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Abstract
• Problem Settings: In this thesis, we investigate the following two fields: Online Graph-

Based Semi-Supervised Learning (SSL) and Deep Clustering. In the former field, given
a small size labeled dataset, the learning algorithm handles a continuous streamed unla-
beled data points. The challenge is to predict the label of newly arrival data point quickly
and precisely under sever memory constraints. Note that the distribution of streamed data
may change as time goes. In the later field, given a large size unlabeled dataset and the
number of clusters, the clustering algorithm estimates the cluster labels. A deep neural
network is used to define the statistical model. The unlabeled data points are supposed to
be generated from the same distribution independently. The challenge of this clustering
is to estimate the cluster labels of given unlabeled dataset precisely as possible as we can.

• Previous Methods:

– Online Graph-Based SSL: Online graph-based SSL is a relatively new filed of SSL
studies. Although many online SSL algorithms have been proposed recently, most
of them do not consider the processing time and severe memory constraints. Conse-
quently, runtime and memory demands are increasing functions Ω(T ) of streaming
size T . On the other hand, an example of a few studies that account for processing
time and memory constraints is online Quantized Label Propagation (QLP). This
method is at each time, firstly to recompress the data adjacency graph by incorpo-
rating a newly arrived data point, then secondly to predict the label of new data
point on the graph. The Doubling Algorithm (DA) and Label Propagation (LP) are
employed as the graph compressing and label predicting methods, respectively. The
other previous methods also take the same strategy, and both of them employ LP as
the label predicting method. However, LP is known to not be robust against outliers.
The reason is that LP predicts the labels by using all given data points, which often
include outliers. In addition, LP is known to not be efficient computationally. As
a possible alternate of LP, we can list Geodesic k-Nearest Neighbor (GkNN) algo-
rithm. This method is not only computationally more efficient but also more robust
against outliers than LP. The drawback of GkNN is that it does not perform well
when the size of given labeled data is small.

– Deep Clustering: Thanks to the development of deep neural networks, we can now
handle large datasets with complicated shapes. Consequently, the studies of clus-
tering using deep neural networks has been proposed. One major direction in the
studies is to combine deep AutoEncoders (AE) with classical clustering methods
such as k-means. This AE is used to obtain a clustering friendly low dimensional
representation. In another major direction, the methods directly group a given unla-
beled dataset into the given number clusters in the original input space by employing
a deep neural network to their statistical models. Though most of deep clustering
methods are built on the following fundamental two assumptions: the smoothness
and manifolds assumptions, these methods require additional key conditions where
the methods perform well. For an example, CatGAN (Categorical Generative Ad-
versarial Networks) learns discriminative neural network classifiers that maximize
mutual information between the input data points and the cluster labels, while en-
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forcing the robustness of the classifiers to data points produced by adversarial gen-
erative models. Since maximizing mutual information implicitly encourages the
cluster-balance distribution of the model to be uniform, if the distribution of cluster-
balance with the given unlabeled dataset is not uniform, then CatGAN will not per-
form well. To the best of our knowledge, like the example, most of their key condi-
tions are not realistic. One of few examples is SpectralNet, whose clustering logic is
based on the above two fundamental assumptions. As for the weakness of Spectral-
Net, the performance is not robust against the existence of outliers. In the learning
process, it learns the pairwise similarities over all given data points. Therefore, the
existence of outliers disturbs the method to learn the similarities precisely, and thus
it returns inaccurate cluster labels.

• Our Research Ambitions, Proposed Methods and the Numerical Experiments:

– Online Graph-Based SSL: Our ambitions are, firstly, to invent a new label predicting
offline SSL algorithm which can assist in creating more competitive online graph-
based SSL algorithms. Our requirement toward the offline method is that the com-
putational complexity should be as small as GkNN, and the predicting performance
should be better than that of LP and GkNN. With the second ambition, after the
invention of the offline SSL method, by combining the offline method and a con-
ventional online clustering method, we then propose an online SSL method. As the
result we could achieve the ambitions. Our proposed offline and online SSL meth-
ods are named Robust Label Prediction (RLP) and online Quantized RLP (online
QRLP), respectively. The details of both methods are as follows.

∗ RLP: This algorithm consists of three steps. On the basis of the neighbor graph,
RLP first selects some unlabeled samples that represent the global structure of
the data manifolds. The second step assigns labels to selected unlabeled sam-
ples by using LP. The third step predicts the labels on the remaining unlabeled
samples by using GkNN. The unlabeled samples selected by the algorithm are
collected into the hub dataset, which is denoted as H. The vertices selected
for H are those with many neighbors on the data affinity graph G. As for the
mechanism of RLP, we can see Fig.9 of this thesis.
∗ Online QRLP: This method is obtained by combining DA and Quantized RLP,

in which we conduct RLP on the compressed data affinity graph. DA is com-
monly used online clustering algorithm. In DA, given number of centroids, at
each time, the set of centroids is updated. The set can be seen the set of im-
portant data points in the original data affinity graph defined up until the time.
With regarding the hyperparameter tuning of online QRLP, we can tune them
if we could have small size labeled and unlabeled datasets before the stream.
The computational cost of this method can be controlled by upper-bounding the
number of hub data points to match that of GkNN.
∗ Numerical Experiments with online QRLP: Table 8 of this thesis shows the

averaged prediction accuracy with the standard deviation on unlabeled data in
eight real-world data streams. In each dataset, l denotes the number of labeled
data obtained before the arrival of each stream of size T . As you can see, our
method outperforms the previous popular online SSL method based on LP.
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– Deep Clustering: Our ambition is to invent outlier-robust deep clustering which is
built only on the two fundamental assumptions. As mentioned before, the previ-
ous methods require the additional key conditions apart from the two assumptions.
Therefore, for the unknown unlabeled dataset, their performances are not promised.
If we can invent such the method, it can be a good candidate in practical situation.
As the result we could achieve the ambitions. The proposed method is named Spec-
tral Embedded Deep Clustering (SEDC). Given an unlabeled dataset and the number
of clusters, SEDC directly groups the dataset into the given number clusters in the
input space. Our statistical model is the conditional discrete probability distribution,
which is defined by a fully connected deep neural network. SEDC does not require
key condition except the smoothness and manifold assumptions, and it can be ap-
plied to various data domains. Moreover, throughout our numerical experiments,
we observed that our method was more robust against outliers than SpectralNet.
The procedure of SEDC is composed of two stages. In the first stage, we conduct
Spectral Clustering (SC) only on the unlabeled data points selected from high den-
sity region by using the geodesic metric to estimate the cluster labels. This selected
data points exactly equal to hub data points, which was defined in online SSL study.
This special type of SC is named as Selective Geodesic Spectral Clustering (SGSC),
which we propose for assisting SEDC as well. Thereafter, we conduct SSL to train
the model by using the estimated cluster labels and the remaining unlabeled data
points. Note that, in this SSL, we treat the estimated cluster labels of the selected
unlabeled data points as the given true cluster labels. At last, by using the trained
model, we obtain the estimated cluster labels of all given unlabeled data points. In
the following, firstly, let us explain the detail of SGSC, then SEDC.

∗ SGSC: The motivation behind SGSC is to assist the semi-supervised learning
in SEDC. SGSC conducts SC only on hub (selected unlabeled) data points with
the geodesic metric, then returns the estimated cluster labels of hub points. The
hub points are defined as data points in high density region, and these data
points are approximated by the highest degree nodes on the affinity data graph.
The geodesic metric is approximated by the graph shortest path distances on
the graph. Empirically speaking, the estimation accuracy of cluster labels with
hub points tends to not only be robust against the existence of outliers but also
be competitive. This tendency can help SEDC return competitive clustering
result. The reason of robustness is that the selection of data points from high
density region tends to not be affected by the existence of outliers. The reason to
employ the geodesic metric is that the metric is known to be useful to capture
the structure of the data manifolds especially when the number of given data
points is large. Fig.10 of this thesis is image with mechanism of SGSC.
∗ SEDC: Given an unlabeled dataset X and the number of clusters C, SEDC op-

timizes the objective function of Eq.(35) of this thesis to train the statistical
model, which is the conditional discrete probability distribution parameterized
by a fully connected deep neural network. In this objective function, the first,
second and third loss are the Virtual Adversarial Training (VAT) loss, pseudo
empirical loss and the conditional Shannon entropy loss, respectively. With the
definitions of symbols in the objective, x(i), θ and h mean the element of un-
labeled dataset, the parameters in the deep neural network and the number of
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hub data points. The q(i) means the estimated distribution of cluster labels with
hub data point x(i). This estimated distribution is a part of outputs of SGSC.
The minimization of VAT loss imposes the model to follow the smoothness as-
sumption. The minimization of the third term imposes the model to have the
large margin between the clusters. After this optimization, we obtain the esti-
mated cluster labels of all given unlabeled data points, which are computed by
the trained statistical model.
∗ Numerical Experiments with SEDC: Table 16 of this thesis shows the averaged

estimation accuracy of cluster labels with all given unlabeled data points. Inside
of () shows the standard deviation. Seven times experiments are conducted for
the average and the standard deviations. k-means to SEDC are the name of
clustering methods. MNIST to TR are the name of datasets. Our proposed
method is SEDC. As you can see, our method averagely outperforms the other
clustering methods. As for the MNIST dataset, IMSAT performed pretty well
since the dataset satisfy the key condition.

• Conclusions and Future Works:

– Online Graph-Based SSL: We proposed a generic graph-based SSL algorithm, called
RLP. We confirmed that RLP is robust against noisy data and provides more accu-
rate predictions than LP and GkNN. The computational efficiency of RLP matches
that of GkNN. Furthermore, we confirmed the power of RLP as a core technique
in the online SSL framework. In the online scenario, the proposed method has two
tunable hyperparameters, namely then number of neighbor and hub data points. Fu-
ture works should focus on the choice of number of hub data points. In this thesis,
the upper bound of number of hub points was determined by considering the com-
putational cost. The prediction accuracy when the number is based on other criteria
should also be examined. Furthermore, an adaptive method that determines both
hyperparameters would be useful for practical online learning.

– Deep Clustering: In this thesis, we propose a deep clustering method named SEDC.
Given an unlabeled dataset and the number of clusters, the method groups the dataset
into the given number clusters. Regarding its advantages, it does not require an ad-
ditional key condition except two fundamental assumptions: smoothness and mani-
folds assumptions. In this point, only SpectralNet is comparable. In addition, SEDC
also can be applied to various data domains since it does not have preferred data do-
mains, as long as raw data is transformed to feature vectors. Furthermore, the per-
formance of SEDC can be robust against existence of outliers unlike SpectralNet.
According to these advantages, our proposed method can be expected to averagely
perform better than previous deep clustering methods. As a result, this expectation
is empirically confirmed by conducting numerical experiments on five commonly
used datasets: see Table 16. Therefore, we think our method can be a competitive
candidate for users in some practical clustering scenarios where prior knowledge of
the given unlabeled dataset is limited. Let us then discuss two limitations of SEDC.
On the one hand, since the method needs hyperparameter tuning, if we do not have
appropriate labeled source domains to learn them from and transfer, then it may
fail. On the other hand, since the method requires the number of clusters, it does
not work for datasets where nothing is known on the number of clusters such as
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genome datasets. Finally, we discuss about our two future works. The first one is to
invent a more noise-robust semi-supervised learning framework and then apply it to
SEDC instead of the above objective function. Since some of the estimated cluster
labels by SGSC are not perfectly accurate, we need to invent such the framework
to stabilize the performance of SEDC. The second one is to modify our method for
handling structured data, i.e., graph data or sequential data.
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1 Introduction
1.1 Background
Machine Learning (ML) is an important subject to automatize many simple tasks. Thus, it has
the potential to revolutionize human life. One of the most commonly studied scenarios in ML is
Supervised Learning (SL). In this scenario, a labeled dataset is used for the learning. Although
SL is well studied both practically and theoretically, obtaining labeled dataset is often very
expensive. The reason is that the labels are mostly annotated by human labour.

To solve above annotation problem, two alternative frameworks available that are more cost-
efficient are Semi-Supervised Learning (SSL) and Unsupervised Learning (UL). In SSL, the
given information is a small labeled dataset and a large unlabeled dataset. Let us assume the two
datasets follow the same distribution. By using both labeled and unlabeled datasets, we estimate
the labels of the given unlabeled dataset or define a classifier which can predict the labels of a
newly arrived data. On the other hand, in UL, only the unlabeled dataset is available. The goal
of UL depends on the tasks. In one case, the aim is to obtain the better representation than the
raw data itself for assisting additional learning. This type of UL is known as representation
learning. In other case, the goal is to group the dataset into the clusters based on some measure,
which is named as clustering. Even though we have almost no information on the labels in both
learnings, we still can propose well performing algorithms. This confidence is based on the
following two fundamental assumptions;

• Smoothness assumption: If two data points are close, then so should be the corresponding
labels.

• Manifold assumption: The high dimensional data line roughly on a low-dimensional man-
ifold.

By using these two assumptions, many previous popular SSL and UL methods were proposed.
Recently, thanks to the development of Deep Neural Networks (DNNs), we can handle

large and non-linear datasets, which we often encounter in ML scenarios. DNNs are not only
known to be scalable but also to have strong expression power. The scalability comes from
Stochastic Gradient Descent (SGD) methods. The expression power comes from the deeply
stacked layers. Therefore, it is natural that huge amount of DNNs based SSL or UL methods
have been proposed since then. Note that DNNs does not perform well if the given number of
data points are small or the distribution of the dataset will change as time goes.

In this thesis, we investigate the following two fields: Online Semi-Supervised Learning
(Online SSL) and Deep Clustering, and then propose two corresponding methods. Online SSL
is a part of SSL studies. The learning algorithms do not handle batch dataset but a continuous
streamed dataset. The typical challenge is to predict the label of newly arrival data point quickly
and precisely under sever memory constraints. In some cases, the distribution of that streamed
dataset changes as time goes. Deep clustering is a part of clustering studies, which is a part
of UL. The clustering methods employ DNNs in their statistical models. The challenge of this
clustering is to estimate the cluster labels of given unlabeled dataset precisely. The regulariza-
tion of DNNs by using unlabeled data points is also inevitable challenge. Note that online SSL
methods and deep clustering methods can help each other since non-DNNs based online SSL
methods can handle steamed dataset whose distribution will change as time goes. Fig.1 shows a
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Figure 1: A typical example of online SSL (top) and clustering (bottom). Top picture: At
each time t, by using given labeled and unlabeled data points, we try to estimate the label of
newly arrived data point xt. Red and blue colored circles mean differently labeled data points.
Question marked circles are unlabeled data points. Bottom picture: By using only unlabeled
data points, we try to estimate the cluster labels of the given unlabeled data points, which are
expressed by vectors of R2. It depends on the task whether the number of clusters is given or
not. In this case, we are given that number, which is two. Based on the number and some
measure, each unlabeled data point is assigned the cluster label.

typical image of online SSL and clustering tasks. In the online SSL task, our goal is to quickly
estimate the labels of question marked data points, whcih are unlabeled data points, by using
the given labeled and unlabeled data points. We assume the distribution of those data points
may change as time goes. In addition, it is also assumed that we can not register all data points
in our memory space. Therefore, under sever memory constrain, we have to achieve precise
estimation. On the other hand, in the bottom pictured clustering task, by using given unlabeled
data points, we simply try to estimate the cluster labels precisely as possible as we can. In this
task, we have the number of clusters that is two. It is assumed that all data points are generated
from the same distribution independently.

1.2 Main Contributions
In this thesis, we propose two methods. One is an online SSL method, and the other is a deep
clustering method. Empirically, both methods could outperform the existing state-of-the-art
methods in terms of prediction or estimation accuracy with given unlabeled data points. The key
of that success is that we take more advantage of the preceding two fundamental assumptions
than the previous methods.
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1.2.1 Part I : Robust Label Prediction via Label Propagation and Geodesic k-Nearest
Neighbor on Online Semi-Supervised Learning

In this part, we propose a computationally efficient offline SSL algorithm that yields a more
accurate prediction than Label Propagation (LP), which is commonly used in online graph-
based SSL. This method is named Robust Label Prediction (RLP), and is made by modifying the
LP algorithm and combines it with the Geodesic k-Nearest Neighbor (GkNN) algorithm. Since
this proposed method is an offline method that is intended to assist online graph-based SSL
algorithms, we then propose an online graph-based SSL algorithm named Online Quantized
Robust Label Prediction (Online QRLP). The efficacy of above both offline and online SSL
algorithms are demonstrated in numerical experiments.

The remainder with this part is organized as follows. Section 2 and 3 briefly introduces
existing SSL studies and our research motivations. Section 4 proposes a learning method for
SSL and analyzes its time complexity. Section 5 shows the utility of our algorithm in building
an efficient online algorithm for SSL. Section 6 is devoted to numerical experiments. In this
section, we show that our method has better prediction accuracy with efficient runtime than
some existing methods. Section 7 contains concluding remarks.

1.2.2 Part II : Spectral Embedded Deep Clustering

In this part, we propose a new clustering method named Spectral Embedded Deep Clustering
(SEDC). Given an unlabeled dataset and the number of clusters, our method directly groups
the dataset into the given number clusters in the original space. Our statistical model is the
conditional discrete probability distribution, which is defined by a deep neural network. Our
clustering strategy is, first to estimate the cluster labels of unlabeled data points selected from
high density region, and then to conduct semi-supervised learning to train the model by using
the estimated cluster labels and the remaining unlabeled data points. At last, by using the
trained model, we obtain the estimated cluster labels of all given unlabeled data points. The
advantage of our method is that it does not require key condition. For example, the previous
deep neural network based clustering methods require the cluster-balance of given dataset to
be uniform. Moreover, it also can be applied to various data domains as long as the data is
expressed by a feature vector. In addition, it was observed that our method was robust against
outliers. Therefore, the proposed method is expected to averagely perform better than previous
methods. This expectation is empirically confirmed by conducting numerical experiments on
five commonly used datasets.

In the remainder of this paper, we introduce related works in Section 9. We then introduce
our proposed method in Section 10. Finally, we demonstrate the efficiency of our method with
numerical experiments in Section 11.
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Table 1: Abbreviations and commonly used notations in this thesis.
SSL Semi-Supervised Learning
RLP Robust Label Prediction
(Online) QRLP (Online) Quantized RLP
SGSC Selective Geodesic Spectral Clustering
SEDC Spectral Embedded Deep Clustering
IMSAT Information Maximizing Self-Augmented Training
VAT Virtual Adversarial Training
SC Spectral Clustering
x, y Feature vector and its class or cluster label
l, u The number of labeled and unlabeled data points.
T The size of streamed data.
C The number of classes or clusters
D The dimension of feature vector
d, dG A metric and geodesic metric on graph G
k The number of neighbors
kv #Samples in the majority vote of GkNN
nc Maximum number of nodes in compressed graph
m,m Multiplicity and its vector representation
H, h Hub set and its size
W,L The similarity matrix and its graph Laplacian matrix
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Part I

Robust Label Prediction via Label
Propagation and Geodesic k-Nearest
Neighbor on Online Semi-Supervised
Learning
2 Preliminary with Semi-Supervised Learning
SSL involves both labeled and unlabeled data in the learning process. Given that this learn-
ing paradigm can solve many real-world problems, it has been intensively studied in recent
years [1]. In this section, we introduce both previous offline and online SSL studies.

2.1 Offline Semi-Supervised Learning
Regarding with offline SSL, there are two types: transductive and inductive learning. Though
these two types use both labeled and unlabeled dataset, the goals are different. The goal of the
former is to only estimate labels of unlabeled dataset precisely, that of the later on the other is
to predict the labels of test data points. We here introduce the previous popular transductive and
inductive learning. Finally, let us define the shared definitions in both learnings. The labeled
dataset and the unlabeled dataset are denoted by L = {(xi, yi)}li=1 and U = {xi}

l+u
i=l+1, respectively.

xi ∈ R
D is the feature vector, and yi ∈ {1, ...,C} is its class label. The total sample size l + u is

denoted by n. Let us define the set Lx as the feature vectors in L, i.e., Lx = {xi}
l
i=1, and Û as the

estimated unlabeled dataset, i.e., Û = {(xi, ŷi)}l+u
i=l+1, where ŷi is the estimated label of xi.

2.1.1 Generative Models

Given L and U, by assuming that each class has some distribution such as Gaussian [2], this
method finds out the decision boundary. This is categorized as inductive learning. The statistical
model is defined as follows:

pθ(x, y) = pθ(y)pθ(x|y), (1)

where θ, x and y are a set of model parameters, feature vector and its class label, respectively.
The decision boundary f (x) is defined by

f (x) = argmax
1≤ j≤C

pθ(y = j|x), pθ(y|x) =
pθ(x, y)∑C

j′=1 pθ(x, y′ = j′)
. (2)

The parameters θ are trained based on the following criterion:

argmax
θ

log

 l∏
i=1

pθ(xi, yi)
n∏

i=l+1

pθ(xi)

 . (3)

Note that we can rewrite pθ(xi) =
∑C

j=1 pθ(y = j)pθ(x|y = j). The solution of Eq.(3) is ob-
tained by, for an example, the Expectation-Maximization (EM) algorithm [3]. That solution
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Figure 2: An example of SL (left) vs SSL (right) [4]. In both learnings, the statistical models are
defined by Gaussian mixture model whose components are two. Given ten labeled data points
(circle and cross symbols), the classifier in left picture is defined by SL. In the right picture, by
using both the labeled dataset and given unlabeled dataset, the classifier is defined by SSL.

is guaranteed to be at least a local optimum. Variational approximation also can be helpful to
maximize Eq.(3). The right picture of Fig.2 shows the example of trained classifier by SSL
where the model is two components Gaussian. Since the true distribution is included in the
prameterized model, by incorporating U, the right pictured classifier is improved from the left
pictured classifier trained by SL with same model.

The advantages of generative models are that, firstly, it is well-studied framework, then
secondly, it can be very effective if the assumed distribution is correct. The disadvantages are
that, first, it is difficult to verify the correctness of the model, then secondly, commonly used
maximizer named EM algorithm only guarantees the local optima, third, the given unlabeled
dataset may degrade the trained model. To avoid such the degrading, the following criterion can
be alternative of Eq.(3):

argmax
θ

log

 l∏
i=1

pθ(xi, yi)

 n∏
i=l+1

pθ(xi)

λ
 , (4)

where λ is a hyperparameter to down weight with the unlabeled dataset. This hyperparameter
ranges 0 to 1.

2.1.2 Semi-Supervised Support Vector Machines

This method is also named S3VMs, and categorized to inductive learning. Inspired by SVMs,
it is designed for the output classifier to try to separate the given unlabeled data points from
different classes with large margin by using both L and U. To make explanation simplified,
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Figure 3: An example of SVM vs S3VM [4]. The black dots mean the given unlabeled data
points. The plus and minus symbols mean the given labeled data points. The dotted and solid
red lines are classifiers returned by SVM and S3VM, respectively.

let us consider two classes classification problems, i.e., y ∈ {+1,−1}. Denote the reproducing
Hilbert kernel space induced from a kernel K by HK . The statistical model is now defined by
f (x) = h(x) + b, where h ∈ HK and b ∈ R. Then, the objective function to obtain the best
hypothesis is defined as follows:

argmin
f

1
l

l∑
i=1

(1 − yi f (xi))+ + λ1‖h‖2HK
+
λ2

u

n∑
i=l+1

(1 − | f (xi)|)+

 s.t.
1
u

n∑
i=l+1

f (xi) =
1
l

l∑
i=1

yi,

(5)
where λ1 and λ2 are the hyperparameters ranging R+. The first term is empirical loss with
labeled dataset based on hinge loss function: (z)+ = max{z, 0}. The minimization of second
term makes the hypothesis h separate the training dataset with large margin. The third term
prefers the unlabeled data points located outside the margin. With respect to the constrain, it is
used to avoid the following solutions: most given data points have same label. In other words,
the constrain make the hypothesis have the same class balances with the labeled and unlabeled
datasets. For the prediction of label with a new data point x, we will use ŷ = sign( f ∗(x)) where
f ∗ is the solution of Eq.(5). Fig.3 shows the comparison between SVM and S3VM. The dotted
and solid red lines express the classifiers trained by SVM and S3VM, respectively. In the figure,
the unlabeled dataset succeeded to help improving the trained classifier from that of SVM.

Regarding with the optimization of Eq.(5), we have faced the challenge since the objec-
tive is non-convex. Therefore, there are different optimization approaches such as SVMlight [5],
∇S3VM [6], deterministic annealing [7], CCCP [8], Branch and Bound [9], SDP convex relax-
ation [10], etc.

As for the advantages of S3VMs are that, first, the applicability wherever SVMs can be
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applied, secondly, the clear mathematical framework. The disadvantages are that, firstly, the
difficulty of optimization, i.e., only obtaining bad local optima.

2.1.3 Manifold Regularization

This method [11, 12] is designed for the output classifier to satisfy the smoothness assumption
while separating data points from different classes with large margin. The method is categorized
to inductive learning. Denote the reproducing Hilbert kernel space induced from a kernel K by
HK , agian. The statistical model is defined by f (x) ∈ HK . For the simplicity, let us below
consider two classes classification problems, i.e., y ∈ {+1,−1}. Then, given L, U, a kernel K
and hyperparameters λ1, λ2 > 0, the objective function to obtain the best model is defined as
follows:

f ∗ = argmin
f∈HK

1
l

l∑
i=1

( f (xi) − yi)2 + λ1‖ f ‖2HK
+
λ2

n2 fTLf

 , (6)

where f =
[
f (x1) , . . . , f (xn)

]T and L is the graph Laplacian on the data affinity graph: see the
detail in sub-subsection 3.2.1. Regarding with above optimization problem, the representaer
theorem gives us the form of the optimal solution as follows:

f ∗(x) =

n∑
i=1

α∗i K (xi, x) . (7)

By using this fact, we will solve the following problem with α = [α1, . . . , αn]T:

α∗ = argmin
α∈Rn

{
1
l
(Yl − JKα)T(Yl − JKα) + λ1α

TKα +
λ2

n2α
TKLKα

}
, (8)

where Yl, J and K is the vector of given labels, n × n block matrix
[

Il 0
0 0u

]
and the Gram

matrix, respectively. The optimize α∗ can have the closed form as follows:

α∗ =

(
JK + λ1lIn +

λ2l
n2 LK

)−1

Yl. (9)

For the prediction of label with a new data point x, we will use ŷ = sign( f ∗(x)).
Though Eq.(6) employs squares loss function, by replacing the loss with the Hinge loss:

(z)+ = max{z, 0}, we can obtain the objective function of Laplacian Support Vector Machines
(LapSVMs) as follows:

f ∗ = argmin
f∈HK

1
l

l∑
i=1

(1 − yi f (xi))+ + λ1‖ f ‖2HK
+
λ2

n2 fTLf

 . (10)

We can again have the closed optimized solution of Eq.(10) by using the representer theorem of
Eq.(7). The closed solution of dual problem with Eq.(10) is expressed by

α∗ = 2
(
λ1Il +

λ2

n2 LK
)−1

JTYlβ
∗, (11)
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Figure 4: An example of solution by mini-cut method. The left graph represents the neighbor-
hood relationship between given each feature vector. The node represents the feature vector.
The red or blue color means the labeled data. No color means the unlabeled data. The undi-
rected edge mean that the two corresponding nodes are in neighbor relationship. Based on this
data affinity graph, the labels of unlabeled data points are estimated by minimizing the objective
function of mini-cut method. The result of this estimation is shown in the right picture.

where β∗ is obtained by solving the following problem:

β∗ = argmaxβ∈Rl

 l∑
i=1

βi −
1
2
βTQβ

 s.t.
l∑

i=1

βiyi = 0 & 0 ≤ βi ≤
1
l

(i = 1, . . . , l), (12)

where Q is defined by

Q = 2YlJK
(
λ1Il +

λ2

n2 LK
)−1

JTYl. (13)

The advantages of this method are that, first, its clear mathematical framework, then sec-
ondly, strong performance if the constructed graph fits the task. The disadvantage is the sensi-
tivity with graph construction. For an example, if the given dataset includes many outliers, then
the graph may fail to fit the task.

2.1.4 Transductive Learning

In transductive learning, given L and U, the goal is to estimate the labels of given unlabeled
data points, i.e., Û. Most of transductive learning studies employ the data affinity graph, whose
node set is Lx ∪ U. The set of edges is often defined by k-Nearest Neighbor (k-NN). The edges
sometimes can be defined between all nodes. The weight on the edges are usually defined
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by weight decay with Euclidean distance. We here introduce one popular method named mini-
cut [13]. Another popular methods such as Label Propagation and Geodesic k-Nearest Neighbor
(GkNN) are introduced in sub-section 3.2.

Let the labels of given data points range 0 or 1. The idea of mini-cut is to minimize∑
1≤i, j≤n wi j

∣∣∣yi − y j

∣∣∣ while fixing the labels of given labeled data points. This is equivalently
solving the following optimization problem:

min
Ŷ∈{0,1}n

∞ l∑
i=1

(yi − ŷi)2 +
∑

1≤i, j≤n

wi j

(
ŷi − ŷ j

)2
 , (14)

where Ŷ =
[
f (ŷ1, . . . , ŷn)

]T. Though this problem is combinatorial problem, there is an algo-
rithm to solve it with the polynominal time. Fig.4 shows the result of mini-cut method. The
graph used in the figure is constructed by k-NN manner with k = 2, and then the graph is con-

verted into the undirected version. The similarity on the edge is defined by wi j = exp
(
−

∥∥∥xi − x j

∥∥∥2
/σ2

)
.

The advantage is that if the constructed graph fits the task, the performance is well. In
addition, this framework can potentially handle the streamed dataset whose distribution may
change as time goes easier than inductive framework. The disadvantage is that we maybe pay
additional graph constructing time cost when handling a newly arrived data point.

2.1.5 Semi-Supervised Learning with Deep Neural Networks

2.2 Online Semi-Supervised Learning
In this learning scenarios, we consider the case in which a few manually labeled data points
are provided before the arrival of continuously streamed unlabeled data points. The goal of this
study is to predict the label of the newly arrived data point correctly and quickly under severe
memory constraints. Note that the data generating distribution may change as time goes. These
problems often occur in the real world [15, 16, 14], and are handled by online graph-based SSL
algorithms. Fig.5 shows two examples of applications with online graph-based SSL algorithms.
The task of top picture is, at each time, to estimate the label of ’car’ or ’no-car’. The task of left
one is to classify irregular heartbeats on electrocardiogram at each time.

Online graph-based SSL is a relatively new filed of SSL studies. Although many online
SSL algorithms have been proposed recently, most of them [17, 18] do not consider the pro-
cessing time and severe memory constraints. Consequently, runtime and memory demands are
increasing functions Ω(T ) of streaming size T . On the other hand, an example of a few studies
that account for processing time and memory constraints is online Quantized Label Propaga-
tion (QLP) [19]. This method is at each time, firstly to recompress the data adjacency graph
by incorporating a newly arrived data point, then secondly to predict the label of new data
point on the graph. The Doubling Algorithm (DA) [20] and Label Propagation (LP) [21, 22]
are employed as the graph compressing and label predicting methods, respectively. The other
methods [23, 14] also take the same strategy, and both of them employ LP as the label predicting
method.
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Figure 5: Two examples of applications with online SSL [14]. Top picture: By using small
labeled dataset obtained before a streamed data, at each time t, we would like to know whether
there exist cars in-vehicle camera or not, i.e., binary classification between ’car’ and ’no-car’.
The challenge is that the distribution of the streamed unlabeled data points may change as time
goes. This type of problem is often handled by online graph-based SSL algorithms since the
framework is suitable for data points generated from the time-dependent distribution. Bottom
picture: Classification of irregular heartbeats on electrocardiogram. There are two classes:
Atrial premature contraction (APC) and Ventricular premature contraction (VPC). By using
small labeled dataset obtained before the streamed data, at each time t, we would like to classify
the two irregular heartbeats. Note that normal heartbeats are ignored. This problem can be again
handled by online graph-based SSL algorithms.

3 Motivation and Related Works with Proposed Methods

3.1 Motivation
Our ambitions are, firstly, to invent a new label predicting offline SSL algorithm which can
assist in creating more competitive online graph-based SSL algorithms. As mentioned in sub-
section 2.2, LP is commonly employed as the core tool in the online graph-based SSL algo-
rithms. However, LP is known to not be robust against outliers. The reason is that LP predicts
the labels by using all given data points, which often include outliers. In addition, LP is known
to not be efficient computationally. As a possible alternate of LP, we can list GkNN algo-
rithm [24, 25]. This method is not only computationally more efficient but also more robust
against noisy data than LP. The drawback of GkNN is that it does not perform well when the
size of given labeled data is small. Therefore, our minimum requirement toward the offline
method is that the computational complexity should be as small as GkNN, and the predicting
performance should be better than that of LP and GkNN. With the second ambition, after the
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invention of the offline SSL method, by combining the offline method and a conventional online
clustering method, we then propose an online SSL method. The proposed offline and online
SSL methods are named Robust Label Prediction (RLP) and online Quantized RLP (online
QRLP), respectively.

3.2 Related Works with Proposed Methods
We here introduce the three popular SSL algorithms, i.e., Label Propagation (LP) [21, 22],
GkNN [24, 25], and online quantized LP (online QLP) [19]. The first two methods are mainly
used in offline settings, whereas the last third method is adopted in online learning. At last,
let us show the problem setting of offline SSL again. In this learning, the labeled dataset L =

{(xi, yi)}li=1 and the unlabeled dataset U = {xi}
l+u
i=l+1 are observed, where xi ∈ R

D is the feature
vector, and yi ∈ {1, ...,C} is its label. The total sample size l + u is denoted by n. Let us define
the set Lx as the feature vectors in L, i.e., Lx = {xi}

l
i=1, and Û as the predicted dataset over U,

i.e., Û = {(xi, ŷi)}l+u
i=l+1, where ŷi is the predicted label of xi. The goal is to obtain the accurate

prediction Û = {(xi, ŷi)}l+u
i=l+1 over U.

3.2.1 Label Propagation

LP attempts to propagate the label information along with the data adjacency graph, which is
often defined by the k-NN graph. Fig.6 shows the example of procedure with LP algorithm.
The pseudo algorithm of LP is outlined below.

1. Define the weighted directed graph G, which comprises a set of vertices Lx ∪U and a set
of directed edges E defined by k-NN on the basis of a metric d. Suppose that each edge
ei j ∈ E has a non-negative weight wi j.

2. Denote the n × n graph Laplacian D −W on G by L, where W = (wi j)i, j, and D is the
diagonal matrix whose entries are given by dii =

∑
j wi j.

3. Compute Yu as follows: let Yl be the l × C matrix whose (i, j) element is one for yi = j
and zero otherwise. Then, Yu = (Yis) is given by

Yu = L−1
uu WulYl, (15)

where the matrices with the subscript u or l denote the block matrix corresponding to
unlabeled or labeled data.

4. Estimate the labels of the unlabeled data by ŷi = argmax
1≤s≤C

Yis.

The label prediction Û by the LP is denoted by Û = LP(L,U, d, k,w). In our numerical
experiments, the metric d was assumed as the commonly used Euclidean metric.

Remark 1. The weight is commonly defined by the Gaussian kernel,

wi j =

exp(−‖xi − x j‖
2/σ2), ei j ∈ E,

0, ei j < E,
(16)

The bandwidth σ is selected by the median or mean heuristics [26].
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Figure 6: An example with procedure of label propagation algorithm. Left picture: By using
given labeled and unlabeled feature vectors, the affinity graph representation is shown. The
nodes correspond feature vectors. The colored node means labeled data. The non-colored node
means unlabeled data. The edges are defined based on k-NN manner (k = 2) with Euclidean
metric. Right picture: After the graph construction, the label information of labeled data points
are propagated on the graph. As the result, each unlabeled data point have the discrete distribu-
tion with the class.

Remark 2. A class of extended Gaussian kernels is also employed in graph-based methods;
see [27, 28].

Let us consider the time complexity of LP. Suppose that the metric d is the Euclidean metric
and a Euclidean distance is computed in O(D) time, where D is the dimension of the feature
vector. Thereafter, for the weight w defined by the Gaussian kernel, the time complexity is

O
(
Dn2 + u3

)
. (17)

The first and second terms in Eq.(17) are contributed by the brute-force construction of the
k-NN graph [29] and the calculation of the u × u inverse matrix in (15), respectively. The
edge weights wi j must be properly defined in LP because they largely affect the final prediction
accuracy [30]. In practice, the edge weights are computed by rather simple strategies such as
Eq.(28). However, the time complexity given by (17) is a serious issue, particularly when l � u.

3.2.2 Geodesic k-Nearest Neighbor

In GkNN with k = kv, the label is predicted by majority voting among the geodesic kv-nearest
labeled neighbors on the weighted data adjacency graph, whose vertices are Lx ∪ U. Given
that only the observed data are available, the exact geodesic distance on the true data manifold
cannot be computed. Therefore, the geodesic distance should be approximated. Fig.7 shows
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Figure 7: An example of k-NN (left) vs GkNN (right), where k = 2 in both methods. Left pic-
ture: Let us consider the label estimation problem with green rectangled node. Since the original
k-NN employs Euclidean metric, the label of that node is estimated as red label. Right picture:
Consider the same estimation problem of left picture. Since GkNN employs the geodesic met-
ric, the label of that node is estimated as blue label. The geodesic metric is approximated by the
graph shortest path distance in the data affinity graph.

the comparison between k-NN and GkNN. This figure shows that GkNN performs better than
k-NN if the dataset follows smoothness and manifold assumptions.

Let us consider the time complexity of the GkNN. Assume the graph is defined by k1-NN on
the basis of the Euclidean metric. When the geodesic distance is approximated by the shortest
path distance on the graph, the time complexity is expressed as follows:

O
(
Dn2 + kv(log n + k1)n

)
, (18)

where the cost of computing a Euclidean distance is O(D). The first and second terms in (18)
are contributed by the brute-force construction of the k1-NN graph [29] and by algorithm 1
of [25], respectively. In this case, GkNN is computationally more efficient than LP. Moreover,
the hyperparameter kv can be efficiently chosen by heuristics [24, 25].

In our numerical experiments, we employ the k-NN graph and Euclidean metric for compu-
tational efficiency.

3.2.3 Online Quantized LP

Online QLP [19] combines label prediction by QLP with an online graph compression method
called the doubling algorithm (DA) [20]. The QLP is conducted on the compressed graph.

The purpose of DA is to construct a compressed graph from the original neighbor graph G0,
where each node in G0 corresponds to a point in Euclidean space. The DA algorithm is detailed
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Figure 8: Image of DA algorithm procedure, where nc = 4. At time t, a new data point arrives.
If the data point falls within the R-radius hypersphere of one of four centroids, the new data
point then is merged to that centroid. Otherwise, the radius R is doubled: R ← 2R. Then, the
five data points which are the four centroids and one new data point are checked whether some
point can be merged to one of them or not. This will be repeated until some point is merged.

in [20]. Let us now define the compressed graph G of G0. The node in the compressed graph is
called the centroid, and is chosen from the nodes in G0. The centroid v has a vertex multiplicity
that is defined as the number of nodes represented by v. More precisely, the multiplicity is
the number of nodes that fall in the ball at center v with a predefined radius R. Each node in
G0 is arranged to contribute to the multiplicity of only one centroid. Hence, the sum of the
multiplicities equals the total number of nodes in G0. This is again mentioned in Definition 2.

Let us consider the online QLP of an online data stream. Let Ct−1 be the set of centroids at
time t − 1, and Rt−1 > 0 be the radius at time t − 1. The maximum size of the compressed graph
is denoted as nc. Suppose that a new data point xt is observed at time t. The vertex multiplicities
at time t − 1 is compiled into a vector mt−1 with the dimension |Ct−1|. The DA algorithm is the
iterative function

(Ct,mt,Rt) = DA(xt,Ct−1,mt−1,Rt−1, nc).

The size of Ct is bounded above by nc.
When an unlabeled data xt is observed at time t, DA provides the compressed graph. The

QLP algorithm then predicts the label of xt on the compressed graph. In label prediction by
QLP, the multiplicities are incorporated into a weight matrix Ŵ as detailed in [19].

Let us consider the time complexity of online QLP. At each time, the time complexity of
DA [20] based on the Euclidean distance is bounded by

O
(
Dnc log nc

)
. (19)
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The time complexity of QLP [27] is the time complexity of LP (defined by (17)) over the
compressed graph. Therefore, the worst-case time complexity of QLP is O

(
Dn2 + n3

c

)
, where

n = l + nc. By summing up both time complexities, the time complexity of online QLP at each
time is bounded by O

(
Dn2 + n3

c

)
. Note that when deriving the above complexity, we assumed

only unlabeled data in the data stream.
The disadvantage of online QLP is non-robust against outliers [27].

4 Proposed Methods

4.1 Robust Label Prediction
We now propose our label prediction method, which is called robust label prediction (RLP).
Our algorithm consists of three steps. On the basis of the neighbor graph, RLP first selects
some unlabeled samples that represent the global structure of the data manifolds. The second
step assigns labels to selected unlabeled samples by using LP. The third step predicts the labels
on the remaining unlabeled samples by using GkNN.

The unlabeled samples selected by the algorithm are collected into the hub dataset, which
is denoted as H ⊂ U. The vertices selected for H are those with many neighbors on the graph
G. The hub dataset H is formally defined below.

Definition 1. Let L and U be the labeled and unlabeled sets. On the graph G = (Lx ∪U, E), let
N j be the set of adjacent nodes of x j ∈ Lx ∪ U. Suppose that the multiplicity m(xi) is assigned
to each node xi in G. Let us define |N j|0 as the total multiplicity at x j, i.e.,

|N j|0 =
∑

xi∈N j

m(xi). (20)

For a natural number h, the hub set H is defined as the collection of nodes that ranked in the
top-h total multiplicity in U. They are arranged in descending order of |N j|0.

In the above definition, generally |N j|0 is not the cardinality ofN j over G, but the cardinality
of the neighborhood over the uncompressed graph G0 in practice.

Algorithm 1 and Fig.9 show the pseudo code and working mechanism of RLP, respectively.
The details of the algorithm are given below.

• Line 1: Given L and U, construct a directed weighted graph G by k1-NN with a Euclidean
metric. k1 is set to a small number such as three, four or five. The graph construction uses
all feature vectors, Lx ∪ U to capture the global structure of the data manifolds.

• Line 2: Remove outliers prior to LP in line 5. By definition, the hub set H is expected to
exclude outliers by the appropriate setting of h. The appropriate number of h is obtained
by cross-validation.

• Line 3: When approximating the geodesic distance on true data manifolds by the shortest
path distance on G, the directed graph G should be converted to an undirected graph.

• Line 4: Define the geodesic metric dG. The distances are determined from the Euclidean
distances defined on the edges of G. However, among all geodesic distances, we need only
to compute the distances required in line 5 and 7. The efficient algorithms are available
for this purpose [31, 25].
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Algorithm 1 : RLP
Input: Labeled and unlabeled data sets L and U. Number of neighbors k1, k2. Size of the
hub dataset h. Size of the majority vote kv.

1: Construct the directed graph G = (Lx ∪ U, E), where E is defined by k1-NN with the Eu-
clidean distance.

2: Build the hub dataset H on the graph G such that |H| = h. Thereafter, define H̄ by U \ H.
3: Replace all directed edges in G with undirected ones.
4: Define the geodesic metric dG by computing the shortest path distance on graph G.
5: Estimate the labels of H as follows: Construct Ĥ by LP, by computing LP(L,H, dG, k2,w2),

where the weight w2(xi, x j) is defined by exp(−dG(xi, x j)2/σ2).
6: L← L ∪ Ĥ.
7: Estimate the labels of H̄ by implementing GkNN on G with k = kv and the labeled set L.

Let ̂̄H be the labeled set of H̄.
Output: Ĥ ∪ ̂̄H.

• Line 5: Estimate the labels of the non-outliers (i.e., the elements in H) by running LP on
Lx ∪ H. The small k1 and Euclidean distance are useful for approximating the geodesic
distances between nodes in high-density regions, but the nodes in Lx ∪ H are sparse on
Lx ∪U. Thus, we vary the number of neighbors k2 and the geodesic metric dG rather than
fixing the number of neighbor k1 and the Euclidean metric. The appropriate number of k2

is obtained by cross-validation.

• Line 6: Augment the labeled dataset by L ∪ Ĥ. Considering that Ĥ should be a well
estimated set, the updated L is expected as a reliable labeled dataset.

• Line 7: Predict the labels on the remaining unlabeled data set H̄ by GkNN by using
the updated labeled data set L ∪ Ĥ. The updated labeled set is expected to stabilize the
prediction performance of GkNN. Recall that the geodesic distance was calculated in line
4. Here, the GkNN is employed for two reasons. First, GkNN runs faster than LP on H̄,
particularly when |H̄| � 1. Second, in our observations, GkNN predicted the labels of H̄
more robustly than LP.

Remark 3. For h = u (resp. h = 0), RLP is reduced to the LP with geodesic distance dG (resp.
GkNN).

Remark 4. In line 1 and 4 of algorithm 1, the geodesic distance dG is defined by the k-NN
graph and the Euclidean metric (because this pair is commonly used). However, when defining
dG, we can apply several graph construction methods with different metrics depending on the
given dataset; see [24, 25].

Remark 5. GkNN is more robust than LP. The non-hub dataset H̄ may include noisy data or
outliers. In the LP algorithm, which predicts the label of a point that uses all data points, the
outliers may degrade the prediction accuracy of all data in H̄. On the contrary, GkNN uses only
the k adjacent labeled points in the prediction, thus locally limiting the influence of the outliers.
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Figure 9: This figure explains the working mechanism of the RLP algorithm. (a) The labeled
and unlabeled data (black squares/triangles and black dots, respectively) are given in R2. The
number of classes is two. The two banana shapes delineate the true data manifolds. (b) Line
2 of the RLP algorithm. The star symbols and the black dots denote the hub data and non-hub
data, respectively, where h = 11. (c) After line 5 of RLP algorithm, the hub data are assigned
labels and are considered new labeled data. The labels of H̄ are predicted by k-NN (k = 1) with
the computed geodesic distance of line 4. As an example, the circled black dot is labeled (by
GkNN), with the square symbol indicated in the left banana shape.

4.2 Some Properties of RLP
This section discusses the hyperparameters of RLP, and the time and space complexity of the
RLP algorithm.

Proposition 1. Let |L| and |U | be l and u, respectively. For the given k1, k2, h and kv, the time
complexity of RLP in algorithm 1 is expressed as follows:

O
(
h3 + Dn2 + k(k1 + log n)n

)
, (21)

where n = l + u, and k = max{k2, kv}.

Proof. The time complexity is contributed by three lines in algorithm 1: line 1 computes the
Euclidean distance matrix and identifies the k1-nearest neighbors of each vertex, line 4 computes
the geodesic metric, and line 5 labels the hub data. For instance, if the time cost of computing
a single Euclidean distance is O(D) time, line 1 consumes O(Dn2) time. Line 4 consumes
O(k(log n + k1)n) time, with k = max{k2, kv} (see [31, 25] for details), and line 5 requires O(h3)
time for computing the h × h inverse matrix. �

The space complexity is of order n2 because the n-node graph G should be maintained.

18



4.3 Hyperparameter Tuning
The RLP has four hyperparameters, namely, k1, k2, h and kv. Hyperparameters k1 and kv in line 1
and 7 of algorithm 1 do not require tuning. We confirmed that k1-NN with a small k1 efficiently
detects the outliers and obtains an appropriate hub set in our algorithm. The label prediction
on H̄ with GkNN is based on majority voting among the kv-nearest labeled samples in terms of
geodesic distance. Hence, when kv is large, GkNN fails to exploit the local structure of the data
manifold. We experimentally demonstrated that a small kv such as three, four or five is a good
choice for label prediction.

Let us consider the tuning of hyperparameters k2 and h. The parameter h ranges from one to
u. As h approaches u, the complexity of RLP approaches that of LP, thus rendering our method
impractical. To avoid this problem, we upper-bound h by hmax.

Corollary 1. Let kmax
2 be the upper bound of k2 in algorithm 1. Fix k1, kv, and k2 such that

1 ≤ k2 ≤ kmax
2 . Thereafter, define the upper bound of h as follows:

hmax = min
{(

Dn2 + κ(k1 + log n)n
) 1

3
, u

}
, (22)

where n = l + u and κ = max{kmax
2 , kv}. In this case, for all h such that 0 ≤ h ≤ hmax, the time

complexity of RLP is bounded by the following:

O
(
Dn2 + κ(k1 + log n)n

)
. (23)

Moreover, suppose that hyperparameters k2 and h are tuned by K-fold cross-validation in the
ranges 1 ≤ k2 ≤ kmax

2 and 0 ≤ h ≤ hmax, respectively. Let c be the number of candidates
for hyperparameters. The total time complexity of RLP, including the time consumed by cross-
validation, is bounded by the following:

O
(
KDn2 + cKκ(k1 + log n)n

)
. (24)

Proof. We first consider the worst-case time complexity of (21) in the range 1 ≤ k2 ≤ kmax
2 . In

this case, the time complexity of RLP is bounded by the following:

O
(
h3 + Dn2 + κ(k1 + log n)n

)
. (25)

By raising both sides of Eq.(22) to the third power, we obtain the following inequality for all h
in 0 ≤ h ≤ hmax:

h3 ≤ (hmax)3 ≤ Dn2 + κ(k1 + log n)n. (26)

By combining (25) and (26), the time complexity (23) is derived. Finally, given that there
are c × K iterations of cross-validation, the time complexity (24) follows from the worst-case
time complexity (23). Note that the choice of the hyperparameters h and k2 does not affect the
computation cost of k1-NN in line 1 of algorithm 1. Hence, the order Dn2 is kept unchanged. �

In our numerical experiments of RLP, we conduct a five-fold cross-validation by using the
hmax of Eq.(22) and the kmax

2 set to 20.

Remark 6. In the numerical experiments of Section 6, we observed that the prediction accuracy
of RLP was not negatively affected by limiting the upper bound of h in the cross-validation. The
hub set with a large h tended to include noisy data that deteriorated the prediction accuracy on
the hub set.
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Remark 7. Corollary 1 guarantees that the time complexity of RLP with hyperparameter hmax

is comparable with that of GkNN. The computational efficiency of RLP can be improved by
approximating the k-NN graph. According to [32] and [33], the time complexity of constructing
the approximated k-NN graph is O(Dn log n). Consequently, the computational cost of the RLP
with an approximated k-NN is reduced to O((D + κ)n log n + κk1n).

5 Application of RLP to Online Scenario
In this section, we incorporate the RLP into online SSL.

5.1 Quantized RLP
The QLP predicts the labels of the unlabeled samples on compressed graph using LP. The pro-
posed online method replaces LP with RLP, which performs equivalently to QLP on compressed
graphs. We refer this RLP as the quantized RLP (QRLP). QRLP and RLP differ only by their
inclusion and exclusion of the vertex multiplicities, respectively. Thus, the QRLP algorithm is
used to rewrite the input, line 5, line 7 of the algorithm 1 as follows.

• Input: The inputs to QRLP are the labeled and unlabeled datasets (L and U, respectively),
the vertex multiplicities m of U, the numbers of neighbors k1 and k2, the size of the hub
data set h, and the size of the majority vote kv.

• Line 5: Estimate the labels of H as follows: Conduct QLP on the directed weighted
compressed graph G1 = (Lx ∪ H, E1,w1), where E1 is defined by k2-NN with dG. The
weight w1(xi, x j) is defined by exp(−dG(xi, x j)2/σ2). The estimated hub set is denoted by
Ĥ.

• Line 7: Estimate the labels of H̄ by GkNN on G with k = kv by using the updated labeled
set L. Note that, if xi ∈ H is one of the kv-labeled nearest neighbors with x j ∈ H̄, the vote
from xi to x j is counted as m(xi) and not as one. Let ̂̄H be the labeled set of H̄.

The output Û of the QRLP algorithm is expressed as follows:

Û = QRLP(L,U,m, k1, k2, h, kv).

Remark 8. Although we did not rewrite to line 2 of the algorithm 1, the vertex multiplicities
are considered when building the hub set; see Eq.(20) of definition 2.

Remark 9. When m = 1, QRLP reverts to RLP.

The QRLP has four hyperparameters, namely, k1, k2, h and kv. Similar to that in the RLP, k1

and kv can be chosen by efficient heuristics. On the compressed graph, the time complexities of
QRLP and RLP are the same.
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5.2 Online Quantized RLP
The online QRLP is obtained by combining DA and QRLP. The pseudo code is presented in
algorithm 2, and the details are presented below.

• Pretuning and initialization: If an initial labeled data set L0 and an unlabeled data set U0

are obtained before the data stream arrives, pretuning and initialization are desired. As
discussed before, QRLP has two tunable hyperparameters, namely, k2 and h. Moreover,
given that the graph is compressed by DA, its size |Ct| may change at each time. Accord-
ingly, k2 and h should be tuned with |Ct| at each time step; this process is time intensive.
Prior to streaming, we prepare appropriate sizes of k2 and h on the basis of L0, U0, and
the maximum size of the compressed graph nc. This preparation maintains the small time
complexity of the online QRLP at each time. By setting the cardinality of U0 to nc, the
pretuning is performed as described below.

1. Input L0, U0, number of neighbors k1, majority vote size kv, and maximum size of
the compressed graph nc.

2. Define the upper bound of the number of neighbors k2 as kmax
2 . By using |L0|, |U0|,

kmax
2 , and kv, calculate hmax by Eq.(22). Given an integer I, we define nci by bnc/Ici

for i ∈ {1, 2, ..., I}, and denote U (i)
0 as a set of randomly sampled nci-data from U0.

For each i, find the pair (k2, h) that maximizes the accuracy of the RLP output via
the cross-validation by using L0, U (i)

0 , k1 and kv. The cross validations with k2 and h
ranged through 1 ≤ k2 ≤ kmax

2 and 1 ≤ h ≤ min{hmax, nci}, respectively. Denote the
most accurate pair by (k(i)

2 , h
(i)) for the fixed i. Denote {(k(i)

2 , h
(i), nci) ; i ∈ I} by T .

3. Output T .

Let us denote the above procedure by

T = PreTune(L0,U0, k1, kv, nc).

To implement the pretuning process, we must acquire unlabeled data before the stream
arrives.

Furthermore, we must initialize the starting set of centroids C0, the starting vertex mul-
tiplicities m0 of C0, and the starting radius R0. Here, we assign C0 ← U0, m0 ← 1, and
R0 ← ε, where ε is a small positive real number.

• Line 1: If the labeled data is observed at time t, the labeled dataset is updated without
updating the compressed graph.

• Line 2: If the observed data is unlabeled, the centroid set, its vertex multiplicities, and
the radius are updated by DA. Then, QRLP is conducted on the compressed graph with
vertices (Lt)x ∪ Ct. Note that when the appropriate pair (k(i∗)

2 , h(i∗)) is chosen from T , the
size difference between nci and |Ct| is minimized.

Let us now consider the time complexity, space complexity, and choice of the hyperparam-
eters in online QRLP.
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Algorithm 2 : Online QRLP
Input : At time t ≥ 1, a new data point, a labeled data set Lt−1, a set of centroids Ct−1,
the vertex multiplicities mt−1 for Ct−1, the radius Rt−1, the number of neighbors k1, the
size of majority vote kv, the maximum size of the compressed graph nc, and the result of
pretuning T by computing PreTune(L0,U0, k1, kv, nc) (See sub-section 5.2 [pretuning and
initialization])

1: If the new data point is a labeled data (xt, yt), then Ct ← Ct−1, mt ← mt−1, Rt ← Rt−1,
Lt ← Lt−1 ∪ {(xt, yt)}.

2: If the new data point is an unlabeled data xt, first update the labeled data set by
Lt ← Lt−1. Then, build the (Ct,mt,Rt) of a newly compressed graph by com-
puting DA(xt,Ct−1,mt−1,Rt−1, nc). Then, estimate the labels of Ct by computing
QRLP(Lt,Ct,mt, k1, k

(i∗)
2 , h(i∗), kv), where i∗ = argmin

1≤i≤I

∣∣∣nci − |Ct|
∣∣∣ with T . Set the QRLP

output to Ĉt. Finally, determine ŷt from Ĉt.
Output: ŷt.

Proposition 2. Suppose that algorithm 2 does not detect labeled data. Let L0 and U0 be the
labeled and unlabeled datasets obtained before the stream, respectively. Fix the number of
neighbors k1, the size of majority vote kv, and the maximum size of compressed graph nc. Let
the number of neighbors k2 be upper bounded by kmax

2 , and run PreTune(L0,U0, k1, kv, nc) to
obtain T . Then, the time complexity of online QRLP at each time is upper bounded by

O
(
Dn2 + κ(k1 + log n)n

)
, (27)

where κ = max{kmax
2 , kv}, n = l + nc, l = |L0|.

Proof. The time complexity (27) follows by summing time complexity (19) and (23). �

In practical situations, nc cannot be large; therefore, if the dimension of the feature vector is
excessive, online QRLP will not be faster than online QLP. However, online QRLP runs faster
than online QLP on low-dimensional feature vectors. Online QRLP has five hyperparameters.
Hyperparameters k1 and kv do not require tuning, whereas k2 and h are tuned in the pretuning
stage of algorithm 2. To ensure a fast prediction in the online scenario, nc must be set to a small
value.

Given that the graph on (Lt)x∪Ct should be maintained in online QRLP, the space complex-
ity of the algorithm is O

(
max{D(|Lt| + nc), (|Lt| + nc)2}

)
. Note that in practical situations, |Lt|

cannot be large.

Remark 10. Our online SSL algorithm combines QRLP with DA. Other online SSL algorithms
can be constructed by incorporating online graph compressing methods such as [34] into QRLP.

6 Numerical Experiments
The performance of our methods was evaluated in offline and online scenarios. Experiments
were performed on eight real-world datasets, namely, Yale (Yale Face Database B) [35], ORL,
UMNIST [36], COIL (COIL-20) [37], Vowel [38], MNIST [39], optdigits [38], and USPS [36].
Table 12 shows the properties of each dataset.
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Table 2: Properties of the data sets, where D, C, and # denote the dimension of feature vector,
the number of classes, and the sample size, respectively.

Yale ORL UMNIST COIL Vowel MNIST optdigits USPS
D 1024 10304 10304 16384 12 784 64 256
C 15 40 20 20 2 10 2 10
# 165 400 575 1439 1456 70000 5216 11000

6.1 Offline Experiments
We compared the performances of three methods (LP, GkNN, and RLP) on the eight real-world
datasets described in Table 12. All experiments were conducted 20 times with different random
seeds, and the performances were averaged to obtain the final results. Table 3 shows the pre-
diction accuracy and their standard deviations on the different datasets. Also, the dependency
of the prediction accuracy on the unlabeled data size was evaluated on the MNIST dataset. The
unlabeled data size varied from 100 to 19900 (in uneven increments), and the size of the labeled
data was fixed at 100. Table 4 shows the results. In all tables, the most accurate prediction is
highlighted in bold font. The hyperparameters in each method were chosen as described below.

• In RLP, hyperparameters k1 and kv were set to four and three, respectively, and k2 and
h were determined by the five-fold cross-validation as mentioned above. Hyperparame-
ter k2 was chosen from {5, 10, 20}, and the range of h was {hi | 1 ≤ i ≤ 5, i ∈ N}, where
hi = i × bhmax/5c; see Eq.(22). The candidates of k2 were decided through preliminary
experiments.

• In LP, the number of neighbors k was set to five, and the weight function w was defined
as Gaussian kernel. The bandwidth σ was determined by the mean heuristics.

• In GkNN, the number of neighbors and majority votes were set to five and three, respec-
tively.

As confirmed in Table 3, our method outperformed the other methods on all datasets except
Vowel. The Vowel dataset is a two-class dataset with a heavy bias (97% class 1 membership).
Accordingly, if all unlabeled data are labeled as class 1, the prediction accuracy is approxi-
mately 97%. When only eight labeled data are provided, we can conclude that all methods
fail to learn. However, when more labeled data are provided (Table 5), the learning succeeds
in RLP but continues to fail in LP and GkNN. Therefore, empirically speaking, the prediction
accuracy of our method exceeds those of LP and GkNN. Furthermore, because our RLP method
captures the structure of the data manifolds, its accuracy improves with the increasing number
of unlabeled data points (Table 4). GkNN exhibits a similar tendency but is less efficient than
RLP. Meanwhile, LP cannot capture the structure of the data manifolds even when u is large.

Table 6 and 7 show the averaged runtime with the standard deviation. The problem settings
are the same as the experiments in Table 3 and 4, respectively. Both tables indicate that the
RLP and GkNN tend to outperform the LP when unlabeled data set gets bigger. This result
matches (17) and (23). The GkNN and RLP are comparable in terms of the computational cost.
This result agrees to the theoretical analysis in (18) and (23). In Table 7, the difference between
the three methods is not large when u is small to medium size. This is because the term pn2
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Table 3: The averaged prediction accuracy with the standard deviation on unlabeled data in
eight real-world datasets. In each dataset, l and u denote the number of labeled and unlabeled
data with l = 4C, respectively.

(l, u) RLP LP GkNN
Yale (60,115) 0.538(0.035) 0.474(0.038) 0.471(0.027)
ORL (160,240) 0.915(0.021) 0.894(0.025) 0.832(0.021)

UMNIST (80,495) 0.896(0.024) 0.857(0.035) 0.762(0.042)
COIL (80,1220) 0.774(0.016) 0.738(0.027) 0.727(0.020)
Vowel (8,1392) 0.967(0.002) 0.967(0.001) 0.959(0.030)

MNIST (40,2960) 0.712(0.040) 0.466(0.086) 0.670(0.035)
optdigits (8,2998) 0.999(0.000) 0.994(0.011) 0.972(0.006)

USPS (40,3960) 0.671(0.038) 0.444(0.072) 0.618(0.031)

Table 4: The prediction accuracy with the standard deviation on the MNIST dataset. The
number of labeled data is fixed to 100, and the number of unlabeled data u varies from 100 to
19900.

u RLP LP GkNN
100 0.728(0.066) 0.698(0.055) 0.685(0.036)
200 0.740(0.027) 0.689(0.046) 0.692(0.039)
400 0.759(0.040) 0.705(0.036) 0.694(0.023)
900 0.783(0.020) 0.700(0.039) 0.730(0.026)

1900 0.801(0.020) 0.703(0.037) 0.747(0.016)
2900 0.825(0.020) 0.683(0.057) 0.770(0.018)

19900 0.877(0.020) 0.490(0.080) 0.802(0.017)

including the coefficient is thought to be dominant in the computational cost in this setting. For
small datasets, all methods efficiently work, while the RLP maintains high prediction accuracy.
Moreover, the RLP outperforms GkNN and LP for large u in terms of both prediction accuracy
and computational cost. The prediction accuracy of the LP tends to be degraded for large u
due to the noisy unlabeled data. Such phenomenon is commonly observed in semi-supervised
learning [40].

6.2 Online Experiments
In this experiment, the performances of online QLP and the proposed online QRLP were com-
pared over the eight real-world datasets. Table 8 shows the averaged prediction accuracy with
the standard deviation for two algorithms. The results are the averages of 10 experiments with
nc = 50 on different data streams. The labeled dataset was assumed to be given before the
stream arrived, and the stream included only unlabeled data. We also assumed that the data
distribution remained unchanged during the observation.

The hyperparameters in each method were tuned as follows:

• In online QRLP, hyperparameters k1 and kv were set to four and three, respectively. Ac-
cording to the pretuning procedure in sub-section 5.2, kmax

2 was set to 20, and hmax was
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Table 5: The averaged prediction accuracy with the standard deviation on unlabeled data in
the Vowel dataset. In the table, l and u denote the number of labeled and unlabeled data with
l = 4C, respectively.

(l, u) RLP LP GkNN
(100, 1300) 0.995(0.005) 0.968(0.005) 0.874(0.028)

Table 6: The averaged runtime (sec.) with the standard deviation for the experiments in Table 3.
(l, u) RLP LP GkNN

Yale (60,115) 0.090(0.003) 0.092(0.001) 0.093(0.002)
ORL (160,240) 5.062(0.034) 4.971(0.012) 5.092(0.045)

UMNIST (80,495) 10.32(0.007) 10.17(0.027) 10.33(0.094)
COIL (80,1220) 88.32(2.321) 89.17(1.575) 87.83(2.966)
Vowel (8,1392) 0.568(0.005) 0.352(0.004) 0.519(0.005)

MNIST (40,2960) 21.72(1.317) 23.00(1.137) 21.52(0.739)
optdigits (8,2998) 4.118(0.086) 4.981(0.018) 3.979(0.059)

USPS (40,3960) 16.32(0.306) 20.48(0.668) 17.08(0.533)

computed by Eq.(22). The integer I was set to three. For each i, five-fold cross-validation
was conducted in the ranges k2 ∈ {5, 10, 20} and h ∈ {h j | 1 ≤ j ≤ I, j ∈ N}, where
h j = j × bmin{hmax, nci}/Ic.

• In online QLP, the number of neighbors k was set to five, and the weight w was defined
by the Gaussian kernel. The band width σ was determined by the mean heuristics.

Table 8 shows that overall our method outperformed the online QLP. However, learning in both
methods failed on the Vowel dataset. The most accurate predictions of online QRLP and online
QLP are highlighted in bold font.

Tables 9 and 10 compare the performance of online QRLP and online QLP on the MNIST
and USPS data streams, respectively, on different size nc. The proposed method outperformed
the existing one. Online QRLP with large nc was the most accurate predictor, though larger nc

is computationally infeasible in the online scenario. Hence, the trade-off between the computa-
tional cost and prediction accuracy must be properly balanced when choosing nc.

6.3 Relationship to Deep Neural Networks
From several viewpoints, we discuss about the relationship between online QRLP and deep
neural networks (DNNs) in the online SSL scenario.

In terms of the required memory size in the learning process, online QRLP is more efficient
than DNNs. DNNs such as CNNs or ResNets [41, 42] typically have more than a million of
parameters, while online QRLP needs only O(max{D(nc + l), (nc + l)2}) memory space.

As for the prediction accuracy, online QRLP is thought to be comparable to DNNs when
the number of labeled data is small. [43] reported that the prediction accuracy of the CNN was
0.683 when only 100 labeled samples of the MNIST dataset were used. This accuracy was
achieved by the intensive search of the network structure out of 7103 candidates. On the other
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Table 7: The averaged runtime (sec.) with the standard deviation for the experiments in Table 4.

u RLP LP GkNN
100 0.113(0.000) 0.100(0.001) 0.110(0.001)
200 0.238(0.006) 0.211(0.000) 0.232(0.005)
400 0.643(0.004) 0.585(0.010) 0.640(0.028)
900 2.445(0.022) 2.248(0.017) 2.427(0.009)

1900 9.734(0.050) 10.66(0.111) 10.81(0.223)
2900 21.46(0.693) 22.23(0.648) 21.04(0.798)
19900 1044.55(10.13) 2005.96(9.442) 1172.37(43.87)

Table 8: The averaged prediction accuracy with the standard deviation on unlabeled data in
eight real-world data streams. In each dataset, l denotes the number of labeled data obtained
before the arrival of each stream of size T .

(l,T ) Online QRLP Online QLP
Yale (75,85) 0.528(0.046) 0.471(0.048)
ORL (80,220) 0.722(0.029) 0.656(0.058)

UMNIST (60,240) 0.637(0.028) 0.544(0.059)
COIL (80,120) 0.660(0.034) 0.592(0.062)
Vowel (100,1300) 0.969(0.004) 0.966(0.002)

MNIST (100,1900) 0.679(0.021) 0.663(0.019)
optdigits (10,4990) 0.971(0.002) 0.961(0.031)

USPS (100,1900) 0.700(0.020) 0.612(0.050)

hand, the online QRLP achieves 0.679 as shown in Table 9, though the problem setting was
slightly different. In our experiments, additional 50 unlabeled samples were available. Note
that the online QRLP was not tailored to image classification tasks, unlike CNNs.

Finally, concerning runtime, the learning of DNNs commonly requires much more com-
putational cost than online QRLP, since DNNs have an enormous number of parameters to be
learned. The computation time for the prediction depends on the size of DNNs or the number of
centroids in online QRLP. The number of unlabeled data in the offline setting corresponds to the
number of centroids. Hence, Table 4 and 7 indicate that the online QRLP with a small number
of centroids is expected to be computationally efficient and not to occur severe deterioration of
the prediction accuracy.

7 Conclusion of Part I
We proposed a generic graph-based SSL algorithm, called RLP. We confirmed that RLP is
robust against noisy data and provides more accurate predictions than LP and GkNN. The com-
putational efficiency of RLP matches that of GkNN. Furthermore, we confirmed the power of
RLP as a core technique in the online SSL framework. In the online scenario, the proposed
method has two tunable hyperparameters, namely k2 and h. Future works should focus on the
choice of hyperparameter h. In this paper, the upper bound hmax of h was determined by con-
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Table 9: The averaged prediction accuracy with the standard deviation on the MNIST data
stream. The number of labeled data before the stream arrival was set to 100 and the size of
the data stream was set to 1900. In the table, nc denotes the maximum size of the compressed
graph.

nc Online QRLP Online QLP
50 0.679(0.021) 0.663(0.019)

100 0.714(0.015) 0.684(0.020)
150 0.720(0.017) 0.679(0.022)

Table 10: The averaged prediction accuracy with standard deviation on the USPS data stream.
The number of labeled data before the stream arrival was set to 120, and the size of the data
stream was fixed at 1880. In the table, nc denotes the maximum size of the compressed graph.

nc Online QRLP Online QLP
50 0.700(0.020) 0.612(0.050)

100 0.687(0.023) 0.662(0.040)
150 0.732(0.021) 0.666(0.029)

sidering the computational cost. The prediction accuracy when hmax is based on other criteria
should also be examined. Moreover, an adaptive method that determines both hyperparameters
would be useful for practical online learning.
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Part II

Spectral Embedded Deep Clustering
In this part, we propose a new clustering method based on a deep neural network. Given an
unlabeled dataset and the number of clusters, our method directly groups the dataset into the
given number clusters in the original space. Our statistical model is the conditional discrete
probability distribution, which is defined by a deep neural network. Our clustering strategy is,
first to estimate the cluster labels of unlabeled data points selected from high density region,
and then to conduct semi-supervised learning to train the model by using the estimated cluster
labels and the remaining unlabeled data points. At last, by using the trained model, we obtain
the estimated cluster labels of all given unlabeled data points. The advantage of our method
is that it does not require key condition. For example, the previous deep neural network based
clustering methods require the cluster-balance of given dataset to be uniform. Moreover, it also
can be applied to various data domains as long as the data is expressed by a feature vector. In
addition, it was observed that our method was robust against outliers. Therefore, the proposed
method is expected to averagely perform better than previous methods. This expectation is
empirically confirmed by conducting numerical experiments on five commonly used datasets.

8 Introduction of Deep Clustering
Clustering is one of the oldest machine learning fields, where the objective is, given data points,
to group them into clusters according to some measure. Many clustering methods have been
proposed for a long while [44], and been applied to real-world problems [45].

The most known classical methods are k-means [46] and Gaussian Mixture Model (GMM)
clustering [47]. Though those methods are computationally efficient, they can only model con-
vex shapes and are thus applicable in limited cases. The kernel k-means [48], kernel GMM
clustering [49] and Spectral Clustering (SC) [50] can capture more complicated shapes than
k-means and GMM but are difficult to scale up to large datasets. In recent years, due to techno-
logical progress, we can acquire many types of data such as images, texts and genomes in large
numbers. Thus, the demand of advanced efficient clustering methods grows even stronger [51].

Thanks to the development of deep neural networks, we can now handle large datasets with
complicated shapes [52]. Consequently, the studies of clustering using deep neural networks has
been proposed. One major direction in the studies is to combine deep AutoEncoders (AE) [53]
with classical clustering methods. This AE is used to obtain a clustering friendly low dimen-
sional representation. Another major direction is directly grouping a given unlabeled dataset
into the clusters in the original input space by employing a deep neural network to model the
distribution of cluster labels.

With both directions, there exist popular methods. We summarize their applicable data
domain and well performing condition in Table 11. For examples, CatGAN (Categorical Gen-
erative Adversarial Networks) learns discriminative neural network classifiers that maximize
mutual information between the input data points and the cluster labels, while enforcing the
robustness of the classifiers to data points produced by adversarial generative models. Since
maximizing mutual information implicitly encourages the cluster-balance distribution of the
model to be uniform, if the distribution of cluster-balance with the given unlabeled dataset
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is uniform, then CatGAN will perform well. JULE (Joint Unsupervised LEarning) learns a
clustering friendly low dimensional representation for image datasets by using a convolutional
neural network [41]. The assigned cluster labels and low dimensional representation are jointly
optimized by updating a n× n similarity matrix of the representations, where n is the number of
data points. Thus, O(n2) memory space must be secured to conduct the method.

As we can see in Table 11, most of their key conditions are not always realistic since the de-
tails of given unlabeled datasets are unknown and their size is large in typical machine learning
scenarios. On the other hand, SpectralNet does not require key condition. It only requires the
following two fundamental assumptions: the smoothness and manifold assumptions [54]. Note
that the other methods in Table 11 also require the two assumptions. As for the weakness of
SpectralNet, it is not robust against outliers. In the learning process, it learns the pairwise simi-
larities over all data points. Therefore, the existence of outliers disturbs the method learning the
similarities precisely, and thus returns inaccurate clustering results.

In this paper, we propose a deep clustering method named Spectral Embedded Deep Cluster-
ing (SEDC). Given an unlabeled dataset and the number of clusters, SEDC directly groups the
dataset into the given number clusters in the input space. Our statistical model is the conditional
discrete probability distribution, which is defined by a fully connected deep neural network.
SEDC does not require key condition except the smoothness and manifold assumptions, and it
can be applied to various data domains. Moreover, throughout our numerical experiments, we
observed that our method was more robust against outliers than SpectralNet. The procedure
of SEDC is composed of two stages. In the first stage, we conduct SC only on the unlabeled
data points selected from high density region by using the geodesic metric to estimate the clus-
ter labels. This special type of SC is named as Selective Geodesic Spectral Clustering (SGSC),
which we propose for assisting SEDC as well. Thereafter, we conduct semi-supervised learning
to train the model by using the estimated cluster labels and the remaining unlabeled data points.
Note that, in this semi-supervised learning, we treat the estimated cluster labels of the selected
unlabeled data points as the given true cluster labels. At last, by using the trained model, we
obtain the estimated cluster labels of all given unlabeled data points.

In the remainder of this paper, we introduce related works in Section 9. We then introduce
our proposed method in Section 10. We demonstrate the efficiency of our method with numeri-
cal experiments in Section 11. Finally in Section 12, we conclude the paper with the discussion
on future works.

9 Related Works
In this section, we first introduce the existing clustering studies based on deep neural networks.
As mentioned in Section 8, there are two major directions in the studies recently, i.e., the deep-
AE based clustering and the direct deep clustering. We then introduce the two techniques related
to our proposed method, i.e., SC and Virtual Adversarial Training (VAT).

9.1 Existing Clustering Methods Using Deep Neural Network
In deep-AE based clustering, the AE and a classical clustering method such as k-means are
combined. The combination strategies are either sequential [55, 56] or simultaneous [57, 58,
59]. In the sequential way, deeply embedded representations of the given dataset are obtained
by the deep AE, and then a classical clustering method is applied to the embedded set. In
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the simultaneous way, the deep representations and their cluster labels are learned jointly by
optimizing a single objective function.

As examples of the simultaneous way, we introduce [57] and [58] here. The method of [57]
is named Deep Embedded Clustering (DEC). DEC trains a deep neural network by iteratively
minimizing the Kullback-Leibler (KL) divergence between a centroid based probability distri-
bution and an auxiliary target distribution. The deep network is used as the AE. They reported
the clustering performance of DEC depended on the initial embedded representations and clus-
ter centroids obtained by the AE and k-means. The method of [58] is named Variational Deep
Embedding (VaDE). The approach relies on a Variational AutoEncoder (VAE) [60] that utilizes
a Gaussian mixture prior. VaDE trains its deep neural network by minimizing the reconstruc-
tion error, while enforcing that the low dimensional representations follow the Gaussian mixture
model.

With regard to the direct deep clustering, we introduce [61] and [62]. The method of [61]
is named Information Maximizing Self-Augmented Training (IMSAT). It is based on data aug-
mentation, where a deep neural network is trained to maximize the mutual information while
regularizing the network so that the cluster label assignment of original data will be consistent
with the assignment of augmented data. The method of [62] is named SpectralNet. This method
is proposed to overcome the scalability and generalization of SC. It uses two deep neural net-
works. The first network learns the similarities among all given data points. This network is
known as Siamese net [63]. Then, the second network learns a dimension reduction mapping
which preserves the similarities obtained by the first net. After both are trained, the dimension-
ality reduced data points obtained by the second network are grouped into clusters by k-means.

9.2 Related Techniques with Proposed Method
SEDC handles the following clustering problem: given a set of unlabeled data points X = {xi}

n
i=1

(xi ∈ R
D) and the number of clusters C, group X into C clusters. In SEDC, the estimated cluster

label of xi is obtained by the trained conditional discrete probability distributional classifier.
This classifier is denoted by pθ(y|x) where θ, xi and y are a set of parameters, a feature vector
and a cluster label, respectively. The cluster label y ranges {1, ...,C}. In addition, the classifier
is defined by a fully connected deep neural network whose last layer is the soft-max function.
SC and VAT, explained below, take an important role in SEDC: see the detail in Section 10.

9.2.1 Spectral Clustering

SC [50, 64] is a popular classical clustering algorithm. We here introduce the commonly used
framework of SC, which is used also in SEDC algorithm. It first embeds the data points in the
eigenspace of the Laplacian matrix derived from the pairwise similarities over all given data
points. Then, SC applies k-means on the representation to obtain the cluster labels. The SC
algorithm is outlined below.

1. Given dataset X, define the weighted undirected graph G which comprises a set of vertices
X and a set of undirected edges E defined by k1-nearest neighbor (k1-NN) on the basis of
a metric d. Suppose that each edge ei j ∈ E has a non-negative symmetric weight wi j.

2. Denote the n× n affinity matrix D−1/2WD−1/2 on G by L, where W = (wi j)i, j, and D is the
diagonal matrix whose entries are given by dii =

∑
j wi j.
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3. Given the number of clusters C, compute the largest C eigenvectors u1, ...,uC of the eigen-
problem Lu = λu. Let U ∈ Rn×C be the matrix containing the vectors u1, ...,uC as
columns. Thereafter, re-normalize each row of U to have unit length.

4. Cluster n rows of U as points in RC by conducting k-means (k= C). Let {ŷi}
n
i=1 and {µ j}

C
j=1

be the estimated labels of X and the set of centroids obtained by k-means, respectively.

Now, let us denote the above procedure by
(
{ŷi}

n
i=1, {µ j}

C
j=1,U

)
= S C(X, k1, d,w,C). The weight

w is often defined by the following similarity function:

wi j =

exp(−d(xi, x j)2/σ2), ei j ∈ E,
0, ei j < E,

(28)

The bandwidth σ is selected by the median or mean heuristics [26]. In our proposed method,
we employ k-means++ [65] technique since the method uses that S C function.

9.2.2 Virtual Adversarial Training

VAT [66] is a regularization method based on local perturbation. It forces the statistical model
pθ(y|x) follow the smoothness assumption. VAT is known to empirically perform better than
other local perturbation methods such as random perturbation [67] and adversarial training [68]
in both semi-supervised and supervised learning scenarios. It can be employed also in unsuper-
vised learning scenarios [61, 69] since VAT only requires the unlabeled data points.

VAT first defines the adversarial point TVAT(x) with given x as follows:

TVAT(x) = x + rvadv, (29)

where rvadv is ε-perturbation to a virtual adversarial direction:

rvadv = argmax
r

{
KL

[
pθt(y|x)‖pθ(y|x + r)

]
; ‖r‖2 ≤ ε

}
. (30)

In Eq.(30), θt is the estimated parameter at t-th iteration, and KL is Kullback-Leibler diver-
gence [70]. Then, VAT minimizes the following RVAT(θ; X) with respect to θ:

RVAT(θ; X) =
1
n

n∑
i=1

KL
[
pθt(y|xi)‖pθ(y|TVAT(xi))

]
. (31)

The approximation of rvadv in Eq.(30) is computed by the following two steps:

g ← ∇r KL
[
pθt(y|x))‖pθt(y|x + r)

]∣∣∣
r=ξd , (32)

r vadv ≈ ε
g
‖g‖2

, (33)

where d ∈ RD is a random unit vector generated by the standard normal distribution, and ξ ∈ R+

is a fixed small positive number. Regarding the logic behind the approximation, see sub-section
3.3 of [66].

Remark 11. The radius ε of Eq.(30) is defined for given x as below:

ε(x) = α‖x − x(z)‖2, (34)

where α is a scalar and x(z) is the z-th nearest data point from x. In [61], α = 0.4 and z = 10
are used.
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10 Proposed Deep Clustering Method
As we already mentioned in the end of Section 8 and the begining of subsection 9.2, given
an unlabeled dataset X = {xi}

n
i=1 (xi ∈ R

D) and the number of clusters C, our proposed deep
clustering named SEDC groups X into C clusters. The estimated cluster label of each xi ∈ X
is defined by argmax j pθ∗(y = j|xi), where θ∗ is the trained set of parameters. In SEDC, the
training scheme of the classifier pθ(y|x) is as follows: we firstly only estimate the cluster labels
of selected unlabeled data points by using SGSC, and then conduct semi-supervised learning to
train the classifier. Regarding with this semi-supervised learning, we use the estimated cluster
labels of selected unlabeled data points and the remaining unlabeled data points, which are
treated as the given true cluster labels and unlabeled data points respectively.

In this section, we first introduce SGSC. Thereafter, we present our main method SEDC.

10.1 Selective Geodesic Spectral Clustering
The motivation behind SGSC is to assist the semi-supervised learning in SEDC. SGSC conducts
SC only on selected unlabeled data points with the geodesic metric, then returns the estimated
cluster labels of selected points. The selected points are defined as data points in high density
region, and these data points are approximated by the highest degree nodes on the affinity data
graph. The geodesic metric is approximated by the graph shortest path distances on the graph.
Empirically speaking, the estimation accuracy of cluster labels with selected points tends to not
only be robust against the existence of outliers but also be competitive. This tendency can help
SEDC return competitive clustering result. The reason of robustness is that the selection of data
points from high density region tends to not be affected by the existence of outliers [71]. The
reason to employ the geodesic metric is that the metric is known to be useful to capture the
structure of the data manifolds especially when the number of given data points is large [25].

Now, let us refer the selected data points as hub data points, and define the set of hub data
points by H ⊂ X. The data points selected for H are those with the most neighbors on the graph
G. The hub dataset H is formally defined below.

Definition 2. Let X be the given unlabeled dataset. On the graph G = (X, E), let N j be the set
of adjacent nodes of x j ∈ X. For a natural number h, the hub set H is defined as the collection
of nodes that ranked in the top-h cardinality of N j in X. They are arranged in the descending
order.

Algorithm 3 and Fig.10 show the pseudo code of SGSC and the mechanism of SGSC,
respectively. The detail of this algorithm is explained below.

• Line 1: Given an unlabeled dataset X, the undirected graph G0 is constructed in the
k0-nearest neighbor (k0-NN) manner with a Euclidean metric. G0 is used not only for
defining the hub set H but also for approximating the geodesic distance on the manifolds
shaped by X. We consider k0 as a hyperparameter.

• Line 2: Given the number of hub points h and G0, the algorithm defines the hub set H
based on definition 2. By the appropriate setting of h, H can exclude outliers. In this
algorithm, h is considered as a hyperparameter.
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Algorithm 3 : Q = S GS C(X, k0, k1, h,C)
Input: Unlabeled dataset X = {xi}

n
i=1. Number of neighbors k0, k1. Number of hub data

points h. Number of clusters C.
Output: The estimated conditional discrete probability distributions with hub data points,
Q.

1: Construct the undirected graph G0 = (X, E), where the edge set E is defined by k0-NN with
the Euclidean distance.

2: Build the hub dataset H on graph G0 such that |H| = h. Denote the element of H by x(i)

(i = 1, ..., h).
3: Define the geodesic metric dG0 as the shortest path distance on the graph G0.
4: Define {µ j}

C
j=1 and U as the two outputs of S C(H, k1, dG0 ,w,C), where the weight w(xi, x j)

is defined by exp(−dG0(xi, x j)2/σ2). Then, compute the conditional cluster probability q j|(i)

with each hub data point x(i) in H as follows:

q j|(i) =

(
1 +

∥∥∥x̃(i) − µ j

∥∥∥2

2
/γ

)− γ+1
2

∑C
j′=1

(
1 +

∥∥∥x̃(i) − µ j′
∥∥∥2

2
/γ

)− γ+1
2

,

where γ is a small positive number and x̃(i) is i-th row of U.
5: Let q(i) and Q be (q1|(i), ..., qC|(i)) and h×C matrix, respectively. The i-th row of Q is defined

by q(i).

• Line 3: The geodesic distance is determined from the Euclidean distances defined on the
undirected edges of G0. Since we only use the geodesic distances between the data points
of H in line 4, we compute the required distances. Efficient algorithms are available for
this purpose [31, 25].

• Line 4: Given the number of clusters C, we here estimate the conditional discrete proba-
bility distribution p(y|x(i)) for each x(i) ∈ H, where y is the cluster label ranging {1, ...,C}.
Let us denote the estimated p(y|x(i)) by q(i) = (q1|(i), ..., qC|(i)). This estimation relies on
conducting SC with dG0 metric only on H. The definition of the weight w in this SC
follows Eq.(28). The key to succeed the estimation is to employ the combination of a
different number of neighbors k1 from k0 and the geodesic metric dG0 to a SC. Typically,
given data points that are dense in the input space, the combination of a small number of
neighbors and the Euclidean metric makes a SC perform well. However, we here con-
sider H, which is sparse in the input space. This is why we employ the combination. We
here consider k1 as a hyperparameter as well. Following [72], we compute q j|(i) by using
the outputs {µ j}

C
j=1 and U of S C(H, k1, dG0 ,w,C). Note that q j|(i) can be considered as the

probability that x̃i belongs to the cluster j, where x̃(i) is the low dimensional representation
of x(i) according to the property of SC [64]. As for γ, we set 10−60 to it.

Remark 12. Though we say we estimate the ”cluster labels” of hub data points by SGSC, it
actually outputs the estimated conditional probability distributions with hub data points. The
reason is that, throughout our preliminary experiments, we observed that employing Q of line
5 made SEDC perform better than employing the one-hot vector. This one-hot vector, for in-
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Figure 10: This figure explains how SGSC works. (a):Given unlabeled data points, in line 2 of
Algorithm 3, SGSC computes the hub data points. The hub data points are expressed by star
symbols, and the number of hub data points h is ten in this case. (b):In line 4 of the algorithm,
SGSC focuses only on the hub data points, then conducts SC with the geodesic metric on those
hub points, where we set one to k1. (c):As the results, we obtain the cluster labels of hub points.
The triangle and square symbols mean different labels. Note that an actual output of SGSC
is the estimated conditional discrete probability distributions with hub data points, but we can
obtain the estimated cluster labels from the distributions.

stance, can be defined by using the estimated cluster labels {ŷ(i)}
h
i=1 which is one of the outputs

of S C(H, k1, dG0 ,w,C).

10.2 Spectral Embedded Deep Clustering
SEDC is a deep clustering method. Given an unlabeled dataset X = {xi}

n
i=1 and the number of

clusters C, it groups X into C clusters. As mentioned in the begining of this section, this method
employs the conditional discrete probability distribution pθ(y|x) as the statistical model, which
is defined by a fully connected deep neural network. By using the trained model, we obtain the
estimated cluster label of each xi. This method does not require an additional condition except
two fundamental assumptions: the smoothness and manifold assumptions. Therefore, among
the methods of Table 11, only SpectralNet is comparable to SEDC in this point. In addition, our
method can be applied to various data domains once the raw data is transformed to the feature
vector. Furthermore, empirically speaking, the performance of SEDC can be robust against
outliers due to the robustness of SGSC against them. The pseudo code of SEDC is shown in
Algorithm 4. The explanation is below.

The procedure of SEDC is composed of two stages. In the first stage, we estimate the condi-
tional discrete probability distributions Q with hub data points. In the second stage, by treating
Q as the given true distributions of hub data points, we conduct semi-supervised learning where
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Algorithm 4 : {ŷi}
n
i=1 = S EDC(X, k0, k1, h,C, λ1, λ2)

Input: Unlabeled dataset X = {xi}
n
i=1. Number of neighbors k0, k1. Number of hub data

points h. Number of clusters C. Regularization parameters λ1, λ2 > 0.
Output: The estimated cluster labels of X, {ŷi}

n
i=1.

1: Obtain the h×C matrix of estimated conditional discrete probability distributions with hub
data points Q by computing S GS C(X, k0, k1, h,C) of Algorithm 3. Denote i-th row of Q by
q(i), which means the estimated cluster label probability distribution of hub data point x(i).
The index i ranges {1, ..., h}.

2: Let pθ(y|x) be a statistical model, which is the cluster label probability distribution with
given data point x. The cluster label ranges {1, ...,C}. Define the objective of Eq.(35) by
using pθ(y|x), {q(i)}

h
i=1 and given λ1, λ2. Then, minimize the objective with θ in stochastic

gradient descent fashion. Denote the optimized parameter by θ∗.
3: Obtain the estimated cluster labels of all data points in X by using the trained classifier

pθ∗(y|x). Denote pθ∗(y = j|xi) by p∗j|i. Then, for all data point index i, compute ŷi by
ŷi = argmax

j
p∗j|i.

Q and the remaining unlabeled data points are used, to train the statistical model pθ(y|x). After
this training, SEDC returns the estimated cluster labels of each xi ∈ X by argmax j pθ∗(y = j|xi),
where θ∗ is the trained set of parameters and j ∈ {1, ...,C}. The estimated cluster labels of xi is
denoted by ŷi. Note that the estimated cluster labels of hub data points might be updated at the
end of SEDC procedure.

Let us explain the details of the second stage. Suppose that, given a natural number h,
we already finished the first stage. Now, let us denote the hub data points and their estimated
conditional discrete probability distributions by x(i) ∈ H and q(i) (i = 1, ..., h), respectively.
Then, by using all q(i), we conduct semi-supervised learning to train our statistical model pθ(y|x).
Recall that the model pθ(y|x) is defined by the deep neural network whose last layer is soft-max
function. The number of neurons of the first and last layer are the dimension of feature vector
D and the number of clusters C, respectively. In this semi-supervised learning, we minimize the
following loss with respect to θ:

RVAT(θ; X) +
λ1

h

h∑
i=1

KL
[
pθ(y|x(i))‖q(i)

]
+ λ2H (Y|X) , (35)

where λ1 and λ2 are hyperparameters that range over positive numbers. In Eq.(35), the first
and second terms express VAT loss of Eq.(31) and the pseudo empirical loss with estimated
cluster probabilities of hub data points, respectively. The third term is the conditional Shannon
entropy [70] averaged over X, and it is defined as follows:

H (Y|X) = −
1
n

n∑
i=1

C∑
j=1

pθ(y = j|xi) log pθ(y = j|xi).

We use the Adam optimizer [73] for the minimization. After minimizing Eq.(35), we estimate
the labels of X by using the trained parameter θ∗. Let us denote the estimated cluster labels of
X = {xi}

n
i=1 by {ŷi}

n
i=1. The labels are computed as follows: ŷi = argmax j pθ∗(y = j|xi).

As mentioned in sub-section 9.2, the minimization of the VAT loss encourages pθ(y|x) to
follow the smoothness assumption. In addition, that of entropy loss helps the model to follow
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the cluster assumption [54]. The cluster assumption says that true decision boundary is not
located in regions of the input space that are densely populated with data points. The entropy
loss is commonly used in many studies [74, 75, 61, 66]. Note that the entropy loss is defined
only by using the unlabeled data points, like the VAT loss. With regard to the pseudo empirical
loss, we can consider other candidates such as the cross entropy. The reason why we chose
the KL-divergence is that we observed that the KL-divergence made SEDC perform better than
other candidates in our preliminary experiments.

10.3 Computational and Space Complexity of SEDC
The procedure of SEDC is composed of two stages. The first and second stages correspond
line 1 of Algorithm 4 and line 2 of Algorithm 4, respectively. Let us now discuss about the
computational complexity of this algorithm. Since the line 1 of Algorithm 4 is equivalent to
Algorithm 3 itself, we investigate the complexity of Algorithm 3. Suppose that h, k0, k1 � n.
In line 1 of Algorithm 3, we consume O(Dn2) to construct k0-NN graph [76], where D is the
dimension of feature vector. Then, in the line 3, we need to compute the graph shortest path
distances between the data points in H. Thus, we consume O

(
h(log n + k0)n

)
for computing the

distances: see algorithm 1 of [25]. Thereafter, we need to solve the eigenvector problem with
Laplacian matrix where O(h3) complexity is consumed. In line 2 of Algorithm 4, we consume
O(Dmnitr) where m and nitr are the mini-batch size and the number of iteration in the training.

As for the memory complexity, since the dominant factors are to save k0-NN graph and the
model, SEDC needs O (max{k0n, |θ|}) where θ is the set of parameters in a deep neural network.

Remark 13. For most of deep clustering methods relying on k-NN graph construction, the
dominant factor with their total computational complexity is k-NN graph construction, i.e., we
need O(Dn2). However, according to [32, 33], by constructing the approximated k-NN graph,
we only need O(Dn log n) for the construction.

11 Numerical Experiments
In this section, we show the results of our numerical experiments. First, we show how accurately
SGSC can estimate the labels of hub data points on five datasets. Then, we show the clustering
results on the same five datasets by SEDC. With regards to the clustering experiments, we
compare our proposed method with five popular methods: k-means [46], SC [50], DEC [57],
IMSAT [61] and SpectralNet [62].

11.1 Datasets and Evaluation Metric
We conducted experiments on five datasets. Two of them are real-world datasets named MNIST [39]
and Reuters-10k [77]. The other three are synthetic datasets named Four-Clusters (FC), Two-
Moons (TM) and Three-Rings (TR). A summary of the dataset statistics is described in Table 12.

MNIST is a collection of 28×28 gray-scale images of handwritten digits. It is composed
of 60,000 training and 10,000 test sets. The digits are transformed to 784 dimensional feature
vectors. Then, they are centered, and the size is normalized. In this experiment, we use all
70,000 data points. Reuters-10k is a dataset of English news stories labeled with a category
tree [77]. Following [57], we used the same four root labels. The news stories are transformed
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Table 12: Summary of dataset statistics. #Points is the number of data points used for the
training of each clustering method. #Clusters is the given number of clusters. Dimension is the
dimension of given feature vector. %Largest cluster means the percentage of the largest cluster
size to each size of dataset.

Dataset #Points #Clusters Dimension %Largest cluster

MNIST 70000 10 784 11%
Reuters-10k 10000 4 2000 43%

FC 10000 4 2 50%
TM 10000 2 2 50%
TR 10000 3 2 50%

to feature vectors by computing the TF-IDF features on the two-thousand most frequent words.
This dataset contains 685,071 documents. In this experiment, random subsets of 10,000 samples
from the full dataset are drawn. As for the synthetic datasets, we show the generated examples
in Fig.11. An example of FC is the left picture in the figure. This dataset is composed of
simple four clusters with some outliers. The cluster-balance is biased. The ratio of biggest
cluster is 50% to the dataset, then 20%, 20% and 10%. The four clusters are close to each other.
An example of TM is middle picture in the table. This dataset includes some outliers and its
decision boundary is non-linear. The cluster-balance is uniform. The example of TR is the right
picture in Table 11. This dataset is composed of three concentric rings. The ratio of outer ring
to the whole size is 50%, and the middle and inner ones are 33% and 17%, respectively.

Regarding the evaluation metric, since we are in unsupervised learning scenario, we adopt
the standard metric for evaluating clustering performance [57, 61], which measures how close
the estimated clusters are to the ground truth. For an unlabeled dataset {xi}

n
i=1, let {yi}

n
i=1 and

{ŷi}
n
i=1 be its true label set and estimated label set, respectively. n is the number of data points.

The clustering accuracy (ACC) is defined as follows:

ACC = max
τ

∑n
i=1 1[yi = τ(ŷi)]

n
, (36)

where τ ranges over all permutations between clusters and labels. The optimal assignment of τ
can be computed using the Kuhn-Munkres algorithm [78].

11.2 Performance Evaluation of SGSC
We here show how accurately SGSC could estimate the cluster labels of five datasets in Table 12.
Strictly speaking, SGSC of algorithm 3 has five hyperparameters, which are k0, σ of Eq.28, k1,
h and γ. In this experiment, we nevertheless do not consider σ and γ as the hyperparameters.
The reason is, when median heuristics and 10−60 were employed to σ and γ respectively, SGSC
performed well throughout all datasets of Table 12 in our preliminary experiments. Thus, we
consider the rest three as the hyperparameters.

Generally speaking, in unsupervised learning, it is difficult to tune hyperparameters because
we cannot conduct cross-validation. However, by using the idea of transfer learning, we can
ease the difficulty. Following [61], we tune the three aforementioned hyperparameters. Let Λ

be the triplet (k0, k1, h). The best one is denoted by Λ∗ = (k∗0, k
∗
1, h

∗). Now, Λ∗ is defined as
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Figure 11: The generated examples of three commonly used synthetic datasets. The left, middle
and right pictures correspond the examples of FC, TM and TR, respectively.

follows:
Λ∗ = argmax

Λ

∑
i

ACC(Λ, dataseti)
ACC(Λ∗dataseti

, dataseti)
, (37)

where dataseti is i-th source domain. Λ∗dataseti
is the best hyperparameter for the dataseti. ACC(Λ, dataseti)

is the clustering accuracy of Eq.(36) when the hyperparameter Λ is selected for dataseti. Let us
call a given dataset by target domain. The source domain of each given dataset is shown in Ta-
ble 13. USPS [36] is a dataset of hand-written digit. The number of clusters is ten. 20news [61]
is a dataset of newsgroup documents, which is partitioned nearly evenly across 20 different
newsgroups. The source domain of FC is FC, TM and TR. Note that FC, TM and TR used as
sources have slightly different generating rules compared to target ones. The same things goes
for the target TM and TR datasets. By using these source domains, we tune the hyperparame-
ters.

As for the ranges of candidates with three hyperparameters, we define k0 ∈ {10 × i0 | i0 =

1, ..., 10}, k1 ∈ {5 × i1 | i1 = 1, ..., 5} and h ∈ {100 × i2 | i2 = 2, ..., 5}. By conducting tuning
technique of Eq.(37) on each source domain, we obtained the best hyperparameters for given
datasets of Table 12 as follows: The best ones for MNIST, Reuters-10k, FC, TM, and TR are
(k∗0, k

∗
1, h

∗) = (10, 10, 500), (100, 20, 200), (10, 10, 500), (10, 10, 500) and (10, 10, 500) respec-
tively. For an example, when k0 = 10, we obtained the accuracy matrix for both MNIST and
USPS shown in Table 14. According to this table, the best pair (k∗1, h

∗) = (10, 500) of USPS
is transferred to MNIST. Finally, based on the above best pair of hyperparameters, we conduct
SGSC on each target dataset. The results are shown in Table 15.
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Table 13: The source domain is a dataset we can use to tune our hyperparameters. Dimension
means the dimension of feature vector with source dataset. #Points means the number of data
points with source dataset. The target domain is a dataset which we want to cluster using
knowledge from the source.

Source Domain Dimension #Points Target Domain

USPS 256 11000 MNIST
20news 2000 104 Reuters-10k

(FC, TM, TR) (2, 2, 2) (104, 104, 104) FC
(FC, TM, TR) (2, 2, 2) (104, 104, 104) TM
(FC, TM, TR) (2, 2, 2) (104, 104, 104) TR

Table 14: The accuracies of estimated labels with hub data points for both MNIST and USPS
are shown. The labels are estimated by SGSC. k1 and h mean the number of neighbors and
the number of hub data points, respectively. Each accuracy is computed by the output {ŷi}

n
i=1 of

SGSC using corresponding the pair (k1, h). Another number of neighbors k0 used in the SGSC
is fixed to ten. The bold font below means the best accuracy for each dataset. Note that, since
we use all data points of both MNIST and USPS for the estimation, no standard deviation is
shown.

Dataset h
k1 5 10 15 20 25

Target :
MNIST

200 0.88 0.78 0.76 0.75 0.79
300 0.45 0.92 0.91 0.90 0.89
400 0.79 0.83 0.86 0.90 0.88
500 0.39 0.88 0.86 0.86 0.89

Source :
USPS

200 0.59 0.49 0.51 0.44 0.46
300 0.49 0.65 0.49 0.52 0.48
400 0.65 0.61 0.63 0.48 0.50
500 0.68 0.69 0.64 0.65 0.53

11.3 Performance Evaluation of SEDC
We here show how accurately SEDC can cluster the five given datasets of Table 12. First of all,
let us discuss the implementation. Across all the datasets, we define the network structure of
pθ(y|x) by D-1200-1200-C, where D and C are the dimension of feature vector and the number
of clusters, respectively. We used ReLU [79] for all the activation functions, and employed
batch normalization technique [80] on each layer. For the Adam optimizer, we set the learning
rate to 0.002. Following [81], we initialized the bias term and the weights of directed edges
in the deep neural network as follows: each weight is initialized by the value of a Gaussian
distribution with a mean of 0, and standard deviation of δ ×

√
2/fin, where fin is the number

of input neurons. We set the δ to 10−1-10−1-10−4 for weight matrices from the input to the
output. The all bias terms were initialized to 0. The number of epoch is fixed to 25, and each
epoch is made by 100 iterations. As for the mini-batch with Eq.(35), in each iteration, we
sample h/10 and (n − h)/100 data points from the pseudo labeled dataset and the unlabeled
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Table 15: The mean accuracy and standard deviation obtained by SGSC using best hyperpa-
rameters are shown. These numbers are averaged number over seven times experiments. Since
we use all samples of MNIST for the estimation, no standard deviation is shown.

MNIST Reuters-10k FC TM TR

0.88 0.78(0.06) 0.94(0.04) 0.98(0.01) 0.97(0.02)

Table 16: The mean clustering accuracy (ACC) of Eq.(36) and standard deviation are shown.
Five popular clustering methods and our proposed method were tested on five datasets. For
each method, Average means the averaged ACC over the five datasets. The experiments were
conducted seven times on each pair of method and dataset.

Method MNIST Reuters-
10k

FC TM TR Average

k-means 0.53 0.53(0.04) 0.60(0.05) 0.64(0.04) 0.35(0.03) 0.53
SC 0.72 0.62(0.03) 0.80(0.04) 0.85(0.03) 0.96(0.03) 0.79
IMSAT 0.98 0.71(0.05) 0.70(0.04) 0.66(0.05) 0.34(0.01) 0.68
DEC 0.84 0.72(0.05) 0.72(0.04) 0.67(0.03) 0.48(0.04) 0.69
SpectralNet 0.83 0.67(0.03) 0.79(0.03) 0.87(0.02) 0.99(0.01) 0.83
SEDC 0.89 0.73(0.05) 0.95(0.03) 0.96(0.02) 0.99(0.00) 0.90

dataset, respectively. The pseudo labeled samples are used for approximating the second term
of Eq.(35), and both pseudo labeled and unlabeled samples are used for approximating the first
and third terms of Eq.(35). Moreover, in VAT, we set ξ to ten in Eq.(32). The radius ε is defined
by the same way as [61]: see Remark 11.

With respect to the selection of hyperparameters in SEDC, since we have already finished
to tune k0, k1 and h in previous sub-section, we only focus on the remaining hyperparameters λ1

and λ2. The tuning tactic is also based on Eq.(37), and the source domains of Table 13 are used
for the tuning. The ranges of candidates are defined by as follows: λ1 ∈ {0.1× j1 | j1 = 1, ..., 10},
λ2 ∈ {0.1 × j2 | j1 = 1, ..., 10}. After the tuning, we obtained λ1 = λ2 = 1 as the best ones for
all datasets. By using the tuned hyperparameters and computing the SEDC, we get the results
shown in Table 16.

As we can see in Table 16, our method averagely performs better than other methods. One
of the reason is that we do not require key conditions to SEDC. For an example, IMSAT does
not perform well for datasets with non-uniform cluster-balance such as TR. In addition to the
wide applicability, another reason lies on the robustness against outliers. When we see the
performance of SEDC on FC which includes outliers, the method is more robust against outliers
compared to SpectralNet. In fact, SpectralNet suffered from the two datasets which include
outliers. Note that the hyperparameter tuning of SEDC hugely contributes to the robustness.
On the other hand, if we see some columns of Tabel 16 such as MNIST and Reuters-10k,
SEDC does not outperform IMSAT. The clustering accuracy of IMSAT with MNIST is known
to be one of the best results among several deep clustering methods [82]. In addition to VAT
regularization, the almost perfect prior knowledge of cluster balance with MNIST seems to
greatly help IMSAT achieve such the result. Though our method employs similar objective
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Table 17: The corresponding mean runtime (seconds) and standard deviation of Table 16 are
shown. Five popular clustering methods and our proposed method were tested on five datasets.
For each method, Average means the averaged runtimes over the five datasets. The experiments
were conducted seven times on each pair of method and dataset. Note that the runtimes of SC,
IMSAT, SpectralNet and SEDC do not include the runtimes of hyperparameter tuning. As for
DEC, the runtime does not include the runtime of pre-training. The bold font means the fastest
runtime among six methods.

Method MNIST Reuters-
10k

FC TM TR Average

k-means 136 30(2.3) 0.04(0.0) 0.05(0.0) 0.03(0.0) 33.2
SC 96362 473(5.7) 417(4.3) 408(5.1) 413(4.9) 19614
IMSAT 5097 749(8.2) 429(5.0) 424(4.7) 428(3.8) 1425
DEC 1274 258(3.1) 121(4.9) 135(5.2) 153(6.6) 388
SpectralNet 2239 232(2.4) 122(2.0) 110(2.3) 117(2.5) 564
SEDC 3466 440(4.4) 226(1.9) 233(3.0) 237(3.4) 920

Table 18: The clustering accuracy obtained by SEDC using the tuned hyperparameters. The top
row is the number of unlabeled data points used for SEDC. The MNIST dataset is used for all
this experiments. The bottom row is the clustering accuracy.

10000 20000 30000 40000 50000 60000

0.786 0.823 0.848 0.853 0.870 0.880

function with IMSAT, since we use the estimated cluster labels, the estimation error degraded
the performance of SEDC. As for Reuters-10k, we can list two reasons why SEDC does not
outperform IMSAT well. The first one is that the number of given data points is not enough
since the geodesic metric is approximated by the graph shortest path distance in SEDC. In fact,
we observed that, by using 20000 unlabeled data points with Reuters, the clustering accuracies
of SEDC and IMSAT were 0.739 (0.06) and 0.696 (0.05), respectively. These accuracies were
the average of seven times experiments. The second one is that the source domain of Reuters-
10k might be not appropriate since the cluster balances of 20new and Reuters are uniform and
non-uniform, respectively.

Moreover, our method has the following favorable property: If the number of unlabeled
data points increases, the clustering accuracy also increases. This property is important since,
first, not many clustering methods seem to not have this property and, second, we have higher
possibility to obtain the unlabeled data point than obtain the labeled ones. As we can see from
Table 18, more unlabeled data points are used in the learning, higher accuracy we can get.

In Table 17, we show the corresponding mean runtime and standard deviation of Table 16.
As we can expect, k-means is the fastest clustering method among the six. The runtime of SC
is quite long especially when the size of dataset is large. The most heavy computation is in
solving the eigenvalue problem. IMSAT is the second slowest method in the six. Since this
method require the k-NN graph for defining the adaptive radius with VAT: see Remark 11, this
computation is dominant in the whole procedure. In addition to the time of graph construction,
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relatively larger number of epochs (50 epochs) for training the deep neural network also affected
the total runtime. DEC is the fastest method among the deep clustering methods. After the pre-
training, DEC simply trains the deep neural network by using mini-batchs until the convergence.
Note that the shown runtimes of DEC does not include the runtimes consumed on the pre-
training. If we combine the runtime of that pre-training with shown ones, the total runtimes
of DEC will be much longer: see sub-section 4.3 of [57]. SpectralNet also computes k-NN
graph. Therefore, the dominant part of computation is the graph construction. In addition to
this constructing time, since the number of epochs for training the two deep neural networks
are not large, the total runtime of SpectralNet is relatively fast among the four deep clustering
methods. Regarding with SEDC, as we already mentioned in sub-section 10.3, the dominant
part is computing k-NN graph. In addition to this computing, since we set 25 epochs to the
training, the total runtimes is medium.

12 Conclusion of Part II
In this paper, we propose a deep clustering method named SEDC. Given an unlabeled dataset
and the number of clusters, the method groups the dataset into the given number clusters. Re-
garding its advantages, it does not require an additional condition except two fundamental as-
sumptions: smoothness and manifolds assumptions. In this point, only SpectralNet of Table 11
is comparable. In addition, SEDC also can be applied to various data domains since it does not
have preferred data domains, as long as raw data is transformed to feature vectors. Furthermore,
the performance of SEDC can be robust against existence of outliers unlike SpectralNet. Ac-
cording to these advantages, our proposed method can be expected to averagely perform better
than previous deep clustering methods. As a result, this expectation is empirically confirmed
by conducting numerical experiments on five commonly used datasets: see Table 16. There-
fore, we think our method can be a competitive candidate for users in some practical clustering
scenarios where prior knowledge of the given unlabeled dataset is limited.

Let us then discuss two limitations of SEDC. On the one hand, since the method needs
hyperparameter tuning, if we do not have appropriate labeled source domains to learn them
from and transfer, then it may fail. On the other hand, since the method requires the number of
clusters, it does not work for datasets where nothing is known on the number of clusters such
as genome datasets.

Finally, we discuss about our two future works. The first one is to invent a more noise-robust
semi-supervised learning framework and then apply it to SEDC instead of Eq.(35). Since some
of the estimated cluster labels by SGSC are not perfectly accurate, we need to invent such the
framework to stabilize the performance of SEDC. The second one is to modify our method for
handling structured data, i.e., graph data or sequential data.
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13 Concluding Remarks
Throughout of this thesis, we investigate the online graph-based SSL and deep clustering. In the
former learning, we could succeed to propose the promising offline graph-based SSL method
named RLP which can assist in creating a new online graph-based SSL algorithm by combin-
ing a conventional online clustering method such as doubling algorithm. From the numerical
experimental point of view, the proposed online graph-based SSL method named online QRLP
outperformed the previous method since RLP can be more robust against outliers than LP. In the
later, we could succeed to propose the widely applicable deep clustering method named SEDC
which does not require additional key conditions. This applicability makes SEDC become the
competitive candidate in practical situation. From the numerical experimental point of view,
our deep clustering method averagely performs better than previous popular deep clustering
methods.

Surely we can be pleased at this moment since our proposed method outperformed previous
popular methods. However, we should know that there are still many problems left. With the
proposed online graph-based SSL study, the biggest weakness is maybe the application to the
real-world problem where the quite high prediction accuracy is required such as automation
driving problems. Regarding these types of problems, we may have take completely different
approach to earn much higher accuracy than the graph-based SSL. Possible approach is life-long
learning [83] combined with active learning [84] and deep neural networks.

As for the proposed deep clustering, still we could not solve the curse-of-dimension problem
like other methods. Probably, as long as we use the naively defined feature vectors or take the
k-NN based strategy, we can not solve it. One possible hope is the representation learning [85].
This learning tries to extract core feature of raw data, perhaps, like human beings, and at this
moment, for the image dataset, the machine learning community seems to get some success.
We guess this filed will be more intense in the near future since we can obtain tons of unlabeled
dataset. If we human can succeed the representation learning in several domains, by using
simple classical clustering algorithm, we may get several competitive results.
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A. Shaker, S. Sievi, M. Spiliopoulou, et al., “Open challenges for data stream mining
research,” ACM SIGKDD Explorations Newsletter, vol. 16, no. 1, pp. 1–10, 2014.

[17] L. Huang, X. Liu, B. Ma, and B. Lang, “Online semi-supervised annotation via proxy-
based local consistency propagation,” Neurocomputing, vol. 149, pp. 1573–1586, 2015.

[18] S. Ravi and Q. Diao, “Large scale distributed semi-supervised learning using streaming
approximation,” in Artificial Intelligence and Statistics, pp. 519–528, 2016.

[19] M. Valko, B. Kveton, L. Huang, and D. Ting, “Online semi-supervised learning on quan-
tized graphs,” in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artifi-
cial Intelligence, UAI’10, (Arlington, Virginia, United States), pp. 606–614, AUAI Press,
2010.

[20] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incremental clustering and dynamic
information retrieval,” SIAM Journal on Computing, vol. 33, no. 6, pp. 1417–1440, 2004.

[21] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with label propa-
gation,” 2002.

[22] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions,” in Proceedings of the 20th International Conference on
Machine Learning, pp. 912–919, 2003.

[23] Y. Tao, R. Triebel, and D. Cremers, “Semi-supervised online learning for efficient classifi-
cation of objects in 3d data streams,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2904–2910, IEEE, 2015.

[24] A. S. Bijral, N. Ratliff, and N. Srebro, “Semi-supervised learning with density based dis-
tances,” arXiv preprint arXiv:1202.3702, 2012.

[25] A. Moscovich, A. Jaffe, and B. Nadler, “Minimax-optimal semi-supervised regression on
unknown manifolds,” arXiv preprint arXiv:1611.02221, 2016.

[26] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001.

[27] B. Kveton, M. Philipose, M. Valko, and L. Huang, “Online semi-supervised perception:
Real-time learning without explicit feedback,” in IEEE Conference on Computer Vision
and Pattern Recognition Workshop, pp. 15–21, IEEE Computer Society, 2010.

[28] X. Zhu, A. B. Goldberg, and T. Khot, “Some new directions in graph-based semi-
supervised learning,” in IEEE International Conference on Multimedia and Expo,
pp. 1504–1507, IEEE, 2009.

46



[29] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for
generic similarity measures,” in Proceedings of the 20th International Conference on
World Wide Web, pp. 577–586, ACM, 2011.

[30] M. Karasuyama and H. Mamitsuka, “Manifold-based similarity adaptation for label prop-
agation,” in Advances in Neural Information Processing Systems, pp. 1547–1555, 2013.

[31] S. Har-Peled, “Computing the k nearest-neighbors for all vertices via dijkstra,” arXiv
preprint arXiv:1607.07818, 2016.

[32] D. Wang, L. Shi, and J. Cao, “Fast algorithm for approximate k-nearest neighbor graph
construction,” in 2013 IEEE 13th International Conference on Data Mining Workshops,
pp. 349–356, IEEE, 2013.

[33] Y. Zhang, K. Huang, G. Geng, and C. Liu, “Fast knn graph construction with locality
sensitive hashing,” in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 660–674, Springer, 2013.

[34] J. A. Aslam, E. Pelekhov, and D. Rus, “The star clustering algorithm for static and dynamic
information organization,” Journal of Graph Algorithms and Applications, vol. 8, pp. 95–
129, 2004.

[35] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: Illumination
cone models for face recognition under variable lighting and pose,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643–660, 2001.

[36] H. Wechsler, J. P. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Face Recognition:
From Theory to Applications, vol. 163. Springer Science & Business Media, 2012.

[37] S. A. Nene, S. K. Nayar, H. Murase, et al., “Columbia object image library (coil-20),”
1996.

[38] A. Asuncion and D. J. Newman, “Uci machine learning repository [http://www. ics. uci.
edu/˜ mlearn/mlrepository. html]. irvine, ca: University of california,” School of Informa-
tion and Computer Science, vol. 12, 2007.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to doc-
ument recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[40] Y. Yamaguchi and K. Hayashi, “When does label propagation fail? a view from a network
generative model.,” in IJCAI, pp. 3224–3230, 2017.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in Neural Information Processing Systems, pp. 1097–
1105, 2012.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

47



[43] R. N. D’souza, P.-Y. Huang, and F.-C. Yeh, “Small data challenge: Structural analysis
and optimization of convolutional neural networks with a small sample size.” Cold Spring
Harbor Laboratory, 2018. BioRxiv.

[44] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping Multidimen-
sional Data, pp. 25–71, Springer, 2006.

[45] R. Xu and D. C. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural
Network, vol. 16, pp. 645–678, 2005.

[46] J. MacQueen et al., “Some methods for classification and analysis of multivariate obser-
vations,” in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.

[47] N. E. Day, “Estimating the components of a mixture of normal distributions,” Biometrika,
vol. 56, no. 3, pp. 463–474, 1969.

[48] M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE Transactions on
Neural Networks, vol. 13, no. 3, pp. 780–784, 2002.

[49] J. Wang, J. Lee, and C. Zhang, “Kernel trick embedded gaussian mixture model,” in Inter-
national Conference on Algorithmic Learning Theory, pp. 159–174, Springer, 2003.

[50] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
in Advances in Neural Information Processing Systems, pp. 849–856, 2002.

[51] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognition Letters,
vol. 31, no. 8, pp. 651–666, 2010.

[52] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p. 436,
2015.

[53] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[54] O. Chapelle and A. Zien, “Semi-supervised classification by low density separation.,” in
AISTATS, pp. 57–64, 2005.

[55] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep representations for graph
clustering,” in 28th AAAI Conference on Artificial Intelligence, 2014.

[56] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding network for clustering,”
in 22nd International Conference on Pattern Recognition, pp. 1532–1537, IEEE, 2014.

[57] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering analy-
sis,” in International Conference on Machine Learning, pp. 478–487, 2016.

[58] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep embedding: An
unsupervised and generative approach to clustering,” arXiv preprint arXiv:1611.05148,
2016.

48



[59] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep representations and
image clusters,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5147–5156, 2016.

[60] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[61] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learning discrete represen-
tations via information maximizing self-augmented training,” in International Conference
on Machine Learning, pp. 1558–1567, 2017.

[62] U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, and Y. Kluger, “Spectralnet: Spectral
clustering using deep neural networks,” arXiv preprint arXiv:1801.01587, 2018.

[63] U. Shaham and R. R. Lederman, “Learning by coincidence: Siamese networks and com-
mon variable learning,” Pattern Recognition, vol. 74, pp. 52–63, 2018.

[64] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17,
no. 4, pp. 395–416, 2007.

[65] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in Pro-
ceedings of the 18th Annual ACM-SIAM Symposium on Discrete algorithms, pp. 1027–
1035, Society for Industrial and Applied Mathematics, 2007.

[66] T. Miyato, S. Maeda, S. Ishii, and M. Koyama, “Virtual adversarial training: a regulariza-
tion method for supervised and semi-supervised learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2018.

[67] P. Bachman, O. Alsharif, and D. Precup, “Learning with pseudo-ensembles,” in Advances
in Neural Information Processing Systems, pp. 3365–3373, 2014.

[68] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial exam-
ples,” arXiv preprint arXiv:1412.6572, 2014.

[69] Y. Tao, K. Takagi, and K. Nakata, “Rdec: Integrating regularization into deep embedded
clustering for imbalanced datasets,” in Asian Conference on Machine Learning, pp. 49–64,
2018.

[70] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons,
2012.

[71] S. Dasgupta and S. Kpotufe, “Optimal rates for k-nn density and mode estimation,” in
Advances in Neural Information Processing Systems, pp. 2555–2563, 2014.

[72] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learn-
ing Research, vol. 9, no. 11, pp. 2579–2605, 2008.

[73] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[74] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in
Advances in Neural Information Processing Systems, pp. 529–536, 2005.

49



[75] A. Krause, P. Perona, and R. G. Gomes, “Discriminative clustering by regularized infor-
mation maximization,” in Advances in Neural Information Processing Systems, pp. 775–
783, 2010.

[76] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for
generic similarity measures,” in Proceedings of the 20th International Conference on
World Wide Web, pp. 577–586, ACM, 2011.

[77] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark collection for text
categorization research,” Journal of Machine Learning Research, vol. 5, no. 4, pp. 361–
397, 2004.

[78] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logis-
tics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[79] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in Proceedings of the 27th International Conference on Machine Learning, pp. 807–814,
2010.

[80] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[81] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

[82] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A survey of clustering with deep
learning: From the perspective of network architecture,” IEEE Access, vol. 6, pp. 39501–
39514, 2018.

[83] Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, vol. 10, no. 3, pp. 1–145, 2016.

[84] B. Settles, “Active learning literature survey,” tech. rep., University of Wisconsin-Madison
Department of Computer Sciences, 2009.

[85] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, A. Trischler, and Y. Ben-
gio, “Learning deep representations by mutual information estimation and maximization,”
arXiv preprint arXiv:1808.06670, 2018.

50


	Abstract
	Introduction
	Background
	Main Contributions
	Part I : Robust Label Prediction via Label Propagation and Geodesic k-Nearest Neighbor on Online Semi-Supervised Learning
	Part II : Spectral Embedded Deep Clustering



	I Robust Label Prediction via Label Propagation and Geodesic k-Nearest Neighbor on Online Semi-Supervised Learning
	Preliminary with Semi-Supervised Learning
	Offline Semi-Supervised Learning
	Generative Models
	Semi-Supervised Support Vector Machines
	Manifold Regularization
	Transductive Learning
	Semi-Supervised Learning with Deep Neural Networks

	Online Semi-Supervised Learning

	Motivation and Related Works with Proposed Methods
	Motivation
	Related Works with Proposed Methods
	Label Propagation
	Geodesic k-Nearest Neighbor
	Online Quantized LP


	Proposed Methods
	Robust Label Prediction
	Some Properties of RLP
	Hyperparameter Tuning

	Application of RLP to Online Scenario
	Quantized RLP
	Online Quantized RLP

	Numerical Experiments
	Offline Experiments
	Online Experiments
	Relationship to Deep Neural Networks

	Conclusion of Part I

	II Spectral Embedded Deep Clustering
	Introduction of Deep Clustering
	Related Works
	Existing Clustering Methods Using Deep Neural Network
	Related Techniques with Proposed Method 
	Spectral Clustering
	Virtual Adversarial Training


	Proposed Deep Clustering Method
	Selective Geodesic Spectral Clustering
	Spectral Embedded Deep Clustering
	Computational and Space Complexity of SEDC

	Numerical Experiments
	Datasets and Evaluation Metric
	Performance Evaluation of SGSC
	Performance Evaluation of SEDC

	Conclusion of Part II
	Concluding Remarks
	References


