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Abstract

Recently, robots have been developed for aiming to replace heavy duty work by human

being, and demonstration experiments have been conducted. On the other hand,

we are interested in the robot to be a partner for human beings. When considering

technologies to make the robot be the partner, is is considered that current robots are

missing abilities of motion generation and motion support. Human beings can generate

their action from a symbolized action purpose like “Walk”, and human beings can

support the other people without disturbing the motion of the other people. Since a

biological information processing structure is a basis of human activities, the biological

information processing structure will be a key factor for the robot to acquire the ability

of the motion generation and the motion support.

In this study, the biological information processing structure is modeled as a hi-

erarchical control structure called Neuro-synergy model. Neuro-synergy model has

two features: top-down process and bottom-up process. In the top-down process, the

motion is generated by the symbolized action purpose being gradually divided into

high-dimensional detail control signals as layers goes down. In the bottom-up process,

control signals in each layer forms feedback control loops, and the feedback control

loops adjust the control signals in each level to adapt the body to the environment.

The purpose of Ph.D. dissertation is to establish, based on Neuro-synergy model,

the robot motion generation method to automatically generate the detail control sig-

nals from the symbolized action purposes and the human motion support method to

enhance the motion of human beings, especially post-stroke patient. By focusing on

a scheme of Neuro-synergy model, that is, the top-down process and the bottom-up

process, we address it from both the robot side and the patient side.
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From the robot side, by designing feedback control loops by a biological learning

method and the symbolized action purpose designed by a physical feature of the robot,

a controller imitating Neuro-synergy model is developed. The designed controller is

applied to a balance control of a two DoF inverted pendulum, as the result, the pen-

dulum become robust against huge disturbance adjusting the control signals by the

feedback control loops. The controller is applied to a walking control of a humanoid

robot, as the result, the robot can walk forward/backward and turn left/right adjusting

the symbolized action purpose with maintaining the balance by the feedback control

loops. These results show that it is important for the robot to generate the motion

by simultaneous activation of the feedback control loop and the symbolized action

purpose.

From the post-stroke patient side, it is established that the support method that

promotes patient motions by intervening the feedback control loops of the post-stroke

patient. At first, a rehabilitation robot is designed to promote a grasping motion of the

patients by intervening the feedback control loops and inducing a grasping reflex. As

the result, the robot succeeds in promoting the patient’s grasping motion by intervening

the feedback control loops. Next, the support method is extended for more general

motion, and a robot control scheme for the support is established theoretically. As a

result, designed controller can control a walking motion of a lower limb exoskeleton

robot to promote the motion of a subject without disturbing the subject’s motion.

These results indicate that it is important to intervene the feedback control loops

when supporting the motion of the patient.

Finally, from the results of the motion generation study and the motion support

study, it is confirmed that simple functional actions can be realized by intervening the

feedback control loops in both robots and post-stroke patients. Furthermore, it can be

expected that more complex functional actions can be realized by integrating multiple

simple functional actions with top-down processes. If the robots and human beings

share the symbolized action purpose and can generate appropriate motions not only

according to the environment but also each other’s motions, the robots will achieve

better support in their interactions.
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Chapter 1

INTRODUCTION

1.1 Abstract history of robotic

Current robot is a good partner for helping people?

There is not so long history in a robotics compared with sciences such as astronomy

or mathematics that exist before christ. At least, a word “robot” does not exist

until 1920. It is said that “robot” was firstly used in a play called R.U.R.(Rossum’s

Universal Robots) written by Karel C̆apek in 1920. Robots in this play had been

written as human-like objects without emotions that work instead of human beings.

About 50 years after this play, automatic machines working instead of human beings

started to be used in factories. Especially in Japan, Kawasaki Heavy Industries Ltd.

made first industrial robot in 1968 [1], which had a five degree of freedom arm and

could move objects below 12 [kg](see Fig. 1.1(a)). While the industrial robots had

achieved commercial success, many researchers tried to develop humanoid robots to

enrich human life.

In 1973, first full-scale humanoid robot is completed in the world. Waseda university

launched WABOT project in 1967, and through researches on bipedal walking robot

and arm robot, WABOT-1 was completed in 1973(see Fig. 1.1(b)), which could realize

bipedal walking, object recognition, and object grasping. After succeeding the walking

byWABOT-1, researches about the bipedal walking robot increased in the world [2–11],

but those robots had not achieved smooth and stable bipedal walking. It was considered

1
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(a) Kawasaki-Unimate 2000(1968) (b) WABOT-1(1973) (c) P2(1996)

Fig. 1.1: Robots at the dawn of Japanese robotics. (a) Kawasaki-Unimate 2000 in 1968(https://www.khi.co.jp/news/

detail/20101020-1.html). (b) WABOT-1 in 1973(http://www.humanoid.waseda.ac.jp/booklet/kato_2-j.html). (c)

P2 in 1996(https://www.honda.co.jp/ASIMO/kids/iam/ayumi/p2/).

to be impossible for the robot to smoothly and stably walk for a long time. In 1996,

a humanoid robot P2 impacted robotic researchers.

P2 [12] was developed by Honda Motor Co., Ltd. without any publishing in 1996(see

Fig. 1.1(c)). P2 firstly accomplished smooth and stable bipedal walking and surprise

researchers and the public. It is thought that the reason why P2 could realize the

smooth and stable walking is that a project could reach a certain level of maturity

within a project team. In terms of academic novelty, it is difficult for researchers to

keep doing the same thing at universities. From that point of view, the humanoid

robot like P2 could only be created by a company, we consider. In fact, regardless of

software, hardware configuration of P2 was different from past humanoid robots.

First, actuators with a strain wave gear mechanism were used in P2’s joins instead

of a planetary gear mechanism used in academic humanoid robots. The actuators with

the strain wave gear mechanism have a few backlashes compared with the actuators

with the planetary gear mechanism that were used in the humanoid robot before P2.

In addition to that, it is said that Honda ordered custom-made strain wave gear mech-

anisms that could generate high torque output. Second, accelerometers and gyroscopes

were used to detect the change of the posture. In addition to that, six-axis force sen-

sors were used in foots of the robot to detect the ground reaction force. It is said that
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the sensors were also custom-made force sensors that could withstand landing impact

during walking. After succeeding P2, even though the design drawing was not dis-

tributed, similar robots were developed one after another, and these two elements, the

actuator with the strain wave gear mechanism and multiple sensors, became standard

configurations of the humanoid robot now.

There are many research institutes and laboratories around the world developing

robots including semi-humanoid robots. National Institute of Advanced Industrial Sci-

ence and Technology(AIST) has developed humanoid robots(HRP series [13–21]) for

working at construction sites and danger places alternative to human beings. Honda

continued to improve P2 and produced that famous ASIMO [22](see Fig. 1.2(b)). Toy-

ota Motor Corporation also has developed a humanoid robot and semi-humanoid robots

that are able to play wind instruments [23], be able to follow the action of human be-

ings [24], and aim at wide support for assistance, independence, and daily life [25]. In

university laboratories also, humanoid robots about 30 [cm] in total height have been

developed for verifying gait algorithms, communicate algorithm, or so on. As for the

production of robots, it is considered that the ripening period has been reached, but

the ability of robots to perform tasks like human beings is not as high as the public

expected. It was showed in DARPA robotics challenge.

Reflecting the 2011 Tohoku earthquake and tsunami, Defense Advanced Research

Projects Agency(DARPA) organized a robotics challenge in 2015. DARPA Robotics

Challenge(DRC) was a competition in which robotics researcher around the world could

participate. Each team had to prepare a humanoid robot that could autonomously

perform a part of tasks when the robot could not get control commands from an

operator because of jamming. There were eight tasks that robots performed, which

were (1)driving a car, (2)getting out of the car, (3)opening a door and entering a

building, (4)opening a valve, (5)drilling a hole on a wall with an electric saw, (6)getting

over a rubble, (7)going up a stairs, and (8)a task not notified in advance. These tasks

were not so difficult, which take from one minute to five minutes if human beings

performed these. However, almost robots had taken over 40 minutes to accomplish the

tasks [26]. Main reason of it is that the robots needed to measure around environment

to update the environmental model before moving, and it took about 15 min between
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actions. You can see it in a video [26]. In addition to that, some robots had been unable

to act because of lost balance or wrong movements [27]. These robot’s behaviors and

fails in DRC indicate that current robots are good at following pre-decided actions and

not good at generating and modifying actions in the interaction with the environment

like living things.

1.2 Research motivation

It is no exaggeration to say that the 2011 Tohoku earthquake and DRC drive the de-

velopment of robots that could be used in real environment. Atlas [28](see Fig. 1.2(a))

is a humanoid robot developed by Boston dynamics, and it had been developed to

rescue in the disaster sites and work in damaged nuclear power plants. At the time of

this writing, Atlas has realized running and continuously jumping to a step of 40 [cm]

height by one foot. In addition to that, Atlas can do back-flip like gymnasts, and a

vibration absorbing structure and control is astounding. These findings lead to de-

velop a mobile box handling robot called Handle [29] that has one arm, two legs, and

wheels to pick up and move under 15 [kg] box. Boston dynamics has developed also a

quadruped walking robot called BigDog and SpotMini [30], and these have extremely

high stability against disturbance and the motor function to go up/down stairs. At

the time of this writing, demonstration experiments have been conducted by using

SpotMini in the building sites in Japan.

Honda finished developing ASIMO series and has developed new humanoid robot

called E2-DR [31–36]. E2-DR has been developed in order to work on the disaster site,

which can switch biped walking and quadruped walking like a gorilla respond to the

extent of stability and can climb the ladder. AIST has developed HRP-5P [19–21] that

is the latest version of the HRP series and has been developed to conduct the heavy-

duty work and working in a dangerous place instead of human beings. HRP-5P not

only has superior hardware but also advanced robot control method consisting of object

recognition and whole-body motion plan and could realize construction of gypsum

board without help from human beings. These robots achieved multi tasks thanks to

high objective recognition technology and machine learning technology, however these
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(a) Atlas (b) ASIMO (d) Pepper(c) RIBA (e) Google Home (f) Roomba

Fig. 1.2: Examples of utilitarian robot, symbiosis robot, and household robot. (a) Atlas(https://www.bostondynamics.

com/atlas). (b) ASIMO(https://www.honda.co.jp/ASIMO/history/asimo/index.html). (c) Pepper(https://www.

softbankrobotics.com/us/pepper). (d) RIBA(http://rtc.nagoya.riken.jp/RIBA/). (e) Google Home(https://

store.google.com/jp/product/google_home). (f) Roomba(http://www.irobot-jp.com/roomba/980/).

”utilitarian” robots do not enrich our daily life drastically because these robots are not

designed to live with human beings.

On the other hand, there are robots designed on the assumption that the robots

have been used in the environment with human beings. We will call these robots as

”symbiosis robot”. LBR iiwa [37] is seven degree of freedom arm robot developed

by KUKA. LBR iiwa has joint torque sensors in each joint that can detect abnor-

mal contact and immediately reduce arm’s speed and force, making it possible that

human-robot collaboration work in a workspace. FRANKA EMIKA also has devel-

oped a similar seven DoF arm robot called Panda [38] that can sensitively detect

abnormal contact force and stop its motion. Human Support Robot(HSR) [25] devel-

oped by TOYOTA is a single arm robot, and this robot also has good force control

system achieving transferring and exchanging objects like PET bottles. RIBA [39](see

Fig. 1.2(c)) is a care support robot developed by RIKEN. RIBA was developed to

transfer care receivers between a bed and a wheelchair instead of care givers. By using

soft control, distributed information processing, and back drivability of actuators, it

can flexibly respond to the changes of the position, the posture and environment of the

care receivers. PARO [40–43] developed by AIST is a therapy robot imitating a baby

seal, and it is said that using PARO can achieve a same effect as an animal therapy.

In the United States, PARO is recognized as a medical equipment for a neurological

therapy. TOYOTA has developed a robot called Pocobee [44] that monitors a healthy

of aged people and encourages a daily conversation. Pepper [45–47](see Fig. 1.2(d))
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Fig. 1.3: The frequency of interaction versus the number of functions between human and several types of robots.

Current utilitarian robots have multi functions but interact less frequency with human beings. Current symbiosis

robots have a less functions than the utilitarian robots but interact more frequency with human beings than the

utilitarian robots. Current household robots interact have a less functions than the utilitarian robots but often interact

with human beings, but these functions are limited. The partner robot should interact with human being so often and

have multi functions.

is a semi-humanoid robot developed by SoftBank Robotics, and it is said that Pepper

has an ability to estimate an emotion of people by using voice tones and expressions

of people. Pepper is used for mainly dealing with customers in restaurants, car shops,

and so on. The feature of these robots is that their functions are narrowed down than

the utilitarian robot instead of working close to human beings.

The function of robots interacting with human beings with higher frequency than

the symbiosis robot, such as household robot, is more limited than the symbiosis

robot. Smart speakers [48–51](see Fig. 1.2(e)) are, simply speaking, personal computers
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that can be operated by conversation. Significant improvements in speech recognition

and speech synthesis technology by the development of machine learning technology

have made it possible for smart speakers to withstand everyday use. Roomba [52](see

Fig. 1.2(f)) may be the most famous robot vacuum cleaner in the world. It realizes

efficient cleaning with a map of a living room made by SLAM technique. The more

people attempt to develop the robot that can work closer to human beings, the more

limited the function of the robot.

The robots working for enriching the human life should have the ability to perform

various tasks, especially to share same objective and to help human beings in order to

achieve the objective. When the robot acquires the ability to share same objective and

help human beings, that robot will be called as “partner robot”. The relationship of

each robot we consider is shown in Fig. 1.3. From the fact that there is no robot that

can share the objective and help us, the partner robot is considered to be missing. Our

research motivation is to develop the robot can be a good partner for helping people.

In case of human beings, we can naturally help people unlike robots. For instance,

when a human being takes a heavy object, other people may help him/her when they

see that scene or when he/she asks for help. The reason why we can help people is that

we can share a task and create each motion when given an objective such as “Taking

a heavy object”. We do not need to specify a motion direction and joint trajectories

to the other like a robot. Furthermore, it is unique to human beings to act in a way

that encourages the other’s action without disturbing the other’s action, which is such

as arranging the object in a place where the other is easy to hold. From the viewpoint

of these examples, in this study, we focus on two important functions missing from

current robotic systems in order to develop the robot can be the partner, which are

(1) robot motion generation method and (2) human motion support method.

1.3 Two important functions to be robot helping

human: Motion generation and Motion sup-

port



8
1.3. TWO IMPORTANT FUNCTIONS TO BE ROBOT HELPING HUMAN:

MOTION GENERATION AND MOTION SUPPORT

1.3.1 Motion generation

First, it is a method to create robot behaviors from symbolized action purposes such

as “Walk faster” and “Turn right” or more symbolic forms such as “go to the station”.

For instance, we can walk by only being conscious of “Walking” without taking care

of the movement of each joint angle.

Generating the action from “Walking” or “Turning” seems to have a strong con-

nection with linguistic function of the brain, and it is true. However, this does not

mean that the language directory generates the motion. It can be understood from

that walking motion itself can be generated by a baby who does not acquire a word

“Walking”.

As the result of teaching from parents, the connection between the word and a

network consisting of a few neurons that well represents the walking motion becomes

stronger, so it seems that the language produces the action. From that point of view,

the essential of the symbolized action purpose can be defined as low-dimensional control

signals than the number of actuators well representing the action. Generating the

action from the symbolized action purpose essentially indicates that low-dimensional

control signals generate high-dimensional control signals for actuators.

As it is written before, when a human being takes a heavy object, other people may

help him/her when they see that scene or when he/she asks for help. In addition to

that, each person changes him/her action according to instructions or seeing what task

each person is doing. Figure 1.5(b) shows an overview of a control scheme to generate

the action from the symbolized action purpose, that is, to generate high-dimensional

control signals from low-dimensional control signals. In sharing the symbolized action

purpose, each person takes a part of the work with or without verbal communication

and starts to generate the detailed control signals through several control functions

such as making joint trajectories and muscle activities. At that time, the person takes

care of not joint trajectories or muscle activities but the symbolized action purpose.

It is because feedback control loops in each level adjust the signals to adapt an action

output to the environment. The detailed control signals that create such motion,

such as joint trajectories and muscle activities, are then generated automatically by

hierarchical functions and the interaction between the environment and the body.
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Fig. 1.4: (a) Photograph of an exoskeleton robot and motion patterns for each joint. Motion patterns are applied to

each joint of the exoskeleton robot in conventional motion control. The robot faithfully reproduces these patterns to

walk. (b) Walking results with healthy subjects. Three healthy subjects participated in the experiment willingly and

their safety was guaranteed. They could not walk properly following the walking pattern.

They have said that as the complexity of the environment and the dynamics of the

robot change, a task becomes more complex, and it is difficult for the robot to perform

the task. However, if motion control can be conducted using symbolized information,

the task does not become complex even if the environment around the robot changes,

and the robot performs the task. They designed robot motions as skills in advance,

and then let the robots learn the relationships between the skills and the symbols for

the robot to perform a task based on the symbol. However, since the robot should

generate motions under the constraint of own dynamics, the robot should generate

the motions reflecting own dynamics and not generate given motions from symbolized

information. We aim to develop a method to generate motions reflecting the physical

features of the robot from the symbolized action purpose.

1.3.2 Motion support

It is difficult for the robot to support the motion of the human beings without dis-

turbing the human behaviors. For instance, Fig. 1.4(b) shows a walking experiment

we conducted, which is that healthy subjects walk with motion support from a lower
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MOTION GENERATION AND MOTION SUPPORT

limb exoskeleton robot. The exoskeleton robot is controlled to follow pre-defined joint

trajectories(see Fig. 1.4(a)). In this experiment, all subjects could not walk properly

because of losing balance when they started to walk with the exoskeleton.

We thought, before the experiment, as the robot supported our walking motion, we

could walk in comfort. However, an opposite result was obtained. The subjects could

not walk properly, and one subject fell down at the early stage of the experiment. The

reason why losing the balance is the robot motion is quite difference from the human

motion, and the robot motion becomes a disturbance for the human beings.

The problem that the human beings cannot achieve a task because of the robot

support can be occurred on all robots that support the human beings. In order to

achieve the task, the subjects need to be aware of following the motion of the robot,

and they will feel bothersome to use the robot. Therefore, in order to solve the problem,

it is necessary to develop a motion support method of the robot based on the human

motion, furthermore, a control scheme that generate the human motions.

In our daily live, we focus on not each muscle activities but symbolized action

purposes that are highly specialized. It is said that control signals to the muscles are

automatically created and adjusted by the activities of local neural systems includ-

ing the cerebellum and spinal cord. The appropriate behavior and detailed control

signals to achieve action purposes are chosen according to the environment including

situations. If we could share such symbolized action purposes with robots, and if the

robots could create the appropriate behavior independently according to not only the

environment but also the features of our respective functions, then we would feel that

the robots are our partners. Therefore, generating robot behavior from the symbol-

ized action purpose and the supporting method to enhance human behavior could be

an important way to assess the extent to which robots could be our partners with

human-like behavior.
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1.4 Important foundation for motion generation and

motion support

It is no exaggeration to say that the biological control principle, that is, a biologi-

cal information processing structure is a basis of human activity. Of course, there is

dynamics-based skillful motions such as passive walking, but the biological information

processing structure is a key factor to generate the actions depending on the environ-

ment and the situation. This is no exception for the motion generation and the motion

support. Therefore, it is reasonable to establish there two methods by referring to the

biological information processing structure.

Simply speaking, in order for the robot to generate the action from the symbolized

action purpose like human beings, it is natural to develop the method by imitating

the biological information processing structure. In addition to that, in order to de-

velop the support method to promote the human action, it is necessary to understand

what kind of reaction human beings do based on the biological information process-

ing structure. From that point of view, current robots miss the functions that the

biological information processing structure generates. We need to know the biological

information processing structure, then establish techniques generating robot behavior

from the symbolized action purpose and enhancing human behavior in the interaction

based on the biological information processing structure.

The information processing structure of living things is discussed from the aspect of

physiological approach and model-based approach. In current physiological approach,

Takei et al. [55] reported the existence of neurons in the spinal cords of monkeys that

commonly activate in association with various hand actions, suggesting that a small

control signal, with dimensionality lower than the number of muscles, can encode com-

plicated hand motion. The muscle synergy [56–64] and joint synergy [65–67] represent

cooperative movement patterns of muscles and joints, and the muscle and the joint

are controlled by a few control signals than the number of muscles and joints. The

sensory synergy has been discussed regarding estimating sensor signals from the en-

vironment [68–70]. These research results suggest that there are a part integrating

sensory inputs into low dimension and a part dividing the integrated information into
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SUPPORT

high dimensional action outputs in the biological information processing structure.

Model-based approaches provide the conceptual basis for the aforementioned physi-

ological approach. There is the structure called bow-tie structure well representing the

biological information processing structure. We develop new structure called Neuro-

synergy model based on bow-tie structure in this study. The details will be shown in

Chapter 2, but the features of bow-tie structure and Neuro-synergy model are briefly

described here. The shape of bow-tie structure is similar to a bow tie. Sensory sig-

nals from the environment are input to high-dimensional sensory system in bow-tie

structure, and sensory signals are gradually integrated into symbolized information,

then the part of the symbolized information is selected and adjusted. The adjusted

information is gradually divided into high-dimensional concrete control signals, and

the concrete signals control muscles, then the action is generated. Signals flowing in

bow-tie structure should pass through the part of the symbolized information, there-

fore bow-tie structure misses feedback control loops generating such as reflex motions

that human beings naturally have. Neuro-synergy model being an extended model

of bow-tie structure takes the feedback control loops in bow-tie structure. When we

walk, we can reach a destination without thinking road conditions, and this is thought

to be because the feedback control loops automatically control the body to adapt to

environmental changes.

Another important approach to clarifying the mechanisms that generate automatic

motor commands is the development of artificial controllers that have the same fea-

tures as those of biological controllers. The autoencoders discussed in artificial in-

telligence [71] [72] share the same idea as the bow-tie structure. Recently, there have

been various discussions about using autoencoders to control robots [73–76]. Kullback-

Leibler control [77] is an interesting task-dependent approach to control robot [78] [79]

with combination of control policies.

These computational approaches clarified that small control signals, with dimen-

sional lower than the number of motors, can represent behavioral features, suggesting

that lower-dimensional control signals play the role of symbolized action purposes. Shi-

moda et al. proposed a bio-mimetic behavior-adaptation architecture known as tacit

learning [80–82] and have used it to generate bipedal walking from a roughly defined
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Overview of control scheme. Human can make action planning according to circumstances. From the action command,

human being generates concrete control commands step by step, then generates driving stimulus to each muscle at the

last. Action outputs affect not only its own control but also the control of others, whereby the control of each step is

appropriately corrected for achieving the objective.

walking gait [81], to control the wrist joint of a forearm prosthesis in response to the

wearer’s shoulder movements [83], and to control a lower-limb exoskeleton robot in

response to the wearer’s movements [84]. Through experiments on this tacit learning

adaptation, they established that two types of adaptation process could work simulta-

neously to adapt the behavior to an unorganized environment. One of these processes

is selecting appropriate behavior and the other is adapting reactive behavior to unpre-

dictable disturbances and small changes in body parameters and environment without

changing the action purpose.
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1.5 Purpose of doctoral dissertation

Our research policy is to develop necessary technologies through advanced machine

intelligence researches to enable a robot to be a partner of human beings in our life.

As it was written in background, realization of generating robot behavior from

the symbolized action purpose and the support to enhance human behavior in the

interaction is essential for the robot to be the partner robot. In this research, we aim

to establish these two important technologies based on Neuro-synergy model, which are

a motion generation of the robot and a motion support for the human being. First, we

attempt to develop a technology for the robot to automatically generate the detailed

control signals from the symbolized action purposes by imitating the Neuro-synergy

model. Second, we attempt to develop a technology for the robot to support and

enhance the motion of human beings based on the Neuro-synergy model. Especially in

second target, we narrow the person getting the support down to post-stroke patients

in this dissertation.

1.6 Outline of doctoral dissertation

In this doctoral dissertation, we conduct the discussion along an outline in Fig. 1.6.

In Chapter 2, one of biological information processing structures called bow-tie struc-

ture is introduced, and a model that extends bow-tie structure called Neuro-synergy

model is proposed. In Chapter 3, components are discussed for robots to achieve auto-

matically generating the detailed control signals from the symbolized action purposes

through results of simulations and experiments: standing balance control of two DoF

inverted pendulum and bipedal walking control of humanoid robot by using controllers

with imitating Neuro-synergy model. Chapters 4 and 5 are focused on generating and

enhancing the action of the post-stroke patient. In Chapter 4, a scheme and technolo-

gies are discussed to enhance the motion of the post-stroke patient, especially grasping

motion, through the results of Chapter 3 and design a grasping-training robot based

on the discussion, then the effect of the grasping-training robot is verified with clinical

experiment. In Chapter 5, the scheme in Chapter 4 is extended to general exercise and
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Chapter 1: Introduction

Chapter 6: Conclusion

Chapter 2: Neuro-synergy model

Chapter 3: 

Standing balance control of 2DoF inverted 

pendulum and bipedal walking control of 

humanoid robot with controllers 

imitating Neuro-synergy model

Motion generation study Motion support study

Chapter 4: 

Grasping-training robot to activate 

local feedback loop for reflex and 

experimental verification

Chapter 5: 

Rehabilitation strategy and 

theoretical approach for designing 

the rehabilitation robot controller

Scheme of Neuro-synergy model: Combination of top-down process and bottom-up process

Fig. 1.6: Outline of doctoral dissertation. Chapter 1 is Introduction. Chapter 2 shows the biological information

processing structure. Chapter 3 shows important factors for robots to realize automatically generating the detailed

control signals from the symbolized action purposes: standing balance control of two DoF inverted pendulum and

bipedal walking control of humanoid robot. Chapter 4 shows technologies to enhance the motion of the post-stroke

patient and a grasping-training robot based on the technologies, then we verify the effect of the grasping-training robot

with clinical experiment. Chapter 5 shows an extended scheme in Chapter 4 to general exercises and design a control

system including the robot and the post-stroke patient with modeling the patient’s recovery, then we show that the

designed robot controller achieves the support way. Chapter 6 shows conclusion.

establish a support method of the rehabilitation training for the post-stroke patient.

A controller of a rehabilitation robot is designed based on established support way

with modeling the robot and the post-stroke patient. Then, the validity of the robot

controller is verified through simulations and an experiment. In Chapter 6, what is the

important role for establishing the partnership between the robot and human being is

discussed through the whole results.



Chapter 2

Neuro-synergy model

2.1 Bow-tie structure

Living things move around the environment and work on the environment, and sur-

rounding environment changes so often. In order for living things to survive in the

environment, a wide variety of actions are needed to deal with environmental changes.

However, the controllers of living things, such as the brain, have limitation on com-

putational speed and amount of computation, so living things would be extinct by

the environmental changes if they generated the action by processing feedback signals

from sensory receptors such as vision or tactile sense one by one. In order to solve

this problem, there is a hypothesis that living things have an information processing

structure called Bow-tie structure(see Fig. 2.1).

Bow-tie structure has a sensory input side and an action output side. Signals

are passed through from the sensory input side to the action output side in bow-

tie structure. On the sensory input side, high-dimensional sensory signals are input

from the sensory receptors in the body, for instance, human beings have over 17,000

sensory receptive nerve fibers in hand. On the action output side, high-dimensional

muscle activities make the action, for instance, human beings have over 400 controllable

muscles in the body, and one muscle consists of countless myofibers.

High-dimensional sensory signals are gradually integrated into the symbolized in-

formation and reduce its dimension as passing through the bow-tie structure. The part

16
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Fig. 2.1: Bow-tie structure. Bow-tie structure represents the biological information processing structure. High-

dimensional sensory signals are gradually integrated into the symbolized information and reduce its dimension as

passing through the bow-tie structure. The symbolized action purposes are gradually divided into high-dimensional

concrete motor commands for muscles as passing through the bow-tie structure, in some sense, this process can be

defined as the control.

of the symbolized information is used for the cognition, in some sense, this process can

be defined as the cognition process. Based on the symbolized information, the sym-

bolized action purposes like “Walk fast” or “Turn right” are generated, in some sense,

this process can be defined as the decision making. The symbolized action purposes

are gradually divided into high-dimensional concrete motor commands for muscles as

passing through the bow-tie structure, in some sense, this process can be defined as

the control.

The middle part of bow-tie structure is considered to be a central nerve system in

human beings and is responsible for the symbolized action purposes like “Walk fast”

or “Turn right”. An important role of the middle part is to avoid the frame rate

problem. In addition to that, when human beings work together, people explicitly or

implicitly share the symbolized action purposes each other. This means sharing the

middle part of bow-tie structure each other. We can make the appropriate action and

concrete motor commands for muscles according to the surrounding environment and

each action.

The notions of muscle synergy [56–64] and joint synergy [65–67] that represent
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the output side of this bow-tie structure are prominent examples of estimating lower-

dimensional signals from observable signals such as electromyographic signals. The

sensor synergy representing the input side of the bow-tie structure has been discussed

regarding estimating sensor signals from the environment [68–70].

Bow-tie structure has well represented the symbolization of the biological control

principle, but this structure is highly conceptual structure. Therefore, it is difficult

to apply it to a robot controller directory. In addition to that, the signal in bow-tie

structure is passed through from the left side to the right side, so the signal needs to

go through the symbolized action purpose once. However, the action of human beings

has been adjusted by feedback controls without passing through symbolized action

purposes. Bow-tie structure cannot represent these features of human beings’ motion

control. In order to solve these problems, the concept of bow-tie structure is needed

to be extended, and an extended model called Neuro-synergy model is proposed.

2.2 Neuro-synergy model

New model is developed by introducing feedback control loops and a hierarchical struc-

ture to bow-tie structure. The hierarchical structure has been well used to explain

functions of a brain and in the field of machine learning imitating a method of living

things. Paul D. MacLean proposed a concept called “triune brain” that the human

brain evolved with maintaining three basic layers: a primitive reptile brain, old mam-

malian brain, and new mammalian brain manage an emotion adjusting the emotion,

and learning respectively [85]. The concept affected many brain scientists, but this con-

cept is denied in recent because this concept assumed a linear evolution from primitive

living things to higher living things and human beings. Many other researches [86–89]

have also proposed hierarchical model of the brain. You can see that each layer plays a

role of a specific function, making it easy to understand the information processing of

the brain but difficult to mathematically represent it in research on the brain model.

In the field of machine learning imitating living things, the most famous hierarchical

structure is considered to be neural network. It is no doubt, nowadays, that the neural

network is a hot topic thanks to an artificial intelligent bubble. The neural network is
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designed by connecting layers that artificial neurons called perceptrons are arranged in

parallel. The perceptron has an input side and an output side. It outputs 0.0 until the

summation of input values exceeds a certain threshold and outputs 1.0 when the sum-

mation exceeds the certain threshold. Since a lot of models has been proposed, the de-

tail is no described here, but recently, a neural network with several thousand to several

millions of layers has appeared: Convolutional Neural Network(CNN) [90–94], Recur-

rent Neural Network(RNN) [95–99], Deep Q-Network(DQN) [100–105], Generative Ad-

versarial Network(GAN) [106–110], Long short-term memory(LSTM) [111–115], Asyn-

chronous Advantage Actor-Critic(A3C) [116], Auto encoder [71–76]. These networks,

basically, acquire a specific function after end-to-end learning with evaluation func-

tions or reference data sets, and the functions are diverse: controlling the robot, object

recognition, voice recognition, voice synthesis, bio-signal analysis, and so on. However,

because of the feature of the end-to-end learning, researchers cannot understand the

mean of each layer after learning.

A conceptual biological information processing structure “Neuro-synergy model” is

proposed by introducing feedback control loops and a hierarchical structure to bow-tie

structure(see Fig. 2.2). In bow-tie structure, the signal is passed through from the left

side to the right side. Neuro-synergy model has a hierarchical structure, and signals

are flowed from the bottom to the bottom via the top. Neuro-synergy model has two

structural features as below.

First, Neuro-synergy model has structures integrating input signals and dividing

the symbolized action purpose. Plants on a bottom layer have the role of sensors and

actuators, and the high-dimensional sensory inputs from the environment are received

by the plants. The high-dimensional sensory inputs are gradually integrated into the

symbolized signals to reduce its dimension like bow-tie structure as going to the top

layer. The symbolized signal is adjusted by a controller, and the adjusted signals are

gradually divided into high-dimensional concrete control commands for actuators as

going to the bottom layer. The muscle synergy representing the output side in the lower

layer is a well-known example of controlling a high-dimensional musculoskeletal system

with low-dimensional abstracted signals [56–62]. The sensory synergy representing the

input side in the lower layer is a well-known example of integrating high-dimensional
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Fig. 2.2: Neuro-synergy model. Neuro-synergy model is a hierarchical structure based on a bow tie structure [117] [118].

The structure consists of several control loops. Each loop has a plant and a controller. The plant functions as a

sensor and an actuator and receives high-dimensional sensory inputs from the environment. The inputs are gradually

integrated into abstract information to reduce their dimensions, and the actual control signals for the high-dimensional

musculoskeletal system are generated by dividing the low-dimensional abstract information.

sensory inputs into low-dimensional abstracted signals [68–70]. This signal processing

can be defined as a process of making a voluntary action.

Second, Neuro-synergy model has structures feedback control loops to adjust the

signals in each layer. In each layer, the signals going up and down are connected

via controller, and these form local feedback control loops that are not represented in

bow-tie structure. Each local feedback control loop has different function respond to

each layer, in other word, symbolized levels. For instance, simple loops in the bottom

layer play the role of generating reflex motion like stretch reflex, on the other hand,

complex loops in the upper layer play the role of generating functional motion like

an adjustment of acceleration in driving. These loops automatically adjust the action

to adapt it to the environmental changes. The action generated from these feedback

control loops can be defined as a reactive motion.

Neuro-synergy model looks similar to subsumption architecture [119,120] from the
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view point of the hierarchical structure. Subsumption architecture is considered to

be a kind of a primitive artificial intelligent. It has some functional modules in its

structure like “making a map”, “exploring”, “walking”, “moving legs”, and so on. An

upper module subsumes and interfere in lower modules, and the lower module carries

out its function without taking care about interfering. Subsumption architecture and

Neuro-synergy model share a concept about the relationship of the upper layer and

the lower layer, but it is because they are both inspired by living things. However, the

design of modules of subsumption architecture is left to designers, and it is difficult to

express mathematically. Therefore, in many cases, subsumption architecture does not

necessarily represent the control principle of living things.

Neuro-synergy model in Fig. 2.2 has only four layers, but it does not mean that

the four layers are enough to represent the biological information processing structure,

and each layer performs specific functions like the subsumption architecture. It is con-

sidered that the biological information processing structure is like a fractal structure,

and Fig. 2.2 is just a part in a whole Neuro-synergy model.

Neuro-synergy model has innumerable layers, and each layer does not play the role

of a specific function like motion planning. In the brain, each neuron does not have a

specific function like motion planning. Viewing it macroscopically with fMRI or NIRS,

it can be seen that a cluster of some neurons plays the role of the function. However,

viewing it microscopically, clear boundaries cannot be identified in it. Like the brain,

a cluster of some layers plays the role of the specific function in Neuro-synergy model,

but there are not clear boundaries.

Sharing the symbolized action purpose meant sharing the middle part of bow-tie

structure each other. In the case of Neuro-synergy model, it means sharing the upper

part of Neuro-synergy model each other. In order to verify components for robots to

realize automatically generating the detailed control signals from the symbolized action

purposes, controllers are needed to be designed by imitating Neuro-synergy model and

using a biological learning method called tacit learning as the adjustment method of

feedback control loops.

The rest of this chapter is showing a mathematical representation of Neuro-synergy

model. xi is a vector representing state variables of a i-th layer, and the bottom layer
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Fig. 2.3: Mathematical representation of Neuro-synergy model. Please see the detail shown in the last of this chapter.

is defined as first layer(i = 1). τ i is a vector representing control signals of a i-th layer,

and τ ′
i is a vector representing control signals after transferring the control signals of a

i+1-th layer by a transfer matrix. The control system of the i-th layer of Neuro-synergy

model is represented as

τ i = f i(xi, τ i) +Gi(xi)τ
′
i (2.1)

xi =
[

ix1 · · · ixm
2

iẋ1 · · · iẋm
2

]T
, (2.2)
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where f i(•) ∈ Rm is a non-linear vector, Gi(•) ∈ Rm×m is a non-linear matrix,

and τ i,xi, τ
′
i ∈ Rm. It is considered that a control system in living things is not a

liner control system, making it difficult to represent the control system distinguishing

the lower control loop and the top-down signal. In this study, the control system is

represented like a symmetric affine system and distinguish the lower control loop and

the top-down signal. The first term of right side of Eq. (2.1) represents the control

loop for the reactive motion in Fig. 2.2, and it represents simple reflex loops when

i = 1. The second term of right side of Eq. (2.1) represents the top-down signal of the

voluntary action in Fig. 2.2.

The first term of right side of Eq. (2.1) works for adjusting the motion by the

interaction with the environment. As it is written above, tacit learning is used for the

adjustment. Please see [80–82] for the detail about tacit learning. Tacit learning works

with the control output from the controller, so the control output in included in the

first term of right side of Eq. (2.1).

The signals in Neuro-synergy model are gradually integrated into the symbolized

information as the layer going up, and the symbolized information is gradually divided

into the control signals as the layer going down. It indicates that a state space of i-th

layer and the state space of i+1-th layer are switched by a transfer matrix respectively.

In this dissertation, the transfer matrix is defined as

xi+1 = T ixi, (2.3)

where xi ∈ Rm and xi+1 ∈ Rn (n ≤ m). By an inverse of the transfer matrix, the

space can be switched from i+ 1-th layer to i-th layer:τ ′
i = T−1

i τ i+1 (n = m)

τ ′
i = T+

i τ i+1 (n < m)
, (2.4)

where T+
i is called pseudoinverse matrix, and T iT

+
i = I. The transfer matrix should

reflect physical characteristics of the living things. In case of the human, T−1 corre-

sponds to the muscle synergy.

From these equations, the control signal that is input into the plant can be repre-

sented when there is one layer as

τ 1 = f 1(x1, τ 1) +G1(x1)T
−1
1 τ 2. (2.5)
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τ 2 can be represent as same form as Eq. (2.5) as follow:

τ 2 = f 2(x2, τ 2) +G2(x2)T
−1
2 τ 3. (2.6)

Therefore, the control signal that is input into the plant can be represented when there

is two layers as

τ 1 = f 1(x1, τ 1) +G1(x1)T
−1
1 f 2(x2, τ 2) +G1(x1)T

−1
1 G2(x2)T

−1
2 τ 3. (2.7)

By arranging this equation, the equation is written as

τ 1 =
2∑

i=1

{(
i−1∏
q=0

Gq(xq)T
−1
q

)
f i(xi, τ i)

}
+

(
2∏

i=1

Gi(xi)T
−1
i

)
τ 3 (2.8)

G0(x0)T
−1
0 = I, (2.9)

Equation (2.9) is an equation to establish Eq. (2.8), and there is no physical meaning.

From above example, when there are n layers, the control signal that is input into

the plant can be represented as

τ 1 = f 1(x1, τ 1) +G1(x1)T
−1
1 f 2(x2, τ 2)

+G1(x1)T
−1
1 G2(x2)T

−1
2 f 3(x3, τ 3) + · · ·

+G1(x1)T
−1
1 · · ·Gn−1(xn−1)T

−1
n−1fn(xn, τ n)

+G1(x1)T
−1
1 · · ·Gn(xn)T

−1
n τ n+1. (2.10)

By arranging this equation, the equation is written as

τ 1 =
n∑

i=1

{(
i−1∏
q=0

Gq(xq)T
−1
q

)
f i(xi, τ i)

}
+

(
n∏

i=1

Gi(xi)T
−1
i

)
τ n+1 (2.11)

G0(x0)T
−1
0 = I. (2.12)

The role of Eq. (2.12) is as same as that of Eq. (2.9).



Chapter 3

Action Generation from Symbolized

Action Purpose with Controllers

Imitating Neuro-synergy Model

3.1 Purpose in chapter 3

In this chapter, as said before, it is aimed to clarify the mechanisms of generating

automatic motor commands from the symbolized action purpose like human beings.

Bow tie structure was extended to Neuro-synergy model, which is one of model-based

approaches providing the conceptual basis for the aforementioned physiological ap-

proach. In Neuro-synergy model, symbolized information is divided by methods based

on physical characteristics such as muscle synergy, automatically generating concrete

control commands for muscles. The voluntary action generated from the symbolized

information is automatically adjusted by each feedback control loop with biological

learning method.

Shimoda et al. proposed a bio-mimetic behavior-adaptation architecture known as

tacit learning [80–82] and have used it to generate bipedal walking from a roughly de-

fined walking gait [81], to control the wrist joint of a forearm prosthesis in response to

the wearer’s shoulder movements [83], and to control a lower-limb exoskeleton robot in

response to the wearer’s movements [84]. Through experiments on this tacit learning

25
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adaptation, they established that two types of adaptation process could work simulta-

neously to adapt the behavior to an unorganized environment. One of these processes

is selecting appropriate behavior and the other is adapting reactive behavior to unpre-

dictable disturbances and small changes in body parameters and environment without

changing the action purpose.

Even though it has been established that it is important for these two processes to

operate in parallel, the conditions of the controllers needed to realize such adaptation

remain under discussion. Herein, this discussion is advanced by using an artificial

controller that can adapt the motor commands to real-time changes in the symbolized

action purpose, and the conditions for adapting in real time to both the environment

and the symbolized action purpose are clarified. Chapter 3.2 is begun from designing

a controller with tacit learning and a method transferring the control signals into a

different control space know as mechanical resonance mode space (MRM-space). The

mechanical resonance mode of the robot corresponds to the muscle synergy of human

beings. In MRM-space, the signals are used to control the mechanical resonance modes

of the robot. This makes it easy to understand how the robot behavior changes when

the control signal is changed in MRM-space. In Chapter 3.3 and Chapter 3.4, an

adaptation method in MRM-space is proposed using a two-degree-of-freedom (two

DoF) inverted pendulum, 27 DoF humanoid robot, and the NAO humanoid robot [121],

respectively. It is shown that this controller can adapt the motion to the environment

through simulation and experiment. In Chapter 3.5, it is discussed that the importance

of body mechanisms in the process of simultaneous adaptation and how that process

can be used to evaluate the human-like motion of a robot. In Chapter 3.6, it is

concluded that this chapter with summarizing our simulation and experiment results.

3.2 Methods Used to Design a Control Structure

Transfer to MRM-space and behavior adaptation by tacit learning are the key ana-

lytical methods of the present study. Because both methods are discussed in detail

elsewhere (mechanical resonance mode [122]; tacit learning [80–82]), their essential

points are briefly explained herein.
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3.2.1 Mechanical Resonance Mode

A mechanical resonance mode is defined by the position and the condition of the robot

joints. For instance, a two DoF inverted pendulum has two mechanical resonance

modes as shown in Fig. 3.1(a)(b). A mechanical resonance mode is characterized

mathematically by mode vectors and singular values. Writing the equation of motion

of a two DoF inverted pendulum as

Mθ̈ +Kθ = 0 (3.1)

⇔ θ̈ = −M−1Kθ, (3.2)

where θ ∈ R2×1 implies the angles of the joints, the mode vectors and eigenvalues are

calculated by a singular-value decomposition (SVD) of M−1K:

M−1K −−−→
SV D

v1,v2 (mode vectors)

λ1, λ2 (singular values)
, (3.3)

where M ∈ R2×2 is the inertia matrix of the pendulum linearized around θ = 0 and

K ∈ R2×2 is a stiffness matrix that has the spring coefficients of the joints on its main

diagonal. The first mode (v1) corresponds to the smallest eigenvalue (λ1) and the

second mode (v2) corresponds to the next-largest eigenvalue (λ2). The mode vector

represents the shape of the pendulum oscillation.

The state variable θ of the pendulum can be represented as a superposition of the

mode vectors as follows:

θ = v1w1 + v2w2 =
[
v1 v2

] [
w1 w2

]T
∴ θ = Tw (⇔ w = T−1θ), (3.4)

where w1, w2 represent the weights of each mode vector and T can be defined as a

transfer matrix. The weights of the mode vectors can be defined as state variables in

MRM-space.

The adjustment of the state variables is reflected in the movement of individual

joints by the transfer matrix. This is much like the top-down process in people, namely

changing one’s behavior by means of symbolized information without having to attend

to the actions of individual joints.
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(a) First mode (b) Second mode (c) First mode (d) Eighth mode

Fig. 3.1: Modes of two-degree-of-freedom (two DoF) inverted pendulum and 27 DoF humanoid robot: (a) first mode of

pendulum (same-phase posture); (b) second mode of pendulum (anti-phase posture); (c) first mode of robot (bipedal

leg swinging); (d) eighth mode (leg swinging on frontal plane).

3.2.2 Tacit Learning

Tacit learning is an adaptive learning method inspired by two features of living beings.

First, living beings can perform adaptive behavior globally even though control is

realized by only a summation of local nerve-cell firings. Second, adaptive learning and

behavioral control are calculated in parallel; this is unlike machine learning, whose

calculation is divided into a learning phase and an action phase.

To apply these features to artificial controller, action targets and the concept of

“reflex” are used in tacit learning. The reflex plays a role in directing the movement of

the controlled system toward a state in situations in which the system does not receive

many environmental stimuli from a global perspective. By enhancing the reflex by

accumulating reflex commands, the system can acquire a state autonomously through

system–environment interactions, where there are fewer environmental stimuli without

having to distinguish between the learning phase and the action phase.

Other learning methods use behavioral functions or teaching signals to adjust the

controlled system behavior and achieve adaptive behavior in a top-down manner. In

that sense, tacit learning can be defined as a bottom-up learning process, adjusting

the behavior through system–environment interactions. However, it can control the

system to achieve adaptive behavior from a global perspective. Herein, tacit learning
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Fig. 3.2: Model of two DoF inverted pendulum: (a) pendulum model in simulator; (b) definitions of joint angles and

system parameters. The pendulum sits on a board that is moved horizontally by a force f [N], thereby imparting

disturbances to the pendulum.
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Fig. 3.3: Block diagram for standing balance control of two DoF inverted pendulum; see Chapter 3.3.2 for details.

is used to develop a bio-mimetic adaptation process.

3.3 Standing Balance Control with two DoF In-

verted Pendulum

In this chapter, the controller with tacit learning in MRM-space is introduced and

is applied to standing balance control of a two DoF inverted pendulum. It is shown

that the tacit learning controller can maintain balance against larger disturbances than

the case without learning.
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3.3.1 Model of two DoF Inverted Pendulum

Figure 3.2 shows the two DoF inverted pendulum model used in this simulation. Its

equation of motion is

M (θ)θ̈ + ω(θ, θ̇) = τ , (3.5)

where θ is a 2 × 1 vector consisting of the joint angles, τ is a 2 × 1 torque vector that

affects each joint, and M(θ) is a 2 × 2 inertia matrix given by

M(θ) =

[
I1 +m1a

2
1 + l21m2 + η + 2ξ cos θ2 η + ξ cos θ2

η + ξ cos θ2 η

]
, (3.6)

where a1 = l1/2, a2 = l2/2, η = I2 +m2a
2
2, ξ = l1m2a2, and ω(θ, θ̇) is

ω(θ, θ̇) =

[
−ξ(2θ̇1 + θ̇2)θ̇2 sin θ2 − g1 sin θ1 − g2 sin(θ1 + θ2)

ξθ̇21 sin θ2 − g2 sin(θ1 + θ2)

]
, (3.7)

where g1 = (m1a1 +m2l1)g, g2 = m2a2g, and g = 9.81 m/s2.

3.3.2 Standing Balance Control Structure

Figure 3.3 shows a standing balance controller designed by using the transfer matrix

T described in Eq. (3.4) and tacit learning. Terms θi and τi are the angle and torque,

respectively, of joint i. The torque vector τ for each joint is

τ = TAT−1∆θ + TBT−1∆θ̇ + Tζm + ζ, (3.8)

τ =
[
τ1 τ2

]T
. (3.9)

∆θ and ∆θ̇ are

∆θ =
[
θref − θ

]
,∆θ̇ = −θ̇, (3.10)

where θ and θ̇ are state variables:

θ =
[
θ1 θ2

]T
, θ̇ =

[
θ̇1 θ̇2

]T
. (3.11)

θref is a reference for each joint:

θref =
[
θref1 θref2

]T
. (3.12)
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Terms A and B are diagonal matrices:

A =

[
kp1 0

0 kp2

]
, B =

[
kd1 0

0 kd2

]
, (3.13)

where kp1 and kp2 are proportional(P) gains of the proportional-derivative(PD) con-

troller in MRM-space, kd1 and kd2 are derivative gains of the PD controller in MRM-

space, and T−1 is the transfer matrix from joint space to MRM-space.

Term ζ is a vector that consists of the integration of τ as follows:

ζ =

[
ζ1

ζ2

]
=

[
k1 0

0 k2

][ ∫
τ1dt∫
τ2dt

]
, (3.14)

where k1 and k2 are the coefficients of the integrators that accumulate the joint torques

and output the integrated values. These accumulations correspond to tacit learning,

and these integrators adjust the individual joint torques and work to keep the pendulum

upright after disturbance through pendulum–environment interaction, as in [81]. This

tacit learning corresponds to the adjusting function of the feedback control loops in

Neuro-synergy model.

Term ζm a vector that consists of the integration of ζ as follows:

ζm =

[
ζm1

ζm2

]
=

[
0 0

km2 0

][ ∫
ζ1dt

0

]
, (3.15)

where km2 is the coefficient of the integrator in MRM-space that accumulates ζ1 and

outputs the integrated values. km2 can change the level of learning in standing balance

control. km2 = 0 is defined as “without learning”, and km2 > 0 is defined as “with

learning.” ζm adjusts the movement of the second mode, which it was selected based

on visual inspection of the movement of all modes. Because any disturbance has a

pronounced effect on joint 1, the torque of the second mode is adjusted based on the

torque of joint 1.

The whole system can be expressed by combining Eqs. (3.5) and (3.8) as follows:

M (θ)θ̈ + ω(θ, θ̇) = TAT−1∆θ + TBT−1∆θ̇ + Tζm + ζ. (3.16)
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Table 3.1: Stability changes due to different coefficients

Without learning With learning

Disturbance km2 = 0.0 km2 = 5.0× 10−4

170 ≤ f ≤ 184 [N] Stable Stable

185 ≤ f ≤ 204 [N] Fallen Stable

205 ≤ f [N] Fallen Fallen

(a) Without learning (b) With learning

Fig. 3.4: Overview of standing balance control simulation: (a) without learning; (b) with learning. “Without learning”

means that tacit learning is applied to only joint space, and “With learning” means that tacit learning is applied to

joint space and MRM-space. The red dotted line is the general trajectory of the center of mass (CoM) of the pendulum

in the process of regaining balance after a disturbance. The CoM falls lower while regaining balance with tacit learning

in MRM-space.

3.3.3 Standing Balance Control Simulation and Results

The two mode vectors v1,v2 of the pendulum defined in Fig. 3.2 are given as

v1 =

[
-0.9

-0.3

]
, v2 =

[
0.3

-0.9

]
. (3.17)
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Fig. 3.5: Trajectories of joints 1 and 2 while regaining balance in the simulation: (a) without learning; (b) with learning.

The gray areas are where the joints move in phase, the white areas are where they move in anti-phase. Joints 1 and

2 move in phase while regaining balance without tacit learning in MRM-space. Joints 1 and 2 move in anti-phase

while regaining balance with tacit learning in MRM-space. The disturbance is f = 184 N. The gain of tacit learning in

MRM-space is km2 = 5.0× 10−4.

As shown in Fig. 3.1(a)(b), the first mode v1 represents same-phase posture and the

second mode v2 represents anti-phase posture. The transfer matrix T is

T =

[
-0.9 0.3

-0.3 -0.9

]
. (3.18)

Standing balance control simulations are conducted as follows.

1. The pendulum is placed upright on a board that can move horizontally.

2. The board is moved for 0.2 [s] with the disturbance f [N].

3. A simulation is ended once the height of the center of mass(CoM) of the pendulum

falls below 0.2 [m] or the pendulum become upright.

simulations are conducted with each of f = 170, · · · , 210 [N]. The gains are kp1 =

22.0, kd1 = 21.0, kp2 = 22.0, kd2 = 21.0, k1 = 1.0 × 10−3, and k2 = 1.0 × 10−3. The

references are θref1 = θref2 = 0.0.

Table 3.1 gives the results of whether the pendulum falls down in the process of

trying to maintain standing balance. The pendulum is clearly more stable with tacit

learning in MRM-space than without tacit learning in MRM-space.
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Fig. 3.6: Relationship between energy consumption per unit time and disturbance in the simulation. Each square

represents the maximum disturbance for which the pendulum can become upright. For instance, the pendulum cannot

become upright against a disturbance of 185 N or more without learning in MRM-space. Both the energy consumption

per unit time and the stability against disturbance increase with the coefficient of tacit learning in MRM-space.

In this simulation, the motion of the pendulum is automatically generated by the

feedback control loops of tacit learning in MRM-space. It means that the time taken

for one control cycle is the time required for automatic motion generation. A computer

we use has 3.7 GB memory and Intel R⃝ CoreTM i5 CPU M550 @ 2.67 GHz×4, and

python2.7 is installed. In this case, the mean value of the time required for automatic

motion generation is calculated, and it is 1.7× 10−2 [s]. This result is strongly related

to the performance of the computer and how to write a program code, therefore the

time will be fast if these bottle necks are improved.

Figure 3.4 shows an overview of standing balance control simulations without and

with learning in MRM-space. The pendulum CoM falls lower in the process of re-

gaining balance when tacit learning is applied in MRM-space. Figure 3.5 shows the

trajectories of joints 1 and 2 in the process of regaining balance. Figure 3.5(a) shows

the case without learning in MRM-space, and the pendulum becomes upright after the
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(a) Two DoF inverted pendulum.
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Fig. 3.7: (a) Two DoF inverted pendulum. (b) Trajectories of joints 1 and 2 in the process of regaining balance in the

experiment. Each point is supplemented with a spline curve. The gray areas are where the joints move in phase, the

white areas are where they move in anti-phase. Joints 1 and 2 move in anti-phase in the process of regaining balance,

as in the simulation with tacit learning.

disturbance by moving joints 1 and 2 in phase. By contrast, Fig. 3.5(b) shows the case

with learning in MRM-space, and joints 1 and 2 move in anti-phase.

Figure 3.6 shows the relationship between the disturbance and the energy consump-

tion E per unit time, which is calculated from

E =
1

T

T∑
t=0

(τ1
2 + τ2

2), (3.19)

where T is the time until the pendulum becomes upright. E is also calculated when the

simulation is conducted with tacit learning in MRM-space by using different integral

coefficients, namely km2 = 5.0× 10−6 and 5.0× 10−5.

The pendulum can become upright against a larger disturbance with learning in

MRM-space than without learning in MRM-space. The size of disturbance that the

pendulum can withstand without falling over increases with the integral coefficient km2

for tacit learning. However, E also increases with km2.
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(a) Ankle strategy (b) Hip strategy

Fig. 3.8: Standing balance control strategies of a person. (a) Ankle strategy: the person mainly moves the ankle

joints and can balance against small disturbances only. (b) Hip strategy: the person moves the hip and ankle joints in

anti-phase and can balance against larger disturbances. The participant of this figure gave informed consent to appear

on the current work.

3.3.4 Standing Balance Control Experiment and Results

An experiment on a real two DoF inverted pendulum with the same block diagram

as in the simulation was conducted. The transfer matrix was calculated based on the

physical parameters of the pendulum, whereas the gains in the block diagram were

determined by trial and error.

In this experiment, the mean value of the time required for automatic motion

generation could not be calculated. After conducting the experiment and measuring the

motion of the pendulum, the real two DoF inverted pendulum was broken. Therefore,

the experiment could not be conducted for calculating the mean value of the time.

Figure 3.7(a) shows the actual two DoF inverted pendulum. Figure 3.7(b) shows

the trajectories of joints 1 and 2 in the process of regaining balance. The pendulum

becomes upright by moving joints 1 and 2 in anti-phase, as in the simulation with tacit

learning in MRM-space.
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3.3.5 Discussion of Standing Balance Control

The pendulum can remain upright against larger disturbances as the coefficient of tacit

learning in MRM-space is increased (see Fig. 3.6). However, a problem is that the

energy consumption per unit time in same disturbance also increases as the coefficient

is increased. Another problem is that, although the stability of this system was not

analyzed, too large an integral tacit learning coefficient makes the system unstable

(see [123]). To regain balance efficiently after a disturbance, it is necessary to change

the tacit learning coefficient according to the disturbance.

It is well-known that people change their standing balance strategies between ankle

and hip strategies [124–126] according to the prevailing disturbances. Each strategy is

shown in Fig. 3.8. The ankle strategy is a standing balance control method in which

the person mainly moves the ankle joints in response to a relatively small disturbance,

whereas the hip strategy is a standing balance control method in which the person

moves the hip and ankle joints in anti-phase in response to a larger disturbance. The

movements involved in the hip strategy are similar to those of the two DoF pendulum

when tacit learning is applied in MRM-space. It is interesting that our method of

adjusting signals in MRM-space with tacit learning has something in common with a

human strategy.

3.4 Bipedal Walking Control on Flat Plane with 27

DoF Humanoid Robot

In Chapter 3.3, it was discussed that the validity of well designing the feedback control

loop by using standing balance control of the two DoF pendulum against disturbances.

In this chapter, a “top-down” signal is added to include intentional behavioral changes.

The same control strategies are applied to a 27 DoF humanoid robot walking control

with the added top-down signal. The weight and the length of segments of the robot

is decided based on the Nasa biometric research [127]. It is shown through simulation

and experiment that the signal added to the controller in MRM-space plays the role of

behavioral intentions to change walking direction while maintaining walking balance.
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Fig. 3.9: Block diagram for bipedal walking control of 27 DoF robot; see Chapter 3.4.1 for details.

Table 3.2: Target set for bipedal walking control simulation

Target angle [rad] ×10−1

Step Description left leg right leg

Step 0 Standing posture - -

hip hip

Step 1 Balance on left leg (−0.1) (0.1)

hip knee

Step 2 Right leg up - (−9.0) (9.0)

hip knee

Step 3 Right leg down - (−4.5) (4.5)

Step 4 Balance on both leg - -

hip hip

Step 5 Balance on right leg (0.1) (−0.1)

hip knee

Step 6 Left leg up (−9.0) (9.0) -

hip knee

Step 7 Left leg down (−4.5) (4.5) -

Step 8 Balance on both leg - -
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Side

view

Front

view

Step 0 Step 1 Step 2 Step 3

Right leg moves
Left leg moves

(a) Posture of each target set, for which the joints enclosed by dashed circles are

controlled

(b) Overview of walking simulation for ad-

justing the eighth mode

Fig. 3.10: (a) Posture of each target set, for which the joints enclosed by dashed circles are controlled. Steps 5–7 (not

shown) are the bifrontally symmetric postures of steps 1–3. Steps 4 and 8 (not shown) involve waiting for a time while

holding the posture of the corresponding previous target set. References for joints are given in Table 3.2. (b) Overview

of walking simulation for adjusting the eighth mode. By adding positive constant values to the eighth mode, the robot

can turn left.

3.4.1 Bipedal Walking Control Structure

Figure 3.9 shows a bipedal walking controller designed by using the transfer matrix T

and tacit learning. Terms θ, θ̇ ∈ R27 are vectors of state variables. Terms θref ∈ R27

is a vector of angle references. The torque vector τ ∈ R27 for each joint is represented
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Fig. 3.11: Trajectory and time series of CoM position in turning and walking forward and backward in simulation:

(a) Time series of CoM position in the direction in which the robot walks and the P gain of the first mode in the

simulation. In the early stage of walking, the P gain is set as kp1 = 270.0. The robot walks forward and backward

according to changes in the P gain of the first mode. (b) Trajectories of robot CoM in walking simulation with adjusting

the movement of the eighth mode. The robot walks from the left to the right of the figure. The black line is a trajectory

of the robot walking forward without adjusting the movement of the eighth mode. The walking direction is changed

depending on the constant value. The robot turns more as the constant value is increased. (c) Directions of robot

CoM in turning with different walking velocities. Solid lines represent walking directions. The constant value is set

as ξ8 = 4.5 × 103. Walking velocity can be changed in turning behavior with different P gain kp1, and the walking

direction is affected by walking velocity.

as

τ = TAT−1∆θ + TBT−1∆θ̇ + Tc+ ζ, (3.20)

τ =
[
τ1 · · · τ27

]T
, (3.21)

ζ = diag(
[
0 · · · klankle krankle · · · 0

]
)

∫
τdt, (3.22)

where ζ is a vector that consists of the integral values of tacit learning, and tacit

learning is applied to joints of the legs. The balance in the sagittal plane is maintained
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by tacit leaning, as in [81]. Terms klankle and krankle are the integral coefficients for the

left and right ankle joints, respectively. Terms ∆θ and ∆θ̇ are

∆θ =
[
θref − θ

]
, ∆θ̇ = −θ̇. (3.23)

Terms A and B are diagonal matrices:

A = diag(
[
kp1 kp2 · · · kp27

]
), (3.24)

B = diag(
[
kd1 kd2 · · · kd27

]
), (3.25)

where kp1, · · · , kp27 are values obtained by multiplying the eigenvalues of each mode by

10, and kd1, · · · , kd27 are values obtained by multiplying the eigenvalues of each mode

by 0.1. The eigenvalues are given by the mechanical resonance mode of the robot.

Term c is a vector that consists of the constant value of the torque of the eighth

mode and is given by

c =
[
0 · · · ξ8 · · · 0

]T
, (3.26)

where ξ8 is a constant that can be adjusted manually.

The transfer matrix T ∈ R27×27 of the 27 DoF robot can be calculated using the

method given in Chapter 3.2. In controlling the robot behavior, two specific modes

from all the modes are focused on, namely the first and eighth modes (see Figs. 3.1(c)

and (d)). Two specific types of walking is expected to be achieved. Adjusting only

the signal of the first mode while changing the P gain kp1 can make the robot change

its walking velocity on a flat plane. Adjusting the signal of the eighth mode with the

constant value c can make the robot turn left and right on a flat plane with fixing kp1

for the robot to walk forward.

3.4.2 Bipedal Walking Simulation and Results

Bipedal walking is performed as shown in Fig. 3.10(a), with one cycle of walking

consisting of eight steps. The integral coefficients for the left and right ankle joints

are klankle = krankle = 1.0 × 10−4. The references for each joint at each step in the

simulation are described in Table 3.2. After finishing one cycle, the reference returns

to the beginning of the cycle.
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Each step shifts to the next step under specific conditions. When the robot raises

a foot, that step shifts to the next step when a knee joint angle of the robot equals the

reference of the knee joint angle. When the robot puts a foot down, that step shifts

to the next step when the sole of the foot touches the ground. If the robot falls down

while walking, the robot is moved to the initial position while holding the integral

values of tacit learning.

In this simulation, the walking motion of the robot is changed by adjusting the

coefficient values in MRM space in each trial, and the walking motion in response to

adjusted values is automatically generated through the transfer matrix. In addition

to that, the robot maintains the balance by the feedback control of tacit learning.

Therefore, the time required for automatic motion generation is the time taken for one

control cycle as same as the case of the pendulum. A computer we use has 3.7 GB

memory and Intel R⃝ CoreTM i5 CPU M550 @ 2.67 GHz×4, and python2.7 is installed.

In this case, the mean value of the time required for automatic motion generation is

4.2 × 10−2 [s], and the time is almost same in each condition. This result is strongly

related to the performance of the computer and how to write a program code, therefore

the time will be fast if these bottle necks are improved.

(i) Walking forward and backward

Figure 3.11(a) shows time series of the CoM position in the direction in which the

robot walks and the P gain kp1 used to adjust the movement of the first mode. In the

early stage of walking, the P gain is set as kp1 = 270.0. It can be seen that the robot

walks forward and backward according to the adjustment of the P gain.

(ii) Turning left and right

Figure 3.10(b) shows an overview of the walking simulation adjust the movement of

the eighth mode by adding positive constant values to the signal of the eighth mode

with an appropriate P gain kp1 to walk forward. The robot can be seen turning left.

Figure 3.11(b) shows the trajectories of the CoM of the robot from the top view;
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Table 3.3: Target set for bipedal walking control experiment

Target angle [rad]

Step Description left leg right leg

Step 0 Standing posture - -

hip hip

Step 1 Balance on left leg (−0.1× 10−1) (0.1× 10−1)

hip knee

Step 2 Right leg up - (−0.8) (1.0)

hip knee

Step 3 Right leg down - (−0.4) (0.7)

Step 4 Balance on both leg - -

hip hip

Step 5 Balance on right leg (0.1× 10−1) (−0.1× 10−1)

hip knee

Step 6 Left leg up (−0.8) (1.0) -

hip knee

Step 7 Left leg down (−0.4) (0.7) -

Step 8 Balance on both leg - -

the robot walks from the left of the figure to the right with the appropriate P gain kp1.

From Fig. 3.11(b), it can be seen that the walking direction is changed depending on

the constant value used to adjust the movement of the eighth mode. The robot turns

more as the constant value is increased.

Figure 3.11(c) shows the trajectories of the CoM of the robot from the top view;

the robot walks from the left of the figure to the right with a fixed constant value

ξ8 = 4.5 × 103. From Fig. 3.11(c), it can be seen that P gain kp1 is a key factor that

affects the velocity in turning behaviors, and the walking direction is changed.
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3.4.3 Bipedal Walking Experiment and Results

Not only simulations but also walking experiments were conducted by using an actual

robot, namely the humanoid robot NAO made by Aldebaran. This has 25DoF, and

the angle of each of its joints can be controlled. NAO is controlled by angle inputs

rather than torque inputs. A control structure that generates reference joint angles

was designed by using the transfer matrix T .

The reference joint angle for a wide variety of walking can be described as

ϕ′ = T †




kp1 0

1.0
. . .

0 1.0

T †−1
ϕ+



0.0
...

α8

...

0.0




(3.27)

if kp1 = 1.0 and α8 = 0.0, ϕ′ = ϕ,

where ϕ ∈ R25 is a vector that consists of joint-angle references for walking, and

ϕ′ ∈ R25 is an adjusted vector. Term T † is a transfer matrix modified from the

transfer matrix T to fit the DoF of NAO. Term kp1 works like the P gain in the

simulation of walking forward and backward. Term α8 works like the constant value

in the simulation of turning. Walking balance is acquired by applying tacit learning

to joint space in the same way as two DoF inverted pendulum postural control.

Experiments are conducted using the same scheme as that shown in Fig. 3.10(a).

The target joint angles at each step in the simulation are described in Table 3.3. Each

step shifts to the next step under specific conditions. When NAO raises a foot, a step

that raising the foot shifts to the next step in case that the knee joint angle of the

robot equals the reference knee joint angle. When NAO puts a foot down, a step that

putting the foot down shifts to the next step in case that the sole of the foot touches

the ground.

In this experiment, a computer is used which has 4 GB memory and Intel R⃝ CoreTM

i3-4005U CPU @ 1.7 GHz, and C++ is installed. In this case, the mean value of the

time required for automatic motion generation is 2.0 [s], and the time is almost same in
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(a) Left hip angle

(b) Left knee angle

Fig. 3.12: Time series of left hip and left knee joint angles in an experiment involving walking forward and backward.

The P gain kp1 for adjusting the movement of the first mode changes as follows: kp1 = 1.0 for 0.0–150.0 [s], kp1 = 1.1 for

150.0–240.0 s, and kp1 = 1.0 for 240.0–250.0 [s]. NAO walks forward for 0.0–150.0 [s] and backward for 150.0–240.0 [s].

When walking is switched from forward to backward by adjusting the movement of the first mode, the hip joint angle

decreases and the knee joint angle increases.

each condition. This required time may be slow, but it is thought that wi-fi is used to

communicate with NAO, and the conditions for transferring to the next leg movement

are severe. This issue will be solved by using the computer having high-performance,

a wired communication, and improving the programing code.
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(i) Walking forward and backward

NAO can walk forward and backward when only the movement of the first mode is

adjusted by changing its gain. Figure 3.12 shows time series of the left hip joint and

left knee joint angles while walking forward and backward. When walking is switched

from forward to backward by adjusting the movement of the first mode, the hip joint

angle decreases and the knee joint angle increases (see around 150.0 [s] in Fig. 3.12).

(ii) Turning left and right

Figure 3.13(a) shows NAO turning left adjust the movement of the eighth mode by

adding a positive constant value to the signal of the eighth mode with an appropriate

P gain kp1 to walk forward. Figure 3.13(b)(c) shows the trajectories of the CoM and

feet when the movement of the eighth mode is adjusted with positive and negative

constant values. Figure 3.14 shows time series of the knee angles when NAO turns left

and right.

NAO can turn left and right by adjusting the movement of the eighth mode, as in

the simulation. As shown in Fig. 3.14(a), the amplitude of the left knee joint angle is

bigger than that of the right knee joint angle in adjusting the movement of the eighth

mode by the constant value α8 = −25.0, whereupon NAO turns left. The converse

holds in Fig. 3.14(b).

3.4.4 Discussion of Bipedal Walking Control

The robot NAO could turn left and right by adjusting the movement of the eighth

mode, that is, adjusting the bending of the robot and NAO at the waist on the frontal

plane by adjusting the constant value. Adjusting the movement of the eighth mode

deflected the CoM to the left-hand or right-hand side of the body, whereupon one foot

took a larger step than did the other foot. This phenomenon can be confirmed from

the fact that the amplitude of the left knee joint angle was bigger than that of the

right knee joint angle (see Fig. 3.14(a)).

The robot and NAO could walk forward and backward by adjusting the movement
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Fig. 3.13: Overview of walking experiment with NAO, and CoM and foot trajectories when NAO turns left and right

in the experiment. (a) Overview of walking experiment with NAO. (b) Turning left: NAO can turn left when the

constant value α8 for adjusting the movement of the eighth mode is positive. (c) Turning right: NAO can turn right

when the constant value α8 for adjusting the movement of the eighth mode is negative. The participant of this figure

gave informed consent to appear on the current work.

of the first mode. The robot and NAO differed in how the gain was adjusted, but we

consider this to be because the gains of the other modes differed between the robot and

NAO. When the movement of the first mode is adjusted, the degree to which the legs

are opened is adjusted, whereupon the position at which the foot touches the ground
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Fig. 3.14: Time series of knee joint angle in turning experiment: (a) turning right; (b) turning left. When NAO

turns right, the amplitude of the left knee joint angle is bigger than that of the right knee joint angle in adjusting the

movement of the eighth mode by the constant value α8 = −25.0. When the constant value is negative, NAO turns left.

can be adjusted. This can be confirmed from the fact that the hip joint angle decreases

and the knee joint angle increases when walking switches from forward to backward

(see Fig. 3.12).

It is normally difficult to make a robot walk in a wide variety of ways because that

necessitates designing a plurality of controllers and preparing references concerning

each combination of individual joints. Instead, our method realizes turning and walking

forward and backward smoothly by adjusting a few parameters in MRM-space without
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having to care about each combination of 27 joints and switching controllers. This is

because there is a pattern of movements according to the mode, and the pattern to

adjust is easy to understand visually.

A person can change behavior while caring intentionally only about “turn left and

right” or “forward and backward.” Likewise, our method can adjust signals and realize

behavior without caring about each joint, which is important in considering human-like

movement in the robot under consideration.

3.5 Discussion

In this study, it was reasoned that the key problem in developing a controller with

mechanisms generating automatic motor commands from the symbolized action pur-

pose would be realizing bio-mimetic adaptation with two-way action adaptation. The

first way is selecting the appropriate behavior that progresses in a top-down manner,

and the second is adjusting the behavior according to the environment, which is a

bottom-up process that progresses through body–environment interactions.

In the preliminary study, it was discussed that the standing balance control of

a two DoF inverted pendulum to introduce our control strategies, focusing only on

the bottom-up adaptation process. The simulation and experimental results showed

that the standing balance control capability was increased when the two DoF inverted

pendulum was controlled using MRM-space, suggesting that the simple adaptation

mechanism is enough to improve the action performance of standing balance when

behavior control is conducted in a space where the direction of behavior can be set by

adjusting to the change of the disturbance. The similarities between the mechanical

resonance modes used in this system and the hip and ankle motion strategies of people

must be another indication of the importance of reacting to a wide range of disturbances

in a space in which the body parameters are well represented.

In the bipedal walking study using NAO, two-way adaptation was discussed. In

the simulation and the experiments, it was succeeded that changing the behavior to

turn left/right and go forward/backward by stimulating different mechanical resonance

modes.
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It is considered that the signals added to the specified mode control can be treated

as generating the action from symbolized action purpose in our study from the view-

point of generating high-dimensional joint movements from the low-dimensional sig-

nals. The detailed commands to the joint control were created in two processes, namely,

transferring the control signal from MRM-space to joint space, and tacit learning for

maintaining walking balance while reacting to environmental inputs. Therefore, these

results suggest that one-dimensional signal change can create the complicated combi-

nations of the 25DoF of NAO required to change the behavior when the appropriate

mode is stimulated.

Joint control is much more complicated in people than it is in robots because

complicated combinations of muscles are required in the former. The notion of muscle

synergy introduced in Chapter 1.1 shares the same features as those of the mechanical

resonance mode used in our method for robot control because the muscle-synergy

space represents the action features of body mechanisms and contributes to adjusting

behavior in our case by using lower-dimensional signals.

These results and discussion suggest that transferring the signals to the appropri-

ate control space is the key process for reducing the complexity of the signals from

the environment. In addition to that, by using tacit learning as the feedback control

loops, the feedback control loops can work as the adjustment function without the

action phase and the learning phase, realizing the action generation with the interac-

tion between the robot and the environment. Discussing muscle synergy in a human

controller and the mechanical resonance mode is only one step to the final output. If

such steps were to be more accumulated to form a larger network as Neuro-synergy

model, various behaviors could be formed from the more-symbolized action target such

as “Go to the station”.

3.6 Conclusion

As discussed in Chapter 3.1, the aim of this research was to clarify the mechanisms of

automatically generating motor commands from the symbolized action purpose, that

is, generating each joint movement from the low-dimensional signals. Our approach
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was to develop an artificial controller that embodies those mechanisms and derive the

important features of that function to assess the extent to which the robot behavior is

human-like.

The artificial controller was designed by using the mechanical resonance mode and

tacit learning and applied it to the standing balance control of the two DoF inverted

pendulum as a preliminary study. In our control strategy, the control signals to each

joint are transferred to another space computed by using the mechanical resonance

modes, whereby it can be easily understood that the action pattern created from each

control signal. Tacit learning was applied in MRM-space and developed the controller

to maintain standing against various levels of disturbance. The simulation results

showed that as the coefficient value increased, the two DoF inverted pendulum could

withstand huge disturbance, and the experimental results showed that the actual two

DoF inverted pendulum could also get withstand huge disturbance when applying tacit

learning in MRM-space. On the other hand, it was showed that the energy consumption

per unit time became large as the coefficient value increases. This result indicates that

by switching the controllers in response to the disturbance, the control making the

standing balance capability and the energy efficiency will be possible.

The controller designed by the mechanical resonance mode and tacit learning was

applied to walking control of 27 DoF humanoid robot and NAO and conducted walking

simulation and experiment. In the simulation and experiment, it was focused on not

only the bottom-up adaptation process but also the top-down process that is related

to the symbolized action purpose. To represent the top-down process, the appropriate

resonance mode was chosen to adjust the behavior to the desired one. When adjusting

the coefficient value of the first mode, the robot changed the walking velocity to walk

forward and backward with maintaining walking balance. When adjusting the pa-

rameter of the eighth mode, the robot turned left and right with maintaining walking

balance. These adjustments were strongly related to the top-down process from the

viewpoint of adjusting low diverse signals in high diverse integrated signals. Walking

balance was maintained by tacit learning applying the method in [81] to joint space in

the same way as the two DoF inverted pendulum control as the bottom-up process.

By designing the artificial controller based on Neuro-synergy model, it was achieved
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that a motion control changing motions by adjusting a few parameters in the higher

layer without caring the state of the lower layer. However, the bottom-up adaptation

process cannot deal with all environmental changes, and living things is consider to

adapt the environmental changes by adjusting or learning in the higher layer. There-

fore, it is important to design a learning method in higher layer well so that the learning

methods in the higher layer and the lower layer cooperate each other.



Chapter 4

Grasp-training Robot to Activate

Feedback Control Loop for Reflex

and Experimental Verification

4.1 Purpose in chapter 4

From this chapter, the motion support method to enhance the human motion is aimed

to be developed. Especially, target subjects getting the support are post-stroke patients

in this study, because the post-stroke patient will greatly improve their quality of life

through the support.

The post-stroke patient is the patient who cannot make the voluntary actions. The

previous robotic research suggested that the combination of the feedback control loops

and the symbolized action purpose is a key factor to generation the action. However,

the patients have a damage in the part of a primary motor cortex and cannot generate

the detailed control signals from symbolized action purpose even though they think

“Grasp” or “Walk”. This means that the top-down process does not works well, and

the signal from the top cannot reach the muscles properly, therefore the patients cannot

generate the action.

In order for the patients to recover from a motion paralysis, they need to conduct a

rehabilitation training with an external physical support from a therapist. The reason

53
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(a) Overview

(b) Time series of sEMG signal of 

      biceps in paralysis arm

(i) Wheel motions are synchronized

(a) Overview

(ii) Wheel motions are independent

(b) Time series of sEMG signal of 

      biceps in paralysis arm

After

Fig. 4.1: Effect of interpreting the feedback control loops on muscle activities of the post-stroke patient by using a

dual-wheel rehabilitation system. (i) Motion of wheels are synchronized. The post-stroke patient in this figure has a

healthy right arm and a completely paralysis left arm. A left hand of the patient is fixed on a left wheel, and when

the patient moves a right wheel by her hand, the left arm is moved due to the wheels are connected. By activating the

feedback control loops using this system, a completely paralyzed biceps could be activated(Fig. 4.1(i)(b)). (ii) Motion

of wheels is independent. After an experiment of (i), the patient could create the muscle activity in paralyzed biceps

muscle by him/herself in a few seconds(Fig. 4.1(ii)(b)).

why the patient recovers from the paralysis is considered that the training encourages

a brain plasticity among a sensory area, a part surrounding damaged motor area, and

a part playing the role of the intention by the training. The brain plasticity is getting

higher when these three activities are occurred at the same time: muscles outputting

sensory signals after muscle activities, the patient intentionally trying to move the

paralysis part, and the part surrounding damaged motor area activating by chance.

Especially, the rehabilitation aiming the recovery by encouraging the brain plasticity

is called as neuro-rehabilitation.

However, by only moving the body by an external physical support, the sensory

signals from the muscles are so weak than when human beings intentionally activate
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the muscles. There are methods to increase the activation in the sensory area, for in-

stance, inducing muscle activities by electrical stimulation or by Transcranial Magnetic

Stimulation(TMS) in the motor area. However, these methods cannot induce specific

action, so there may be a doubt that un-functional neural network is formed by these

methods.

From the view point of a scheme of Neuro-synergy model in the patients, it is

considered that the feedback control loops of lower layers does not get the damage.

If the feedback control loops can be intervened to promote the action by an external

physical support, it will lead to better neuro-rehabilitation. It can be thought that

the un-functional neural network may not be formed by activating the muscles with

the intervention to original feedback control loops. Based on Neuro-synergy model,

the support method of neuro-rehabilitation is studied to promote the motion of the

post-stroke patient and leading the recovery from the motion paralysis by intervening

in the feedback control loops.

Neuro-synergy model has not only simple feedback control loop but also complex

loops such as including the cerebellum or the cortex in feedback control loops. The

simple feedback control loops, for instance, provide reflex motions such as a stretch re-

flex. Some rehabilitation methods use the reflex motion in the rehabilitation training.

Kawahira method [128] and Bobath approach are rehabilitation methods using activat-

ing the feedback control loops such as reflex loops. In Kawahira method, the therapist

aims to recover the function of the patient’s finger extension by they quickly flexing

the patient’s finger to induce a stretch reflex with synchronized with the patient’s in-

tention to extend. In Bobath approach, the therapists stimulate muscle spindles and

touch the skin to activate the feedback control loops. These approaches show that

the synchronization of activating the motion intention and the feedback control loops

is important to promote the connection of an appropriate neural network among the

sensory area, the part playing the role of the intention, and the motor area to bypass

the damaged motor area.

The effect of intervening the complex feedback control loops on promoting the pa-

tients’ motion is shown by using an on-going research in our laboratory. This study is

conducted based on self-support phenomenon. Self-support phenomenon was discov-
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ered by our laboratory. It is that surface electromyography(sEMG) could be measured

in the paralysis arm when the patient conducted an elbow bending of the paralysis

arm by using a healthy arm. By measuring a brain activity in that exercise by using

NIRS, it was confirmed that area around the damaged motor area more activated than

the paralysis arm was supported the others. It shows the control loops including more

upper neural system is activated.

Figure 4.1 shows a dual-wheel rehabilitation system designed based on self-support

phenomenon to promote the motion of the paralysis arm. The motion of the wheels can

be chosen to be synchronized or be independent, and the patient move the paralysis

arm connected to the wheel by moving the other wheel with the healthy arm when the

motions of the wheels are synchronized. Figure 4.1(i)(b) shows the time series of sEMG

of the biceps muscle in the paralysis arm, suggesting that the muscles in the paralysis

arm could activate as same as self-support phenomenon. After this experiment, we

made the wheels moving independently, but the patient could create a little muscle

activity in paralyzed biceps muscle by him/herself in a few seconds. Figure 4.1(ii)(b))

shows that result, suggesting that the support method based on patient’s own motion

contributes to the intervention in the complex feedback control loops in more complex

motion.

In this chapter, as a first step of realization of neuro-rehabilitation method based

on Neuro-synergy model, a rehabilitation robot promoting the patients’ motion is

developed by intervening in the simple feedback control loop. Robotic rehabilitation is

now recognized as an important approach for effective recovery from motion paralysis.

Robots such as the reach-training robots InMotion ARM [129] [130] and ReoGo [131]

[132] and the exoskeleton robot HAL [133] [134] have been developed and used in

clinical practice, leading to effective recovery.

One of the most important aims of robotic rehabilitation is grasp training, in

which it is difficult for therapists to support patients in making precise and repeti-

tive movements. To date, several types of robot have been proposed for supporting

grasp training [135–143]. The power-assisted hand designed by LAP Co., Ltd. [135]

is a “glove-type” robot controlled by air pressure for grasp therapy. This robot auto-

matically supports the extension and flexion of the fingers. The Hand of Hope system
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designed by Rehab-Robotics Co. [136] is an exoskeleton robot that is controlled by lin-

ear actuators using sEMG signals from the user. HEXORR designed by Schabowsky

et al. [137] is an exoskeleton robot controlled by two motors. It can compensate for

gravity in finger movements and can provide assistive forces according to the finger

movements of its wearer. The Exo-Glove PM device [138] is an exoskeleton robot made

of polymer and controlled by air pressure. This robot is fixed by polymer belts to the

distal phalanges and palm of its wearer. It is created by three-dimensional printing

and can be adapted to individual hands.

Many grasp-training robots move their user’s fingers in response to his or her motion

intentions as decoded from motion triggers or sEMG or electroencephalogram (EEG)

signals, for instance. However, the mechanical motion supported by a grasping-training

robot is not enough to promote neural activity in the feedback control loops.

In this chapter, therefore, a grasping-training robot is proposed which can stimulate

the feedback control loops. In addition to the function for stimulating the feedback

control loops, it is aimed to develop a grasping-training robot that is suitable for use

in clinical practice in relation to its usability and wearability.

In Chapter 4.2, the problems with using conventional grasping-training robots in

clinical practice are listed, and a grasping-training robot with the ability to stimulate

the feedback control loops is proposed. In Chapter 4.3, experimental results from

healthy subjects are used to show that a finger extension/flexion mechanism can move

the subject’s fingers in the same way that a therapist can. In Chapter 4.4, experimental

results from clinical tests are used to show that the proposed robot can activate reflex

motion in the paralyzed hand of a post-stroke patient. sEMG signals were detected

from the patient’s arm only when reflex motion was stimulated by our robot. In

Chapter 4.5, it is concluded by summarizing our experimental results and describing

future work toward the use of our robot in clinical practice.
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(a) Overall (b) Side view

Plate rubber Articulated curving mechanism

Fig. 4.2: Design of device to move fingers: (a) overall; (b) side view. This device is referred to herein as a “four-finger

glove”. The side of the four-finger glove consists of two articulated curving mechanisms (red), and the top and bottom

consist of 16 rubber plates (gray). To use the four-finger glove, the user inserts his or her hand between the rubber

plates.

(i) (ii) (iii)

Glove type brace

Move up mechanism

Thread

Shaft (controlled by motor)

Axis

Fig. 4.3: Design of device to move wrist. This device is referred to herein as a “bascule bridge mechanism”. This

mechanism has single link and axis. The four-finger glove is set on the edge of the mechanism. (i) Initial position.

(ii) When the threads are pulled by the rotation of the shaft, the mechanism is pulled up, and at the same time, the

four-finger glove is flexed. (iii) At finishing the rotation of the shaft, the extension of the mechanism and the flexion of

the glove is accomplished.

4.2 Grasping-training Robot

4.2.1 Problems with Conventional Grasping Robots in Clini-

cal Practice

Human beings can grasp objects with just taking care of the motor intention “Grasp”

and the finger tips. However, careful observation shows that wrist extension and thumb

opposition are also conducted at the same time. This can be said to be due to the
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Top view Side view

Thumb brace
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Bar
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Rotational joint

Fig. 4.4: Design of device to move thumb: This device is referred to herein as a “thumb fixer”. The thumb fixer consists

of a thumb brace, a bar, and a rotational joint. By extending the wrist with setting the thumb fixer on the robot, the

thumb will oppose with restraining the bone of the thumb on a flat surface. Two rotational joints and one slider works

to absorb changes in position and angle of the thumb during the thumb opposition.

work of the feedback control loops. However, current grasping-training robots do not

pay attention to the wrist extension and the thumb opposition, and those robots fix

the wrist and the thumb during grasping training.

There is a mechanical constraint called tenodesis action in human being, which is a

phenomenon that the muscles of the fingers are pulled by the wrist extension, and the

fingers are flexed naturally. It can be considered that human being uses the tenodesis

action for easy to grasp. The feedback control loops are tried to be intervened by

supporting the tenodesis action and thumb opposition from the outside.

In addition to that, a grasping reflex is used, in this research, for activating the

feedback control loops from the neural system side. The grasping reflex is one of

primitive reflexes, and the grasping motion is induced by stimulating the palm of

hand. It is considered that high rehabilitation effect can be obtained by inducing the

grasping reflex after making easy state of grasping by supporting the tenodesis action
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Fig. 4.5: Design of grasp-training robot: This robot consists mainly of the four-finger glove, the bascule bridge mecha-

nism, the thumb fixer, a wrist rest, an actuator, and a shaft. In use, the subject puts his/her wrist on the wrist rest,

inserts the fingers into the four-finger glove, and sets the thumb fixer on the wrist rest. This robot is controlled by one

motor. The four-finger glove is extended and bent, the bascule bridge mechanism is down and up, and the thumb fixer

with the thumb is opened and opposed by the rotation of the shaft controlled by the motor.

and the thumb opposition.

The most important step in recovering from grasping paralysis is the intentional

initiation of movement, thereby overcoming complete paralysis. For the early stage

of training to recover intentional motion, to move the fingers separately is considered

unnecessary. Rather than using such complicated motion support in clinical practice,

it is better to have a device in which it is easy to place completely paralyzed fingers

and that requires little training time. Also, robots that are complicated to control are

not suitable in clinical practice because of the lack of highly skilled engineers.

Based on these discussions and the mechanism for stimulating the grasping reflex,

a grasping-training robot is proposed with the following features:

1. The glove-type device illustrated in Fig. 4.2, into which all the fingers except the

thumb are inserted together and moved at the same time.

2. The bascule bridge mechanism in Fig. 4.3, which the glove-type device is moved

up.

3. The thumb fixer in Fig. 4.4, which has the brace part and the rod part.
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Bascule bridge mechanism

Motor

Thumb brace

Hand

Forearm rest

Shaft

x

y

z

Four-finger glove

Fig. 4.6: Connection among the parts of the robot. The four-finger glove is attached to the bascule bridge mechanism.

The bascule bridge mechanism is attached on the wrist rest. The thumb fixer is attached on the wrist rest. The motor

is attached to the shaft. Four threads are passed through the four-finger glove, and the other four threads are attached

on the edge of the bascule bridge mechanism. The threads are fixed on the shaft.

4. One motor is used to help extend and bend the fingers.

5. The grasping reflex is stimulated by grasping a bar set on the robot.

4.2.2 Mechanism of Proposed Robot

In this chapter, a robot mechanism is shown, which was designed taking the aforemen-

tioned problems into account. Figure 4.5 shows an overview of the proposed robot,

which consists of a four-finger glove, the bascule bridge mechanism, and the thumb

fixer. Figure 4.6 shows the connection of each part. The four-finger glove and the bas-

cule bridge mechanism are driven by threads attached to a shaft. The threads made by

ultra-high molecular weight polyethylene is used in this research, and Young’s modulus

of this thread is 79 [GPa].

The four-finger glove consists of an articulated curving mechanism to which are

attached upper and lower rubber plates as illustrated Fig. 4.2. Young’s modulus of
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(b) Mechanism of articulated curving mechanism of five segments

Shaft

Motor Start

(a) Design of articulated curving mechanism of two segments

1
2
.5

1915

ø4

28˚

Holes to pass wires

Fig. 4.7: Articulated curving mechanism and movement: (a) size of a segment of the curving mechanism; (b) movement

of a five-segment mechanism. When the bottom thread is pulled, bending begins from the distal segment to the proximal

segment. By fixing threads to the shaft, the rotation of the segments can be controlled by one action.
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(i) Motion of thumb opposition (ii) Cone model

Fig. 4.8: Cone model of thumb opposition motion: (a) motion of thumb opposition. a thumb bone moves on the side

surface of a cone shape with a carpometacarpal joint(cm joint) of the thumb as an apex. (b) cone model of thumb

opposition motion. q is the point on the bone of the thumb. r is a radius of bottom of cone shape, az is a distance from

apex to bottom. θ represents the rotation of the thumb opposition. ϕ represents the rotation of the wrist movement.

the rubber is 12.7 [MPa]. Each segment of the curving mechanism has two holes in it

and is connected to the next segment by a rotational joint (see Fig. 4.7(a)). The angle

between the segments, namely 28◦, was determined by trial and error according to the
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Fig. 4.9: Example of the relationship of the thumb opposition θ and the wrist movement ϕ. When substituting an

appropriate value for r and az , in this case r = 1 and az = 1, and changing ϕ from 0 to 40 degrees, there is a trend

that θ changes from zero to negative value like Fig. 4.9. As you can see Fig. 4.8, the positive value of ϕ represents the

wrist extension, and the negative value of ϕ represents the thumb opposition.

Fig. 4.10: Region for stimulating grasping reflex. Pushing a bar on a paralyzed hand can improve grasping by activating

the grasping reflex. The grasping reflex is aimed to be induced by locating the bar on this region.

support motions discussed in the next chapters. The sizes of the other parts of the

four-finger glove were determined with reference to the average hand size summarized

in Table 4.1.

The threads pass through the curving mechanism as illustrated in Fig. 4.7(b). When

the thread of the bottom side in Fig. 4.7(b) is pulled, the mechanism starts to bend

from end to end. When the upper side thread is pulled, the mechanism straightens

out again.
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Bar for grasping

(a) Without bar (b) With bar

Fig. 4.11: Location of elastic bar: (a) without bar; (b) with bar. The bar (brown) for grasping is attached under the

hand rest so that the inside diameter of the four-finger-glove can contact the bar. The bar applies stimulation to the

fingers.

The bascule bridge mechanism consists of simple one link. One segment can be

rotated around one joint, the other segment is connected on the wrist rest. The threads

are connected on the edge of rotatable segment, and the amount of rotation can be

adjusted by pulling the amount of the threads.

The four-finger glove is set on the bascule bridge mechanism, and the threads are

connected to the shaft in Fig. 4.6. A DC motor is used to rotate the shaft in opposite

directions, causing the four-finger glove to either extend or flex and the bascule bridge

mechanism to either down or up. Figure 4.3 shows a motion of the four-finger glove

and the bascule bridge mechanism when the threads are pulled by the rotation of the

shaft.

The four-finger glove and the bascule bridge mechanism have simple mechanisms, on

the other hand, since the mechanism of the thumb is complicated, a robot mechanism

will become complicated to oppose the thumb by external force. The thumb opposition

is tried to be modeled, and the support method is considered based on the model.

Figure 4.8(i) shows the motion of the thumb opposition, suggesting that a thumb bone

moves on the side surface of a cone shape with a carpometacarpal joint of the thumb as

an apex. The thumb opposition can be modeled with the cone shape like Fig. 4.8(ii).
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A point q represents a point on the bone of the thumb. The point q is written by

using rotation matrices as follows:

q =
[
qx qy qz

]T
= Rx(ϕ)Rz(θ)sq, (4.1)

qs =
[
r 0 −az

]T
, (4.2)

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ,Rx(ϕ) =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 , (4.3)

where qs is an initial position of q, r is a radius of bottom of cone shape, az is a distance

from apex to bottom. Rz(θ) and Rx(ϕ) are rotation matrices around the z axis and

around the x axis, respectively. θ represents the rotation of the thumb opposition. ϕ

represents the rotation of the wrist movement.

From Eqs. (4.2), (4.3), and (4.3), y component of q is

qy = r cosϕ sin θ + az sinϕ. (4.4)

When qy will be zero,

0 = r cosϕ sin θ + az sinϕ (4.5)

θ = sin−1

(
−az sinϕ

r cosϕ

)
. (4.6)

Equation (4.6) represents the relationship of the thumb opposition θ and the wrist

movement ϕ. When substituting an appropriate value for r and az, in this case r = 1

and az = 1, and changing ϕ from 0 to 40 degrees, there is a trend that θ changes

from zero to negative value like Fig. 4.9. As you can see Fig. 4.8, the positive value

of ϕ represents the wrist extension, and the negative value of ϕ represents the thumb

opposition. These results show that the thumb will oppose when the wrist extends

with restraining the bone of the thumb on a flat surface without extra motor for the

thumb opposition.

Figure 4.4 is the brace working to constrain the thumb on the flat surface when the

wrist extension. The brace has two rotational joints, one slider, and one bar. The bar

will be fixed on the wrist rest of the robot and works to constrain the thumb. Two
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Table 4.1: Average hand-size data and robot dimensions

M F

Middle finger length, Mean 93.4 86.5 Glove length

dorsal [mm] S.D. 4.5 4.2 < 120 [mm]

Mean 83.3 74.0 Glove breadth

Hand breadth, < 160 [mm]

diagonal [mm] S.D. 3.6 3.0 Hand-rest breadth

< 100 [mm]

Hand thickness at Mean 32.1 27.8 Glove thickness

metacarpal-3 head [mm] S.D. 2.1 1.8 > 19 [mm]

rotational joints and one slider works to absorb changes in position and angle of the

thumb during the thumb opposition.

It is known that the grasping reflex appears most strongly when the hand region

shown in Fig. 4.10 is stimulated. Hence, the elastic bar is located at the position shown

in Fig. 4.11, and set out to confirm its influence experimentally.

4.3 Grasping Experiment and Results of Clinical

Experiment

In this chapter, it is shown that the proposed robot can induce the grasping reflex, that

is, activate the feedback control loops through experiments on a post-stroke patient. In

this experiment, the function of the four-finger glove is focused on, and the functions

for the wrist and the thumb are not used. Also, for the convenience of the experiment,

the four-finger glove is used with a setting in 4.1. It is said that primitive reflexes

are observed in the post-stroke patient with motion paralysis. It was tested that the

stimulation of the grasping reflex and the usability of the proposed robot clinically by

asking five post-stroke patients to participate in our experiments. With four of the

patients, we merely placed their hands in the four-finger glove. The fifth patient, who
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Fig. 4.12: Surface Electromyography (sEMG) time series of main flexor muscle group in grasping and opening without

the elastic bar. Red line is the measured sEMG signal of the main flexor muscle group. Blue line is the signal after

being low-pass filtered with a cutoff of 0.1 Hz. In this case, the robot extended and bent five times at a frequency of

roughly 0.1 Hz. The absence of peaks indicates that grasping was not promoted without the bar.
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Fig. 4.13: Electromyography time series of main flexor muscle group in grasping and opening with the elastic bar. The

conditions are the same as those in Fig. 4.12. The five peaks show that the flexor muscle was activated when the

four-finger glove and fingers grasped the bar. This result indicates that grasping is promoted with the bar. This is

similar to the way that post-stroke patients with grasping paralysis can grasp more easily when bars are pressed on

their hands.

could not intentionally activate the muscles required for grasping, attended the grasp-

training experiments. Permission to participate in the grasp-training experiments could

not be obtained from other patients.

Regarding placing a paralyzed hand in the four-finger glove, it is succeeded that

less than 5 min in all four tests, with the average time being 2.5 min. No patient felt
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any pain during the test.

In the experiments for stimulating the grasping reflex, the patient was asked to

relax during the supported motion. The shaft was manually rotated at a velocity that

the patient did not feel pain because the motor could not be used due to wire breakage.

the sEMG of the main flexor muscle were measured while the robot bent and extended

the patient’s hand at a frequency of about 0.1 Hz with and without the elastic bar.

Figures 4.12 and 4.13 describe the sEMG time series without and with the elastic

bar, respectively. The blue lines in the figure represent the sEMG signal after it was

low-pass filtered with a cutoff of 1.0 Hz. The robot began extending the fingers at

0.0 s, proceeding to extend and bend the fingers repeatedly five times.

The results show a recognizable sEMG response to grasping when the elastic bar

was present and none when the bar was absent. Five peaks are visible in Fig. 4.13 at

around 9.0, 17.0, 25.0, 35.0, and 42.0 [s]. The appearance of the peaks coincides with

the robot grasping the elastic bar fully. In this experiment, even though the patient

was asked to relax while the experiment was conducted, the flexor muscle activated

unintentionally (on the part of the patient) because of flexion by the robot. This

phenomenon indicates that the robot can stimulate the grasping reflex if it is equipped

with an elastic bar.

As it was written above, it was attempted to promote the motion of the patient

by stimulating the feedback control loop, that is, the grasping reflex. In this case, the

motion of the patient is automatically generated by inducing the grasping reflex. In

general, it is said that the time from stimulating to starting simple reflex motion is

10.0-20.0 [ms] because the reflex motion is generated by sensory stimulation reaching

a muscle via the spine [144–146]. In this experiment, only sEMG signal was measured

from flexor muscles, therefore the time of automatically generating the motion by

stimulating the feedback control loop could not be got. However, since the change of

the grasping motion is slow, it is necessary to verify in detail what elements and which

neural pathways are contributing to induce the grasping motion by using fMRI.
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4.4 Conclusion

Activation the feedback control loops during rehabilitation from grasping paralysis

is a key factor for effective recovery. In this study, the grasping-training robot was

proposed, which can activate the feedback control loops by mechanical motion support

for the finger flexion, the wrist extension, the thumb opposition, and the grasping

reflex induced by stimulating the palm of the hand with the elastic bar. The proposed

robot consists of the four-finger glove with a curving mechanism, the bascule bridge

mechanism, the thumb fixer, the shaft, and threads. The threads are connected to

the curving mechanism of the glove and the edge of the bascule bridge mechanism.

The glove can extend and bend, and the bascule bridge mechanism can down and up

repeatedly by pulling the threads with the shaft. Respond to the wrist extension, the

thumb is opposed by the constraint with the thumb fixer.

There are important features of the proposed robot. It allows stimulation of the

grasping reflex in hands paralyzed by strokes. When the motion support by the robot

was applied to a post-stroke patient, the sEMG signals were detected from the com-

pletely paralyzed hand. These results suggest that appropriate motion support and

the grasping of an elastic bar could stimulate the grasping reflex of patients.

The results presented here can be taken collectively as a case study of stimulating

the grasping reflex. Next, experiments with several patients should be conducted with

different materials and sizes of the grasping object and other functions of the robot to

be sure that the proposed robot can stimulate the grasping reflex.



Chapter 5

Theoretical Approach for Designing

the Rehabilitation Robot Controller

5.1 Purpose in chapter 5

In previous chapter, a concept was proposed that activating the feedback control loops

realized the effective rehabilitation from motion paralysis. From that point of view,

the grasping-training robot consisting of the four-finger glove, the bascule bridge mech-

anism, the thumb fixer, and the grasping reflex was designed to activate the feedback

control loops. This robot could induce the grasping reflex by stimulating the palm

of the hand with the elastic bar, and one of the merits of rehabilitation robots is to

conduct these kinds of motion support repetitively. However, the potential of robot

rehabilitation should not be limited to repetitive grasping support, and it is neces-

sary to extend the concept to general actions and establish a new robot rehabilitation

strategy.

In the European Commission project of the Seventh Framework Programme (FP7)

called “Smart Wearable Robots with Bioinspired Sensory-Motor Skills (BioMot)” [147],

the robot rehabilitation strategy was examined through clinical tests and concluded

that the robot should first adapt to the patient’s motions, and then gradually improve

the patient’s motion [84]. The robot rehabilitation strategy is shown in detail in

Chapter 5.2.

70
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To create the robot controller to achieve the proposed strategy, tacit learning was

used [80–84, 123, 148]. Tacit learning has been used to generate bipedal walking from

a roughly defined walking gait [81], to create behaviors from a symbolized purpose

[148], and to control the wrist joint of a forearm prosthesis in response to the wearer’s

shoulder movements [83]. In the BioMot Project, tacit learning was used to control

an exoskeleton robot and adapted the joint trajectories to the wearer’s motions by

tuning the stiffness of the joints as the first stage in the proposed robot rehabilitation

strategy [84].

Next, it is needed to extend the discussion and propose a control system that can

improve the motion of the patient. The most important problem in proposing the

control system is to deal with differences between patient’s recovery potential and

recovery speed in each patient. In particular, defining the fully recovered state is a

critical problem for designing the controller. If all patients could recover their motion

to the same state as before the disease, the fully recovered state could be set as the ideal

state. However, the fully recovered state cannot always be defined in this way because

the recovery potential is different in each patient. Many patients live with paralysis

even though perfect rehabilitation is provided. In cases where patients cannot make

a full recovery, a state that can maximize the quality of life should be aimed, even

if the patient is still paralyzed. For the control system, the problem of setting the

ideal state is the difficulty in setting the reference for the controller. To overcome this

problem, a controller is designed to improve the patient’s state without defining the

ideal state. The controller reference is changed when the patient’s state is improved

by rehabilitation.

In this research, it is described that the theoretical basis of the rehabilitation strat-

egy discussed above. A controller is proposed, which can improve the patient’s state

according to their recovery and analyze the recovery process theoretically using the

controller. To design the controller, several assumptions are made based on the bio-

logical control principle.

In Chapter 5.2, the concept of designing the controller is explained based on Neuro-

synergy model. In Chapter 5.3, the mathematical model of the controller is explained,

and the assumptions for the recovery are also explained. In Chapter 5.4, the controller
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that can dealing with differences between patients is shown through simulations. In

Chapter 5.5, a method how to apply the proposed system for controlling a lower limb

exoskeleton robot is described. In Chapter 5.6, it is the discussion.

5.2 Robot rehabilitation strategy and patient model

including recovery

5.2.1 Problems with robot motion support

To clear the problems with robot rehabilitation, the failure in motion support using the

exoskeleton robot is shown again(Fig. 1.4). In the experiments, healthy young subjects

were asked to walk wearing an exoskeleton robot that was controlled with a fine-tuned

bipedal walking trajectory. Figure 1.4(b) shows an overview of the experiments when

the subjects tried to walk for the first time wearing the exoskeleton robot. The subjects

could not walk with the robot motion support. The exoskeleton robot appeared to

disturb the motion of the subjects rather than supporting the walking. The subjects

finally lost their balance and could not keep walking.

There is the reason why subjects were not able walk, even though they were young

healthy people who can walk with no difficulty. This reason can be explained by

using Neuro-synergy model. This model demonstrates that our motions are created

with a combination of voluntary actions and reactive motions. Voluntary actions are

created by the symbolized action purpose described in the higher layer, whereas reactive

motions are created by the feedback control loops as a response to unexpected inputs

from the environment to the controller. In the case of the exoskeleton robot support

in Fig. 1.4, the activation of the feedback control loops by an excessive support force

causes the inhibition of walking and the loss of balance. One of the causes of the

excessive support force is a discrepancy between the movements of the robot and the

subjects.
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5.2.2 Robot rehabilitation strategy

Losing balance through an unexpected external support force is the extreme case of

non-ideal motion support. In any rehabilitation, however, consistency between motion

intention and motion support is an important factor in efficient recovery from paralysis.

Even though the feedback control loops of the subjects are working properly, there is

a possibility that the robot may hinder a target action by supporting the motion.

Therefore, unexpected inputs by rehabilitation robots may have a negative effect on

recovery. The robot should not provide the unexpected inputs to keep activating the

feedback control loops properly and secure a period during which the subject gets used

to the robot motion at first.

The following steps are proposed for the robot rehabilitation:

1. Robot motions are controlled to adapt to patient motions without creating dis-

crepancies.

2. Robot motions are gradually tuned to improve patient motions with small exter-

nal forces.

3. Patient motions converge to the full recovery state possible for the patient.

If paralysis is so severe that the patients cannot move the paralyzed limbs at all,

Step 1. may be unnecessary. In many cases, however, patients move in abnormal ways

with activating the feedback control loops. In the proposed rehabilitation process, the

robot should be controlled to follow the abnormal movements in Step 1. In Step 2,

the robot should improve the movements of the paralyzed limbs with a small differ-

ence between the patient’s abnormal motions and the supported motions. In Step 3,

the limits of recovery are identified. Many patients cannot make a recovery to their

previous condition. The limits of recovery should be detected and the robot support

should converge its motion to this state.

5.2.3 Mathematical expression for rehabilitation

In this research, the theoretical basis of the rehabilitation robot control is created with

two assumptions in the patient paralysis and recovery model, which are the expressions
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of motion paralysis and the recovery.

One method for describing paralysis in a mathematical model is to describe the

source of the paralysis and the motion controller separately. The method shown in

Fig. 5.2 is used, where the reference for the abnormal motion is created by the sum-

mation of the source of paralysis and the normal motion reference,

xP = x1ref + µ, (5.1)

where xP , x1ref , and µ are the reference for the abnormal movement, the reference for

the normal motion, and the suppression from the source of the paralysis, respectively.

In this model, µ represents the suppression of the normal motion reference by

the source of the paralysis, and the reduction of µ expresses the reduction of the

suppression. That is, the reduction of µ by the rehabilitation training means that the

patient can generate the muscle activity again due to decreasing the influence of the

damaged motor area by constructing the neural network among the sensory area, a

part surrounding the damaged motor area, and a part playing the role of the intention.

µ is described as

µ = h(x1), (5.2)

dµ̇

dx1

=
d2h(x1)

dx1dt
< 0, (5.3)

where x1 represents the position of the patient, and h(x1) is a function. The function is

called as recovery function. Equation (5.3) represents a property where the suppression

is reduced by the change of the position of the patient.

Figure 5.1 visualizes the property of Eq. (5.3). In Fig. 5.1, it is assumed that x1

does not reach the reference for the normal motion because of the paralysis −C and

becomes x1(0) at the early stage of the rehabilitation training. For easy to understand,

x1 is described discretely in this figure. When the rehabilitation training makes x1 close

to the reference for the normal motion x1ref ,

{x1(i+ 1)− x1ref} − {x1(i)− x1ref} = x1(i+ 1)− x1(i) > 0. (5.4)
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Fig. 5.1: Property of µ. it is assumed that x1 does not reach the reference for the normal motion x1ref because of the

paralysis −C and becomes x1(0) at the early stage of the rehabilitation training.

At that time, from Eqs. (5.3) and (5.4), the time derivative of µ is written as

dµ̇

dx1

< 0

⇔ µ̇(i+ 1)− µ̇(i)

x1(i+ 1)− x1(i)
< 0

⇒ µ̇(i+ 1)− µ̇(i) < 0

µ̇(i+ 1) < µ̇(i). (5.5)

This can be interpreted in two ways; As the patient performs well, the paralysis in-

creases, or as the patient performs well, the paralysis gradually decreases. From the

viewpoint of Eq. 5.1, the performance does not improve despite the paralysis increase,

the condition of Eq. (5.3) represents the property that the paralysis is reduced by the

rehabilitation training that extends, in this study, the position of the patient x1. This

function corresponds to the blue part in Fig. 5.2.

In the next chapter, it is discussed that the rehabilitation robot controller and the

rehabilitation process using the controller based on the above assumptions.
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Fig. 5.2: Block diagram of whole system including the patient and robot (see Chapter 5.3 for details).

5.3 Robot controller realizing proposed robot re-

habilitation strategy

5.3.1 Model of robot, patient, and relationship

To construct a theoretical basis of the robot rehabilitation, the discussion is started

with a simplified model where the state of the patient and the robot with one DoF.

The interaction between the robot and the patient is assumed as a position-dependent

reaction force, so the patient-robot is described as a mass-spring model.

The motion equation is {
m1ẍ1 = k(x2 − x1) + τ1 (5.6)

m2ẍ2 = k(x1 − x2) + τ2, (5.7)

where m1 and m2 are the masses that the patient and the robot control, x1 and x2
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represent the positions of the patient and the robot, and τ1 and τ2 are the driving

forces of the patient and the robot, respectively. k is a spring coefficient between the

robot and the patient. The models of the patient and the robot are simplified to make

it easier to apply a proposed system to different rehabilitation robots and sensors. Its

effectiveness is shown through experimental results of a walking experiment using a

lower limb exoskeleton robot in Chapter 5.6.

5.3.2 Controller for realizing the proposed robot rehabilita-

tion strategy

Figure 5.2 shows the whole system including the patient and the robot. The upper

part of the block diagram represents the patient’s plant and controller including the

recovery function. The bottom part of the block diagram represents the robot’s plant

and controller designed with tacit learning.

The patient generates the driving force, τ1, to converge the position to a reference

position. Thus, the driving force, τ1, is represented with the proportional–derivative

(PD) controller as

τ1 = kp1(xP − x1)− kd1ẋ1, (5.8)

where kp1 is the proportional (P) gains of the PD controller, kd1 is the derivative (D)

gains of the PD controller, and xP is as same as Eq. (5.1).

The driving force of the robot, τ2, is written as

τ2 = kp2(x2ref − x2)− kd2ẋ2 − ζ + ξ, (5.9)

where kp2 is P gain, kd2 is D gain, and x2ref is the reference position of the robot.

Value ζ consists of an accumulation of τ2,

ζ = kt1

∫
τ2dt, (5.10)

where kt1 is a coefficient of an integrator that accumulates the driving force. This

accumulation corresponds to tacit learning and adjusts the driving force of the robot

through the robot-patient interaction.　 kt1 can change the adaptation level.　 This
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accumulation controls the exoskeleton robot to reduce the burden on the user’s muscles

in the BioMot Project [84]. In this paper, the feedback control loop is called an

adaptation loop and is shown in the green part of Fig. 5.2.

Value ξ consists of the integration of the interaction force,

ξ = kt2

∫
S(p, f)dt, (5.11)

S(p, f) = sign(f + p)|f |, (5.12)

f = k(x1 − x2), (5.13)

where f is the interaction force on the robot generated from the spring and p is a

constant value determining the direction of the support force. This accumulation is

an application of tacit learning and gradually changes the robot behavior based on

the direction of the support force. In this paper, this feedback control loop is called a

support loop and is shown in the pink part of Fig. 5.2.

The whole system can be expressed by combining Eqs. (5.1), (5.6), (5.7), (5.8), and

(5.9) as {
m1ẍ1 = k(x2 − x1) + kp1(x1ref + µ− x1)− kd1ẋ1 (5.14)

m2ẍ2 = k(x1 − x2) + kp2(x2ref − x2)− kd2ẋ2 − ζ + ξ. (5.15)

Equations. (5.14) and (5.15) can be written as{
τ = A(r − x)−Bẋ+ η (5.16)

Mẍ+Kx = A(r − x)−Bẋ+ η, (5.17)

where

x =
[
x1 x2

]T
, ẋ =

[
ẋ1 ẋ2

]T
, (5.18)

A =

[
kp1 0

0 kp2

]
, B =

[
kd1 0

0 kd2

]
, (5.19)

M =

[
m1 0

0 m2

]
, K =

[
k −k

−k k

]
, (5.20)

r =
[
x1ref + µ x2ref − 1

kp2
ζ
]T

,η =
[
0 ξ

]T
. (5.21)
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5.3.3 Stability analysis of controller

Shimoda et al. [123] analyzed the stability of a control system using tacit learning

by using the singular perturbation method. The singular perturbation separates the

system into the FMS and the SMS, verifying the stability of each system. As it was

written before, the part of the robot controller adapting the robot to the patient is the

FMS, and the part of the controller changing the motion of the patient is the SMS.

(i) Analysis of FMS

First, the stability of the FMS is verified. The change caused by the SMS is much

slower than that caused by the FMS, so the time differentiation of the support and the

recovery are

µ̇ ≃ 0, η̇ ≃ 0. (5.22)

From Eqs. (5.16) and (5.17), the whole system can be written asτ = A(r − x)−Bẋ+ η

Mẍ+Kx = A(r − x)−Bẋ+ η
(5.23)

⇔

τ = A(r +A−1η − x)−Bẋ

Mẍ+Kx = A(r +A−1η − x)−Bẋ.
(5.24)

A candidate for the Lyapunov function is defined as

V =
1

2
ẋTMẋ+

1

2
xTKx+

1

2
{x− (r +A−1η)}TA{x− (r +A−1η)}. (5.25)

M and A are positive definite matrices. K is semi-positive definite matrix, but the

second term on the right side of Eq. (5.25) is written as

1

2
xTKx =

1

2

[
x1 x2

] [ k −k

−k k

][
x1

x2

]
(5.26)

=
1

2

(
kx2

1 − 2kx1x2 + kx2
2

)
(5.27)

=
1

2
k (x1 − x2)

2 , (5.28)
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so Eq. (5.25) is positive for arbitrary values except for a condition: x = 0, x =

r +A−1η, ẋ = 0, and x1 = x2.

The time differentiation of Eq. (5.25) is

V̇ = ẋTMẍ+ ẋTKx+ {ẋ− (ṙ +A−1η̇)}TA{x− (r +A−1η)}

= ẋT
[
Mẍ+Kx+A{x− (r +A−1η)}

]
− (ṙ +A−1η̇)TA{x− (r +A−1η)}

= −ẋTBẋ− (ṙ +A−1η̇)TA{x− (r +A−1η)} (∵ Eq. (5.17))

= −ẋTBẋ+ (ṙ +A−1η̇)T (τ +Bẋ) (∵ Eq. (5.16))

= −ẋTBẋ+ ṙT (τ +Bẋ) (∵ η̇ ≃ 0)

= −ẋTBẋ+

[
µ̇

− 1
kp2

ζ̇

]T
(τ +Bẋ) (∵ Eq. (5.21))

= −ẋTBẋ+

[
0

− 1
kp2

kt1τ2

]T
(τ +Bẋ) (∵ µ̇ ≃ 0, ζ̇ = kt1τ2)

= −ẋTBẋ−

([
0 0

0 1
kp2

kt1

][
τ1

τ2

])T

(τ +Bẋ)

= −ẋTBẋ− (Cτ )T (τ +Bẋ)

= −ẋTBẋ− τ TCTτ + τ TCTBẋ

= −ẋTBẋ−
(
τ +

1

2
Bẋ

)T

CT

(
τ +

1

2
Bẋ

)
+

1

4
(Bẋ)T CT (Bẋ)

∴ = −ẋT

(
B − 1

4
BTCTB

)
ẋ−

(
τ +

1

2
Bẋ

)T

CT

(
τ +

1

2
Bẋ

)
. (5.29)

When kt1 is a positive value, the matrix CT is a positive semi-definite matrix, so the

second term on the right side of Eq. (5.29) will be negative. The necessary and sufficient

condition where Eq. (5.29) is definitely negative is that a matrix
(
B − 1

4
BTCTB

)
is

a positive definite matrix. Matrix B and matrix C are

B =

[
kd1 0

0 kd2

]
,C =

[
0 0

0 1
kp2

kt1

]
, (5.30)
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and

B − 1

4
BTCTB =

[
kd1 0

0 kd2

]
− 1

4

[
kd1 0

0 kd2

]T [
0 0

0 1
kp2

kt1

]T [
kd1 0

0 kd2

]

=

[
kd1 0

0 kd2

]
− 1

4

[
0 0

0
k2d2
kp2

kt1

]

=

[
kd1 0

0 kd2 − 1
4

k2d2
kp2

kt1

]
. (5.31)

A condition where the matrix
(
B − 1

4
BTCTB

)
becomes the positive definite matrix

is that all leading principal minors of that matrix are positives. That condition is

kd1 > 0

kd2 − 1
4

k2d2
kp2

kt1 > 0
⇔


kd1 > 0

kd2 > 0

kt1 <
4kp2
kd2

.

(5.32)

Consequently, when kt1 is small, the time differentiation of Eq. (5.25) becomes negative,

so Eq. (5.25) is the Lyapunov function, and x = 0, x = r + A−1η, ẋ = 0, and

x1 = x2 will be the asymptotically stable points. The results show that FMS is an

asymptotically stable system.

(ii) Analysis of SMS

Next, the stability of the SMS is verified. The FMS is an asymptotically stable system.

Convergence points for the FSM are described as •. ẍ, ẋ, and ζ̇ converge to zero. At

that time, the whole system can be written as

k(x1 − x2) = τ1 (5.33)

k(−x1 + x2) = τ2 (5.34)

τ1 = kp1 (x1ref + µ− x1) (5.35)

τ2 = kp2

(
x2ref −

1

kp2
ζ +

1

kp2
ξ − x2

)
(5.36)

ξ̇ = kt2S(p, f) (5.37)

ζ̇ = kt1τ2 = 0. (5.38)
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From Eqs. (5.34) and (5.38), the interaction force on the robot becomes

k(x1 − x2) = 0. (5.39)

At that time, from Eqs. (5.12), (5.37), and (5.39),

ξ̇ = 0. (5.40)

From Eq. (5.36), the time differentiation of x2 will be

τ2 = kp2

(
x2ref −

1

kp2
ζ +

1

kp2
ξ − x2

)
0 = − 1

kp2
ζ̇ +

1

kp2
ξ̇ − ẋ2

ẋ2 = 0 (∵ τ2 = 0, Eqs. (5.38) and (5.40)).

On the other hand, from Eqs. (5.33), (5.35), and (5.39),

k(x1 − x2) = kp1 (x1ref + µ− x1) (5.41)

0 = kp1 (x1ref + µ− x1) (5.42)

x1 = x1ref + µ. (5.43)

a candidate for the Lyapunov function is defined as

V =
1

2
ẋ1

2
. (5.44)

This function is positive for arbitrary values except for ẋ1 = 0.

From Eq. (5.44), the time differentiation of the function is

V̇ =
d

dt

(
1

2
ẋ1

2
)

=
dµ̇

dt
µ̇ (∵ Eq. (5.43) → ẋ1 = µ̇)

=
dµ

dt

dx1

dµ

dµ̇

dx1

µ̇

= µ̇
dx1

dµ

dµ̇

dx1

µ̇

= µ̇
dµ̇

dx1

µ̇ (∵ Eq. (5.43) → dx1

dµ
= 1)

∴ =
dµ̇

dx1

µ̇
2
. (5.45)
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Thus, Eq. (5.45) becomes negative under the condition of Eq. (5.3). At that time,

Eq. (5.44) is the Lyapunov function. Therefore, the SMS is an asymptotically stable

system, and ẋ1 = 0 is the asymptotically stable point. The final stable point is not

specified in the controller but that is automatically decided depending on the features

of the plant. This feature is discussed in our previous paper referred in [123]. As a

result, it can show that SMS no longer changes after a sufficient time, and x1 converges

to a certain state. The convergence state of x1 depends on the recovery function.

5.3.4 Recovery process in system having models of human

and robot

In the recovery process, the patient gradually recovers from the paralysis with a long-

time training.

Therefore, the system is analyzed as the singular perturbation system. In a fast

motion subsystem(FMS), the change of the adaptation loop, ζ, is faster than the change

of the recovery function, µ, and the support loop, ξ. FMS can be represented by using

µ and ξ as 

Mẍ+Kx = A(r − x)−Bẋ+ η (5.46)

µ̇ ≃ 0 (5.47)

ξ̇ ≃ 0 (5.48)

ζ̇ = kt1τ2. (5.49)

This FMS can be proved to be an asymptotically stable system as proved in previous

sub-chapter at the equilibrium state of FMS. At the equilibrium state, ẍ, ẋ, and ζ̇

become zero, then Eq. (5.7) show

m2ẍ2 = k(x1 − x2) + τ2

k(x1 − x2) = 0

x1 = x2. (5.50)

It means that the robot can adapt to the motion of the patients.
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A slow motion subsystem can be described as follow:

Kx = A(r − x) + η (5.51)

µ̇ =
dh(x1)

dt
(5.52)

ξ̇ = kt2S(p, f) (5.53)

ζ̇ = 0, (5.54)

where • means variables in the steady state. This SMS can be also proved to be an

asymptotically stable system at previous sub-chapter, then x1 is converged to

x1 = x1ref + µ. (5.55)

It means that the convergence state of x1 depends on the recovery function. It is shown

that x1 is converged to the better state by the robot rehabilitation steps.

5.4 Point-to-point motion simulation with proposed

controller and results

In this chapter, two simulations using the controller is described. Our system is

applied to a reaching motion control of the patient and the robot. The patient moves

his/her operating point from an initial position to his/her reference position. At that

time, the robot gradually changes its operating point in order to support the patient

during the motion according to the robot rehabilitation strategy.

The first simulation demonstrates that the controller can improve the patient’s state

stably. The second simulation demonstrates that the proposed robot rehabilitation

strategy is realized even if the controller is used intermittently in each training session,

similar to rehabilitation training.

The masses are m1 = 1.0,m2 = 1.0. The spring constant is k = 50.0. The gains

are kp1 = 1.0, kd1 = 3.0, kp2 = 1.0, kd2 = 3.0, kt1 = 2.5 × 10−4, and kt2 = 1.0 × 10−5.

The references are x1ref = 1.5 and x2ref = 0.0. The direction of the support force is

defined as the direction in which the position of the patient changes. To apply positive
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Fig. 5.3: Time series of the positions of the patient and robot using the controller in a continuous simulation (bottom),

and a time series of the interaction force on the patient (top). In this simulation, recovery speed kt is set to 5.0× 10−6,

inhibition of the recovery C is set as 0.5 [m], and recovery potential q is set as 1.5 [m]. The interaction force on the

patient quickly decreases to zero, and this is the effect of the FMS that adapts the robot to the patient. The patient and

robot gradually converge to 1.5 [m], and this is the combined effect of the FMS and SMS that improves the patient’s

state. These results show that our system is stable.

force of 0.1[N ] on the patient to change their position, p = 0.05, and p is decided by

trial and error.

The recovery function is designed as

µ = h(x1) = kt

∫
(q − x1) dt− C. (5.56)

This function satisfies the condition of Eq. (5.3). kt represents the speed of the recovery

to q, that is, the recovery speed. q represents the patient recovery potential. C is a

constant that represents the extent of the inhibition of the patient’s movement.

In this chapter, enhancing the motion of human beings is focused on, especially
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patient and robot with kt = 3.0× 10−4

and q = 1.7 in the recovery function
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Fig. 5.4: Effects of using the controller intermittently on motion and interaction force in each session: (a) Time series

of the positions of the patient and robot with kt = 5.0× 10−4 and q = 1.5 in the recovery function. The robot moves

to follow the motion of the patient based on adaptation loop ζ, gradually changing its behavior to support the motion

of the patient. (b) Time series of the interaction force on the patient with kt = 5.0× 10−4 and q = 1.5 in the recovery

function. The patient initially receives a negative force, but the robot gradually changes its behavior to apply a positive

force to support the motion of the patient. (c) Time series of the positions of the patient and robot with kt = 3.0×10−4

and q = 1.7 in the recovery function. (d) Time series of the interaction force on the patient with kt = 3.0× 10−4 and

q = 1.7 in the recovery function. These figures show that even if the coefficients are different, the controller can cope

with the difference.

post-stroke patients base on Neuro-synergy model. Since it is the simulation, the

mean value of the time taken for one control cycle is calculated as the time required

for automatic motion generation. A computer used in this study has 16.0 GB memory
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1.0× 10−5. Recovery speed kt is set to 5.0× 10−6, inhibition of the recovery C is set as 0.5 [m], and recovery potential

q is set as 1.5 [m]. The value of E is the negative value in the early stage of the session and gradually becomes the

positive value as the session goes on, suggesting that the torque of the robot is not large enough to support the motion

of the patient, but it gradually becomes larger than that of the patient and supports the motion of the patient. This

shows the robot gradually changes its motion to support the patient when the patient attempts to move forward.
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Fig. 5.6: Difference in changes of final position of the patient and the robot in each training session in intermittently

using proposed controller. After starting the simulation, the robot quickly adapts to the patient, and then the robot

gradually changes its behavior to support the patient at the end of each session. It shows that even if the potential of

the patient recovery q and the extent of a recovery speed kt are different from patient to patient, the proposed controller

can deal with that difference.

and Intel R⃝ CoreTM i7-8565U CPU @ 1.80 GHz 1.99 GHz, and python2.7 is installed.

The mean value of the time required for automatic motion generation is 2.8× 10−4 [s].
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This result is faster than previous results. It is thought that the model is simple, and

the performance of the computer is high.

5.4.1 Point-to-point motion simulation to show stability of

whole system

kt is set as 5.0 × 10−6, q is set as 1.5, and C is set as 0.5. Figure 5.3 shows the time

series of the position of the robot and the patient using the controller and the time

series of the interaction force on the patient.

Initially, the interaction force on the patient quickly decreases to zero, owing to the

effect of the FMS that adapts the robot to the patient. The patient and robot gradually

converge to 1.5 through the combined effect of the FMS and SMS that improves the

patient’s state. These results show that the system is stable.

5.4.2 Point-to-point motion simulation in intermittently us-

ing proposed controller for training sessions

This simulation is conducted as follows.

1. The patient and the robot are placed in the same position.

2. The patient moves horizontally and the robot provides adaptation and support

based on the controller.

3. The simulation is ended when ẋ1 and ẋ2 become smaller than 1.0× 10−6.

4. Values except for ξ and µ are set to the initial values, re-starting the simulation

from (1).

One cycle from steps (1) to (4) is defined as one training session in the rehabilitation.

The value of µ is updated at the completion of each cycle. kt = 5.0 × 10−4 and

kt = 3.0× 10−4 are used. It is bigger than previous simulation because the update of

µ at the completion of each cycle.

Figure 5.4 shows that influence of using the controller intermittently on motion

and interaction force in each session. Figure 5.4(a) is time series of position of the
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patient and the robot with kt = 5.0 × 10−4 and q = 1.5[m] in recovery function. The

patient moves his/her operating point from the initial position (0.0[m]) to the reference

position that is xP = 1.0[m] in the early session, and the robot also converges to same

position of the patient thanks to the adaptation loop ζ. Figure 5.4(b) is time series of

interaction force on patient with kt = 5.0× 10−4 and q = 1.5[m] in recovery function.

The robot moves to follow the motion of the patient thanks to the adaptation loop ζ,

gradually changing its behavior to support the motion of the patient thanks to the

support loop ξ. The patient gets negative force at first, but the robot gradually changes

its behavior to apply positive force on the patient to support the motion of the patient.

Figure 5.4(c) is time series of position of patient and robot with kt = 3.0 × 10−4

and q = 1.7[m] in recovery function. Figure 5.4(d) is time series of interaction force on

patient with kt = 3.0× 10−4 and q = 1.7[m] in recovery function. These figures show

that even if the coefficients are different, the controller can cope with the difference.

Figure 5.5 is the summation E of the difference between the torque of the patient

and the torque of the robot when these torques are both positive in each session. E is

calculated from

E =

0 (sign(τ2) ̸= sign(τ1))∫ te
ts
τ2 − τ1dt (τ1 > 0 and τ2 > 0)

, (5.57)

when ts is the time of the start of the session, and te is the time of the end of the

session. The value of E is zero at the start of each session. A red line in Fig. 5.5

means the average of E calculated when 14 sessions window is moved to the right

one session by one session. In the early stage of the session, E is the negative value,

suggesting that the torque of the robotτ2 is not large enough to support the motion of

the patient. However, E gradually become the positive value as the session goes on,

suggesting that the torque of the robotτ2 becomes larger than that of the patient. In

order for the robot to support the patient, the torque of the robot should be larger

than the torque of the patient at least when the patient attempts to move forward, in

other ward, the torque of the patient is positive. This result shows the robot gradually

changes its motion to support the patient when the patient attempts to move forward.

Figure 5.6 shows the difference in the changes in the final position of the patient

and the robot in each training session when the controller is used intermittently for
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Fig. 5.7: (a) Lower limb exoskeleton robot. (b) Block diagram for exoskeleton robot(see Chapter 5.5 for details).
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(a) Overview of walking experiment (b) Torque on left hip joint of lower limb exoskeleton robot (c) Torque on left knee joint of lower limb exoskeleton robot

Fig. 5.8: Overview and time series of torques in walking experiment. (a) Overview of walking experiment. (b) Torque

on left hip joint of lower limb exoskeleton robot. (c) Torque on left knee joint of lower limb exoskeleton robot. It is

shown that both torque can be increased during the action.

training sessions. Figure 5.6 indicates even if the patient recovery potential, q, and

the recovery speed, kt, are different from patient to patient, the controller can handle

differences in q and kt between patients.

5.5 Walking experiment with exoskeleton robot

In this chapter, it is shown how to use the proposed system to a lower limb ex-

oskeleton robot. In addition to that, the validity of the model is indirectly shown by

showing the effectiveness of the system in controlling the lower limb exoskeleton robot,

which is designed using the model. Six DoF exoskeleton robot called H2 [149] is used
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as shown in Fig. 5.7(a). Each joint of H2 has an actuator with a torque sensor and a

rotary encoder. Five healthy males participate in the experiment, and subjects wear

the exoskeleton robot and walk 5.0 [m] with the exoskeleton robot. The change of the

torque of the robot is measured in actuators.

In this experiment, the mean value of the time required for automatic motion

generation could not be calculated. After conducting the experiment, H2 was returned

to the university in Spain. Therefore, the experiment could not be conducted again

for calculating the mean value of the time.

5.5.1 Walking controller for exoskeleton robot to realize robot

rehabilitation strategy

Figure 5.7 shows controllers for the exoskeleton robot. Term θ ∈ R6 is vectors of state

variables of the exoskeleton robot. Term θref ∈ R6 is a vector of angle references for

the exoskeleton robot, and the same joint trajectories as trajectories in Fig. 1.4 is used

for θref . The torque vector τ̂ ∈ R6 for each joint is represented as

τ = A(θref − θ)−Bθ̇ + ξ − ζ, (5.58)

ζ̇ = Cτ , (5.59)

θ =
[
θlh θlk θla θrh θrk θra

]T
,θref =

[
θlhref · · · θraref

]T
, (5.60)

f =
[
flh · · · fra

]T
, ξ =

[
ξlh · · · ξra

]T
, ζ =

[
ζlh · · · ζra

]T
,(5.61)

where f is a vector consisting of torques created by the wearer, and it plays the role

of the interaction force in Fig. 5.2. ζ is a vector consisting of the integral values of

tacit learning that is as same as the adapting loop used in the simulation. ξ is a vector

consisting of torques and used as the role of the supporting loop in the simulation.

Term A, B, and C are diagonal matrices:

A = diag(
[
kp1 · · · kp6

]
), (5.62)

B = diag(
[
kd1 · · · kd6

]
), (5.63)

C = diag(
[
ki1 · · · ki6

]
), (5.64)



92 5.5. WALKING EXPERIMENT WITH EXOSKELETON ROBOT

where kp1 · · · kp6 are proportional (P) gains set as 10, and kd1 · · · kd6 are derivative

(D) gains set as 0.1. ki1 · · · ki6 are coefficients of the adapting loop decided by the

subject as a coefficient easy to walk. In the stability study, these coefficients should

be smaller than a value calculated from the coefficients of the subjects in order for the

system to be stable. In many cases, it is difficult to estimate biological coefficients, but

at least, the system will be stable when the coefficients of the adapting loop are small.

In this case, the coefficients of the adapting loop are set as 1.0 × 10−2. The subject

can stop the motion of the exoskeleton robot as soon as possible when the subject feels

discomfort.

5.5.2 Walking results with healthy subjects

The subjects were asked to just walk with the exoskeleton robot. Figure 5.8(a) is an

example of an overview in the experiment. All subjects did not lose balance at the

beginning of walking like Fig. 1.4(b), suggesting there is small conflict between the

robot motion and human motion intention. Subjects could walk with the exoskeleton

robot properly.

Figure 5.8(b)(c) are time series of the torque of a left knee joint and the torque

of a left hip joint of the exoskeleton robot when one subject walks, and each torque

is set so that the average becomes zero. You can see that the torque of the left knee

joint and the left hip joint of the exoskeleton robot is gradually increasing. After the

experiment, the subjects said that they did not feel the disturbance from the robot

in the early stage of the experiment and feel that the support force from the robot

gradually increased. This result and subjects’ opinions suggest that there is small

conflict between the robot motion and human motion intention.

5.5.3 Discussion of Walking Experiment

In the experiment, by using the system, the exoskeleton robot could change its motion.

The subject did not feel the disturbance from the robot in the early stage of the

experiment and feel that the support force from the robot gradually increased.
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As it is written before, the proposed model represents the recovery capability of hu-

man beings. In other words, it is considered to be the capability of changing subjects’

motion, for instance, increasing the stride length in walking. Because the proposed

model can represent that feature, the system designed based on the model can appro-

priately support the subject in response to the motion changing in the experiment,

then the subject can conduct the rehabilitation training without feeling big conflict.

The extent of the recovery capability strongly depends on patients, but all patients

may have small or big recovery capability. In that case, the patients will be able to

recover from the motion paralysis by the rehabilitation training with supporting. In

addition to that, by using our system, the patient will recover from the motion paralysis

with not feeling the stress and feeling that he/she just conducts walking training.

5.6 Conclusion

In this chapter, the theoretical basis for robot rehabilitation was proposed. An im-

portant issue in robot rehabilitation was clarified based on a previous failure in our

experiments and proposed a robot rehabilitation process.

A possible controller was discussed to complete the proposed rehabilitation steps

based on two assumptions about paralysis and recovery. The theoretical analysis

showed that the controller can adapt the robot motion to the patient motions in the

first step of the rehabilitation, improve the state of the patient, and finally converge

to the recovery state.

Two motion simulations were conducted using the controller to demonstrate that

the controller stably improves the patient state and that the proposed rehabilitation

steps were achieved with the controller, even if the controller was used intermittently

for training sessions, similar to actual rehabilitation training. The simulations showed

that the controller was stable when it was used both continuously and intermittently. In

addition, the controller, which included an adaptation loop and support loop, provided

the force support for the patient, which was not achieved with only an adaptation loop

in the BioMot Project.



Chapter 6

Conclusion

6.1 Conclusion of doctoral dissertation

Our research motivation was to develop the robot could be the good partner for helping

human beings. It was considered that in order for the robot to be the partner robot, it

is not enough for the robot to generate its action from the symbolized action purpose

such as “Walk”, “Go to station”, and “Cook”. In addition to that ability, it was

considered that the robot needed to support the motion of human beings without

disturbing the motion. Therefore, in this study, we aimed to establish technologies for

the robot to automatically generate the detailed control signals from the symbolized

action purposes and to promote human actions by the support, especially for the post-

stroke patients.

Human beings have naturally achieved the motion generation and the motion sup-

port. Human activities are generated based on the biological information processing

structure. Therefore we thought that it was better to develop methods realizing the

motion generation and the motion support by imitating the biological information

processing structure of human beings. That is, in order for the robot to generate the

action from the symbolized action purpose like human beings, it is reasonable to de-

velop the control method by imitating the biological information processing structure.

In addition to that, it is necessary to to develop the support method to promote the

human action based on understanding what kind of reaction human beings do based

94
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on the biological information processing structure.

In this Ph.D. dissertation, the biological information processing structure was mod-

eled as Neuro-synergy model. Neuro-synergy model was a model consisting of multi

layers. The essence of Neuro-synergy model is that the action is generated from the

combination of the top-down process and the bottom-up process. The top-down pro-

cess is that the symbolized action purpose is gradually divided into detail control

signals to the muscles. The bottom-up process is that the feedback control loops in

each layer work to adjust the signals to adapt the body to the environment. The

motion generation research and the motion support research were conducted based on

the scheme of Neuro-synergy model from the aspects of the robot side and the human

side.

6.1.1 Robot motion generation study based on Neuro-synergy

model

In the robotics research, it was attempted to clarify the mechanisms of automati-

cally generating motor commands from the symbolized action purpose, that is, the

low-dimensional control signals. This problem was addressed by developing the ar-

tificial controller that embodied a mechanism generating motor commands from the

low-dimensional control signals. From the view point of Neuro-synergy model, human

beings make the action with two way, the first is to select the appropriate behavior

that progresses in a top-down manner, and the second is to adjust the behavior ac-

cording to the environment, which is a bottom-up process that progresses through

body–environment interactions.

To clarify the effect of the bottom-up process on a robot motion control, the stand-

ing balance control of the two DoF inverted pendulum was studied. The control signals

to each joint were transferred to another space computed using the mechanical reso-

nance mode. Tacit learning was applied in MRM-space as the feedback control loops.

The pendulum maintained standing against from small disturbance to big disturbance

by using the controller designed using tacit learning and the mechanical resonance

mode. The results of the simulation and experiment showed that the capability of
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the standing balance was increased when the robot was controlled with MRM-space.

It suggests that the simple adaptation mechanism working as the feedback control

loops is enough to enhance the performance of standing balance when behavior control

is conducted in a space where the direction of behavior can be set according to the

disturbance. The similarities between the modes of the two DoF inverted pendulum

and human’s hip/ankle strategies also indicate the importance of dealing with various

disturbances in the space in which physical features of the robot are well represented.

To clarify the effect of the top-down process and the bottom-up process on a robot

motion control, the bipedal walking control of 27 DoF humanoid robot and NAO were

studied. To represent the top-down process in which the action purpose was selected,

the appropriate mechanical resonance mode for adjusting was chosen to achieve the

desired motion. In walking simulations and experiments, the humanoid robot and

NAO changed the walking motion to walk forward/backward and turn left/right while

maintaining walking balance when the parameters of the first mode and the eighth

mode were manually adjusted. From the view point of selecting the mode and changing

the action, the signals added to the specified mode control can be considered as the top-

down process. Walking balance was maintained by tacit learning which was applying

in [81] to joint space in the same way as two DoF inverted pendulum control as a

bottom-up process.

The purpose of this study was not to control robot walking but to generate the

motion from adjusting the low-dimensional control signals. In the study of walking, the

ZMP normative walking is the major method, and the smoothness and speed of walking

is better than our method. However, walking using the mode and tacit learning has an

advantage. It is that the motion of the whole body can be automatically generated by

using the mode, unlike the ZMP normative walking which determines the position to

put the foot from the center of gravity position. In other words, even when maintaining

balance on a slope, the robot will be balanced in the whole body like a human being by

using the mode. If the walking control using the modes is further studied, the walking

motion that is potentially present in robot dynamics will be derived, which is different

from ZMP approach.

These results suggest that transferring the signals to the appropriate control space
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is the key process for reducing the complexity of the signals from the environment,

and activating the feedback control loops in each space makes it possible to realize the

symbolized action purpose. On the other hand, the application scope of this scheme,

that is, the control using the mechanical resonance mode and tacit learning, must be

discussed. In this study, this control method was applied from a robot with a small

degree of freedom to a robot with a large degree of freedom(the two DoF inverted

pendulum and the 27 DoF humanoid robot). From the viewpoint of a mechanism of

the robot, the application scope will be a wide, but it is limited to cases where the

target motion and mode are clearly known.

It is needed to decide a target motion in advance and to visually select the modes

that seems to contribute to the target motion. From the result of simulations and

experiments, by using the mode and tacit learning, the robot becomes robust against

the disturbance and can change its motion with the adjustment of a few parameters.

In order to apply this method to more wide variety robots and motions, a method is

needed to be established, which is to automatically select and adjust the parameter

of the modes to achieve the target motion by using such as reinforce learning or deep

neural network. If such steps are to be more accumulated to form a larger network

as Neuro-synergy model, various behaviors of the robot can be controlled from the

more-symbolized action target such as “Go to the station.”

6.1.2 Human motion support study based on Neuro-synergy

model

In the human side research, the support method was aimed to be proposed to enhance

the motion of human beings, especially the post-stroke patients in this study. The

robotic research showed that simultaneous activation of the symbolized action purpose

and the feedback control loop in Neuro-synergy model was a key factor to generate the

action. The motion support method for the post-stroke patient was developed based

on this scheme.

The post-stroke patient has suffered from the motion paralysis because they got

the damage in the part of a primary motor cortex. In many cases, they can make the
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intention to move, but the action cannot be generated, suggesting that the top-down

process in Neuro-synergy model of the patient does not works well to generate the

detail control signals to the muscles. In general, the rehabilitation training, that is,

the intervention of the therapists to the patients’ motion is necessary for the patients

to recover from the motion paralysis.

Simply speaking, the patient will be able to generate the voluntary action again

when an appropriate neural network among the sensory area, the part of the brain

playing the role of the intention, and the part surrounding the damaged motor area

can be formed to bypass the damaged motor area. Almost rehabilitation training for

the motion paralysis have been proposed to form the appropriate neural network since

a long-long time ago.

Forming the appropriate neural network is, in some sense, the result of learning.

The living things can acquire skilled actions after learning, and it is known that Hebb’s

rule underlies that process. Hebb’s rule is a simple rule of learning in neuro-science,

which is that the connectivity among the neurons becomes strong when the neurons

fire simultaneously. Therefore, if the sensory area, the part playing the role of the

intention, and the part surrounding the damaged motor area activate simultaneously,

the connection among them becomes strong, then a network that is not affected by

damage is formed. Such rehabilitation training intended to strengthen the connection

between neurons is called as neuro-rehabilitation.

It is difficult to activate the sensory area from the muscle activities because the

patient cannot generate the muscle activities with the intention. However, from the

view point of Neuro-synergy model, even though the motor cortex gets the damage, the

feedback control loops seem not to get the damage. Therefore, if the feedback control

loops can be intervened by a physical support, the patient will generate a reactive

motion, that is, the muscle activities. It can be thought that the un-functional neural

network is not formed by using reactive motion to activate the sensory area because

feedback control loops originally exist in the patients. From that point of view, the

support method of neuro-rehabilitation was developed based on Neuro-synergy model

to promote the motion of the post-stroke patient and to lead the recovery from the

motion paralysis by intervening in the feedback control loops.
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Two researches were conducted as follows. First, the grasping-training robot was

developed, which could activate the grasping motion by intervening the simple feed-

back control loop. Second, the rehabilitation robot control method was theoretically

developed by extending its scheme to more general action.

In the grasping-training robot study, in order to intervene the feedback control

loops by the external physical support, the grasping reflex was used. In addition to

that, the grasping-training robot was designed to support synergistic grasping that we

normally conducted, which consisted of the finger flexion, the wrist extension, and the

thumb opposition.

The proposed robot consisted of the four-finger glove with a curving mechanism, the

bascule bridge mechanism, the thumb fixer, the shaft, and threads. The threads were

connected to the curving mechanism of the glove and the edge of the bascule bridge

mechanism. The glove could extend and bend, and the bascule bridge mechanism

could down and up repeatedly by pulling the threads with the shaft. The thumb was

opposed by the constraint with the thumb fixer as the wrist was extended.

The proposed robot had important features as below. When the robot motion

support with intervening the feedback control loop was applied to the post-stroke

patient, sEMG signals were detected from the paralyzed hand. These results indicated

that appropriate motion support and the grasping of an elastic bar could induced the

grasping reflex of the patients.

In the research of the theoretical approach, the scheme of intervening the feedback

control loops of the post-stroke patients was expanded to more general action. The

robot control system should be designed to support the patient even though patients’

recovery potential and recovery speed are different in each patient. In particular, not

knowing how much the patient recovers makes it difficult to design the rehabilitation

robot controller. It was established that the robot rehabilitation strategy through

clinical tests of walking with the exoskeleton robot, which is to gradually support the

action while maintaining the activation of the feedback control loops.

For theoretical analysis, the robot controller was discussed to achieve the rehabil-

itation strategy based on two assumptions about paralysis and recovery and modeled

the recovery of the patient. The theoretical analysis showed that the controller can
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adapt the robot motion to the patient motions in the first step of the rehabilitation,

improve the state of the patient, and finally converge to the recovery state.

The simulations showed that the controller was stable when it was used both con-

tinuously and intermittently. In addition to that, the controller could realize the robot

rehabilitation strategy even if there are differences between patients. In addition to

that, the experiment was conducted to verify the validity of the proposed controller

by using the lower limb exoskeleton. From the stability study, it was showed that

the robot would be stable when the coefficient of the adaptive loop was small. The

coefficient of the adaptive loop of the exoskeleton robot was set based on that result.

The robot could work maintaining the stable, and the subject said that they did not

feel the disturbance from the robot in the early stage of the experiment and feel that

the support force from the robot gradually increased.

6.1.3 Discussion of motion generation study and motion sup-

port study

(i) Looking at motion generation study from motion support study

The motion support study suggested that intervention to the feedback control loop by

the physical support realized to promote the motion, and it is necessary to intervene

to specific feedback control loops in order to promote specific motion. For instance, in

case of the grasping rehabilitation, the grasping reflex was induced in order to promote

grasping.

In case of the motion generation, it can be understood that interaction force between

the robot and the environment plays the role of the intervention to the feedback control

loops. The interaction force is changed by the change of the motion with adjusting the

variables in the MRM space. Therefore, in order to promote specific motions of the

robot, it is necessary to carefully adjust the variables in the MRM space to intervene to

specific feedback control loops. For instance, the robot could walk forward/backward

and turn left/right because appropriate variables in MRM space was adjusted.

In the motion support, because the grasping motion was the target, the feedback
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control loop to intervene was identified. In case of the robot, however, even if the

target motion is decided, it is difficult to decide the variables in MRM space to adjust

from the target motion. Therefore, it is better to make a database of motions based

on the fact that the motion is achieved by intervening the feedback control loops with

adjusting some variables in MRM space. If it is possible, the robot will be able to

perform wide variety actions like human beings.

(ii) Looking at motion support study from motion generation study

The motion generation study suggested that simultaneous activating the symbolized

action purpose and the feedback control loops realized the motion generation. At that

time, the joint motions could be generated from the adjustment of a few parameters

by using the mechanical resonance mode calculated from the physical features of the

robot.

In the motion support study, it can be understood that the physical support con-

tributes to the activation of the feedback control loops, and the target motion of the

rehabilitation plays the role of the symbolized action purpose. However, unlike the case

of robots, it is difficult to promote complex motions such as turning, as long as the

motion is promoted intervening to the feedback control loops by the physical support.

It is necessary to create new support method that can induce motion patterns

based on the physical feature of the patient. From the robot study, one solution is

to create the method based on the mechanical resonance mode estimated from the

physical feature of the patient. If it is possible, the patient can conduct an effective

rehabilitation training to restore the complex motion.

(iii) Common between motion generation study and motion support study

The above is the conclusions when looking at each study from each other’s point of

view. On the other hand, when looking at an essence common to each study, the essence

underlying the motion generation and the motion support is to selectively intervene to

the feedback control loops, although there is a difference between the intrinsic factor

and the extrinsic factor. In case of the motion generation, the intrinsic factor such as

the symbolized action purpose intervenes in the feedback control loops as the result
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of the action output. In case of the motion support, the extrinsic factor such as the

physical support intervenes in the feedback control loops directory. That is, simple

functional action could be realized by utilizing and intervening the feedback control

loops in both robots and post-stroke patients in this study.

It is expected that more complicated functional action can be realized by integrating

multiple simple functional actions by combining with top-down processes. Of course,

since the robot motion generated from the symbolized action purpose must be a motion

that promotes the human motion, a task is remained which designs robot’s feedback

control loops to generate the motion promoting the human motion. However, the robot

will be a better partner for human, if the human and the robot could share the same

objective for a task completion, carry out a portion of that task and adjust their tasks

based on the progress of their sub-task checked each other.

6.2 Future work

Future works for each study are enumerated before global future work. There are three

future works.

First, it is about the generation of the robot action form the symbolized action

purpose. It is reasoned that the extent to which a symbolized target that is represented

by the lower-dimensional signals is used to create the robot behavior is the critical

assessment for evaluating the extent to which the robot behavior is human-like. The

results in this research are just one step up from pure motor-control signals, implying

far from human-like behavior. Further discussion is required to elevate the proposed

system to using more-symbolized action targets such as “Go to the station.” A key

problem is automatic creation of the mechanical resonance mode. Non-linear transfer

for more complicated environment is another important problem. Even in the control

of human behavior, the process of creating muscle synergy remains mysterious. We

are now on the way to clarifying the process to a more hierarchical system in both

physiological and artificial ways.

Second, it is about the grasping-training robot. As discussed in Chapter 4.1, in-

ducing the grasping reflex is one factor constituting the grasp training. In addition, a
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system is required to stimulate motion intention at the same time that the grasping

reflex is stimulated. A virtual reality system is currently developed for stimulating

motion intention. Further discussions are required from the perspective of clinical ap-

plications, such as how much time is acceptable clinically for setting up the robot.

However, it is impossible to discuss such detailed clinical issues without a proposal for

a complete system and associated in-depth training plans. Once the whole system has

been developed, detailed discussions with clinicians should be conducted.

Third, it is about the theoretical approach of the rehabilitation robot control. There

were fundamental assumptions in the patient model. For instance, there are many types

of paralysis and recovery is not monotonic like the results in the simulations. Therefore,

the controller is need to be fine-tuned to fit to each patient’s condition, however the

discussion in this research provides a starting point for robot rehabilitation because all

states are modeled simply as an ideal state. The model should be tuned based on the

patients and the rehabilitation targets to adapt the monotonic situation to the real

target. For instance, the recovery function reflecting the real state should be used. A

discussion is currently conducted to fit real situations.

As said in Chapter 1, it is considered that if the post-stroke patient and the robot

can share the top-down signal and generate the action respond to not only the environ-

ment but also each action instead of generating each action from each top-down signal,

the robot will be closer to the post-stroke patient. In this study, technologies were

established for the robot to automatically generate the detailed control signals from

the symbolized action purposes and to enhance human actions. There is no doubt that

the above three future works are important for making the robot being the partner

and should be solved. However, it will be discuss that not such detailed future works

but more extensive future work here.

The definition of the partner in this study is a thing sharing same objective, coop-

erating with human beings to achieve the objective, and working for helping to enrich

the human life. From the view point of the definition, the partner is not limited to

the robot, but it can extend to the space around human beings, moreover to a social

system. In other words, it is possible for a house, a town, a city, and a prefecture

such kind of environment around human beings to be included in the category of the
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: Expansion of activity area

: Limited activity area

Smart watch
(Activity monitoring)

Public hall

Robot
(Supporting daily activity)

(Health check)

...

...

Environmental Partner Robot

Fig. 6.1: Overview of environmental partner robot. In this case, the elderly people equip with a device such as a smart

watch, assuming the smart watch to estimate the symbolized action purpose based on measured signals. In addition

to that, the smart watch records elderly people’s behavior and vital data, and the elderly people get health check and

health advice in public halls and hospitals based on the daily health data. While repeating the round trip between

the house and the public hall or the hospital, the environmental-partner robot estimates the preference of the elderly

people from the daily activities and provides information in order to gradually expand the activity area

partner robot. In order for all human beings to benefit from the partner robot, we

consider that it is necessary for the environment to perform as the partner robot.

What the environment becomes the partner does not mean that the environment
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is embedded in Internet of Things(IoT), and people can easily access the environment.

The environment actively effects on human being to maximize what human beings can

do like the partner robot. We will call such kind of environment as environmental

partner robot.

If it will be possible, the life will be unknowingly enriched just living in that envi-

ronment. When we feel sleepy, it will recommend a cup of coffee, or when we feel cold,

it will adjust the degree of an air conditioner, or when we get signs of illness, it will

make a reservation for the hospital. It is like having an invisible partner robot nearby.

Especially, elderly people will be able to benefit from it.

Figure 6.1 shows one example of the activity of elderly people in the environment

supporting the elderly people. In this case, the elderly people equip with a device

such as a smart watch, assuming the smart watch to estimate the symbolized action

purpose based on measured signals. The smart watch records elderly people’s behavior

and vital data, and the elderly people get health check and health advice in public halls

and hospitals based on the daily health data. While repeating the round trip between

the house and the public hall or the hospital, the environmental partner robot estimates

the preference of the elderly people from the daily activities and provides information

in order to gradually expand the activity area(dots arrows in Fig. 6.1).

This is nothing less than enhancing human activity by the support, and it is an

important role as the partner robot. In many cases, the elderly people live in constant

area, and the decline of their body reduces what they can do. To increase the well-

being of not only the elderly people but also people around the elderly people, not

only the local viewpoint of the partner robot but also the introspective viewpoint of

the environmental-partner robot will be necessary. We keep researching about the

partner robot and aim for realizing the environmental partner robot.
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Khudanpur. Recurrent neural network based language model. In Eleventh annual

conference of the international speech communication association, 2010.

[97] Yunong Zhang and Shuzhi Sam Ge. Design and analysis of a general recurrent

neural network model for time-varying matrix inversion. IEEE Transactions on

Neural Networks, 16(6):1477–1490, 2005.



118 Reference

[98] Hermann Mayer, Faustino Gomez, Daan Wierstra, Istvan Nagy, Alois Knoll, and

Jürgen Schmidhuber. A system for robotic heart surgery that learns to tie knots

using recurrent neural networks. Advanced Robotics, 22(13-14):1521–1537, 2008.

[99] Zhan Li, Mitsuhiro Hayashibe, Charles Fattal, and David Guiraud. Muscle fa-

tigue tracking with evoked emg via recurrent neural network: toward personal-

ized neuroprosthetics. IEEE Computational Intelligence Magazine, 9(2):38–46,

2014.

[100] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learning.

Nature, 518(7540):529, 2015.

[101] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[102] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. In Thirtieth AAAI Conference on Artificial Intelligence,

2016.

[103] Dalin Zhang, Lina Yao, Sen Wang, Kaixuan Chen, Zheng Yang, and Boualem

Benatallah. Fuzzy integral optimization with deep q-network for eeg-based inten-

tion recognition. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining, pages 156–168. Springer, 2018.

[104] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval

Tassa, Tom Erez, Ziyu Wang, SM Eslami, Martin Riedmiller, et al. Emergence

of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286,

2017.

[105] Yoshihisa Tsurumine, Yunduan Cui, Eiji Uchibe, and Takamitsu Matsubara.

Deep reinforcement learning with smooth policy update: Application to robotic

cloth manipulation. Robotics and Autonomous Systems, 112:72–83, 2019.



Reference 119

[106] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[107] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-

ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan

Wang, et al. Photo-realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4681–4690, 2017.

[108] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image

models using a laplacian pyramid of adversarial networks. In Advances in neural

information processing systems, pages 1486–1494, 2015.

[109] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. Infogan: Interpretable representation learning by information maximiz-

ing generative adversarial nets. In Advances in neural information processing

systems, pages 2172–2180, 2016.

[110] Ngoc-Dung T Tieu, Huy H Nguyen, Hoang-Quoc Nguyen-Son, Junichi Yamag-

ishi, and Isao Echizen. Spatio-temporal generative adversarial network for gait

anonymization. Journal of Information Security and Applications, 46:307–319,

2019.

[111] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[112] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with

bidirectional lstm and other neural network architectures. Neural Networks,

18(5-6):602–610, 2005.
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