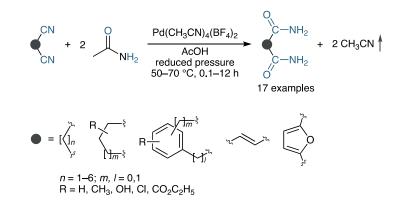
Transfer Hydration of Dinitriles to Dicarboxamides

Asuka Naraokaª

Hiroshi Naka*b

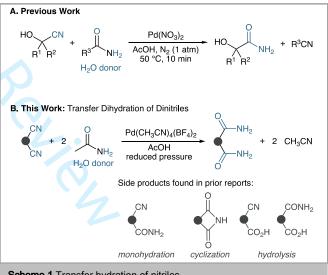

^a Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

^b Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

* indicates the main/corresponding author

h naka@nagoya-u.jp

Published as part of the Cluster Metathesis beyond Olefins

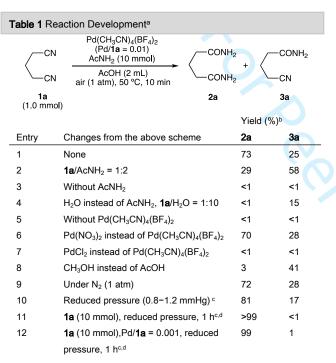

Received Accented Published online: DOI:

Abstract We present a robust method for double transfer hydration of dinitriles to afford diamides. The transfer hydration of 1, n-dinitriles (n = 1-6) proceeds smoothly in the presence of a palladium(II) catalyst with acetamide as a water donor, affording the corresponding diamides in moderate to high yields, without involving significant side reactions such as mono-hydration or cyclization. The equilibrium was shifted in the forward direction by removing co-produced acetonitrile under reduced pressure.

Keywords Hydration, Nitriles, Palladium, Amides, Diamides

Dicarboxamides are important synthetic intermediates for fine chemicals and show interesting physical properties due to their hydrogen-bonding ability.^{1,2} The double hydration of 1,*n*dinitriles is a powerful method for producing 1,n-diamides.³ While this simple approach has been successful using typical homogeneous⁴ and heterogeneous⁵ catalysts, the substrate scope for 1,2- and 1,3-dinitriles remains limited due to incomplete conversions and the occurrence of side reactions. In the course of our study on the catalytic selective hydration of unsaturated compounds,6 we recently found that palladium(II)-catalyzed transfer hydration of cyanohydrins proceeds efficiently with carboxamides as a water donor (Scheme 1A).7 We expected that the double hydration of dinitriles to diamides could be achieved by extending this Pd-catalyzed transfer (de)hydration catalysis.^{8,9} Here we show that the double transfer hydration of dinitriles to diamides proceeds well in the presence of a Pd catalyst with acetamide as a water donor under reduced pressure (Scheme 1B). Unlike previous methods, the present protocol does not suffer from incomplete reaction (monohydration to afford cyanoamides) or side reactions such as cyclization to form

carbocyclic imides and hydrolysis to cyano- or aminocarbonylcarboxylic acids.



Scheme 1 Transfer hydration of nitriles

Building on our previous work,7 we initially focused on the selective transfer hydration of 1,3-dinitriles to afford 1,3diamides, for which no practical method currently exists. Using glutaronitrile (1a) as a model substrate for 1,3-dinitriles, we optimized the reaction conditions for hydration of 1a to 1,3diamide 2a (Table 1). Table 1, entry 1 shows the conditions and results optimized for a closed reaction vessel containing air (1 atm). The transfer hydration of **1a** with acetamide (AcNH₂) in the presence of $Pd(CH_3CN)_4(BF_4)_2$ (Pd/1a/AcNH₂ = 0.01:1:10) in acetic acid (2 mL) proceeded smoothly at 50 °C. ¹H NMR analysis of the reaction mixture indicated the complete consumption of 1a and the formation of the desired diamide 2a (73%) and monohydrated 3a (25%). The reaction with a smaller amount of acetamide $(1a/AcNH_2 = 1:2)$ resulted in incomplete conversion of 1a and lower yields of 2a (29%) and 3a (58%, entry 2). 2a was hardly obtained without acetamide or when water was used in

place of acetamide (entries 3 and 4). A Pd catalyst was prerequisite (entry 5). $Pd(NO_3)_2^7$ was as reactive as $Pd(CH_3CN)_4(BF_4)_2$ (entry 6) but $PdCl_2$ was totally unreactive (entry 7). The reaction in methanol was much slower than that in acetic acid (entry 8).

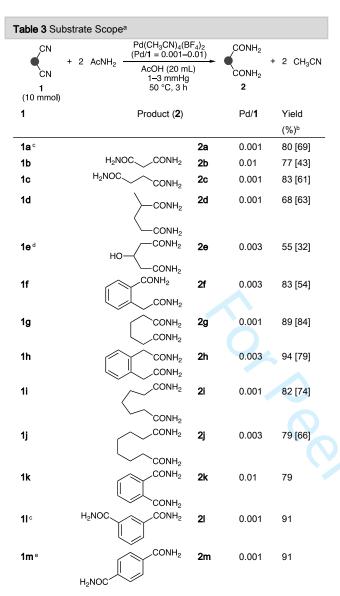
While reaction under a nitrogen atmosphere was as effective as that in air (Table 1, entry 9 vs entry 1), the product yield much increased when the pressure was reduced (entry 10). Under reduced pressure, acetic acid and coproduced acetonitrile (byproduct) were removed from the reaction medium, leaving a solid crude mixture that contained **2a** in 81% yield. This protocol is more effective when all the volatile components were removed by continuous evacuation for 1 h (10-mmol scale, entry 11). Under such conditions, the catalyst loading was successfully reduced (Pd/**1a** = 0.001:1, entry 12). No obvious side reactions were observed throughout the experiments in entries 1 to 12.

^aPd/**1a**/AcNH₂ = 0.01:1:10, in a closed reaction vessel. ^bDetermined by ¹H NMR using mesitylene as an internal standard. ^cReduced pressure by continuous evacuation (see reactor A in Table 2 graphic). ^dAcOH (20 mL), 0.8–1.2 mmHg.

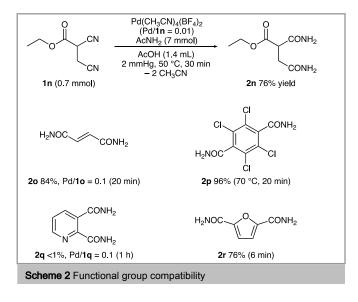
The higher efficiency under reduced pressure (Table 1, entry 10) as compared with that at 1 atm (entries 1 and 9) is likely to be due to two factors: (1) the equilibrium of the reversible transfer hydration reaction would be shifted to the right by the removal of the coproduced acetonitrile under reduced pressure;¹⁰ (2) the reaction rate at the late stage of the reaction would be increased because of the higher concentration of the Pd catalyst (and **1a** or **3a**) resulting from removal of the solvent (acetic acid). Unlike the cyanohydrin transfer hydration,⁷ the removal of acetonitrile is necessary for achieving high product yield of **2a** because the transfer hydration of **1a** to **2a** is energetically almost neutral. Analysis of the pressure dependence indicated that the solvent removal is critical (Table 2). Whereas transfer hydration of **1a** at 124 mmHg (continuous evacuation with a diaphragm pump, Table 2, entry 1) gave a

similar result with that at 760 mg (1 atm, closed, t = 10 min, Table 1, entry 1), product yields were higher under lower-pressure conditions (56 and 0.8–1.2 mmHg) where the reaction mixtures were concentrated to form solidified residues (entries 2 and 3). As compared with these experiments using a typical reaction setup (reactor A, Table 2, entries 1–3), the solvent removal was more efficient and the product yields were even higher at 80–120 and 54–58 mmHg when N₂ was continuously blown to the reaction mixture through a needle during the evacuation (reactor B, Table 2, entries 4 and 5).¹¹

Table 2 Pressure Dependence in the Transfer Hydration of 1a ^a				
		Pressure	Yield of 2a (%) ^b	
Entry	Reactor	(mmHg)	<i>t</i> = 10 min	<i>t</i> = 15 min
1	А	124	71	74
2	А	56	80	80
3	А	0.8-1.2	81	>99
4	В	80-120	>99	>99
5	В	54-58	97	>99
Reactor A pump manometer		Reactor B mano	➡ pump meter	

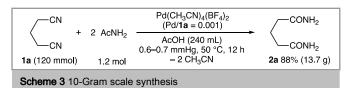

^aConditions are analogous to those in Table 1, entry 1 under otherwise noted.

^bDetermined by ¹H NMR using mesitylene as an internal standard.


The scope of this method is summarized in Table 3.^{12,13} The transfer hydration of **1a** at 10 mmol scale under the optimized conditions for 2 h (sufficient time to completely remove volatile components), followed by washing the crude mixture with acetonitrile and drying under reduced pressure, afforded the desired diamide **2a** in 80% yield (1.04 g) with minor contamination with acetamide (27 mg, as determined by ¹H NMR). Recrystallization from methanol gave pure **2a** in 69% overall yield. The decreased yield as compared with that in Table 1, entry 12 is due to the loss of product during the purification.

This protocol proved effective for the transfer hydration of commercially available aliphatic dinitriles with a C1 (1b), C2 (1c), C3 (1d-f), C4 (1g and 1h), C5 (1i), or C6 (1j) linkage, as well as aromatic dinitriles 1k-m (Table 3). As the diamides are less soluble than acetamide in typical solvents (e.g. acetonitrile, THF, and water), washing of the crude mixture with these solvents and drying under reduced pressure yielded diamides 2a-m with only minor contamination with acetamide. They were further purified by recrystallization to give analytically pure products. Most of these dinitriles uniformly underwent the transfer hydration within 2-3 h to give the corresponding diamides 2 under optimized conditions (Pd/1 = 0.001-0.003). 1,3-Dinitrile 1e bearing a hydroxyl group could be hydrated to diamide 2e. The transfer hydration reactions of dinitriles 1b and 1k were conducted with higher Pd loadings (Pd/1 = 0.01) because the hydration of 1b was slower and that of 1k involved side reactions under the optimized conditions (Pd/1 = 0.001). In order to ensure dissolution of poorly soluble 1m in AcOH, transfer hydration of 1m was conducted at 70 °C.

Synlett



^aConditions: Pd/**1**/AcNH₂ = 0.001:1:10.¹² ^bYields of products with minor contamination by acetamide as determined by NMR. Overall yields after recrystallization are given in brackets. ^c2 h. ^d3.67 mmol scale. ^e70^oC, 1.5 h.

Further studies on the functional group compatibility were conducted on smaller scales (Scheme 2). The presence of ethyl ester (**1n**), substituted olefin (**1o**), aryl chloride (**1p**), and furyl (**1r**) moieties were found to be well tolerated whereas a pyridine functionality in **1q** significantly inhibited the transfer hydration.

Furthermore, the transfer hydration protocol was scalable to 10-gram scale (Scheme 3): the reaction of 120 mmol **1a** followed by recrystallization from methanol gave **2a** in 88% yield (13.7 g). The reaction mixture was evacuated for a longer time (12 h) to remove the solvent and coproduced acetonitrile completely.

In summary, we have developed a robust, scalable method for double transfer hydration of dinitriles. The transfer hydration of 1,*n*-dinitriles (n = 1-6) proceeds smoothly in the presence of a palladium(II) catalyst with acetamide as a water donor, affording the corresponding diamides in high yields. Notably, the current protocol is the first to achieve efficient conversion of 1,3-dinitriles to 1,3-diamides without significant side reactions.

Funding Information

H.N. is grateful for financial support from JSPS (KAKENHI Grant Number JP17K05859) and Toyota Physical and Chemical Research Institute (Toyota Riken).

Acknowledgment

Generous support and warm encouragement from Profs. R. Noyori and S. Saito (Nagoya U.) are acknowledged. The authors are grateful to the reviewers for their constructive suggestions.

Supporting Information

YES

Primary Data

NO

References and Notes

- (a) Chen, P.; Gao, M.; Wang, D.-X.; Zhao, L.; Wang. M.-X. *J. Org. Chem.* **2012**, *77*, 4063–4072. (b) Hu, H.-J.; Chen, P.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X.; Wang. M.-X. Org. Chem. Front. **2019**, *6*, 808–812.
- (2) (a) Gellman, S. H.; Dado, G. P.; Liang, G.-B.; Adams, B. R. J. Am. Chem. Soc. 1991, 113, 1164–1173. (b) G.-B. Liang, J. M. Desper, S. H. J. Am. Chem. Soc. 1993, 115, 925–938.
- (3) (a) Ahmed, T. J.; Knapp, S. M. M.; Tyler, D. R. Coord. Chem. Rev. 2011, 255, 949–974. (b) García-Álvarez, R.; Crochet, P.; Cadierno, V. Green Chem. 2013, 15, 46–66.
- (4) (a) Murahashi, S.-I.; Sasao, S.; Saito, E.; Naota, T. *Tetrahedron* 1993, 49, 8805–8826. (b) Chin, C.-S.; Kim, S.-Y.; Joo, K.-S.; Won, G.; Chong, D. *Bull. Korean Chem. Soc.* 1999, 20, 535–538. (c) Ghaffar, T.; Parkins, A. W. *J. Mol. Catal. A* 2000, 160, 249–261. (d) Goto, A.; Endo, K.; Saito, S. *Angew. Chem. Int. Ed.* 2008, 47, 3607–3609. (e) Crestani, M. G.; García, J. J. *J. Mol. Catal. A* 2009, 299, 26–36. (f) Kiyota, S.; Kobori, T.; Soeta, H.; Ichikawa, Y.-I.; Komine, N.; Komiya, S.; Hirano, M. *Polyhedron*, 2016, 120, 3-10. (g) Tomás-Mendivil, E.; Francos, J.; González-Fernández, R.; González-Liste, P. J.; Borge, J.; Cadierno, V. *Dalton Trans.* 2016, 45, 13590–13603.

- (5) (a) Breuilles, P.; Leclerc, R.; Uguen, D. *Tetrahedron Lett.* 1994, *35*, 1401–1404. (b) García-Garrido, S. E.; Francos, J.; Cadierno, V.; Basset, J.-M.; Polshettiwar, V. *ChemSusChem* 2011, *4*, 104–101.
- (6) (a) Tachinami, T.; Nishimura, T.; Ushimaru, R.; Noyori, R.; Naka, H. *J. Am. Chem. Soc.* 2013, *135*, 50–53. (b) Matsuoka, A.; Isogawa, T.;
 Morioka, Y.; Knappett, B. R.; Wheatley, A. E. H.; Saito, S.; Naka, H. *RSC Adv.* 2015, *5*, 12152–12160. (c) Ushimaru, R.; Nishimura, T.;
 Iwatsuki, T.; Naka, H. *Chem. Pharm. Bull.* 2017, *65*, 1000–1003.
- (7) Kanda, T.; Naraoka, A.; Naka, H. J. Am. Chem. Soc. 2019, 141, 825– 830.
- (8) For Pd-catalyzed conversion of nitriles with amides, see: (a) Maffioli, S. I.; Marzorati, E.; Marazzi, *Org. Lett.* 2005, *7*, 5237–5239.
 (b) Dubey, P.; Gupta, S.; Singh, A. K. *Dalton Trans.* 2017, 46, 13065–13076.
- (9) For acceptor-controlled transfer dehydration of amides, see: Okabe, H.; Naraoka, A.; Isogawa, T.; Oishi, S.; Naka, H. Org. Lett. 2019, 21, 4767–4770.
- (10) (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–102. (b) Bhawal, B. N.; Morandi, B. Angew. Chem. Int. Ed. 2019, 58, 10074–10103.
- (11) Reactor A was used throughout the experiments unless otherwise noted.
- (12) A typical procedure for double transfer hydration is as follows: To a 500-mL rounded flask equipped with a stirring bar and a 2-necked Teflon stopcock were added glutaronitrile (1a, 942.1 mg, 10.0 mmol), acetamide (5900.5 mg, 99.9 mmol), and acetic acid (20 mL). The mixture was stirred at 50 °C for 30 min under open air (1 atm). Pd(CH₃CN)₄(BF₄)₂ (4.52 mg, 0.0102 mmol) was added to start the reaction, and the mixture was stirred at 50 °C for 2 h under reduced pressure (1–3 mmHg). The internal pressure was continuously reduced by means of a belt drive rotary vane vacuum pump (SATO VAC INC. USW-50) equipped with a 450-mL liq. nitrogen trap (for acetonitrile and acetic acid). The resulting pale-yellow crude mixture was washed with acetonitrile (50 mL) with

sonication for 1 h to remove acetamide. The precipitate was collected by filtration on a membrane filter (Merck Millipore JHWP04700 0.45 μ m pore size, hydrophilic PTFE membrane, 47 mm diameter) and dried *in vacuo* at 120 °C overnight to afford glutaramide (**2a**, 1043.3 mg, 80% yield) with minor contamination with acetamide (27.0 mg, as determined by ¹H NMR). The product (499.7 mg) was recrystallized from methanol to give analytically pure **2a** (418.9 mg, 69% overall yield).

(13) Analytical data of selected products: (a) 2a: white solid; Mp 181-182 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 1.67 (quin, J = 7.6 Hz, 2H), 2.03 (t, J = 7.6 Hz, 4H), 6.69 (bs, 2H), 7.24 (bs, 2H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆) δ 21.3, 34.6, 174.5; IR (KBr) 3381 (NH), 3190 (NH), 1650 (CO) cm⁻¹; HRMS (FAB) calcd for [C₅H₁₀N₂O₂Na⁺] ([M+Na⁺]) 153.0640, found 153.0633. (b) 2d: white solid; Mp 153–154 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 0.98 (d, J = 6.9 Hz, 3H), 1.45-1.51 (m, 1H), 1.62-1.69 (m, 1H), 1.95-2.09 (m, 2H), 2.19 (sext, J = 6.9 Hz, 1H), 6.69 (bs, 2H), 7.23 (bs, 2H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆) & 17.8, 29.3, 32.9, 39.0, 174.0, 177.5; IR (KBr) 3396 (NH), 3210 (NH), 1660 (CO) cm⁻¹; HRMS (FAB) calcd for [C₆H₁₂N₂O₂Na⁺] ([M+Na⁺]) 167.0796, found 167.0796. (c) **2e**: white solid; Mp 157-159 °C; ¹H NMR (600 MHz, DMSO-d₆) δ 2.16-2.17 (m, 4H), 4.15 (dquin, J = 6.1, 4.8 Hz, 1H), 4.87 (d, J = 4.8 Hz, 1H), 6.81 (bs, 2H), 7.28 (bs, 2H); ¹³C{¹H} NMR (150 MHz, DMSO-d₆) δ 42.8, 65.1, 172.8; IR (KBr) 3411 (NH), 3184 (NH), 1651 (CO) cm⁻ ¹; HRMS (FAB) calcd for [C₅H₁₀N₂O₃Na⁺] ([M+Na⁺]) 169.0589, found 169.0581. (d) 2f: white solid; Mp decomp. >150 °C; ¹H NMR (600 MHz, DMSO-d₆) δ 3.59 (s, 2H), 6.99 (bs, 1H), 7.27-7.30 (m, 2H), 7.38 (dt, J = 7.6, 1.4 Hz, 1H), 7.43 (bs, 1H), 7.47 (dd, J = 7.9, 1.7 Hz, 1H), 7.68 (bs, 1H), 8.22 (bs, 1H); ¹³C{¹H} NMR (150 MHz, DMSO d_6) δ 39 (overlapped with DMSO- d_6), 126.4, 128.0, 129.6, 130.4, 134.0, 136.8, 170.7, 172.8; IR (KBr) 3394 (NH), 3195 (NH), 1650 (CO) cm⁻¹; HRMS (FAB) calcd for $[C_9H_{10}N_2O_2Na^+]$ ([M+Na⁺]) 201.0640, found 201.0632.

review