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Summary

We present here a brief overview of the contents of this thesis.

The main topic of this thesis is Nonlocal p-Laplacian equations. The thesis is divided
into two parts:

(I) Asymptotic Behaviour of Fractional p-Laplacian Functionals under Dirichlet condi-
tions;

(II) On Relative-Nonlocal p-Rayleigh Quotients.

Nonlocal p-Laplacian equations arise naturally in the study of stochastic process with
jumps, and more precisely of Lévy process. This type of process are particular interest
in Finance and Physics etc. Moreover nonlocal p-Laplacian equations appear naturally in
other contexts such as Geometry, Fluid Mechanics, and Image Processing. The classical
nonlocal p-Laplacian operator is defined as

(−∆p)
su(x) := 2 lim

ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, p ∈ (1,+∞), s ∈ (0, 1),

(1)

and the variational forms usually defined as∫
RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy, p ∈ (1,+∞), s ∈ (0, 1). (2)

In the preliminary part, we mainly introduce some basic tools and spaces to be used
later, including Γ-convergence and relative-nonlocal Sobolev space W̃ s,p

0,tR(Ω) (t > 1 and R
is the diameter of Ω).

In chapter I of this thesis, we mainly use Γ-convergence to analysis the behaviour of
fractional p-Laplacian functionals with non-homogeneous Dirichlet boundary as p→ +∞,
and the asymptotic behaviour triggered by varying s with homogeneous Dirichlet boundary.

On the asymptotic behaviour as p → +∞, there have been many researches in this
direction. According to the results of Chambolle, Lindgren and Monneau (see [29]), there
exists one optimal Hölder extension of the fractional ∞-Lpalacian equations{

supy∈Ω,y 6=x
u(y)−u(x)
|y−x|α + infy∈Ω,y 6=x

u(y)−u(x)
|y−x|α = 0 for x ∈ Ω,

u = g on ∂Ω.
(3)
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And the unique minimizer to the functional (2) restricted on Ω with non-homogeneous
Dirichlet boundary conditions converges to the solution of ∞-Laplacian equations in vis-
cosity sense. In our result, by Γ-convergence we establish the convergence of the minimizers
of (2) restricted on Ω with non-homogeneous Dirichlet boundary conditions to one mini-

mizer of the functional ‖u(x)−u(y)
|x−y|α ‖L∞(Ω×Ω) under the same Dirichlet boundary condition.

Also in the De Giorgi-sense, we investigate the asymptotic behaviour of the minimizers
of the operator (2) with varying s in homogeneous Dirichlet boundary condition. We will
see that it is totally different for the behaviour from below compared with the case from
above. And as a byproduct, we also establish an equivalent form of the sobolev space
W s,p

0 (Ω) for arbitrary open bounded set Ω.
In chapter II of this dissertation, we investigate the asymptotic behaviour of nonlocal

p-Rayleigh quotient as s varies, which is defined by

inf
u∈X\{0}

∫
RN×RN

|u(x)−u(y)|p
|x−y|N+sp dxdy∫

Ω
|u|pdx

.

We will see that the behaviour from below and above exhibit a different phenomenon.
And we also studied the convergence of corresponding nonlocal eigenfunctions. In order
to investigate the asymptotic behaviour of the nonlocal p-Rayleigh quotients, we work in
the relative-nonlocal space W̃ s,p

0,tR(Ω), equivalent to the usual W̃ s,p
0 (Ω). In this part, we

also establish some equivalent forms of the nonlocal Sobolev space W̃ s,p
0,tR(Ω). This result

can be merged with the similar results obtained in chapter I in De Giorgi-sense, which
are essentially the same. This part of work is mainly inspired by the former work by
P. Lindqvist, M. Degiovanni and M. Marzocchi, etc., who investigated the asymptotic
behaviour of p-Rayleigh quotients with varying p.

As a partial result, we also proved that the operator (−∆p)
s is a homeomorphism of

W̃ s,p
0,tR(Ω) and its dual space W̃−s,q

tR (Ω) with 1
p

+ 1
q

= 1. This part lies in Appendix A1.

This thesis is divide into two chapters. Each chapter corresponds to a preprint paper,
as follows.
Chapter I:

• Raphael Feng LI, Asymptotics of Dirichlet Problems to Fractional p-Laplacian Func-
tionals: Approach in De Giorgi Sense1.

Chapter II:

• Raphael Feng LI, On Relative-Nonlocal p-Rayleigh Quotients2.

1 [50]
2 [51]



Preliminary

In this chapter, we mainly introduce some useful tools and workspace we utilize later: The
Γ-convergence and relative-nonlocal Sobolev spaces.

0.1 A Glimpse of Γ-convergence

The notion of Γ-convergence has become, over the more than forty years after its introduc-
tion by Ennio De Giorgi, the commonly-recognized notion of convergence for variational
problems. It has been used to such as, homogenization theory, phase transitions, singular
perturbations, boundary value problems in wildly perturbed domains, approximation of
variational problems, and non-smooth analysis. Among variational convergence, De Gior-
gi’s Γ-convergence plays a central role for its compactness. Especially all other variational
convergence can be easily expressed in the language of Γ-convergence.

The Γ-convergence is defined as:

Definition 0.1.1 (Γ-convergence). Let X be a metric space. A sequence {En} of func-
tionals En : X → R̄ := R ∪ {∞} is said to Γ(X)-convergence to E∞ : X → R̄, and we
write Γ(X)- lim

n→+∞
En = E∞, if the following hold:

(i) for every u ∈ X and {un} ⊂ X such that un → u in X, we have

E∞(u) ≤ lim inf
n→+∞

En(un);

(ii) for every u ∈ X there exists a sequence {un} ⊂ X(called a recovery sequence) such
that un → u in X and

E∞(u) ≥ lim sup
n→+∞

En(un).

For further information, one can refer to [30][23][63]. Here we list some basic properties
of Γ-convergence.

Proposition 0.1.1 ([63] Proposition 13.2).

F∞ = Γ− lim
h→∞

Fh

is lower semi-continuous.
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Definition 0.1.2. For every function F : X → R, the lower semi-continuous envelop
(or relaxed function) sc−F of F is defined for every x ∈ X by

(sc−F )(x) = sup
G∈G(F )

G(x),

where G(F ) is the set of all lower semi-continuous functions G on X such that G(y) ≤ F (y)
for every y ∈ X.

Proposition 0.1.2 ([30] Proposition 5.4). If (Fh) is an increasing sequence, then

Γ− lim
h→∞

Fh = lim
h→∞

sc−Fh = sup
h∈N

sc−Fh.

Remark 0.1.1. If (Fh) is an increasing sequence of lower semi-continuous functions which
converges pointwise to a function F , then F is lower semi-continuous and (Fh) Γ-converges
to F by Proposition 0.1.2. This property does not hold if the functions Fh are not lower
semi-continuous.

We give a counterexample as follows:

Example 0.1.1. In X = R define for k ∈ N,

Fk[x] := −δ−1/k(x) + δ1/k(x) =

{
±1 if x = ±1/k,
0 otherwise,

and

F∞[x] := −δ0(x) =

{
−1 if x = 0,
0 otherwise.

We can see that in this example Γ-limk Fk = F∞, but limk Fk = 0 in pointwise.

0.2 Relative-Nonlocal Sobolev spaces

In order to neatly present the subject, we first need some definitions.
Let 0 < s < 1 and 1 < p < +∞. For every Ω ⊂ RN open and bounded set, the natural

homogeneous setting for equations involving the operator (−∆p)
s restricted on Ω is the

space W s,p
0 (Ω), defined as the completion of C∞0 (Ω) with respect to the standard Gagliardo

semi-norm

[u]W s,p(Ω) :=

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

. (4)

For the basic properties of Gagliardo semi-norm we refer the reader to [35].
Let us recall that the usual admissible nonlocal space for operator (−∆p)

s, the Sobolev

space W̃s,p
0 (Ω), defined as the completion of C∞0 (Ω) with respect to the norm

‖u‖W̃ s,p
0 (Ω) :=

{∫
RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy

} 1
p

, ∀ u ∈ C∞0 (Ω).
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In fact this space is equivalently defined by taking the completion of C∞0 (Ω) with respect
to the full norm (∫

Ω

|u|p
) 1

p

+

(∫
RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

,

see Remark 2.5 in [17]. And if the boundary ∂Ω regular enough, such as Lipschitz, the space

W̃ s,p
0 (Ω) is in coincidence with W s,p

0 (Ω), i.e., Ω can be extensible. For more information on
this topic, one can refer to [72].

Let t > 1, for our requirement, we define a new semi-norm W s,p
tR (Ω) by

[u]W s,p
tR (Ω) :=

{∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy

} 1
p

(5)

for any measurable function u in Lp(Ω), in which,

R = diam(Ω) := sup{|x− y| : ∀ x, y ∈ Ω}, (6)

and BtR(Ω) is define as the N -dimensional ball with diameter tR located at the same center
as the smallest ball containing Ω.

Now we consider the relative-nonlocal Sobolev space W̃s,p
0,tR(Ω) defined as the com-

pletion of C∞0 (Ω) with respect to the semi-norm (5)

‖u‖W̃ s,p
0,tR(Ω) :=

{∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy

} 1
p

, ∀ u ∈ C∞0 (Ω). (7)

This is a reflexive Banach space for 1 < p < +∞.
As in W̃ s,p

0 (Ω), the semi-norm [u]W̃ s,p
0,tR(Ω) can be equivalently defined by taking the full

norm (∫
Ω

|u|p
) 1

p

+

(∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

,

for any admissible function u (see Proposition 0.2.1).

We point out that the Sobolev space W̃ s,p
0,tR(Ω) is equivalently defined as the one W̃ s,p

0 (Ω).

Indeed, obviously W̃ s,p
0 (Ω) is contained in W̃ s,p

0,tR(Ω), and for the reverse inclusion relation-

ship we refer the reader to Theorem 0.2.2. As in the space W̃ s,p
0 (Ω), if the boundary

∂Ω regular enough, such as Lipschitz, the space W̃ s,p
0,tR(Ω) is in coincidence with W s,p

0 (Ω),
i.e., Ω can be extensible under the norm W s,p

tR (Ω). In fact the equivalence is also a direct
result by the sufficient and necessary condition for extensible domain (see [72]). Since
the ball BtR(Ω) clearly fits for the condition in [72], then we can directly conclude that
‖u‖W̃ s,p

0 (Ω) ≤ C‖u‖W̃ s,p
0,tR(Ω).

Remark 0.2.1. As denoted in [17][20], If sp 6= 1 and ∂Ω is smooth enough, W̃ s,p
0 (Ω)

coincides with the usual on W s,p
0 (Ω), which is defined as the completion of C∞0 (Ω) with
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respect to the norm (∫
Ω

|u|p
) 1

p

+

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

.

See for example Proposition B.1 in [17]. Without the smoothness assumption, obviously

W̃ s,p
0 (Ω) ⊂ W s,p

0 (Ω).

If in the borderline case sp = 1, one has the strict inclusion W̃ s,p
0 (Ω) ( W s,p

0 (Ω). For
the details we refer the reader to Remark 2.1 of [20] and the references therein.

Owing to the equivalence suggested in Theorem 0.2.2, the statement above is also avail-
able for our space W̃ s,p

0,tR(Ω).

Remark 0.2.2. As usual setting on the nonlocal problems, the Sobolev space W̃ s,p
0 (Ω) is

an admissible space (see [13][17][37][20][22][32] etc.). However, in this work we try to
investigate the fractional problem on a general bounded open set in RN . As we will see, if
we were to work on the space W s,p

0 (Ω), we would get seldom information on the boundary
data, which is definitely important to us. Since we have no any regularity assumption on
the boundary ∂Ω, we could not even get any useful compactness results or even Poincaré-
type inequalities. So the Sobolev space W s,p

0 (Ω) is too large to us. And it is proved that
the Euler-Lagrange equations of the fractional Laplacian is ill-posedness in space W s,p(Ω)
with the Dirichlet boundary condition g|∂Ω (see [40][70]). On the other hand, if we utilize

the usual space W̃ s,p
0 (Ω), we can get enough information on the boundary data; but due to

our special problem setting, it seems difficult for us to do any precise comparison on the
eigenvalues for varying s. This means the points too far away from the boundary become a
burden to us. So we define a relative-nonlocal Sobolev space W̃ s,p

0,tR(Ω).

For an improvement preparation, we also define the space W̃s,p
tR(Ω) by

W̃ s,p
tR (Ω) :=

{
u ∈ W s,p(Ω) : [u]W s,p

tR (Ω) < +∞, and u = 0 on BtR(Ω) \ Ω
}
, (8)

which is a completion of C∞(Ω) under the norm W s,p
tR (Ω). Obviously the space W̃ s,p

tR (Ω) is
also a reflexive Banach space.

We want mention here that in fact one can choose any t > 1 in the multiplication pair
tR of the ball diameter based on the definition.

(Watch out!) tR here means the diameter of the ball, not as in the usual ball as
the radius. Anyway, this is only for the special case in the definition of relative-nolocal
spaces. And we will still use Br(x) to denote a ball with radius r centered at point x for
the common ball. We also want to emphasis that t in above definitions is independent of
Ω.

Throughout this thesis, we use LN(U) to denote the N -dimensional Lebesgue measure
of the set U in RN . We prove the following Poincaré-type inequality. For the case on space
W̃ s,p

0 (Ω) one can see Lemma 2.4 in [17].
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Proposition 0.2.1. Let 1 < p < +∞ and 0 < s < 1, Ω ⊂ RN be an open bounded set.
There holds

‖u‖pLp(Ω) ≤ IN,s,p(Ω)[u]W s,p
tR (Ω), for every u ∈ C∞0 (Ω), (9)

where the geometric quantity IN,s,p(Ω) is defined by

IN,s,p(Ω) = min

{
diam(Ω ∪B)N+sp

LN(B)
: B ⊂ BtR(Ω) \ Ω is a ball

}
.

Proof. Suppose any u ∈ C∞0 (Ω) and Br ⊂ B4R(Ω) \ Ω, i.e. a ball of radius r contained in
the relative complement of Ω in B4R(Ω). Let x ∈ Ω and y ∈ Br we then have

|u(x)|p =
|u(x)− u(y)|p

|x− y|N+sp
|x− y|N+sp,

from which we can infer

LN(Br)|u(x)|p ≤ sup
x∈Ω,y∈Br

|x− y|N+sp

∫
Br

|u(x)− u(y)|p

|x− y|N+sp
dy.

We perform an integration on Ω with respect to x to obtain∫
Ω

|u|pdx ≤ diam(Ω ∪Br)
N+sp

LN(Br)

∫
Br

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy,

which concludes the result.

Let us recall some imbedding properties for fractional Sobolev spaces.

Proposition 0.2.2 ([32], Proposition 2.1). Let p ∈ (1,+∞) and 0 < s ≤ s′ < 1. Let Ω be
an open set in RN and u : Ω→ R be a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

for some suitable positive constant C = C(N, s, p) ≥ 1. In particular

W s′,p(Ω) ⊆ W s,p(Ω).

Remark 0.2.3. We want to mention that in the Proposition above we did not assume
any regular property on the boundary data ∂Ω. Anyway, in the case W 1,p(Ω) ⊆ W s,p(Ω),
the boundary ∂Ω should satisfy some Lipschitz continuity; otherwise, there exists a coun-
terexample for the failure of the imbedding, i.e. there is the function u ∈ W 1,p(Ω) but
u /∈ W s,p(Ω) (see [32] Example 9.1).
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Theorem 0.2.1. Let 1 < p < +∞ and s ∈ (0, 1), let Ω ⊂ RN be an open bounded set. Let

{un}n∈N ⊂ W̃ s,p
0,tR(Ω) be a bounded sequence, i.e.

sup
n∈N
‖un‖W̃ s,p

0,tR(Ω) < +∞. (10)

Then there exists a subsequence {unk}k∈N converging in Lp(Ω) to a function u, and u ∈
W̃ s,p

0,tR(Ω).

Proof. We use the strategy in the proof of Theorem 2.7 in [17]. For completeness we give
the detail below.

We first observe that the sequence {un}n∈N is bounded in Lp(Ω), thanks to (10) and
the Poincaré inequality (9). Then we can extend the function un to BtR(Ω) by zero. Then
in order to use the classical Riesz-Fréchet-Kolmogorov compactness theorem we need to
check that

lim
|h|→0

(
sup
n∈N

∫
BtR(Ω)

|un(x+ h)− un(x)|pdx
)

= 0.

By Lemma 0.2.1 and (10) we have∫
BtR(Ω)

|un(x+ h)− un(x)|pdx = |h|sp
∫
BtR(Ω)

|un(x+h)−un(x)|p
|h|sp dx

≤ C|h|sp[u]p
W s,p
tR (Ω)

≤ C ′|h|sp,

for every |h| < 1. This establishes the uniform continuity desired, and we get the conver-

gence of {unk} to u in Lp(Ω). As the space W̃ s,p
0,tR(Ω) is a reflexive Banach space, so we can

use the compactness to get the conclusion.

Here we also give the imbedding in the case N > sp. The proof is essentially the same
as Proposition 2.9 in [17]. The only difference lies in that we are working on the space

W̃ s,p
0,tR(Ω). Of course, this also works for the space W̃ s,p

tR (Ω).

Proposition 0.2.3. Let Ω ⊂ RN be an open bounded set. Let s ∈ (0, 1) and p ∈ (1,+∞)

such that N < sp. Then for every u ∈ W̃ s,p
0,tR(Ω) there holds u ∈ C0,γ(Ω) with γ = s−N/p.

Moreover, we have

|u(x)− u(y)| ≤ (βN,s,p‖u‖W̃ s,p
0,tR(Ω))|x− y|

γ, ∀ x, y ∈ BtR(Ω),

and
‖u(x)‖L∞(Ω) ≤ (βN,s,p‖u‖W̃ s,p

0,tR(Ω))R
γ, ∀ x ∈ Ω,

in which R is the diameter of Ω, defined in (6).

Proof. Let ∀ x0 ∈ BtR(Ω), and δ > 0 such that Bδ(x0) ⊂ BtR(Ω). Then we estimate∫
Bδ(x0)

|u(x)− ux0,δ|pdx ≤
1

LN(Bδ(x0))

∫
Bδ(x0)×Bδ(x0)

|u(x)− u(y)|pdxdy,
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where ux0,δ denotes the average of u on Bδ(x0). Observing that |x − y| ≤ 2δ for every
x, y ∈ Bδ(x0) and using LN(Bδ(x0)) = ωNδ

N , we have∫
Bδ(x0)

|u(x)− ux0,δ|pdx ≤ Cδsp[u]p
W̃ s,p
tR (Ω)

,

namely

LN(Bδ(x0))−
sp
N

∫
Bδ(x0)

|u(x)− ux0,δ|pdx ≤ C[u]p
W̃ s,p
tR (Ω)

,

which implies that u belongs to the Campanato space (see Theorem 2.9, [39]), which is
isomorphic to C0,γ with γ = s − p/N . For the last statement, just moving variable y out
of Ω, then we conclude the desired result.

Remark 0.2.4. In the statement of Theorem 2.9 in [39], there is the assumption ”without
external cusps” on ∂Ω, however, it is automatically satisfied in our setting, since we are
working in the ball BtR(Ω), not Ω itself.

Now we give a simple proof of the imbedding of W̃ s,p
0,tR(Ω) into W̃ s,p

0 (Ω).

Theorem 0.2.2 (Equivalence Theorem). Let 0 < s < 1, 1 < p < +∞ and Ω ⊂ RN be a
bounded open set. Then there exists a constant C = C(N, s, p,Ω) such that

[u]W̃ s,p
0 (Ω) ≤ C[u]W̃ s,p

0,4R(Ω), for ∀ u ∈ C
∞
0 (Ω).

Proof. Since

[u]p
W̃ s,p

0 (Ω)
=

∫
RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy,

we separate it into two parts as

V =

∫
B4R(Ω)×B4R(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy,

and

W = 2

∫
(RN\B4R(Ω))

∫
Ω

|u(x)|p

|x− y|N+sp
dxdy,

during which, for the definition of R and B4R(Ω) one can refer to (7).
Obviously V part is just the definition of [u]W̃ s,p

0,4R(Ω), then we also perform a separation

on [u]W̃ s,p
0,4R(Ω), that is,

[u]W̃ s,p
0,4R(Ω) = X + Y,

in which,

X =

∫
B 3

2R
(Ω)×B 3

2R
(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy,
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and

Y = 2

∫
(B4R(Ω)\B 3

2R
(Ω))

∫
Ω

|u(x)|p

|x− y|N+sp
dxdy.

Then we mainly compare W and Y . So for W we have∫
(RN\B4R(Ω))

∫
Ω

|u(x)|p
|x−y|N+spdxdy ≤ NωN

∫
Ω
|u|pdx

∫ +∞
R
2

rN−1

rN+spdr

= NωN

sp
( 2
R

)sp
∫

Ω
|u|pdx,

and for Y ∫
(B4R(Ω)\B 3

2R
(Ω))

∫
Ω

|u(x)|p
|x−y|N+spdxdy ≥ NωN

∫
Ω
|u|pdx

∫ 3R
2

5R
4

rN−1

rN+spdr

= NωN

sp

( 4
5

)sp−( 2
3

)sp

Rsp

∫
Ω
|u|pdx

≥ C(s, p)Nω
N

sp
( 2
R

)sp
∫

Ω
|u|pdx.

Then we have W ≤ C(s, p)Y , so we have established that [u]W̃ s,p
0 (Ω) ≤ C[u]W̃ s,p

0,2R(Ω).

We recall the following lemma established in [17], which is also available here in our

setting due to the equivalence between W̃ s,p
0 (Ω) and W̃ s,p

0,4R(Ω).

Lemma 0.2.1. Let 1 ≤ p < +∞ and 0 < s < 1, let Ω ⊂ RN be an open bounded set. For
every u ∈ W s,p

0 (RN) there holds

sup
|h|>0

∫
RN

|u(x+ h)− u(x)|p

|h|sp
dx ≤ C[u]p

W s,p(RN )
,

for a constant C = C(N, p, s) > 0.



Chapter 1

Asymptotic Behaviour of Dirichlet
Problems

In this chapter, we will use Γ-convergence to analyze the fractional p-Laplacian operator
(−∆p)

s. First we give a review of the research on p-Laplacian equations.
For the p-Laplacian equations, G. Aronsson initiated the research of the equations

∆∞ = Σi,j=1,...,Nuxixjuxiuxj = 0 on Ω. (1.1)

It is shown that if up minimizes the integrals
∫

Ω
|∇u|p, then up → u as u solves the equation

(1.1). So what happens if we replace the space W 1,p(Ω) by W s,p(Ω) with s ∈ (0, 1)? And
what if s is varying?

In section 1.1 of this chapter, we study the limit of minimizers of the fractional Wα,p-
norms as p→ +∞ in De Giorgi sense. In particular, we analyzed the Γ-convergence of non-
homogeneous Dirichlet boundary problem for fractional p-Laplacian in this approximation
process, and proved that as p→ +∞ the minimizers of fractional p-Laplacian with Dirichlet
boundary Γ-converges to a minimizer of fractional ∞-Laplacian under the same Dirichlet
boundary condition.

In section 1.2, we first investigate the asymptotic behaviour of non-homogeneous frac-
tional p-functionals with homogeneous Dirichlet boundary condition when k → s from
above; then we study the approximation process of a free fractional p-functional as k → s
from below, during which we will find some special phenomenon different from the case
from above. Both of the way to dispose these two asymptotic directions are in the De
Giorgi sense.

1.1 Asymptotics as p goes to infinity

Let Ω be a bounded domain in RN with Lipschitz boundary. It’s well-known that the
minimizers up of the integrals ∫

Ω

|∇u|p,



10 1. Asymptotic Behaviour of Dirichlet Problems

under suitable conditions, as p→ +∞, approximate to the minimizer u of the equation

∆∞u =
∑

i,j=1,2,...,N

uijuiuj = 0 on Ω,

with ui = ∂u
∂xi

and uij = ∂2u
∂xi∂xj

, which is usually referred to as ∞-Laplacian equation,

introduced by Aronsson in the fundamental work [5][6] as the Euler-Lagrange equations
associated to the functional

‖∇u‖L∞(Ω).

Here, the weak solution u to the∞-Laplacian equation is understood in the viscosity sense.
One can refer to, for instance, [3][4][5][6][7][12][1][15] [16] for the limitation discussion as
p→ +∞. Moreover, u is known as a local minimizer up to a Lipschitz extension, for which,
one can refer to [1]. One can notice that the approximation process above is pointwise, and
in [19][18] one can find another approximation approach based on Γ-convergence, which is
also our concentration here.

In this section, we are concerned with the fractional case.
We study the Dirichlet problem and the minimizers of the functional∫

Ω×Ω

|u(x)− u(y)|p

|x− y|αp
dxdy, (1.2)

for pα > N (N is the dimension of RN) with α ∈ (0, 1), and Ω being a bounded domain in
RN . For the fractional Sobolev semi-norm W s,p(Ω) (s ∈ (0, 1)) defined as

[u]pW s,p(Ω) :=

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy,

in the limit case as p→ +∞, the fractional functional approximates to, formally,

‖|u(x)− u(y)|
|x− y|s

‖L∞(Ω×Ω). (1.3)

In general, the Euler-Lagrange equations of the fractional functional (1.2) is

Lαpu(x) :=

∫
Ω

|u(x)− u(y)

|x− y|α
|p−1 sgn(u(x)− u(y))

|x− y|α
dy = 0 in Ω. (1.4)

In viscosity sense, as p → +∞, the equation (1.4) should converge to the Hölder ∞-
Laplacian equation (refer to [29]), defined as

Lαu = 0 in Ω, (1.5)

with the definition of operator Lα

Lαu(x) := sup
y∈Ω,y 6=x

u(y)− u(x)

|y − x|α
+ inf

y∈Ω,y 6=x

u(y)− u(x)

|y − x|α
for x ∈ Ω. (1.6)



1.1 Asymptotics as p goes to infinity 11

For the research on the Dirichlet problem of Euler-Lagrange equations of functional (1.2){
Lαpu(x) = f(x) in Ω,
u = g on ∂Ω.

(1.7)

one can refer to [29][56][52]. We also want to mention that the boundary condition can be
changed to the fully nonlocal case, that is u = g on RN \ Ω, and then we would work on

the space W̃ s,p
0 (Ω) defined as the complete closure of C∞0 (Ω) under the norm W s,p(RN).

For the research in this direction, one can refer to [37][32][59], and a final generalization
comment in [29].

For the Dirichlet problem of Hölder ∞-Laplacian equations, we denote{
Lαu = f in Ω,

u = g on ∂Ω.
(1.8)

In [29] one can see that under suitable conditions when p→ +∞ is large enough, the weak
solutions of Dirichlet problem of (2.3) converge to the weak solutions of the equations (1.8)
in the viscosity sense. For the readers’ convenience, we list the results below without proof.

Theorem 1.1.1 ([29] Theorem 1.1, limit equation as p → +∞). Let α ∈ (0, 1] and if
α = 1 assume N ≥ 2. Consider a bounded Lipschitz domain Ω in RN , and boundary data
g ∈ C0,α(∂Ω). For any p > 2N/α, there exists a unique minimizer up of (1.2) satisfying
u = g on ∂Ω. Moreover, as p→ +∞, we have up → u∞ uniformly in Ω̄ and u∞ ∈ C0,α(Ω̄)
is a viscosity solution of (1.5).

One can see that under suitable conditions the minimizers u exhibit α-Hölder continuity
up to the boundary. So it is safe to assume that the boundary value g|∂Ω is α-Hölder
continuous when p is large enough.

And the first half of this chapter is to investigate the convergence of fractional functional
(1.2) to the infinity functional (1.3) when p → +∞ in De Giorgi sense. Then based on
this, we also investigate the compatibility of non-homogeneous Dirichlet problems during
the process p→ +∞ of the functional (1.2).

We want seize the chance to mention the following implicit representation of viscosity
solution to (1.8) when f = 0. We just give the statement of the theorem, and for the proof
details one can refer to [29].

Theorem 1.1.2 ([29] Theorem 1.5, existence for general f , partial uniqueness). Let α ∈
(0, 1], Ω be a bounded open domain, g ∈ C(∂Ω) and f ∈ C(Ω) ∩ L∞(Ω).

• (Existence) Then there exists a viscosity solution u ∈ C(Ω̄) of (1.8).

• (Partial uniqueness) Assume f = 0. Then the viscosity solution u ∈ C(Ω̄) of (1.8)
is unique and is defined implicitly by the following:

u(x) =

{
g(x) if x ∈ ∂Ω,
a with `x(a) = 0 if x ∈ Ω,

(1.9)

where

`x(a) = sup
y∈∂Ω

g(y)− a
|y − x|α

+ inf
y∈∂Ω

g(y)− a
|y − x|α

.
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1.1.1 Main Results

In order to neatly present the subject, we first need some definitions. The natural setting
for variational functional of the operator Lαp in the domain Ω ⊆ RN is the space W s,p

0 (Ω)
with s = α−N/p, α ∈ (0, 1) and pα > N , defined as the completion of C∞0 (Ω) with respect
to the standard Gagliardo semi-norm

[u]W s,p(Ω) :=

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

;

if p =∞, the semi-norms W s,∞(Ω) and W s,∞(Ω) are respectively defined by

[u]W s,∞(Ω) := sup
x 6=y,x,y∈Ω

|u(x)− u(y)

|x− y|s
|,

and

[u]W s,∞(Ω) := sup
x 6=y,x,y∈Ω

|u(x)− u(y)

|x− y|s
|.

In all that follows, for α ∈ (0, 1) and qα > N , we define Eα,p : Lq(Ω)→ [0,∞] by

Eα,p(u) =


(∫

Ω×Ω
|u(x)−u(y)|p
|x−y|αp dxdy

) 1
p

if u ∈ W s,p(Ω) (s = α−N/q),
∞ otherwise.

Define Eα,∞ : Lq(Ω)→ [0,∞] by

Eα,∞(u) =

 sup
x6=y,x,y∈Ω

|u(x)−u(y)
|x−y|α | if u ∈ W s,∞(Ω) (s = α),

∞ otherwise;

and Eα,∞ : Lq(Ω)→ [0,∞] by

Eα,∞(u) =

{
sup

x 6=y,x,y∈Ω
|u(x)−u(y)
|x−y|α | if u ∈ W s,∞(Ω) (s = α),

∞ otherwise.

The first result concerns the Γ(Lq(Ω))-convergence of the functional

Eα,q

to the α-infinity functional

Eα,∞ and Eα,∞

respectively, as up → u in Lq(Ω) strongly for different suitable q > N
α

.
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Theorem 1.1.3 (Asymptotic behaviour of p → +∞). Let α ∈ (0, 1) and Ω be a bounded
Lipschitz domain in RN . We consider {p}p as a strictly increasing sequence going to +∞.
Then we have

(i) Γ(Lq(Ω))- lim
p→+∞

Eα,p = Eα,∞ with some q > N
α

;

(ii) Γ(Lq(Ω))- lim
p→+∞

Eα,p = Eα,∞ with some q > 2N
α

.

The proof of this theorem follows from Proposition 1.1.1 and Proposition 1.1.2 below.

Remark 1.1.1. The reason why we utilize here Ω being a domain, not more general as an
open bounded set in RN , is that we would use the compact imbedding theorem for fractional
sobolev space W s,p(Ω), which to our best knowledge, is valid only for domain (see [29][32].

Remark 1.1.2. For recent application of Γ-convergence in other situations of the fractional
case, one can refer to [61][2][22]. For a general introduction of Γ-convergence, one can refer
to [30][23].

Remark 1.1.3. 1 One can also find a similar result in [21], which established a approxima-
tion to Hölder infinity Laplacian equation by Γ-convergence by Orlicz fractional Laplacians
(see Theorem 5.2 therein).

We may apply the Γ-limit of ”free” energy results above to minimum of the form

mε = inf

{∫
Ω

fε(x, u,D
su)dx−

∫
Ω

〈g, u〉dx : u = ϕ on ∂Ω

}
, (1.10)

during which Ω stands for a bounded (smooth enough) domain of RN and s ∈ (0, 1), and
Ds denotes a fractional differential operator.

Applications of Γ-convergence to PDEs can be generally related to the behavior of the
Euler-Lagrange equations. Notice that the possibility of defining a Γ-limit related to these
problems will not be linked to the properties (or even the existence) of the solutions of the
related Euler-Lagrange equations ([23]). So the existence and uniqueness of the minimizer
of the limitation energy does not imply corresponding uniqueness of the solutions to the
limitation Euler-Lagrange equations (Theorem 1.1.2). In fact, by [40][70], one can see that
the equations {

(−∆)su = 0, in Ω,
u = g, on ∂Ω,

(1.11)

is ill-posedness, but of course we can find a minimizer of its variational form

min
u|∂Ω=g

∫
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

In particular in this chapter, we can only state that the minimizer sequence would conver-
gence to a minimizer of the limitation functional, but there are also many other extensions
and characterizations of the minimizer (see, e.g., [8][28][29]).

1 This notification is attributed to Professor Terasawa.
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We can see that in the functional (1.10) there exist two other terms: the force term g and
the boundary ϕ. Anyway even if we have established the Γ-convergence for the functional
Eα,p(u), we can only get immediately the same convergence result for the minimizers of such
functionals in the same space, but not for the minimum problems with non-homogeneous
Dirichlet boundary conditions. So we have to verify the compatibility of the condition
u = ϕ on ∂Ω, which is our next main result in this section.

For the preparation of the investigation of the compatibility of the Dirichlet boundary
conditions, we give some definitions first. Let Ω be a bounded Lipschitz domain in RN ,
0 < α < 1 and p > 2N

α
. Now with ϕ ∈ C0,α(Ω) we define some admissible function sets

Xϕ
α,p(Ω) := {u :

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|αp
dxdy

) 1
p

< +∞, u = ϕ on ∂Ω},

and

Xϕ
α,∞(Ω) := {u : sup

x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|α

< +∞, u = ϕ on ∂Ω}.

The energy integrals are defined as follows:

Eϕ
α,p(u) =


(∫

Ω×Ω
|u(x)−u(y)|p
|x−y|αp dxdy

) 1
p
, if u ∈ Xϕ

α,p(Ω),

∞ otherwise;
(1.12)

and

E
ϕ

α,∞(u) =

 sup
x,y∈Ω,x 6=y

|u(x)−u(y)|
|x−y|α , if u ∈ Xϕ

α,∞(Ω),

∞ otherwise.
(1.13)

Since when p is large enough, we have W s,p(Ω) imbedded in C0,s−N
p (Ω) compactly, so

functions in W s,p(Ω) become continuous automatically up to the boundary. Then on the
existence and uniqueness of minimizers for functionals Eϕ

α,p(up) (p > 2N
α

), one can refer to
([29], Lemma 6.3). For the completeness, we state the lemma here without proof.

Lemma 1.1.1 ([29] Lemma 6.3, existence and uniqueness of minimizer). let α ∈ (0, 1] and
assume that Ω is a bounded Lipschitz domain. Consider ϕ ∈ C0,α(∂Ω) and define the set

Xϕ(Ω) := {u ∈ C(Ω), u = ϕ on ∂Ω}.

Define the minimization problem

I = inf
u∈Xϕ(Ω)

Ep(u),

where

Ep(u) =

∫
Ω×Ω

|u(x)− u(y)

|x− y|α
|pdxdy.
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Then for any p > 2N
α

, problem I has a unique minimizer up. Moreover, for any function
φ ∈ C∞c (Ω), we have∫

Ω×Ω
|up(x)−up(y)

|x−y|α |p−1
{
sgn(up(y)−up(x))

|y−x|α

}
(φ(y)− φ(x))dxdy = 0.

Now we give another main result in this section:

Theorem 1.1.4 (Compatibility of Dirichlet boundary). Let α ∈ (0, 1) and q > 2N
α

. Let Ω
be a bounded Lipschitz domain in RN and ϕ ∈ C0,α(∂Ω). Then we have

(i) Γ(Lq(Ω))- lim
p→+∞

Eϕ
α,p = E

ϕ

α,∞;

(ii)2 Let {up}p is the minimizer sequence of the functional sequence {Eϕ
α,p}p. If up → u

in Lq(Ω) strongly and
Γ(Lq(Ω))− lim

p→+∞
Eϕ
α,p = E

ϕ

α,∞,

then u is a minimizer of E
ϕ

α,∞ in Xϕ
α,∞(Ω).

1.1.2 Proof of Theorem 1.1.3

Proposition 1.1.1 (Γ− lim sup inequality). Let α ∈ (0, 1) and q > N
α

, and let u ∈ Lq(Ω).
Let {p} be a sequence of strictly increasing positive numbers going to +∞. Then there
exists a sequence {up}p converging to u in Lq(Ω) such that

lim sup
p→+∞

Eα,p(up) ≤ Eα,∞(u) ≤ Eα,∞(u).

Proof. If Eα,∞(u) = +∞, the inequality is satisfied automatically, so there is noting to
prove. Thus let us take Eα,∞(u) < +∞.

Now we will find a ”recovery sequence” to verify the condition (ii) of the Γ-convergence
equality. Let us consider the sequence {up}p ⊂ Lq(Ω), where up := u for all p ≥ 1. Then
we have

lim sup
p→+∞

(
∫

Ω×Ω
|u(x)−u(y)|p
|x−y|αp dxdy)

1
p

≤ lim
p→+∞

(∫
Ω×Ω

( sup
x6=y,x,y∈Ω

|u(x)−u(y)|
|x−y|α )pdxdy

) 1
p

,

and then

lim sup
p→+∞

(
∫

Ω×Ω
|u(x)−u(y)|p
|x−y|αp dxdy)

1
p ≤ sup

x 6=y,x,y∈Ω

|u(x)−u(y)|
|x−y|α = Eα,∞(u)

≤ sup
x 6=y,x,y∈Ω

|u(x)−u(y)
|x−y|α | = Eα,∞(u),

which concludes the desired result.

2 Many thanks to Professor Terasawa for pointing out the already existing reference on this result. See [45]
Corollary 6.1.1, which is more general.
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Now we attempt to verify the condition (i) in the Definition (0.1.1).
In this thesis, we use LN(U) to denote the N -dimensional Lebesgue measure of the

measurable set U ⊂ RN .

Proposition 1.1.2 (Γ− lim inf inequality). Let α ∈ (0, 1), q > N
α

, u ∈ Lq(Ω), and let {p}
be a sequence of strictly increasing positive numbers going to +∞. Consider any sequence
{up}p ⊂ Lq(Ω) converging to u in Lq(Ω), then we have

Eα,∞(u) ≤ lim inf
p→+∞

Eα,p(up).

And if q > 2N
α

, we have

Eα,∞(u) ≤ lim inf
p→+∞

Eα,p(up).

Proof. Step 1. If lim inf
p→+∞

Eα,p(up) = ∞, the inequality is satisfied automatically, so there

is nothing to prove.
Then let us suppose that lim inf

p→+∞
Eα,p(up) < ∞. Then we can infer that there exists

L > 0 such that lim inf
p→+∞

Eα,p(up) is uniformly bounded, i.e.

lim inf
p→+∞

Eα,p(up) ≤ L,

and based on a subsequence {upn} of {up} we have

lim
n→+∞

Eα,pn(upn) = lim inf
p→+∞

Eα,p(up) ≤ L,

For convenience we still denote the sequence {pn} by {p}.
Since p→ +∞, then for p large enough there holds p > q. Then by Hölder inequality,

we have that(∫
Ω×Ω

|up(x)−up(y)|q
|x−y|αq dxdy

)1/q

≤ C(Ω, N)
(∫

Ω×Ω

|up(x)−up(y)|p
|x−y|αp dxdy

)1/p

≤ C(Ω, N)L

As up → u strongly in Lq(Ω) for every p, in view of Poincaré-Wirtinger inequality, we

have that up is uniformly bounded in Wα−N
q
,q(Ω). Then we can extract a subsequence up

(not relabelled) such that
up ⇀ u

weakly in Wα−N
q
,q(Ω). Then by the lower semi-continuity of Wα−N

q
,q(Ω) and Hölder in-

equality we have∫
Ω×Ω
|u(x)−u(y)
|x−y|α |

qdxdy ≤ lim
n→+∞

∫
Ω×Ω
|up(x)−up(y)

|x−y|α |qdxdy

≤ lim
n→+∞

LN(Ω)2
(∫

Ω×Ω
|up(x)−up(y)

|x−y|α |pdxdy
) q
p
.
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This means(∫
Ω×Ω

|u(x)− u(y)

|x− y|α
|qdxdy

) 1
q

≤ LN(Ω)2/q lim
n→+∞

(∫
Ω×Ω

|u(x)− u(y)

|x− y|α
|pdxdy

) 1
p

.

Therefore letting q → +∞ we obtain

Eα,∞(u) ≤ lim
p→+∞

Eα,p(up),

which implies for the original sequence {p}

Eα,∞(u) ≤ lim inf
p→+∞

Eα,p(up).

Then if q > 2N/α, then by Sobolev compact imbedding theorem, we have

‖u‖C0,γ(Ω) ≤ C‖u‖
W
α−Nq ,q(Ω)

,

where γ = α− 2N
q

, and

C0,γ(Ω) := {f ∈ C(Ω), ‖f‖L∞(Ω) + sup
x 6=y,x,y∈Ω

|f(x)− f(y)|
|x− y|γ

< +∞}.

So u is continuous up to the boundary, then for every boundary point x0 on ∂Ω, we can
find a sequence {xm} ⊂ Ω (m ∈ N) such that lim

m→+∞
|xm− x0| = 0 and |u(xm)− u(x0)| < ε

for ∀ ε > 0 when m is large enough. Then for any y ∈ Ω

|u(x0)−u(y)|
|x0−y|α = |u(x0)−u(xm)+u(xm)−u(y)|

|x0−y|α

≤ |u(x0)−u(xm)|
|x0−y|α + |u(xm)−u(y)|

|x0−y|α

≤ ε+ |u(xm)−u(y)|
|x0−y|α

≤ sup
x 6=y,x,y∈Ω

|u(x)−u(y)
|x−y|α |+ ε.

Since ε is arbitrary, we conclude that

sup
x 6=y,x,y∈Ω

|u(x)− u(y)

|x− y|α
| ≤ sup

x 6=y,x,y∈Ω
|u(x)− u(y)

|x− y|α
|,

and obviously

sup
x 6=y,x,y∈Ω

|u(x)− u(y)

|x− y|α
| ≤ sup

x 6=y,x,y∈Ω

|u(x)− u(y)

|x− y|α
|,

which concludes the desired result

Eα,∞(u) ≤ lim inf
p→+∞

Eα,p(up).
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1.1.3 Proof of Theorem 1.1.4

In this section, based on the Γ-convergence results established in Theorem 1.1.3, we verify
the compatibility of non-homogeneous of Dirichlet condition for the fractional Laplacian
functional (1.2) as p→ +∞.

Proof. Step 1. Now we firstly verify the lim inf inequality in the definition of Γ-convergence
for

Γ(Lq(Ω))− lim
p→+∞

Eϕ
α,p = Eϕ

α,∞.

So let up → u in Lq(Ω). Then if

lim inf
p→+∞

Eϕ
α,p(up) = +∞,

there is nothing to prove. So we may directly assume that for a sequence {up} ⊂ Lq(Ω)
such that

lim inf
p→+∞

Eϕ
α,p(up) < +∞.

Then we can extract a subsequence (not relabelled) {up} and there exists some L > 0 such
that

lim
p→+∞

Eϕ
α,p(up) < L,

which implies that sequence {up} is uniformly bounded in Wα−N
q
,q(Ω) by Sobolev imbed-

ding theorem.
Then as in the step 1 of proof to Proposition 1.1.2, since up → u in Lq(Ω) strongly,

by Poincaré-Wirtinger inequality, we have up ⇀ u weakly in Wα−N
q
,q(Ω). Since for any

p ∈ (q,+∞), up ∈ Xϕ
α,p(Ω) and by Sobolev imbedding theorem Xϕ

α,p(Ω) ↪→ Xϕ
α,q, we infer

that {up} ⊂ Xϕ
α,q for p > q. Since Xϕ

α,q is closed in Wα−N
q
,q(Ω), then by the reflexivity of

Wα−N
q
,q(Ω), we get that u ∈ Xϕ

α,q(Ω). Then following the same process as step 2 in the
proof of Proposition 1.1.2, we have that for any sequence up → u in Lq(Ω)

E
ϕ

α,∞(u) ≤ lim inf
p→+∞

Eϕ
α,p(up).

The only difference from Proposition 1.1.2 is that the function space Xϕ
α,q(Ω): since q > 2N

α
,

by Sobolev imbedding theorem Xϕ
α,q(Ω) ↪→ C(Ω), so we can directly get the estimates for

E
ϕ

α,∞(u).
Step 2. Now we are in the position to verify the recovery sequence condition in the

Γ-convergence definition for

Γ(Lq(Ω))− lim
p→+∞

Eϕ
α,p = E

ϕ

α,∞.

that is, to find a sequence {up} ⊂ Xϕ
α,p(Ω) such that for any u ∈ Lq(Ω)

E
ϕ

α,∞(u) ≥ lim sup
p→+∞

Eϕ
α,p(up), (1.14)
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and
up → u in Lq(Ω).

In fact, as in Proposition 1.1.1, we can directly let up := u in Xϕ
α,p(Ω). Indeed, as

u ∈ Xϕ
α,∞(Ω), then u ∈ Xϕ(Ω) (defined in Lemma 1.1.1), and by Sobolev imbedding

theorem we infer that Eα,p(u) is bounded. Because u ∈ Xϕ
α,∞(Ω), which is up to the

boundary, and when p > 2N
α

, u ∈ C0,α− 2N
p (Ω), we can infer that u ∈ Xϕ

α,p(Ω). Then{
lim sup
p→+∞

∫
Ω
|u(x)−u(y)|p
|x−y|αp dxdy

}1/p

≤ lim sup
p→+∞

(LN(Ω))
2
p

{
[u]p

Wα,∞(Ω)

}1/p

= [u]Wα,∞(Ω),

which concludes the results together with step 1.
Step 3. Next we prove (ii) of Theorem 1.1.4. We claim that u ∈ Xϕ

α,∞(Ω) is a minimizer

of functional E
ϕ

α,∞ given any v ∈ Xϕ
α,∞(Ω).

Supposing that the sequence {Eϕ
α,p}p Γ(Lq(Ω))-converges to E

ϕ

α,∞ at v, then by the
definition of Γ-convergence, there exists a sequence {ωp}p such that

ωp → v in Lq(Ω), as p→ +∞,

and

lim sup
p→+∞

Eϕ
α,p(ωp) ≤ Eϕ

α,∞(v). (1.15)

Since by assumption the sequence {up}p are the minimizers of Eϕ
α,p in Xϕ(Ω) for corre-

sponding p, we infer that
Eϕ
α,p(up) ≤ Eϕ

α,p(ωp).

Thus we have

lim inf
p→+∞

Eϕ
α,p(up) ≤ lim sup

p→+∞
Eϕ
α,p(up) ≤ lim sup

p→+∞
E
ϕ

α,∞(ωp). (1.16)

So combining (1.15) and (1.16) yields that

E
ϕ

α,∞(u) ≤ E
ϕ

α,∞(v),

which concludes the proof.

1.2 Asymptotic Behaviour on Varying s

In this section, by Γ-convergence we investigate the behaviour of the operator (−∆p)
s under

homogeneous Dirichlet boundary condition as s varies. For the case k → s from above,
we assume that 0 < s < k < 1, p ∈ (1,+∞) and Ω being an open bounded set in RN
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without regularity assumption on ∂Ω. In order to investigate the asymptotics smoothly,
we utilize the relative-nonlocal Sobolev space W̃ s,p

0,tR(Ω) introduced in preliminary part, in
which, t > 1 and R is the diameter of Ω. And BtR(Ω) is define as the N -dimensional ball
with diameter tR located at the same center as the smallest ball containing Ω. Then in
some admissible space Y , we investigate the asymptotic behaviours of the functionals

min
u∈Y

(∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p

|x− y|N+kp
dxdy +

∫
Ω

fudx

)
,

when k decreases to some s ∈ (0, 1).
Then under the case k → s from below, we assume that 0 < k < s < 1, p ∈ (1,+∞)

and Ω being an open bounded set in RN , without further regularity assumption on ∂Ω.

Then inspired by [34] (see also [51]), we construct a space W s−,p
0 (Ω), to study the free

functional ∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+kp
dxdy

when k increases to some s ∈ (0, 1). We will see that we can not get a ideal result as
in the case approximating from above. And as a byproduct, we give a description of

the equivalence between the spaces W s−,p
0 (Ω) and W s,p

0 (Ω) in De Giorgi sense. For more
information on this topic, one can see [34][51].

Let 0 < s < 1, p ∈ (1,+∞), and Ω ⊂ RN be an open bounded set. We consider the
nonlocal nonlinear operator (−∆p)

su interpreted as

(−∆p)
su(x) := 2 lim

ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN .

For more information on this operator we refer the reader to [2][17][37][56][22][32][59].
Firstly, we give a glimpse of the operator (−∆p)

s acting on the space W s,p
0 (Ω), which

is defined as the closure of C∞0 (Ω) under the semi-norm

[u]W s,p(Ω) =

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy,

which is in fact also a norm in W s,p
0 (Ω). If p = 2, the operator becomes liner case (−∆)s

and the corresponding equations is fractional Laplacian, denoted as{
(−∆)su = f, in Ω,
u = g, on ∂Ω.

(1.17)

However, by [40][70], even for the homogeneous case f = 0, the equation (1.17) is not
well-posedness compared with the well-posedness non-homogeneous Dirichlet boundary
condition given by {

(−∆)su = 0, in Ω,
u = g, on RN \ Ω.

(1.18)
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In other words, the ill-posedness of (1.17) and the well-posedness of (1.18) show that an
(−∆)s function in a domain Ω cannot be determined only by its value on the boundary
∂Ω, but depends on its value on the whole area RN \Ω. For more details in this direction,
one can see such as [14][10][64][65][66][67] etc. and references therein.

Then based on the information above, we utilize the admissible space for the operator
(−∆p)

s, the nonlocal Sobolev space W̃ s,p
0 (Ω) defined as the closure of C∞0 (Ω) under the

semi-norm

[u]W s,p(RN ) =

∫
RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy,

which is in fact also a norm in W̃ s,p
0 (Ω). As it is declared in the preliminary if the boundary

∂Ω regular enough, such as Lipschitz, the space W̃ s,p
0 (Ω) is in coincidence with W s,p

0 (Ω),
i.e., Ω can be extensible. And in this section, we do not assume any regularity on ∂Ω.

However, if we work in the space W̃ s,p
0 (Ω), we would find that it seems a little difficult

to get uniform comparison estimations for a pair of s and s′, not to mention a sequence of
sj.

Then for our special problem setting here, we utilize a relative-nonlocal Sobolev space
denoted as W̃ s,p

0,tR(Ω), in which, t is large than 1, and R denotes the diameter of Ω, defined
by

R := sup
x,y∈Ω
{|x− y| : ∀ x, y ∈ Ω}.

This is a reflexive Banach space for 1 < p < +∞. For more details of this space, we refer
the reader to the preliminary part.

1.2.1 Γ-convergence as sj → s from Above

In this subsection, we use Γ-convergence to investigate the asymptotic behaviour of the
following equations with varying s,{

(−∆p)
su = f, in Ω,

u = 0, on BtR(Ω) \ Ω,
(1.19)

in the weak sense as
u ∈ W̃ s,p

0,tR(Ω),∫
BtR(Ω)×BtR(Ω)

|u(x)−u(y)|p−s(u(x)−u(y))(v(x)−v(y))
|x−y|N+sp dxdy

=
∫

Ω
fvdx, for every v ∈ W̃ s,p

0,tR(Ω),

for which, the variational form is

min
u∈W̃ s,p

0,tR(Ω)

(
1

p

∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

∫
Ω

fudx

)
.

For the existence and uniqueness of solutions to this equation, one can refer to [37][56][32].
In fact, it is a very standard approach based on the direct method and strict convexity of
the semi-norm W s,p

tR (Ω).
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For every 0 < s < 1 and p ∈ (1,+∞), let us define the functional Fs(u) as

Fs(u) =
1

p

∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

∫
Ω

fudx.

Let ∀ 0 < ε � 1, 0 < s < 1 and p ∈ (1,+∞), and let (W̃ s+ε,p
0,tR (Ω))∗ denote the usual

dual space of the space W̃ s+ε,p
0,tR (Ω). Since W̃ s+ε,p

0,tR (Ω) ↪→ W̃ s,p
0,tR(Ω), we have

(W̃ s,p
0,tR(Ω))∗ ↪→ (W̃ s+ε,p

0,tR (Ω))∗.

A sequence {Fk}k is said to be equi− coercive if there exist a compact set K ⊂ X such
that

inf
X
Fk = inf

K
Fk

for each k ∈ N (see [30][23]).
In the following theorem, we give the Γ-convergence on functionals Fs(u).

Theorem 1.2.1. Let Ω ⊂ RN be a bounded open set, 0 < s < 1, p ∈ (1,+∞), and

for f ∈ (W̃ s,p
0,tR(Ω))∗. If {sj}j ⊂ (0, 1) be non-increasing sequence converging to s, then

the sequence {Fsj}j defined on Lp(Ω) is equi-coercive in Lp(Ω), and Fsj(u) Γ-converges to
Fs(u) in Lp(Ω) at every u ∈ Lp(Ω) which satisfies∫

BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p

|x− y|N+(s+ε)p
dxdy < +∞.

Proof. We observe that it is obviously that the infimum of each Fsj is attained in W̃
sj ,p
0,tR(Ω).

It is well known that the Fréchet derivative of Fsj (i.e. Euler-Lagrange forms) is the

functional on W̃
sj ,p
0,tR(Ω) given by

v →
∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sjp
dxdy + 〈f, v〉,

in which 〈f, v〉 denotes the usual dual product. The unique minimizer of Fsj in W̃
sj ,p
0,tR(Ω)

is just the solution usj to (2.3) (see e.g. [37][56][59]). Due to the Rellich-Kondrachov

compact embedding theorems, the closure K in Lp(Ω) of the set K := {usj , j ∈ N} is
compact. Again from the discussion above we infer that

inf
Lp(Ω)

Fsj = F (usj) = inf
K
Fsj

for each j ∈ N. Then the sequence {Fsj}j is equi-coercive. For more information on other
equivalent conditions one can see Chapter 2 and 7 in [30].

Now we consider a sequence {wsj}j in Lp(Ω) that converges to w in Lp(Ω). If

lim inf
j→+∞

(
1

p

∫
BtR(Ω)×BtR(Ω)

|wsj(x)− wsj(y)|p

|x− y|N+sjp
dxdy + 〈f, wsj〉

)
< +∞,
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one can extract a subsequence (not relabelled) {wsj}j for which

lim
j→+∞

1
p

∫
BtR(Ω)×BtR(Ω)

|wsj (x)−wsj (y)|p

|x−y|N+sjp
dxdy + 〈f, wsj〉

= lim inf
j→+∞

(
1
p

∫
BtR(Ω)×BtR(Ω)

|wsj (x)−wsj (y)|p

|x−y|N+sjp
dxdy + 〈f, wsj〉

)
= L < +∞.

Since s ≤ sj and f ∈ (W̃ s,p
0,tR(Ω))∗, one can easily have that

1

p

∫
BtR(Ω)×BtR(Ω)

|wsj(x)− wsj(y)|p

|x− y|N+sjp
dxdy ≤ C

(
1 + ‖f‖

(W̃
sj ,p

0,tR(Ω))∗
‖wsj‖W̃ sj ,p

0,tR(Ω)

)
for some positive constant C and each j ∈ N. Then by Young’s inequality we have that the
sequence {wsj} is uniformly bounded in W̃ s,p

0,tR(Ω) by Sobolev-type embedding (see [35][51]).

Then thanks to the reflexivity of the space W̃ s,p
0,tR(Ω) together with again the Sobolev-type

embedding we have that w ∈ W̃ s,p
0,tR(Ω). Then without loss of generality one can consider

the weak convergence in W̃ s,p
0,tR(Ω)

wsj ⇀ w.

For simplicity, we denote the diameter of Ω by R. Then by the weak lower semi-
continuity one has

1
p

∫
BtR(Ω)×BtR(Ω)

|w(x)−w(y)|p
|x−y|N+sp dxdy

≤ lim inf
j→+∞

1
p

∫
BtR(Ω)×BtR(Ω)

|wsj (x)−wsj (y)|p

|x−y|N+sp dxdy

≤ lim inf
j→+∞

1
p
tR(sj−s)p

∫
BtR(Ω)×BtR(Ω)

|wsj (x)−wsj (y)|p

|x−y|N+sjp
dxdy

= lim inf
j→+∞

(1
p
tR(sj−s)p

∫
BtR(Ω)×BtR(Ω)

|wsj (x)−wsj (y)|p

|x−y|N+sjp
dxdy

+〈f, wsj〉 − 〈f, wsj〉)
= L− 〈f, w〉.

In fact, if we check the process above carefully, let Fs(w) = +∞, then

lim inf
j→+∞

1

p

∫
BtR(Ω)×BtR(Ω)

|wsj(x)− wsj(y)|p

|x− y|N+sjp
dxdy + 〈f, wsj〉 = +∞;

if it is this case, then obviously

Fs(w) = +∞ = lim inf
j→+∞

1

p

∫
BtR(Ω)×BtR(Ω)

|wsj(x)− wsj(y)|p

|x− y|N+sjp
dxdy + 〈f, wsj〉.

So it follows from above arguments that if wsj → w in Lp(Ω), then we have

Fsj(wsj)→ Fs(w) in [0,+∞].
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We can complete the proof of the Γ-convergence by observing that for each u ∈ Lp(Ω),

lim
j→+∞

Fsj(u) = lim
j→+∞

1
p

∫
BtR(Ω)×BtR(Ω)

|u(x)−u(y)|p

|x−y|N+sjp
dxdy + 〈f, u〉

= 1
p

∫
BtR(Ω)×BtR(Ω)

|u(x)−u(y)|p
|x−y|N+sp dxdy + 〈f, u〉 = Fs(u).

1.2.2 Γ-convergence as sj → s from Below

In this subsection, we just give the Γ-convergence result of some free functionals to ex-
press some special characters of the asymptotic behaviours from below. We can see there
is something different from the case converging from above. And in order to make the
difference clear, we do not use the relative-nonlocal setting. We just work on the usual
Sobolev space W s,p(Ω), and this does not change the intrinsic quality, since we do not use
any compact imbedding properties, which needs the extension assumption of ∂Ω (see [72]).

Now we should make some modifications on the space we work on. Let 1 < p < +∞,
0 < s < 1 and Ω ⊂ RN be an open bounded set. We set

W s−,p
0 (Ω) = W s,p(Ω) ∩

( ⋂
0<k<s

W k,p
0 (Ω)

)
=
⋂

0<k<s

(
W s,p(Ω) ∩W k,p

0 (Ω)
)
,

where W s,p
0 (Ω) is the complete closure of C∞0 (Ω) under the semi-norm W s,p(Ω) defined by

W s,p(Ω) :=

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy.

We can clearly see that W s−,p
0 (Ω) is a closed vector space of W s,p(Ω) satisfying

W s,p
0 (Ω) ⊂ W s−,p

0 (Ω).

But when sp > N , W s−,p
0 (Ω) 6= W s,p

0 (Ω), since the boundary ∂Ω is not regular enough (see
Theorem 8.2 in [35]).

We define two functionals Es and Es, mapping Lp(Ω) to [0,+∞] as

Es =

{ ∫
Ω×Ω

|u(x)−u(y)|p
|x−y|N+sp dxdy, ifu ∈ W s,p

0 (Ω),

+∞ otherwise.

Es =

{ ∫
Ω×Ω

|u(x)−u(y)|p
|x−y|N+sp dxdy, ifu ∈ W s−,p

0 (Ω),

+∞ otherwise.

For preparation we need the following definition.
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Definition 1.2.1. For every function F : X → R the lower semi-continuous envelop (or
relaxed function) sc−F of F is defined for every x ∈ X by

(sc−F )(x) = sup
G∈G(F )

G(x),

where G(F ) is the set of all lower semi-continuous functions G on X such that G(y) ≤ F (y)
for every y ∈ X.

We can see that in fact sc−F is the greatest lower semi-continuous function majorized
by F . For more information on the relax function and the relations with Γ-convergence
function one can see Chapter 3− 5 in [30].

Now we introduce the following proposition.

Proposition 1.2.1 ([30] Proposition 5.4). If (Fh) is an increasing sequence, then

Γ− lim
h→+∞

Fh = lim
h→+∞

sc−Fh = sup
h∈N

sc−Fh.

Theorem 1.2.2. For every sequence {sj}j ⊂ (0, 1) strictly increasing to s ∈ (0, 1), 1 <
p < +∞, let Ω be an open bounded set in RN , then it holds

Γ− lim
j→+∞

Esj = Γ− lim
j→+∞

Esj = Es.

Proof. Let R denote the diameter of Ω. Define F s and F sj as mapping Lp(Ω) to [0,+∞]
by

F s(u) = RspEs(u), F s(u) = RspEs(u).

Then clearly F s and F s are lower semi-continuous, and the sequences {F sj} and {F sj} are
both increasing and pointwise convergent to F s. Indeed, for 0 < k ≤ s < 1, this is just a
simple calculation as∫

Ω×Ω
|u(x)−u(y)|p
|x−y|N+kp dxdy ≤

∫
Ω×Ω

|u(x)−u(y)|p
|x−y|N+sp+(k−s)pdxdy

≤ R(s−k)p
∫

Ω×Ω
|u(x)−u(y)|p
|x−y|N+sp dxdy.

Then thanks to Proposition 1.2.1, we infer that

Γ− lim
j→+∞

F sj = Γ− lim
j→+∞

F sj = F s,

and then the assertion easily follows.

From the Theorem above, we can see that the result is not as smooth as the case in
Theorem 1.2.1 to get the accumulation function belong to the ideal space W s,p

0 (Ω), but a

wider space W s−,p
0 (Ω). And as a byproduct we immediately establish the following results.
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Corollary 1.2.1. For every s ∈ (0, 1), 1 < p < +∞, let Ω be an open bounded set in RN ,
then the following conditions are equivalent:

(i) For every sequence {sj}j ⊂ (0, 1) strictly increasing to s ∈ (0, 1), it holds

Γ− lim
j→+∞

Esj = Es;

(ii) W s−,p
0 (Ω) = W s,p

0 (Ω).

Remark 1.2.1. We want to mention that we can also establish similar result like Corollary
1.2.1 in our relative-nonlocal setting. For other equivalent forms one can refer to [51] or
the results in chapter 2 (see Theorem 2.6.2), in which, we have also established some other

equivalent forms of the space W̃ s−,p
0,tR (Ω) (see chapter 2) in the relative-nonlocal setting

under no regularity assumptions on ∂Ω.



Chapter 2

On Nonlocal p-Rayleigh Quotients

2.1 Background and Motivation

In the non-fractional case, let Ω be a connected and bounded open set of RN , and let
1 < p <∞. The study of the nonlinear eigenvalue problem{

−∆pu(x) = λ|u|p−2u in Ω,
u = 0 on ∂Ω,

(2.1)

namely, {
u ∈ W 1,p

0 (Ω),∫
Ω
|∇u|p−2∇u · ∇vdx = λ

∫
Ω
|u|p−2uvdx, ∀v ∈ W 1,p

0 (Ω),

has been the object of many researchers for a long time motivated by Lindqvist in the
fundamental paper [53]. In [54], it has been proved that the first eigenvalue is simple and
is the unique eigenvalue which admits a unique positive (or negative) eigenfunction on the
domain.

There have been ample research results on the asymptotic behaviour of the p-Laplacian
equations on varying p. For the research on this topic we refer the reader to [53][54][55][27]
[60][33][34], during which the main topic is on the p-Rayleigh quotient

λ1
p = inf

u6=0

∫
Ω
|∇u|pdx∫

Ω
|u|pdx

. (2.2)

Here we denote by λ1
p the first eigenvalue and by up the associated positive eigenfunction

such that ∫
Ω

uppdx = 1.

As in [55], about the behavior of λ1
p and up with respect to p one has from the right in full

generality

lim
q→p+

λ1
q = λ1

p,

lim
q→p+

∫
Ω
|∇uq −∇up|pdx = 0,
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while the corresponding assertions from the left

lim
q→p−

λ1
q = λ1

p,

lim
q→p−

∫
Ω
|∇uq −∇up|qdx = 0,

are true under some further assumption about ∂Ω. Also in [55] a counterexample shows
that otherwise in general they are false. Without any regularity assumption on ∂Ω, in [55]
it is proved that if

lim
q→p−

∫
Ω

|∇uq −∇up|qdx = 0,

then
lim
q→p−

λ1
q = λ1

p.

While in [34] (Theorem 3.2) the authors proposed an auxiliary method which allows to
describe the behavior of λ1

q and uq as q → p−. In the same paper several equivalent
characterizations of the fact that

lim
q→p−

λ1
q = λ1

p

was provided in Theorem 4.1, and in Corollary 4.4 the authors proved that if

lim
q→p−

λ1
q = λ1

p,

then

lim
q→p−

∫
Ω

|∇uq −∇up|qdx = 0,

without any assumption on ∂Ω, which closed the open problem proposed in [55].
What interests us is the nonlocal setting, let 0 < s < 1 and p > 1, let Ω be an open

bounded (may be not connected) set in RN . We define{
(−∆p)

su(x) = λ|u|p−2u in Ω,
u = 0 on RN \ Ω,

(2.3)

where

(−∆p)
su(x) := 2 lim

δ→0+

∫
{y∈RN :|y−x|≥δ}

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy,

is the fractional p-Laplacian. Here the solutions of (2.3) are always understood in the
weak sense (see (2.5)).

For the motivation leading to the research of such equations, we refer the readers to
the contribution of Caffarelli in [25]. Since then, many efforts have been devoted to the
study of this operator, among which we mention eigenvalue problems [37][44][56][20][22],
and the regularity theory [43][46][47][32]. For a existence proof via Morse theory one can
refer to [42].
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The operator (−∆p)
s aries as the first variation of the fractional Dirichlet intergral

Φs,p(u) =

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy, (2.4)

and therefore the counterpart of the p-Laplacian operator defined in (2.1). Up to a ho-
mogeneity it is not difficult to see that (s, p)-eigenvalues correspond to the critical points
of the functional (2.4) restricted to the manifold Ss,p(Ω) containing the functional with
unitary Lp-norm.

Let us briefly recall that the first eigenvalue λ1
s,p(Ω) has a variational characterization

in the nonlocal space W̃ s,p
0 (Ω) defined as a completion of C∞0 (Ω) under the norm W s,p(RN),

as it corresponds to the minimum of Φs,p on Sp(Ω), defined as

λ1
s,p(Ω) := inf

u∈W̃ s,p
0 (Ω)\{0}

∫
RN
∫
RN
|u(x)−u(y)|p
|x−y|N+sp dxdy∫

Ω
|u|pdx

,

which is the well-known nonlocal p-Rayleigh quotients, or equivalently

λ1
s,p(Ω) := inf

u∈Ss,p(Ω)

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy.

For a detailed investigation on the first eigenvalue and second eigenvalue for the operator
(−∆p)

s one can refer to [37][44][17][20][22] etc.

2.2 Nonlocal p-Eigenvalues

What we dispose here is asymptotic behaviour of the nonlocal eigenvalues, with respect
to the regular exponent s, in the relative-nonlocal Sobolev space W̃ s,p

0,tR(Ω) (see (7)). For

u ∈ W̃ s,p
0,tR(Ω), the first variation of the functional (2.4) is expressed in the following weak

sense, ∫
BtR(Ω)×BtR(Ω)

|u(x)−u(y)|p−2(u(x)−u(y))(v(x)−v(y))
|x−y|N+sp dy

= λ
∫

Ω
|u|p−2uvdy in Ω,

(2.5)

for every v ∈ W̃ s,p
0,tR(Ω).

Let us introduce the admissible space Ss,p(Ω) for eigenvalues as

Ss,p(Ω) = {u ∈ W̃ s,p
0,tR(Ω) : ‖u‖Lp(Ω) = 1},

and we also define the m-th (variational) eigenvalues of (2.3)

λms,p := inf
K∈Ws,p

m (Ω)
max
u∈K

[u]p
W s,p
tR (Ω)

, (2.6)

in which we define for 0 < s < 1

Ws,p
m (Ω) = {K ⊂ Ss,p(Ω) : K symmetric and compact, i(K) ≥ m}, (2.7)
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where i(K) ≥ 1 is an integer and defined whenever K is nonempty, compact and sym-
metric subset of a topological vector space such that 0 /∈ K. Well-known examples are
Krasnosel′skĭı genus (see [48][62][9][71][69]). Following the setting in [22] we recall that for
every nonempty and symmetric subset A ⊂ X of a Banach space, its Krasnosel′skĭı genus
index defined by

i(A) = inf{k ∈ N : ∃ a continuous odd map f : A→ Sk−1},

with the convention that i(A) =∞, if no such an integer k exists.
For m = 1 the definition coincides with

λ1
s,p(Ω) = min

u∈Ss,p(Ω)
[u]p

W s,p
tR (Ω)

, global minimum,

and for completeness we also mention that for m = 2 it coincides with

λ2
s,p(Ω) = inf

γ∈Σ(u1,−u1)
max

u∈γ([0,1])
[u]p

W s,p
tR (Ω)

, mountain pass lemma,

where u1 is a minimizer associated with λ1
s,p(Ω) and Σ(u1,−u1) is the set of continuous

paths on Ss,p(Ω) connecting u1 and −u1 (see [26], Corollary 3.2 for the local case, and [20],
Theorem 5.3 for the nonlocal one).

Remark 2.2.1. The asymptotic problem of the variational eigenvalues λmp with respect
to p of (2.1) has been first studied by Lindqvist [55] and Huang [41] in the case of first
and second eigenvalue respectively. In the more general setting the problems are tackled in
[27][60][58]. In [33] the case of presence of weights and unbounded sets has been considered
under the Γ-convergence approach. In particular, we want to mention the result in [22],
which analyzed the limit behavior as s→ 1 using Γ-convergence.

Throughout this chapter, we use

(s, p)− eigenvalues

to denote the fractional p-eigenvalues, and

(s, p)− eigenfunctions

to denote the corresponding fractional p-eigenfunctions.
Here we would like to recall a basic but interesting properties of the fractional first

eigenvalue, although not used in our thesis, the following Faber-Krahn inequality.

Theorem 2.2.1 (Faber-Krahn inequality, [17] Theorem 3.5). Let 1 < p <∞ and 0 < s <
1. For every Ω ⊂ RN open and bounded, we have

(LN(Ω))
sp
N λ1

s,p(Ω) ≥ (LN(B))
sp
N λ1

s,p(B), (2.8)

where B is any N-dimensional ball. Moreover, if equality holds in (2.8) then Ω is a ball.
In other words, balls uniquely minimizes the first eigenvalue λ1

s,p among sets with given
N-dimensional Lebesgue measure.
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We recall the existing global boundedness and continuity of the first (s, p)-eigenfunctions.
In [20], the authors give a global L∞ bound for the solutions u to the nonlocal p-Laplacian
equations in the sense that {

(−∆p)
su(x) = F (x) in Ω,

u = 0 in RN \ Ω.

And the solution is in the space W̃ s,p
0 (Ω).

The boundedness result is as follows, here Ω is an open bounded set in RN .

Theorem 2.2.2 ([20] Theorem 3.1, Global L∞ bound). Let 1 < p <∞ and 0 < s < 1 be
such that sp < N . If F ∈ Lq(Ω) for q > N/(sp), then u ∈ L∞(Ω). Moreover, we have the
scaling invariant estimate

‖u‖L∞(Ω) ≤ (Cχ
1

χ−1 )
χ
χ−1 (Ts,p|Ω|

sp
N
− 1
q ‖F‖Lq(Ω))

1
p−1 ,

where C = C(p) > 0, χ = p∗

pq′
, and Ts,p is the sharp Sobolev constant defined by

Ts,p := sup
v∈W s,p

0 (RN )

{(∫
RN
|v|p∗dx

) p
p∗

:

∫
RN×RN

|v(x)− v(y)|p

|x− y|N+sp
dxdy = 1

}
< +∞.

For the case sp > N we can directly use the Sobolev type imbedding W̃ s,p
0 (Ω) ↪→

L∞ ∩ C0,s−N/p(Ω) (refer to [17], Proposition 2.9). And if sp = N , where F ∈ Lq(Ω) for
q > 1, it is exactly the same process as in sp < N . In fact the same proof process is also
available for the eigenfunctions of the operator (−∆p)

s. It is obvious for the case sp > N ,
and for the case sp ≤ N , we have u ∈ L∞(Ω). By interpolation one can get the estimates
for (s, p)-eigenfunctions when sp < N

‖u‖L∞(Ω) ≤ [C̃N,s,pλ
1
s,p]

N
sp‖u‖L1(Ω),

where

C̃N,s,p = Ts,p(
p∗

p
)
N−sp
s

p−1
p .

One can also refer to Remark 3.2 in [20].

Theorem 2.2.3 ([20] Corollary 3.14, Continuity of Eigenfunctions). Let 1 < p < ∞ and
0 < s < 1. Every (s, p)-eigenfunction of the open bounded set Ω ⊂ RN is continuous.

Theorem 2.2.4 ([37] Theorem 4.2, Proportionality of Eigenfunctions). Let s ∈ (0, 1) and
p > 1. Then all the positive eigenfunctions corresponding to λ1

s,p are proportional.

Remark 2.2.2. There are some differences between the proportionality of first eigenfunc-
tions to operators p-Laplacian and nonlocal p-Laplacian, i.e. for the no sign-changing and
proportional properties, there is no need to let Ω be connected in the nonlocal setting. For
the details one can see e.g. [53][17][37][20][34].
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Throughout our thesis, the problem settings are on the space W̃ s,p
0,tR(Ω) without any

regular assumption on ∂Ω. Anyway we want to point out that in the proof of three prop-
erties of eigenfunctions above (Theorem 2.2.2, 2.2.3 and 2.2.4), no regularity assumptions
were exerted on the boundary data ∂Ω. If we check the proof of three theorems mentioned
just now carefully (see the details in [20][37]), it’s convenient for us applying for the proof
process directly without any essential modification (but some minor adjustment on the
constant only depending on N , s and p) to get the same estimate results, thanks to the

equivalence between W̃ s,p
0 (Ω) and W̃ s,p

0,tR(Ω).

2.3 Main Results

In this chapter we mainly analysis the asymptotic behaviour of λ1
s,p with varying s. We

firstly state that in the nonlocal case, we only assume that Ω ⊂ RN is an open bounded
set, no any connection or regularity assumption a priori.

In order to investigate the comparison of different λ1
s,p, we will work in the relative-

nonlocal Sobolev space W̃ s,p
0,tR(Ω) (t > 1) introduced in subsection 0.2; then in the this

subsection, we review the definitions and some basic properties of the first (s, p)-eigenvalues
and corresponding eigenfunctions. Then in our relative-nonlocal settings we also call the
first (s, p)-eigenvalue as relative-nonlocal p-Rayleigh quotient.

In the following sections, we give the asymptotic behaviours in the process k → s, and
the behaviour is quite different from the left-hand side and from the right-hand side. In
section 2.4, we prove a general result (see Theorem 2.4.1 below) as

lim
k→s−

λ1
k,p ≤ λ1

s,p = lim
k→s+

λ1
k,p,

and the corresponding eigenfunctions’ convergence behaviour

lim
k→s+

[uk − us]W s,p
4R (Ω) = 0.

Different from the behaviour of k → s+, we give in section 2.5 that if the following
convergence holds true

lim
k→s−

[uk − us]W s,p
4R (Ω) = 0,

then the convergence
lim
k→s−

λ1
k,p = λ1

s,p

holds true for every open bounded set. We also show that even lim
k→s−

λ1
k,p = λ1

s,p, there only

holds
lim
kj→s−

[ukj − u]
W
kj,p

4R (Ω)
= 0,

for u ∈ W̃ s,p
4R (Ω) but may not being in W̃ s,p

0,4R(Ω). While if u ∈ W̃ s,p
0,4R(Ω), then u = us. In

any case we have

λ1
s,p =

∫
B4R(Ω)×B4R(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy
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with ‖u‖Lp(Ω) = 1.

Since we cannot exclude the probability that functions in W̃ k,p
0,tR(Ω) may not belong to

the spaces W̃ s,p
0,tR(Ω) for any 0 < k < s < 1. So inspired by the approach in [34], in section

2.6 we introduce a larger relative-nonlocal space W̃ s−,p
0,tR (Ω) for the special left-hand side

convergence of k → s−. If we use λ1
s,p and us to denote the first (s, p)-eigenvalue and first

(s, p)-eigenfunction respectively in W̃ s−,p
0,tR (Ω), we show that

lim
k→s−

λ1
k,p = lim

k→s−
λ1
k,p = λ1

s,p,

and

lim
k→s−

[uk − us]Wk,p
4R (Ω) = lim

k→s−
[uk − us]Wk,p

4R (Ω) = 0.

Utilizing the strategy as in [34], we also give some equivalent characterizations of λ1
s,p =

λ1
s,p in the last section.

In this chapter we work on the set Ω without extension property, which is the main
source of the singularities happening. In fact, for the case s = 1, if there is some extension
assumption on ∂Ω, then lim

k→s−
(1 − k)λ1

k,p = λ1
s,p. One can see a case for s → 1 in [22] by

Brasco, Parini and Squassina. But we still have no idea whether this would happen in the
fractional case. To the best of our knowledge, it seems hopeless due to the nonlocal nature.

2.4 General Approximation Behavior

Although we can define the relative-nonlocal Sobolev space W̃ s,p
0,tR(Ω) for any t > 1, in our

problem setting here, we directly make t = 4 for some convenience in the latter calculation,
of course there are infinitely many other choices.

As we have mentioned before, we do not assume any regularity on Ω. Most results
in this section are derived in an elementary way, only by functional analysis in Sobolev
spaces but no deep properties of eigenfunctions. The fractional first eigenvalue is simple (see
[37][20][22]), and associated eigenfunction up is unique both up to a multiplication of some
constant and choice of sign. We normalize the first (s, p)-eigenfunctions by ‖up‖Lp(Ω) = 1
so that

λ1
s,p =

∫
B4R(Ω)×B4R(Ω)

|up(x)− up(y)|p

|x− y|N+sp
dxdy.

By simple calculations we observe that λ1
s,p(Ω) enjoys a scaling law

λ1
s,p(tΩ) = t−spλ1

s,p(Ω), t > 0.

Note that if Ω1 ⊂ Ω2, we have λ1
s,p(Ω1) ≥ λ1

s,p(Ω2). This is a direct conclusion from the
nonlocal p-Rayleigh quotient.
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Lemma 2.4.1. For any open bounded set Ω ⊂ RN and 0 < s ≤ k < 1, we have

(
5R

2
)spλ1

s,p ≤ (
5R

2
)kpλ1

k,p,

where R denotes the diameter of Ω, defined in (6).

Proof. Let u be in the admissible space Sk,p(Ω), then by Hölder inequality and

λ1
s,p ≤

∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+sp dxdy

=
∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+kp+(s−k)pdxdy

≤ (5R
2

)(k−s)p ∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+kp dxdy.

As u ∈ Sk,p(Ω), we have from the inequality above

λ1
s,p ≤ (5R

2
)(k−s)p inf

u∈Sk,p(Ω)

∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+kp dxdy

= (5R
2

)(k−s)pλ1
k,p.

Then we have (5R
2

)spλ1
s,p ≤ (5R

2
)kpλ1

k,p.

Theorem 2.4.1.
lim
k→s−

λ1
k,p ≤ λ1

s,p = lim
k→s+

λ1
k,p.

Proof. According to Lemma 2.4.1, by the monotony of (5R
2

)spλ1
s,p and the continuity of

(5R
2

)sp on s, letting k → s+ and k → s− respectively, we have

lim
k→s−

λ1
k,p ≤ λ1

s,p ≤ lim
k→s+

λ1
k,p.

For the other direction of the equality, by letting {ki}i be a sequence decreasing to

s as i → +∞, we notice the fact that C∞0 (Ω) is dense in both W̃ ki,p
0,4R(Ω) and W̃ s,p

0,4R(Ω)

(W̃ ki,p
0,4R(Ω) ↪→ W̃ s,p

0,4R(Ω)). We have then for any φ ∈ C∞0 (Ω) with unitary Lp(Ω)-norm such
that

λ1
ki,p
≤
∫
B4R(Ω)×B4R(Ω)

|φ(x)− φ(y)|p

|x− y|N+kip
dxdy;

then letting i→∞ we have

lim
i→∞

λ1
ki,p
≤
∫
B4R(Ω)×B4R(Ω)

|φ(x)− φ(y)|p

|x− y|N+sp
dxdy.

Taking the infimum over all admissible function φ ∈ Ss,p(Ω) we find that

lim
i→∞

λ1
ki,p
≤ λ1

s,p,

which concludes lim
i→∞

λ1
ki,p

= λ1
s,p.



2.4 General Approximation Behavior 35

Remark 2.4.1. Anyway we can not exclude the possibility that there exist some func-
tions u ∈ W̃ k,p

0,4R(Ω) but not in W̃ s,p
0,4R(Ω) for ∀ k < s; even the limitation function of the

eigenfunctions sequence {uk} would belong to W̃ s,p
4R (Ω) and W̃ s−ε,p

0,4R (Ω) (ε > 0) as proved in
Lemma 2.5.1.

Theorem 2.4.2. The strong convergence of the eigenfunctions uk to us

lim
k→s+

[uk − us]W s,p
4R (Ω) = 0 (2.9)

is valid for any bounded open set Ω.

Proof. Step 1. Up to a normalization ‖uk‖Lp(Ω) = 1, we have for s ≤ k that∫
B4R(Ω)×B4R(Ω)

|uk(x)−uk(y)|p
|x−y|N+sp dxdy

≤
∫
B4R(Ω)×B4R(Ω)

|uk(x)−uk(y)|p
|x−y|N+kp+(s−k)pdxdy

≤ (5R
2

)(k−s)p ∫
B4R(Ω)×B4R(Ω)

|uk(x)−uk(y)|p
|x−y|N+kp dxdy

= (5R
2

)(k−s)pλ1
k,p,

(2.10)

implying the uniform boundedness of [uk]W̃ s,p
4R (Ω). So as k → s+ we can extract a subse-

quence {uki} converging weakly in the space W̃ s,p
4R (Ω) to a function u in space W̃ s,p

4R (Ω). The

limit function u is in W̃ s,p
0,4R(Ω) as every uki is in W̃ s,p

0,4R(Ω). Then by Poincaré inequality (see
(9)) ‖uki − u‖Lp(Ω) → 0, so we have normalization ‖u‖Lp(Ω) = 1. This implies u ∈ Ss,p(Ω).

Now let identify u = us. By the weak lower semi-continuity we have∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+sp dxdy

≤ lim inf
i→∞

∫
B4R(Ω)×B4R(Ω)

|uki (x)−uki (y)|p

|x−y|N+sp dxdy

= lim inf
i→∞

∫
B4R(Ω)×B4R(Ω)

|uki (x)−uki (y)|p

|x−y|N+kip+(s−ki)p
dxdy

≤ lim inf
i→∞

∫
B4R(Ω)×B4R(Ω)

|uki (x)−uki (y)|p

|x−y|N+kip+(s−ki)p
dxdy

≤ lim inf
i→∞

(5R
2

)(ki−s)p
∫
B4R(Ω)×B4R(Ω)

|uki (x)−uki (y)|p

|x−y|N+kip
dxdy

and up to a normalization we have∫
B4R(Ω)×B4R(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy ≤ lim inf

i→∞
λ1
ki,p

= λ1
s,p,

in which the last equality is by Theorem 2.4.1. As u is an admissible function in the
p-Rayleigh quotient for λ1

s,p, by the uniqueness of the first eigenfunction we have that
u = us.
Step 2. Now let us concern on the strong convergence (2.9). For the case p ≥ 2, as

(uk − us)(x)− (uk − us)(y) = uk(x)− uk(y)− (us(x)− us(y))
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we introduce the Clarkson’s inequality obtaining

| (uk−us)(x)−(uk−us)(y)
2

|p + |uk(x)−uk(y)+us(x)−us(y)
2

|p
= |uk(x)−uk(y)−(us(x)−us(y))

2
|p + |uk(x)−uk(y)+us(x)−us(y)

2
|p

≤ 1
2
|uk(x)− uk(y)|p + 1

2
|us(x)− us(y)|p,

(2.11)

since uk and us are in the admissible space for first eigenvalue λ1
s,p, then we obtain

λ1
s,p ≤

∫
B4R(Ω)×B4R(Ω)

| (uk+us)(x)

2
− (uk+us)(y)

2
|p

|x−y|N+sp dxdy∫
Ω
|uk+us

2
|pdx

,

and by (2.10) we have

lim sup
k→s+

∫
B4R(Ω)×B4R(Ω)

|uk(x)− uk(y)|p

|x− y|N+sp
dxdy ≤ λ1

s,p.

Then after divided by |x − y|N+sp
∫

Ω
|uk+us

2
|pdx and performing the double integral on

B4R(Ω)×B4R(Ω) on (2.11) we have

lim
k→s+

[uk − us]pW s,p
4R (Ω)

2p
+ λ1

s,p ≤
λ1
s,p

2
+
λ1
s,p

2
,

by recalling that

lim
k→s+

∫
Ω

|uk + us
2
|pdx =

∫
Ω

|us|pdx = 1.

Then we conclude the desired result for p ≥ 2.
In the case 1 < p < 2 one also have the Clarkson’s inequality{

| (uk−us)(x)−(uk−us)(y)
2

|p
} 1
p−1

+
{
|uk(x)−uk(y)+us(x)−us(y)

2
|p
} 1
p−1

=
{
|uk(x)−uk(y)−(us(x)−us(y))

2
|p
} 1
p−1

+
{
|uk(x)−uk(y)+us(x)−us(y)

2
|p
} 1
p−1

≤
{

1
2
|uk(x)− uk(y)|p + 1

2
|us(x)− us(y)|p

} 1
p−1 ,

then performing the same process as in the case p ≥ 2 we get the desired result (2.9).

2.5 Behaviour from Below

There are some essential differences between the approximations from above and from be-
low. When k approaches s from below, it is almost impossible for us to get a uniform bound
for the functions sequence in the norm W̃ s,p

0,4R(Ω). So we cannot get a strong convergence
result of the approximating sequence.
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Theorem 2.5.1. The convergence

lim
k→s−

λ1
k,p = λ1

s,p

holds true for any bounded open set if the following convergence holds true

lim
k→s−

[uk − us]W s,p
4R (Ω) = 0. (2.12)

Proof. Supposing that (2.12) holds true and by Proposition 0.2.2, for any ε > 0 satisfying
s− ε ≤ k we have that

[uk − us]W s−ε,p
4R (Ω) ≤ C[uk − us]Wk,p

4R (Ω).

And we also have ∫
B4R(Ω)×B4R(Ω)

|uk(x)−uk(y)|p
|x−y|N+(s−ε)p dxdy

=
∫
B4R(Ω)×B4R(Ω)

|uk(x)−uk(y)|p
|x−y|N+kp−kp+(s−ε)pdxdy

≤ (5R
2

)k−s+ε lim
k→s−

∫
B4R(Ω)×B4R(Ω)

|uk(x)−uk(y)|p
|x−y|N+kp dxdy.

Since
[us]W s−ε,p

4R (Ω) ≤ [us − uk]W s−ε,p
4R (Ω) + [uk]W s−ε,p

4R (Ω),

then letting k approximating s− and ε→ 0 we have that

[us]W s,p
4R (Ω) ≤ lim

k→s−
[uk]Wk,p

4R (Ω).

Then up to a normalization we have λ1
s,p ≤ lim

k→s−
λ1
k,p. Thanks to Corollary 2.4.1 this

concludes that λ1
s,p = lim

k→s−
λ1
k,p.

In the next lemma, we give the behavior of uk and us when λ1
k,p → λ1

s,p. As it is shown,
the limiting function of the eigenfunctions may not be the ”corresponding” eigenfunction,
only if some further assumption is satisfied.

Lemma 2.5.1. Suppose that lim
k→s−

λ1
k,p = λ1

s,p. Then up to a subsequence {kj} in the process

of k tending to s from below, we have that there exists some function u ∈ W̃ s,p
4R (Ω) such

that the following formula holds true:

lim
kj→s−

[ukj − u]
W
kj,p

4R (Ω)
= 0.

If u ∈ W̃ s,p
0,4R(Ω), then u = us. In any case

λ1
s,p =

∫
B4R(Ω)×B4R(Ω)

|u(x)− u(y)|p

|x− y|N+sp
dxdy

with ‖u‖Lp(Ω) = 1.
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Proof. From the assumption we know [uk]Wk,p
4R (Ω) is uniformly bounded, so by the same

process as in Theorem 2.5.1 we have a fortiori the uniform bound for [uk]W s−ε,p
4R (Ω) for any

ε > 0. Then we can find a limitation function u ∈ W̃ s−ε,p
0,4R (Ω) by Theorem 0.2.1, and up to

a subsequence of k (denoted by kj) such that
(i) [ukj − us]W s−ε,p

4R (Ω) → 0 weakly as j →∞;

(ii) ‖ukj − u‖Lp(Ω) → 0 strongly (by Poincaré inequality (9)),
where in (ii) we have the normalization of ‖u‖Lp(Ω) = 1 and

lim
j→∞
‖
u+ ukj

2
‖Lp(Ω) = 1. (2.13)

In particular we have

[u]p
W s−ε,p

4R (Ω)
≤ lim inf

j→∞
[ukj ]

p

W s−ε,p
4R (Ω)

≤ (5R
2

)kj−s+ε lim inf
j→∞

[ukj ]
p

W
kj,p

4R (Ω)

= (5R
2

)kj−s+ελ1
s,p.

Thus letting ε→ 0 and j →∞ we have u ∈ W̃ s,p
4R (Ω) and [u]p

W s,p
4R (Ω)

≤ λ1
s,p.

Again, as kj < s, we infer that∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p

|x−y|N+kjp
dxdy ≤

∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p

|x−y|N+sp+(kj−s)p
dxdy

≤ (5R
2

)(s−kj)p
∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+sp dxdy = (5R

2
)(s−kj)p[u]p

W s,p
4R (Ω)

,

which implies that lim
kj→s−

λ1
kj ,p
≤ [u]p

W s,p
4R (Ω)

as j → +∞ together with the fact that ‖u‖Lp(Ω) =

1. Since lim
k→s−

λ1
k,p = λ1

s,p and [u]p
W s,p

4R (Ω)
≤ λ1

s,p, thus we have λ1
s,p = [u]p

W s,p
4R (Ω)

. In fact, if we

apply for the assumption u ∈ W̃ s,p
0,4R(Ω), then by the uniqueness of eigenfunction we have

that u = us.
Now we start to verify the convergence of eigenfunctions {ukj} to u. In fact we just

need to reproduce the same process as in the proof of Theorem 2.4.2 together with the
help of Clarkson’s inequality for both the case p ≥ 2

| (uk−u)(x)−(uk−u)(y)
2

|p + |uk(x)−uk(y)+u(x)−u(y)
2

|p
≤ 1

2
|uk(x)− uk(y)|p + 1

2
|us(x)− us(y)|p,

and the case 1 ≤ p ≤ 2{
| (uk−u)(x)−(uk−u)(y)

2
|p
} 1
p−1

+
{
|uk(x)−uk(y)+u(x)−u(y)

2
|p
} 1
p−1

≤
{

1
2
|uk(x)− uk(y)|p + 1

2
|u(x)− u(y)|p

} 1
p−1 ,

and by recalling the normalization (2.13). Then we conclude that

lim
kj→s−

[ukj − u]
W
kj,p

4R (Ω)
= 0.
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Remark 2.5.1. If working on the open bounded set Ω without extension property, dur-
ing the establishment of condition (ii) in the proof above, we can not use the Rellich-
Kondrachov-type compactness theorem and a uniform Poincaré-type inequality for the func-
tions in W k,p(Ω), even for the space W k,p

0 (Ω), since we know very few information about
the boundary data. And there is no corresponding compact imbedding results existing, ex-
cept that ∂Ω satisfies some extension property (see [72]) and Ω being a domain. That is

also the reason why we define the relative-nonlocal space W̃ s,p
0,4R(Ω).

2.6 Behaviour from Below in a Larger space

Inspired by [34], this section is mainly concerned with an improvement argument to the
asymptotic behaviours triggered by the convergence of the first (s, p)-eigenvalues as k → s−.

2.6.1 Definitions and Basic Properties

As we have noticed, in the case k → s− there are no corresponding ideal results as in the
case k → s+, because we can not exclude the blow-up probability of a function transforming
from the space W̃ k,p

0,4R(Ω) to a more regular space W̃ s,p
0,4R(Ω) (k < s). We try to construct a

larger admissible space to investigate the asymptotic behaviour when k → s−.
Let Ω denote a bounded open subset in RN , 0 < s < 1 and 1 < p < +∞. No assumption

will be imposed on a priori on the regularity of ∂Ω. We set

W̃ s−,p
0,4R (Ω) := W̃ s,p

4R (Ω) ∩

( ⋂
0<k<s

W̃ k,p
0,4R(Ω)

)
=
⋂

0<k<s

(
W̃ s,p

4R (Ω) ∩ W̃ k,p
0,4R(Ω)

)
Proposition 2.6.1. We have the following facts for the space W̃ s−,p

0,4R (Ω)

(i) W̃ s−,p
0,4R (Ω) is a closed vector subspace of W̃ s,p

4R (Ω) satisfying

W̃ s,p
0,4R(Ω) ⊆ W̃ s−,p

0,4R (Ω);

(ii) if sp < N , we have W̃ s−,p
0,4R (Ω) ⊆ Lp

∗
(Ω) and

inf

{
[u]p

W s,p
4R (Ω)(∫

Ω
|u|p∗dx

)p/p∗ : u ∈ W̃ s−,p
0,4R (Ω) \ 0

}

= inf

{
[u]p

W s,p
4R (Ω)(∫

Ω
|u|p∗dx

)p/p∗ : u ∈ W̃ s,p
0,4R(Ω) \ 0

}
,

where p∗ = Np
N−sp ;

(iii) if sp > N , we have W̃ s−,p
0,4R (Ω) = W̃ s,p

0,4R(Ω).
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Proof. The following proof essentially follows the methods in [34] except some adjustment
to the fractional case with varying s.

It is obvious that W̃ s,p
4R (Ω)∩ W̃ k,p

0,4R(Ω) is a closed vector subspace of W̃ s,p
4R (Ω) containing

W̃ s,p
0,4R(Ω), so we establish (i).

If sp < N , let U be a bounded open subset of RN with Ω ⊆ U , and we can suppose
U to be a domain with extension property. Let u ∈ W̃ k,p

0,4R(Ω). As u obtains value 0 on

B4R(Ω) \ Ω, so is the same on B4R(Ω) \ U . Then we have u ∈ W̃ s,p
0,4R(U), particularly we

have W̃ s,p
0,4R(U) ⊂ Lp

∗
(B4R(Ω)) (see [32], Theorem 6.5). Since

[u]p
W s,p

4R (U)(∫
U
|u|p∗dx

)p/p∗ =
[u]p

W s,p
4R (Ω)(∫

Ω
|u|p∗dx

)p/p∗ ,
and the value of

inf

{
[u]p

W s,p
4R (Ω)(∫

Ω
|u|p∗dx

)p/p∗ : u ∈ W̃ s−,p
0,4R (Ω) \ 0

}
is independent of Ω and U (indeed it is the best Sobolev imbedding constant, see [37] and
Remark 3.4 in [17]), so we conclude (ii).

If sp > N and u ∈ W̃ s−,p
0,4R (Ω), we can always find ε small enough such that (s−ε)p > N ,

then by Proposition 0.2.3 we have u ∈ C(Ω) ∩ W̃ s,p
4R (Ω), which implies that u = 0 on ∂Ω.

So we have u ∈ W̃ s,p
0,4R(Ω) (see Theorem 9.17 in [24], the regularity of ∂Ω not used in the

proof (i)⇒ (ii), and this also works for the fractional case).

Now we define

λ1
s,p = inf

{
[u]p

W̃ s,p
4R (Ω)

: u ∈ W̃ s−,p
0,4R (Ω) \ {0}, and ‖u‖Lp(Ω) = 1

}
,

where the semi-norm is defined by (8) and (5). We define the admissible spaces for first
(s, p)-eigenfunction of λ1

s,p, denoted as Ss,p(Ω), and

Ss,p(Ω) :=
{
u : u ∈ W̃ s−,p

0,4R (Ω), ‖u‖Lp(Ω) = 1
}
.

As an eigenvalue of nonlocal p-Laplacian equations, λ1
s,p is understood in the following

weak sense 
u ∈ W̃ s−,p

0,tR (Ω),∫
BtR(Ω)×BtR(Ω)

|u(x)−u(y)|p−s(u(x)−u(y))(v(x)−v(y))
|x−y|N+sp dxdy

= λ1
s,p

∫
Ω
|u|p−2uvdx, for every v ∈ W̃ s−,p

0,tR (Ω).

We can see that λ1
s,p is well-defined thanks to Theorem 0.2.1 and Proposition 2.6.1.

Although the proof of Theorem 0.2.1 therein is on the space W̃ s,p
0,4R(Ω), it works also for the



2.6 Behaviour from Below in a Larger space 41

space W̃ s,p
4R (Ω) only by replacing the approximation function space C∞0 (Ω) with C∞(Ω),

together with the fact that W̃ s−,p
0,4R (Ω) is a closed subspace. Obviously we have

0 < λ1
s,p ≤ λ1

s,p.

Now we list some basic properties of the corresponding first (s, p)-eigenfunction, denoted
by us,

• there exists exactly only one strictly positive (or strictly negative) (even Ω discon-

nected) us ∈ W̃
s−,p
0,4R (Ω) such that∫

Ω

|us|pdx = 1, [us]W s,p
4R (Ω) = λ1

s,p;

• us ∈ L∞(Ω) ∩ C(Ω);

• the positive (or negative) eigenfunctions of λ1
s,p are proportional.

We emphasis that if we check the proofs of the same properties of λ1
s,p and us, we would

find that we can also use them directly to the proofs of λ1
s,p and us. Since we are working

in the nonlocal spaces, and we can always get the tools, such as Poincaré-type inequality
and Rellich-type compactness, which are necessary.

Proof. In fact, the proof of the properties is standard base on the Proposition 2.6.1. The
existence of us is a consequence of Theorem 0.2.1, and the uniqueness basically follows
from the strict convexity of the norm W s,p

4R (Ω) (see e.g. [37] Theorem 4.1). And the
boundedness and continuity of the first (s, p)-eigenfunction follows from Theorem 2.2.2
and Theorem 2.2.3. For the details one can refer to such as [37][42][56][17][20][22] etc. And
for the proportionality of all the positive (or negative) eigenfunctions to λ1

s,p one can refer
to Theorem 2.2.4 in section 2.2 and corresponding references therein.

2.6.2 Asymptotic Behaviour from Below

Theorem 2.6.1. Let 0 < k < s < 1 and 1 < p < +∞, let Ω be an open bounded set in
RN . We have

lim
k→s−

λ1
k,p = lim

k→s−
λ1
k,p = λ1

s,p,

and

lim
k→s−

[uk − us]Wk,p
4R (Ω) = lim

k→s−
[uk − us]Wk,p

4R (Ω) = 0.

Proof. We utilize the strategy as in the proof of Theorem 3.2 in [34].
Now we start to prove the convergence of the eigenvalues λ1

k,p as k → s in step 1 and
step 2.
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Step 1. Suppose any u ∈ W̃ s−,p
0,4R (Ω) with ‖u‖Lp(Ω) = 1, we have that

λ1
k,p ≤

∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+kp dxdy

=
∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+sp−sp+kpdxdy

≤ (5R
2

)(s−k)p
∫
B4R(Ω)×B4R(Ω)

|u(x)−u(y)|p
|x−y|N+sp dxdy,

then by the arbitrariness of k as k → s−, we infer that

lim
k→s−

λ1
k,p ≤ λ1

s,p.

Step 2. Since we already know that λ1
s,p ≤ λ1

s,p for ∀ 0 < s < 1, we only need to verify

that λ1
s,p ≤ lim

k→s−
λ1
k,p.

Let {k} ⊂ (0, s) be a strictly increasing sequence to s, and let vk ∈ W̃ k−,p
0,4R (Ω) with

vk > 0, ‖vk‖Lp = 1, [vk]
p

Wk,p
4R (Ω)

= λ1
k,p,

Of course we can make vk < 0, the rest are the same.
Obviously there holds that

sup
k<s

[vk]
p

Wk,p
4R (Ω)

< +∞. (2.14)

Let 0 < t < s. Then up to a subsequence {vk} (not relabelled) and thanks to Theorem

0.2.1, for t < k we get some u ∈ W̃ t,p
0,4R(Ω) such that vk ⇀ u weakly in W̃ t,p

0,4R(Ω) and vk → u

strongly in Lp(Ω). Let k → s, then we have the sequence {vk} is bounded in W̃ t,p
0,4R(Ω) for

any t ∈ (0, s), so it holds that

u ∈
⋂

0<t<s

W̃ t,p
0,4R(Ω),

and
u > 0 a.e. in Ω, ‖u‖Lp(Ω) = 1.

Moreover, for every t < s, there holds by the lower semi-continuity

[u]p
W t,p

4R (Ω)
≤ lim inf

k→s
[vk]

p

W t,p
4R (Ω)

≤ lim inf
k→s

(5R
2

)(k−t)p[vk]
p

Wk,p
4R (Ω)

= lim
k→s

(5R
2

)(k−t)pλ1
k,p = (5R

2
)(s−t)p lim

k→s
λ1
k,p.

Then by the arbitrariness of t and (2.14), we infer that u ∈ W s,p
4R (Ω), hence

u ∈ W s−,p
0,4R (Ω),

and the fact
λ1
s,p ≤ [u]p

W s,p
4R (Ω)

≤ lim
k→s

λ1
k,p.
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Then together with step 1 and the fact that λ1
k,p ≤ λ1

k,p, it follows that

lim
k→s

λ1
k,p = lim

k→s
λ1
k,p = λ1

s,p.

Step 3. Now we start to prove the convergence of the eigenfunctions in the semi-norm
W k,p

4R (Ω) (k < s).
By the uniqueness of first (s, p)-eigenfunctions (up to the normalization and choice of

the sign), we infer from step 2 that vk = uk and u = us, and

lim
k→s−

uk = us weakly in W̃
t,p
0,4R(Ω), for ∀ t < s.

Since they keep the normalization by

lim
k→s−

‖uk + us
2
‖Lp(Ω) = 1,

then

lim inf
k→s−

[
uk + us

2
]p
Wk,p

4R (Ω)
≥ λ1

s,p.

Then again applying for the classical Clarkson’s inequalities and the same process as in
Theorem 2.4.2, we obtain for 2 < p < +∞

[
uk + us

2
]p
Wk,p

4R (Ω)
+ [

uk − us
2

]p
Wk,p

4R (Ω)
≤ 1

2
[uk]

p

Wk,p
4R (Ω)

+
1

2
[us]

p

Wk,p
4R (Ω)

,

and for 1 < p ≤ 2

[
uk + us

2
]
p
p−1

Wk,p
4R (Ω)

+ [
uk − us

2
]
p
p−1

Wk,p
4R (Ω)

≤ 1

2
[uk]

p
p−1

Wk,p
4R (Ω)

+
1

2
[us]

p
p−1

Wk,p
4R (Ω)

,

then together with the fact established in step 2, we conclude that

lim
k→s−

[uk − us]Wk,p
4R (Ω) = 0.

Similarly starting from the fact lim
k→s−

λ1
k,p = λ1

s,p, it also holds

lim
k→s−

[uk − us]Wk,p
4R (Ω) = 0.

2.6.3 A Glance at Dual space

For s ∈ (0, 1), p ∈ (1,+∞) and 1
p

+ 1
q

= 1, following the symbol setting in [17] we denote

the dual space of W̃ s,p
0,tR(Ω) as W̃−s,q

tR (Ω) defined by

W̃−s,q
tR (Ω) := {F : W̃ s,p

0,tR(Ω)→ R, F linear and continuous}.
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We define the space Lq(Ω× Ω) for 1 ≤ q < +∞ by

Lq(Ω× Ω) := {u(x, y) :

{∫
Ω×Ω

|u(x, y)|qdxdy
} 1

q

< +∞}. (2.15)

Following the definition in [17], we defines the linear and continuous operator

Rs,p : W̃ s,p
0,tR(Ω)→ Lp(BtR(Ω)×BtR(Ω))

by

Rs,p(u)(x, y) =
u(x)− u(y)

|x− y|N/p+s
, for every u ∈ W̃ s,p

0,tR(Ω).

Lemma 2.6.1. The operator R∗s,p : Lq(BtR(Ω)×BtR(Ω))→ W̃−s,q
tR (Ω) defined by

〈R∗s,p(φ), u〉 :=

∫
BtR(Ω)×BtR(Ω)

φ(x, y)
u(x)− u(y)

|x− y|N/p+s
dxdy, for every u ∈ W̃ s,p

0,tR(Ω),

is linear and continuous. Moreover, R∗s,p is the adjoint of Rs,p.

Proof. For the proof of this lemma, one can refer to Lemma 8.1 in [17]. There is no
essential difference.

Remark 2.6.1. The operator R∗s,p has to be thought of as a sort of nonlocal divergence.
Observe that by performing a discrete integration by parts, R∗s,p can be formally written
as

R∗s,p(φ)(x) =

∫
BtR(Ω)

φ(x, y)− φ(y, x)

|x− y|N/p+s
dy, x ∈ BtR(Ω),

so that

〈R∗s,p(φ), u〉 =

∫
Ω

(∫
BtR(Ω)

φ(x, y)− φ(y, x)

|x− y|N/p+s
dy

)
u(x)dx, u ∈ W̃ s,p

0,tR(Ω).

Indeed, by using this formula∫
BtR(Ω)

u(x)R∗s,p(φ)(x)dx

=
∫
BtR(Ω)×BtR(Ω)

u(x) φ(x,y)

|x−y|N/p+sdydx−
∫
BtR(Ω)×BtR(Ω)

u(x) φ(y,x)

|x−y|N/p+sdydx,

and exchanging the role of x and y in the second integral in the down line, we obtain that
this is formally equivalent to the formula in Lemma 2.6.1.

Lemma 2.6.2. For every f ∈ W̃−s,q
tR (Ω), one has

‖f‖W̃−s,qtR (Ω)

= min
φ∈Lq(BtR(Ω)×BtR(Ω))

{
‖φ‖Lq(BtR(Ω)×BtR(Ω)) : R∗s,p(φ) = f in BtR(Ω)

}
.
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Proof. For the details to get this one can refer to Proposition 8.3 and Corollary 8.4 in
[17], and there is no essential difference from here.

Remark 2.6.2. By Lemma 2.6.2, we know that for every f ∈ W̃−s,q
tR (Ω), we have one rep-

resentation function φ ∈ Lq(BtR(Ω)× BtR(Ω)), s.t. R∗s,p(φ) = f . Obviously, the definition

and Lemma 2.6.1 and 2.6.2 here also work for the space W̃ s,p
tR (Ω), and of course the space

W̃ s−,p
0,tR (Ω).

In fact, we have established a homeomorphism between the space W̃ s,p
0,tR(Ω) and its dual

space W̃−s,q
tR (Ω) by the mapping (−∆p)

s, which will be used later. For detailed information,
one can see section A1.

2.6.4 Some Equivalent Characterizations

Under no assumptions on ∂Ω, we give some equivalent characterizations for the space

W̃ s−,p
0,4R (Ω), aiming to characterize the behaviour of

lim
k→s−

λ1
k,p = λ1

s,p.

Here are the paralleling results with the similar strategy as in the section 4 of [34], which
describes the behaviour of p-Rayleigh quotients with varying p of the equations (2.1).

Theorem 2.6.2. Let 1 < p < +∞ and 0 < s < 1, let Ω be an open bounded set in RN ,
the following facts are equivalent:
(a) lim

k→s−
λ1
k,p = λ1

s,p;

(b) W̃ s−,p
0,4R (Ω) = W̃ s,p

0,4R(Ω);

(c) λ1
s,p = λ1

s,p;
(d) us = us;

(e) us ∈ W̃
s,p
0,4R(Ω);

(f) the solution u ∈ W̃ s−,p
0,4R (Ω) of the equation∫

B4R(Ω)×B4R(Ω)
|u(x)−u(y)|p−2

|x−y|N+sp (u(x)− u(y))(v(x)− v(y))dxdy

=
∫

Ω
vdx, ∀ v ∈ W̃ s−,p

0,4R (Ω),

given by Lemma 2.6.3 belongs to W̃ s,p
0,4R(Ω).

Here we want to mention another result in chapter 1 (see Corollary 1.2.1), where we

utilize Γ-convergence to give an equivalent form of the space W s−,p
0 (Ω) with no regularity

assumption on ∂Ω. Of course, it also does work in the relative-nonlocal settings here.
Before we prove the Theorem 2.6.2, we need to establish the following comparison

lemma:
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Lemma 2.6.3 (Comparison Lemma). Let 1 < p < +∞ and s ∈ (0, 1), let q satisfy
1
p

+ 1
q

= 1, then the following facts hold:

(i) for every f ∈ Lq(Ω) and every F (x, y) ∈ Lq(B4R(Ω) × B4R(Ω)), there exists one and

only one solution w ∈ W̃ s−,p
0,4R (Ω) such that for every v ∈ W̃ s−,p

0,4R (Ω)∫
B4R(Ω)×B4R(Ω)

|w(x)−w(y)|p−2

|x−y|N+sp (w(x)− w(y))(v(x)− v(y))dxdy

=
∫

Ω
fvdx+

∫
B4R(Ω)×B4R(Ω)

F (x, y) v(x)−v(y)

|x−y|N/p+sdxdy,

and the map
Lq(Ω)× Lq(B4R(Ω)×B4R(Ω)) → W s,p

4R (Ω)
(f, F ) 7→ w

is continuous;

(ii) if F1, F2 ∈ Lq(Ω) with F1 ≤ F2 a.e. in Ω and w1, w2 ∈ W̃ s−,p
0,4R (Ω) are the solutions of∫

B4R(Ω)×B4R(Ω)
|wt(x)−wt(y)|p−2

|x−y|N+sp (wt(x)− wt(y))(v(x)− v(y))dxdy

=
∫

Ω
Ftvdx, ∀ v ∈ W̃ s−,p

0,4R (Ω),

then it holds w1 ≤ w2 a.e. in Ω.

Remark 2.6.3. In fact, we can establish stronger results than (i) in Lemma 2.6.3. We

establish that the operator (−∆p)
s is a homeomorphism of W̃ s,p

0,tR(Ω) onto its dual space

W̃−s,q
tR (Ω). For details, we refer the reader to section A1. Also, we can see that by the same

process as in section A1, the operator (−∆p)
s also is a homeomorphism of W̃ s,p

tR (Ω) onto

the corresponding dual space (W̃ s,p
tR (Ω))∗.

Proof. The only difference between this lemma and the Theorem 7.1 in [34] is the nonlocal
setting here.

We can see that (i) is a direct result of Proposition 2.6.1. Indeed just by Hölder
inequality and Young’s inequality respectively to conclude a coercive result, this gets the
existence of the solution; then by a strictly convexity property of the semi-norm W s,p

4R (Ω)
the uniqueness is determined.

Now we attempt to prove (ii). Since (w1 − w2)+ ∈ W̃ s−,p
0,4R (Ω), we have∫

B4R(Ω)×B4R(Ω)
|w1(x)−w1(y)|p−2

|x−y|N+sp (w1(x)− w1(y))

×((w1 − w2)+(x)− (w1 − w2)+(y))dxdy =
∫

Ω
F1(x)(w1 − w2)+(x)dx,∫

B4R(Ω)×B4R(Ω)
|w2(x)−w2(y)|p−2

|x−y|N+sp (w2(x)− w2(y))

×((w1 − w2)+(x)− (w1 − w2)+(y))dxdy =
∫

Ω
F2(x)(w1 − w2)+(x)dx,

hence,
0 ≤

∫
{w1>w2}×{w1>w2}(

|w1(x)−w1(y)|p−2

|x−y|N+sp (w1(x)− w1(y))− |w2(x)−w2(y)|p−2

|x−y|N+sp (w2(x)− w2(y))
)

×((w1 − w2)+(x)− (w1 − w2)+(y))dxdy
=
∫

Ω
(F1 − F2)(x)(w1 − w2)+(x)dx ≤ 0,

it follows that w1 ≤ w2 a.e. in Ω.
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Now we are prepared to prove the Theorem 2.6.2.

Proof of Theorem 2.6.2. Obviously (a)⇔ (c).
Now we consider the assertions from (b) to (f). Clearly we have (b)⇒ (c).

If λ1
s,p = λ1

s,p, we infer that us ∈ W̃ s,p
0,4R(Ω) ⊂ W̃ s−,p

0,4R (Ω) satisfies

us > 0 a.e. in Ω,

∫
Ω

us
pdx = 1, and [us]

p
W s,p

4R (Ω)
= λ1

s,p.

By the uniqueness of corresponding eigenfunction of λ1
s,p, we have that us = us, namely

(c)⇒ (d).
Of course, (d)⇒ (e).

If us ∈ W̃
s,p
0,4R(Ω), let

fk = min{λ1
s,p(kus)

p−1, 1}

and let wk be the solution of∫
B4R(Ω)×B4R(Ω)

|wk(x)−wk(y)|p−2

|x−y|N+sp (wk(x)− wk(y))(v(x)− v(y))dxdy

=
∫

Ω
fkvdx, ∀ v ∈ W̃ s−,p

0,4R (Ω)

by Lemma 2.6.3. Since 0 ≤ wk ≤ λ1
s,p(kus)

p−1 a.e. in Ω, we have wk ≤ kus a.e. in Ω

according to (ii) of Lemma 2.6.3. Because wk ∈ W s,p
4R (Ω) and kus ∈ W̃ s,p

0,4R(Ω), we infer

that wk ∈ W̃ s,p
0,4R(Ω).

Then letting k → +∞, we have {fk} converge to 1 in Lp(Ω). Hence from (i) of Lemma
2.6.3 we infer that

lim
k→+∞

[wk − u]p
W s,p

4R (Ω)
= 0,

whence u ∈ W̃ s,p
0,4R(Ω). Then (e)⇒ (f).

Now let us suppose that (f) holds and u is the solution in (f). If F ∈ L∞(Ω) and

w ∈ W̃ s−,p
0,4R (Ω) is the solution of∫

B4R(Ω)×B4R(Ω)
|w(x)−w(y)|p−2

|x−y|N+sp (w(x)− w(y))(v(x)− v(y))dxdy

=
∫

Ω
Fvdx, ∀ v ∈ W̃ s−,p

0,4R (Ω),

we have that −Mp−1 ≤ F ≤ Mp−1 for some M > 0, whence −Mu ≤ w ≤ Mu a.e. in Ω.
It follows w ∈ W̃ s,p

0,4R(Ω).

Now suppose that w ∈ W̃ s−,p
0,4R (Ω). Thanks to Theorem A1.3, we have a unique F ∈

W̃−s−,q
4R (Ω) such that∫

B4R(Ω)×B4R(Ω)
|w(x)−w(y)|p−2

|x−y|N+sp (w(x)− w(y))(v(x)− v(y))dxdy

=
∫

Ω
Fvdx, ∀ v ∈ W̃ s,p

4R (Ω).
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Then due to Lemma 2.6.2 and Lemma 2.6.1, we know there exists one representation
function φ(x, y) ∈ Lq(B4R(Ω)×B4R(Ω)) such that

〈φ,Rs,p(v)〉(Lq(B4R(Ω)×B4R(Ω)),Lp(B4R(Ω)×B4R(Ω)) = 〈F, v〉
(W̃−s

−,q
4R (Ω),W̃ s−,p

0,4R (Ω))

= 〈R∗s,p(φ), v〉
(W̃−s

−,q
4R (Ω),W̃ s−,p

0,4R (Ω))
:=
∫

Ω
R∗s,p(φ)(x)v(x)dx.

Then by the density of C∞c (B4R(Ω)×B4R(Ω)) in Lq(B4R(Ω)×B4R(Ω)) (see (2.15)), let
{fk} ⊂ C∞c (B4R(Ω) × B4R(Ω)) be the sequence converging to φ in Lq(B4R(Ω) × B4R(Ω)).

So for every v ∈ W̃ s−,p
0,4R (Ω) we have

0 = lim
k→+∞

〈φ− fk, Rs,p(v)〉(Lq(B4R(Ω)×B4R(Ω)),Lp(B4R(Ω)×B4R(Ω))

=
∫

Ω
R∗s,p(φ− fk)(x)v(x)dx.

Since fk ∈ C∞c (B4R(Ω)×B4R(Ω)), we have

L∞(B4R(Ω)) 3 R∗s,p(fk)(x) =

∫
BtR(Ω)

fk(x, y)− fk(y, x)

|x− y|N/p+s
dy.

Then there exists unique wk ∈ W̃ s,p
0,4R(Ω) such that∫

B4R(Ω)×B4R(Ω)
|wk(x)−wk(y)|p−2

|x−y|N+sp (wk(x)− wk(y))(v(x)− v(y))dxdy

=
∫

Ω
R∗s,p(fk)vdx, ∀ v ∈ W̃

s−,p
0,4R (Ω).

Since ∫
B4R(Ω)×B4R(Ω)

|w(x)−w(y)|p−2

|x−y|N+sp (w(x)− w(y))(v(x)− v(y))dxdy

=
∫

Ω
Fvdx =

∫
Ω
R∗s,p(φ)vdx, ∀ v ∈ W̃ s−,p

0,4R (Ω),

it follows from (i) of Lemma 2.6.3

lim
k→+∞

[wk − w]p
W s,p

4R (Ω)
= 0,

whence w ∈ W̃ s,p
0,4R(Ω). Therefore (f)⇒ (b).



Appendix

A1 Homeomorphism

By adapting the settings in section 2.6.3, here we mimic the strategy in [38][57] to establish

the homeomorphism of the operator (−∆p)
s from the space W̃ s,p

0,tR(Ω) to its dual space

W̃−s,q
tR (Ω).

Definition A1. Let X be a Banach space. An operator T : X → X∗ is said to be of type
M if for any weakly-convergent sequence xn ⇀ x such that T (xn) ⇀ f and

lim sup〈xn, T (xn)〉 ≤ 〈x, f〉, (16)

one has T (x) = f . T is said to be hemi-continuous if for any fixed x, y ∈ X, the
real-valued function

s 7→ 〈y, T (x+ sy)〉

is continuous.

Theorem A1.1 ([68], Chapter 2, Lemma 2.1). Let X be a reflexive Banach space and
T : X → X∗ be a hemi-continuous and monotone operator. Then T is of type M.

Proof. For any fixed y ∈ X, (xn), x and f as in Definition A1, the assumed monotonicity
of T yields

0 ≤ 〈xn − y, T (xn)− T (y)〉

for all n; hence, from (16), we have

〈x− y, T (y)〉 ≤ 〈x− y, f〉.

In particular, for any z ∈ X and n ∈ N,

〈z, T (x− (
z

n
))〉 ≤ 〈z, f〉,

which, in conjunction with hemi-continuity, immediately yields

〈z, T (x)〉 ≤ 〈z, f〉

for all z ∈ X. This implies T (x) = f , as claimed.
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Theorem A1.2 ([68], Chapter 2, Theorem 2.1). Let X be a separable and reflexive Banach
space, and let T : X → X∗ be of type M and bounded. If for some f ∈ X∗ there exists
ε > 0 for which 〈x, T (x)〉 > 〈x, f〉 for every x ∈ X with ‖x‖X > ε, then f belongs to the
range of T .

Lemma A1. For x, y ∈ RN and a constant p, we have

1

2
[(|x|p−2 − |y|p−2)(|x|2 − |y|2) + (|x|p−2 + |y|p−2)|x− y|2]

= (|x|p−2x− |y|p−2y) · (x− y).

Proof. It is by a straight calculation by writing

|x|2 − |y|2 = (x+ y) · (x− y)

and

|x− y|2 = (x− y) · (x− y)

on the left-hand side of the equality.

Let u, v ∈ W̃ s,p
0,tR(Ω), then we define the inner product 〈u, (−∆p)

sv〉 by

〈u, (−∆p)
sv〉 :=

∫
BtR(Ω)×BtR(Ω)

|v(x)− v(y)|p−2(v(x)− v(y))(u(x)− u(y))

|x− y|N+sp
dxdy,

which is well-defined by Hölder inequality.

Lemma A2. Let Ω ⊂ RN be a bounded open set, t > 1, 0 < s < 1, p ∈ (1,+∞), and
1
p

+ 1
q

= 1. Then the operator

(−∆p)
s : W̃ s,p

0,tR → W̃−s,q
tR (Ω)

is bounded, hemi-continuous and monotone. Also, (−∆p)
s is of type M .

Proof. Let S ⊂ W̃ s,p
0,tR(Ω) be bounded, namely sup{‖u‖W̃ s,p

tR (Ω), u ∈ S} ≤ C. For u ∈ S and

w in the unit ball of W̃ s,p
0,tR(Ω), we have

〈w, (−∆p)
su〉 =

∫
BtR(Ω)×BtR(Ω)

|u(x)− u(y)|p−2(u(x)− u(y))(w(x)− w(y))

|x− y|N+sp
dxdy.

Then via Hölder inequality it is clear that

sup{‖(−∆p)
su‖W̃−s,qtR (Ω), u ∈ S} ≤ C,

which shows that (−∆p)
s is bounded.
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For the proof of the hemi-continuity, let t ∈ R fixed. For 1 < p ≤ 2,

|u+ tv|p−1 ≤ |u|p−1 + |t|p−1|v|p−1, (17)

while for p > 2,

|u+ tv|p−1 ≤ 2p−2(|u|p−1 + |t|p−1|v|p−1). (18)

At the same time, it follows from the definition that

〈v, (−∆p)
s(u+ tv)〉

=
∫
BtR(Ω)×BtR(Ω)

|(u+tv)(x)−(u+tv)(y)|p−2((u+tv)(x)−(u+tv)(y))(v(x)−v(y))
|x−y|N+sp dxdy.

(19)

In view of

(u+ tv)(x)− (u+ tv)(y) = u(x)− u(y) + t(v(x)− v(y)),

together with (17) and (18), the integrand in (19) is bounded by

|(u+ tv)(x)− (u+ tv)(y)|p−2((u+ tv)(x)− (u+ tv)(y))(v(x)− v(y))
≤ max{1, 2p−2}(|u(x)− u(y)|p−1|v(x)− v(y)|+ |t|p−1|v(x)− v(y)|p),

which is integrability by Hölder inequality. Then by Lebesgue Dominated Convergence
Theorem we obtain the hemi-continuity of operator (−∆p)

s.
The proof of monotonicity need the help of Lemma A1. In fact, for p ≥ 2 and ξ, η ∈ RN ,

|ξ − η|p = |ξ − η|p−2(ξ − η)2 ≤ 2p−3|ξ − η|2(|ξ|p−2 + |η|p−2),

combined with the identity in Lemma A1, yields the estimate

|ξ − η|p ≤ 2p−2(|ξ|p−2ξ − |η|p−2η) · (ξ − η). (20)

On the other hand, for 1 < p ≤ 2 (ξ 6= 0, η 6= 0), we utilize the following inequality
from [49]

(p− 1)|ξ − η|p ≤ [(|ξ|p−2ξ − |η|p−2η) · (ξ − η)](|ξ|p + |η|p)
2−p
p . (21)

Then by the definition of operator (−∆p)
s and letting u and v fixed in W̃ s,p

0,tR(Ω), we have

〈u− v, (−∆p)
s(u)− (−∆p)

s(v)〉
=
∫
BtR(Ω)×BtR(Ω)

(|u(x)− u(y)|p−2(u(x)− u(y))− |v(x)− v(y)|p−2(v(x)− v(y)))

× ((u− v)(x)− (u− v)(y)) dxdy
|x−y|N+sp

=
∫
BtR(Ω)×BtR(Ω)

(|u(x)− u(y)|p−2(u(x)− u(y))− |v(x)− v(y)|p−2(v(x)− v(y)))

× ((u(x)− u(y))− (v(x)− v(y))) dxdy
|x−y|N+sp .

(22)

Then we denote u(x)− u(y) as W , and v(x)− v(y) as V . The integrand in (22) becomes

(|W |p−2W − |V |p−2V )(W − V ),

Which, due to (20) and (21), leads to the monotonicity of (−∆p)
s.

Since the relative-nonlocal space W̃ s,p
0,tR(Ω) is reflexive and separable, thanks to Theorem

A1.1 we obtain that (−∆p)
s is of type M , which concludes the desired result.
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Now we establish our main result on the homeomorphism of operator (−∆p)
s.

Theorem A1.3. Let Ω ⊂ RN be an open bounded set. Let 0 < s < 1 and p, q ∈ (1,+∞)

such that 1/p+ 1/q = 1. Then the operator (−∆p)
s is a homeomorphism of W̃ s,p

0,tR(Ω) onto

its dual W̃−s,q
tR (Ω).

Proof. We have already proved the continuity of operator (−∆p)
s in Lemma A2, then we

need to prove respectively the surjectivity, injectivity and the continuity of the operator
(−∆q)

−s, which is the reverse operator of (−∆p)
s.

Step 1. Firstly, we prove the surjectivity of (−∆p)
s. Fix f ∈ W̃−s,q

tR (Ω). For u ∈
W̃ s,p

0,tR(Ω) with

[u]W s,p
tR (Ω) > max{1, ‖f‖

1
p−1

W̃−s,qtR (Ω)
};

thus for such u, we have

〈u, (−∆p)
su〉 =

∫
BtR(Ω)×BtR(Ω)

|u(x)−u(y)|p
|x−y|N+sp dxdy

= [u]p
W s,p
tR (Ω)

= [u]p−1
W s,p
tR (Ω)

[u]W s,p
tR (Ω)

> ‖f‖W̃−s,qtR (Ω)[u]W s,p
tR (Ω),

from which, together with Theorem A1.2, we can infer that f is in the range of (−∆p)
s,

namely, (−∆p)
s is surjective.

Step 2. Now we are prepared to prove the injectivity of (−∆p)
s.

Now we consider u, v ∈ W̃ s,p
0,tR(Ω) such that (−∆p)

s(u) = (−∆p)
s(v). Then we estimate

the semi-norm W s,p
tR (Ω) of u− v in space W̃ s,p

0,tR(Ω). If 1 < p < 2, we utilize the inequality
(21) established in Lemma A2, then by denoting I := u(x)−u(y) and J := v(x)− v(y) we
have the following process:

[u− v]p
W s,p
tR (Ω)

=
∫
BtR(Ω)×BtR(Ω)

|(u−v)(x)−(u−v)(y)|p
|x−y|N+sp dxdy

=
∫
BtR(Ω)×BtR(Ω)

|(u(x)−u(y))−(v(x)−v(y))|p
|x−y|N+sp dxdy

≤ 1
p−1

∫
BtR(Ω)×BtR(Ω)

(|I|p−2I−|J |p−2J)(I−J)
|x−y|N+sp (|I|p + |J |p)

2−p
p dxdy,

during which, we used the inequality (21); since 1 < p < 2, we set 2p−2
p

+ 2−p
p

= 1 as a
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conjugate pair, then via the Hölder inequality we proceed the inequality process above as

[u− v]p
W s,p
tR (Ω)

≤ 1
p−1

∫
BtR(Ω)×BtR(Ω)

{(|I|p−2I−|J |p−2J)(I−J)}
2p−2
p

|x−y|N+sp

×{(|I|p−2I − |J |p−2J)(I − J)}
2−p
p (|I|p + |J |p)

2−p
p dxdy

≤ 1
p−1

(∫
BtR(Ω)×BtR(Ω)

(|I|p−2I−|J |p−2J)(I−J)
|x−y|N+sp dxdy

) p
2p−2

×
(∫

BtR(Ω)×BtR(Ω)
(|I|p−2I−|J |p−2J)(I−J)(|I|p+|J |p)

|x−y|N+sp dxdy
) p

2−p

= 1
p−1
〈u− v, (−∆p)

s(u)− (−∆p)
s(v)〉

p
2p−2

×
(∫

BtR(Ω)×BtR(Ω)
(|I|p−2I−|J |p−2J)(I−J)(|I|p+|J |p)

|x−y|N+sp dxdy
) p

2−p
,

in which, the last integrand can be controlled by

(|I|p + |J |p + |I|p−1|J |+ |J |p−1|I|)(|I|p + |J |p)
|x− y|N+sp

:= C(u, v).

Since (−∆p)
s(u) = (−∆p)

s(v), we have from above process that [u−v]W s,p
tR (Ω) = 0, then

by Poincaré-type inequality, we have ‖u− v‖Lp(Ω) = 0.
For the case p ≥ 2, we just utilize (20) directly getting the injectivity of operator

(−∆p)
s.

Step 3. Now we only need to verify the continuity of reverse operator (−∆q)
−s. For

simplicity, we denote (−∆q)
−s by T . Let T (vn) → T (u) for {vn}n ⊂ W̃ s,p

0,tR(Ω). We claim
that the sequence {vn}n is bounded.

Indeed, if the sequence {vn}n is unbounded, one could extract a subsequence {un}n
with ‖un‖Lp(Ω) > n. Then set wn = un

‖un‖Lp(Ω)
and notice that for arbitrary φ ∈ W̃ s,p

0,tR(Ω)

with [φ]W̃ s,p
0,tR(Ω) ≤ 1, the equality

|〈φ, T (wn)〉|
= 1

[un]p−1

W̃
s,p
0,tR

(Ω)

∣∣∣∫BtR(Ω)×BtR(Ω)
|un(x)−un(y)|p−2(un(x)−un(y))(φ(x)−φ(y))

|x−y|N+sp dxdy
∣∣∣

≤ 1

[un]p−1

W̃
s,p
0,tR

(Ω)

‖T (un)‖W̃−s,qtR (Ω).

So by let n→ +∞, since T (un)→ T (u) and [un]W̃ s,p
0,tR(Ω) ≥ ‖un‖Lp(Ω) > n by Poincaré-type

inequality (see (9)), we infer that

‖T (wn)‖W̃−s,qtR (Ω) → 0 (23)

as n→ +∞.
On the other hand, by the definition of wn, we directly infer that

‖T (wn)‖W̃−s,qtR (Ω) ≥ 〈wn, T (wn)〉 =
∫
BtR(Ω)×BtR(Ω)

|wn(x)−wn(y)|p
|x−y|N+sp dxdy

= 1
[un]p

W̃
s,p
0,tR

(Ω)

∫
BtR(Ω)×BtR(Ω)

|un(x)−un(y)|p
|x−y|N+sp dxdy = 1,
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which contradicts (23). Then we get that {vn}n is bounded in W̃ s,p
0,tR(Ω).

Now we proceed as in step 2 by letting 1 < p < 2 and p ≥ 2 respectively. For the case
p ≥ 2, we directly use (20) to get that

[vn − u]p
W s,p
tR (Ω)

≤ sp−2〈vn − u, T (vn)− T (u)〉 ≤ [vn − u]p
W s,p
tR (Ω)

‖T (vn)− T (u)‖p
W̃−s,qtR (Ω)

,

which implies that ‖vn − u‖Lp(Ω) → 0 by Poincaré-type inequality as n→ +∞.
On the other hand, if 1 < p < 2, we need a small modification of the inequality (21),

i.e., for arbitrary ξ, η ∈ RN and ∀ ε > 0

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) = (ξ − η) ·
∫ 1

0
d
dt

(|η + t(ξ − η)|p−2(η + t(ξ − η))) dt

= |ξ − η|2
∫ 1

0
|η + t(ξ − η)|p−2dt

+(p− 2)
∫ 1

0
|η + t(ξ − η)|p−4 ((η + t(ξ − η)) · (ξ − η))2 dt

≥ (p− 1)|ξ − η|2
∫ 1

0
|η + t(ξ − η)|p−2dt

≥ (p− 1)|ξ − η|2(ε+ |ξ|+ |η|)p−2,

namely,

(p− 1)|ξ − η|2(ε+ |ξ|+ |η|)p−2 ≤ (|ξ|p−2ξ − |η|p−2η) · (ξ − η). (24)

Then by denoting I := vn(x)− vn(y) and J := u(x)−u(y), we can write [vn−u]p
W̃ s,p

0,tR(Ω)

as ∫
BtR(Ω)×BtR(Ω)

|I−J |p
(1+|I|+|J |)p(2−p)/2 (ε+ |I|+ |J |)p(2−p)/2 dxdy

|x−y|N+sp

≤ (
∫
BtR(Ω)×BtR(Ω)

(ε+ |I|+ |J |)p dxdy
|x−y|N+sp )1−p/2

×(
∫
BtR(Ω)×BtR(Ω)

|I−J |2
(ε+|I|+|J |)2−p

dxdy
|x−y|N+sp )p/2

=: Xn + Yn.

In the first term Xn, since ε > 0 is arbitrary, we set ε = |x − y|N/p+s in Xn, then due to

the boundedness of vn and u in W̃ s,p
0,tR(Ω), we have that Xn is bounded.

For the term Yn, again by inequality (24) we have

Yn ≤ 1
p−1
|〈vn − u, T (vn)− T (u)〉|

≤ 1
p−1
‖T (vn)− T (u)‖W̃−s,qtR (Ω)‖vn − u‖W̃ s,p

0,tR(Ω)

≤ 1
p−1
‖T (vn)− T (u)‖W̃−s,qtR (Ω)

(
supn ‖vn‖W̃ s,p

0,tR(Ω) + ‖u‖W̃ s,p
0,tR(Ω)

)
,

which implies that Yn → 0 as n → +∞, thanks to the fact that vn and u is bounded in
W̃ s,p

0,tR(Ω), and the assumption T (vn)→ T (u) in W̃−s,q
tR (Ω).

By all above, we infer that ‖vn − u‖W̃ s,p
0,tR(Ω) → 0 as n→ +∞. Thus

(−∆q)
−s : W̃−s,q

tR (Ω)→ W̃ s,p
0,tR(Ω)

is continuous.
Then we conclude the results that (−∆p)

s is a homeomorphism of W̃ s,p
0,tR(Ω) onto

W̃−s,q
tR (Ω).
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as Limit of Orlicz Fractional Laplacians, ArXive:1807.01669v1 (2018)

[22] Brasco, L., Parini, E., Squassina, M., STABILITY OF VARIATIONAL EIGENVAL-
UES FOR THE FRACTIONAL p-LAPLACIAN, arxive:1503.0418v1 [math.AP] 13
Mar (2015)

[23] Braides, A., Γ-convergence for Beginners. Oxford University Press, Oxford, (2002)
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[48] Krasnosel’skĭı, M.A., Topological methods in the theory of nonlinear integral equa-
tions, A Pergamon press book, The Macmillan Co., New York (1964)

[49] Kichenassamy, S., Verson, L., Singular Solutions of the p-Laplace equation, Math.
Ann. 275, 599-615 (1985)

[50] Li, R.F., Asymptotics of Dirichlet Problems to Fractional p-Laplacian Functionals:
Approach in De Giorgi sense, arXiv:1907.08028, (2019)

[51] Li, R.F., On Relative-nonlocal p-Rayleigh Quotients, arXiv:1907.08032, (2019)
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