MATRIX LIBERATION PROCESS
I: LARGE DEVIATION UPPER BOUND AND ALMOST SURE CONVERGENCE

YOSHIMICHI UEDA

ABSTRACT. We introduce the concept of matrix liberation process, a random matrix coun-
terpart of the liberation process in free probability, and prove a large deviation upper bound
for its empirical distribution and several properties on its rate function. As a simple con-
sequence we obtain the almost sure convergence of the empirical distribution of the matrix
liberation process to that of the corresponding liberation process as continuous processes in
the large N limit.

1. INTRODUCTION

Let My (C)® be all the N x N self-adjoint matrices endowed with the natural inner product
(A, B)us := Try(AB), and it has the following natural orthogonal basis:

J5(Bap+ Bpa) (1<a<B<N),

Cop = Eoa (I1<a=pB<N),

J5(Bap — Ega) (1<B<a<N).
Here, Try stands for the non-normalized trace (i.e., Try(Iy) = N with the identity matrix
Iy) and the E,3 are N X N standard matrix units. Using these inner product and orthogonal

basis we identify My (C)%* with the N2-dimensional Euclidean space RY 2, when we use usual
stochastic analysis tools on Euclidean spaces. Choose the n/N2-dimensional standard Brownian
motion B((fg, 1<a,B8< N, 1<i<n with natural filtration F;, and define

N (@)
, B2 (t)
(@) af
Hy (t) ==

N ( ) QBZ:1 \/N
which are called the n independent N x N self-adjoint matriz Brownian motions on My (C)%2.
The stochastic differential equation (SDE in short)

C(Jtﬂv tZOa 1S2§n7

) ) . 1 .
Uy (1) = 1dHY () UN (1) = SUN () dt with UP(0) =1y, 1<i<n,

defines unique n independent diffusion processes U J(\;), 1 <¢<mn,onthe N x N unitary group
U(N), which are called the n independent N x N left unitary Brownian motions. It is known,
see e.g., [13, Lemma 1.4(2)] and its proof, that they satisfy the so-called left increment property,

that is, the UI(\;)(t)U](\;)(s)*, t > s, are independent of F; and has the same distribution as that
of U J(\;)(t — s). This property plays a crucial role throughout this article.
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For each 1 < i < n+ 1, an r(i)-tuple Z;(N) = (&; (N))T@ of N x N self-adjoint matrices
is given. Throughout this article, we assume that the given sequence Z(N) := (Z;(N))}! are
operator-norm bounded, that is, ||&;;(N)|| < R with some constant R > 0, and has a limit joint
distribution og as N — oo. See section 2, item 3 for its precise formulation of og. Here we
introduce the N x N matriz liberation process starting at Z(N) as the multi-matrix-valued

process

PN Elib(N)(t) _ (E}le(N)(t)):Lill _ (( hb :z )nJrl
b A (g < m UG (1) (1<i<n),
with ij (N)(t) T { fnJrlj(N) (7, =n-+ 1)-

We emphasize that the matrix liberation process ZiP(NN) is new in random matrix theory and
also that each ZHP(IV) is a constant process in distribution, that is, its empirical distribution is
independent of tlme but the whole family Z (V) creates really non-commutative phenomena.

The concept of matrix liberation process comes from the liberation process in free probability
defined as follows. Let (M, 1) be a tracial W*-probability space, and A; C M, 1 <i<n+1,
be unital #-subalgebras (possibly to be W*-subalgebras). Let v;, 1 < i < n, be n freely
independent, left free unitary Brownian motions ([2]) in (M, 7) with v;(0) = 1, which are (-
)freely independent of the A;. Then the family consisting of A;(t) := v;(t)Av;(£)*, 1 < i < n,
and A, 1+1(t) :== Ap41 converges (in distribution or in moments) to a family of freely independent
copies of A; as t — oo. Following Voiculescu [22], we call this ‘algebra-valued process’ t —
(Ai(t))4]! the liberation process starting at (A;)74!. The matrix liberation process Z'P(N)
is a natural random matrix model of the liberation process. The attempt of investigating the
matrix liberation process =1 (NN) is quite natural, because independent large random matrices
are typical sources of free independence thanks to the celebrated work of Voiculescu [21] on
one hand and because, on the other hand, the concept of free independence is central in free
probability theory and the liberation process is a ‘stochastic interpolation’ between a given
statistical relation and the freely independent one in the free probability framework.

The purpose of this article is to take a first step towards systematic study of the matrix
liberation process ZiP(N) (rather than the unitary Brownian motions U J(\;)) with the hope of
providing a basis for the study of liberation process and free independence in view of random
matrices. Here we take a large deviation phenomenon for its empirical distribution, say Tzuv(y),
(see section 2, item 2 for its formulation) as N — oo, and actually prove a large deviation upper
bound in scale 1/N? as N — co. The reader may think that a possible approach is to obtain
a large deviation upper bound for the UJ(\? at first and then to use the contraction principle.
However, we do not employ such an approach, because we try to find the resulting formula of
rate function in as direct a fashion as possible. In fact, the rate function that we will find is
constructed by using a certain derivation that is similar to Voiculescu’s one in his liberation
theory and shown to be good and to have a unique minimizer, which is identified with the
empirical distribution ofi® of the liberation process starting at the distribution o (see section
2, item 3 for its precise formulatlon). Hence the standard Borel-Cantelli argument shows that
Tolb(N) — O'%)]b in the topology of weak convergence uniformly on finite time intervals almost
surely as N — co. (See the end of the next section for several previously known related results.)

Let us take a closer look at the contents of this article. Section 2 is concerned with the
framework to capture empirical distributions 7=y and of” in terms of C*-algebras. We
emphasize that the C'*-algebra language is not avoidable if one wants to discuss the appro-
priate topology on the space of empirical distributions of non-commutative processes, because
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C*-algebras are only appropriate, non-commutative counterparts of the spaces of continuous
functions over topological spaces. Hence section 2 is just a collection of formulations for several
concepts, but important to understand this article.

We employ the strategy of the celebrated work on independent N x N self-adjoint Brownian
motions due to Biane, Capitaine and Guionnet [3] (also see [7, part VI, section 18]). Namely,
we use the exponential martingale of the martingale

t = Eltrn (P65 (N)(-)) | Fi] —E[trn (P(ES(N)()))] (1)
with try = %Tr ~ for any self-adjoint non-commutative polynomial P in indeterminates x;;(t),
1<i<n+1,1<j<r(i)andt >0, where P(§J3(N)(-)) denotes the substitution of &P (N)(t)
for each x;;(t) into the polynomial P. Thus we need to compute the resulting exponential
martingale by giving the explicit formula of the quadratic variation of the martingale (1). This
is done in section 3 by utilizing the Clark—Ocone formula in Malliavin calculus. This is similar
to [3], but we need some standard technology on SDEs in the framework of Malliavin calculus
(e.g., [16, chapter 2]). The key of section 3 is the introduction of a suitable non-commutative
derivation, whose formula is not exactly same as but similar to the derivation in Voiculescu’s
free mutual information [22]. This new derivation will further be investigated elsewhere.

The resulting quadratic variation involves the conditional expectation with respect to the
filtration F;, and hence we need to investigate its large N limit in the time uniform fashion.
This rather technical issue is the theme of section 4, and the proof of the main result there is
divided into two parts: We first describe the desired large N limit at each time, and then prove
that the convergence is actually uniform in time. In the first part we use the known convergence
results on standard Gaussian self-adjoint random matrices, while in the second part the use of
Thierry Lévy’s method [13] combining combinatorial techniques with the famous It6 formula is
crucial.

The rest of the discussion goes along a standard strategy in the large deviation theory for
hydrodynamics. Namely, we need to prove the exponential tightness of the probability measures
in question, and introduce a suitable good rate function by looking at the quadratic variation
computed in section 3. These together with proving the large deviation upper bound are done
in section 5. In the same section we give a few important properties on the rate function
including the fact that o} is its unique minimizer, and obtain the almost sure convergence
of the empirical distribution 7ziv(y) as continuous processes. The final section 6 is a brief
discussion on one of our on-going works in this direction.

2. EMPIRICAL DISTRIBUTIONS OF (MATRIX) LIBERATION PROCESSES

This section is devoted to a natural framework to capture the empirical distributions of
(matrix) liberation processes.

Let (C<x.<>(~)> = (C({a:ij(t)}1§j9(i),1§ign+17t20> be the universal unital *-algebra with sub-
ject to i;(t) = xi;(t)*. We enlarge it to the universal enveloping C*-algebra Cj,(Zeo(-)) with
subject to [|z45(t)]] < R. Let T'S(Cj(zeo(-))) be all the tracial states on Cj(zeo(-)). We denote
by T'5¢(C}(zes(+))) the set of 7 € T'S(Ch{weo(-))) such that

ter afi(t) = 1o (25(1) € 70 ((Cp(weo()))) ~ Har

define strong-operator continuous processes, where 7, : Cj(%eo(-)) = B(#,) denotes the GNS

representation associated with 7 and the natural lifting of 7 to 7, ((C}Q<x.0(~)>))” (the closure
in the strong-operator topology) in H., is still denoted by the same symbol 7.

Lemma 2.1. For any 1 € TS(CE<$.<>(~)>) the following are equivalent:



4 YOSHIMICHI UEDA

(1) 7€ TSC(C}%<x.o(~)>).
(2) For every £ € N and any possible pairs (i1,71),. .., (ie, j¢) the function
(t17 s >t4) € [07 +OO)[ = T(xiljl (tl) © o Ligge (tg)) eC
18 continuous.
Proof. (1) = (2) is trivial, since ||z;;(t)| < R.
(2) = (1): For any monomial P = z;,j, (t1) - - - 4,5, (t¢) one has, by assumption,
(27 () = 27 (s) A (P) |3,
= T(@iyg (te) - iy gy ()i () 2i 3, (81) - @i, (T))
= T(@igje (te) -+~ @iy gy (01) 235 (V)@ (8) @iy 3y (E1) -+~ @iy, (L))
T(@igje (te) -+ Tiygy (01)@ij (8)@ij (O)@iyj (81) -+ - @iy 5, (Le))
(i () -+ iy (0245 (5) @iy (1) - - i, (Le))
=0 (ast—s),

where A, : C}§<xm()> — H, denotes the canonical map. Since ||xfj(t)|| < |lzi; ()| £ R as
above, we conclude that ¢ — z7.(t) is strong-operator continuous. O

Let Wy be the words of length £ in indeterminates x;; = z;, 1 <i <n+1,1<j <r(i )
For each w € W, we denote by w(ty,...,ts) the bubbtltutlon of Tiyj, (tg) for x;, ;, into w =
Tiygy - Tigj,- We introduce the function d: TS(Ch{es("))) x TS(C(zao(-))) — [0,+00)
by

o0 oo 1
d(my,72) : ZZW max sup |T1(w(t1,...,tg))77’2(11)(151,...,15[))‘

—l =1 )E wEWe (4, t)€[0,m]
for 71,7 € TSC(C* <x.<> )>)

Lemma 2.2. (1) (T5¢(C}(2e0(+))),d) is a complete metric space.
(2) For any sequence (0x)x>1 of positive real numbers,

L5 :=ﬂ{T€TSC(C;<x.o<->>)1 sup  max 7 ((a(s) — i (1)?)

<3
s 1<5<r(i
k21 ﬁii?g’i =50
defines a compact subset in TS(C(zeo(+))) endowed with d.

Proof. (1) It is easy to see that d defines a metric on T'S°(Cj(Zeo(-))). Thus it suffices to
confirm the completeness of the space.

Let 7, € T'S¢ (CE<$.Q(~)>) be a Cauchy sequence, that is, d(7,,7,) — 0 as p,q — oco. For
every w = Ty, j, - - i,5, € YW¢ we have

ITp(w(ty, ... te)) — Tg(w(ty, ... )| < 2™(2R) d(7p, ;) — O

as p,q — oo for every (t1,...,ts) € [0,m]’. Hence, lim, oo 7p (74, (t1) - 24,5, (te)) exists
for every word w;,j, (t1) - i,5,(te) in C(zeo(+)). Since C(Zeo(-)) is the universal #-algebra
generated by the x;;(t) = x;;(t)*, the words x;, j, (t1) - - - 4,5, (ts) together with the unit 1 form a
linear basis. Hence, we can construct a linear functional 7 on C(ze.(+)) in such a way that 7(1) =
Land 7(xi,j, (t1) -~ @i, (t0)) = Mmp o0 7 (235, (81) - - - 235, (£)); hence 7(P) = limy, 0 7 (P)
for every P € C(z;;(+)). Clearly, 7 is a tracial state. We have |7(P)| = lim,_, |7,(P)| < || P||
for every P € C(zeo(+)) (— C;(2eo(+)) naturally), and therefore, 7 extends a tracial state on

Cr(Zeo(:)).
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Fix w € Wy and m € N for a while. We have
|Tp(wlts, ... te)) = T(w(ts,... te))| = qli_}Holo |Tp(wlt, ... te)) = Tq(w(ts,. .. te))|

< 2™(2R)" km d(Tp,74)
/=00

for every (t1,...,t;) € [0,m]*; hence
sup ’Tp(w(tl, cooste)) = T(w(ty, ... ,tg))| < 2’”(2R)Z lim d(1p, 7q)-
(t1,..,te)€[0,m]* e
Thus 7(w(t,...,tr)) = lmp e Tp(w(ts,. .., 1)) is uniform in (¢1,...,%,) € [0,m]’. Since
m € N is arbitrary, we conclude, by Lemma 2.1, that 7 € T'S°(Ch(%eo(-)))-
(2) Let 7, be an arbitrary sequence in I'(5,). For every m =1,2,... and every w € W, the
sequence of continuous functions 7,(w(t1,...,t,)) is equicontinuous on [0, m]*, since

I
|Tp(w(ty, ... te)) — Tp(w(ty, ..., 1)) < R Z 7o (@i (tm) — :gij(t’m))z)l/2
m=1
by the Cauchy—Schwarz inequality. Hence, for each m,¢ = 1,2,..., the Arzela-Ascoli theorem
(see e.g., [18, Theorem 11.28]) guarantees that any subsequence of 7, has a subsequence 7,
such that 7, (w(t1,...,t;)) converges uniformly on [0,m]* as p’ — oo for all w € Wy (n.b. Wy
is a finite set). Then, the usual diagonal argument with respect to £ = 1,2,... enables us to
select a subsequence 7, in such a way that for every w € Wy, £ = 1,2,..., the sequence of
continuous functions 7, (w(ty,...,t,)) converges uniformly on [0,m]¢ for as p” — oco. This
is done for each m and any given subsequence of 7,. Thus, by the usual diagonal argument
again with respect to m, we can choose a common subsequence 7, that satisfies the same
uniform convergence for all m. In the same way as in the discussion about (1) above we can
construct a tracial state 7 € T'S(Cr(Teos())) in such a way that d(r,~,7) — 0 as p”’ — oc.
Moreover, for every pair 0 < s,¢t < k with |s — t| < §; and every possible pair (i,7), one has
7((zi5(s) =i (£))?) = limpr o0 T (w45 (s) —245(£))?) < 1/k?, and hence 7 falls into I'(5,). O

We will provide some notations that will be used throughout the rest of this article.

1. Time-marginal tracial states: Let C’}’%(a:.o> = C’1*3<{x¢j}1§i§n+1,1§j9(i)> be the univer-
sal C*-algebra generated by the x;; = z7;, 1 <i <n+1, 1 < j < (i) with subject to ||lz;;| < R.
For each t := (t1,...,t,41) € [0,+00)" !, there exists a unique *-homomorphism (actually a *-
isomorphism) 7y : C}E<x.<>> — C’}*%<x.o(-)> sending x;; to z;;(t;). When ¢t :=¢; = --- = t,,41 we
simply write m; := m¢. The 7 induces a continuous map my : T'S¢ (C}E<x.<>(-)>) — TS(CE<$.<>>)
by 7§ (1) := 7 o m¢, where T'S(Cy(%es)) is equipped with the w*-topology. By Lemma 2.1 it
is easy to see that t — 7 (7) is continuous for every 7 € T'S(Cj(zeo(+))). We call 7§ (1) the
marginal tracial state of T at multiple time t.

2. The empirical distribution 7zis(y) of Z(N): The matrix liberation process Z'"P(N)
defines Tiv () € T'S¢ (C}g@:.o( . )>) in such a way that

Tain () (P) = trn (PES(N)()), P € Clzae()).
We call this tracial state Tzin(y) the empirical distribution of the matriz liberation process
ZNP(N). The tracial state Tzib(y) 18 @ random tracial state; actually, it depends upon the n
independent left unitary Brownian motions UJ(\;) via §zl~ijb(N ). Hence we have a Borel probability

measure P(7zub(y) € - ) on T'S¢ (C};@.o('))), and the large deviation upper bound that we will
prove is about the sequence of probability measures P(7zin () € ).



6 YOSHIMICHI UEDA

3. The empirical distribution o}® of the liberation process with initial distribution
00: The limit joint distribution og of the sequence Z(N) is defined to be a tracial state on
C}}<x.o> naturally. Using its GNS construction and taking a suitable free product, we can
construct self-adjoint random variables xfjo = x?;’*, 1<i<n+1,1<j<r()and n freely
independent, left free unitary Brownian motions v;, 1 < i < n, in a tracial W*-probability
space, say (L, 5g), in such a way that the joint distribution of the x?f is indeed oy and that the
7? and the v; are freely independent. Thanks to the universality of the C*-algebra Cj(es(-)),

the strong-operator continuous processes

define a tracial state oi® € T'S¢(C(zeo(+))).
Here is a simple fact.

Proposition 2.3. For every P € C{xso(-)) we have limy o0 B 720y (P)] = 04" (P), that is,
thA)OCE[TElib(N)( . )] = oi? in the weak*-topology.

Proof. The proof of [2, Theorem 1(2)] works well without essential change. O

This essentially known fact should be understood as a counterpart of the convergence of finite
dimensional distributions, and will be strengthened to the convergence as continuous processes
in subsection 5.3. Namely, we will prove that the empirical distribution 7=uv () itself converges
to o in the metric d almost surely. Here, we briefly mention the known facts concerning the
above proposition. The almost-sure version (i.e., without taking the expectation E) of the above
proposition has also been known so far (see e.g., the introduction of [5]); in fact, one can see it
in the same way as in [2, Theorem 1(2)] with the use of more recent results, for example, [12,
Proposition 6.9] and (the proof of) [9, Theorem 4.3.5] (see the comment just before Example
4.3.7 there). Moreover, its almost-sure, strong convergence (i.e., the convergence of operator
norms) version was recently established by Collins, Dahlqvist and Kemp [5]. In those results,
the event of convergence (whose probability is of course 1) depends on the choice of time indices
t1,...,tk, unlike the fact that we will prove in subsection 5.3.

3. COMPUTATION OF EXPONENTIAL MARTINGALE

It is easy to see that, as long as i #n + 1,

<€§;b(N) (t)v Caﬁ>HS = <§ij (N>7 Ca/@>HS

s /t<i[1c o EP(N)(s)], Cag) - dBLY (5)
(i G & Cp )y 1B 2)

o', pB'=1
+ /0 (N (ER(N)(5)) Iy — EP(N)(s), Cap) g ds

in the Euclidian coordinates on My (C)%* with respect to the basis Cyp.
For a given P = P* € C(xeo(-)) the matrix liberation process t — ZP(N)(t) gives the
(real-valued) bounded martingale My in (1), that is,

MN(t) = E[Tglib(N)(P) | ft] - ]EI:TEHL)(N)(P)].
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The Clark—Ocone formula (see e.g., [10, Proposition 6.11] for any dimension and [16, subsection
1.3.4] for 1-dimension) asserts that

Z > [ R (PN | 7] 4B 5,

=1a/,8'=1

where ng;o‘ ) denotes the Malliavin derivative in the Brownian motion B((jz,, explained in
[16, p.119]. The aim of this section is to compute this integrand explicitly by introducing a
suitable non-commutative derivative.

Observe that all the coefficients of SDE (2) are independent of the time parameter and
linear in the space variable. Thus, D{"* )<§“b N)(t), Ca5>Hs is well-defined. See e.g., [16,
Theorem 2.2.1] for details. The function & — U ( )fU ( )* is linear, and hence the matrix-
valued process Y (t) in [16, p.126] is given by ((a ’8))( ) = <U](\;)(t)0a/ﬁ/U](\;)(t)*,C’a5>HS. By
(2), the formula [16, Eq.(2.59)] enables us to obtain that

ka ) <fhb( )( ) Caﬁ>Hs
= 6k,i1[0,t] (5) <U1(\;C)( )CalﬂlU(k ( Oéﬁ>Hs< k)(s)*COQﬁzUJ(\f)(S)a Ca1ﬁ1>HS

< (i o &N Co),
. 5k,i1[0,t](5)
VN

where we used the convention of summation over repeated indices (a1, 1), (a9, 82) as in [16,

section 2.2]. For a while, we assume that P is a monomial in the 511-;-‘3(1\]) (t). By the Leibniz

WP UG ()1 [Carpr P (N ()]UP (UF ()7, Cap )y

formula of ng;a/’ﬁl) we have, for any ( € C,
D) Re (b (CP( li:uv)(-))))

Z Z Re(CtrN (Q1 aBQQ)) kaﬁ)@hb )(1), Cap g

P=Q1z4;(t)Q2 a,=1
s<t

> Re(Ctn(@UE QUL ()1 [Carpr, € (N) ()] UL (5)UL (1) Q) )

P=Q1xy;(t)Q2
s<t

_Re< ¢i Z trN(UI(\f)(s) [gkj(N)’Uz(\f)(t)*Qle UJ(\;C)(t)]UI(\f)(s)* Ca/ﬁ/)>7

P:Qlﬂck]‘ (t)sz
s<t

where we identify Q;, | = 1,2, with Q;(¢¥P(N)(-)) for short. Here and below we used the
convention that the summation Z P=Qa1; ()R, s<t above means that the resulting sum becomes
0 if no P = Quy;(¢t)R with s < ¢ occurs. Therefore, we conclude that

S 3 [ B Reinn (CPENO) | £ B

X

/t dB), (s)
o VN
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Re(y (CUPGE[ Y [, 0P 0 QU 0] | £ () Carsr) ).

P=Qx;(t)Q2
s<t

Here, we have used the notation E[Y|F] = [E[Y;;|F]] for a matrix-valued random variable
Y = [Y};], where we naturally extend E[— |F;] to complex-valued random variables. In the rest
of this paper we also write E[Y] = [E[Y};]].

We are now going back to a general P = P* € (C(:L’.Q(~)>. Write P = ), (P, with € C
and monomials P, in the f%ijb(N)(t). Then we set

ZP) =Y GUPGE[ > [P0 Queeu UY )] | B UF ()
l

Pi=Qu1zk;(t)Qi2
s<t

—E[> G Y @POUP ) 80, Qeen] 08 OUP ) | F,

l P=Quxk;(t)Qi2
s<t

which can be confirmed to be a self-adjoint matrix valued random variable thanks to P = P*.
Since P = P*, that is, try (P(£J2(N)(:))) is real-valued, we have

n N t
Mn) =3 3 [ D Refuen (PEONI) | 7] 4B 0

k=1a’,5'=1

n N t
=> > /O %Re(trN(Zl(\];)(s)C’a/g/))dB((X’f?ﬂ,(s)

k=1a/,8'=1
S /t 1 (k) )
=3 > | =tn (28 (5) Carpr) dBL 5 (s)
k=1a’,8'=1 0 \/N

and the quadratic variation (My) of My (t) becomes

n N t 1
am =% % / b (Z0(5) o) s
k=1a',g'=1"0

n N
1
> [ w2 (20, Conligds
k=1 o ,f'=1
n

t 1 1 n t
| 3l A @l ts =52 X [ 12001, s
k=1

where we used a well-known formula on stochastic integrals (see e.g., [11, Proposition 3.2.17,
Eq.(3.2.26)]) as well as <Bg;3),Bgfﬁ),>(t) = O(k,a,8),(k,a’,p1) L (see e.g., [11, Problem 2.5.5]).
Here we introduce suitable non-commutative derivations to describe Z](\?)(s).
Definition 3.1. We expand (C<I.<>(')> into the universal x-algebra
(C<J3.<>('), U.(')> = C<{$z‘j(t)}1gjgr(i),1gign+1,tzo U {Uz‘(t)}lgign,t20>
with subject to z;;(t) = x;;(t)* and v;(t)v;(t)* =1 = v;(t)*v;(t), and define the derivations
) Cao () = C(xao(-), 0o (")) Batg Clwao(-), va(-))
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by
545 () = 6k, 10, () (wh (D)ve(t — 5) @ Ve (t — 5)" — vk (t — 8) @ vk(t — 5)*wx; (1))

for 1 <k <n. Let 0 : C{Tao("), Ve (")) Ralg C{Tao(-),ve(+)) = C{Tao("),ve(")) be a linear map
defined by 0(Q ® R) = RQ, and define

@gk) =00 5£k> : (C<£L’.<>(~)> — (C<:B.<>('),Uo(‘)>
for1 <k <n.

Although it is natural to define ”ng) to be —if o 5§k), we drop the scalar multiple —i in the
definition for simplicity. It is easy to confirm that Z](\]f)(s) admits the following formula

k . i . . *
7y (s) = E[ =1 @PP)EEWN) ()L U (- + U (9)) | F].
and hence we have the next proposition thanks to [11, Corollary 3.5.13].
Proposition 3.2. For any P = P* € C(z;;(-)), we have
MN(t) = ]E[TElib(N)(P) | ft] - ]EI:TE“b(N)(Pﬂ

LI ! ey (k) py( ¢lib (®) (®) (g)* dB‘(l%’(s)
-3 | e (B[4 @O PYERMN)LUR (+ U (5)°) | ] o) =2
(My)(t) = %Z / [E[@PP)EE(N)()), U+ $)US (5)) | F] |5, o ds-

k=1
Therefore,

EXPN(t) ‘= exp (N2 (E [TE“b(N)(P) | ]:t} — E[Tglib(N)(P):I
52 /0 [E[@FP)ERN) (), UL+ U (5)) | FL,, 25))
k=1

becomes a martingale; hence E[ExpN(t)] = ]E[ExpN(O)] =1.

For the later use we remark that —i D P is self-adjoint (since so is P), and hence

[E[(@® P)ER(N) (), US (- +)US (5)*) | 7|2

try,2

| ®)
— ey ([ )RV, UL+ U (0)) | 7).

4. CONVERGENCE OF CONDITIONAL EXPECTATION

4.1. Statement. For any given 7 € T'S°(C},(2eo(+))) and any s > 0 we will construct 7% €
T'S¢(Ch(wes(+))) as follows. Taking a suitable free product, we expand (7, (C(zeo(-))), ) to
a sufficiently larger tracial W*-probability space, in which we can find n freely independent,
left unitary free Brownian motions v], 1 < i < n, that are freely independent of the z7,(?),
1<j<r@{),1<i<n+1,0<t(<sifi#n+1). Then we define new strong-operator
continuous processes

z7e (t) = {U;r((t —s)VO0)z it As)v((t—s)V0)* (1<i<n),
Ty 5(t) (i=n+1).

ij
It is known that there exists a unique 7-preserving conditional expectation E7 onto the von
Neumann subalgebra generated by the x; ) (=25(),1<i<n, 1<j<r(),0<t<s,
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and the an](t) =a.1,;,#),1<j<r(n+1),t>0,in the ambient tracial W*-probability
space. Via the x-homomorphism sending z;;(t) to m[js (t), we obtain the desired tracial state
TS € TSC(C'E<x.Q(~)>).
To each event &£, we associate the essential-supremum norm relative to &:
| X|le :=inf {L>0|P(EN{X|>L}) =0}

for every random variable X. Here is the main assertion of this section.

Theorem 4.1. For any T € TSC(C§<:B.0(~))) and Py,. .., Py € C{2eo(+), ve()) we have

lim lim SuthrN ‘.7:] [P(SN’]:])—T(EST(PlTs)"'EsT(P;;))‘O()

N0 N—oo
with
P, = Py (E50(V) (), U}v‘)<<~> VUG (s)"), Pp = Po(al(),03((- — )V 0))

for 1 < k < m and with O.(1) := {d(T—*hb(N) 7') < E}, an event. Here we use the same

convention such as E[Pk7N | Fs } as in section 2.

By definition, C‘ng)P with P € (C<x.<>(~)> is a linear combination of monomials of the form
Lio,4(s) vi(t — s)*Quy(t — s) with fixed @ € C(weo(-)) and ¢ > 0. Hence the next corollary
immediately follows from Theorem 4.1.

Corollary 4.2. For any 7 € TS°(C*(240("))) and P € (C<x.<>(-)> we have

lim lim SupHtrN(E[(Cng)P)(fEE(N)() U( )( +3)U )|}—} )
eNON—=o0 5>0

—T<E;<<©gk>m<m:;<->,v:<->>>2>\

O (1) -
for every 1 <k < n.

4.2. Proof of Theorem 4.1. The proof is divided into two steps; we first prove in subsection
4.2.1 that

Ty T [oew (B[P | 7]+ EIPR | 7]) = (2 (P7) - B2 (P)

Oc(7)
for each fixed s > 0, and then in subsection 4.2.2 that the convergence is actually uniform in
time s. This strategy is motivated by Lévy’s work [13], and indeed his method is crucial in
subsection 4.2.2. A slight generalization of what Lévy established in [13] is necessary, and thus
we will explain it in subsection 4.3 for the reader’s convenience.

Note that all the Py, is ‘supported’ in a finite time interval [0, T, that is, the letters appearing
in those Py are from the z;;(t) and v;(t) with ¢ < T. Note also that we may and do assume
that all the given P, are monomials.

4.2.1. Convergence at each time s. Choose another independent n-tuple Vjs,i ) of N x N left
unitary Brownian motions that are independent of the original n-tuple U J(\?). Denote by Ey the

expectation only in the stochastic processes V]S,i ). Define
(Y (1) o VN (E= ) VO PINEA) VY (E =) VO (1<i<m),
v e (N)(E) = €ng 5 (N) (i=n+1).
Then it is not hard to see that
E[P{) | 7] = Ev [P(eB (MY (), Vi (- =) v 0)]
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due to the left increment property of left unitary Brownian motions.
Note that Py, y := Pi( WY (), V]S,')((- — ) vV 0)) depends only on a finite number of

VIS,)( t) because we have fixed s. Each of those Vjs,i ) (t) is written as

V(1) =Wt = G Wt R 3) WP 1/3) o W)
with WP (1) == V7 (t+ (1/3)) VP (1/3)*, 0 < t < 1/3. Note that those WS () (0 <t < 1/3)
become independent N x N left unitary Brownian motions. In this way, we may think of P,X SN
as a monomial in some fhb( )(t) (with t < s aslong as i # n+1) and some W](\;’l)(t), W](Vi’l)(t)*
with 0 < ¢ < 1/3. Accordingly, we write wy,(t) := v (¢t + (1/3))v](1/3)*, 0 <t < 1/3, 1 € N,
which become left free unitary Brownian motions. Then PJ = Py(zI,(-),vI((- —s) Vv 0)) is
also the same monomial as Py’ s,n With the substitution of z7;(¢) and w7, (t) for fz!ijb (N)(t) and
W](Vi’l)(t), respectively. Consequently, it suffices, for the purpose here, to prove that
oy (Bw [Qun] - Bw [Qu.n]) - 7(EI(QT) - EI(QR)) =0 (4

Oc (1)

lim lim
eNO0 N—o0

with
Qun = Qu(E(N)(), W (), QF = Qu(al,(),wl, (), 1<k<m

for any given monomials Q1,...,Q,, in indeterminates x;;(t) (with 0 < ¢ < s as long as
i # n+1), w(t), wi ()" with 0 < ¢t < 1/3, where Ey denotes the expectation only in the
stochastic processes W](\;’l) and also Q. n and Q7 are defined similarly as above.

Note that the given monomials @Q,...,Q,, depend only on a finite number of indetermi-
nates Ly (tl), . ,Zl'ipjp (tp)vxn+1jp+1 (tp+1), ce ,.’EnJrljp, (tp/) (Wlth 1 S ilv [N ,ip S n, 0 S
ty,...,tp, < 5) and wyy, (t1),. .., wi,(ty) (With 0 < ty,...,t; < 1/3). As in [5, section 4]
we may and do write wj ,; (¢ ) = f1.(Gin1,,), where fi, is a continuous function from the
real line R to the 1-dimensional torus T (depending only on the time t;) and a standard
semicircular system g;,1,, ..., gi,i,, which is freely independent of 7 ; (t1),..., zl i (tp) and
Tt s Cpt1)s - T, (Ep)- Accordlngly, by [5, Proposition 4.3] we can choose an indepen-
dent family of N x N standard Gaussian self-adjoint random matrices G%l’ll), cee Gg\l,‘“ ) in
such a way that they are independent of the Uﬁl)(tl), ce UJ(\;p)(tp) (corresponding to indeter-
minates z;,j, (t1),...,24,j,(tp)) and the operator norm ||W1(\;k’l’“)(tk) — ftu (G%’“lk))HMN(C) -0
almost surely as N — oo. For any x,y € CV with ||x|lc~v <1, |lylley < 1, we have

(B [Qu €0, W 0)] - EelQu(ER N0, ) (G5 )< M)x[¥)..|
= | (Ewua[€2 (O, WD) = QuERMNC), fo (G ON]x|y) |

< By | (QuERMO. WL () = QuERN. £ G5 O)x | ¥) e ]

< Ewue [[|QuEE N 0. W () = QuE (). £ G5 Dy o)

with the expectations Eg and Ey g only in the variables Gg\i/l) and the W](\; )(t), G%’l), re-
spectively. Hence we conclude that

HEW QrEP(N)(), WS (N] = Eg [Qr(ESL(N)(), fy (G HMN((C)

< Ewoe [ QkER (N (), W () = QeER MO, F0 G5Oy o]
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< const.E[ max [[W™ (40) — fo (G| are
= 1<k<q N N ~N(C) >

H hb

since < R and since all the W](\,i’l)(t) and ft(G%’l)(t)) are unitary matrices.

MOl ,
Since maxi<k<q HWJ(V““I’“)(tk) — i, (G%’“’l’“))HMN(C) — 0 almost surely as N — oo, we conclude
that

Jin ey (B [Qu] -+ B [Q]) .
-ty (B 005 Ewua Q) -0
with
QR = QuEE (), F (G (),
where || — || denotes the essential-supremum norm.

For a given 0 < § < 1, the Welerstrass theorem enables us to choose a polynomial p;, so
that the supremum norm ||p, — fi, |l{—3,3) over the interval [—3, 3] is not greater than . For a
while, we fix such polynomials p;,, 1 < k < gq. Since wj,; (tx) = fi, (gix1,) and [|gigr, || < 2, it
immediately follows that there exists a positive constant C' > 0 such that

7 (BL(@D) -+ ET(@R) = (B (@) - EL QU 00)) | < € (6)
with
VY = Qu(alo().pey (ge0) s 1<k <m.

Consider the event

q .
En = ﬂ {HGS\ZIk’lk)HMN(C) <3},

k=1

whose probability P(Ey) is known to converge to 1 as N — oo (see e.g., [1, subsection 5.5] and
references therein). Similarly as above we can find a universal constant C’ > 0 so that
’trN(EG |:1£N (f*(G*))] ]EG []'SN Q(f*(G*))]) ( )

7

— ey (Eg 1o, QU] Ec[1e, QU])| < €76,

with
PG = QuEER(N) (), Py (G2 (D)),

. ik, inyl
since || fu, (GR") = e (G ") |y o)
equality’ for matricial expectations (see Remark 4.5 below), we have

< § on the event £y. By the ‘Cauchy—Schwarz in-

HEG 1Q\$N P*(G )) H

1/2

< [Betoe. ], HE AN A e

1/2 (G * (G Y2
(- BEw) HEGKQE:; QA ]
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and similarly

(f (G )
HEG Loven }HMN((C)

1/2

My (€) (9)
} 1/2

< (1= PEn) o (@) @

1/2 . «
< (1= PEN) Ea [ @) QN un o

<Cp(1-PEN))?

with some constant C}! > 0 depending only on Q, since the fi, (Gg\z,’c ’lk)) are unitary matrices
and || Zl-}b(N) (O llmry(cy < R. Since P(Ex) — 1 as N — oo as remarked before, we need to prove
that

: (P (G fpr ()
Nen1Zkem Bl S Qv }HMN«D = 1o
and
E}N@ HtrN (trw (B [QVA ] - Ec [P 7)) )
(BT QU0 "'EQ(QW*(Q*))))HO =0

both of which are similar to what Biane, Capitaine and Guionnet proved in [3, section 4].
However, we will give more ‘exact’ proofs to them later for the sake of completeness. In fact,
(8) and (10) imply that

(p* (G+)

Jim HH]EG Lovey ]HMN(@HOO =0, 1<k<m, (12)
and moreover, by (9)
Jim B 106y Q65 o =0, 1<k<m (13)

Remark that || Ley pe (G8 ™)oL < lpelis3 < 146 < 2. By (5)~(7) and (11)-(13),

we have

sli@)N@oo Htrzv (Ew [Qin] - Ew [Qm.n]) — 7(EI(Q])- "EST(Q;L))’

< (C'+0).
O (1)

Hence (4) follows because ¢ > 0 can arbitrarily be small and both C,C” are independent of the
choice of § > 0. Hence we have completed the first step expect showing (10) and (11). O

Here, we prove (10) and (11). We need two simple lemmas, which are of independent interest
because they are very explicit.

Lemma 4.3. Let G be an independent sequence of N x N standard Gaussian self-adjoint
random matrices, and A® be an sequence of N x N deterministic matrices. Then we have

E[GEM) A€M ... A1) O]
S NI g 4G pGeD) L
TePY(0)

Here, PY({) is the set of all permutations ™ with p o = p whose cycle decompositions consist
only of transpositions, vy, denotes (1,2,...,0), #(mye) is the number of cycles in 7y, and finally
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try [A(q(l)),...,A(q(efl)),*], o € &y, is defined as follows. If o is a cycle (i1,...,1), then it
becomes

b (AW) .. Aa) T, (i1, ... ix <L —1),
Alalisen) ... Al AlaG) ... A=) (5, = g),
In (kzl,il :f),

and generally it is to be
try, [A(tz(l))7 o Al *] ceetr, [A(Q(l))7 o Alde=) *]

with cycle decomposition o = o1 -+ oy, (n.b., only one cycle oy, contains {; hence no ambiguity
occurs in the above product because its factors commute with each other).

Note that try(try[A1,...,Ae—1,%] As) = try[A1,...,Ae—1,A¢] with the notation of [15,
Proposition 22.32] on the right-hand side. This is the key of the proof below.

Proof. Remark that try(XA) = try (E[GPMW) AW ... 4@E=D)GEEI] 4) for all A forces
X = E[GPI) AlM) ... @) GEE)] - This together with [15, Proposition 22.32] (see the
above remark) implies the desired result. ]

This lemma immediately implies (10), because [|€P(N)(t)|ry () < R and f(ye,7) — 1 —
0 /2 <0, see e.g., [15, Exercise 22.15].

Similarly as above we derive the next lemma from [15, Proposition 22.33] and its discussion
there.

Lemma 4.4. Let (M, 1) be a tracial W*-probability space. Let g; be an freely independent
sequence of standard semicircular elements in (M, T), and a; be an sequence of elements in M
which are freely independent of the g;. Let E be a unique T-preserving conditional expectation
onto the von Neumann subalgebra generated by the a;. Then we have

E(9p(1)q(1) -~ Gae-19p0) = Y Trye [dg(1)ys -5 Ggre—1ys ],
TeENCE (£)
where NCY(0) is the subset of all m € PY({) that are non-crossing as partitions. The other
undefined symbol T, [aq(l), ey Og(e—1), x| is similarly defined as in the previous lemma.

It is not so hard to derive (11) from Lemmas 4.3, 4.4 in the following way: For simplicity we
write
(G 0 1 1 l—1 ‘ ¢
](CPN( ) _ A}(JI( ))G,(Cp( ))Al(cq( ). ..AI(Cq( k ))Gl(Cp( k))AI(CfI( k)),
(rpx(g+)) _ (k) (k) (k) (k) (k) (k)
@ = %) %) Yat—1)Ip(en) atei)
where each G,(Cp(')) (or A,(f('))) is some of the G\ (resp. a product of some GP(N)(t) (t < sas

long as i # n+1) or Iy) and accordingly, each gg(g_)) (or ag](c?)) is some of the g;; (resp. a product

of some x7;(t) (t < s as long as i # n + 1) or 1). Remark that §(vy,,7) — 1 — €;/2 is always
non-positive and equals 0 if and only if 7 is non-crossing, see e.g., [15, Exercise 22.15]. Hence,
by Lemmas 4.3 and 4.4 we have

EG[ I(c]?J*V(G*))} _ Z Ag’(o))trwwk [Al(cq(l))7 o A](:‘l(flc*l))7 *] Al(cq(ek))
rENCE (1)
+ Z NG, ™) —1-8/2
TE€PS (Lk)\NCF (£x,)

X ATt [AGD) gltemD) L] gl
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7 (TP« (9:))) _ a®) (k) (k) (k)
2 (Qk e ) - Z g (0) e, [aq(l)7 o Qg -1y *} Qy(er)”
TeNCY (Ur)

Therefore, by || zlijb(N)(t)HMN(c) < R, we obtain that
‘trN (EG [ng,);v(G*))] o [Q(p* ) ]) _ T(EST (Qgr,p*(g*))) o ET (Q%,p*(g*)))) ‘
"

< |S(T513b(N)(W1), .. .,TElib(N)(WL>) — S(r(W),.. .,T(WL))’ + N

with some monomials Wi,..., Wy in the z;;(t) and a positive constant C"” > 0 (which is
independent of N), where S is a certain polynomial of commutative indeterminates. It follows
that

N@ ‘trN (Ea[Q! (p*(G ))] N [Q(”*(G ]) _T(E;(Qgﬂp*(g*ﬂ) --~E§(Q§7§7P*(9*))))’

O (1)
< [[Strmmon (1) 7z (W) = S(r(WA), .. 7(W2)

O:(71) .

By definition, for a given d > 0, there exists € > 0 so that for every 0 < &’ < ¢ one has

<.

HS(TE]ib(N)(Wl)7 e ,TElib(N)(WL)) — S(T(Wl)v e ,T(WL)) o ()~

Hence we are done. O

Remark 4.5. (See e.g., [17, Exercise 3.4 in p.40]) Let X = [X;;] be a matrix whose en-
tries are integrable. If X is positive-definite almost surely, then so is E[X] = [E[X};]] since

Zi,j CilE(X”)CJ = E{Zi,j EiXijCj:| Z 0 fOI‘ any scalars Ci-
Let A =[A;;] and B = [B;;] be N x N matrices whose entries have all moments. Since

sl woes) = (o o] o o] =0

one has, for all t,6 € R and x,y € CV,
t2(E[A* A]x|x)cn 42t Re(e_ie(E[B*A]x|y)CN) + (E[B*Blyly)c~

- ([ e ()][5) =0

< (E[A*A]x|x)cn (E[B*Blyl|y)c~. It follows that

and hence ‘ (E[B*Alx|y)

BB All3y () < IE[A* Al sy 0 BB Blllary (o)-

4.2.2. The convergence is uniform in time s. Let us introduce the map Il : C(zeo(-),ve(+)) —
C(Tao(+), ve(+)) defined by replacing z;;(t) with v;((t —s) V 0)z;; (¢ A s)v;((t —s) V0)* as long as
i #n+ 1 and also replacing v;(t) with v;((t — s) V 0), with keeping the other letters. Remark
that the resulting IT, P is a (non-commutative) polynomial in the z;;(t) (with t < sif ¢ # n+1)
and the v;(t).

For a while, we are dealing with an arbitrarily fized monomial P whose letters are supported
in [0,T], that is, the letters are from the x;;(t) and the v;(t) with t < T, and so is II;P. As
before we have

E[PER(N)(),US () VU (5)7) | Fo] = Ev [(ILP)(EP (N (), V)],
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where ng ), 1 < i < n, are n independent left unitary Brownian motions that are independent
of the U](\;) (t) with ¢ < s. Denote by L(P) the number of letters in the given monomial P (we
call it the length of P). Observe that L(II,P) < 3L(P).

In what follows, we fix s, but will give our desired estimate in such a way that it is independent
of the choice of s.

Let us introduce the following algorithm: If v;(t1), vi(t2), ..., vi(te,) with t1 < to < -+ <ty
(n.b., £; <> 6; < L(II;P) < 3L(P)) are all the v;(-) letters appearing in I, P, we replace
these with

Wit , WigWil, WigWiaWil, - - -, Wig, * * * WigWi1
with new indeterminates w;; (1 <i<n, 1 <j </{; (<3L(P))), and set t;; :=t; — t;—1 with
to := 0. Applying this algorithm to the monomial IT, P, we get a new monomial II,P whose
letters are in the x;;(¢) (0 <t < s) and the w;;. Observe the following rather rough estimates
L(II,P) < L(II,P)? < 9L(P)?,  ty; <T. (14)

Let WJ(GJ ) be independent left unitary Brownian motions that are independent of the U f\?) (t)
with ¢ < s and denote by Ey the expectation only in the stochastic processes WJ(\,%'J ), By the
left increment property of left unitary Brownian motions we have
E[PERN)(), UV () V $)UR (5)7) | Fu] = By [(ILP)EL(N)(), Vi ()]
= Ew [(ILP)(EZ(N)(). Wy (te0))]
where (ﬁsP)( Ny, W](\;’o)(t.o)) denotes the substitution of fgb(t) and Wﬁ’j)(tij) for x;;(¢)

and w;;, respectively, into ﬁsP.

For simplicity, let us denote X := II,P, and write X = X(1)--- X (¢) with £ := L(X) whose
letters X (k) are from {z;;(t) | 1 < i <mn,1 < j <r(i),0 <t(<saslongasi#n+1)}U
{wij,wy; | 1 <i<n,1<j<3L(P)}. The substitution of &P(N)(t) and W](\;’J)(tij) for ;;(t)
and w;j, respectively, into the monomial X is denoted by Xy = Xn(1)--- Xn(£).

Let Xy(¢+ 1) := A € My(C) be arbitrarily chosen. Let p : C[&;11] ~ (CNV)®UHD  on
which My (C)@’(”l) acts naturally, be the permutation representation of Gy over the tensor

product components; in fact, p(o)(e1 ® -+ ®ep1) = €o-1(1) @+ - @ €y-1(p41) for o € &yyq. For
each o € Gy41 we define, following [13, section 3] (rather than Lemma 4.3),

tI‘U(XN(l), .. ;XN(E)yXN(E'i_ 1))

1
= G T (p(0) (Xn(1) @ Xn(0) ® Xn (¢ +1)))
= I  ov&nk) - Xn(k)),
(kl,‘..,k*)ﬁa
where (k1, ..., k) < 0 means that (k1,..., k) is a cycle component of the cycle decomposition
of 0 € Gy41, and #(0) denotes the number of cycles in o as in the previous subsection. Note
that tr,(---) here is not consistent with tr,[---] in Lemma 4.3, but try—1(---) = try[- - -] holds.

In particular, for the cycle vp41 = (1,...,¢,£+ 1) we have
EW [tl“,yl;rll (XvN(l)7 N ,XN(K), A)] = tI’N (EW [XN] A)

Then by a slight generalization of [13, Proposition 3.5] (see the next subsection for its precise
statement with a detailed proof) there exist universal coefficients ¢,, 0 € Gy41, depending on
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the t;; and X, and a universal constant C' > 1, depending only on T" and L(P) due to (14) (and
hence only on P), such that

0 0 C
try (Bw [Xn]4) — Y cortrg(XP(1),..., X (0),4)| < 72 Al
c€S 141

and

’c,,’ <C, 0€6p (15)
with

X O (k) = In (X(k) = wig or wy),
Xn (k) (otherwise),

since |trU(X](\?)(1),..‘,XJ(\?)(K),AH < (RV )PP ||All1 41y (n.b., the procedure from P to
X[P] = II,P does not make the number of x;j(t) increase), where || — |1ty denotes the
trace norm with respect to the normalized trace try. Since

> catra(X](\(,))(l),...,X](\?)(E),A)_trN< > cgtra1[X1(\?)(1),...,X1(\?)(€),*]A>

U€6g+1 0’€6@+1
with the notation in Lemma 4.3 and since A € My (C) is arbitrary, we conclude that

c

< —. 16
’MN((C) - N2 (16)

[Bw[Xn] = 3 cotro [XQ(1), 0, XP(0), 4]

U€6g+1

Notice that tr,-1 [XI(\?)(l), e 7XJ(\(,)) 0), *] depends only on the traces try of monomials in the

%ijb(N)(t) (with 0 <t < s as long as i # n + 1), or other words, the 7=y of monomials in

the ;;(t) (with 0 <t < s aslongasi#n+1).

Observe that (16) holds for any monomial P and s > 0, and we should write X = X[P] :=
II,P, ¢ = ¢p (= L(XI[P])), ¢co = ¢o(P) and C = Cp for clarifying the dependency in what
follows. Set

X[P](O)(k) — 1 (X[P](k) = Wi or w;‘kj)v
X[P|(k) (otherwise)
and for simplicity we write
L XIPY (Cp), + ],
D(1),..., X[P|O(Cp),+],

5(P;T51ib(N)) = Z CU(P)TEM)(N)(J;P),

i
E
3
3
g
S~—"
I
+
=
Q
|
=3
=3
~—
N

0EGpt1
E(P;T) = Z ¢o(P)1(0; P).
0661P+1
We are now finalizing the proof by using what we have prepared so far. Let Py, ..., P, be any

monomials such as the above P, that is, all the letters appearing in those are supported in a finite
time interval [0, 7], and rewrite ¢;, := {p, = L(X[P]) and set L := max{L(P;) | 1 < k < m}
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and Cp := max{Cp, | 1 <k < m} for simplicity. We have

tr (E(Pus i) -+ E(Pois i) ) = 7 (EP 7) -+ E (P r>)‘

< Z oy (P1) -+ Co,, (P | %

k€S, 41
(1<k<m)

(17)

trN(TEIib(N)(O'l;Pl)"‘TEIib(N)(O'm;Pm)) ( (o1;P1)-- (O’m,Pm))‘

<cy Y

k€S, 41
(1<k<m)

try (TEub(N)(ol; Py) -1 (ny (Om; Pm)) - 7'(7'(0'1; Py) - 7(om; Pm))

by (15). Let o = O'](Cl) . -a,(cﬂ(ak)) be the cycle decomposition such that the rightmost cycle

o,(cﬂ(ak)) contains £ + 1. Then we may and do write

TEIib(N)(Uk; Pk) = TElib(N)(Q](cl)) e TElib(N) (Q](cu(ak)_l)) Q%@k)),
ok Pe) = 7(@Q)) -+ m(@FT) Q)

with some monomials QE:) in the x;;(t), i #n+1,0 <t < T and the z,41 (1), whose total
length is at most L(Py) < L by construction, possibly with Q (@) = =1, where Q(rj ) denotes
the substitution of &P(N)(t) for 2;(t) into Q¥ ) Tt follows that

try (TElib(N)(O'l; Py) - T vy (Om; Pm)) - T(T(O’l; P)-1m(om; Pm))

( H Tglib(N) (Qél)) cee TElib(N) (Qg(gk)il)))TElib(N) (Qgﬁ(gl)) o Q;g(o-m)))
k=1

(ﬁ )7 (@) ) (@) it .

< (14D _(How) — 1) x (B DI x 2RV 1) d(r2im(x), 7)

< (9L2m +1)-(RV 1)Lm . 2T+1(2(R V 1))Lmd(7'51ib(1v),7').

Remark that ||Ew[X[Pk]n ]||MN((C) | X[Pe]n g c) < (RV 1)F by construction, since the
matricial expectation Ey/[—] is a unital positive map, see Remark 4.5. Therefore, (16)—(18)
altogether imply that

try (Bw [X[P1]n] - - Ew [X[Po]n]) —T(E(P1;7)~-'5(Pm;7)) * + Cod(Tain(y, 7)

N2

with constants C7,Cs > 0 that are independent of the choice of s. Then, what we established
in the previous subsection, the estimate obtained just above and

Ew [X[Pin] = B[P (N)(), US () VU (5)) | F] = B[P | F], 1<k<m
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altogether force T<€(P1; 7)o E(P; 7')) to be 7(E7 (Pfs) - ET (P,Zj)), and we finally obtain
that

s s T T8 T 73 C
ten (B[P | F] - E[POy | F]) = m(BL(P]) - BI(P}))| < 55 + Cad(rzmnn), 7).

Since the right-hand side is independent of the choice of s, the desired uniform (in time s)
convergence follows. a

4.3. A slight generalization of [13, Proposition 3.5]. Let w = w(1)---w(r) be a word in the

letters di, ..., d, and ui', ..., ur". Define

— {-H (w(k) = d, or w(k) = u, = uf"),

for 1 < k < r. In what follows, we may regard k — w(k) as a function from {1,...,r} to the
letters d;, ul?tl. Let U,(\}), 1=1,2,..., be independent left unitary Brownian motions as before,

and D; € My(C), i =1,2,..., be given matrices. The substitution of D; and UJ(Vi)(ti) for d;
and u;, respectively, into w is denoted by

w(De, U (ta)) = Wiy = Wi (1) Wi (r)

(whose values are taken in My (C)) with Wy (k) = D; or Wy (k) = UJ(\? (t;)*'. Moreover, we
set
we (D, U (1)) = W = Wn(1) @ - ® Wn(r)
(whose values are taken in My (C)®").
With the permutation representation p : C[&,] ~ (CV)®" (see subsection 4.2.2) we write

1 T
pn(t;o) = E[Wrﬁ@ (p(o)WR)

with ¢ = (t1,...,t.). (n.b. #(c) denotes the number of cycles in o as before.) The family
pn(t;0), o € &, forms an r! dimension column vector py (t) with indices &,.. We introduce
the operation Hf’fn on G,, 1<l,m<r, e d € {+1}, defined by

o(l,m) (e =6 =+1),
HZE’;;(U) :: (Il,m)o (e=d6=-1),
’ (o(l),m)c (e=+41,6 = —1),
(o(m), o =oc(c71(),m) (e=-1,0 =+1)
A tedious calculation confirms that
Hi’i o Hla,ly’g;, = Hla,ly’fr:, o Hi’f; as long as {I,m}N{l'ym'} =0 (19)

for any choice of ,¢’,6,8’. We also define the r! x r! matrices A;(w) (with indices &,.) by
setting the (o, 0’)-entry as

1, _
Ai(w)g,or = —§‘w 1({uf[})| do.00 — Z ElEm 6“?’7}?”(0)7“"
Lmew! ({u}) ‘

I<m,1Zm

where [w™!({uf})| denotes the number of elements of w—'({u}) and I < m means that
both {,m are in a common cycle of o. Then the matrices A;(w) mutually commute, since the
w ' ({ui'}) are disjoint. In what follows, | — ||e means the £o-norm on the r!-dimensional
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vector space of column vectors. The next proposition is just a slight generalization of [13,
Proposition 3.5], whose proof is a reorganization of the original one.

Proposition 4.6. With v, :=(1,2,...,7) € &, we have

’]EI:trN(w(D.,U](\;)(t')))] _ Z (eXP(ZtiAi(w) - Nﬁl(a)Tr%T(P(J)we@(Di,IN))’
ceS,. i
< |lpn () — exp (ZtiAi(w))pN(O)Hoo
T 2 rplw (et 2 7"3 3T
< e ( bty )i b CE o) < Z e o 0]

with 0= (0,...,0) and T := maxi<;<, t;, and furthermore

(e (Yt

Remark that NW) Tr$" (p(0)wg (De, In)) is a product of moments in the D; with respect to
try of degree less than r. Hence the above proposition (together with the method in the previous
subsection) strengthens Biane’s asymptotic freeness result [2, Theorem 1(2)] for left unitary
Brownian motions with constant matrices in the fashion that the convergence as N — oo is
uniform on finite time intervals.

Proof. (A reproduction of the proof of [13, Proposition 3.5].) The algebra My (C)®" has r
different My (C)-bimodule structures

I o e e

9(+1) 9( 1)
MN((C) f\ MN((C)@T f\ MN((C)

defined by
X)) (Vi@ - 0%"h® Q) =Y® - 9XV;® QY
VOVIe e 0Y,)=Y0 KX e - 0Y,

for X € My(C) and V1 ® --- ® Y, € My (C)®". The Ito6 formula enables us to obtain (see [13,
Lemma 3.7]) that

gpN(t;U) —f’w ({uf}) ‘pN (t;0)
1 e _ 20
+ Z ElEm WE{TYN((‘% l®9m€m)(cu(N))P(U)W1§f))}7 ( )
Lmew ' ({uf!})
<m
where Cyny) = —% S0 51 Fap ® Ego with matrix units Ep for My(C). Then, by [13

Lemmas 3.8 and 3.9] we have
1 —pn (&I (o 1% m),
A E [T (0,7 © 075 (Cum ol W) | = { pvGllin™(0) (0m)
—qzpn (GBI (0) (L m).
Therefore, with the r! x r! matrices C;(w) (with indices &,.):
Ci(w)a,gz = — Z ElEm 61_[?;,?"'(0),0’7

Lmew ' ({uf})

o
I<m,lobm
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we can rewrite (20) as

0 1

gpN(t) (A,-(w) + mCi(w))pN(t) (i=1,...,7),

which implies that

t) = exp (Zt,Az(w) + % Ztici(w))pN(O)v

since the A;(w) and the C;(w) mutually commute due to (19).
Let || — || denote the operator norm with respect to || — ||s on the rl-dimensional vector
space of column vectors. Observe that

o™ (i D] (o ()] - 1

[Ciw)] < 5 ) < Sl @ pP,

[Ai(w)]l < 5 \w (DI
Write A := 3", t;A;(w) and C =, t;C;(w) for simplicity. Then we have
() = (exp A p (0)

1
< [|exp (4+ 550) — exp Al Ipw (0) 1

| / (exp ( +%c))exp<<1—s>A>) ds|[ I (0)
([ oot fon] [ ec] et - o) o
(anew / leﬁHC” ds> o3 ()]l

1
1€l py (0)l0

ﬁzm(zt\w (i DI) exp Zt|w L D)) w0 .

Hence we are done. O

IN

5. LARGE DEVIATION UPPER BOUND

This section is concerned with the proof of the desired large deviation upper bound for
Tzub(y)- 1o this end, we prove in subsection 5.1 the exponential tightness of the sequence of
probability measures P(7zub(y) € -), and then, in subsection 5.2, introduce and investigate
an appropriate rate function by looking at Proposition 3.2. In subsection 5.3, with these
preparations, we finalize the proof by using Theorem 4.1 (with Proposition 2.3).

5.1. Exponential tightness. Let us start with the next exponential estimate for left unitary
Brownian motions. This lemma is inspired by the proof of [4, Lemma 2.5].

Proposition 5.1. Let Uy be an N x N left unitary Brownian motion as in the introduction.
Then

P( sup ||UN(S) . UN(t)”trN,Q > 8) < 2ﬂefN2L(62*(8L+1)5)
s<t<s+4
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holds for every s >0, >0, >0 and L > 0.
Proof. With Zn(t) := try(2Re(Iny — Un(t))) we observe that

P( swp [Un(s) = Un(t)llrwz =€) =P( sup [[Un(s) = Un(s + DIy 2 2 £2)
s<t<s+d 0<t<é

=P( sup U (s+)Ux(s)" — InllEy 2 2 €2)
0<t<s

=P( sup lUN(E) ~ InllEy 2 2 £°)
0<t<s

= }P’( sup Zn(t) > 52)
0<t<s
by the left increment property of left unitary Brownian motions. Thus it suffices to estimate
P(supg<;<s Zn(t) > €?) from the above.
One has

QRG(IN - UN(t)) = — /ti(dHN(S)UN(S) - UN(S)* dHN(S)) + /t Re(UN(s)) ds,
0 0

since dUn (t) = idHp (t) Un(t) — 2Un(t) dt with N x N self-adjoint Brownian motion Hy. Set
t ¢
My (t) = _/ $(AH(s)Un (5) — Un (s)* dH(s)) = 2 Re(In — Un (2)) — / Re(Un(s)) ds,
0 0

and observe that My (¢) := trN(MN(t)) =Zn(t) — fot Re(try (Un(s))) ds defines a martingale.
Let Cqp be the standard orthogonal basis of My (C)** as in the introduction. Then Hy(t) =

N Bas(t)
Yiap=1 v
enables us to compute the quadratic variation

Cop with an N 2_dimensional standard Brownian motion B,g. This expression

1 N t 2
A0 = 55 2 [ Tew(1(CapUn () = Un () o)) at

a,f=1

N t
1
= N3 > / Tra (1 (Un(s) = Un(s)*)Cap)” dt
a,f=1 0
1 s NP 4t
= ﬁ/o [i(UN(s) = Un(8)) [0 A < 5

as in section 3.
Note that Zy(t) = MN(t)—&—fOt Re(try (Un(s)))ds < [My(t)|+t. Hence, if supg<;<5 Zn(t) >
e?, then we have both supy,<s |[Mn(t)| > e — 6 and

sup exp(—N?LMy(t)) + sup exp(N*LMy(t))
0<t<s 0<t<s

> sup (exp(—NQLMN(t))+eXp(N2LMN(t)))
0<t<s

> sup exp(N?L|IMy(t)|) > NP L("—9)
0<t<s

for any fixed L > 0. Thus we get

]P’( sup Zn(t) > 52) < IP’( sup |Mp(t)| > €2 —5)
0<t<s 0<t<s
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< e NPL(E-9) IE[ sup exp(—NQLMN(t))} +IE[ sup exp(NQLMN(t))}
0<t<s 0<t<s

by Chebyshev’s inequality. We have

E [ sup exp(£N?LMy (t))}
0<t<6

= E{Os;zgé (exp ( + N2LMn(t) — 1<:|:N2LJ\4N>(15)) exp (%<:|:N2LMN>(t)))}
<E :Oiugéexp ( + N2LMp(t) — = (£N2LMy)(t ) X exp (; £N2LMy >(5))}
<E :Oilzgéexp ( + N2LMy(t) — =(£N2LMy)(t )2} [exp ( <iN2LMN>(5))2} i

[\J\H l\DM—* w\»—\

<E| sup exp ( + N2LMy(t) — —(£N?LMp)(t ] {exp (N4L2<MN>(5)>} v

— lo<ixs

by the Cauchy-Schwarz inequality. Since ¢t — exp (+ N2LMy(t) — 1(£N?LMy)(t)) and
t > exp (£ 4N?LMy(t) — 3(+4N2LMy)(t)) are martingales thanks to [11, Corollary 3.5.13],
Doob’s maximal inequality with ‘p = 2’ (see e.g., [11, Theorem 1.3.8(iv)] with the help of
Jensen’s inequality) shows that

]E[Os;géexp ( + N2LMy(t) — %(iNzLMm(t))Q}
- 1 2

< 2E [ exp (i N2LMy () — §<:I:N2LMN>(5)> }

— 2| exp (£ 2N? LMy (8) — 4+ N2 LMy (5) + 3<ﬁ:N2LMN>(5))]

(
< 28 [ exp (£ 2V LM(3) ~ 4(=NLM)0)) | E[exp (3202200 3)) ]
(

—92F :exp + AN2 LMy (5) — %<i4N2LMN>(5))] 1/ZIE{exp (6<iN2LMN>(5))} v

- 1/2
= 2| exp <6N4L2<MN>(5))} .
Therefore, we have

E [ sup exp(iNQLMN(t))}
0<t<§

1/4 1/2

< V2E[exp (6N'L2(My)(9)) ] B[ exp (NL2(Mn)(@)] T < VRSV,

Hence we get

IP’( sup Zy(t) > 52) < o N2 L(E2=0) o o \@esN%Qa _ z\feszL(ﬁf(SLJrl)d)
0<t<s

for every L > 0. (]

Corollary 5.2. The sequence of probability measures P(=zin(yy € -) on TSC(C’E@.O())) is
exponentially tight.
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Proof. Observe that

1/2
su max T=u Tii(8) — 2 (1))2
0<qf<k 1<j<r(i) lb(N)(( ij(s) i (1)) )
\5 t\<5 1<i<n+1
1/2
< max sup T= lib(N)((:L'ij(s) _ xij(t))2) /

0<(<[k/d] p5<s<(£4+1)5
1<5<r(i)  s<t<s+s
1<i<n

1/2 1/2
< max sup (TEhb(N)((lfij(S) — x5 (£6))?) / + T () (235 (08) — wi5(t))?) ! )
0<L<[k/d] p5<s<(b4+1)5

1fi<<r(1) s<t<s+4

<2 max sup Teli 24(08) — x4 (t on1/2
- 0<£<[k/5]l5<t<(£+2)6 =i () (23 (60) — 45(1))?)
1<_]<7‘7,
1<i<n

< 4R max U(Z (£6) — U(i) t ,
0<1/3<<[k/5] €6<t<(€+2)6 | v )H"N’Q
where ¢ is a parameter of non-negative integers and [k/d] denotes the greatest non-negative
integer that is not greater than k/§. Hence, for each k € N and for any 6 > 0 and L > 0, we
have
IP’( sup max Tzib(N) ((x”(s) — Ty (t))2)1/2
0<s,t<k 1<5<r (i)
‘S t|<6 1<i<n+1

> 1/k)

) ) 1
< IF’( max su U(i) 06) — U(i) t > —)
0<1€<<[<k/5] ea<t<(11[z)+2) |UN"(#9) = UN'( )H“N’Q 4Rk

[k/d] n

<SR sw (e -u),, , > =)

=0 i=1 06<t<(€+2)8
< 2\@n ([k/é] + 1) e—NZL((lﬁRsz)’l—(8L+1)26)
by Proposition 5.1. Therefore, for a given C' > 0, letting

1

2Rk d ¢
= S2RC and Ok = e 6RO + 1)

we obtain the following estimate:

IP’( sup  max Tz ((@45(s) — 245(t)) )1/2 > ) <O (KSe - Ck/2) *NQC’“/Q,
0<s,t<k 1<j<r(i) k
|s— t|<5k 1<i<n+1

where C’ > 0 depends only on n, R, C and is independent of k, N. If C' > 12, then kS e~ N’Ck/2 <
e~N?C/2 With the sequence (0 )x>1 it follows that

P(raiv(ny € Do)
i 2
ni2 1 , e NC
<> oSup Juax maeen (@) = 2i(®)7) 7 > 1) <O e
k=1 |§ t|<(5k 1<i<n+1

implying that limpy_s oo w2 IOgP(TEIib(N) o4 F(M)) < —C whenever C' > 12. This together with
Lemma 2.2(2) shows the exponential tightness of the measures P(7zin(yy € ), since C' > 0 can
arbitrarily be large. O
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5.2. Rate function. We define a map IP : TS°(Cy(wes(+))) — [0, +00] to be

i 1 - r T T° T 2
sup {TT<P> AP =32 [ IE @ PEO. o), ds}. (21)
P=P"eC(ras () e
That the integrand is piece-wisely continuous in s follows from Lemma 5.5 below together with
(22): Note that i P s self-adjoint if P = P*, and then
T T° T 2 T(/(: 75 T 2
HES ((:ggk)P)(xco()7 A ())) ||T’2 = ||Es ((1 @gk)P)(x.o()7 Vo ())) ||-,-’2
T T T T * T 2
= —r(BI(@PP)0I((- = 5) V 0)l,(- As)ol((- = ) V0)*",03()))")

holds for every P = P* € C(z4o()).

(22)

Lemma 5.3. If Ii"(7) < +o0, then 70 = o{i°, that is, 7j(T) = 00, and

(r"(P) — 03" (P))*

sup n T k R - 2
P:P*Z%(Oxoo(-)) Zk:l fo HE:((Z)& )P)(x:o(')vvo(')))Hr,Q ds

holds (and the right-hand side is well-defined with convention 0/0 = 0, that is, if the denomi-
nator is zero, then the numerator must be zero).

Proof. For each fixed P = P* € C(z4o(+)), let ar(P) := 77(P) — of°(P) and Br(P) :=
Sohey fOT |ET ((@gk)P)(:rIi('), v (+)) ||i , ds, and consider the function

r @ 2L ’
fpr(r) = ap(rP) — 5T(2P) =ap(P)r— @72 = _@(r - ﬁzgﬁi) T ZEE(P;)

on the real line. If S (P) Z 0, then max, fpr(r) = fpr(ar(P)/Br(P)) = ar(P)?/2B1(P);
otherwise

; 1
ILE(T) 9

0 (aT(P) = 0)7
oo (ar(P)#0).
Trivially By(P) = 0 always holds, and hence the above discussion shows that ag(P) must be
0 for every P, since [ },‘;’(T) < +00. Therefore, we have proved the former assertion 70 = o{ib.
For any € > 0, there exist P. = P} € C(z4o(+)) and T. > 0 so that I'P(1) —e < fp. 1. (1) <
max, fp. 7. (r) < IP(7) < +oo. Then, the first paragraph shows that

< I
ar, (P.)? < ar(P)?

sup fpr(r) =supar(P)r = {

by —e < su = supmax fpr(r) < I8P(r
)< 3 (R S PR 2 ) PR Srr () S ()
with convention 0/0 = 0. Hence the latter assertion holds. ]

Here is a simple lemma.

Lemma 5.4. Let (M, 1) be a tracial W*-probability space with T faithful, and u € M be a
unitary, and N be a (unital) W*-subalgebra of M. Let E : M — N be the unique T-preserving
conditional expectation. If u is *-freely independent of N we have E(uxu*) = 7(x)1+ |7 (u)|?2°
for every x € N with z° := x — 7(z)1.

Proof. For every y € N, we have T(uzu*y) = 7(2)7(y) + |7(u)|*7(2°y) by the x-free inde-
pendence between u and N. Since E(uzu*) € N is uniquely determined by the relation
T(uzu*y) = 7(E(uzu*)y) for every y € N, the desired assertion immediately follows. O

The same idea as above shows the next lemma.
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Lemma 5.5. Let (M, T) be a tracial W*-probability space with 7 faithful. Let L and N
be freely independent (unital) W*-subalgebras of M, and E : M — N be the unique -
preserving conditional expectation. Then ((ai,...,an_1,an), (b1, bp_1)) € L* x N1
E(aby -+ an—1bp_1ay) € N is written as a universal polynomial in moments of the a;, mo-
ments of the b; and words in the b;.

Proof. Let us calculate the map
((ala cee anflaan)v (bh ce 7b’n717 bn)) € L™ x Nn = T(albl e anflbnflanbn)

By [15, Proposition 11.4, Theorem 11.16] 7(a1b; - - - an—1bn—1a,by) is a universal polynomial in
moments of the a; and moments of the b;. Since the map

((ah ceeyAn—1, an)a (b17 coeybn, bn)) = T(albl ce an—lbn—lanbn)

is multilinear, each term of the polynomial includes some joint moments of the b;, where b,
appears only once in a unique joint moment. Then we can obtain the desired assertion in the
same way as in the proof of Lemma 5.4. O

We remark that the universal polynomial whose existence we have established admits an
explicit formula based on the notation in [15, Lecture 11].

Here is a main result of this subsection.
Proposition 5.6. I : TS¢(C}(z40(+))) — [0,+00] is a good rate function.
Proof. By (22) together with Lemma 5.5 we observe that

T |[ET (@M P) (35 vi (1))

is a continuous function for every s. Hence

no LT
m I ()= 7 (P) = ol (P) = 5 3 [ BT (@0 P00 )]} s
k=1

I7
T,2

is continuous, and consequently, I };(‘)3 is lower semicontinuous. Therefore, it suffices to prove
that the level set {I },‘(}f < A} sits in a compact subset for every non-negative real number A > 0.
Assume that IP(7) < A\. By Lemma 5.3 we have

n T
77(P) < oi>(P) + %Zl|mmﬂwmmMMow;® (23)
k=1

for every P = P* € (C<:r:.<>(-)> and 7' > 0.
For 0 < t; < ty we have

ng)((xij(tl) - fij(t2))2) = 25k,i{1[0,t1](5)vi(t1 — 8) [wij(t1), wij(t2)]vi(t1 — s)

+ Lj0,1,] (8)vi(t2 — 8)" [wij (t2), ij (t1)]vi(t2 — 5)}’
and hence
(D (@55 (t1) = i (82))*)) (@F; (), 07 ()
26,1 { [27;(5), 0T (01 — )"0 (02 — 5)T; (5)0] (12 — )"0 (1 — )]
[ (5),0] (12 = )"0 (11 = $)a; ()07 (1 = 5)"] (12 = )] |
265 4T, (5), 07 (o — 8)"aT, (1)o7 (t2 — s)] (t1 < s <ta),
. (t2 < s).

(s <ty),
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When s < ¢1, Lemma 5.4 enables us to compute
EI((®W ((wij(tr) — 2i5(t2))%)) (27 (), 07 (-)))
= 200{ [27,(), BT (v] (11 = )" 0] (t2 — )27, ()07 (2 — 5)"0] (12 — 9))]
o+ [23,(5), BT (v] (t2 = )" 0] (1 = $)a7; ()0 (11 = 5)" ] (t2 = 9))] |
= 204 { [],(s), (r(apy(s 1+\ Tt — 8)" 07 (ts — 9))| "2, (9)°)]
+ [25(), (@l (N1 + |7 (12 = )" 0] (1 = ) *27;(5)°)] |
=0.

In this way, we obtain the formula:

s

ET((®M ((wi5(t) — wi5(82))%) (] (), 07 (-)))
= 26k»i1(t1,t2]( )‘T( (t2 —S))P[{Ei]( )7 z](tl) ]
Then, (23) with P := (z;;(t1) — x;;(t2))? and T large enough, and (24) altogether show that
T((wij () = 245(t2))?) < 05" (w35 (1) — 45(t2))?) + 8R*/2A[t — tal.

lib (

(24)

By the construction of P (see section 2), we see that o§i®((zn11,(t1) — Zpnt1(t2))?) = 0 and
moreover that, if 1 < i <n, then

06" (i (1) — w35 (t2))%) = [Jvi(ty)afPvi(t)* — vilta) a0 vi(t)* |12,
2
< (2R[vs(t1) = vilt2)]15,2)
= AR?||v;(|t1 — ta]) — 1|2, 5 — 0
as [t1 — to| — 0. Hence, by Lemma 2.2(2), {I3P < A} sits inside a compact subset. -

We give a few important properties on the rate function Icl,i;).

Proposition 5.7. For any 7 € T'S¢ (C’;‘%<x.0(-)>) we have:
(1) 18(7) < 400 implies that t — 7,41 (t) is a constant process for every 1 < j < r(n+1).
(2) 1J>(7) < +o0 implies that for each fired 1 < i < n andt > 0, we have } (7)(P) = 0o(P)
for every non-commutative polynomial P in indeterminates x5, 1 < j < r(i).
(3) 13>(7) = 0 if and only if T = o4°. Hence o(® is a unique minimizer of I.>.

lib
Proof. (1) By (23) and (24) we have ||x;+1j(t) - x;—z+1j(0)”72', < Hxn+1](t) _xgilj(o)”igbg =
20 — n_~_1j||c,O o = 0. Hence 7, ;(t) = 27,1 ;(0) holds for every ¢ > 0.
(2) Let P be an arbitrary, non-commutative polynomial in indeterminates x;;, 1 < j < r(4),
with a fixed 1 < ¢ < n. It is easy to see that o7 +(P) = 0. Hence we have

r(m (r1)(P) = m{ (03")(P)) = 77 (rme(P)) = 0" (rme(P)) < Iy (1) < +00

< 1g,
for every r € R and T' > 0, and thus 7} (7)(P) = 7} (77)(P) = 7} (oiP)(P) = o0(P) with T
large enough.

(3) By the left increment property of left free unitary Brownian motions (see [2, Definition
2]), it is easy to see that (oiP)T = oli® holds for every 7' > 0. Thus, we trivially obtain that

Ihb( llb) 2};% { _ A Z HEUO @(k)P ( ( ),1}:()))| i}}bﬂ ds} =0.
P=P*cC{zes(*))
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Lemma 5.3 with its proof actually shows that I'°(r) = 0 implies that
T P) — lib P 2 )
0<—— P o) < 1) =0
2> %=1 o ||Ez((®s P)(x75(),vZ(+))) ||T72 ds
(with convention 0/0 = 0) for all P = P* € C(z4o(+)) and T' > 0. This (with the proviso in

Lemma 5.3) actually shows that 77(P) = o{°(P) holds for every P = P* € C(z4(-)) and
T > 0. This immediately implies that 7 = o}iP. (]

These properties actually show that I (1,1;3 is indeed a ‘right’ rate function for our purpose.
Further analysis of this rate function I (171(1)0 will be given in a sequel to this article.

5.3. Main results. We are ready to prove the next main result of this article.

Theorem 5.8. For every closed subset A of T'S(Cj(zeo(+))) we have
=— 1 . i
A}gnoo N2 log P(7zun(yy € A) < —inf {][1,_;0(7') ‘ T €A}

Proof. Since the P(7zin(y) € -) form an exponentially tight sequence of probability measures

and [ (1,1;’ is a good rate function, it suffices to prove the following weak large deviation upper
bound:

EE— i
I T of s (s 7) < ) < ~14000)

for every 7 € T'S°(Cj(%eo(+))). (This is a standard fact in large deviation theory; see the
proofs of [6, Theorem 4.1.11, Lemma 1.2.18].)
Consider the random variable

Ipr N = E[rzm v (P) | Fr| — E[rzim ) (P)]

I (7 ; . o/ ok
-3, / [E[@P P)ELN),US (- + UL (5)) | F] 5., 0 ds
k=1

By Proposition 3.2 we have

Elexp(N*Ipr,n)] = Elexp(N*Ipon)] = 1. (25)
Let Ipr(7) be as in the proof of Proposition 5.6. We have

P(d(TEub(N),T) < E) = E[l{d(‘rgnb(mﬂ') <a} exp(NQIp’T’N - NQIP’T’N)]

SB[ o) <c} PN TPz
X esssup{ exp(—N2Ipr.N) ‘ d(TEIib(N),T) < 5}
< esssup{ exp(—N*Ip1 n) |d(r2m(n).7) <€} (use (25))
= exp ( — N2essinf{IP}T’N | d(TEIib(N),T) < 5})
Observe that
Ipr N > Ip7(T) = Ipr N — Ip7(T)|
> Ipp(T) — esssup{|Ip7T7N —Ipp(T)] | d(TEnb(N), 7') < 5}

holds almost surely on {d(TElib( N T) < 5}. Therefore, we conclude that

1
ﬁlogp(d(TEub(N),T) < 8) < 7IP7T(T) +eSSSHp{|Ip7T’N — IP7T(T)| |d(7‘51ib(N),T) < 8}.
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Then Proposition 2.3 and Corollary 4.2 (together with (3) and (22)) show that

lim lim esssup{|Ip7T,N — IP7T(T)| ‘ d(TEub(N),T) < 5} =0,

eN0 N—o00
and hence )
glir(l) ngnoo N2 IOgP(d(Tgnb(N), 7') < E) < —Ipp(T)
for every P = P* € (C<x.<>(-)> and T' > 0. Hence we are done. O

Here is a standard application of the above large deviation upper bound and Proposition
5.7(3).

Corollary 5.9. We have limy_; d(TEIib(N),O'%)ib) = 0 almost surely.

Proof. Let ¢ > 0 be arbitrarily chosen. By Proposition 5.6 and Proposition 5.7(3) we observe
that inf{Z1>(7) | d(T oiP) > e} = 0. Then, Theorem 5.8 implies that

hm ~5 10gP(d(T-1|b(N)7O'O ) >e) < —inf{Ii(7) | d(r,04") > e} S 0.

N
Thus we obtain that Y 3¥_; P(d(rzmw(n), 04”) > €) < +00. Hence the desired assertion follows
by the Borel-Cantelli lemma. |

6. DISCUSSIONS

One of the motivations in mind is to provide a common basis for the study of Voiculescu’s
approach ([22]) and our orbital approach ([8],[19]) to the concept of mutual information in free
probability. In fact, the key ingredient of Voiculescu’s approach is the liberation process, while
the orbital approach involves ‘orbital microstates’ by unitary matrices. Thus, a serious lack
was a random matrix counterpart of liberation process, whose candidate we introduced in this
article. Here we are not going to any detailed discussions about such a study, but only give
some comments on it.

We may apply the contraction principle in large deviation theory to our large deviation upper
bound obtained in section 5.

Corollary 6.1. Let vy be the marginal probability distribution on U(N) of the N x N left
unitary Brownian motion at time T > 0. Define

I p(0) == nf {I0(7) |[75:(7) = 0}, 0 € TS(Ch(wes)).

lod

Then for any closed subset A of TS’( <a:.<>>) we have

Nm —Qlogu ({UE U(N)" | trg =) ¢ A}) —inf {1 (o) | o € A}.

Here, trU ) e TS(C(Teo)) withU = (U;)1_y € U(N)™ is defined by tr“(N)(P) =try(Pu(P)),
Pe (C<m.<>> where @y : <a¢.<>> — My (C) is a unique x-homomorphism sending x5 (1<i<
’I’L) to Ulfzj(N)Uz* and xn—&-lj to €n+1j(N).

We write

x5y (o) = ;im @oo E log v, ({U e UWN)" | trU N e OW(;(U)}),
where Oy, 5(c), m € N, § > 0, denotes the (open) subset of 6/ € T'S(Ch(%eo)) such that

‘0’(x¢1j1 ey g,) — 0 (T, ~~xipjp)| < dwhenever 1 <ip <n+1,1<j,<r(ig),l<k<p
and 1 <p < m.
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A problem in this direction is to show that xorh (o) < lmgp_,, XL, (o) holds, where Xorb (o)
denotes the orbital free entropy of the random multi-variables (xi;)1<;<r@i), 1 <4 < n, under
o (see [8],[19]). If this was the case, then we would obtain that Yorp(0) = limr_ oo X1y, ()
(see below) and Xob(0) < — Lm0 I£§7T(0). Remark that, if the families {xi;}1<j<r@i)s
1 < i < n, are freely independent under o, then it is easy to see that ﬂ'}(agb) = oq for
all T > 0, and hence Proposition 5.7(3) shows that Ilo r(og) = 0 for all T > 0 so that
Xorb(0g) = —IhbT(UO) holds as 0 = 0 for all 7" > 0. Thus our conjecture seems plausible.

Here we would like to point out that

(In)=0

T—4+o0o N—oco d UN T—~+oo0 N—oo N2 dl/

with the Haar probability measure vy on U(N) follows from the formula obtained precisely by
Lévy and Méida [14, Proposition 4.2; Lemma 4.7; Proposition 5.2] with the aid of the fact that

1 dvn 1 d
lim lim Nlogmax{ ‘UEU )}— lim lim —log UNT

ds
V(1= s2)(1 — k2s2)
Thus, for any Borel subset A of TS(C}"%@.Q)) we have

1
=3 log(1 — k) + %log2 +o(l) (ask 71).

N logy ({U e UN)" ‘ trIEJ(N) € A})

n dvn,T
N2 log v ({UeU(N) |t eA}) +71 (1),
implying that imz 00 X241, (0) < Xorb(0) (use [20, Remark 3.3] at this point). On the other
hand, with

L:= lim lim 1logmln{dVNT ‘UEU )}(<O),
T—+400 N—00 N2 d

a similar consideration as above shows that lim,_, Xorb(U) > Xorb(0)+nL. Hence the problem

is whether L = 0 or not. We have confirmed this in the affirmative too, and will give a further

study on the orbital free entropy in a subsequent paper.
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