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ON PEAK PHENOMENA FOR NON-COMMUTATIVE H∞

YOSHIMICHI UEDA∗

Dedicated to Professor Fumio Hiai on the occasion of his 60th birthday

Abstract. A non-commutative extension of Amar and Lederer’s peak set result is given.
As its simple applications it is shown that any non-commutative H∞-algebra H∞(M, τ)
has unique predual, and moreover some restriction in some of the results of Blecher and
Labuschagne are removed, making them hold in full generality.

1. Introduction

Let H∞(D) be the Banach algebra of all bounded analytic functions on the unit disk D

equipped with the supremum norm ‖ · ‖∞. It is known (but non-trivial) that H∞(D) can be

regarded as a closed subalgebra of L∞(T) by f(e
√
−1θ) := limrր1 f(re

√
−1θ) a.e. θ. Then, L∞(T)

is isometrically isomorphic to C(X) with a certain compact Hausdorff space X via the Gel’fand

representation f 7→ f̂ , and the linear functional f ∈ H∞(D) 7→ 1

2π

∫ 2π

0
f(e

√
−1θ) dθ is known

to admit a unique representing measure m on X so that 1

2π

∫ 2π

0
f(e

√
−1θ) dθ =

∫
X f̂(x)m(dx)

holds. In this setup, Amar and Lederer [3] proved that any closed subset F ⊂ X with m(F ) = 0

admits f ∈ H∞(D) with ‖f‖∞ ≤ 1 such that P := {x ∈ X : f̂(x) = 1} = {x ∈ X : |f̂(x)| = 1}
contains F and m(P ) = 0 still holds. This is a key in any existing proof of the uniqueness of
predual of H∞(D). The reader can find some information on Amar and Lederer’s result in [20,
§6] and also see [6].

The main purpose of these notes is to provide an analogous fact of the above-mentioned
result of Amar and Lederer for non-commutative H∞-algebras introduced by Arveson [5] in
the 60’s under the name of finite maximal subdiagonal algebras. Here a non-commutative H∞-
algebra means a σ-weakly closed (possibly non-self-adjoint) unital subalgebra A of a finite von
Neuamnn algebra M with a faithful normal tracial state τ satisfying the following conditions:

• the unique τ -preserving (i.e., τ ◦E = τ) conditional expectation E : M → D := A∩A∗

is multiplicative on A;
• the σ-weak closure of A+A∗ is exactly M ,

where A∗ := {a∗ ∈ M : a ∈ A}. (Remark here that an important work due to Exel [11] plays
an important rôle behind this simple definition.) In what follows we write A = H∞(M, τ) and
call D the diagonal subalgebra. Recently, in their series of papers Blecher and Labuschagne
established many fundamental properties of these non-commutative H∞-algebras, analogous to
classical theories modeled after H∞(D), all of which are nicely summarized in [8]. The reader
can also find a nice exposition (especially, on the non-commutative Hilbert transform in the
framework of H∞(M, τ)) in Pisier and Xu’s survey on non-commutative Lp-spaces [23, §8].
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2 Y. UEDA

More precisely, what we want to prove here is that for any non-zero singular ϕ ∈M∗ in the
sense of Takesaki [29] one can find a “peak” projection p for A in the sense of Hay [16] such that p
dominates the (right) support projection of ϕ but is smaller than the central support projection
zs ∈M⋆⋆ of the singular part M⋆⊖M⋆. This is not exactly same as Amar and Lederer’s result,
but is enough for usual applications (even in classical theory for H∞(D)). Indeed, we will
demonstrate it by proving that any non-commutative H∞-algebra A = H∞(M, τ) has the
unique predual M⋆/A⊥ with A⊥ := {ψ ∈ M⋆ : ψ|A = 0}. Proving it is our initial motivation;
in fact, it can be regarded as an affirmative answer to the following natural (at least for us)
question: Is the relative topology on A induced from σ(M,M⋆), which is most important, an
intrinsic one of A ? Also, our unique predual result may provide a new perspective in the
direction of establishing the uniqueness of preduals by Grothendieck [15] for L∞-spaces, by
Dixmier [10] and Sakai [25] for von Neumann algebras or W ∗-algebras, and then by Ando
[4] and also a little bit later but independent work due to Wojtaszczyk [32] for H∞(D). In
particular, our result can be regarded as a simultaneous generalization of those classical results.
Moreover, our result is an affirmative answer to a question posed by Godefroy stated in [8],
and more importantly it covers any existing generalization like [9],[14] of the above-mentioned
work for H∞(D) as a particular case. A natural “Lebesgue decomposition” or “normal/singular
decomposition” for the dual of H∞(M, τ) is also given. The decomposition was first given by
our ex-student Shintaro Sewatari in his master thesis [27] as a simple application of the non-
commutative F. and M. Riesz theorem recently established by Blecher and Labuschagne [7] so
that the finite dimensionality assumption for the diagonal subalgebra D was necessary there.
Here it is established in full generality based on our Amar–Lederer type result instead of the
non-commutative F. and M. Riesz theorem. After the completion of the presented work, the
author found the paper [22] of H. Pfitzner, where it is shown that any separable L-embedded
Banach space X becomes the unique predual of its dual X⋆. This means that establishing the
Lebesgue decomposition is enough to show the uniqueness of predual for any non-commutative
H∞-algebra A = H∞(M, τ) with M⋆ separable.

Our Amar–Lederer type result also enables us to remove the finite dimensionality assump-
tion for the diagonal subalgebra D from the results in [7] numbered 3.5, 4.1, 4.2 and 4.3 there,
including the non-commutative Gleason–Whitney theorem. Moreover, it gives a nice variant of
Blecher and Labuschagne’s non-commutative F. and M. Riesz theorem. Thus, it unexpectedly
brings the current theory of non-commutative Hp-spaces due to Blecher and Labuschagne (see
[8]), which was already somewhat complete and satisfying, to an even more perfect and satis-
factory form, though the presented work was initially aimed to prove the unique predual result
for H∞(M, τ) as mentioned above.

In closing, we should note that a bit different syntax has been (and will be) used for dual
spaces. For a Banach space X we denote by X⋆ and X⋆ its dual and predual instead of the
usual X∗ and X∗, while X∗ stands for the set of adjoints of elements in X when X is a subset
of a C∗-algebra.

Acknowledgment. We thank Professor Timur Oikhberg for kindly advising us to mention what
the unique predual M⋆/A⊥ possesses Pelczynski’s property (V∗) in Corollary 3.3 explicitly.
We also thank the anonymous referee for his or her critical reading and a number of fruitful
suggestions, which especially enable us to improve the presentation of the materials given in
§4.

2. Amar–Lederer Type Result for H∞(M, τ)

Let A = H∞(M, τ) be a non-commutative H∞-algebra with a finite von Neumann algebra
M and a faithful normal tracial state τ on M .



PEAK PHENOMENA FOR NON-COMMUTATIVE H∞

3

Theorem 2.1. For any non-zero singular ϕ ∈M⋆ there is a contraction a ∈ A and a projection

p ∈M⋆⋆ such that

(2.1.1) an converges to p in the w∗-topology σ(M⋆⋆,M⋆) as n→ ∞;

(2.1.2) 〈|ϕ|, p〉 = |ϕ|(1);
(2.1.3) 〈ψ, p〉 = 0 for all ψ ∈M⋆ (regarded as a subspace of M⋆), or equivalently an converges

to 0 in σ(M,M⋆) as n→ ∞. This, in particular, shows that p ≤ zs.

Here, 〈·, ·〉 : M⋆ ×M⋆⋆ → C is the dual pairing and |ϕ| denotes the absolute value of ϕ with

the polar decomposition ϕ = v · |ϕ| due to Sakai [26] and Tomita [31], when regarding ϕ as an

element in the predual of the enveloping von Neumann algebra M⋆⋆ by (M⋆⋆)⋆ = M⋆.

Proof. Note that |ϕ| is still singular. In fact, |ϕ| = v∗ · ϕ ∈ v∗zsM
⋆ ⊂ zsM

⋆ since zs is a
central projection. Here zs stands for the central support projection of M⋆ ⊖ M⋆ as in §1.
The orthogonal families of non-zero projections in Ker|ϕ| clearly form an inductive set by
inclusion, and then Zorn’s lemma ensures the existence of a maximal family {qk}, which is at
most countable since M is σ-finite. Let q0 :=

∑
k qk in M . If q0 6= 1, then Takesaki’s criterion

[30] shows the existence of a non-zero projection r ∈ Ker|ϕ| with r ≤ 1 − q0, a contradiction to
the maximality. Thus, q0 = 1. Moreover, if {qk} is a finite set, then |ϕ|(1) =

∑
k |ϕ|(qk) = 0,

a contradiction. Therefore, {qk} is a countably infinite family with
∑

k qk = 1 in M . Letting
pn := 1 − ∑

k≤n qk we have pn → 0 σ-weakly as n → ∞ but |ϕ|(pn) = |ϕ|(1) for all n. Set

p0 :=
∧

n pn in M⋆⋆. Then, 〈|ϕ|, p0〉 = limn〈|ϕ|, pn〉 = limn |ϕ|(pn) = |ϕ|(1) 6= 0, and in
particular, p0 6= 0.

Choosing a subsequence if necessary, we may and do assume τ(pn) ≤ n−6. Then we can
define an element g :=

∑∞
n=1

npn ∈ L2(M, τ), the non-commutative L2-space associated with
(M, τ), since

∑∞
n=1

‖npn‖2,τ ≤ ∑∞
n=1

n−2 < +∞. By the non-commutative Riesz theorem
[24, Theorem 1] and [18, Theorem 5.4] there is an element g̃ = g̃∗ ∈ L2(M, τ) such that f :=
g+

√
−1g̃ falls in the closure [A]2,τ ofA in L2(M, τ) via the canonical embedding M →֒ L2(M, τ).

We can regard g, g̃, f ∈ L2(M, τ) as unbounded operators, affiliated with M , on the Hilbert
space H := L2(M, τ) with a common core D. Let ξ ∈ D be chosen arbitrary. Since g ≥ 0 and
g̃ = g̃∗, one has ‖(1 + f)ξ‖2,τ‖ξ‖2,τ ≥ |((1 + f)ξ|ξ)τ | = |(ξ|ξ)τ + (gξ|ξ)τ +

√
−1(g̃ξ|ξ)τ | ≥ ‖ξ‖22,τ

and similarly ‖(1+f)∗ξ‖2,τ‖ξ‖2,τ ≥ ‖ξ‖22,τ , and hence (1+f)−1 ∈M exists and ‖(1+f)−1‖∞ ≤
1. Also, similarly one has ‖(1 + f)ξ‖2,τ‖ξ‖2,τ ≥ |((1 + f)ξ|fξ)τ | = |(ξ|fξ)τ + (fξ|fξ)τ | =
|(ξ|gξ)τ −

√
−1(ξ|g̃ξ)τ + (fξ|fξ)τ | ≥ ‖fξ‖22,τ so that ‖fξ‖2,τ ≤ ‖(1 + f)ξ‖2,τ holds. Therefore,

‖f(1 + f)−1ζ‖2,τ ≤ ‖ζ‖2,τ for all ζ ∈ H, and thus b := f(1 + f)−1 ∈M is a contraction.
We will then prove that b actually falls in A. First, recall the following standard but non-

trivial fact: any bounded element in the closure [A]p,τ of A in Lp(M, τ), the non-commutative
Lp-space, falls in A. In fact, let x ∈ [A]p,τ be a bounded element, i.e., x ∈ M , and then there
is a sequence {an} in A with ‖an − x‖p,τ −→ 0 as n → ∞. For each y ∈ A with E(y) = 0
one has ‖any − xy‖p,τ −→ 0 as n → ∞ so that τ(xy) = limn τ(any) = 0 implying x ∈ A,
where we use A = {x ∈ M : τ(xy) = 0 for all y ∈ A with E(y) = 0} due to Arveson [5]. (It
seems that this fact is used but not mentioned explicitly in the final step of the proof of [24,

Lemma 2] that we need here). Letting gN :=
∑N

n=1
npn ∈ M with its conjugate g̃N we have

fN = gN +
√
−1g̃N −→ f in L2(M, τ) as N → ∞ thanks to the non-commutative Riesz theorem

[24, Theorem 1] and [18, Theorem 5.4]. As before, for each N one has (1 + fN )−1 ∈ M and
‖(1+fN)−1‖∞ ≤ 1, and moreover the discussion in [24, Lemma 2] shows that (1+fN)−1 indeed
falls in A. Since (1 + f)−1 ∈ M and ‖(1 + f)−1‖∞ ≤ 1 as shown before, we have, for each
ξ ∈ M ⊂ L2(M, τ) (a right-bounded vector in L2(M, τ)), ‖((1 + fN)−1 − (1 + f)−1)ξ‖2,τ =
‖(1 + fN )−1(f − fN)(1 + f)−1ξ‖2,τ ≤ ‖ξ‖∞‖f − fN‖2,τ −→ 0 as N → ∞ so that (1 + f)−1 =
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limN (1 + fN )−1 ∈ A in strong operator topology, implying b = f(1 + f)−1 ∈M ∩ [A]2,τ = A as
claimed above.

As before we have ‖(1 + f)ξ‖2,τ‖ξ‖2,τ ≥ |((1 + f)ξ|ξ)τ | ≥ (gξ|ξ)τ ≥ n(pnξ|ξ)τ = n‖pnξ‖22,τ
for each ξ ∈ D. Here the inequality (gη|η)τ ≥ n(pnη|η)τ for η in the domain of g is used. (This
can be easily checked when η is in M ⊂ L2(M, τ), and M ⊂ L2(M, τ) is known to form a core
of g thanks to a classical result, see, e.g. [28, Theorem 9.8]). Thus, letting ξ := (1 + f)−1ζ
for each ζ ∈ H we get ‖pn(1 + f)−1ζ‖22,τ ≤ n−1‖ζ‖2,τ‖(1 + f)−1ζ‖2,τ ≤ n−1‖ζ‖22,τ so that

‖pn − pnb‖∞ = ‖pn(1 + f)−1‖∞ ≤ n−1/2. In the universal representation M y Hu we have
‖(p0 − p0b)ζ‖Hu

≤ ‖p0ζ − pnζ‖Hu
+ ‖pn − pnb‖∞‖ζ‖Hu

+ ‖pn(bζ) − p0(bζ)‖Hu
≤ ‖p0ζ −

pnζ‖Hu
+n−1/2‖ζ‖Hu

+ ‖pn(bζ)−p0(bζ)‖Hu
−→ 0 as n→ ∞ for each ζ ∈ Hu since p0 =

∧
n pn

in M⋆⋆ = M ′′ on Hu. Since b is a contraction, we get p0 = p0b = bp0 = p0bp0. Then, by
[16, Lemma 3.7] the new contraction a := (1 + b)/2 satisfies that an converges to a certain
projection p ∈ M⋆⋆ in σ(M⋆⋆,M⋆) as n → ∞, and p0 ≤ p so that 〈|ϕ|, p〉 = |ϕ|(1). If a vector
ξ ∈ H satisfies ‖aξ‖2,τ = ‖ξ‖2,τ , then 2‖ξ‖2,τ = ‖ξ + bξ‖2,τ ≤ ‖ξ‖2,τ + ‖bξ‖2,τ ≤ 2‖ξ‖2,τ ,
which implies ‖bξ‖2,τ = ‖ξ‖2,τ and ‖ξ + bξ‖2,τ = ‖ξ‖2,τ + ‖bξ‖2,τ . Then, it is plain to see that
these two norm conditions imply bξ = ξ. However, (1 + f)−1ξ = (1 − b)ξ = 0 so that ξ = 0.
Therefore, there is no reducing subspace of a in H, on which a acts as a unitary. Hence the
so-called Foguel decomposition ([12]) shows that an −→ 0 σ-weakly as n → ∞. In particular,
〈ψ, p〉 = limn〈ψ, an〉 = limn ψ(an) = 0 for all ψ ∈M⋆. �

Choose ϕ ∈ M⋆, and decompose it into the normal and singular parts ϕ = ϕn + ϕs with
ϕn := (1 − zs) · ϕ ∈ M⋆ and ϕs := zs · ϕ ∈ M⋆ ⊖M⋆. Assume that ϕs 6= 0, and let p ∈ M⋆⋆

be a projection for ϕs as in Theorem 2.1. By (2.1.2) and the polar decomposition ϕs = v · |ϕs|
we have |〈ϕs, (1 − p)x〉| = |〈v · |ϕs|, (1 − p)x〉| ≤ 〈|ϕs|, 1 − p〉1/2〈|ϕs|, v∗x∗xv〉1/2 = 0 for every
x ∈M⋆⋆ so that ϕs · (1− p) = 0, i.e., ϕs = ϕs · p. Moreover, by (2.1.3) a similar estimate shows
ϕn · p = 0. Hence, we get ϕs = ϕ · p. Therefore we have the following corollary:

Corollary 2.2. If ϕ ∈ M⋆ has the non-zero singular part ϕs ∈ M⋆ ⊖M⋆, then there is a

contraction a ∈ A and a projection p ∈ M⋆⋆ such that an −→ p in σ(M⋆⋆,M⋆), an −→ 0 in

σ(M,M⋆) as n→ ∞ and ϕs = ϕ · p.

We next examine the contraction a and the projection p in Theorem 2.1 and/or Corollary
2.2. By [16, Lemma 3.6], a peaks at p and moreover (a∗a)n ց p in σ(M⋆⋆,M⋆) as n → ∞
so that p is a closed projection in the sense of Akemann [1],[2]. For any positive ψ ∈ M⋆ one

has
∑N

n=2
|ψ((a∗a)n − (a∗a)n−1)| = −∑N

n=2
ψ((a∗a)n − (a∗a)n−1) = ψ(a∗a) − ψ((a∗a)N ) −→

〈ψ, a∗a − p〉 as N → ∞, from which one easily observes that the sequence {(a∗a)n} is weakly
unconditionally convergent, see, e.g. [13, Définition 1]. This fact is necessary in the course of
proving that M⋆/A⊥ is the unique predual of A.

3. First Applications: Predual of H∞(M, τ)

We first establish the following theorem:

Theorem 3.1. M⋆/A⊥ is the unique predual of A = H∞(M, τ).

A Banach space E is said to have a unique predual when the following property holds: If the
duals F ⋆ and G⋆ of two other Banach spaces F and G are isometrically isomorphic to E, then
F = G must hold in the dual E⋆ via the canonical embeddings. Our discussion will be done in
the line presented in [14, IV] so that what we will actually prove is that M⋆/A⊥ has property
(X) in the sense of Godefroy and Talagrand and the desired assertion immediately follows from
their result, see [13, Définition 3, Théorème 5].
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Proof. Choose ϕ ∈ A⋆, and then one can extend it to ϕ̃ ∈ M⋆ by the Hahn–Banach extension
theorem. Decompose ϕ̃ into the normal and singular parts ϕ̃ = ϕ̃n + ϕ̃s. It suffices to show
the following: If limn ϕ(xn) = 0 for any weakly unconditionally convergent sequence {xn}
in A with xn −→ 0 in σ(A,M⋆/A⊥) or the relative topology from σ(M,M⋆) as n → ∞,
then ϕ̃s|A = 0, that is, ϕ = ϕ̃n|A must hold. We may assume ϕ̃s 6= 0. By Corollary 2.2
together with the discussion just below it, we can find two sequences {an} and {bn} and a
projection p ∈ M⋆⋆ such that (i) the an’s are in A; (ii) the bn’s are in M and {bn} is weakly
(in σ(M,M⋆)) unconditionally convergent; (iii) both an and bn converge to p in σ(M⋆⋆,M⋆)
but to 0 in σ(M,M⋆); (iv) ϕ̃s = ϕ̃ · p. Then, as same as in [14, Théorème 33] (by using a trick
in [17, the proof of Proposition 1.c.3 in p.32]) we may and do assume that {an} is also weakly
unconditionally convergent. Let x ∈ A be chosen arbitrary, and then {anx} clearly becomes
weakly unconditionally convergent. Moreover, it trivially holds that anx −→ 0 in σ(M,M⋆)
as n → ∞. Therefore, we have ϕ̃s(x) = 〈ϕ̃, px〉 = limn〈ϕ̃, anx〉 = limn ϕ(anx) = 0 by the
assumption here. �

As is well-known the predual M⋆ of a von Neumann algebra M can be naturally embedded
to the dual M⋆ as the range of an L-projection, see [29]. Hence it is natural to ask whether
the predual M⋆/A⊥ of A = H∞(M, τ) can be also embedded to the dual A⋆ as the range of an
L-projection. This is indeed true in general. Here we will explain it as an application of our
Amar–Lederer type result.

Denote by A⋆
n the set of all ϕ ∈ A⋆ that can be extended to ϕ̃ ∈ M⋆, and also by A⋆

s the

set of all ψ ∈ A⋆ that can be extended to ψ̃ ∈ M⋆ ⊖M⋆. This definition agrees with [4, p.35].
For any ϕ ∈ A⋆, by the Hahn–Banach extension theorem one can extend it to ϕ̃ ∈M⋆. Then,
decompose ϕ̃ into the normal and singular parts ϕ̃ = ϕ̃n + ϕ̃s. We set ϕn := ϕ̃n|A ∈ A⋆

n and
ϕs := ϕ̃s|A ∈ A⋆

s . Then we call ϕ = ϕn + ϕs an “(M ⊃ A)-Lebesgue decomposition” of ϕ. On
first glance, it is likely that this decomposition depends on the particular choice of the extension
ϕ̃. However, we have:

Proposition 3.2. The following hold true:

(3.4.1) A⋆
n ∩A⋆

s = {0}.

(3.4.2) The notion of (M ⊃ A)-Lebesgue decomposition ϕ = ϕn +ϕs of ϕ ∈ A⋆ is well-defined,

that is, ϕn and ϕs are uniquely determined by ϕ. Moreover, ‖ϕ‖ = ‖ϕn‖ + ‖ϕs‖ holds.

Proof. (3.4.1) On contrary, suppose that there is a non-zero ϕ ∈ A⋆
n ∩ A⋆

s , and then one can
choose ϕ̃n ∈M⋆ and ϕ̃s ∈M⋆ ⊖M⋆ in such a way that ϕ = ϕ̃n|A = ϕ̃s|A. Since ϕ 6= 0 implies
ϕ̃s 6= 0, one can find, by Corollary 2.2, a contraction a ∈ A and a projection p ∈ M⋆⋆ so that
an −→ p in σ(M⋆⋆,M⋆), an −→ 0 in σ(M,M⋆) as n → ∞ and ϕ̃s = ϕ̃s · p. Let x ∈ A be
arbitrary, and anx −→ 0 in σ(M,M⋆) clearly holds. Then one has ϕ(x) = ϕ̃s(x) = 〈ϕ̃s, px〉 =
limn〈ϕ̃s, a

nx〉 = limn ϕ(anx) = limn ϕ̃n(anx) = 0, a contradiction.
(3.4.2) Assume that we have two (M ⊃ A)-Lebesgue decompositions ϕ = ϕn1 + ϕs1 =

ϕn2 + ϕs2. Then ϕn1 − ϕn2 = ϕs2 − ϕs1 ∈ A⋆
n ∩ A⋆

s = {0} by (3.4.1) so that ϕn1 = ϕn2 and
ϕs1 = ϕs2. Hence the (M ⊃ A)-Lebesgue decomposition is well-defined. Let ϕ̃ ∈ M⋆ be the
Hahn-Banach extension of ϕ, i.e., ‖ϕ̃‖ = ‖ϕ‖. By definition we have ϕn = ϕ̃n|A and ϕs = ϕ̃s|A.
Then one has ‖ϕ‖ = ‖ϕ̃‖ = ‖ϕ̃n‖+ ‖ϕ̃s‖ ≥ ‖ϕn‖+ ‖ϕs‖ ≥ ‖ϕn +ϕs‖ = ‖ϕ‖ so that the desired
norm equation follows. �

Corollary 3.3. The predual M⋆/A⊥ of A = H∞(M, τ) is the range of an L-projection from

A⋆. Hence M⋆/A⊥ has Pe lczyński’s property (V∗), and, in particular, is sequentially weakly

complete.
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Proof. The first part is immediate from the above proposition since A⋆
n = M⋆/A⊥ trivially

holds. The latter half is due to Pfitzner’s theorem [21] and an observation of Pe lczyński [19,
Proposition 6]. �

It seems a natural question to find an “intrinsic characterization” of singularity for elements
in A⋆ like Takesaki’s criterion [30]. It seems that there is no such result even in the classical
theory.

4. Second Applications: Noncommutative Function Algebra Theory

In this section we will explain how our Amar–Lederer type result nicely complements the
non-commutative function algebra theory due to Blecher and Labuschagne [7]. The key is
the following variant of Blecher and Labuschagne’s F. and M. Riesz theorem, which was given
implicitly in the previous version of these notes. The current, explicit formulation was suggested
by the referee.

Theorem 4.1. Any non-commutative H∞-algebra A = H∞(M, τ) satisfies the following prop-

erty: Whenever ϕ ∈M⋆ annihilates A, the normal and singular parts ϕn and ϕs annihilate A
separately.

Proof. Although the proof is essentially same as that of Proposition 3.2, we do give it for the
sake of completeness. Let us choose ϕ ∈M⋆ in such a way that ϕ|A = 0, and decompose it into
the normal and singular parts ϕ = ϕn+ϕs. On contrary, we assume that ϕn|A 6= 0 or ϕs|A 6= 0.
If there existed x ∈ A with ϕn(x) 6= 0, then it would follow that ϕs(x) = −ϕn(x) 6= 0. Thus
we may assume that ϕs|A 6= 0. Then, by Corollary 2.2 one can find a contraction a ∈ A and
a projection p ∈ M⋆⋆ so that an −→ p in σ(M⋆⋆,M⋆), an −→ 0 in σ(M,M⋆) as n → ∞ and
ϕs = ϕs · p. For any x ∈ A, the anx’s still fall in A but ϕ(anx) −→ 〈ϕ, px〉 = ϕs(x), and
consequently ϕs(x) = 0, a contradiction. �

Blecher and Labuschagne’s F. and M. Riesz theorem [7, §3], which is originated in classical
theory, asserts a quite similar property, that is, whenever ϕ ∈ M⋆ annihilates A0 := {a ∈ A :
E(a) = 0} the normal and singular parts ϕn and ϕs annihilate A0 and A, respectively, and
moreover its necessary and sufficient requirement is that D is finite dimensional. Note that this
F. and M. Riesz property is apparently stronger than the consequence of Theorem 4.1 here,
and it should be remarked that the proofs of Corollary 3.5, Theorem 4.1, Theorem 4.2 and
Corollary 4.3 in [7] need only the consequence of the above theorem but do not use Blecher and
Labuschagne’s F. and M. Riesz theorem itself. Thus, they all hold true without any assumption.
Consequently, we get the next theorem.

Theorem 4.2. Any non-commutative H∞-algebra A = H∞(M, τ) enjoys the following:

(4.2.1) If ϕ ∈M⋆ annihilates A+A∗, then the ϕ must be singular. (cf. [7, Corollary 3.5].)
(4.2.2) Every Hahn–Banach extension to M of any normal (i.e., continuous in the relative

topology induced from σ(M,M⋆)) functional on A must fall in M⋆. (cf. the second part

of [7, Theorem 4.1]. )
(4.2.3) Any ϕ ∈ M⋆ is the unique Hahn–Banach extension of its restriction to A + A∗. In

particular, ‖ϕ‖ = ‖ϕ|A+A∗‖ for any ϕ ∈M⋆. (cf. [7, Theorem 4.2].)
(4.2.4) Any element in M can be σ-weakly approximated by a norm-bounded net consisting of

elements in A+A∗. (cf. [7, Corollary 4.3].)

The above (4.2.2), called the non-commutative Gleason–Whitney theorem, might sound a
contradiction to what Pe lczyński pointed out in [20, Proposition 6.3], a comment to Amar and
Lederer’s result. However, this is not the case since the (4.2.2) mentions only Hahn–Banach
extensions.
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Remarks 4.3. Following the referee’s suggestion let us call a subalgebra A of a finite von Neu-
mann algebra M with a faithful normal tracial state an F. and M. Riesz algebra if it satisfies
the consequence of Theorem 4.1 of these notes. (Clearly, H∞(M, τ) with D finite dimensional
has been an example of F. and M. Riesz algebra since the appearance of [7].) Then, any F. and
M. Riesz algebra has (GW1) of [7], and furthermore does (GW) of [7] if A + A∗ is σ-weak
dense in M . Also, Corollary 3.5, Theorem 4.1, Theorem 4.2 and Corollary 4.3 in [7] hold true if
A+A∗ is σ-weak dense in M too. The proofs in [7] still work without any change. The referee
communicated to us that he or she had noticed in 2007 these observations together with the
fact that any F. and M. Riesz algebra with separable predual has unique predual.
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[10] J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France, 81 (1953), 9–39.
[11] R. Exel, Maximal subdiagonal algebras, Amer. J. Math., 110 (1988), 775–782.
[12] S.R. Foguel, Power of contraction in Hilbert space, Pacific J. Math., 13 (1963), 551–562.
[13] G. Godefroy and M. Talagrand, Classes d’espaces de Banach à prédual unique, C. R. Acad. Sci. Paris
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