
学位報告

学位報告４

主 論 文 の 要 旨

論文題目

氏 名

報告番号 ※甲 第 号

論 文 内 容 の 要 旨

Efficient Text Autocompletion for Online Services

（オンラインサービスのための効率的なテキスト自動補完）

HU Sheng (胡 晟)

Query autocompletion (QAC) is an important interactive feature that assists user in

formulating queries and saving keystrokes. Due to the convenience it brings to users,

QAC has been adopted in many applications, including Web search engines,

integrated development environments (IDEs), and mobile devices.

However, there are many challenges laid on various applications other than Web

search engines. Thus, we focus on the solutions of Autocompletion for Online Services.

First, we investigate location-aware query autocompletion. As mobile devices become

more and more popular, one of the main applications is location-aware service, such as

Web mapping. Although there have been several solutions to location-aware query

autocompletion that are based on a combination of spatial and textual indexes to

process queries, all of them suffer from inefficiency when the dataset is large or when

large amount of simultaneous queries occur. Most existing works can be classified into

text-first, space-first, and tightly-combined methods, according to how the indexes are

combined. The text-first methods first index the text descriptions and then apply

spatial constraints as filters to verify the objects. E.g., if a user searches for

“Starbucks” around “New York”, text-first methods will first find all the objects

matching “Starbucks” and then verify whether they are around “New York”. The

space-first methods adopt the reverse order. The tightly-combined methods will

transfer “Starbucks” and “New York” into one combined token and then use it as a key

for lookups. In this work, we propose a new solution to location-aware query

autocompletion. We devise a trie-based index structure and integrate spatial

information into trie nodes. Our method is able to answer both range and top-k

queries.

38 字×23 行

In addition, we discuss the extension of our method to support the error-tolerant feature

in case user’s queries contain typographical errors. Experiments on real datasets show

that the proposed method outperforms existing methods in terms of query processing

performance.

Second, we study a novel QAC paradigm. For existing QAC methods, users have to

manually type delimiters to separate keywords in their inputs and then the system

takes the input characters as the prefixes of keywords to match. Hence a limitation is

that these methods are unable to handle the case when users prefer not to manually

separate keywords in the input or it is inconvenient to do so. In this work, we propose a

novel QAC paradigm through which users may abbreviate keywords by prefixes and do

not have to explicitly separate them. Such paradigm is useful for applications where it

is inconvenient to specify delimiters, such as desktop search, text editors, input method

editors, as well as the t asks of searching long proper names comprising multiple

morphemes. E.g., in an IDE, users may input “getnev” and we suggest “GetNextValue”.

We show that the query processing method for traditional QAC, which utilizes a trie

index, is inefficient under the new problem setting. A novel indexing and query

processing scheme is hence proposed to efficiently complete queries. To suggest

meaningful results, we devise a ranking method based on a Gaussian mixture model,

taking into consideration the way in which users abbreviate keywords, as opposed to

the traditional ranking method that merely considers popularity. Such a Gaussian

mixture model is utilized to predict the probability that a user abbreviates keywords

into a given set of prefixes observed in the input. We also present a top-k query

processing algorithm to efficiently compute the top-k answers with respect to the new

ranking method by integrating a series of early termination techniques. Experiments on

real datasets demonstrate the effectiveness of the new QAC paradigm and the efficiency

of the proposed query processing method.

Finally, we explore the problem of code completion, which is a traditional popular

feature for API access in integrated development environments (IDEs). It not only frees

programmers from remembering specific details about an API but also saves keystrokes

and corrects typographical errors. Existing methods for code completion usually suggest

APIs based on statistics in code bases described by language models. However, they

neglect the fact that the user’s input is also very useful for ranking, as the underlying

patterns can be used to improve the accuracy of predictions of intended APIs.

To improve users’ satisfactions, we propose a novel method to improve the quality of

code completion by incorporating the users’ acronym-like input conventions and the

APIs’ scope context into a discriminative model. The users’ input conventions are

learned using a logistic regression model by extracting features from collected training

data. The weights in the discriminative model are learned using a support vector

machine (SVM). To improve the real-time efficiency of code completion, we employ a trie

38 字×23 行

to index and store the scope context information. An efficient top-k algorithm is

developed. Experiments show that our proposed method outperforms the baseline

methods in terms of both effectiveness and efficiency.

Generally, an overall view of autocompletion across different application domains is

provided. We believe that our contributions are practical and easy to be applied in many

other applications. At first, we think our efficient index design and early termination

pruning techniques can be applied in either geo-graphical or textual databases.

Secondly, our proposed ranking method and novel autocompletion paradigm can

practically improve the top-k accuracy and effective performance in textual editors,

mapping services and any other Web retrieval systems. Last but not least, extensive

experimental evaluations are conducted to illustrate the performance on real-world

datasets.

38 字×23 行

