrobromide (Sigma–Aldrich, St. Louis, MO, USA) and natural 

mouse laminin (Thermo Fisher Scientific, Waltham, MA, USA) for maintenance and 

differentiation. The maintenance culture and differentiation culture (astrocyte 

differentiation) was performed according to the manufactures’ protocol, with some 

modifications as described in our previous work [29]. mNSC’s were seeded in triplicate 

into a coated 6-well plate for the real-time PCR experiment, and into a 12-well plate for 

immunohistochemical staining. For the real-time PCR, the following primers were 

applied: β-actin (forward: GGCCCAGAGCAAGAGAG GTATCC, reverse:

 ACGCACGATTTCCCTCTCAGC), GFAP (forward: GCCA 

CCAGTAACATGCAAGA, reverse: CGGCGATAGTCGTTAGCTTC), and SOX2 

(forward: GGCGGCAACCAGAAGAACAG, reverse: GCTTGGCCTGCGTCGATG AAC). 
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For RT-PCR, total RNA was extracted using RNeasy kit (QIAGEN, Germantown, MD, 

USA), and cDNA was generated using Superscript II (Invitrogen, Carlsbad, CA, USA). 

PCR was performed over 30 cycles for all genes except β-actin (25 cycles). For Gfap 

immunohistochemistry, an anti-glial fibrillary acidic protein (Gfap) antibody 

(GR15465010, ab53554; Abcam, Cambridge, MA, USA), and the secondary antibody 

anti-goat DAG-IgG-Alexa Fluor 488 (GR2460881, ab150129; Abcam) were used. The 

protocol for immunohistochemical staining is described in our previous work[29]. The 

Ntsr2 antagonist (JMV449), a pan neurotensin receptor antagonist, was purchased 

from TOCRIS (Avonmouth, Bristol, UK), and added to the mNSCs at final 

concentrations of 0.15 pM, 1.5 pM, 15 pM, 0.15 nM, and 1.5 nM. 

 

3.2.6. Statistical analysis 

The Leven-test was applied to the RNA-seq data to evaluate the variability 

among individual cells in each cell type. The Voom-limma method was used to identify 

the DEGs between cell types[30]. P-values were adjusted using the 

Benjamini-Hochberg method. These procedures were conducted in R. The statistical 

tests are two-sided. 
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3.3. Results 

 

3.3.1. Comparison of transcriptional variability and correlation in three cell states 

(NSCs, TAPs, and astrocytes) 

To understand the differential dynamics of gene expression variability, we first 

classified three types of cells as being representative of three states: NSCs representing 

the most undifferentiated state, TAPs representing a potentially intermediate 

differentiation state, and astrocytes representing the most differentiated state. By 

comparing transcriptional variability and a correlation of NSCs with two different 

states (TAPs and astrocytes), we evaluated alterations in the co-expressed gene sets in 

NSCs. 

First, to obtain the co-expressed genes in the NSC state, which we defined as 

the most undifferentiated state, a hierarchical clustering analysis was performed on 

their single cell gene expression data. Using a correlation coefficient, which describes 

the similarity of gene expression profiles in each individual cell, the co-expressed gene 

modules in the NSC state were identified. Within the 12,147 genes, 17 modules of 
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co-expressed genes were identified (Fig 3-2A).  

By comparing TAPs/astrocytes vs. NSCs, we evaluated the differences in gene 

expression variability using the single cell gene expression data (Fig. 3-1A). Between 

the two cell states, TAPs and NSCs, 3423 genes (28.2%) were found to show differential 

variability (Levene test q < 0.001). Between NSCs and astrocytes, 13.5% of all genes 

also showed differential variability (Levene test q < 0.001). These data show that 1637 

genes changed their expression profile, either in a harmonized or in a heterogeneous 

pattern, as the cell state changed from undifferentiated to differentiated. By examining 

the overlap between genes with differential variability in expression and each 

co-expressed gene set, some modules were found to be enriched in genes that changed 

their variability as a result of the cell state transition. When all the modules were 

examined for the direction of differential variability (Fig. 3-2B), it was found that there 

were only a few modules that contained genes that increased their expression 

variability compared to the NSC state (Fig. 3-1B upper two rows). In contrast, there 

were several modules that showed a large member of genes that had a decrease in their 

expression variability compared to the NSC state. More than half of the genes in the 

black and magenta modules decreased their expression variability in TAPs 
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(enrichment significance was p = 4.35e-79) and astrocytes (p = 3.69e-70), respectively. 

The red and purple modules showed that more than 1/3 of the module member genes 

decreased their expression variability in both TAPs (p = 4.79e-39, p = 6.03e-73) and 

astrocytes (p = 8.24e-45, p = 1.30e-28). 

By comparing TAPs/astrocytes vs. NSCs, differential correlations were also 

evaluated (Fig. 3-2A). When we focused on the modules which showed decreased 

expression of variability (black, magenta, purple, and red module), we found that most 

of their member genes also showed a decrease in their correlation. These data indicate 

that both the transcriptional variability and the co-expressed gene relationships in the 

NSC state decreased as astrocyte differentiation progressed. With the differential 

correlation heatmap, the profile of “TAP vs. NSC” and “Astrocyte vs. NSC” was found to 

be very similar. Therefore, we checked the difference among their detailed gene 

correlation networks. When detailed correlation networks were confirmed, we found 

that most of the correlations between different pairs of genes were different. Therefore, 

the similar “change profile” illustrated by heatmap is just showing the brief total 

tendency of numerous correlation scores per each gene, and their individual correlation 

networks are more complex.  
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3.3.2. DVC genes in the cell state transition of astrocyte differentiation 

For further the analysis of differential gene expression profiles between cell 

states, we carried out our DVC analysis to identify candidate genes that could be 

predictive of an up-coming drastic cell state transition. We measured the change in two 

parameters with our measure score, the system transition score (STS), which combines 

both an evaluation of the differential variability and the differential correlation of gene 

expression. We defined genes with a high STS as “DVC genes,” and selected candidate 

genes from a comparison of pairs of transition states, TAPs vs. NSCs, and astrocytes vs. 

NSCs. From the comparison of TAPs vs. NSCs, 474 DVC genes were found, and from 

astrocytes vs. NSCs comparison, 504 DVC genes were found. This result suggests that 

there are more genes related to the response to the state transition from the NSC state 

to the differentiated astrocyte state.  

In the DVC genes, the cell cycle genes which is important for early proliferative 

phase was overrepresented (enrichment p-value = 1.79e-32). For example, Cdk6, which 

contributes mainly in G1 phase and proliferation, was found as the top DVC gene. This 

result suggest that the DVC analysis reflects the commonly known functional genes 
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that is predominant differentiation pathway from progenitor to committed cell. 

To examine whether candidate DVC genes are functionally involved in astrocyte 

differentiation, a functional enrichment analysis was performed. As a result, astrocyte 

differentiation related genes were highly enriched in the DVC genes identified between 

the astrocyte vs NSC states (p =6.15e-6) compared with DVC genes identified between 

the TAP vs. NSC states (Fig. 3-3A).  

In comparison, using a conventional analysis, which compares the average 

(averaged value of single cell data) expression rates of genes among different cell states, 

to identify differentially expressed genes (DEGs) (definition described in the Material 

and Methods), we rarely found astrocyte differentiation-related genes, even from both 

state comparisons (TAPs vs. NSC or astrocyte vs. NSC). This result suggests that the 

genes which play important roles in astrocyte differentiation vary in expression 

variability and correlation and not in average expression level. 

To further investigate the robustness of our DVC analysis applied to cells which 

changed their state from stem cells to astrocytes, we evaluated the second dataset (53 

NSCs and 13 astrocytes) obtained from an independent study 22. Our DVC analysis 

identified 97 highly ranked DVC genes from the second dataset. There were 15 
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overlapping genes among the top-ranking DVC genes between the first and second 

datasets (enrichment significance: p-value = 3.06e-11).  

 

3.3.3. Cell-fate marker genes found as DVC genes  

To further understand the function of the DVC genes, we examined if known 

biomarkers and regulators involved in neuron and astrocyte differentiations were also 

DVC genes. In this regard, Ascl1, which promotes neuronal fate determination, was 

identified as being a DVC gene between the astrocyte vs. NSC states [31]. As 

previously reported [9], Ascl1 expression oscillates in NSCs, although it becomes stably 

suppressed following astrocyte differentiation. Similar changes in Ascl1 gene 

expression were observed in this study. Ascl1 showed a large variability in expression 

among individual cells in the NSC state, although this variability decreased in the TAP 

state. In the astrocyte state, it was expressed at a low level (Fig. 3-3B).  

The notch signaling gene, Dll1 was also found to be a DVC gene between the 

astrocyte vs. NSCs states. By plotting its expression levels, this DVC gene also showed 

a large variability in expression in the NSC state cell population, and a low level of 

expression in the astrocyte state. Such variability in gene expression is NSC is 
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consistent with a previous report indicating that Dll1 shows oscillatory expression in 

the NSC state [32]. When Dll1 was used as a representative gene, previously reported 

marker genes were also identified by searching the co-expression gene module (Fig. 

3-1B). For example, in the red module, both Dll3 and Sox9 were identified as 

co-expression members for Dll1. Dll3 is another notch-signaling gene, which also shows 

a large variability in expression among individual cells in the NSC state, and loses this 

variability in expression in the astrocyte state. Such an involvement of notch signaling, 

is consistent with previous work which has reported the oscillation and co-expression of 

notch signaling genes in a single NSC [8]. Sox9, which is known to be a glial fate 

determination marker, was also found in the red module [33]. From its expression 

profile, it was also noted that Sox9 showed a large variability in expression levels in the 

NSC state, although this variability was lost in astrocytes. 

 

3.3.4. DVC genes are potentially regulated by Sox9, Ascl1 and Max 

We performed an upstream regulator analysis to obtain regulatory insights into 

the DVC genes. First, a data-driven interpretation approach was applied based on the 

broad collection of transcriptional regulatory relationships from the published 



83 

literature using the Ingenuity Pathways Analysis software. From this analysis, Ascl1, 

one of the DVC genes, was identified as the most significant upstream regulator of 

other DVC genes (Fig. 3-4A). Second, a more focused approach was performed to 

confirm whether Ascl1 and other transcription factors important for neuronal and glial 

differentiation could potentially regulate the expression of DVC genes. The enrichment 

analysis of the DVC genes compared with the target gene candidates of 11 

transcription factors (Ascl1, Ctcf, Fox3, Max, Nfi, Olig2, Smac1a, Sox2, Sox9, Sox21 

and Tcf3) by ChIP-seq in the NSC state [28]. A transcription factor enrichment analysis 

then showed that Sox9, Ascl1, and Max could be candidates that regulate the 

transcription of other DVC genes. These consistent data for Ascl1, obtained from two 

separate and distinct approaches, indicate that Ascl1 is the most likely regulator of the 

DVC genes found in our analysis, and that it is involved in the cell state transition from 

NSCs to astrocytes.   

 

3.3.5. Experimental validation of the role of the DVC candidate gene (Ntsr2) in 

determining cell fate  

To validate the functional importance of our DVC gene candidates, we searched 
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for DVC genes which could potentially be involved in the Ascl1 regulation gene 

network. From this gene network analysis, Ntsr2 became a focus because it was one of 

the DVC genes that were co-expressed with Ascl1 (Fig. 3-5A). The co-regulated 

relationship in expression between Ntsr2 and Ascl1 become weak in the astrocyte state 

compared to the NSC state (Fig. 3-5A). Ntsr2 also showed a greater degree of 

variability in single cell expression in the NSC state than in the astrocyte state (Fig. 

3-4B). However, the expression level of Ntsr2 was increased in the astrocyte state 

compared with that in the NSC state. Therefore, we assumed that inhibition of Ntsr2 

function would have a significant effect on Ascl1-related signaling in the NSC state, 

whereas Ntsr2 inhibition in the astrocyte state would have little effect on Ascl1-related 

signaling. In the NSC state, the addition of the Ntsr antagonist JMV449 clearly 

inhibited expression of the undifferentiation and astrocyte marker Gfap to levels lower 

than the control, without any sign of cytotoxicity (Fig. 3-6A). This result indicates that 

the antagonist disrupted the essential variability in the NSC state for astrocyte 

differentiation potential. When the expression level of the early neuronal fate marker, 

Sox2, was measured, the effect of the Nstr2 antagonist was very weak (Fig. 3-6B). This 

indicates that the antagonist showed a greater effect on the Ntsr2 gene network, which 
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suggests that gene network of DVC genes plays a critical role in the state maintenance 

in NSCs for upcoming astrocyte differentiation. However, when JMV449 were added to 

the astrocyte differentiation medium, we did not find any significant effect (data not 

shown). These data also suggest that a disturbance of DVC genes is effective when 

their variability is large and their gene network is tight. 

 

3.4. Discussion 

 

Cell fate decision in the differentiation processes is proposed to be a system 

that transits abruptly from one state to another in response to external stimulation 

based on dynamic systems theory. Such cell states transitions are referred to as critical 

transitions [10],[11]. The ‘fragility’ of various biological profiles, is a new concept 

adopted to help understand complex biological phenotypes that are found during such 

critical transitions. It is now thought that both ‘variability’ in gene expression levels 

and ‘co-expression’ among heterogeneous populations of cells are empirical indicators 

which are involved in any upcoming biological transition. Based on this theory, our 

DVC analysis offers objective measurement criterion which correlate with the critical 
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cell state transition. In this study, in order to investigate the use of our DVC analysis in 

understanding astrocyte differentiation, we analyzed single cell transcriptome data to 

measure both the variability and correlation between cell states more accurately than 

cell population transcriptional data. Moreover, the robustness of DVC analysis was 

further confirmed in the independent second dataset. 

By focusing on the evaluation of STS, a score incorporating both variability and 

co-expression, our analysis identified several candidate DVC genes, as being central 

regulating genes important in the transition from the NSC state to the astrocyte state. 

The functional enrichment of DVC genes important in astrocyte differentiation was 

more significant than that for conventional DEGs, indicating the importance of 

evaluating heterogeneity of gene expression data. Moreover, using a gene network 

analysis followed by pharmacological inhibition of a single DVC gene we demonstrated 

that the DVC analysis could identify key players in the transition from the NSC state. 

Our data also suggest that signatures that are involved in state transition are not 

easily identified using the conventional comparison of “expression averages.” This 

study therefore has an impact by improving our understanding of transcriptional 

regulation in differentiation processes.   
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Through our DVC analysis, the importance of expression ‘fragility’ was clarified 

especially in the most undifferentiated NSC state. When we compared three states, 

represented by NSCs, TAPs, and astrocytes, the differences between NSCs and 

astrocytes were clear. However, the differences between TAPs and NSCs provided very 

few informative genes. Therefore, as proposed by Molofsky et al.[34], we consider that 

TAPs do not lie on the direct line of lineage from NSCs to astrocytes. In such 

considerations of lineage type differences, our STS score in DVC analysis, which rank 

the genes and identify the high differential variability and correlation between cellular 

states, can be informative. 

Ascl1, the central gene identified here from the DVC analysis, is a well-defined 

transcription factor. For example, the notch signaling genes, Dll1 and Dll3, are known 

to be targets of Ascl1 [35]. Notch signaling also up-regulates the expression of Sox9, 

and induces differentiation into astrocytes [36]. Moreover, Sox9 is known to bind to the 

genomic regions close to Ascl1, Dll1, and Dll3 from a Chip-seq study [28]. Taken 

together, these data suggest that Sox9 may be both upstream and downstream of genes 

involved in notch signaling suggesting that a transcriptional loop could be formed. The 

change in the co-expression network between cell states might imply there is a change 
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in the network regulatory loop during the cell state transition.  

Ntsr2 is a G-protein coupled receptor that binds neurotensin [37], and is 

expressed in NSCs and astrocytes[38]. However, its functional role in the cell state 

transition has not been previously described. An Ntsr antagonist suppressed Gfap 

expression and in addition had a small effect on Sox2 expression in NSCs. Type 1 NSCs 

are characterized by presence of both Gfap and Sox2 expression in the undifferentiated 

state [39]. This type 1 state triggers the cellular state transit to type 2 in NSCs that 

express Sox2, but not Gfap [39], and is thought to be the state of self-renewal. It has 

been found that NSCs have the potential to differentiate into both neurons and 

astrocytes in their type 2 state[40]. Use of the Ntsr antagonist might guide type 1 NSCs 

to become type 2 NSCs, which have a high capacity to give rise to neural lineages. This 

study suggests that Ntsr2 could be involved in the cell state transition in the early cell 

fate decision making process. In the second data analysis, Ntsr2 was ranked at 304th 

and was not lost in the independent data. The sequencing depth of the second data set 

was lower than that of the first data set. This may have resulted in the loss of 

co-expression structure. Therefore, considering the difference in sequencing depth 

between the first and second data sets, we consider that our method provided 
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reproducible results. However, since the Ntsr2 inhibition potentially affects Stat3 

signaling that may lead Gfap expression change, we should evaluate Stat3 signaling 

more in detail to gain insight on Ntsr2 biology during astrocyte differentiation. To 

further analyze the Ntsr2-related cascade, we believe further development of inhibitor 

libraries are required. First, we could not find an appropriate small molecule inhibitor 

for directly inhibiting Ascl1. Second, although JMB449 are known to inhibit both types 

of Ntsr receptors, Ntsr1 and Ntsr2, there were no molecule inhibits only Ntsr2. 

However, the expression read counts were not detectable for Ntsr1 in the data of all cell 

types; therefore, our experimental design was appropriate for studying Ntsr2 using 

JMB449. 

Although the DVC analysis provided several possible clues, this study could not 

definitively explain why the variability in DVC gene expression is high in the 

undifferentiated state. A study of variability in the hematopoietic differentiation 

system demonstrated that both cell cycle and variations in cell size could, to a small 

extent, explain this variability in gene expression[15]. This report also suggested that 

variability in gene expression could be caused by other mechanisms. In this study, we 

identified oscillatory genes as DVC genes in the process of astrocyte differentiation. 
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Our previous study showed that Hes1 is one DVC gene that is important during 

neuronal differentiation. Hes1 was also found to have oscillation in its expression 

levels before neuronal differentiation. Combining the data from our neuronal and 

astrocyte differentiation studies enhances our hypothesis that oscillations in gene 

expression in the undifferentiated state causes a high transcriptional variability before 

differentiation occurs. These oscillations may be one reason why the transcriptional 

system becomes ‘fragile’ before an upcoming cell state transition such as cell fate 

decision. In the future, we intend to add more time-course data representing other 

cellular states in the differentiation process in order to extend DVC analysis to 

investigate the cause of high transcriptional variability in the differentiation process.  
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Figure 3-1. Conceptual illustration of the DVC analysis based on gene expression 

variability and correlation. Calculation concept of DVC analysis. (A) First step of 

calculating two indexes. In each state of cells, two types of criteria, variability and 

correlation, is calculated. For index 1 (variability), the standard deviation (SD) of each 
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gene expression between cells (3 single cells in this example) are calculated. For index 

2 (correlation), the Pearson correlation coefficient of pair of expression patterns from 

group of cells (3 single cells in this example) is calculated between each pair of genes. 

By clustering, the correlated genes are grouped as co-expressed modules. (B) Second 

step of calculating state transition score (STS). The change rate between two state of 

cells is calculated using both indexes to obtain STS. DVC gene is the gene with high 

STS. An example image of DVC gene is also illustrated, which shows oscillation-like 

variability in the early state of cells, although settle/harmonize after the transition to 

the next state.  
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Figure 3-2. Identification of co-expression modules in the NSC state with their 

differential profile. (A) Clustered modules of co-expressed genes in NSC cells, and their 

differential profile compared to two differentiated cell states (TAPs/astrocytes). (Top 

tree) Hierarchical clustering tree shows the clustered genes based on co-expression 
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patterns among individual single cell transcriptomes (92 cells) in the NSC state. 

(Heatmaps) Co-expression modules: the divided clusters of co-expressed genes obtained 

from the above hierarchical clustering are represented by the colored classifiers. 

Differential variabilities: the average differential variability in single cell 

transcriptomes between two cell states, TAPs vs. NSCs or astrocytes vs. NSCs. 

Differential correlations: the average differential correlation of single cell 

transcriptomes between two cell states, TAPs vs. NSCs or astrocytes vs. NSCs. The 

color chart represents the significance of variability (differential variability chart), and 

the ratio of correlation coefficient (differential correlation chart) between cell states. 

The green color indicates lower values, and the red color indicates higher values. (B) 

Enrichment rate indication of differential variability genes in combination with the 

color of clustered modules in Fig. 3-2A. The clustered modules are aligned from the left 

to the right in the same order as shown as co-expression modules in Fig. 3-2A. Up 

regulated or down regulated genes are counted separately. The colored matrix reflects 

the enrichment rate along with statistical significance. The negative logarithm of the 

p-values are shown in the matrix. 
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Figure 3-3. DVC genes between two cell states in astrocyte differentiation. (A) Bar plot 

showing the enrichment significance of astrocyte differentiation related genes 

compared between two cell states; TAPs/astrocytes vs. NSCs. DVC genes, and 

conventional DEGs are compared to one another. (B) Gene expression profiles of 
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representative DVC genes identified from the DVC analysis. 
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Figure 3-4. Upstream regulators of DVC genes between astrocyte and NSC states. (A) 

Enrichment significance of transcription factor candidates that can regulate DVC 

genes obtained using an unbiased upstream regulator analysis. (B) Enrichment 

significance of transcription factor candidates that can regulate DVC genes obtained 

from the ChIP-seq data. 
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Figure 3-5. Gene network analysis of Ascl1 and expression profile of Ntsr2.  (A) 

Co-expression network predicted to be involved with Ascl1. The links between nodes 

represent a strong correlation (correlation coefficient ≥ 0.7). The orange nodes indicate 

astrocyte differentiation related genes based on Gene Ontology. The node size indicates 

the system transition score. (B) Single cell gene expression profile of Ntsr2 in the three 

cell states (NSC, TAP and astrocyte). 
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Figure 3-6. Effect of the Ntsr2 inhibitor on the NSC state. (A) Relative expression rate 

of Gfap mRNA in the presence and absence of the Ntsr2 inhibitor (JMV449). (B) 

Relative expression rate of Sox2 mRNA in the presence and absence of the Ntsr2 

inhibitor (JMV449). 
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3.5. Summary 

 

There are an increasing number of reports that characterize the temporal 

behavior of gene expression at the single cell level during cell differentiation. Despite 

accumulation of data describing the heterogeneity of biological responses, the dynamics 

of gene expression heterogeneity and its regulation during the differentiation process 

have not been studied systematically. To understand transcriptional heterogeneity 

during astrocyte differentiation, we analyzed single cell transcriptional data from cells 

representing the different stages of astrocyte differentiation. When we compared the 

transcriptional variability of co-expressed genes between the undifferentiated and 

differentiated states, we found that there was significant increase in transcriptional 

variability in the undifferentiated state. The genes showing large changes in both 

“variability” and “correlation” between neural stem cells (NSCs) and astrocytes were 

found to be functionally involved in astrocyte differentiation. We determined that these 

genes are potentially regulated by Ascl1, a previously known oscillatory gene in NSCs. 

Pharmacological blockade of Ntsr2, which is transcriptionally co-regulated with Ascl1, 

showed that Ntsr2 may play an important role in the differentiation from NSCs to 
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astrocytes. This study shows the importance of characterizing transcriptional 

heterogeneity and rearrangement of the co-regulation network between different cell 

states. It also highlights the potential for identifying novel regulators of cell 

differentiation that will further increase our understanding of the molecular 

mechanisms underlying the differentiation process. 
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Chapter 4 

 

 

Concluding remarks 

 

 

 Heterogeneity in cell populations has been known to potentially affect various 

biological processes from the recent works. However, it is still difficult to analyze such 

heterogeneity to further interpret the underlying molecular mechanism without prior 

knowledge of the genes involved in phenotype heterogeneity. Inspired by the dynamical 

systems theory, my goal of this thesis was to establish a novel unbiased and systematic 

analysis method of cellular heterogeneity during cellular differentiation. I generated 

the data driven hypothesis to identify the potential regulator genes showing 

heterogeneity in cell populations and validated it experimentally. In this study, I 

focused to establish the framework from data driven hypothesis generation to 

experimental validation on cellular heterogeneity research with the model data of 
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neuronal and glial differentiation. 

 

 In Chapter 1, a general introduction offered current challenges and 

opportunities of cellular heterogeneity researches to be discussed. The objective of this 

thesis was described based on them 

 

 In Chapter 2, the transcriptional variability and co-expression analysis were 

applied to the gene expression data of neuronal differentiation in mouse ES and human 

iPS cells to investigate dynamic alternation of cellular heterogeneity in the neuronal 

differentiation process. Although the gene expression data was the average data from 

the bulk cellular population, the analysis was able to detect transcriptional variability 

change and revealed that most of the genes co-expressed in the neuronal stem cell 

decrease their transcriptional variability. The DVC genes are not only predictive 

biomarker for neuronal differentiation but also play an important role in neuronal 

differentiation. The dynamic behavior of the genes is preserved between mice and 

human in neuronal differentiation. 
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 In Chapter 3, the analytical concept established in Chapter 2 was extended to 

the single-cell transcriptional data in astrocyte differentiation. The key findings that 

the genes co-expressed in the stem cells decreased their transcriptional variability 

were also observed in the astrocyte differentiation. The genes with such dynamic 

behavior included the know oscillation genes including Ascl1 which regulated neuronal 

and glial cell fate. The modulation of Ntsr2 transcriptionally co-regulated with Ascl1 

showed that Ntsr2 was involved in an early cell fate decision. 

 

 Throughout this work, the dynamic behavior of cellular heterogeneity during 

differentiation process was examined and used as the core concept to identify the 

regulators in the critical transition of cellular states. The unbiased and systematic 

analysis of transcriptional data gained novel mechanistic insight into cellular 

heterogeneity in neuronal differentiation (Chapter 2) and astrocyte differentiation 

(Chapter 3). I conclude that the analytical framework proposed in this thesis made a 

significant step forward into cellular heterogeneity science, and will accelerate the 

development of effective therapeutics and regenerative medicine. 
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