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REMARKS ON FREE MUTUAL INFORMATION

AND ORBITAL FREE ENTROPY

MASAKI IZUMI 1 AND YOSHIMICHI UEDA 2

Abstract. The present notes provide a proof of i∗(CP + C(I − P ) ;CQ + C(I − Q)) =
−χorb(P,Q) for any pair of projections P,Q with τ(P ) = τ(Q) = 1/2. The proof includes
new extra observations, such as a subordination result in terms of Loewner equations. A
study of the general case is also given.

1. Introduction

There are two quantities which play a rôle of mutual information in free probability; one is the
so-called free mutual information i∗ introduced by Voiculescu [21] in the late 90s and the other
is the orbital free entropy χorb due to Hiai, Miyamoto and the second-named author [12],[20]
(and its new approaches χ̃orb, etc. due to Biane and Dabrowski [3]). These quantities have
many properties in common, but no general relationship between them has been established
so far. Any question about i∗ and/or χorb for two projections is known to be a ‘commutative
one’ in essence, that is, can essentially be handled within classical analysis (see [21, §12] and
[13]), and a heuristic argument in [15] supports that the identity i∗ = −χorb holds at least for
two projections. Hence the question of i∗ = −χorb for two projections seems most tractable in
the direction, and can be regarded as a counterpart of the single variable unification between
two approaches χ and χ∗ of free entropy, which was already established by Voiculescu (see
[23]). Recently Collins and Kemp [5] gave a proof of i∗ = −χorb for two projections with
τ(P ) = τ(Q) = 1/2 under a rather restricted assumption, along the lines of the above-mentioned
heuristic argument. Here we give an improved assertion of their result (i.e., completion of the
analysis when τ(P ) = τ(Q) = 1/2) with a rather short and completely independent proof.
Originally the first-named author observed important ideas after the appearance of [15] as a
preprint, and then we prepared an essential part of the present short notes some years ago
(see e.g. the introduction of [20]). Although the main theorem of the present notes is still an
assertion about only the case of τ(P ) = τ(Q) = 1/2, a large part of its proof deals with general
two projections and involves new extra observations which also enable us to give a partial result
in the case of general trace values τ(P ), τ(Q). Hence the present notes may have some degree
of positive significance for future studies in the direction. We should also emphasize that the
attempts are important as positive evidence for the conjecture that i∗ = −χorb should hold
for general random multivariables, though they have no direct connection with the unification
conjecture for free entropy.

Throughout the present notes, let (M, τ) denote a sufficiently large, tracial W ∗-probability
space so that all the non-commutative random variables that we will deal with live in (M, τ).
The operator norm is denoted by ‖ − ‖∞. Let St, t ∈ [0,∞), be a free additive Brownian
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motion in (M, τ) (with S0 = 0). A free unitary multiplicative Brownian motion Ut, t ∈
[0,∞), with U0 = I introduced by Biane [1] is a non-commutative process consisting of unitary
random variables determined by the free stochastic differential equation (free SDE for short)
dUt =

√
−1 dSt Ut − (1/2)Ut dt, U0 = I. For given two projections P,Q in M that are freely

independent of {Ut}t≥0 the main objective here is to investigate the so-called liberation process
t ∈ [0,∞) 7→ (Ut(CP +C(I − P ))U∗

t ,CQ+C(I −Q)) introduced by Voiculescu [21] in relation
with i∗ and χorb. It is known that the liberation process can be understood by looking at
the process of self-adjoint random variables Xt := QUtPU

∗
t Q. Thus we mainly investigate the

process Xt in what follows. One can easily derive the free SDE dXt = Ξt ♯ dSt + Yt dt, where
Ξt :=

√
−1(Q ⊗ UtPU

∗
t Q − QUtPU

∗
t ⊗ Q) and Yt := τ(P )Q −Xt. See [4] for the definitions

and the notations concerning free SDE’s such as ♯-operation. Note that Ut is operator-norm
continuous in t by [1, Lemma 8], and so are Xt, Ξt and Yt too.

2. Free SDE of (zI −Xt)
−1 and Cauchy transform of Xt

Several ways to investigate the free SDE of the resolvent process R(t, z) := (zI −Xt)
−1 and

the Cauchy transform of Xt have already been available, see e.g. [7, §6–7],[16, §§3.2],[6, §§3.1]
and [5]. However, we do give, for the reader’s convenience, a simple proof of their explicit
formulas by simple algebraic manipulations based on three naturally expected facts – (i) the
free Itô formula, (ii) the resolvent process becomes again a ‘free Itô process’ and (iii) every
‘free Itô process’ has a unique ‘Doob–Meyer decomposition’. In fact, the essential part of our
proof will be done in several lines. The above (i) and (ii) were perfectly provided by Biane
and Speicher [4], while the above (iii) is the latter half part of Proposition 2.2 below. The
proposition (with its lemma) is probably a folklore.

Lemma 2.1. Let {Mt}t≥0 be an increasing filtration of von Neumann subalgebras of M, and let

t ∈ [0,∞) 7→ Kt be a weakly measurable process such that Kt ∈ Mt and sup0≤s≤t ‖Ks‖∞ < +∞
for all t ≥ 0. If t ∈ [0,∞) 7→ Lt :=

∫ t

0
Ks ds defines a martingale adapted to {Mt}t≥0, then

Lt = 0 for all t ≥ 0.

Proof. Since Lt is a martingale, one has, for any division 0 =: t0 < t1 < · · · < tn := t,

τ(L∗
tLt) =

n
∑

i=1

τ((Lti − Lti−1
)∗(Lti − Lti−1

)) ≤ t
(

sup
0≤s≤t

‖Ks‖∞
)2

sup
1≤i≤n

(ti − ti−1).

It follows that Lt = 0, since sup1≤i≤n(ti − ti−1) can arbitrarily be small. �

Proposition 2.2. Let {Mt}t≥0 be as in Lemma 2.1 such that St ∈ Mt for every t ≥ 0. Let

t ∈ [0,∞) 7→ Φt,Φ
′
t ∈ M⊗alg M be operator-norm continuous biprocesses adapted to {Mt}t≥0

and t ∈ [0,∞) 7→ Kt,K
′
t ∈ M be weakly measurable processes such that sup0≤s≤t ‖Ks‖∞ < +∞

for every t ≥ 0 and the same holds for K ′
t. Then both Φ1[0,t] and Φ′ 1[0,t] fall in Ba

∞ (see [4,

§§2.1]) for every t ≥ 0, and hence we have two free stochastic integrals
∫ t

0
Φs ♯ dSs +

∫ t

0
Ks ds

and
∫ t

0
Φ′

s ♯ dSs+
∫ t

0
K ′

s ds as in [4, §§4.3] for every t ≥ 0. If those free stochastic integrals define

the same process, then Φ = Φ′ holds and Kt = K ′
t does almost surely in t.

Proof. The first part is trivial; hence left to the reader. One has
∫ t

0 (Φ
′
s − Φs) ♯ dSs =

∫ t

0 (Ks −
K ′

s) ds, which must be zero by Lemma 2.1 and [4, Proposition 3.2.3]. Hence
∫ t

0
Φs ♯ dSs =

∫ t

0
Φ′

s ♯ dSs and
∫ t

0
Ks ds =

∫ t

0
K ′

s ds hold for every t > 0. The Itô isometry [4, §§3.1] immediately
shows that Φ1[0,t] = Φ′ 1[0,t] holds in Ba

2 for every t > 0, and hence Φ = Φ′ holds. We may and
do assume that M has separable predual (with replacing it by its von Neumann subalgebra if
necessary); thus one can choose a dense countable subset {ϕn}n∈N of the predual of M. One
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has
∫ t2
t1
ϕn(Ks −K ′

s) ds = 0 for every 0 ≤ t1 < t2 � ∞ and n ∈ N, which immediately implies

that Kt = K ′
t holds almost surely in t. �

One can choose, for each z ∈ C+ := {z ∈ C | Imz > 0}, a rapidly decreasing function fz on R
which coincides with x 7→ (z−x)−1 on a neighborhood of [0, 1], and thus dR(t, z) = d(fz(Xt)) =
(∂fz(Xt) ♯Ξt) ♯ dSt + (∂fz(Xt) ♯ Yt + 1/2∆Ξt

fz(Xt)) dt holds by [4, Proposition 4.3.4]. Here we
do not recall the definitions of ∂fz(Xt) ♯Ξt, ∂fz(Xt) ♯ Yt and ∆Ξt

fz(Xt) (those can be found in
[4, §§4.3], and remark that ‖∆Uf(X)‖∞ can be estimated by I2(f)‖U‖2∞ in the same way as
in the discussion following [4, Definition 4.1.1]). Here we need only the following trivial fact:

sup{‖∂fz(Xt) ♯ Yt‖∞ + ‖∆Ξt
fz(Xt)‖∞ | t ≥ 0} < +∞. (2.1)

Write Mt :=
∫ t

0
(∂fz(Xs) ♯Ξs) ♯ dSs, Zt := ∂fz(Xt) ♯ Yt + (1/2)∆Ξt

fz(Xt) and Nt :=
∫ t

0
Ξs ♯ dSs

for short, and let z ∈ C+ be arbitrarily fixed. We have

0 = d
(

R(t, z)(zI −Xt)
)

= dR(t, z) · (zI −Xt) +R(t, z) · d(zI −Xt)− dMt · dNt

= dMt · (zI −Xt) + Zt(zI −Xt) dt−R(t, z) · dNt −R(t, z) · Yt dt− dMt · dNt,

and hence

dMt · (zI −Xt)−R(t, z) · dNt = R(t, z)Yt dt− Zt(zI −Xt) dt+ dMt · dNt.

This formal computation can easily be justified by the rigorous formulas in [4, §§4.1]. Note
that dMt · dNt = 〈〈∂fz(Xt) ♯Ξt,Ξt〉〉 dt by the free Itô formula (see [4, Definition 4.1.1] for the
precise definition of 〈〈−,−〉〉). Therefore, Proposition 2.2 (which can be used thanks to (2.1))
shows that

dMt = R(t, z) · dNt · R(t, z) =
(

(R(t, z)⊗R(t, z)) ♯Ξt

)

♯ dSt,

Zt dt = R(t, z)YtR(t, z) dt+R(t, z) · dNt ·R(t, z) · dNt · R(t, z).
It is easy to see, by the free Itô formula again, that

dNt ·R(t, z) · dNt =
(

− 2τ(XtR(t, z))Xt + τ(QR(t, z))Xt + τ(XtR(t, z))Q
)

dt,

and hence (the first part of) the next proposition follows.

Proposition 2.3. For every z ∈ C+ the resolvent process R(t, z) := (zI −Xt)
−1 satisfies:

dR(t, z) =
(

(R(t, z)⊗R(t, z)) ♯Ξt

)

♯ dSt + Z(t, z) dt

with

Z(t, z) = τ(P )R(t, z)QR(t, z)−R(t, z)XtR(t, z)− 2τ(XtR(t, z))R(t, z)XtR(t, z)

+ τ(QR(t, z))R(t, z)XtR(t, z) + τ(XtR(t, z))R(t, z)QR(t, z).
(2.2)

Moreover, the Cauchy transform G(t, z) := τ(R(t, z)), z ∈ C+ satisfies the following partial

differential equation (PDE for short):

∂G

∂t
=

∂

∂z

[

(z2 − z)G2 + (2 − τ(P )− τ(Q) − z)G− (1− τ(P ))(1 − τ(Q))

z

]

.

Proof. The first part has already been obtained. Hence it suffice to show the desired PDE.
Remark that Zt = Z(t, z) is operator-norm continuous in t thanks to the fact at the end of

§1. By the martingale property, G(t, z) = τ(R(t, z)) = τ(R(0, z)) +
∫ t

0
τ(Zs) ds, and hence,

by (2.2), ∂G
∂t = τ(Zt) = τ(P )τ(QR(t, z)2) − τ(XtR(t, z)

2) − 2τ(XtR(t, z))τ(XtR(t, z)
2) +

τ(QR(t, z))τ(XtR(t, z)
2)+τ(XtR(t, z))τ(QR(t, z)

2). Note that τ(AR(t, z)2) = − ∂
∂z τ(AR(t, z))

for any A ∈ M. Since R(t, z) = QR(t, z)Q + z−1(I − Q) and I = (zI − Xt)R(t, z) =

zR(t, z)−XtR(t, z), we have τ(QR(t, z)) = G(t, z) − 1−τ(Q)
z and τ(XtR(t, z)) = zG(t, z) − 1.

These altogether imply the desired PDE. �
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3. Analysis of Probability Distribution of Xt

Let νt be the probability distribution of Xt, i.e., a unique probability measure on [0, 1]
determined by G(t, z) =

∫

[0,1]
1

z−x νt(dx), for z ∈ C+. Define c0(t) := τ((I−UtPU
∗
t )∧ (I−Q)+

(I−UtPU
∗
t )∧Q+UtPU

∗
t ∧ (I−Q)), c1(t) := τ(UtPU

∗
t ∧Q), t ≥ 0. Several facts [21, Corollary

1.7, Proposition 8.7, Corollary 8.6 and Lemma 12.5] on liberation gradients with e.g. [15, (1.3)]
altogether show that the projections UtPU

∗
t , Q are in generic position for every t > 0 and

moreover that both c0(t) = 1−min{τ(P ), τ(Q)} and c1(t) = max{τ(P ) + τ(Q)− 1, 0} hold for
every t > 0. (We will give its detailed explanation in Remark 3.5 at the end of this section for the
reader’s convenience.) By a well-known fact (see e.g. [11, Solution 122]) one easily sees that the
functions t 7→ ci(t) are upper semicontinuous, and hence c0(0) ≥ c0(+0) = 1−min{τ(P ), τ(Q)}
and c1(0) ≥ c1(+0) = max{τ(P ) + τ(Q) − 1, 0}.

Set µt := νt − (1−min{τ(P ), τ(Q)})δ0 − (max{τ(P ) + τ(Q)− 1, 0})δ1, t ≥ 0, which defines
a positive measure on [0, 1], since ci(0) ≥ ci(+0), i = 0, 1. When t > 0, µt agrees with the
restriction of νt to (0, 1). Moreover, µ0 agrees with the restriction of ν0 to (0, 1) (or equivalently,
both ci(0) = ci(+0), i = 0, 2, hold) if and only if P,Q are in generic position. (See e.g. the
proof of [13, Theorem 3.2].) Denote by F (t, z) the Cauchy transform of µt whose domain clearly
contains C \ [0, 1]. A tedious computation derives the following PDE from Proposition 2.3:

∂F

∂t
=

∂

∂z

[

(z2 − z)F 2 + a(z − 1)F + bzF
]

(3.1)

with a := |τ(P )− τ(Q)| and b := |τ(P ) + τ(Q) − 1|.
Similarly to Geronimus’s work [10, §30] (based upon the so-called Szegö mapping) we trans-

form z ∈ C\ [0, 1] 7→ ζ ∈ D, the open unit disk, by z = (2+ ζ+ ζ−1)/4 or ζ = 2z− 1+2
√
z2 − z

(note that ζ ∈ D determines the branch of
√
z2 − z with a negative real value at z = 2). Set

L(t, ζ) := −
√
z2 − z F (t, z). Since dζ

dz = ζ/
√
z2 − z, the PDE (3.1) becomes

∂L

∂t
+ ζ

∂

∂ζ

[(

L+ a
1− ζ

1 + ζ
+ b

1 + ζ

1− ζ

)

L

]

= 0. (3.2)

Letting µ̃t(dθ) = µt(dx) with x = cos2(θ/2) = 1
2 (1 + cos θ), θ ∈ [0, π], we have

L(t, ζ) =
1

4

(

1

ζ
− ζ

)
∫

[0,π]

1
1
4

(

2 + ζ + 1
ζ

)

− cos2(θ/2)
µ̃t(dθ)

=
1

4

(

1

ζ
− ζ

)
∫

[0,π]

1
1
4

(

2 + ζ + 1
ζ

)

− 1
4 (2 + e

√
−1θ + e−

√
−1θ)

µ̃t(dθ)

=

∫

[0,π]

(

−1 +
e
√
−1θ

e
√
−1θ − ζ

+
e−

√
−1θ

e−
√
−1θ − ζ

)

µ̃t(dθ),

and thus the symmetrization µ̂t :=
1
2 (µ̃t + (µ̃t ↾(0,π)) ◦ j−1) with j : θ ∈ (0, π) 7→ −θ ∈ (−π, 0)

satisfies

L(t, ζ) =

∫

(−π,π]

e
√
−1θ + ζ

e
√
−1θ − ζ

µ̂t(dθ). (3.3)

Define H(t, ζ) := (L(t, ζ) + a 1−ζ
1+ζ + b 1+ζ

1−ζ )L(t, ζ), and by (3.2) we have

∂H

∂t
+ ζ
(

2L(t, ζ) + a
1− ζ

1 + ζ
+ b

1 + ζ

1− ζ

)∂H

∂ζ
= 0. (3.4)
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As usual, let us consider the ordinary differential equations (ODE’s for short) of characteristic
curve t 7→

(

gt(ζ), ut(ζ) := H(t, gt(ζ))
)

associated with the PDE (3.4):

ġt(ζ) = gt(ζ)

[

2L(t, gt(ζ)) + a
1− gt(ζ)

1 + gt(ζ)
+ b

1 + gt(ζ)

1− gt(ζ)

]

, g0(ζ) = ζ, (3.5)

u̇t(ζ) = 0, u0(ζ) = H(0, ζ). (3.6)

Here the dot symbol (̇ ) denotes the differentiation in t. The ODE (3.5) is nothing less than
the radial Loewner (or Löwner–Kufarev) equation (or more precisely radial Loewner ODE)
determined by one parameter family of measures t 7→ 2µ̂t + aδπ + bδ0. Note by e.g. [15, (1.3)]
that 2µ̂t + aδπ + bδ0 defines a probability measure on T = (−π, π] for every t ≥ 0. (This
follows from the fact that UtPU

∗
t , Q are in generic position for every t > 0 as remarked before

and µ̂t → µ̂0 weakly as t ց 0.) Thus, by a standard fact, see e.g. [19, Theorem 4.14], the
radial Loewner ODE (3.5) defines a unique one-parameter family of conformal transformations
gt : Dt := {ζ ∈ D |Tζ > t}։ D with gt(0) = 0 and g′t(0) = et (the prime symbol (′) denotes the
differentiation in ζ), where Tζ, ζ ∈ D, is the supremum of all T such that a solution of (3.5)
exists until time T in such a way that gt(ζ) ∈ D holds for every t ≤ T . It is known, see e.g. [19,
Remark 4.15] again, that the inverse ft := g−1

t : D։ Dt satisfies

ḟt(ζ) = −ζ f ′
t(ζ)

[

∫

(−π,π]

e
√
−1θ + ζ

e
√
−1θ − ζ

(2µ̂t + aδπ + bδ0)(dθ)

]

, f0(ζ) = ζ, (3.7)

a radial Loewner PDE. The ODE (3.6) shows that H(t, gt(ζ)) = ut(ζ) = u0(ζ) = H(0, ζ), and
hence H(t, ζ) = H(0, ft(ζ)) holds for all ζ ∈ D. This implies that

L(t, ζ) = −1

2

(

a
1− ζ

1 + ζ
+ b

1 + ζ

1− ζ

)

+
1

2

√

(

a
1− ζ

1 + ζ
+ b

1 + ζ

1− ζ

)2

+ 4H(0, ft(ζ)), (3.8)

where
√
− is the principal branch. The discussions so far are summarized as follows.

Proposition 3.1. Let νt be the probability distribution of Xt. Define the positive measure

µt := νt − (1 − min{τ(P ), τ(Q)})δ0 − (max{τ(P ) + τ(Q) − 1, 0})δ1, and transform it to the

positive measure µ̃t(dθ) := µt(dx) on [0, π] by x = cos2(θ/2). Then µt coincides with the

restriction of νt to (0, 1) for every t > 0, and moreover so does for t = 0 (or equivalently,

µ0 has no atom at both 0 and 1) if and only if the given two projections P,Q are in generic

position.

Set L(t, ζ) :=
∫

(−π,π)
e
√

−1θ+ζ

e
√

−1θ−ζ
µ̂t(dθ), ζ ∈ D, with the symmetrization µ̂t :=

1
2 (µ̃t + (µ̃t ↾(0,π)

) ◦ j−1) with j : θ ∈ (0, π) 7→ −θ ∈ (−π, 0). Then the unique one-parameter, subordinate

family of conformal self-maps ft on D obtained from the radial Loewner PDE (3.7) driven by

the probability measures 2µ̂t + aδπ + bδ0 gives the following subordination relation:
(

L(t, ζ) + a
1− ζ

1 + ζ
+ b

1 + ζ

1− ζ

)

L(t, ζ) =
(

L(0, ft(ζ)) + a
1− ft(ζ)

1 + ft(ζ)
+ b

1 + ft(ζ)

1− ft(ζ)

)

L(0, ft(ζ))

with a = |τ(P ) − τ(Q)| and b = |τ(P ) + τ(Q) − 1|.
The next corollary is a specialization of the above proposition.

Corollary 3.2. Let L(t, ζ), ft(ζ) be as in Proposition 3.1, set gt(ζ) := f−1
t (ζ), and suppose

that τ(P ) = τ(Q) = 1/2 or equivalently a = b = 0. Then

• L(t, ζ) = L(0, ft(ζ)), that is, L(t, ζ) is subordinate to L(s, ζ) for s < t,
• gt(ζ) = ζe2tL(0,ζ) and ft(ζ) = ζe−2tL(t,ζ),

• ReL(t, ζ) = (log |ζ| − log |ft(ζ)|)/2t, t > 0 and ζ ∈ D \ {0}.
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Proof. Under the assumption here the subordination relation in Proposition 3.1 turns out to
be the exact subordination L(t, ζ) = L(0, ft(ζ)). This together with (3.5) implies that ġt(ζ) =
2gt(ζ)L(t, gt(ζ)) = 2gt(ζ)L(0, ζ) . This ODE can easily be solved as gt(ζ) = ζe2tL(0,ζ), implying
ζ = ft(ζ)e

2tL(0,ft(ζ)) = ft(ζ)e
2tL(t,ζ). The final assertion immediately follows. �

This allows us to prove some properties of µ̂t by analyzing ft(ζ) and/or gt(ζ) when τ(P ) =
τ(Q) = 1/2, but we give a more useful observation as the next proposition. The proposition
immediately follows from only (3.2) and (3.3). This means that the proof of the main result of
the present notes (Theorem 4.3) needs only a few pages.

Proposition 3.3. Under the same assumption as in Corollary 3.2, {2µ̂t/2}t≥0 is identical to the

one-parameter semigroup of probability distributions associated with a free unitary multiplicative

Brownian motion with initial distribution 2µ̂0.

Proof. Since µ̂t is symmetric, we have ψ(t, ζ) :=
∫

(−π,π]
ζe

√

−1θ

1−ζe
√

−1θ
(2µ̂t/2)(dθ) = L(t/2, ζ)− 1/2,

the moment generating function of the measure 2µ̂t/2. The PDE (3.2) can easily be transformed
into

ψ̇ + ζ(ψ + 1/2)ψ′ = 0. (3.9)

This is the PDE that the moment generating function of a free unitary multiplicative Brownian
motion satisfies, see e.g. the proof of [21, Proposition 10.8], and hence the desired assertion
follows as seen below. Let U be a unitary random variable with distribution 2µ̂0, which is freely
independent of {Ut}t≥0. Set ψ̃(t, ζ) := τ((I − ζUtU)−1 − I), ζ ∈ D, the moment generating

function of UtU . Then ψ̃ satisfies the same PDE (3.9). Write ψ(t, ζ) =
∑∞

n=1 cn(t)ζ
n, ψ̃(t, ζ) =

∑∞
n=1 c̃n(t)ζ

n. Developing (3.9) into power series as above we see that both the coefficients cn
and c̃n must satisfy that ḟ1 = − 1

2f1, ḟn = −n
2 fn −∑n−1

k=1 kfkfn−k (n = 2, 3, . . . ) with fn = cn

or c̃n. Since ψ(0, ζ) =
∫

(−π,π)
ζe

√

−1θ

1−ζe
√

−1θ
(2µ̂0)(dθ) = ψ̃(0, ζ), ζ ∈ D, one has cn(0) = c̃n(0) for

every n. Hence one can recursively show that
∫

(−π,π] e
√
−1nθ (2µ̂t/2)(dθ) = cn(t) = c̃n(t) =

τ((UtU)n). �

Remarks 3.4. (1) The above proposition enables us to derive detailed information about µt

from many existing results [1],[2, §§4.2],[21, §1] on free unitary multiplicative Brownian motions
(with the help of S-transform machinery, see e.g. [22, §3]) when τ(P ) = τ(Q) = 1/2. Moreover,
the recent work [24] generalizing Biane’s analysis [2, §§4.2] gives more detailed properties of µ̂t

and hence those of µt, though we omit to collect any result in the direction here.
(2) The above proposition also recaptures, as its specialization, the main theorem of [9]. In

fact, the free Jacobi process with parameter (λ, θ) = (1, 1/2) [7] is exactly our Xt (viewed as
a random variable in (QMQ, 1

τ(Q)τ)) with P = Q and τ(P ) = τ(Q) = 1/2. Hence the initial

distribution 2µ̂0 is the unit mass at θ = 0, and thus the probability distribution of the free
Jacobi process with parameter (λ, θ) = (1, 1/2) is exactly that of the free unitary multiplicative
Brownian motion via x = cos2(θ/2).

Remark 3.5. The following simple ‘liberation theoretic’ proof of the fact that UtPU
∗
t , Q are in

generic position for every t > 0 has been available so far: By [21, Corollary 1.7, Proposition 8.7]
d∗Ut:C

1⊗ 1 (see the notation there) exists in L2 for every t > 0, which implies, by [21, Corollary
8.6], that so does the liberation gradient j(Ut(CP +C(I −P ))U∗

t : CQ+C(I −Q)). Therefore,
by [21, Lemma 12.5] (together with Ut(CP + C(I − P ))U∗

t = CUtPU
∗
t + C(I − UtPU

∗
t )) we

conclude that UtPU
∗
t , Q are in generic position for every t > 0. This argument indeed shows

the following stronger result: UPU∗, Q are in generic position for any unitary U with finite
Fisher information F (U) < +∞ ([21, Definition 8.9]) which is freely independent of P,Q.
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4. Free Mutual Information and Orbital Free Entropy

To a given pair of projections P,Q we can associate four quantities: the liberation gradient
j(CP + C(I − P ) : CQ + C(I − Q)) (=: j(P : Q) for short), the liberation Fisher information
ϕ∗(CP+C(I−P ) : CQ+C(I−Q)) (=: ϕ∗(P : Q)), the mutual free information i∗(CP+C(I−P ) :
CQ+C(I−Q)) (=: i∗(P : Q)), all of which are due to Voiculescu [21], and the orbital free entropy
χorb(P,Q) [12]. Note that i∗(CP+C(I−P ) ;CQ+C(I−Q)) = i∗(CP+C(I−P ) : CQ+C(I−Q)),
see [21, Remarks 10.2 (c)], and hence it suffices to compute the latter quantity for our purpose.
According to the change of variables µt  µ̃t  µ̂t in §3 we need to reformulate Voiculescu’s
computation of ϕ∗(P : Q), [21, §12], as well as the previous computation of χorb(P,Q) essentially
due to Hiai and Petz [13].

For simplicity, write δ := δCP+C(I−P ) :CQ+C(I−Q), the derivation associated with CP +C(I−
P ) and CQ + C(I − Q) [21, §§5.3]. Let µ be the restriction of the probability distribution of
QPQ to (0, 1). Note that the measure µ is not changed if QPQ is replaced by PQP and that
µ is exactly 1

2ν in [21, §12]. Write a := |τ(P )− τ(Q)| and b := |τ(P ) + τ(Q)− 1| for simplicity.
If P,Q are in generic position, then by [21, §§12.1–12.6] one has, for n ≥ 1,

(τ ⊗ τ) ◦ δ (PQ)n = 2PV

∫ ∫

(0,1)2
xn(x− 1)

1

x− y
µ⊗ µ (dx, dy)

+ (a+ b)

∫

(0,1)

xn−1(x − 1)µ(dx) + b

∫

(0,1)

xn−1 µ(dx).

Here ‘PV’ is the sign of Cauchy principal value. With θ ∈ (0, π) 7→ x = cos2(θ/2) ∈ (0, 1) and
µ̃(dθ) := µ(dx) as in §3 we have, for n ≥ 1,

(τ ⊗ τ) ◦ δ (PQ)n = −2PV

∫ ∫

(0,π)2
cos2n−1(α/2) sin(α/2)

sinα

cosα− cosβ
µ̃⊗ µ̃ (dα, dβ)

− a

∫

(0,π)

cos2(n−1)(θ/2) sin2(θ/2) µ̃(dθ) + b

∫

(0,π)

cos2n(θ/2) µ̃(dθ).

(4.1)

Here we further suppose that µ has a density function h, i.e., µ(dx) = h(x) dx. Set h̃(θ) :=

h(cos2(θ/2)) sin(θ/2) cos(θ/2), and thus µ̃(dθ) = h̃(θ) dθ. Then the symmetrization µ̂ := 1
2 (µ̃+

µ̃ ◦ j−1) with j : θ ∈ (0, π) 7→ −θ ∈ (−π, 0) also has a density function, that is, µ̂(dθ) = ĥ(θ) dθ

with ĥ(θ) = (h(cos2(θ/2))| sin θ|)/4 = (h(cos2(θ/2))| sin(θ/2)| cos(θ/2))/2, θ ∈ (−π, π). The

Hilbert transform (or the harmonic conjugate) of ĥ is defined by

(Hĥ)(θ) :=
1

2π
PV

∫

ĥ(φ)

tan((θ − φ)/2)
dφ, θ ∈ T = [−π, π),

which exists a.e., see [18, III.C.2]. As in [17, §6.7, (6.86)] the restriction of Hĥ to (0, π) can be

re-written in terms of h̃ as follows.

(Hĥ)(θ) = − sin θ

2π
PV

∫

(0,π)

h̃(φ)

cos θ − cosφ
dφ, θ ∈ (0, π). (4.2)

Under the equivalent assumptions

ĥ ∈ L2(−π, π) if and only if h̃ ∈ L2(0, π),

or equivalently

∫

(0,1)

√

x(1− x)h(x)2 dx < +∞
(4.3)
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the Cauchy principal value in (4.2) converges in L2-norm by [18, I.E.4]. Define a function
ξ : (0, π) →M2(C) by

ξ(θ) :=
(

4π(Hĥ)(θ) − a tan(θ/2) + b cot(θ/2)
)

[

0 −1
1 0

]

With these preliminaries we have:

Lemma 4.1. Assume that P,Q are in generic position. If µ(dx) = h(x) dx such that h satisfies

(4.3), then ξ gives the liberation gradient j(CP + C(I − P ) : CQ + C(I − Q)) as long as

θ 7→ 4π(Hĥ)(θ) − a tan(θ/2) + b cot(θ/2) is integrable with respect to µ̃, and moreover

ϕ∗(CP + C(I − P ) : CQ + C(I −Q))

=

∫

(0,π)

2
∣

∣4π(Hĥ)(θ)− a tan(θ/2) + b cot(θ/2)
∣

∣

2
µ̃(dθ)

=

∫

(−π,π)

∣

∣2π(H(2ĥ))(θ) − a tan(θ/2) + b cot(θ/2)
∣

∣

2
(2µ̂)(dθ)

(4.4)

possibly to be +∞ under the same integrability assumption.

Proof. By the computation (4.1) together with (4.2) and the hypotheses (4.3), one can easily
see that τ(ξ(PQ)n) = (τ⊗τ)◦δ (PQ)n for n ≥ 1 (whose proof is just an translation of the proof
of [21, Proposition 12.7] into the present context), and conclude j(P : Q) = ξ by its definition
(see [21, Definition 5.4]) under the integrability assumption. Then the first equality in (4.4) is

immediate, and the second one follows from the fact that θ 7→ 4π(Hĥ)(θ)−a tan(θ/2)+b cot(θ/2)
is an odd function. �

Keep the notations µ, µ̃, µ̂, and a, b above. If P,Q are in generic position, then

χorb(P,Q) =

∫ ∫

(0,1)2
log |x− y|µ⊗ µ (dx, dy)

+ a

∫

(0,1)

log xµ(dx) + b

∫

(0,1)

log(1− x)µ(dx) + C;

otherwise −∞, where C is a unique constant determined by χorb(P,Q) = 0 when P,Q are freely
independent with keeping prescribed values of τ(P ), τ(Q). In particular, C = (log 2)/2 when
τ(P ) = τ(Q) = 1/2. See e.g. [15, Lemma 1.1],[12, Lemma 2.4]. In what follows we assume that
P,Q are in generic position, and, in particular, µ((0, 1)) = (1 − a − b)/2 by [15, (1.3)]. Since

| cosα − cosβ| = (|e
√
−1α − e

√
−1β | · |e

√
−1α − e−

√
−1β |)/2, with x = cos2(α/2), y = cos2(β/2)

we have
∫ ∫

(0,1)2
log |x− y|µ⊗ µ (dx, dy) =

∫ ∫

(0,π)2

(

log | cosα− cosβ| − log 2
)

µ̃⊗ µ̃ (dα, dβ)

=

∫ ∫

(0,π)2

(

log |e
√
−1α − e

√
−1β|+ log |e

√
−1α − e−

√
−1β | − 2 log 2

)

µ̃⊗ µ̃ (dα, dβ)

= 2

∫ ∫

(−π,π)2
log |e

√
−1α − e

√
−1β| µ̂⊗ µ̂ (dα, dβ) − log 2

2
(1 − a− b)2.

Here we used the fact that µ(0, 1) = µ̃(0, π) = µ̂(−π, π) = (1 − a − b)/2. With x = cos2(θ/2)
we have

∫

(0,1)

log xµ(dx) = 2

∫

(−π,π)

log |1 + e
√
−1θ| µ̂(dθ)− (1− a− b) log 2,
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∫

(0,1)

log(1− x)µ(dx) = 2

∫

(−π,π)

log |1− e
√
−1θ| µ̂(dθ)− (1− a− b) log 2.

Therefore, we conclude:

Lemma 4.2. If P,Q are in generic position, then

χorb(P,Q) = 2
{

∫ ∫

(−π,π)2
log |e

√
−1α − e

√
−1β | µ̂⊗ µ̂ (dα, dβ)

+ a

∫

(−π,π)

log |1 + e
√
−1θ| µ̂(dθ) + b

∫

(−π,π)

log |1− e
√
−1θ| µ̂(dθ)

}

+ Z

with a universal constant Z = Zτ(P ),τ(Q) depending only on τ(P ), τ(Q); otherwise −∞. In

particular, if τ(P ) = τ(Q) = 1/2, then the above formula of χorb(P,Q) simply becomes

χorb(P,Q) = 2

∫ ∫

(−π,π)2
log |e

√
−1α − e

√
−1β | µ̂⊗ µ̂ (dα, dβ).

Let us return to the original situation; thus we use the notations in §3. We can now reduce
our question to [21, Corollary 10.9] when τ(P ) = τ(Q) = 1/2.

Theorem 4.3. For any two projections P,Q with τ(P ) = τ(Q) = 1/2 one has

i∗(CP + C(I − P ) ;CQ+ C(I −Q)) = −χorb(P,Q) possibly with +∞ = +∞.

Proof. By Proposition 3.3 and [21, Corollary 1.7] 2µ̂t/2 has an L∞-density 2ĥ(t/2, θ) for every
t > 0. By [21, Corollary 10.9] we have

−
∫ ∫

(−π,π]2
log |e

√
−1α − e

√
−1β | (2µ̂0)⊗ (2µ̂0) (dα, dβ)

=
1

2

∫ +∞

0

∫

(−π,π]

(

2πH(2ĥ(t/2,−))(θ)
)2
2ĥ(t/2, θ) dθ dt.

(4.5)

By Lemma 4.1
∫

(−π,π)

(

2πH(2ĥ(t/2,−))(θ)
)2
(2ĥ(t/2,−))(θ) dθ = ϕ∗(Ut/2PU

∗
t/2 : Q)

holds for every t > 0 so that the right-hand side of (4.6) is identical to

1

2

∫ +∞

0

ϕ∗(Ut/2PU
∗
t/2 : Q) dt =

1

2

∫ +∞

0

ϕ∗(UtPU
∗
t : Q) 2 dt = 2 i∗(P : Q) = 2 i∗(P ;Q).

Assume first that P,Q are in generic position. By Lemma 4.2 the left-hand side of (4.5) is
identical to −2χorb(P,Q). Thus the desired identity follows. Assume next that P,Q are not in
generic position. By what we have done in §3 µ̂0 must have at least one atom at either 0 or π
with weight c1(0)− c1(+0) 	 0 or c0(0)− c0(+0) 	 0, respectively. Thus the left-hand side of
(4.5) must be +∞, and therefore, so is i∗(P ;Q). By definition χorb(P,Q) = −∞ in this case,
and hence the desired identity holds as +∞ = +∞. �

In closing we illustrate how one can use the subordination relation in Proposition 3.1.

Lemma 4.4. If H(t, ζ) (see §3) defines a function in ζ of Hardy class with exponent 3/2 (see
[18, IV.B.2]) at each t > 0, then i∗(CP + C(I − P ) ;CQ+ C(I −Q)) = −χorb(P,Q) holds.
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Proof. Let L(t, ζ) be as in §3, and write L̃(t, ζ) := L(t, ζ)+a 1−ζ
1+ζ + b

1+ζ
1−ζ . By the PDE (3.1) one

has ∂ReL̃
∂t (ζ) = ∂ReL

∂t (ζ) = − ∂
∂θ

(

ReL̃(ζ) · ImL(ζ) + ImL̃(ζ) · ReL(ζ)
)

with ζ = re
√
−1θ. Write

Σs(p, q) := 2
∫ ∫

(−π,π]2
log |1 − se

√
−1(α−β)| p(e

√
−1α) q(e

√
−1β) dα

2π
dβ
2π for simplicity. With the

Poisson kernel Pr(θ) the same trick as in the proof of [21, Proposition 10.8] shows that

Σs(Pr ∗ (µ̂t2 + aδπ + bδ0), Pr ∗ µ̂t2)− Σs(Pr ∗ (µ̂t1 + aδπ + bδ0), Pr ∗ µ̂t1)

=
1

2

∫ t2

t1

∫

(−π,π]

Im
(

2L(t, sre
√
−1θ) + a

1− sre
√
−1θ

1 + sre
√
−1θ

+ b
1 + sre

√
−1θ

1− sre
√
−1θ

)

× Im
(

2L(t, re
√
−1θ) + a

1− re
√
−1θ

1 + re
√
−1θ

+ b
1 + re

√
−1θ

1− re
√
−1θ

)

2ReL(t, re
√
−1θ)

dθ

2π

)

dt

+

∫ t2

t1

[

∫

(−π,π]

Im(L+ L̃)(t, sre
√
−1θ)ImL(t, re

√
−1θ)

× Re
(

a
1− re

√
−1θ

1 + re
√
−1θ

+ b
1 + re

√
−1θ

1− re
√
−1θ

) dθ

2π

]

dt

(4.6)

for every 0 < t1 < t2 <∞.

Since ReL(t, ζ)2 ≤ |H(t, ζ)|, the assumption here implies that µ̂t has an L3-density ĥ(t, θ),

i.e., µ̂t(dθ) = ĥ(t, θ) dθ, for every t > 0 (see [18, p.15]). We fix arbitrary 0 < t1 < t2 < +∞ for

a while. Set Mt1 := supr<1 ‖H(t, re
√
−1(−))‖3/2 < +∞ by assumption, where ‖ − ‖p denotes

the usual Lp-norm with respect to dθ rather than dθ/2π following [18]. By the subordination
relation in Proposition 3.1 with Littlewood’s subordination principle (see [8, Theorem 1.7]) one
has

‖ReL(t, re
√
−1(−))‖3 ≤ ‖H(t, re

√
−1(−))‖1/23/2 ≤M

1/2
t1 ; hence ‖ĥ(t,−)‖3 ≤M

1/2
t1 /2π (4.7)

for every t ≥ t1 and 0 ≤ r < 1. Note that

∥

∥

∥
ImL(t, re

√
−1(−))Re

(

a
1− re

√
−1(−)

1 + re
√
−1(−)

+ b
1 + re

√
−1(−)

1− re
√
−1(−)

)∥

∥

∥

3/2
≤ ‖H(t, re

√
−1(−))‖3/2 ≤Mt1

for every t ≥ t1 and 0 ≤ r < 1 by the subordination relation in Proposition 3.1 with Little-
wood’s subordination principle again. Using the Cauchy–Schwarz inequality (with respect to
Re(· · · ) dθ/2π dt) and then the Hölder inequality (with respect to dθ and exponents 3, 3/2) with
the help of M. Riesz’s theorem (see [18, p.91]) we see that the absolute value of the second term
of the right-hand side of (4.6) is not greater than

{

∫ t2

t1

[

∫

(−π,π]

|Im(L + L̃)(t, sre
√
−1θ)|2Re

(

a
1− re

√
−1θ

1 + re
√
−1θ

+ b
1 + re

√
−1θ

1− re
√
−1θ

) dθ

2π

]

dt
}1/2

×M3/4
t1

√

C3(t2 − t1)/2π

with a universal constant C3 > 0 (that comes from M. Riesz’s theorem) and moreover that this

converges to 0 as r ր 1 thanks to [18, p.7–8], (4.7), the continuity of Im(L + L̃)(t, ζ) in (t, ζ)

and Im(L+ L̃)(t,±s) = 0 (due to ĥ(−θ) = ĥ(θ)). By the subordination relation in Proposition
3.1 with Littlewood’s subordination principle again

∥

∥

∥
Im
(

2L(t, re
√
−1(−)) + a

1− re
√
−1(−)

1 + re
√
−1(−)

+ b
1 + re

√
−1(−)

1− re
√
−1(−)

)

2ReL(t, re
√
−1(−))

∥

∥

∥

3/2

≤ 4‖H(t, re
√
−1(−))‖3/2 ≤ 4Mt1

(4.8)
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for every t ≥ t1 and 0 ≤ r < 1, and we can easily confirm, with the help of facts in [18, p.9;
p.88–89], that the first term of the right-hand side of (4.6) converges to

1

2

∫ t2

t1

∫

(−π,π]

Im

(

2L(t, se
√
−1θ) + a

1− se
√
−1θ

1 + se
√
−1θ

+ b
1 + se

√
−1θ

1− se
√
−1θ

)

×
(

2πH(2ĥ(t,−))(θ) − a tan(θ/2) + b cot(θ/2)
)

2ĥ(t, θ) dθ dt

as r ր 1. Consequently, letting Z(s) := Zτ(P ),τ(Q) − 1−(a+b)2

4 log s we have

−
{

2

∫ ∫

(−π,π]2
log |1− se

√
−1(α−β)| (µ̂t1 + aδπ + δ0)(dα) µ̂t1 (dβ) + Z(s)

}

=
1

2

∫ t2

t1

∫

(−π,π]

Im

(

2L(t, se
√
−1θ) + a

1− se
√
−1θ

1 + se
√
−1θ

+ b
1 + se

√
−1θ

1− se
√
−1θ

)

×
(

2πH(2ĥ(t,−))(θ) − a tan(θ/2) + b cot(θ/2)
)

2ĥ(t, θ) dθ dt

−
{

2

∫ ∫

(−π,π]2
log |1− se

√
−1(α−β)| (µ̂t2 + aδπ + δ0)(dα) µ̂t2 (dβ) + Z(s)

}

.

(4.9)

Write k(t, θ) := 2πH(2ĥ(t,−))(θ) − a tan(θ/2) + b cot(θ/2) for simplicity. By (4.8) with [18,
p.9; p.88–89] one has

‖k(t,−) 2ĥ(t,−)‖3/2 ≤ 2Mt1/π (4.10)

for every t ≥ t1. By Lemma 4.1 with the aid of (4.7) and (4.10), and moreover by [21,
Proposition 10.11 (a)]

∫ t2

t1

∫

(−π,π]

k(t, θ)2 2ĥ(t, θ) dθ dt =

∫ t2

t1

ϕ∗(UtPU
∗
t : Q) dt ≤ 2i∗(Ut1PU

∗
t1 : Q) < +∞.

By the Hölder inequality, (4.7), (4.10) and M. Riesz’s theorem
∫ t2

t1

∫

(−π,π]

|2πH(2ĥ(t,−))(θ)| |k(t, θ)| 2ĥ(t, θ) dθ dt < +∞.

Since

a
∣

∣

∣
Im
(1− se

√
−1θ

1 + se
√
−1θ

)∣

∣

∣
+ b
∣

∣

∣
Im
(1 + se

√
−1θ

1− se
√
−1θ

)∣

∣

∣
≤ a| tan(θ/2)|+ b| cot(θ/2)|

≤ 2a tan(π/4) + 2b cot(π/4) + k(t, θ) + |2πH(2ĥ(t,−))(θ)|,
we easily see, by [18, p.9; p.88–89] again, that the first term of the right-hand side of (4.9)

converges to 1
2

∫ t2
t1
ϕ∗(UtPU

∗
t : Q) dt as s ր 1. By Lemma 4.2 with the aid of the first 5 lines

of [21, p.147] we finally get

−χorb(Ut2PU
∗
t2) +

1

2

∫ t2

t1

ϕ∗(UtPU
∗
t : Q) dt = −χorb(Ut1PU

∗
t1 , Q).

By [15, Theorem 2.1], [21, Proposition 10.11 (a)] and [12, Proposition 4.6] one has
∫ +∞

t1

−χorb(Ut2PU
∗
t2 , Q) dt2 ≤

∫ +∞

t1

ϕ∗(Ut2PU
∗
t2 : Q) dt2 = 2 i∗(Ut1PU

∗
t1 : Q) < +∞,

implying limt2ր+∞ χorb(Ut2PU
∗
t2 , Q) = 0. (This trick originates in a preprint version of [15].)

By [12, Proposition 2.5 (4), Proposition 4.6] one has limt1ց0 χorb(Ut1PU
∗
t1 , Q) = χorb(P,Q).

Hence we are done. �
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By (3.2) H(t, ζ) becomes the constant (1− (a+ b)2)/4 in the time stationary case; hence the
assumption of Lemma 4.4 is not strange. Here is a sample of application of Lemma 4.4.

Corollary 4.5. Assume that the measure µ0 (see §3) has an L3-density with respect to x(1 −
x) dx on [0, 1] and is supported in [α, β] such that α 	 0 if τ(P ) 6= τ(Q) and β � 1 if τ(P ) +
τ(Q) 6= 1. Then i∗(CP + C(I − P ) ;CQ+ C(I −Q)) = −χorb(P,Q) holds.

Proof. For simplicity, assume both a = |τ(P )− τ(Q)| 6= 0 and b = |τ(P ) + τ(Q)− 1| 6= 0. It is

easy to see that µ̂0 has an L3-density ĥ(0, θ) (with respect to dθ); hence L(0, ζ) is a function
in ζ of Hardy class with exponent 3 by M. Riesz’s theorem with a standard fact (see [18,
p.9; p.88–89]). Moreover, the assumption here implies that L(0, ζ) has analytic continuation
across both ζ = ±1. Since limζ→±1 L(0, ζ) = 0, L(0, ζ) admits a power series expansion without
constant term around ζ = ±1. Thus H(0, ζ) is bounded in some neighborhoods at both ζ = ±1.
It is plain to show that H(0, ζ) is a function in ζ of Hardy class with exponent 3/2. Hence
the assertion follows thanks to the subordination relation in Proposition 3.1 with Littlewood’s
subordination principle (see [8, Theorem 1.7]). �

The above fact suggests that the question should be affirmative without assuming τ(P ) =
τ(Q) = 1/2. Only missing piece in our attempt is apparently a more detailed study of H(t, ζ)
and/or the conformal transformations ft(ζ); thus the question comes down to a study of
Loewner–Kufarev equations.
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