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Abstract

Gas–liquid two-phase flows around rigid obstacles are observed widely in engineering ap-

plications, such as shell and tube heat exchangers, steam generators, and condensers. A

comprehensive understanding of the phenomena of gas–liquid two-phase flows around ob-

stacles would allow for improved design and control of related engineering devices. This

has attracted the attention of many scientific and engineering researchers. In the era

of digital development, numerical simulation is an effective tool for discovering knowl-

edge about the characteristics of bubbly two-phase flow. In computational fluid dy-

namics, there are three different approaches that have been used to simulate the bub-

bly two-phase flows around obstacles, namely, Eulerian–Eulerian; Eulerian–Lagrangian;

Lagrangian–Lagrangian. Here, a semi-Lagrangian–Lagrangian approach composed of a

vortex-in-cell method for the liquid phase and a Lagrangian description of the gas phase

was developed for the simulation of a bubbly flow around a rigid obstacle. The supe-

rior abilities of the semi-Lagrangian–Lagrangian approach to analyze the vortex structure

of the flow and supply physical details of bubble dynamics were proved. Moreover, the

characteristics of the bubbles and the induced-liquid flow of an annular bubble plume,

the interaction between a vortex ring and a bubble plume, and the bubbly flow around a

cylinder were clarified.
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Chapter 1

Introduction

1.1 Literature review of numerical methods for gas–liquid

two-phase flow

Gas–liquid two-phase flows are observed widely in both environmental processes and engi-

neering applications such as fermentation devices, bubble reactors, boilers, and nuclear

reactors (Milgram, 1983; Alam and Arakeri, 1993; Fraga et al., 2016; Uchiyama and

Kusamichi, 2013). Comprehensive understanding of the interaction between gas phase

and liquid phase is important for improving design and controlling engineering devices

related to the bubbly two-phase flow phenomena. This has attracted the attention of

many scientific and engineering researchers (Chen et al., 2014). In the era of digital de-

velopment, numerical simulation is an effective tool for discovering knowledge about the

characteristics of bubbly two-phase flow. In computational fluid dynamics, there are four

different approaches that have been used to simulate the bubbly two-phase flows, namely,

Eulerian–Eulerian (E–E); Eulerian–Lagrangian (E–L); Lagrangian–Lagrangian (L–L); and

semi-Lagrangian–Lagrangian (semi-L–L). A literature survey on these approaches will be

given.

1.1.1 Eulerian–Eulerian approach

In the E–E approach, the gas and liquid phases are treated mathematically as contin-

uous phases that penetrate each other. Examples of investigations using this approach

are Schwarz and Turner (1988), Torvik and Svendsen (1990), Socolofsky et al. (2008),

Sokolichin and Eigenberger (1997, 1999), Druzhinin and Elghobashi (1998), Tabib et al.

(2008), Krause et al. (2010), Elrais et al. (1992), Daniel et al. (1994), Troshko and Hassan

(2001), Tabi et al. (2008), and Dhotre et al. (2013). This approach can be classified into

several broad branches as two-fluid model, fluid-dynamic model and multi-phase plume

integral model.

Two-fluid model

In two-fluid model, the continuity, momentum and energy equations are solved for both

phases. A general form of the continuity and momentum equations for two phases is

1
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written in the Eulerian frame as Troshko and Hassan (2001), Tabi et al. (2008), Dhotre

et al. (2013)
∂

∂t
(ρkαk) +∇ · (ρkαkuk) = 0 (1.1)

∂

∂t
(ρkαkuk) +∇ · (ρkαkukuk) = −∇ · (αkτk)− αk∇p+ αkρkg + F I,k (1.2)

where u , ρ, and α are the velocity, density, and volume fraction, respectively. The sub-

scripts k = l, g indicate the liquid and gas phases, respectively. The gas volume fraction

relates to the liquid volume fraction as

αl + αg = 1 (1.3)

The stress tensor of the phase k is expressed as

τk = −µeff,k
(
∇uk + (∇uk)T −

2

3
I (∇uk)

)
(1.4)

where effective viscosity of the liquid phase, µeff , is composed of laminar viscosity, µl,

eddy viscosity, µt,l and turbulence viscosity induced by the bubble motion, µBI,l.

µeff,l = µl + µt,l + µBI,l (1.5)

The effective viscosity of the gas phase is calculated from that of the liquid phase as

µeff,g =
ρg
ρl
µeff,l (1.6)

The µBI,l was proposed by Sato and Sekoguchi (1975), and it was described as

µBI,l = ρlCµ,BIαgdb|ug − u l| (1.7)

The F I,k in Eq. (1.2) is the momentum exchange (total inter-facial force (Tabi et al.,

2008)) between two phases, and it is computed as

F I,g = −F I,l = FD + FL + FVM + FTD (1.8)

where FD, FL, FVM , and FTD are drag, lift, virtual-mass (added-mass), and turbulent

dispersion forces, respectively, acting on the bubble, and they are shown as

FD =
1

2
CDρl

(
πd2

b

4

)
|ug − u l|

(
ug − u l

)
FL = −CLρlVb

(
ug − u l

)
× (∇× u l)

FVM = CV ρlVb

(Du l
Dt
− dug

dt

)
FTD = CTDρlk∇εl

(1.9)

The force FTD expresses the turbulent diffusion of the bubbles due to the effects of the

vortices (Dhotre et al., 2013). The k and εl are the turbulent kinetic energy and its

dissipation rate, respectively. The term µt,l in Eq. (1.5) can be obtained using k − ε

turbulence models.
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Fluid-dynamic model

In the fluid-dynamic model, the continuity and momentum equations is written in the term

of the gas–liquid mixture. The dispersed phase assumed is small and the momentum of the

bubble phase can be neglected (Sokolichin and Eigenberger, 1997, 1999). The conservation

form of Navier–Stokes equation can be applied for the mixture and written as

∂ρ

∂t
+∇ · (ρu) = 0 (1.10)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρg (1.11)

where u , ρ, and τ are velocity, density, stress tensor of gas–liquid mixture, respectively.

The mixture density is computed as

ρ = αgρg + αlρl (1.12)

The conservation mass of the gas phase under the effects of bubble-induced turbulence is

described as
∂(αgρg)

∂t
+∇ ·

(
αgρgug

)
= Dt (1.13)

where Dt is the dispersion effects due to random fluctuations of the bubble motion. The

gas velocity ug is computed as

ug = uslip + u l (1.14)

where uslip is given based on the experimental investigation. The mixture velocity u , the

liquid velocity u l and the gas velocity ug have a relation as

ρu = αgρgug + αlρlu l (1.15)

Multi-phase plume integral model

Review of this model is based on the work of Socolofsky et al. (2008). In this model, the

governing equation is written in the term of the entrainment flux of the flow for the inner

and outer bubble plume, respectively, as

d(πuib
2
i )

dz
= Ei − Eo − Ep (1.16)

d(πuo(b
2
o − b2i )

dz
= Ea + Eo − Ei + Ep (1.17)

where u is continuous phase velocity; b is plume half width (b is the plume radius at

vertical coordinate z, and z-axis is the plume centerline); and i, o, and a indicate the

inner plume, outer plume, and ambient fluid, respectively. The general idea of model

is to use the similarity assumptions and entrainment hypothesis, which converts the

three-dimensional problem to a set of one-dimensional equations (Socolofsky et al.,

2008). The conservation of mass and momentum fluxes of the regions of the flow,

such as inner plume and outer plume, are solved separately by the different equations.

However, these equations are connected together using the flow entrainment quantities,
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such as turbulence induced in the inner plume transports an entrainment flux Ei into the

inner plume; turbulence induced in the outer plume generates an entrainment flux Ea

into the outer plume; a transport of entrainment flux Eo from the inner plume into the

outer plume; the flux of flow from the inner plume that escapes to form the outer plume Ep.

The E–E approach has the advantage of low computational cost compared to the

E–L, L–L and semi-L–L approaches because the momentum transport of the gas phase is

calculated efficiently by solving only one vector equation (Fraga et al., 2016). However,

there are some drawbacks of this approach, as mentioned by Fraga et al. (2016), and

Murai and Matsumoto (2000), and they are as follows: (1) the inherent numerical

diffusion of the Eulerian treatment of the bubble phase, (2) the lack of physical details

of bubble dynamics such as location and velocity of individual bubbles and induced

fluid-bubble interaction, and (3) the approach cannot provide the correct solution in cases

where the dispersed phase does not have adequate number density and spatial continuity.

1.1.2 Eulerian–Lagrangian approach

In the E–L approach, the liquid phase is described in the Eulerian frame and treated

mathematically as a continuous phase, while each bubble is calculated as a Lagrangian

marker that is affected by external forces and governed by Newton’s second law. A few

works related to this approach are Fraga et al. (2016), Sokolichin and Eigenberger (1997,

1999), Murai and Matsumoto (2000), Johansen and Boysan (1988), Swan and Moros

(1993), Caballina et al. (2003), Delnoij et al. (1997a,b, 1999), Kuo et al. (1997), Yang

et al. (2002), Finn et al. (2011), Cihonski et al. (2013), and Lan and Garca (2006).

The momentum equation for the motion of an individual spherical bubble proposed

by Auton et al. (1988) is expressed as

ρgVb
dug
dt

= FB + FD + FL + FVM + FP + FBa (1.18)

where FB, FD, FL, FVM , FP , and FBa are buoyancy, drag, lift, virtual-mass or added-

mass, pressure gradient force, and Bassett forces, respectively. These forces are expressed

as (Sridhar and Katz, 1995)

FB =
(
ρgVb − ρlVb

)
g

FD =
1

2
CDρl

(
πd2

b

4

)
|ug − u l|

(
ug − u l

)
FL = −CLρlVb

(
ug − u l

)
× (∇× u l)

FVM = CV ρlVb

(Du l
Dt
− dug

dt

)
FP = ρlVb

Du l
Dt

FBa = 6π

(
db
2

)2

µ

∫ t

o

d(ub − u l)/dτ√
πν(t− τ)

dτ

(1.19)
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Bassett force is considered as integrated effects of the interactions of a bubble with its own

wake (Sridhar and Katz, 1995). In the case of low Reynolds number past a sphere, this

force can be neglected due to small entrained bubble, i.e., a weak wake induced behind the

bubble. The Lagrangian trajectory of an individual bubble is calculated from its velocity

as
dx g
dt

= ug (1.20)

The E–L approach can be divided into two main branches, based on the term of the

gas-volume fraction modeled in the simulation.

Model is not in the term of volume fraction

In the first branch, the bubble effects on the liquid phase is modeled based on the mo-

mentum point sources calculated using the reaction forces of the fluid acting upon the

bubbles, and the volume fraction is not considered. Example of investigations using this

approach is Fraga et al. (2016) and Caballina et al. (2003). The conservation equations of

mass and momentum of the liquid phase is written as Caballina et al. (2003)

∇ · u l = 0 (1.21)

ρl

(
∂u l
∂t

+ (u l · ∇)u l

)
= −∇p+ µl∇2u l + ΦS (1.22)

where ΦS is the effects of the momentum point sources, induced by the bubbles, on the

liquid phase. The ΦS can be calculated using rectangular finite volume as (Caballina

et al., 2003)

ΦS(x , t) =
Vb
Vf

Nb∑
i=1

[
ρg

(
g − dug

dt

)
+ ρl

(
∂u l
∂t

+ u l · ∇u l − g

)]
(1.23)

where Vb = πd3
b/6, db is the bubble diameter, Vf = ∆x∆y∆z is the volume of a grid cell,

and Nb is number of bubbles.

The above momentum equation can be written in the term of the unresolved turbulence

(filtered equation) as

∂ui
∂t

+
∂uiui
∂xj

= − ∂p

∂xi
+ 2ν

∂(Sij)

∂xj
− τij
∂xj

+ ζi (1.24)

where the ζi can be obtained using spherical finite volume as (Fraga et al., 2016)

ζi = − 1

Vb

Nb∑
b=1

F ∗b,i∆V (1.25)

F ∗b,i = FD,i + FL,i + FVM,i + FP,i (1.26)

and ∆V is calculated as

∆V =
Vb
Vball

Lj
Lk

(1.27)

Lj/Lk is explained as the linear effects of a bubble to the considered grid node.

The term τij is calculated using turbulent models such as LES model in the investiga-

tion by Fraga et al. (2016).
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Model is in the term of volume fraction

In the second branch, the gas volume fraction is added to the momentum point sources

to account for modification of the liquid continuity and momentum equations. Example

of investigations using this approach is Finn et al. (2011), Cihonski et al. (2013), Delnoij

et al. (1997a,b, 1999). The mass and momentum equations for the liquid phase can be

written as Delnoij et al. (1997a)

∂(αlρl)

∂t
+∇ · (αlρlu l) = 0 (1.28)

∂(αlρlu l)

∂t
+∇ · (αlρlu lu l) = −αl∇p−∇ · (αlτl) + αlρlg + ΦS (1.29)

To eliminate the term ΦS , Murai and Matsumoto (2000), Sugiyama et al. (2000) proposed

an E–L model in which the gas phase is described in both Eulerian and Lagrangian frames,

i.e., it is treated mathematically as both continuous phase and dispersion phase (each

bubble is presented as a Lagrangian marker). The momentum equation for the Lagrangian

motion of an individual bubble is written as

ρgVb
dug
dt

= FB + FD + FL + FVM + FP + FV (1.30)

where FB, FD, FL, FVM , and FP are forces mentioned above, and FV is viscous force

acting on the bubble expressed as

FV = Vbµl

(
∇2u l +

1

3
∇(∇ · u l)

)
(1.31)

The momentum equation for the liquid phase is derived from a sum of two momentum

equations of two phases, and it is written as

∂(αlρlu l)

∂t
+∇·(αlρlu lu l)+

∂(αgρgug)

∂t
+∇·(αgρgugug) = −∇p−(αlρl+αgρg)g+∇·

(
(1+αg)τl

)
(1.32)

The E–L approach has the following benefits. First, the E–L approach can treat situations

in which there is an exact distribution of bubble sizes, but the degree of accuracy in

such cases will depend on the number of particles used, as well as the physics invoked.

For example, the distribution of eight bubble sizes under interaction with a vortex ring

was successfully simulated by Finn et al. (2011) and Cihonski et al. (2013). Second,

bubble–bubble interaction for dense cases can be treated by constructing models such as

those in the investigations by Delnoij et al. (1999), Lan and Garca (2006). Thirdly, the

boundary conditions of the bubbles at the solid body, free surface, and bubble injection

parts can be expressed more accurately. In addition, the Lagrangian description of bubble

dynamics has been recently revised and examined by researchers such as Sridhar and

Katz (1995) and Mazzitelli et al. (2003). However, Eulerian treatment of the nonlinear

convection term for fluid flow, for example, by using finite-difference or spectral element

schemes, leads to diffusion or dissipation errors (Cottet and Poncet, 2003; Cocle et al.,

2008; Chatelain et al., 2008).
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1.1.3 Lagrangian–Lagrangian approach

In the L–L approach, both phases are treated as Lagrangian markers. The liquid is

discretized into fluid elements or particles by using smoothed particle hydrodynamics

(SPH) methods and vortex methods. Compared to grid-based methods or Eulerian meth-

ods, Lagrangian methods for fluid flow have the advantages of automatic adaptation of

computational elements and low numerical dissipation associated with the discretization

of nonlinear convection (Cottet and Poncet, 2003; Cocle et al., 2008; Chatelain et al.,

2008; Uchiyama and Matsumura, 2010).

The SPH methods were introduced by Lucy (1977) and further developed by Gingold

and Monaghan (1985) for solving astrophysical problems. In SPH methods, a fluid is

modelled by dividing it into a discrete set of particles that are evolved based on the

weighted influence of their neighbors (Meister and Rauch, 2015). Each particle has

individual mass, thermo-physical properties, and the ensemble can be considered as

interconnected-fluid particles whose field values are governed based on the conservation

laws of continuum fluid mechanics (Das and Das, 2009). In the gas phase, an individual

bubble can be discretized into particles, as in the fluid phase, as given in the investigations

of Meister and Rauch (2015), and Das and Das (2009). Moreover, one type of the L–L

approach combines an SPH method for solving the fluid phase and each Lagrangian

marker representing an individual bubble, for example, the investigation of Ihmsen et al.

(2011).

Vortex methods are known to have superior ability in terms of analyzing the evolu-

tion of vortex structures, such as the formation and deformation of eddies of various scales

(Uchiyama and Matsumura, 2010). Uchiyama (2004), Uchiyama and Degawa (2007, 2008)

proposed a vortex method to simulate two-dimensional bubbly flow, and Uchiyama and

Matsumura (2010) proposed vortex methods to simulate three-dimensional bubbly flow

and gas-solid particle two-phase flow (Uchiyama and Naruse, 2003; Yagami and Uchiyama,

2007; Uchiyama and Yagami, 2005). The flow characteristics associated with the inter-

action of two phases can be successfully captured by using a vortex method, and the

simulated results compare favorably with the corresponding measurements. However,

these vortex methods distort the computational particle distribution, and the computa-

tional cost of Biot–Savart integration of velocity with O(N2) operations is very high,

where N is number of fluid elements. To overcome these issues, the Lagrangian meth-

ods for fluid flow have been improved to yield the semi-Lagrangian vortex methods or

hybrid-Eulerian–Lagrangian methods.

1.1.4 Semi-Lagrangian–Lagrangian approach

In the semi-L–L approach, the gas phase is described in the Lagrangian frame, the liquid

phase is solved in both the Eulerian and the Lagrangian frames, called semi-Lagrangian
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approach or vortex-in-cell method or remeshed particle method.

The vortex-in-cell method retains the advantageous features of mesh-free methods and

mesh-based methods and limits the disadvantages of both methods. In general, the vortex-

in-cell method uses vortex elements or particle transport conservative quantities and grid-

based formulas to calculate fields (Cottet and Poncet, 2003). The vortex elements carrying

vorticity are arranged in Eulerian grids, while the velocity field is obtained from the

vorticity field by solving Poisson equations. Clearly, the greatest advantage of the Eulerian

methods is low computational cost in calculating the velocity obtained from the Poisson

equation solved by a fast Poisson solver such as FISHPACK, PoisFFT, etc. After the

vortex elements are transported by the convection term, interpolation schemes are used to

redistribute the vortex elements on Eulerian grids while ensuring that the flow momentum

is conserved. The spirit of the vortex-in-cell method is to avoid the high cost of Biot–Savart

integration, while still benefitting from the most advantageous features of the Lagrangian

vortex methods. The vortex-in-cell method was proposed by Birdsall and Fuss (1969) to

simulate many-body plasmas in plasma physics and then adapted by Christiansen (1973)

to simulate two-dimensional incompressible inviscid and homogeneous fluid flows. This

method was later adapted for the two- and three-dimensional incompressible viscous fluid

flows by Cottet and Koumoutsakos (2000). Cottet and Poncet (2003) proposed a vortex-

in-cell method combined with the penalization method to simulate flow around the body.

The method was proved to be a robust and efficient to simulate flow around two tandem

cylinders, as shown in Appendix A. The vortex-in-cell method was improved to heighten

its numerical accuracy and efficiency by Uchiyama et al. (2014b). Chen et al. (2014)

improved the vortex-in-cell method by introducing the vorticity source term to consider

two-way coupling between two phases, and the accuracy and computational efficiency were

validated in a simulation of rising bubble clusters. Subsequently, a vortex-in-cell method

was proposed by Uchiyama et al. (2015); Uchiyama and Shimada (2014) to simulate a

variety of two-phase flows such as bubbly flows and solid particle-gas flows. The method

is applicable to the simulation of two-phase flows.

1.2 Objective and construction

1.2.1 Objective

The research objective is described as follows:

First, based on the above literature review and previous investigation (Uchiyama

et al., 2015), the semi-L–L approach will continue to be developed to adapt to the

simulations of the gas–liquid two-phase flows around a rigid obstacle.

Second, a comprehensive understanding of the flow phenomena of the gas–liquid two-

phase flows is key to improve the design and control related engineering devices. Therefore,

the characteristics of the evolution of annular bubble, the interaction between a vortex
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ring and a bubble plume, and the flow around a circular cylinder inside a bubble plume

will be clarified.

1.2.2 Construction

The remainder of this dissertation was organized as follows:

In Chapter 2, a semi-L–L approach for the simulation of the gas–liquid two-phase flow

was explained in a detail. The simulation of the evolution of annular bubble plume was

implemented to validate the numerical model. Moreover, the characteristics of the bubbly

flows such as the vortex structure of the liquid phase induced by bubble movement and

the interactions between two phases were discussed.

In Chapter 3, the simulation of a vortex ring launched vertically upward into annular

bubble plume was conducted to investigate the characteristics of the interactions between

a vortex and a bubble plume. The approach was also validated by comparing the

simulation results such as liquid-velocity distribution, vortex-ring displacement, and

bubble entrainment into the vortex ring to the corresponding experimental measurements.

The bubble dynamics and the transportability of the bubbles by a vortex ring were

clarified. Additionally, the effects of entrained bubbles upon the vortex structure were

investigated.

In Chapter 4, the simulation of the gas–liquid two-phase flow around a circular

cylinder was conducted. The numerical method was validated by using some benchmark

simulation and experiment cases. The characteristics of the behavior of the bubble plume

around the cylinder and the induced vortex structure of the liquid phase were clarified.

Conclusion was given in Chapter 5.



Chapter 2

Numerical simulation of an annular bubble plume

2.1 Introduction

In this chapter, the vortex-in-cell method for simulating bubbly two-phase flow (Uchiyama

et al., 2015) is combined with an immersed boundary method, as investigated in Appendix

A, to investigate the evolution of the three-dimensional vortex structure of a liquid flow

induced by an annular bubble plume. The semi-Lagrangian–Lagrangian (semi-L–L)

approach will be described.

A variety of benchmark cases have been used to investigate bubbly two-phase flows,

such as a bubble plume from a single injection point (Schwarz and Turner, 1988; Torvik

and Svendsen, 1990; Socolofsky et al., 2008; Johansen and Boysan, 1988; Swan and

Moros, 1993), plane bubble plume (Alam and Arakeri, 1993; Caballina et al., 2003;

Uchiyama and Degawa, 2008), bubble columns (Sokolichin and Eigenberger, 1997, 1999;

Tabib et al., 2008; Delnoij et al., 1997a,b, 1999), and bubble–laden mixing layer (Yang

et al., 2002). However, in this study, the experimental investigation of the annular bubble

plume by Uchiyama and Kusamichi (2013) is employed to study bubbly two-phase flows.

An annular bubble plume can be considered a distinctive case of a plane bubble plume

in which the injection line is bent into a circle. Bubbles released from an annulus rise

upward due to buoyancy force. The rising bubbles generate vortex structures of various

scales surrounding the bubble plume. New phenomena related to vortex dynamics

generated by an annular bubble plume will be discovered and clarified. The remainder of

this chapter is organized as follows: an explanation of the basic equations for two-phase

flows is given in section 2.2, the numerical simulation method is described in section 2.3,

a discussion of the result is given in section 2.4, and our conclusions are given in section 2.5.

2.2 Basic equations

2.2.1 Assumptions

Simulation of gas–liquid two-phase flow is performed with the following assumptions:

(i) the mixture is a gas–liquid bubbly flow with small entrained bubbles;

10
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(ii) the two phases are incompressible, and no phase change occurs;

(iii) the mass and momentum of the gas phase are very small and negligible compared

to those of the liquid phase; and

(iv) the bubbles conserve their spherical shape, and neither fragmentation nor

coalescence occurs.

2.2.2 Governing equation for liquid and gas phases

The conservation equations for the mass and momentum of the liquid flow, based on the

above-mentioned assumptions, are explained as below (Chen et al., 2014; Sokolichin and

Eigenberger, 1997, 1999; Uchiyama and Matsumura, 2010; Uchiyama and Degawa, 2007,

2008; Uchiyama et al., 2015):

∂αl
∂t

+∇ · (αlu l) = 0 (2.1)

αl
Du l
Dt

= − 1

ρl
∇p+ νl∇2u l + αlg (2.2)

where
Du l
Dt

=
∂u l
∂t

+
(
u l · ∇

)
u l (2.3)

and αl is the liquid volume fraction which satisfies the gas volume fraction αg as follows:

αl + αg = 1 (2.4)

With the above-mentioned assumptions, the forces acting on an individual bubble

include buoyancy force FB, drag force FD, lift force FL, virtual mass force or added

mass force FVM , and pressure gradient force FP . Hence, the momentum equation of the

motion of an individual bubble, proposed by Auton et al. (1988), and recently reviewed

by Sridhar and Katz (1995), Mazzitelli et al. (2003), and employed for E–L model (Fraga

et al., 2016; Krause et al., 2010; Murai and Matsumoto, 2000; Johansen and Boysan, 1988;

Swan and Moros, 1993; Caballina et al., 2003; Delnoij et al., 1997a,b, 1999), and L–L

model (Uchiyama and Matsumura, 2010; Uchiyama and Degawa, 2008), and semi-L–L

model (Chen et al., 2014; Uchiyama and Yagami, 2005), is expressed as follows:

ρgVb
dug
dt

= FB + FD + FL + FVM + FP (2.5)

where

FB =
(
ρgVb − ρlVb

)
g (2.6)

FD =
1

2
CDρlAb|ug − u l|

(
ug − u l

)
(2.7)

FL = −CLρlVb
(
ug − u l

)
× (∇× u l) (2.8)

FVM = CV ρlVb

(Du l
Dt
− dug

dt

)
(2.9)

FP = ρlVb
Du l
Dt

(2.10)
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where Ab = 0.25πd2
b and db is the bubble diameter. Equation (2.5) is rewritten as follows:

dug
dt

=
1 + CV
β + 1

Du l
Dt
− 1

β + CV

3CD
4db
|ug−u l|

(
ug−u l

)
+

β − 1

β + CV
g− CL

β + CV

(
ug−u l

)
×(∇× u l

)
(2.11)

where, β is the density ratio between the gas and the fluid phases, ρg and ρl, and the

virtual mass and lift coefficients equal 0.5. The Reynolds number of bubbles in the current

simulation is less than 100; therefore, the drag coefficient of an individual spherical bubble

is expressed as follows (Chen et al., 2014; Finn et al., 2011; Cihonski et al., 2013; Sridhar

and Katz, 1995; Mazzitelli et al., 2003)

CD =
24

Reb

(
1 + 0.15Re0.687

b

)
(2.12)

where

Reb =
db|ug − u l|

νl
(2.13)

The Lagrangian trajectories of bubbles, x g, are calculated from their velocity as follows:

dx g
dt

= ug (2.14)

2.2.3 Vorticity equation and orthogonal decomposition of liquid velocity

Taking the curl of Eq. (2.2), the velocity–vorticity equation of the fluid phase is derived,

as detailed in Appendix B

∂ω

∂t
+
(
u l · ∇

)
ω =

(
ω · ∇

)
u l +

νl
αl
∇2ω +

1

αl
∇αl ×

(
g − Du l

Dt

)
(2.15)

where the vector vorticity ω is defined as follows:

ω = ∇× u l (2.16)

According to the Helmholtz theorem, velocity u l is represented as the summation of the

curl of a vector potential ψ and the gradient of a scalar potential φ:

u l = ∇×ψ +∇φ (2.17)

The velocity calculated using Eq. (2.17) remains unaltered even when any gradient of the

scalar potential function is added to. To remove this arbitrariness, a solenoidal condition

is imposed on ψ:

∇ ·ψ = 0 (2.18)

Taking the curl of Eq. (2.17) and substituting Eq. (2.18) into the resultant equation, the

vector Poisson equation for ψ is derived as follows:

∇2ψ = −ω (2.19)

When substituting Eq. (2.17) into the continuity equation, Eq. (2.1), and rewriting the

resultant equation by using the relationship ∇ · (∇ × ψ), the Poisson equation of φ is

obtained as follows:
∂αl
∂t

+ αl∇2φ+ (∇φ+∇×ψ) · ∇αl = 0 (2.20)
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2.3 Vortex-in-cell method for bubbly flow

2.3.1 Discretization of vorticity field by vortex elements

The vortex-in-cell (VIC) method discretizes the vorticity field into vortex elements p with

vorticity ωp and their velocity u l, as given by the value of velocity field at their location

x p = (xp, yp, zp). The vorticity–velocity equation, Eq. (2.15), is rewritten based on the

Lagrangian description of vortex elements as follows:

dx p
dt

= u l(x p) (2.21)

dωp
dt

=
(
ω(x p) · ∇

)
u l(x p) +

νl
αl
∇2ω(x p) +

1

αl
∇αl ×

(
g − Du l(x p)

Dt

)
(2.22)

The vortex element velocity x p is calculated using Eq. (2.17) on grid nodes, while ψ

and φ are obtained by solving Poisson Eqs. (2.19) and (2.20), respectively. The vorticity

ω in Eq. (2.19) is ω(x p), and it is obtained by solving Eq. (2.22) considering vortex

stretching, diffusion, and external sources. The vortex elements carrying their vorticity

ω(x p) transport to a new location due to the convection term in Eq. (2.21). Subsequently,

the new vortex elements are created on grid nodes by using an interpolation scheme.

Supposing that after the Lagrangian calculation of Eqs. (2.21) and (2.22), the vortex

elements have vorticity ω(x p) and location x p, the new vortex elements are created at

grid location x q = (xq, yq, zq). The new vortex elements carry vorticity ω(x q) calculated

from ω(x p) as follows:

ω(x q) =

Np∑
p

ωpW
(xq − xp

∆x

)
W
(yq − yp

∆y

)
W
(zq − zp

∆z

)
(2.23)

where Np is the number of vortex elements, ∆x, ∆y, and ∆z are cell widths. W is a

third-order accurate kernel-interpolation function, as shown in detail in Section A.2.2 of

Appendix A.

2.3.2 Calculation of gas volume fraction

The liquid volume fraction calculated using Eq. (2.4) is defined on the grid nodes; there-

fore, the gas volume fraction is computed on the grid nodes as well. Supposing that a

bubble of volume Vb belongs to a cell; the gas volume fraction of this individual bubble is

calculated as follows:

αg =
Vb

∆x∆y∆z
(2.24)

The gas volume fraction obtained using Eq. (2.24) remains unchanged even when the

bubble moves inside the cell. However, the gas volume fraction changes discontinuously

from 1 to 0 when the bubble moves out of the cell, as shown in Fig. 2.2 (a). To overcome

this problem, the gas volume fraction is computed by interpolating the volume of a bubble
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to the grid nodes placed around it, as shown in Fig. 2.1 (b). Considering the one-

dimensional form, the gas volume fraction at grid position x q is calculated from a bubble

at position x g as follows:

αg(xq) =
Vb
∆x

Wα

(xq − xg
∆x

)
(2.25)

where Wα is triangular function, and it was employed in (Cottet and Koumoutsakos, 2000)

as follows:

Wα(ε) =

0 if |ε| > 1

1− |ε| if |ε| ≤ 1
(2.26)

Figure 2.1: Calculation of gas volume fraction. Figures (a) and (b) represent the calcula-

tion of gas volume fraction by using Delta and linear functions, respectively. The bubble

location is represented by circles.

The function, Wα, satisfies the following properties: Wα(ε) ≥ 0,
∞∫
−∞

Wα = 1, and

Wα(0) = 1. This means the value of the gas volume fraction must be positive, the sum

of the volume of bubbles is conserved on grid nodes, and the volume impact of a bubble

on its position is itself, respectively. It may be possible to use Eq. (A.11) instead of Eq.

(2.26), but Eq. (A.11) does not satisfy the above-mentioned properties.

Because Wα is a linear interpolation function, the gas volume fraction in three-

dimensional form is calculated as the product of three one-dimensional forms and is written

as follows:

αg(x q) =
Vb

∆x∆y∆z
Wα

(xq − xg
∆x

)
Wα

(yq − yg
∆y

)
Wα

(zq − zg
∆z

)
(2.27)

For the number of bubbles, Nb, the gas volume fraction is computed by the summation

on each grid point as

αg(x q) =

Nb∑
p

Vb
∆x∆y∆z

Wα

(xq − xg
∆x

)
Wα

(yq − yg
∆y

)
Wα

(zq − zg
∆z

)
(2.28)

2.3.3 Discretization by staggered grid and correction of vorticity field

The capability of the vortex-in-cell method combined with staggered grid schemes has

proven to prevent numerical oscillation and improve accuracy by discretizing equations in

a consistent manner (Uchiyama et al., 2014b). Figure 2.2 shows the arrangement of flow

quantities in a cell. The vector potential, ψ, and vorticity field, ω, are defined on the cell

edges, while the vector liquid velocity, u l is defined on the centers of cell surfaces. The
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scalar potential, φ, and liquid volume fraction, αl, is defined at the cell center.

The process of solving the momentum equation and redistributing vortex particles

onto the grid nodes generates numerical errors. The condition of the vorticity being a

solenoidal vector field is not satisfied; this means ∇·ω 6= 0. To achieve this condition, the

vorticity can be corrected using one of two methods. The first method is the projection

used widely in ’vortex methods community’. Based on Helmholtz’s theorem, the vorticity

field is decomposed into an irrotational (curl-free, ∇×P = 0) vector field and a solenoidal

(divergence-free, ∇ ·Q = 0) vector field as

ω = ∇P +∇×Q (2.29)

Taking divergence operation on both sides of Eq. (2.29), the result is obtained as

∇2P = ∇ · ω (2.30)

The Poisson equation, Eq. (2.30), is solved to obtain P , then the vorticity field is corrected

by eliminating the irrotational term, ∇P , as

ωcorrected = ω −∇P (2.31)

In the second method, the vorticity field is corrected using Eq. (4.10), i.e., ωcorrected =

∇× u l (Uchiyama et al., 2014b), because

∇ · ω = ∇ · (∇× u l) = ∇× (∇ · u l) = 0 (2.32)

The solenoidal condition of the vorticity is satisfied when using one of two methods. It is

noted that no theory is based on to lead a correction of the vorticity using the Eq. (2.31)

or Eq. (4.10). However, these methods were proved as good solutions for this problem by

Uchiyama et al. (2014b), Cottet and Poncet (2002). Due to a requirement of solving the

Poisson equation (2.30), the computational cost using the first method is higher than that

using the second method. In the current simulation, the second method was employed to

correct the vorticity field. In the present simulation, the vorticity correction is performed

after every 50 time steps.

Figure 2.2: Flow quantities arranged on a staggered-grid cell
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2.3.4 Immersed boundary method for no-slip condition

The immersed boundary (IB) method was originally proposed by Peskin (1972) and proved

by Cottet and Poncet (2003) to be robust and applicable for simulating the flow around

a solid body. In the present study, we use an IB method with the VIC method to satisfy

the no-slip condition on the body surface. When using the penalization method (Cottet

and Poncet, 2003), which is a type of immersed boundary method, the vorticity–velocity

equation (Eq. (2.22)) is rewritten as follows:

dωp
dt

=
(
ω(x p)·∇

)
u l(x p)+

νl
αl
∇2ω(x p)+

1

αl
∇αl×

(
g−Du l(x p)

Dt

)
+∇×

[
λχs

(
us−u(x p)

)]
(2.33)

where us is the velocity of the solid body, and λ is the penalization parameter. χs that

classifies the solid and fluid regions is given as follows:

χs(x) =

1 if x ∈ S

0 if x ∈ F
(2.34)

where S and F denote the solid and fluid regions, respectively, as shown in Fig. 2.3. χs

is varied smoothly from 0 to 1 near the fluid–solid interface using a Heaviside function

shown in Section A.2.3 of Appendix A.

Figure 2.3: Two-dimensional configuration of solid and fluid regions S and F , respectively

In the present simulation, we use three-dimensional staggered grids to arrange the

liquid velocity components on the centers of cell surfaces; hence, three χs are created on

three grid systems of liquid velocity components.

Equation (2.33) is solved by splitting methods; therefore, the penalization velocity uλ

term to implement the no-slip condition at the fluid–solid interface is expressed as follows:

du l(x p)

dt
= λχs(us − u l) (2.35)
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By choosing λ = 1
∆t and applying the forward finite-difference scheme, the velocity field

in Eq. (2.35) is computed as

uλ = (1− χs)u l + χsus (2.36)

The penalization vorticity is calculated by summation of its previous simulation time step

value and its change as

ωλ = ω + ∆ω (2.37)

Here, the change in vorticity, ∆ω, is obtained from the change in velocity as

∆ω = ∇× (uλ − u l) (2.38)

When substituting the Eq. (2.36) into Eq. (2.38) and substituting the resulting equation

into Eq. (2.37), the penalization vorticity is calculated as

ωλ = ω +∇× (χs(us − u l)) (2.39)

2.3.5 Numerical procedure

Given a flow at time t, the flow at t+ ∆t is simulated by the following procedure:

(1) calculate the momentum equation of the bubble, Eq. (2.11), to obtain bubble

velocity, ug;

(2) calculate the Lagrangian trajectory of the bubble x g using Eq. (2.14);

(3) calculate the gas volume fraction αg using Eq. (2.28), and the liquid volume

fraction αl using Eq. (2.4);

(4) calculate the strength of ω(x g) using Eq. (2.22) to account for vortex diffusion,

stretching, and external sources;

(5) calculate the convection of liquid elements x p using Eq. (2.21);

(6) calculate the redistribution of liquid vorticity field ω using Eq. (2.23);

(7) calculate the vector potential of liquid ψ using Eq. (2.19);

(8) calculate the scalar potential of liquid φ using Eq. (2.20);

(9) calculate the liquid velocity u l using Eq. (2.17);

(10) calculate the correction of the liquid vorticity field ω using Eq. (2.16);

(11) calculate the penalization velocity uλ using Eq. (2.36) to implement the no-slip

condition at the cylinder surface;

(12) calculate the penalization vorticity ωλ using Eq. (2.39).

Equations (2.11) and (2.14) are calculated using the forward finite-difference scheme.

The fluid velocity on the right-hand side of Eq. (2.11) is obtained by interpolating

from grid location to bubble location by using Eq. (2.23). In Eq. (2.22), the temporal

variation is calculated using the two-step Adams–Bashforth method, the spatial variation

is evaluated using the fourth-order accurate staggered-grid finite-difference scheme.

Fluid particles tracking in Eq. (2.21) is computed using the forward finite-difference

scheme. The Poisson equation (2.19) is solved by employing the Fourier method with the



2.4. RESULT AND DISCUSSION 18

periodic boundary condition. The FFTW3 library (http://www.fftw.org) is employed

to calculate the Fourier transform. After solving Eq. (2.19), the vector of potential is

modified to satisfy the no-slip condition at the wall and the slip condition at the fluid

surface. The Poisson equation (2.20) is solved using the successive-over-relaxation method.

2.4 Result and discussion

2.4.1 Simulation conditions

The simulation conditions are set to be as the same as the experimental conditions

(Uchiyama and Kusamichi, 2013). Figure 2.4 shows the bubbly flow configuration. An

empty cylinder with an outer diameter of D = 58 mm, inner diameter of 0.74D, and height

of 0.8D is placed at the bottom of a tank. The bubbles located around the outer cylinder

surface are released from the height of h = 0.7D. Affected by buoyancy force, the bubbles

rise and induce liquid flow around them. The tank size (Lx × Ly × Lz) is selected to be

similar to the tank used in the experiment, and its dimensions are 5.16D× 5.16D× 5.16D

divided into 100×100×100 cubic cells. Investigation of the effects of various tank sizes on

the dynamics of the bubble plume is very time consuming. Moreover, the effects of various

tank sizes on the dynamics of the bubble plume are out of the scope of this study. This

effect could be considered in the future study. Under the present simulation conditions,

the fluid time scale is larger than the bubble time scale. The value of the time step ∆t

in the simulation is based on an investigation of the bubble plume with the same bubble

diameter (Uchiyama et al., 2015) and is equivalent to the bubble time scale calculated

using the formula τb = d2
b/(36νl) (Caballina et al., 2003). The non-dimensional time step,

(ut/D)∆t, is set to 0.000276. The bubble diameter is generated randomly, and it lies in

the range 0.15–0.25 mm. The bubble diameter is similar to that in the experiment, and

it satisfies the assumptions mentioned in section 2.2.1. Specifically, the bubble diameter

must be smaller than the cell width, ∆x, to avoid any numerical difficulties when solving

Eq. (2.22). Moreover, the release location of the bubbles is selected randomly around the

cylinder. The bubbles are released with zero velocity. The number of bubbles released

satisfies the bubble flow rate Q = 4.1 mm3/s.

In industrial devices handling bubbly flows, bubbles having various diameters are ob-

served depending on the flow regime. Recently, some devices utilizing so-called micro-

bubbles with an extremely small diameter of 0.2 mm or less have been developed for

aeration and cleaning. Their performance is revealed to be much higher than that of the

existing devices. In this paper, the proposed simulation method is applied to the analysis

of the flow laden with such micro-bubbles to demonstrate the applicability and validity.

At the cylinder surfaces, the penalization method explained above is employed to

implement the no-slip condition.

At the bottom and side surfaces of the tank, the liquid velocity is zero (no-slip con-

dition), that is, u l = 0, the vector potential and the scalar potential satisfy the non-



2.4. RESULT AND DISCUSSION 19

Figure 2.4: Configuration of bubbly flow

penetration condition (Uchiyama et al., 2014b; Wong and Reizes, 1984; Raul et al., 1990;

Pasquetti and Bwemba, 1994) and solenoidal condition (∇ · ω = 0), for example, at

x = 2.58D
∂ψx
∂x

= ψy = ψz = 0 (2.40)

∂φ

∂x
= 0 (2.41)

The non-penetration condition is derived from the requirement of mass conservation

at the considered plane as in (Wong and Reizes, 1984)∫∫
S

u l dS =

∫∫
S

(∇×ψ +∇φ) dS
Stokes’s theorem

=

∫∫
S

∇φdS +

∮
L
ψ dl = 0 (2.42)

where S is the plane (x = 2.58D) and L is the closed border of S. Eqs. (2.40) and

(2.41) are a solution of Eq. (2.42). It is noted that the conditions of the vector and

scalar potentials, Eqs. (2.40) and (2.41), do not fulfill all the conditions of liquid-velocity

components (u l = 0). In general, the derivatization of the vector and scalar potentials

can satisfy only the condition of tangential or normal liquid-velocity components, as can

be seen in (Wong and Reizes, 1984). Despite this, in the current method, both no-slip

condition (u l = 0) and non-penetration condition (Eqs.(2.40) and (2.41)) are employed
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for the simulation. This has been proven to be a good combination for the simulation

of wall-bounded flow (Uchiyama et al., 2014b). It is conjectured that applying both

the no-slip and non-penetration conditions at the wall in every time step leads to a

convergence of both conditions in which the vector and scalar potentials asymptote to

satisfy all conditions of liquid-velocity components.

At the fluid surface, the deformation is ignored, and a free-slip condition is assumed

to be applicable. The normal velocity and the gradient of the tangential velocity with

respect to the fluid surface are zero:

uz =
∂ux
∂y

=
∂uz
∂z

= 0 (2.43)

Substituting Eq. (2.12) into Eq. (2.43), the following equations are obtained

∂ψy
∂x
− ∂ψx

∂y
+
∂φ

∂z
= 0 (2.44)

∂2ψz
∂y∂z

− ∂2ψy
∂z2

+
∂

∂z

(∂φ
∂x

)
= 0 (2.45)

∂2ψx
∂z2

− ∂2ψz
∂x∂z

+
∂

∂z

(∂φ
∂y

)
= 0 (2.46)

Eqs. (2.45) and (2.46) are satisfied when the vector and scalar potentials at the top surface

of the domain are calculated as

∂2ψx
∂z2

=
∂2ψy
∂z2

=
∂ψz
∂z

= 0 (2.47)

∂φ

∂z
= 0 (2.48)

The conditions of the vector and scalar potentials (Eqs. (2.47) and (2.48)) and the liquid

velocity (Eq. (2.43)) are applied at the top surface of the domain in every simulation-time

step.

2.4.2 Various scales of vortex structure

The bubbles released from the bottom of the computational domain, as described above,

rise owing to buoyancy force. The movement of bubbles generates various eddies surround-

ing the bubble plume. An eddy is defined as a region with a positive second invariant,

Q , representing the local balance between the shear-strain rate and the magnitude of

vorticity, as mentioned by Jeong and Hussanin (1995), and it is expressed as follows:

Q ≡ 0.5(u2
i,i − ui,jui,j) = −0.5ui,juj,i = 0.5(||Ω||2 − ||S||2) (2.49)

where S and Ω are the symmetric and antisymmetric components of ∇u , and they are

written as Sij = 0.5(ui,j + uj,i and Ωij = 0.5(ui,j + uj,i), respectively. Hence, in this

investigation, we use the Q criterion to analyze formation and deformation of the vortex
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structure.

Figure 2.5 shows the time evolution of the Q value and three-dimensional bubble

distribution, where t∗ is the dimensionless time calculated as t∗ = t(ut/D). In the early

stage of the flow, as seen at t∗ = 5.5, at the fluid surface, two vortex rings called the outer

vortex ring and inner vortex ring are generated outside and inside the bubble plume,

respectively. Subsequently, the outer vortex ring enlarges, while the inner vortex ring

moves downward at t∗ = 8.3. Various vortex rings are observed along the bubble plume.

The vortex rings are deformed as can be seen at t∗ = 11 and 13.8, and this deformation

is explained later. At t∗ = 16.5, the outer vortex ring enlarges continuously, and its

strength decreases. Another vortex ring develops at the fluid surface, and the various

deformed vortex rings inside the bubble plume move downward. These vortex rings are

generated as a result of the meandering motion of the bubble plume and the effect of the

fluid surface. Fully developed flow is observed from t∗ = 18.8.

Figure 2.5: Time evolution of iso-surface of Q . Q = 0.05 is represented by green sur-

faces, three-dimensional bubble distribution is represented by red dots, and the cylinder

is represented by gray surfaces

In figure 2.6, a comparison of the instantaneous bubble distribution on the x-z plane

passing through the plume centerline between the simulation and the experiment is

shown. The bubbles do not move straight upward, but their motion shifts toward the

plume centerline. The bubbles in the experiment are more attracted to the centerline

than the bubbles in the simulation, and there is a greater dispersion of bubbles in the

experiment. The possible causes of this discrepancy are explained by the difference in

bubble release between the simulation and the experiment, as well as the limitation

of simulation time. Under the initial condition, the liquid phase in the simulation is

totally quiescent, while the liquid phase of the experiment is not quiescent. Moreover,

the bubbles in the simulation are equally distributed at the annulus and then released
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regularly over time. In the experiment, the bubbles are distributed in groups and are not

released regularly over time. Therefore, the rising of bubbles is also performed by bubble

groups. The movement of bubbles or the buoyancy flux generates the fluid shear layers.

In the simulation, these shear layers are symmetric with respect to the plume centerline

in the early development stage of the flow. In the experiment, these shear layers are not

symmetric and are not generated equally and regularly. The interaction of irregular fluid

shear layers leads to the generation of eddies on the inside of the bubble plume. These

eddies attract a greater number of bubbles toward the centerline and disperse them. In

addition, the maximum simulation time, t∗ = 32.8, is inadequate to observe completely

the developed stage of the bubble plume.

Figure 2.6: Comparison between simulated and experimental instantaneous bubble distri-

bution on x-z plane passing through plume centerline

In Figure 2.7, the time evolution of the iso-surface of ωz and three-dimensional

bubble distribution are presented. At time t∗ = 8.3 and 9.6, the three-dimensional

vortical flow starts to develop, in which pairs of positive and negative vortex tubes with

green and blue surfaces, respectively, interleave sequentially. These interleaved vortex

tubes twist together slightly at t∗ = 11, 13.8 and significantly at t∗ = 16.5, 18.8. The

vortical flow is fully developed from this time. Ultimately, the three-dimensional vorti-

cal flow spreads out across the computational domain, as can be seen at t∗ = 24.8 and 32.8.

In Figure 2.8, the bubble distribution and vorticity ωy with time variation on the x-z

plane are presented. After the early quasi-stable stage from the beginning to t∗ = 5.5,

the bubble plume starts to behave in a meandering fashion, as can be seen at t∗ = 8.3



2.4. RESULT AND DISCUSSION 23

Figure 2.7: Time evolution of iso-surface of ωz. ωz/(ut/D) = ±0.9 is represented by green

and blue surfaces, respectively, bubble distribution is represented by red dots, and the

cylinder is represented by gray surfaces

due to the primary instability. This primary instability seems to closely resemble that

in thermal plumes (Alam and Arakeri, 1993). The meandering phenomenon is observed

clearly at times t∗ = 11 and 13.8. The vorticity ωy is generated surrounding bubble plume.

Various eddies known as vortex rings are formed as a consequence of the inhomogeneous

distribution of the bubble plume, as can be seen at t∗ = 11, 13.8. The symmetry of the

bubble plume and the vorticity distribution disappear at t∗ = 13.8 and 16.5. The bubbly

flow is fully developed from t∗ = 18.8.

2.4.3 Vector fluid velocity field

Figure 2.9 shows the time evolution of the vector liquid velocity and bubble distribution

at the x-z plane passing through the plume centerline. As explained above, the vortex

structure of flow is composed of vortex rings of various scales. The formation and defor-

mation of these vortex rings are expressed in detail here. At t∗ = 5.5, the bubble plume is

quasi-stable, and the initial development of two vortex rings inside and outside the plume

is observed at the fluid surface. Thereafter, the strength of these vortex rings increases,

as can be seen at t∗ = 8.3. The outer vortex ring enlarges along with the horizontal

direction, while the inner vortex ring moves downward at t∗ = 8.3 and 9.6. Vortex rings

of various scales are formed along the bubble plume because of the inhomogeneous bub-

ble distribution. The bubble plume behaves in a meandering and swaying fashion in this

period. Moreover, at t∗ = 9.6, two tandem vortex rings are observed inside the bubble

plume near the fluid surface. The movement of tandem vortex rings is directed downward

by their own self-induced velocity, with the stronger vortex ring above the weaker vortex

ring. The stronger vortex ring rapidly catches up with the weaker vortex ring and then

interacts with it, as can be seen at t∗ = 11. These two vortex rings penetrate each other,

resulting in the generation of a long deformed eddy, as can be seen at t∗ = 11 and 13.8.
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Figure 2.8: Time evolution of vorticity field ωy and bubble distribution represented by

black dots on x-z plane passing through plume centerline, and cross section of the cylinder

displayed by gray areas

The symmetry with respect to the centerline of the vortex rings and bubble plume is lost

during this time evolution. From t∗ = 16.5, the appearance of a three-dimensional vorti-

cal flow formed by various eddies both inside and outside the bubble plume is observed.

Eventually, an upward velocity inside the bubble plume of the developed flow is illustrated

at t∗ = 24.8 and 32.8, as pointed out in an experimental investigation as well (Uchiyama

and Kusamichi, 2013).

2.4.4 Time-average and time variation of liquid velocity

Figure 2.10 shows the time-averaged vertical liquid velocity denoted as < w > and

computed from t∗ = 5.5 to 9.6 in the transition stage of the annular bubble plume. As

can be seen in this figure, the flow velocity is along the downward direction at the center

of the plume. The liquid velocity peaks at the position of bubble rise, and it decreases

gradually outside the bubble plume. The maximum velocity is observed at the values

x/D = 0.5 and y/D = 0.5. The liquid velocity at three heights along both horizontal

directions x and y is smaller than the terminal velocity ut = 16 mm/s of a single bubble

of diameter db = 0.2 mm rising in the quiescent liquid.

Figure 2.11 shows the effect of grid resolution on the calculation results. The vertical

liquid velocity profiles along horizontal lines passing through the centerline of the bubble

plume at three distinct heights with two grid resolutions of 80×80×80 and 100×100×100
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Figure 2.9: Time evolution of vector liquid velocity and bubble distribution at x-z plane

passing through plume centerline. Bubble distribution is represented by red dots, and

cross-section of the cylinder is displayed by gray areas

Figure 2.10: Profiles of time-averaged vertical liquid velocity (averaged from t∗ = 5.5 to

9.6 in a transition stage) on horizontal lines passing through plume centerline at various

heights shown in the legend

cells are compared. The liquid velocity profiles calculated using both grid resolutions are

similar; therefore, the present simulation converges at 100× 100× 100 cells.

It is known that at a sufficiently high bubble flow rate in the transition stage, the

plane bubble plume meanders along a vertical plane passing through an injection line,

while the annular bubble plume behaves in a meandering fashion along a vertical cylinder

surface passing through an injection annulus. Therefore, the velocity profiles of the

annular bubble plume in this stage are compared with those of the plane bubble plume.

Figure 2.12 shows a comparison between the time-averaged vertical liquid velocity profiles

along both horizontal directions x, y passing through the plume centerline and Gaussian

distributions that have been fitted to the peaks. The liquid velocity is averaged from

t∗ = 5.5 to 9.6 in the transition stage of the flow. The vertical liquid velocity profiles are

scaled with their corresponding maximum velocity and have been shifted horizontally so

that the profile peaks line up. Outside the bubble plume, the liquid profiles are similar to

the theoretically predicted values (Milgram, 1983) and the simulation results (Uchiyama
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Figure 2.11: Effect of grid resolution on vertical liquid velocity profiles (averaged from

t∗ = 5.5 to 9.6 in a transition stage) on horizontal lines passing through plume centerline

at various heights shown in the legend

and Degawa, 2008) for a plane plume. The Gaussian function plotted in the figure is

W (r) = exp(−(r− r0)2/(
√

0.025)2). Inside the bubble plume, the liquid profiles are lower

than the Gaussian distribution and this is ascribed to the fact that the bubble plume

is annular rather than plane. The distributions of vertical liquid velocity are similar on

both horizontal lines.

Figure 2.12: Profiles of time-averaged vertical liquid velocity (averaged from t∗ = 5.5

to 9.6 in a transition stage) on horizontal lines passing through plume centerline at the

various heights shown in the legend. A Gaussian distribution is shown for comparison.

< w >max is the maximum value of < w >

Fluctuation of the vertical liquid velocity, w, with time evolution is measured at six

points, as shown in figure 2.13. The points A1, A2, and A3 lie on a vertical (z-direction)

line pass through the injection annulus. At the heights z/D = 3.7 and 4.4, after increasing

from the beginning to t∗ = 7.5, the vertical liquid velocity at points A2, A3 fluctuate

strongly in the time range of t∗ = 7.5–15. This is ascribed to the effect of the meandering

motion of the bubble plume. The vertical fluid velocity fluctuates following the behavior

of the bubble plume. A positive value of the vertical velocity at these points is observed

from t∗ = 15, and this fact is caused by the bubbly flow developed in this period. By
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contrast, the vertical liquid velocity at point A1 increases from the outset until t∗ = 7.5,

and then, it fluctuates slightly. At this location near the region where the bubbles were

released, the vertical liquid velocity seems to be less affected by the meandering motion

of the bubble plume. The points B1, B2, and B3 are located on the centerline of the

bubble plume at three distinct heights. The vertical liquid velocities at these points are

negative from t∗ = 5 to 20, as explained by a transition effect, before the momentum flux

has diffused into the inner part of the plume, and generated a quasi-steady developed

flow. These values become positive and fluctuate slightly in the developed stage of the flow.

Figure 2.13: Time variation of vertical (z-direction) liquid velocity at six points shown in

the legend

In Fig. 2.14, the fluctuation of horizontal liquid velocity, v, at six points is presented.

At points A2 and A3, the horizontal liquid velocities fluctuate more strongly than that at

point A1. In addition, the horizontal liquid velocity at points A1, A2, and A3 fluctuate

more strongly than those at the points on the bubble plume centerline.

Figure 2.15 shows the RMS value of liquid flow on the horizontal lines passing

through the plume centerline at three distinct heights. Herein, the RMS value of w and

< w > are the root mean square and time-averaged values of vertical liquid velocity,

respectively. The maximum of the RMS of w is observed at x/D = 0.5 and y/D = 0.5,

which correspond to the position at which the bubbles rise. The RMS of w inside the

bubble plume is higher than that outside the bubble plume because of the significant

effect of the annular bubble plume on liquid flow inside the bubble plume. In addition,

the RMS of w at z/D = 2.7 is lower than at z/D = 3.7 and 4.4, and this can be explained

by the fact of that the flow near the bubble release region is affected to a lesser extent.

Figure 2.16 shows a comparison of the distribution of time-averaged vertical liquid

velocity, < w >, on the horizontal line passing through the plume centerline between the

simulation and the experimental results (Uchiyama and Kusamichi, 2013). The vertical

liquid velocity in the simulation is computed by averaging from t∗ = 20 to 32 when the

bubbly flow is fully developed. The vertical liquid velocity is calculated in this period

because the experiment data contains estimates for the fully developed flow stage. The

vertical liquid velocity obtained in the simulation does not agree well with the experimental
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Figure 2.14: Time variation of horizontal (y-direction) liquid velocity at six points shown

in the legend

Figure 2.15: Profiles of RMS of vertical liquid velocity on horizontal lines passing through

plume centerline at the various heights shown in the legend

values. The maximum upward liquid velocity in the experiment is observed at the bubble

plume centerline, while that in the simulation is observed at x/D = 0.25. This could be

explained by the fact that the flow has not fully developed yet, as can be seen in Fig.

2.13 in which there would have been a slow increase in centerline velocity if the simulation

had been further calculated. However, the tendency of the flow in the present simulation

agrees with the experiment. At the center of the bubble plume, in both the simulation and

the experiment, the upward liquid velocity at z/D = 3.7 is higher than those at z/D = 2.7

and 4.4. A gradual decrease in liquid velocity from the rise position of the bubbles to far

outside the bubble plume is seen in both the simulation and the experiment.

2.4.5 A comparison of bubble velocity with liquid velocity and terminal

velocity of a single bubble

A comparison between the instantaneous rise velocity of the two phases is visualized at

cross sections z/D = 2.7, 3.7, and 4.4 at the typical times t∗ = 9.6 and 18.8 as shown in

figure 2.17. At time t∗ = 9.6, the bubble plume is observed to be a state of meandering

motion. The liquid rise velocity is not turbulent at the three heights, as can be seen in

the plots in the top row of the figure. However, at times t∗ = 18.8, the liquid rise velocity

fluctuates slightly at z/D = 3.7 and significantly at z/D = 4.4. The bubble rise velocity

is always higher than the liquid rise velocity at three distinct heights and two specific times.

The ratio of the bubble rise velocity to the terminal bubble velocity is shown in

figure 2.18. The bubble diameter in the present simulation is 0.15–0.25 mm. The bubble
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Figure 2.16: Comparison of time-averaged vertical liquid velocity profiles (averaged from

t∗ = 20 to 32 in a developed stage) on the horizontal lines passing through plume centerline

at the various heights shown in the legend between simulation results and experimental

measurements (Uchiyama and Kusamichi, 2013)

Figure 2.17: Comparison of instantaneous rise velocity between liquid and gas phases.

The bubble rise velocity is visualized as the height of red dot position, and liquid rise

velocity is visualized as curved surface. These velocities are investigated at cross sections

z/D = 2.7, 3.7, and 4.4 at times t∗ = 9.6 and 18.8. The ut is the terminal velocity of a

single bubble of diameter db = 0.2 mm rising in quiescent liquid

velocity is investigated in two flow states, including transition state at t∗ = 9.6 and

developed state at t∗ = 18.8. At the height z/D = 1, the ratio of bubble rise velocity

to ut varies from 1 to 1.5 units at both instantaneous times t∗ = 9.6 and 18.8. The

bubbles with db = 0.2 mm move upward with a ratio of more than one unit. The
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bubbles near the release region are less affected by bubbly flow and rise as isolated single

bubbles in quiescent water. When these bubbles get to a certain height, they are affected

significantly by liquid flow induced by the previous bubbles. At time t∗ = 9.6 and height

z/D = 3.7, 4.4, the ratio is higher than 1.5 units because of the effect of vertical upward

liquid flow. Nevertheless, at t∗ = 18.8 and height z/D = 3.7, 4.4, the ratio varies from 1

to 2 units, and there are even a few bubbles with ratios higher than 2 units. This is due

to the effect of the appearance of three-dimensional flow in this period. This observation

agrees with the experimental result obtained by Uchiyama and Kusamichi (2013), and

the simulation result obtained by Uchiyama and Degawa (2008). With z/D ≥ 2 the

time-averaged bubble velocity is higher than the terminal velocity. The ratio between

bubble velocity and terminal velocity is found to be in the range of 1.2–2 (Uchiyama and

Degawa, 2008). The present investigation uses instantaneous time to offer greater detail

about the effects of each flow development stage on bubble velocity.

Figure 2.18: Ratio of bubble rise velocity wg to terminal velocity ut of a single bubble

of diameter db = 0.2 mm in quiescent water. The ratio value of wg/ut is visualized by

the height of red dot position. The bubble rise velocity is investigated at cross sections

z/D = 1, 3.7, and 4.4 at times t∗ = 9.6 and 18.8 and these cross sections are viewed from

the x-direction (cross-sections degenerate into lines)

Figure 2.19 shows a comparison between the slip velocity and the terminal rise velocity

of a single bubble in quiescent water. Generally, the slip velocity is always smaller than the

terminal rise velocity. During the transition stage of the flow, as can be seen at t∗ = 9.6,

the slip velocity is symmetric with respect to the plume centerline. In the developed stage

of the flow, as can be seen at t∗ = 18.8, the slip velocity is not symmetric and seems to

display random effects caused by turbulence. This is consistent with the developmental

characteristics of the vortical flow, as observed above.
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Figure 2.19: Ratio of slip velocity |ug−ul| to the terminal velocity ut of a single bubble of

diameter db = 0.2 mm in quiescent water. The ratio value of |ug−ul|/ut is visualized by the

height of red dot position. The slip velocity is investigated at cross sections z/D = 1, 3.7,

and 4.4 at times t∗ = 9.6 and 18.8 and these cross sections are viewed from the x-direction

(cross-sections degenerate into lines)

2.4.6 Gas volume fraction distribution

Figure 2.20 shows the time-averaged gas volume fraction distribution on the horizontal

line passing through the plume centerline. The maximum value of the gas volume fraction

is obtained at height z/D = 2.7, while the minimum value is obtained at z/D = 3.7. In

addition, the width of the gas volume fraction profile at height of z/D = 3.7 is greater

than that at the height of z/D = 2.7. This is explained by the meandering motion of

the bubble plume, leading to strong spreading of the bubble distribution in the horizontal

direction at height of z/D = 3.7. In the present simulation, the gas volume fraction is less

than 0.0003.

2.5 Conclusions

The evolution of an annular bubble plume was numerically simulated by using the

semi-L–L approach. The approach is composed of the vortex-in-cell method to solve for

the liquid phase and a Lagrangian description of the gas phase. The characteristics of the

bubbles and induced-liquid flow for the annular bubble plume are remarked as follows:

(1) Vortex structure of the flow, such as vortex rings of various scales is formed and

then deformed. The formation of these vortex rings was found to be a consequence of the

inhomogeneous bubble distribution and the effect of the fluid surface. The interaction,

expansion of these vortex rings, and effect of the bubble plume lead to their deformation.
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Figure 2.20: Profiles of time-averaged gas volume fraction on the horizontal lines passing

through the plume centerline at the various heights shown in the legend

(2) Bubbly flow is stable in the early stage of the flow, and then it rapidly reaches

the transition stage with meandering motion of the bubble plume owing to primary

instability. The annular bubble plume and vortex structures are symmetric with respect

to the plume centerline in this period. Subsequently, the three-dimensional vortical flow

is observed, and the symmetry of bubble plume and the vortex structure disappears.

(3) Time-averaged vertical liquid velocity on the horizontal lines passing through

the plume centerline at three distinct heights was measured. In the transition stage of

the flow, the liquid velocity profiles were close to the theoretically predicted profiles

(Milgram, 1983), and they agreed with the existing numerical results (Uchiyama and

Degawa, 2008). In the fully developed stage of the flow, the time-averaged vertical liquid

velocity in the present simulation does not agree well with the corresponding experimental

measurements. However, the tendencies of the flow, such as the meandering motion of

the bubble plume, and upward velocity inside the bubble plume between the simulation

and the experiment were found to be similar.

(4) The bubble rise velocity is always higher than the liquid rise velocity. The

time-averaged vertical liquid velocity is lower than the terminal bubble velocity at the

bubble flow rate of Q = 4.1 mm3/s. The bubble rise velocity is higher than the bubble

terminal velocity because of the effect of upward liquid flow induced by the bubbles.

This observation agrees with the existing both experimental and simulation results. The

bubble velocity is affected significantly by the height of evolution and the development

stage of the flow. Near the release region, the bubbles rise as a single bubble in the

quiescent liquid. In the transition state, the ratio between bubble velocity and terminal

velocity ranges from 1.5 to 2 units. However, this ratio is in the range of 1 to 2 units
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when the flow is fully developed. This change ascribed to the effect of fully developed

flow on bubble velocity.

(5) Gas volume fraction in the present simulation was less than 0.0003. The time-

averaged gas volume fraction near the bubble release region was higher than that in the

region with meandering motion. However, the width of gas volume fraction distribution

near the bubble release region was smaller. This was caused by spreading of bubbles in

the horizontal direction, in which the meandering motion of the bubble plume appears.
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Nomenclatures

Ab Area of a circle of diameter db

CD, CL, CV Drag, lift, and virtual mass coefficients of the bubble,

respectively

d Signed distance from fluid–solid interface to grid node

db Bubble diameter

D Outer diameter of the cylinder

FB,FD,FL,FVM ,FP Buoyancy, drag, lift, virtual mass, and pressure gradi-

ent forces, respectively

g Gravitational acceleration

Lx, Ly, Lz Tank dimensions

p Pressure

Q Bubble flow rate

Q Vortex identification

Reb Reynolds number of the bubble

S, F Solid and fluid regions, respectively

t time

t∗ Non-dimensional time

u l,ug Liquid and gas velocity, respectively

uS Solid velocity

uλ Penalization velocity

ut Terminal velocity

Vb Bubble volume

W (x) Redistribution function of vorticity

Wα Redistribution function of gas volume fraction

x ,x p,x q Coordinate, vortex-particle location, and grid node lo-

cation, respectively

αl, αg Volume fraction of liquid and gas phases, respectively

ρL, ρg Density of liquid and gas phases, respectively

β Density ratio between gas and liquid phases

ω Vector vorticity of liquid

ωx, ωy, ωz Components of ω

ωλ Penalization vorticity

φ Scalar potential
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ψ Vector potential

ψx, ψy, ψz Components of ψ

νl Liquid kinematic viscosity

λ Penalization parameter

χS Solid-mask function

∆x,∆y,∆z Grid widths

∆t Time-increment

S, Ω Strain and rotation rate tensors, respectively

τb Bubble time-scale

Table 2.1: Nomenclature



Chapter 3

Numerical simulation of the interaction between a

vortex ring and a bubble plume

3.1 Introduction

Bubbly flows are observed in a wide variety of engineering applications such as heat

exchangers, fermentation devices, chemical reactors, and waste treatment systems (Fraga

et al., 2016). A comprehensive understanding of the interaction between the gas and liquid

phases is important for improving designs and controlling engineering devices related to

bubbly two-phase flows. It has been reported that bubble motion is mainly governed by

the vortical flows; hence, the important canonical problem of the interaction between

the bubbles and the vortical flow is often used to discover the characteristics of bubbly

two-phase flows. Vortical flows can be idealized, such as Taylor–Green vortex (Druzhinin

and Elghobashi, 1998; Ferrante and Elghobashi, 2007), Taylor–Couette (Chouippe et al.,

2014), Lamb–Oseen vortex (Oweis et al., 2005), and Taylor vortex (Deng et al., 2006),

and natural phenomena of fluid dynamics of vortex rings(Bergdorf et al., 2007; Sridhar

and Katz, 1999; Finn et al., 2011; Cihonski et al., 2013; Wang et al., 2013; Uchiyama and

Yoshii, 2015a; Uchiyama and Kusamichi, 2013).

The vortex ring, one of the archetypal structures of fluid-dynamic phenomena

(Bergdorf et al., 2007), moves by its own self-induced velocity. When it moves, it can

transport and entrain the bubbles surrounding it. The bubble entrainment into the vortex

ring deforms the ring’s structure. Sridhar and Katz (1999) conducted an experimental

investigation of the effects of five entrained bubbles upon this structure. The vortex

ring was launched perpendicular to the bubble motion, and bubble diameter varied

in the range of 0.25–0.75 mm. Sridhar and Katz demonstrated that, at very low gas

volume fractions, the entrained bubbles can significantly alter the vortex structure. The

distortion of the vortex core is maximal when the bubbles settle. The small bubbles

settle close to the core center, whereas the larger bubbles settle farther away but still

significantly distort this core. Vortex distortion is explained as a result of the change in

liquid momentum owing to bubble entrainment. When the bubbles move to the central

side of the vortex ring, the original circular shape of the vortex core is regained. Moreover,

the vortex-ring strength remains unchanged over the full-time evolution.

36
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Finn et al. (2011) numerically simulated the two-dimensional entrainment of eight bub-

bles in a vortex tube, and the simulation conditions were set similar to the experimental

investigation by Sridhar and Katz (1999). The bubble motion captured in the simulation

was similar to that measured experimentally. The vortex distortion was clarified through

measurements such as vortex asymmetry, core fragmentation, peak vorticity, and angular-

momentum-decay rate. Continuing the work of Finn et al. (2011), Cihonski et al. (2013)

numerically simulated full three-dimensional bubble entrainment into the vortex ring.

They utilized two approaches to modeling the effects of the bubbles upon the vortex ring.

In the first approach, the bubble effects on the flow were modeled based on momentum

point sources calculated using the reaction forces of the fluid acting upon the bubbles. The

gas volume fraction is not considered. In the second approach, the gas volume fraction was

added to the momentum point sources to account for modification of the liquid continuity

and momentum equations. Cihonski et al. (2013) proved that the second approach per-

formed well in reproducing the experimental observation of both the gas and liquid phases.

Wang et al. (2013) numerically investigated the interaction between a vortex ring

and a planar bubble plume. The vortex ring was launched at a Reynolds number of

ReΓ = 5, 200, perpendicular to the bubble-rise direction. Most bubbles were entrained

into the lower part of the vortex core, while some rose and were gradually entrained in

the upper part. As a result of this irregular bubble entrainment, the vorticity value in the

lower part of the vortex core decreased more than that in the upper part. The upper part

of the vortex core moved faster than the lower part, and the entrained bubbles escaped,

mostly accumulating in the wake of the vortex ring. The entrained-bubble effects upon

the vortex-ring circulation were small. The distance of bubble transport induced by this

vortex ring was inversely proportional to the bubble diameter.

The features of particle transport by a vortex ring have been used in various engi-

neering applications. For example, in olfactory-display engineering, a vortex ring is used

to transport a clump of scented air to the observers nose to determine the compound

odor, as in the investigation of Yanagida et al. (2004). Domon et al. (2000) conducted

an experimental investigation of the relationship between particles with a specific gravity

and the feasibility of transporting these particles by a vortex ring. They reported that

particles with specific gravities larger than unity will be scattered out of the vortex

ring, owing to centrifugal forces. However, if their specific gravities are less than unity,

they will be trapped in the vortex core and carried over long distances. Yagami and

Uchiyama (2011) numerically simulated the transport of solid particles by a vortex ring

at ReΓ = 2, 600. They showed that the particle transport depended significantly upon

the particles’s Stokes number (St). The solid particles with St = 0.01 were transported,

while those with St = 1 were not. The transported particles were distributed around the

vortex ring and formed a dome.
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Generally, heavy particles are entrained into the region of low-vorticity-magnitude

values, while light particles accumulate in the region of high-vorticity-magnitude values

(Druzhinin and Elghobashi, 1998; Ferrante and Elghobashi, 2007). Therefore, the inter-

action between a vortical flow and light particles cannot be inferred from the results with

heavy particles. (Uchiyama and Yoshii, 2015a) numerically simulated the entrainment

and transport of the gas bubbles by a vortex ring at ReΓ = 400, 500, and 600. The total

volume of the entrained bubbles in the vortex core is higher for lower values of ReΓ.

Because of the slower convection, the vortex ring remains inside the bubble cluster over

a longer time, and meaning that more bubbles are entrained in the vortex core. The

entrained bubble affects the vortex-core strengthen when ReΓ decreases. The vortex-ring

diameter increases along with its convection, and this increment becomes greater as the

gas volume fraction increases.

Uchiyama and Kusamichi (2013) experimentally examined the interaction of the

bubbles with a vortex ring launched vertically upward at ReΓ = 8063 into a bubble

plume. They reported that bubbles are spirally entrained into the vortex ring just after

its launch. The bubbles moving to the rear of vortex ring are left behind when the vortex

ring reaches a certain height. The gas volume fraction distribution along the horizontal

line passing through the vortex ring’s center increases until a certain displacement is

achieved, after which reduction occurs. The core is deformed with vortex-ring convection,

and vortex-ring circulation is reduced by the entrained bubbles.

However, the characteristics of the interaction between the vortex ring and the bubble

plume have not been fully clarified. The unknown characteristics of this interaction are

as follows: (1) the efficiency of bubble transport by the vortex ring; (2) the mechanism

of bubble motion when they are initialized at and near the core center; and (3) the

effects of entrained bubbles upon the azimuthal instability of the vortex ring. Therefore,

this investigation will throw some light on the problem of the interaction between the

vortex ring and the bubble plume using numerical simulations. The initial conditions

in the simulation are set similar to those in the experimental investigation (Uchiyama

and Kusamichi, 2013). The present simulation is verified by comparing the simulation

measurements, such as the vortex ring displacement, liquid velocity distribution, and

bubble entrainment, to the corresponding experimental measurements. The efficiency

of bubble transport is investigated by calculating the total bubble volume in control

volumes and the bubble-transportation distance. The bubble dynamics are investigated

by calculating the bubble trajectory, bubble velocity, liquid vorticity at bubble location,

and bubble azimuthal motion. The effects of entrained bubbles upon the vortex structure

are clarified by investigating correlations between the gas volume fraction and liquid

vorticity, and between the gas volume fraction and the vortex deformation intensity.

Moreover, the liquid velocity, Q criteria, and vortex ring circulation are investigated. The
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effects of entrained bubbles upon the ring’s azimuthal instability are explained through vi-

sualization of the structure of the vorticity component, ωz, and the energy spectrum of ωz.

In this chapter, the semi-Lagrangian–Lagrangian approach is used to investigate the

interaction between the vortex ring and the bubble plume. The remainder of this chapter is

organized as follows: a discussion of the results is given in section 3.2; and our conclusions

are given in section 3.3.

3.2 Result and discussion

3.2.1 Simulation condition

The simulation conditions are set as the experimental conditions in (Uchiyama and

Kusamichi, 2013). Figure 3.1 shows the configuration of a vortex ring launched into a

bubble plume. An empty cylinder with an outer diameter of D0 = 58 mm, an inner di-

ameter of 0.74D0, and a height of 0.8D0 is placed at the bottom of a tank. The bubbles

located around the outer surface of the cylinder are released from a height of h = 0.7D0.

Under buoyancy, the bubbles rise and induce a water flow around them. The dimensions

of the tank are 4.14D0 × 4.14D0 × 5.16D0 divided into 240 × 240 × 300 cubic cells. The

value of the time step ∆t in the simulation is referenced from a numerical investigation of

annular bubble plume and is equivalent to the time scale of the bubble calculated using

the formula τb = d2
b/(36νl). The non-dimensional time step Γ0∆t/(D0/2)2 is set to 0.0048.

The bubble diameter is generated randomly within a range of 0.15–0.25 mm. The bubble

diameter is similar to the experimental value (Uchiyama and Kusamichi, 2013), and it

satisfies the assumptions mentioned in section 2.2.1. The release location of the bubbles

is selected randomly from the outer cylinder surface. The bubbles are released with zero

velocity. The number of bubbles released satisfies the bubble-flow rate, Q = 4.1 mm3/s.

First, the bubbles are released without interacting with the vortex ring. Due to buoyancy,

the bubbles rise and form a bubble plume. When the bubbly flow is fully developed, a

vortex ring is launched into the bubble plume. The vortex ring at the outset is expressed

as the Gaussian distribution (Bergdorf et al., 2007)

ωθ(x , t = 0) =
Γ0

πσ2
e−(s/σ)2 (3.1)

Here, s2 = (z − ZC)2 + (|(x, y)− (XC , YC)| −R)2, (XC , YC , ZC) is the vortex-ring center,

and R, Γ0, σ are the radius, circulation, and core radius of the vortex ring, respectively.

R and σ equal 0.4655D0 and 0.111D0, respectively. The Reynolds number, ReΓ = Γ0/νl,

based on the vortex-ring circulation and the liquid-kinematic viscosity, is 8, 063. The

initial center location of the vortex ring is (XC , YC , ZC) = (0, 0, 1.2D0).

At the cylinder surfaces, the wall of the tank and the top surface of domain (fluid

surface), the boundary conditions of the liquid are employed as studied in chapter 2.
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Figure 3.1: Configuration of a vortex ring launched into a bubble plume

3.2.2 Validation

Bubble plume

First, the bubble plume without the vortex ring is simulated. Figure 3.2 shows the liquid

velocity and the bubble distribution in the vertical cross section passing through the cylin-

der’s centerline, where t∗ is the non-dimensional time defined by t∗ = tΓ0/(D0/2)2. The

distributions at four time points are presented. The bubbles, released from the cylinder

tip, rise owing to buoyancy and induce a surrounding liquid flow. A meandering motion

occurs due to the induced eddies at t∗ ≥ 330. The characteristics of this bubble plume

were clarified by the previous numerical investigation of annular bubble plume.

Figure 3.2: Time evolution of the vector liquid-velocity field and bubble distribution on

the x-z plane passing through the bubble plume centerline. The liquid velocity field is

represented by blue vectors. The bubble distribution is represented by red dots. A cross

section of the cylinder is displayed by gray areas
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Vortex ring launched into the bubble plume

A vortex ring is launched into the still water. Figure 3.3 shows the time variation of the

displacement of the vortex ring, ZV . The vortex ring convects with a constant velocity.

This displacement agrees well with the experiment (Uchiyama and Kusamichi, 2013).

Figure 3.3: Time evolution of displacement of vortex ring

Figure 3.4 shows the velocity profiles along the horizontal lines passing through the

center of the vortex ring. The profiles of the velocity component, uz, at vortex-ring

displacements of ZV /(D0/2) = 6.9 and 9.03 are depicted. The simulated velocity profiles

agree nearly with the experimental measurement (Uchiyama and Kusamichi, 2013).

Figure 3.4: Profiles of vertical velocity of liquid on horizontal lines passing through vortex-

ring center

When the bubble plume develops until time t∗ = 990, as can be seen in Fig. 3.2,

the bubble distribution at this time is used as the initial condition for the simulation

case of the vortex ring launched vertically upward into the bubble plume. Figure 3.5

shows the time evolution of the vorticity distribution in the vertical central cross-section

of the vortex ring, where the bubbles are also plotted. At t∗ = 5.5, the bubbles above

the vortex ring tend to move to the rear along the vortex core, where they become

spirally entrained. At t∗ = 19.8 and 24.8, the spiral entrainment proceeds further. The
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number of bubbles surrounding the vortex core increases. At t∗ = 29.7, the number

of bubbles around the vortex core is slightly smaller than that at t∗ = 24.8, and

some bubbles are distributed behind the vortex ring. Because the bubbles, moving to

the rear of vortex ring, are affected by an inertial force, they are left behind the vortex ring.

Figure 3.5: Time evolution of vorticity field and bubble distribution on x-z plane passing

through vortex-ring center: Bubbles are represented by black dots

Figure 3.6 shows the experimentally visualized bubbles (Uchiyama and Kusamichi,

2013). The bubble entrainment simulated by the present study is almost the same as that

visualized by the experiment.

Figure 3.6: Experimentally visualized bubbles around vortex ring on x-z plane passing

through vortex-ring center: Bubbles are represented by white dots

Figure 3.7 shows the effects of grid resolution upon the simulation results. The

grid-node variation of the vorticity component ωy at a point P = (0, 0, ZV (t∗ = 27.5)),

and of the vertical velocity of one bubble, are calculated. The simulation results converge

as the grid resolution increases, and the grid resolution used for the present simulation is

240× 240× 300 cubic cells.
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Figure 3.7: Convergence study

3.2.3 Entrainment and transport of bubbles by a vortex ring

The ability of a vortex ring to transport bubbles is investigated through calculation of

the total volumes of the bubbles in three control volumes located concentrically with the

vortex ring. Control volumes 1, 2, and 3 are three-dimensional cylinders and toruses,

respectively, as sketched in Fig. 3.8, and they are expressed by the following equations:x2 + y2 ≤ D2
0

|z − Zv(t)| ≤ D0

(3.2)

x2 + y2 ≤ D2
0

|z − Zv(t)| ≤ D0/2
(3.3)

(
R−

√
x2 + y2

)2
+
(
z − Zv(t)

)2
≤ σ2 (3.4)

Figure 3.8: Configuration of the control volumes. The vortex-ring core is the three-

dimensional gray torus. Control volumes 1 and 2 are the three-dimensional cylinders.

Control volume 3 is the vortex-ring core

In figure 3.9, after increasing from the outset to t∗ = 30, the total volume of bubbles

in control volume 1 decreases in the final stage of the flow. Control volume 2 shows a

space surrounding the vortex core, while control volume 3 shows a space which is the

vortex core. The total volumes of the bubbles in control volumes 2 and 3 increase from

the outset to t∗ = 15 before slightly decreasing in the final stage. The total volume of the

bubbles in control volume 2 almost equals that in control volume 3, meaning that most

bubbles in control volume 2 accumulate in the core. The vortex ring can transport the

bubbles surrounding it over distances.
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Figure 3.9: Time evolution of total bubble volume in the control volumes

The efficiency of transporting bubbles by vortex ring is clarified by investigating their

trajectories and transportation distances. Figure 3.10 shows the vorticity and the bubble

distribution on the x-z plane passing through the vortex-ring center at t∗ = 5.5 and cross

sections A1-A1, A2-A2, A3-A3, and A4-A4, where bubbles are selected to investigate.

Figure 3.11 shows the trajectories of the tracked bubbles over the whole period of the

interaction, from t∗ = 0 to t∗ = 38.5. At the end of the simulation, the vortex ring

reaches a height greater than z/D0 = 5.0. The bubbles, selected from the cross-section

A1-A1, are affected slightly by the wake of the vortex ring, and their displacement

reaches z/D0 = 2.0. They are not transported to a height of z/D0 = 5.0. However,

the bubbles, selected from the cross section A2-A2, are entrained toward the center of

the vortex ring, then accompany it vertically upward. Although they are transported

to a height of z/D0 = 5.0, they do not move around the core of the vortex ring. The

transportation distance of bubbles located behind the vortex ring depends significantly

on the distance, L, between the bubbles and the vortex ring. At ReΓ = 8, 063, with the

distance being L/D0 ≤ 0.5, the bubbles behind the vortex ring are completely transported.

After entrainment into the vortex core, some bubbles selected from the cross section

A3-A3 quickly escape the core. Almost tracked bubbles move together with the vortex

ring, and around the core of the vortex many times. The trajectories of these tracked

bubbles are similar to two-dimensional-helical curves. In the core’s frame of reference,

these entrained bubbles are not stationary. The bubbles, selected from the cross section

A4-A4, are entrained into the rear of the vortex ring and then abandoned behind it. They

are not transported to a height of z/D0 = 5.0. The transport of these bubbles by the

vortex ring is not efficient.

The mechanism of the bubble motion is clarified by calculating the time evolution of

their upward velocity, ugz, as shown in Fig. 3.12. Bubbles 1, 2, and 3, selected from the

cross section A1-A1, move at an almost constant velocity. They do not move along with
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Figure 3.10: Vorticity and bubble distributions at t∗ = 5.5 on the x-z plane passing

through the vortex-ring center, and cross sections A1-A1, A2-A2, A3-A3, and A4-A4

Figure 3.11: Trajectories of the bubbles over the whole period of the interaction between

the vortex ring and bubble plume. These bubbles are selected from cross sections A1-A1,

A2-A2, A3-A3, and A4-A4 at time t∗ = 5.5

the vortex ring, their motions are dominated by buoyancy, and their velocities are similar

to the terminal velocity of a single bubble rising in quiescent water. Bubbles 4, 5, and 6,

selected from the cross section A2-A2, are entrained towards the vortex-ring center, their

velocities increase significantly. Subsequently, they move together with the vortex ring,

and their velocities decline strongly. Bubbles 7, 8, and 9, selected from the cross section

A3-A3, accelerate when they move from the rear to the central side of the vortex ring.

In the vortex core, they decelerate and move around the core. When located below the
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core fringe, they accelerate again. Their upward velocity is nearly periodic and gradually

extinguished by the vortex-ring convection. Bubbles 10, 11, and 12, selected from the

cross section A4-A4, move with negative velocity when they are attracted to the rear of

the vortex ring. Subsequently, abandoned behind, they move at a speed slightly higher

than terminal velocity.

Figure 3.12: Time evolution of vertical velocity of bubbles

Figure 3.13 shows the vorticity magnitudes at the trajectories of the tracked bubbles

and at the core center. The core center is the position of the maximum of the vorticity

magnitude, while at the vortex-ring center the vorticity magnitude is negligible. The

bubbles, selected from the cross sections A1-A1, A2-A2, and A4-A4, settle far from the

core center. Therefore, the vorticity-magnitude values at these bubbles are much smaller

than those at the core center. However, the vorticity magnitude at the trajectories of

three bubbles, selected from the cross section A3-A3, gradually approaches to those at

core center. In other words, these bubbles are entrained into the core center. From

the figure, the fastest process of bubble entrainment into the core center is observed on

bubble 8, following bubbles 9 and 7, respectively. Bubble 8 is entrained near the core

from t∗ = 12.5, and then moves around the core center. At the end of the simulation,

the vorticity-magnitude values at the trajectories of these bubbles and at the core center

almost converge. The speed of the bubble entrainment into the core depends significantly

on the correlative initial position between the bubble and the core center.

The dependence of the bubble motion upon the correlative initial position between the

bubble and the core center is further investigated. Figure 3.14 shows the time evolution

of the vertical velocity of bubbles 13, 14, and 15 initialized at the core center and the

vorticity-magnitude value at the positions of these bubbles. Their upward velocity and

the vorticity-magnitude values at these bubbles fluctuate slightly, as compared to bubbles
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Figure 3.13: Time variation of liquid-vorticity magnitude calculated at the position of

tracked bubbles and at core center

7, 8, and 9. The motion of these bubbles is more stable than those selected from the cross

section A3-A3. In the core’s frame of reference, they are almost stationary.

Figure 3.14: a) Time evolution of the upward velocity of bubbles initialized at core center;

b) time evolution of the vorticity magnitude calculated at the positions of the bubbles

initialized at core center

The azimuthal motion of the bubbles, selected from the cross sections A2-A2 and

A3-A3, is investigated. Figure 3.15 shows a projection of the trajectories of the tracked

bubbles onto the bottom of the domain. In general, the azimuthal displacement of the

bubbles is small. The motion of the bubbles is almost in two dimensions. This is ascribed

to the fact of that the vorticity component, ωz, is small compared to the ωx and ωy

components. The motion of these bubbles is dominated by the two-dimensional vortex

structure . After being entrained toward the center of the vortex ring, the azimuthal

displacement of the bubbles selected from the cross section A2-A2 is observed. Some

bubbles, selected from the cross section A3-A3, do not move around the core, and their

azimuthal displacement is not observed, while the bubbles with trajectories similar to

helical shapes, their azimuthal displacement is observed. This is explained as a fact
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that these bubbles locate in the core longer than other bubbles. The core in which has

the most significant impact on the azimuthal motion of the bubbles. The azimuthal

displacement of these bubbles fluctuates and increases with the time evolution.

Figure 3.15: A top-bottom view of bubble trajectories over whole period of interaction

Figure 3.16 shows the azimuthal velocity, ug−θ, of the bubbles selected from the

cross sections A2-A2 and A3-A3. This velocity is obtained by transforming ug from

the Cartesian coordinate system to the cylindrical coordinate system. The azimuthal

velocities of bubbles 4, 5, and 6 selected from the cross section A2-A2 are almost zero in

the range from the outset to t∗ = 20. These velocities change significantly when these

bubbles are entrained into the central side of the vortex ring. The fluctuation of these

bubble velocities is not observed, because they do not move around the core. By contrast,

the azimuthal velocities of bubbles 7, 8, and 9 selected from the cross section A3-A3

fluctuate slightly in the early stage and strongly from t∗ = 15, owing to the growth of

vorticity component ωz, as explained later.

Figure 3.16: Time evolution of azimuthal velocity of bubbles

The azimuthal bubble motion is further clarified by comparing the azimuthal velocity

of the bubble to the azimuthal velocity of the liquid calculated at these bubble location.

In Fig. 3.17, when bubbles 7 and 8, selected from the cross section A3-A3, are located

far from the core center, their azimuthal motion is less controlled by the liquid. The
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azimuthal velocity of the bubbles is much smaller than that of the liquid during this

period. When these bubbles approach the core center, their azimuthal motion is more

controlled by the liquid. The azimuthal velocity of the bubbles almost equals the liquid

velocity. This is caused by the bubbles being closer to the core center, making their

motion more stable.

Figure 3.17: Azimuthal velocity of two bubbles and of liquid calculated at these bubble

locations

3.2.4 Effects of entrained bubbles upon vortex structure

The effects of the entrained bubbles upon the vortex structure are investigated. Figure

3.18 shows a comparison of the vorticity profiles along the horizontal lines passing through

the vortex-ring center between two simulation cases. In the early stage of flow, as can

be seen at t∗ = 5.5, the effects of the entrained bubbles on the vorticity distribution

are low. This is explained as the fact that the total volume of the entrained bubbles in

the vortex core is small and the accumulation of vortex-stretching effects is inadequate.

These effects increase with time, as can be seen at t∗ = 16.5, 27.5, and 33. The

vorticity values at the core center reduce significantly, owing to the bubble entrainment.

The vorticity-distribution peaks reduce gradually with the flow evolution. Uchiyama

and Kusamichi (2013) showed that the entrained bubbles cause the decrement of the

absolute value of the vorticity around the vortex core, reducing the vortex-ring strength.

The present simulation results are favorably parallel with the experimental measurements.

To clarify the relationship between the entrained bubbles and the vortex deformation,

the gas volume fraction and vortex-deformation intensity are calculated. As shown in

Fig. 3.19, the vortex structure is deformed at the entrained-bubble locations, and the

deformation peak is at the core center. Moreover, the deformation intensity is nearly

directly proportional to the total volume of the entrained bubbles.

Figure 3.20 shows the effects of the entrained bubbles upon the vertical liquid-velocity

distribution. In general, at three distinct time points, the entrained bubbles increase the

liquid velocity. At t∗ = 5.5, the effects of the entrained bubbles upon the liquid velocity

are small, owing to the small amount volume of entrained bubbles in the vortex core.

These effects increase with the time evolution. The maximum effects are at the core
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Figure 3.18: Profiles of liquid vorticity ωy along horizontal lines passing through vortex-

ring center at four time points

Figure 3.19: Profiles of the gas-volume fraction and vortex-deformation intensity along

the horizontal lines passing through the vortex-ring center at two times in two simulation

cases. The vortex-deformation intensity is ∆ω/∆ωmax, where ∆ω = ||ωcase1| − |ωcase2||

center, and the liquid velocity is increased by 33.33%, as can be seen at t∗ = 27.5.

Figure 3.20: (a) Profiles of upward liquid velocity on a vertical line passing through the

core center in two simulation cases at three point time points. (b) Configuration on the

vertical line, where liquid velocity is investigated
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The effects of the entrained bubbles upon the vortex structure are further clarified

by investigating the time evolution of Q-contour lines. The Q-criteria, a type of vortex

identification method, represented as the balance between the local shear-strain rate and

vorticity magnitude, is used to determine a three-dimensional vortex core (Jeong and Hus-

sanin, 1995). Q is calculated as Q ≡ 0.5(u2
i,i−ui,jui,j) = −0.5ui,juj,i = 0.5(||Ω||2− ||S||2),

where Sij = 0.5(ui,j +uj,i) and Ωij = 0.5(ui,j−uj,i). Figure 3.21 shows the time evolution

of the Q-contour lines. In the plots along the top row of Fig. 3.21, when a vortex ring

is launched into still water, the shape of the Q-contour lines is conserved over the whole

time evolution. By contrast, in the plots on the bottom row of Fig. 3.21, when the vortex

ring is launched into the bubble plume, the shapes of Q-contour lines are not conserved

over the whole period. In the early stage of flow, as shown at t∗ = 5.5, the Q-contour

lines almost remain unchanged. They are then deformed, as shown at t∗ = 16.5 and 27.5.

The vortex structure is fragmented into multiple regions with the highest values of Q

settled at their centers. The Q-contour lines with maximum values are first deformed,

followed by those with lower values. This deformation starts at the position of high

entrained-bubble concentration or at the core center, and spreads gradually to the core

fringe, as shown at contours Q = 0.5 and 1 at times t∗ = 16.5 and 27.5.

Figure 3.21: Time evolution of Q-contour lines on the transverse planes passing through

the vortex-ring center

The time evolution of the vortex-ring circulation is investigated,as shown in Fig. 3.22.

The circulation is calculated on the x-z plane passing through the vortex-ring center as

follows (Bergdorf et al., 2007):

Γ =
1

2

∫∫
A+

ωydxdz −
1

2

∫∫
A−

ωydxdz (3.5)
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where A+ = [0, D0] × [−0.5D0 + zv(t), 0.5D0 + zv(t)] and A− = [−D0, 0] × [−0.5D0 +

zv(t), 0.5D0 + zv(t)]. The circulation is calculated using this control area to avoid the

effects of a vortex at the cylinder tip. The circulation of the vortex ring launched into

the bubble plume is slightly smaller than that launched into the still water. This agrees

with the experimental measurements by Sridhar and Katz (1999), Wang et al. (2013),

and Uchiyama and Yoshii (2015a).

Figure 3.22: Time evolution of the vortex-ring circulation

Finally, the effects of the entrained bubbles upon the vortex-ring instability are

investigated. This instability is expressed through visualization of the structure of ωz

and the energy spectrum of ωz. Figure 3.23 shows the time evolution of the vorticity

component ωz in two simulation cases. In the plots on the top row of Fig. 3.23, the case

of the vortex ring launched into still water, ωz is constructed by arranging eight smaller

clockwise and counterclockwise cores. These cores, visualized by red and green surfaces,

interleave evenly. The strength of these cores increases with time. In the plots on the

bottom row of Fig. 3.23, the case of the vortex ring launched into the bubble plume, ωz is

deformed in the early stage of the flow and then disturbed with time due to the entrained-

bubble effects. The vorticity-component structure is broken up into multiple smaller scales.

The effects of the entrained bubbles on the vortex-ring instability are clarified by

calculating the energy spectrum of ωz. In case of the vortex ring launched into still water,

the values of ωz along a circle of radius R, are calculated. In case of the vortex ring

launched into the bubble plume, the values of ωz along three circles of radius R-σ, R, and

R+σ are computed. These circles are concentric with the vortex ring. The values of ωz

along these circles are measured at three time-points, t∗ = 5.5, 16.5, and 27.5, and then

calculated by the Fourier transform. Figure 3.24 shows the energy spectrum of ωz along

these circles. In column (a), when vortex ring is launched into still water, one significant

harmonic oscillation with mode (referred to m) = 8 is observed over the whole time

evolution. The energy of this harmonic oscillation increases with time. In column (b),
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Figure 3.23: Time evolution of the vorticity component ωz in two simulation cases: Isosur-

faces of ωz(D0/2)2/Γ0 at values ±0.025 and ±0.05 are represented in the top and bottom

rows, respectively. The positive and negative values of ωz are represented by the red and

green surfaces, respectively

the case of the vortex ring launched into the bubble plume, the energy is transferred to

the second harmonic oscillation with m = 16 at t∗ = 16.5 and then to the third harmonic

oscillation with m = 24 at t∗ = 27.5. Bergdorf et al. (2007) pointed out that, in the

case of the vortex ring launched into the still water, after a long evolution of the vortex

structure, the second and third harmonics appear sequentially. Therefore, it is clear

that the entrained bubbles excite growth rate of the azimuthal instability of the vortex ring.

3.3 Conclusions

The interaction between the vortex ring and the bubble plume was simulated using a

semi-Lagrangian–Lagrangian approach. This approach is composed of the vortex-in-cell

method for the liquid phase and a Lagrangian description for the gas phase. The charac-

teristics of the bubble plume, liquid-velocity distribution, vortex-ring displacement, and

bubble entrainment into the vortex ring were compared favorably with the corresponding

experimental measurements. Our conclusions are given as follows:

(1) The vortex ring can transport the surrounding bubbles. The transportation



3.3. CONCLUSIONS 54

F
ig

u
re

3.
24

:
E

n
er

gy
sp

ec
tr

u
m

of
ω
z



3.3. CONCLUSIONS 55

distance of bubbles significantly depends upon the correlative initial position between the

bubbles and the core center. The bubbles initialized behind the vortex ring at a distance

of less than a half of vortex ring’s diameter are completely transported by the vortex ring.

For greater initial distances, the bubbles are left behind the vortex ring. The bubbles

initialized above the vortex ring are transported less efficiently. They are left behind

when they move to the rear of the vortex ring.

(2) The bubble dynamics have the following characteristics. The entrained bubbles

prefer to distribute near the core center of the vortex ring. The bubbles initialized near

the core center are rapidly entrained, while the bubbles initialized far away take more

time to distribute near the core center. The motion of these bubbles is nearly periodic

and gradually extinguished with the time evolution. The bubble trajectories are similar

to two-dimensional helical shapes. The bubbles initialized at the core center just move

along with the vortex ring, and their motion is more stable than that of bubbles initialized

farther from the core center. The azimuthal motion of the entrained bubbles increases

when they are close to the core center. With time evolution, the azimuthal motion of

these bubbles is gradually controlled by the azimuthal motion of the liquid phase. The

bubble velocity equals the liquid at the bubble location.

(3) The effects of the entrained bubbles upon the vortex structure were clarified. The

entrained bubbles deform the vortex structure, and this deformation increases with the

vortex-ring convection. The deformation intensity is nearly directly proportional to the

total volume of the entrained bubbles, and the deformation peak is observed at the core

center. This deformation starts at the position of high entrained-bubble concentration,

gradually spreading from the core center to the core fringe. The vortex core is fragmented

into multiple regions with high values of Q settling at the centers of these regions.

Although the entrained bubbles enhance the upward liquid velocity of the core center,

the vortex-ring circulation remains almost unchanged.

(4) The entrained-bubbles excite the growth rate of the azimuthal instability of the

vortex ring. In the case of a vortex ring launched into still water, one harmonic oscillation

with mode = 8 is observed during its evolution. In the case of a vortex ring launched into

the bubble plume, a second harmonic oscillation with mode = 16 and a third harmonic

oscillation with mode = 24 appear sequentially during its evolution.
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Nomenclatures

CD, CL, CV Drag, lift, and virtual mass coefficients of the bubble,

respectively

d Signed distance from fluid–solid interface to grid node

db Bubble diameter

D0 Outer diameter of the cylinder

FB,FD,FL,FVM ,FP Buoyancy, drag, lift, virtual mass, and pressure gradi-

ent forces, respectively

g Gravitational acceleration

Nt Number of simulation time steps

p Pressure

Q Bubble flow rate

Q Second invariant of velocity gradient tensor

R Vortex-ring radius

RMS Root mean square

Reb Bubble Reynolds number

ReΓ = Γ0/νl Vortex-ring Reynolds number

S, F Solid and fluid regions, respectively

t time

t∗ Non-dimensional time

u l,ug Liquid and gas velocity, respectively

ub−θ Bubble azimuthal velocity

uλ Penalization velocity

Vb Bubble volume

W Redistribution function of vorticity

x ,x p,x q Coordinate, vortex-particle location, and grid node lo-

cation, respectively

ZV Vortex-ring displacement

XC , YC , ZC Initial location of vortex-ring center

αl, αg Volume fraction of liquid and gas phases, respectively

ρL, ρg Density of liquid and gas phases, respectively

β Density ratio between gas and liquid phases

ω Vector liquid vorticity

ωx, ωy, ωz Components of ω
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ωλ Penalization vorticity

φ Scalar potential

ψ Vector potential

ψx, ψy, ψz Components of ψ

νl Liquid kinematic viscosity

λ Penalization parameter

χS Solid-mask function

∆x,∆y,∆z Grid widths

∆t Time-increment

S, Ω Strain and rotation rate tensors, respectively

τb Bubble time-scale

Γ0 Vortex-ring circulation

σ Core radius of the vortex ring

ux, uy, uz Liquid velocity components

uθ Liquid azimuthal velocity

uS Solid velocity

ut Bubble terminal velocity

Vb−control Total volume of bubbles in the control volume

Wα Redistribution function of gas-volume fraction

Table 3.1: Nomenclature



Chapter 4

Numerical simulation of bubbly flow around a

cylinder

4.1 Introduction

Gas–liquid two-phase flows around rigid obstacles are observed widely in engineering

applications, such as shell and tube heat exchangers, steam generators, and condensers.

A comprehensive understanding of the phenomena of gas–liquid two-phase flows around

obstacles would allow for improved design and control of related engineering devices.

Therefore, several researchers investigated their characteristics by generating a liquid

flow around obstacles at a Reynolds number with a mixture of entrained bubbles in the

upstream region, such as Inoue et al. (1986), Yokosawa et al. (1986), Lian et al. (1999),

Uchiyama (2003a,b), Sugiyama et al. (2001), Bamardouf and McNeil (2009), Huang et al.

(2006), and Degawa and Uchiyama (2008).

Free bubbly flow around obstacles was described by Murai et al. (2005) as first a

free rise of bubbles inducing liquid flow and then the movement of both phases around

the obstacles. Furthermore, the spatial scale of the two-phase convection was shown

to depend sensitively upon the cylinder shape. All cylinder types studied, including a

circular, square, triangular, ellipsoidal, and star cylinder, induced a wide single-phase

wake region behind them that was much larger than the cross-section of the corresponding

cylinder. A free bubbly flow of a bubble plume composed of five plane bubble plumes

around a circular cylinder was investigated by Uchiyama and Ishiguro (2016). They

showed that bubbles distributed along the lower half of the surface of the cylinder before

separating from both sides of the cylinder to form bubble layers that convected almost

vertically. Although the bubbles were entrained into the plume centerline downstream,

they hardly distributed just behind the cylinder. The water shear layers also were shown

to separate at both sides of the cylinder and roll up to form large-scale eddies that

entrained the surrounding bubbles. However, many characteristics of the free bubbly flow

around an obstacle have not yet been clarified, such as a vortex structure induced by the

bubble plume, the slip velocity of the bubbles, or the relation between the patterns of the

liquid and gas phases. Therefore, this work aims to clarify the characteristics of a free

bubbly flow around an obstacle using numerical simulations using a circular cylinder to

58
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represent the obstacle.

Thus far, three approaches have been used in computational fluid dynamics to

simulate bubbly flows around an obstacle: Eulerian–Eulerian (E–E) (Uchiyama, 2003a,b;

Bamardouf and McNeil, 2009), Eulerian–Lagrangian (E–L) (Sugiyama et al., 2001),

and Lagrangian–Lagrangian (L–L) (Huang et al., 2006; Degawa and Uchiyama, 2008).

This classification is based on a mathematical description of each phase, with which its

governing equations are solved using either a mesh-free method or mesh-based method.

Here, a semi-Lagrangian–Lagrangian (semi-L–L) method composed of a vortex-in-cell

(VIC) method for the liquid phase and a Lagrangian description of the gas phase is

developed, based on previous investigations, for the simulation of a bubbly flow around

an obstacle.

The VIC method is a semi-Lagrangian (semi-L) method known as a remeshed vortex

particle, hybrid E–L vortex method that has been extensively used for the simulation

of incompressible flows. This method generally uses the vortex particles’s transport

conservative quantities and a grid-based formula to calculate the flow fields (Cottet and

Poncet, 2003). The liquid flow is discretized into vortex particles that carry the liquid

momentum in term of vorticity and move at the local liquid velocity field at the particle

locations. Subsequently, the vortex particles are redistributed on the regular grid using

interpolation schemes that ensure momentum conservation. The velocity and vorticity

fields are then calculated on the grid nodes by solving the Poisson and momentum

equations, respectively. The hybrid vortex method takes advantage of the mesh-based

Eulerian method to remedy disadvantages of the mesh-free Lagrangian vortex method,

while still benefiting from its advantages. First, the velocity is obtained in the Lagrangian

vortex method using the Biot–Savart integral formula, in which the calculation of the

velocity of each vortex element needs at least (N − 1) multiplications from the rest of

vortex elements, leading to a total computational cost of O(N2) operations for N vortex

elements, also known as N -body problem in celestial mechanics. However, the computa-

tional cost decreases significantly if the velocity field is obtained by solving the Poisson

equation using a mesh-based method such as the successive-over-relaxation method with

O(N3/2) operations and the fast-Fourier-transform method with O(Nlog2N) operations.

Second, the calculation of the momentum equation using the mesh-based method uses a

smart grid system, in which the flow quantities are discretized in a consistent manner

to improve the method’s accuracy and efficiency (Uchiyama et al., 2014b). Third, using

redistribution schemes overcomes a persistent problem of the Lagrangian vortex method

in which the vortex distribution is distorted with time, leading to a loss of accuracy, also

known as vortex overlap issues. Due to the Lagrangian nature and fluid strain, the vortex

elements cluster, leading to a lack of vortex elements in some regions in which a number

of the vortex particles required to be adequate to satisfy a continuousness of the vorticity

field (Barba et al., 2003). Fourth, the use of the Eulerian grid formula allows combining
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the method with an immersed boundary (IB) method to implement the no-slip condition

of the liquid flow on the surface of the solid obstacles of arbitrary shapes. The current

method also takes advantage of the Lagrangian vortex method, which supplies a natural

description of fluid dynamics and has a superior capability to analyze the evolution of a

vortex structure, such as the formation, deformation, and decay of eddies of various scales.

In the VIC method, the liquid flow is described in the Lagrangian frame, the convection

term is solved using a linear equation, this offering a lower numerical dissipation than

when using the nonlinear convection equation in the Eulerian frame.

The VIC method was proposed by Christiansen (1973) to simulate two-dimensional

incompressible inviscid and homogeneous fluid flows and then adapted for two- and

three-dimensional incompressible viscous fluid flows by Cottet and Koumoutsakos (2000).

Cottet and Poncet (2002) then proposed a VIC method combined with a penalization

method to simulate flow around a body. Uchiyama et al. (2014b) further improved the

VIC method to heighten its numerical accuracy and efficiency. The VIC method was

proved to be robust and efficient to simulate flow around two tandem cylinders, as studied

in Appendix A. The VIC method has also been used to simulate a variety of two-phase

flows such as bubbly flows by Uchiyama and Yoshii (2015b) and solid particle-gas flows

by Uchiyama and Shimada (2014). In this study, the VIC method to simulate bubbly

flow is combined with an IB method to investigate the characteristics of a bubbly flow

around a circular cylinder. The remainder of this chapter is organized as follows: the

numerical method is explained in section 4.2, the results are discussed in section 4.3, and

conclusions are given in section 4.4.

4.2 Numerical method

Simulation of gas–liquid two-phase flows is performed using the following assumptions:

(i) the mixture is a gas–liquid bubbly flow with small entrained bubbles;

(ii) the two phases are incompressible, and no phase change occurs;

(iii) the mass and momentum of the gas phase are very small and negligible, respec-

tively, compared to those of the liquid phase; and

(iv) the bubbles conserve their spherical shape, and neither fragmentation nor coales-

cence occurs.

4.2.1 Basic equation

Based on these assumptions, the mass and momentum conservation equations for the

liquid phase are explained as (Uchiyama and Yoshii, 2015b; Sokolichin and Eigenberger,

1997, 1999):
∂αl
∂t

+∇ · (αlu l) = 0 (4.1)
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αl
Du l
Dt

= − 1

ρl
∇p+ νl∇2u l + αlg (4.2)

where,
Du l
Dt

=
∂u l
∂t

+
(
u l · ∇

)
u l (4.3)

and αl is the liquid volume fraction, which correlates with the gas volume fraction αg by

αl + αg = 1 (4.4)

The momentum equation for the motion of an individual spherical bubble, proposed by

Auton et al. (1988), reviewed by Sridhar and Katz (1995), and employed in the semi-L–L

model in previous investigations, is expressed as

ρgVb
dug
dt

= FB + FD + FL + FVM + FP (4.5)

where FB, FD, FL, FVM , and FP are forces acting upon a spherical bubble and have

been expressed by Sridhar and Katz (1995), as shown in section 2.2.2. Eq. (4.5) can then

be rewritten as follows:

dug
dt

=
1 + CV
β + 1

Du l
Dt
− 1

β + CV

3CD
4db
|ug−u l|

(
ug−u l

)
+

β − 1

β + CV
g− CL

β + CV

(
ug−u l

)
×(∇× u l

)
(4.6)

where β is the density ratio between the gas and liquid phases and the virtual-mass and

the lift coefficients on a spherical bubble, CV and CL, respectively, moving at low Reynolds

numbers, equal 0.5. The drag coefficient on a spherical bubble is calculated as (Uchiyama

and Yoshii, 2015b; Sridhar and Katz, 1995)

CD =
24

Reb

(
1 + 0.15Re0.687

b

)
(4.7)

where Reb = db|ug − u l|/νl. The Lagrangian trajectory of an individual spherical bubble

is calculated as
dx g
dt

= ug (4.8)

When a bubble rises in the liquid, its shape can be deformed with time. This deformation

is dominated by Reynolds number (Reb = utdb/ν), Bond number (Bo = ρlgdb/σs), density

and viscosity ratios of two phases, and initial bubble shape (Hua and Lou, 2007). Herein,

ut is the terminal velocity of a single bubble rising in the liquid, σs is interfacial tension.

The trajectory of the bubbles depends on the level of deformation and their shape after

deformed. For example, the ellipsoidal bubbles of a mean diameter of db = 4.4-5.6 mm

move in a zigzag fashion in the investigation by Wang and Socolofsky (2015). Tomiyama

et al. (2002) investigated the bubbles of diameters of db = 2− 4 mm and showed that the

bubbles move in either from small zigzag to large zigzag or helical fashions or from small to

large helical fashions. The above investigations can capture well the bubble deformation

with their rising; however, number of bubbles investigated to be limited less than 100. Hua

and Lou (2007) reported that with Reb < 1 or Bo < 1 the bubbles rise in a steady (not

zigzag or helical) fashion and their spherical shape remain unchanged over time evolution.
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In the current investigation, Reb of a single bubble of a diameter of db = 0.054 mm is

calculated as 0.084. Therefore, the bubble is assumed to be maintained in the spherical

shape and moves in a steady fashion. In addition, the flow moving at Re = 0.084� 1 with

uniform at far field is considered as Stokes flow (creeping flow) which has no wake induced

behind the sphere. In the case of multiple bubbles, the wake behind each sphere is probably

narrow, weak, and steady. The interaction of these wakes is not strong enough to induce

turbulence which spreads the bubbles. Therefore, the above-mentioned assumptions are

acceptable, and the Eqs. (4.5) and (4.8) are applicable for the current simulation. In

Eqs. (4.5) and (4.8), the rotational motion of the bubble around its centerline is also

ignored. In the current model, the gas volume fraction is applied; this means that the

bubble size must be smaller than the cell size. The flow scale at the bubble diameter is

not resolved. The current model is appropriate for the present simulation condition of a

continuous release of the extremely small bubbles from the tank bottom and can handle

the high computational cost when number of released bubbles reach 106.

4.2.2 Vorticity and velocity orthogonal decomposition

Taking the curl of both sides of Eq. (2), the vorticity–velocity equation for the liquid

phase is derived as

∂ω

∂t
+
(
u l · ∇

)
ω =

(
ω · ∇

)
u l +

νl
αl
∇2ω +

1

αl
∇αl ×

(
g − Du l

Dt

)
(4.9)

where the vorticity field is defined as

ω = ∇× u l (4.10)

Based on Helmholtz’s theorem, the liquid velocity field is resolved into the sum of an

irrotational vector field ∇φ and a solenoidal vector field ∇ψ as follows:

u l = ∇×ψ +∇φ (4.11)

The ψ is a solenoidal vector field, where

∇ ·ψ = 0 (4.12)

Taking the curl of Eq. (4.11) and substituting Eq. (4.12) into the resultant equation, the

vector Poisson equation for ψ is derived as

∇2ψ = −ω (4.13)

The Poisson equation for φ can then be obtained by substituting Eq. (4.11) into Eq. (4.1)

and using the property ∇ · (∇×ψ):

∂αl
∂t

+ αl∇2φ+ (∇φ+∇×ψ) · ∇αl = 0 (4.14)
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4.2.3 Vortex-in-cell method for a bubbly flow

The VIC method discretizes the liquid flow into vortex particles p with location x p moving

at a speed of u l(x p) and carrying vorticity of ω. The vorticity–velocity equation, Eq. (4.9),

can then be rewritten in the Lagrangian form of vortex particles as follows:

dx p
dt

= u l(x p) (4.15)

dωp
dt

=
(
ω(x p) · ∇

)
u l(x p) +

νl
αl
∇2ω(x p) +

1

αl
∇αl ×

(
g − Du l(x p)

Dt

)
(4.16)

At the outset, the vortex particles are arranged on the grid nodes. Their velocity, u l(x p),

is calculated using Eq. (4.11), while ψ and φ are obtained through solving Poisson Eqs.

(4.13) and (4.14), respectively. The vorticity field, ω, in Eq. (4.13) is obtained by solving

Eq. (4.16). The vortex particles carrying their vorticity ω(xp) move to a new Lagrangian

location, x p, due to the convection term, Eq. (4.15). Subsequently, these vortex particles

are redistributed on grid nodes, x q. The vorticity of the vortex particles on the grid node

is interpolated from their values at the Lagrangian locations as follows:

ω(x q) =

Np∑
p

ωpW
(xq − xp

∆x

)
W
(yq − yp

∆y

)
W
(zq − zp

∆z

)
(4.17)

where Np is the number of vortex particles, ∆x, ∆y, and ∆z are cell widths, and W is a

third-order accurate kernel-interpolation function, as shown in detail in Section A.2.2 of

Appendix A.

4.2.4 Calculation of gas volume fraction

The gas volume fraction on the grid nodes is calculated as follows:

αg(x q) =

Nb∑
b

Vb
∆x∆y∆z

Wα

(xq − xg
∆x

)
Wα

(yq − yg
∆y

)
Wα

(zq − zg
∆z

)
(4.18)

where Nb is the number of bubbles and Wα is triangular function explained as (Cottet

and Koumoutsakos, 2000)

Wα(ε) =

0 if |ε| > 1

1− |ε| if |ε| ≤ 1
(4.19)

The use of the function has several benefits: (i) the calculated gas volume fraction is in

the range of 0 − 1, (ii) the sum of the volume of bubbles is conserved on the grid nodes,

and (iii) the volume impact of a bubble on its position is itself.

4.2.5 The immersed boundary method

To simulate flows through the human heart, Peskin (1972) introduced the IB method

for no-slip conditions. Subsequently, Cottet and Poncet (2002) proposed a VIC method

combined with the penalization method, a type of IB method, to simulate flow around
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a solid body. In the proposed scheme, the penalization method was employed to enforce

the no-slip condition upon the liquid phase at the fluid–solid interface. When using the

penalization method, the vorticity–velocity equation, Eq. (4.16), is rewritten as

dωp
dt

=
(
ω(x p)·∇

)
u l(x p)+

νl
αl
∇2ω(x p)+

1

αl
∇αl×

(
g−Du l(x p)

Dt

)
+∇×

[
λχs

(
us−u(x p)

)]
(4.20)

where λ is the penalization parameter, us is the velocity of the solid, and the function χs

identifies the solid and fluid regions. The penalization velocity and vorticity are calculated

as detailed in Section 2.3.4

uλ = (1− χs)u + χsus (4.21)

ωλ = ω +∇× (χs(us − u l)) (4.22)

4.2.6 The convective outflow boundary condition for the liquid phase

The convective outflow condition (Yoshida et al., 2003; Xu and Lin, 2007) is enforced for

the liquid phase at the far field and outlet. This condition neglects the effects of vortex

diffusion and stretching and supposes that the liquid flow only convects at the concerned

boundary. A general form of this boundary condition is expressed as

∂f(x , t)

∂t
+ uc(x , t)

[
∇(f(x , t)) · n̂

]
(4.23)

where f(x , t) are flow quantities convected at a scalar velocity uc(x , t) on the boundary

∂Ω and n̂ is the unit normal vector of the surface ∂Ω. This condition is applied for the

vorticity ω, vector potential ψ, scalar potential φ, and liquid velocity u l fields, with which

they are boundary conditions of the momentum equation (4.16), Poisson equations (4.13)

and (4.14), and equation (4.11), respectively. Applying this boundary condition for the

simulation is expressed in a more detail, as shown in Appendix C.

4.2.7 Slip conditions for bubbles on the surface of the cylinder

The slip conditions for the bubbles on the cylinder surface are employed as (Sugiyama

et al., 2001). Figure 4.1 shows an analysis of a bubble velocity on the cylinder surface.

A gas bubble was considered to be located on the cylinder surface with a position x g =

(xg, yg, zg) and velocity ug = (ug, vg, wg). When this bubble slips on the cylinder surface,

normal component of its velocity ug−n with respect to the cylinder surface is forced to

zero, and the tangential components on the x− z plane ug−τ and along the y-direction vg

remain unchanged. The components of the bubble velocity are recalculated as
ug = ug sin(αg) sin(α) + wg sin(α) cos(α)

vg = vg

wg = wg sin(α) cos(α) + wg cos(α) cos(α)

(4.24)

where α = arctan((h0 − zg)/xg)
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Figure 4.1: Bubble velocity at a random point on the cylinder surface

4.2.8 Numerical procedures

Given a flow at time t, the flow at t+ ∆t was calculated by the following procedure:

(1) Calculate the bubble velocity ug using the momentum equation of the bubble, Eq.

(4.6).

(2) Recalculate the bubble velocity ug using Eq. (4.24) to implement the slip condition

of the bubble on the cylinder surface;

(3) Calculate the Lagrangian trajectory of the bubble x g using Eq. (4.8).

(4) Calculate the gas and liquid volume fractions, αg and αl, using Eqs. (4.18) and

(4.4), respectively.

(5) Calculate the vorticity of the vortex particle ω(x p) using Eq. (4.16) to account for

the vortex stretching, diffusion, and the effect of external sources.

(6) Calculate the vortex-particle convection x p using Eq. (4.15).

(7) Redistribute the vortex particle ω(x p) from the Lagrangian to Eulerian points

using Eq. (4.17).

(8) Calculate the vector-potential velocity ψ using Eq. (4.13).

(9) Calculate the scalar-potential velocity φ using Eq. (4.14).

(10) Calculate the liquid velocity u l using Eq. (4.11).

(11) Calculate the corrected vorticity field ωcorrected using Eq. (4.10).

(12) Calculate the penalization velocity uλ using Eq. (4.21) to enforce the no-slip

condition of the liquid phase on the cylinder surface.

(13) Calculate the penalization vorticity ωλ using Eq. (4.22).
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4.3 Results and discussions

4.3.1 The evolution of a single vortex ring

The evolution of a vortex ring was simulated to verify the application of the outflow

condition of the liquid flow at the outlet. In this case, the momentum equation for the

liquid phase, Eq. (4.20), is rewritten as

dωp
dt

=
(
ω(x p) · ∇

)
u l(x p) + νl∇2ω(x p) (4.25)

At the outlet, uc(x , t) was calculated as

uc(zmax) = Max
(
uz(x, y, zmax, t)

)
(4.26)

The vortex ring at the outset was expressed through a Gaussian function as

ωθ =
Γ0

πσ2
e−

ρ2(x,y,z)

σ2 (4.27)

where ρ2(x, y, z) =
(
R −

√
x2 + y2

)2
+ (z − z0)2. The vortex ring had a diameter of

D = 60 mm, a radius of a core radius of R = D/2 and an initial circulation of Γ0 at initial

position of z0 = 2D, moving at a Reynolds number, ReΓ = Γ0/ν, of 8,063. The kinematic

viscosity, ν, was 1 mm2/s. The domain of (−2D, 2D)× (−2D, 2D)× (0, 4D) was divided

into 160 × 160 × 160 cube cells. The non-dimensional time step, ∆t∗ = ∆t(Γ0/R
2), was

set as 0.0089.

In Fig. 4.2, the vortex ring reached the top surface at t∗ = 17.8 and then continued

to move through this surface at t∗ = 18.69. At t∗ = 22.25, only the streak of the vortex

ring was observed, and it diffused gradually with time. The streamlines of the liquid flow

on the x-z plane passing through the ring center at t∗ = 0, 8.9, and 18.69 were shown in

Fig. 4.3. The vortex ring was not deformed as it moved through the top surface. This

boundary did not affect the evolution of the vortex ring, thus indicating that the applied

convective condition of the proposed method was proper. A comparison of the profiles of

the liquid velocity calculated by the proposed simulation and experimental work done by

Uchiyama and Kusamichi (2013), shown in Fig. 4.4, indicates good agreement between

the two.

Moreover, the translational velocities of the experimental and simulated vortex ring

were then compared, where the translational velocity of the experimental vortex ring was

given by Weigand and Gharib (2007) as

UT =
Γ0

4πR

(
ln

8R

σ
− 0.558

)
(4.28)

The translational velocity of the ring with the above-mentioned parameters obtained

through Eq. (4.28) is 65.4 mm/s, whereas that calculated by the simulation is 61.02

mm/s. The relative error between these results is 6.7 %. Therefore, the proposed method

was deemed suitable for reproducing the flow characteristics.
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Figure 4.2: Time evolution of a vortex ring at ReΓ = 8, 063

4.3.2 The collision of a vortex ring with a cylinder

The collision of a vortex ring with a cylinder was then simulated to verify the application

of the penalization method for the no-slip condition of the liquid flow at the solid surface.

In this case, the vorticity–velocity equation for the liquid phase, Eq. (4.20), is rewritten

as
dωp
dt

=
(
ω(x p) · ∇

)
u l(x p) + νl∇2ω(x p) +∇×

[
λχs

(
us − u(x p)

)]
(4.29)

The domain of (−3D, 3D) × (−3D, 3D) × (0, 6D) was discretized into 90 × 90 × 90 cube

cells. The cylinder had a diameter of D = 2 and a length of 6D and was placed at a

distance of 3D from the bottom. The vortex ring had a radius of 1.4R (R = D/2), a core

radius of σ = 0.5R, and an initial circulation of Γ0 = 1, moving vertically downward at

ReΓ = 400 to collide with the cylinder. At the outset, the vortex ring was expressed using

a Gaussian function (Poncet, 2001) as

ωθ =
Γ0

2πσ2
e−

ρ2(x,y,z)

2σ2 (4.30)
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Figure 4.3: Time evolution of the streamline flow on the x-z plane

The initial distance between the vortex ring and the cylinder center was 2.5R. The

non-dimensional time step, ∆t∗ = ∆t(Γ0/R
2), was set to 0.005.

The time evolution of the collision of the vortex ring with the cylinder is compared

with that of numerical work by (Poncet, 2001; Cottet and Poncet, 2002) in Figs. 4.5

and 4.6, respectively. The second vortex was formed as the vortex ring moves forward

to the cylinder, and the ring was deformed gradually with time. The results agreed well

with the existing results at six time-points. Thus, the employed penalization method was

deemed appropriate for simulating flow around the cylinder.

4.3.3 The bubbly flow around a cylinder

The conditions of the simulation were set similar to those of the experiment. Figure 4.7

shows a configuration of the flow condition at the outset. The circular cylinder had a

diameter of D = 30 mm and a length of L = 8D and was placed at a distance of 5D
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Figure 4.4: Liquid velocity along a horizontal line passing through the ring center at

t∗ = 8.9. The dotted red and solid blue lines show the results obtained by the proposed

simulation and Uchiyama and Kusamichi (2013)

from the bottom. The domain of (−4D, 4D) × (−4D, 4D) × (0, 16D) was divided into

80×80×160 cube cells. At the bottom, five bubble injection lines were arranged regularly.

The bubble flow rates released from injection lines 1, 3, and 5 (Qi, i = 1, 3, 5) were 4Q/14,

whereas those released from injection lines 2 and 4 (Qi, i = 2, 4) were Q/14, in which the

total bubble flow rate Q =
∑
Qi was 6.4 mm3/s. When the bubbly flow fully developed,

the number of the bubbles reached 3.6 × 106. The bubble diameter was 0.054 mm and

the liquid kinematic viscosity ν was 1 mm2/s. The non-dimensional time step for the

liquid was ∆tbut/D = 7.75 × 10−4, and that for the bubble was ∆tlut/D = 7.75 × 10−5,

which complies with the formula of the bubble time-scale, τb = d2
b/(36νl). The terminal

velocity of a single bubble of diameter of db = 0.054 mm rising in quiescent water was

designated as ut and was calculated as 1.55 mm/s. The Taylor–Reynolds (T–R) number

was utilized to determine the appearance of the turbulence of the liquid flow induced by

the bubbles and was 0.084. When the T–R number is smaller than 100, the turbulence of

the liquid flow does not exist (Brocchini and Peregrine, 2001). Therefore, no discussion

of the turbulent characteristics was performed in this investigation.

The bubbles used in the experiment were hydrogen and oxygen. These bubbles

were generated by using electrolysis of water which was composed of the five rods

(injection lines) arranged regularly at intervals of 0.7D along the x-axis at the tank

bottom. Two rods were used as anodes, and the rest was used as cathodes. Small

oxygen and hydrogen bubbles at the anodes and cathodes, respectively, were gener-

ated by applying a DC voltage between the electrodes. The bubble size could be

controlled by changing the electrode curvature or rob diameter. An increase in rob

diameter would give an increase in bubble size. The interfacial tension was assumed
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Figure 4.5: Front-side view of the time evolution of the collision of a vortex ring with

a cylinder. Plots in upper and lower rows represent the results obtained by the present

simulation and Poncet (2001), respectively. An isosurface of the vorticity magnitude,

|ω|R2/Γ0 = 0.1, is plotted

to be high enough to maintain the spherical shape of the bubble of a diameter of

db = 0.054 mm. The simulation of a bubble plume around a cylinder with small entrained

bubbles is applicable to improve the design of finned coil and water to air heat exchangers.

The condition of the liquid phase at the bottom wall was a combination of no-slip

and non-penetration conditions, as detailed in the investigation of annular bubble plume,

whereas that at the sides and top was outflow. The uc(x , t) at the top was calculated as

uc(zmax, t) =
1

2

[
min

(
uz(x, y, zmax, t)

)
+max

(
uz(x, y, zmax, t)

)]
(4.31)

The scalar convective velocity at the sides was similarly computed.
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Figure 4.6: Front-top view of the time evolution of the collision of a vortex ring with

a cylinder. Plots in upper and lower rows represent the results obtained by the present

simulation and Cottet and Poncet (2002), respectively. An isosurface of the vorticity

magnitude, |ω|R2/Γ0 = 0.1, is plotted

Figure 4.7: A configuration on the flow at the outset, where bubbles of a diameter db =

0.054 mm represented by blue dots are released randomly from five injection lines of a

length 3D and a width d = D/6

The time evolution of the bubble distribution on the x-z plane captured by the

proposed simulation and the experiment was shown in Figs. 4.8 and 4.10, respectively.

The bubbles slightly shifted toward the y-z plane due to the effect of the liquid flow,
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as shown at t∗ = 0.465. The liquid flow rapidly reached the cylinder surface, moved

around, then separated from both sides of the cylinder. The bubbles were entrained by

the liquid flow to distribute around the cylinder surface and also separated from both

sides of the cylinder to form bubble layers moving upwards. They were not entrained

into the y-z plane, as shown at t∗ = 0.93 and t∗ = 1.395. When the flow fully developed,

the bubbles were observed on the y-z plane but were not entrained into the region

just behind the rear of the cylinder, as shown at t∗ = 1.86. This region was twice as

large as the cylinder’s cross-section. Downstream, bubbles distributed into groups due

to entrainment in induced vortices and dispersed over a large region of the domain.

This phenomenon was also observed in the experimental investigations done by Murai

et al. (2005) and Uchiyama and Ishiguro (2016). In general, at four time points, the

bubble distribution on the x-z plane by the proposed simulation agreed with that by the

experiment. The lateral dispersion of the bubbles by the simulation was higher than that

by the experiment at t∗ = 1.395 and 1.86. The differences can be explained that the

concentration of the bubbles in the bubble layers was higher in other regions, leading to

combination of some bubbles to form larger bubbles in the experiment, as can be seen at

the region z/D > 8. However, these bubbles were assumed to be not so large that they

could generate their own wakes which induced their motion in zigzag or helical fashions.

The buoyancy force on these bubbles was higher than the entrainment by the vortex pair

generated behind the cylinder or the weak induced-vortices of the liquid flow downstream

of the cylinder. In other words, these bubbles moved in straight upward paths to the top

surface. They generated the higher liquid shear layer, and these shear layers entrained the

small bubbles to move upward, which resulted in a less spread of the bubbles downstream.

In the simulation, the spherical shape of the bubbles was maintained, and no coalescence

occurred. The small bubbles were affected significantly by the vortex pair and the weak

induced-vortices downstream. Therefore, the spreading of the bubbles by the simulation

was higher than that by the experiment.

Time evolution of the bubble distribution, liquid velocity, and induced vortices is

shown on the x-z plane in Fig. 4.11. The liquid flow was generated in the form of plane

shear layers shown at t∗ = 0.465. These shear layers rapidly came into contact with

the cylinder surface, moved around, and then separated from both sides of the cylinder

shown at t∗ = 0.93. Moreover, large-scale vortices were observed along the sides of the

bubble plume in this period, due to an inhomogeneous distribution of the bubbles and

the cylinder effects. The separated shear layers lost their stability and then interacted, as

shown at t∗ = 1.395 and 1.86, leading to a downstream formation of vortices of various

scales. The observed bubble distribution in the region of high liquid velocity varied with

the behavior of these shear layers.

Figure 4.12 shows the time evolution of the bubble distribution, liquid velocity, and

induced vortices on the y-z plane. In the beginning, a bubble plume composed of five
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Figure 4.8: Time evolution of the bubble distribution on the x-z plane by the simulation,

where bubbles are represented by green dots and the cylinder cross-section is represented

by a blue area

Figure 4.9: Time evolution of the bubble distribution on the x-z plane by the experiment

plane bubble plumes was generated from the five injection lines. The plane bubble plumes

released from injection lines 1, 3 and 5 moved faster than those from injection lines 2 and

4 due to the difference in bubble flow rates, as shown at t∗ = 0.465. These plane bubble

plumes generated the plane shear layers with which they interacted. These shear layers

rolled up to form vortices of various scales along these plane bubble plumes. Due to the

symmetry with respect to the x-z plane, the shear layers formed by the plumes from

injection lines 1, 2, 4 and 5 were deformed, while those from injection line 3 remained

unchanged, as shown at t∗ = 0.93. The bubbles were entrained into the shear layer paths.

These shear layers combined, as shown at t∗ = 1.395. In other words, the interaction

between vortices leads to a coalescence of some vortices, and which then entrained the

surrounding bubbles. From t∗ = 1.86, the liquid flow was quasi-stable upstream and

unstable downstream.

The gas volume fraction time evolution is shown in Fig. 4.12 to clarify the behavior
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Figure 4.10: Time evolution of bubble distribution and liquid velocity on the x-z plane,

where liquid velocity is represented by red vectors

of the bubble plume. The bubble plume was stable in the early stage, as shown at

t∗ = 0.465, followed by an unstable state due to the interaction between the plane shear

layers, as shown at t∗ = 0.93. As the bubbles moved over the cylinder, they were dispersed
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Figure 4.11: Time evolution of bubble distribution and liquid velocity on the y-z plane

downstream, where the gas volume fraction was, on average, about 0.0001, as shown at

t∗ = 1.395 and 1.86. When the flow fully developed, the bubble plume was quasi-stable

upstream, but unstable downstream, as shown at t∗ = 1.86. Moreover, in this stage, the

bubbles accumulated in the shear layers separated from both sides of the cylinder to form
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the bubble layers.

Figure 4.12: Time evolution of gas volume fraction

The time evolution of the vortex structure represented by the vorticity magnitude

|ω| and a vorticity component ωz are shown in Figs. 4.13 and 4.14, respectively. The

three-dimensional vortices, composed of three vorticity components, ωx, ωy, and ωz, were

formed when the bubbles were released from the bottom, as shown at t∗ = 0.465. The

interaction between vortices led to the formation of the three-dimensional large-scale

vortices, which developed significantly when moved around the cylinder surface, as shown

at t∗ = 0.93. At t∗ = 1.395 and 1.86, a three-dimensional vortex structure of various scales
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was generated downstream. However, this structure disappeared gradually upstream,

two-dimensional structure, composed of two vorticity components of ωx and ωy, appeared.

The flow structure was quasi-stable upstream when the flow fully developed. The vortex

structure pattern in this region was similar to the gas volume fraction pattern shown in

Fig. 4.12. Moreover, the Karman vortex street did not appear downstream, unlike the

case of the bubbly flow around the obstacle with generating a Reynolds number of the

liquid flow in the inlet.

Figure 4.13: Time evolution of vorticity magnitude |ω|, where |ω|(D/ut) is plotted in a

range of 29− 58
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Figure 4.14: Time evolution of vorticity component ωz, where ωz(D/ut) = ±19.35 are

represented by red and blue surfaces, respectively

The time evolution of the liquid velocity components, ux, uy, and uz, is presented

at four spatial points in Fig. 4.15. In general, the component uz was about five times

higher than those of ux and uy because of the appearance of an upward liquid flow

induced by the bubbles. These velocity components were much higher than the terminal

velocity. At point A, the velocity components fluctuated significantly from t∗ = 0.6

to 1.86 when the bubble plume reached the cylinder and then moved around it. From

t∗ = 1.86, these velocity components were at a quasi-stable state, consistent with the

observed characteristics of the vortex structure. At point B, all three components greatly

fluctuated over the whole time evolution. This was likely because this point settled the
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unstable shear layers that separated from either side of the cylinder. From t∗ = 0.93 to

1.86, the frequency of oscillations of the components of ux and uy were higher than that

of uz due to the strong development of a three-dimensional vortex structure, as shown in

Fig. 4.14. At point C, from the outset to t∗ = 2.0, three velocity components fluctuated

slightly due to a small effect of the bubble plume. The gas volume fraction at this point

was very small compared with that at point B. However, from t∗ = 2.0, the velocity

components at point C oscillated significantly, caused by the horizontal spread of the

shear layers separating from the cylinder. The velocity components at point D were very

low compared to those at points A, B, and C, because point D was far from the region of

the effects of the bubble plume. Moreover, from t∗ = 1.5 to 2.7, an appearance of a weak

reversed flow was observed at point D, likely caused by the formation of vortices beside

the bubble plume due to an inhomogeneous bubble distribution. Additionally, these

vortices diffused and stretched into vicinity regions, corresponding to the appearance of

the liquid velocity in these regions. In the final stage, the liquid flow at point D moved

upward. With the characteristics of the liquid velocity at points A, B, C, and D, the

profiles of the time-averaged liquid velocity along horizontal lines passing through these

points are not given, because they do not reflect the nature of the flow phenomenon.

Profiles of the gas volume fraction αg and the vorticity magnitude |ω| along a

horizontal line at heights z = 5D and 7D at t∗ = 1.395 are shown in Fig. 4.16. The

pattern of the gas volume fraction was similar to that of the vorticity magnitude. The

number of peaks of the profile of αg was the same with that of |ω|, and the peaks

of αg was near that of |ω|. This was attributable to the preference of the bubbles to

accumulate in the region of high vorticity magnitude, generated from both sides of the

cylinder, rather than the region of low vorticity magnitude on the vertical center plane

of the cylinder. The peaks of the profile of the vorticity magnitude were vortex centers.

Therefore, the bubbles tended to move to near the centers of vortices. This characteristic

was also observed in the investigation of the interaction between a vortex ring and a

bubble plume. They reported that the bubbles prefered to distribute near the core center

of the vortex ring where has the highest value of the vorticity magnitude. The bubbles

initialized near the core center were rapidly entrained, while the bubbles initialized far

away took more time to distribute near the core center. The bubble trajectories were

similar to two-dimensional helical shapes.

The time evolution of the ratio of the slip velocity, |u l − ug|, to the terminal velocity,

ut, of the bubbles on the x-z plane is shown in Fig. 4.17. In general, this ratio was almost

in the range of 1 − 1.1 units. This ratio was higher than 1.1 units when the bubbles

were located in the region of high vorticity magnitude. This flow characteristic was also

demonstrated in the investigation of the evolution of an annular bubble plume. From

Figs. 4.15 and 4.17, the vertical velocities of the bubbles were shown to be greater than

the terminal velocity.
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Figure 4.15: Time evolution of the liquid velocity components at four points A =

(−D, 0, 4D), B = (D, 0, 6D), C = (2D, 0, 7D), and D = (3D, 0, 8D)
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Figure 4.16: Gas volume fraction and vorticity magnitude along a horizontal line passing

through the cylinder center at t∗ = 1.395 at heights z = 5D and 7D

4.4 Conclusions

A semi-L–L method was developed for the simulation of the bubbly flows around a

cylinder, which was verified through a series of simulations, including the evolution

of a vortex ring moving through the boundary of the domain, the collision of a

vortex ring with a cylinder, and free bubbly flows around a circular cylinder. The

simulation results agreed well with prior modeled and experimental results. The char-

acteristics of the bubbly flow around a circular cylinder can thus be summarized as follows:

(i) The bubbles rised and induced liquid flow plane shear layers. These shear layers

reached the cylinder surface, moved around, and the separated from both sides of the

cylinder. These shear layers entrained the bubbles to move around and also separated

from both sides of the cylinder to form bubble layers. When the flow fully developed,

the bubble distribution was quasi-stable upstream, whereas unstable downstream.

The bubbles were entrained into induced vortices and dispersed over a large region of
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Figure 4.17: Time evolution of slip velocity of bubbles on the x-z plane

downstream.

(ii) The three-dimensional vortex structure of the flow of various scales developed in

the early stage, due to the interaction of plane shear layers induced by bubbles. Once the
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flow fully developed, this structure developed significantly downstream, but degenerated

into a two-dimensional structure and became quasi-stable upstream.

(iii) The bubble distribution pattern was similar to that of the vortex structure. At

an instant time point, the number and location of peaks of the gas volume fraction were

the same and near those of the vorticity magnitude, respectively.

(iv) The proposed method is well applicable to the simulation of gas–liquid bubbly

flows around an obstacle and has abilities to analyze the vortex structure of the flow and

supply physical details of bubble dynamics.



Chapter 5

Conclusions

This chapter concludes the research work and proposes some future work that can be

developed from this dissertation.

5.1 Conclusions of the study

The semi-Lagrangian–Lagrangian (semi-L–L) composed of a vortex-in-cell method for

the liquid phase and a Lagrangian description of the gas phase was successfully developed

to simulate the gas-liquid two-phase flows. The highlights of this study are given as follows:

In chapter 2, it was shown that the semi-L–L approach has superior abilities to

analysis the vortex structure of the flow and supply physical details of bubble dynamics.

The vortex structure of vortex rings of various scales was formed and then deformed with

the time evolution of the annular bubble plume. The plume was stable in the early stage

of the flow, and then it reached the transition stage with the meandering motion before

the full development of three-dimensional vortical flow. The liquid velocity field was

shown to depend upon in each stage. Moreover, the characteristics of bubble dynamics

such as the location, rise and slip velocities of the bubble in each stage were clarified.

In chapter 3, a vortex ring can transport the bubbles surrounding it over a distance

significantly depending on the correlative initial position between the bubbles and the

core center. The motion of some bubbles was nearly periodic and gradually extinguished

with time. These bubble trajectories were similar to two-dimensional-helix shapes. The

vortex was fragmented into multiple regions with high values of Q, the second invariant of

velocity gradient tensor, settling at these regional centers. The entrained bubbles excited

a growth rate of the vortex rings azimuthal instability with a formation of the second-

and third-harmonic oscillations of modes of 16 and 24, respectively.

In chapter 4, a semi-L–L approach continued to be developed to simulate the bubbly

flow around a circular cylinder. The bubbles were shown to move around and separate

from both sides of the cylinder, due to entrainment by the liquid shear layers. Once

the bubbly flow fully developed, the bubbles distributed into groups and were dispersed

84
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downstream of the cylinder. A three-dimensional vortex structure of various scales was

also shown to form downstream, whereas a quasi-stable two-dimensional vortex structure

was observed upstream. Overall, the proposed method captured the characteristics of a

bubbly flow around a cylinder well.

5.2 Remarks for future work

Based on the current study, some future work can be developed to improve the approach

as

First, the assumptions in this study were given in section 2.2.1 in which the bubble

diameter is small, and the mass and momentum of the gas phase are very small and

negligible, respectively, compared to those of the liquid phase. This leaded to a hypothesis

mass and momentum equations, Eqs. (2.1) and (2.2), for the liquid phase. In the case of

larger bubble and high bubble flow rate, the effects of turbulence induced by the bubbles

(bubble-induced turbulence), full effects of the gas volume fraction on the momentum

equation of the liquid phase, the effects of momentum source point induced by the

bubbles on the liquid phase (the momentum exchange between two phases) should be

considered. In addition, in the Lagrangian description of the gas phase, the turbulent

dispersion force, Bassett force, and viscous force can be applied in the current model.

Second, the flow quantities were discretized on the regular grid. This leaded to

high computational cost when the number of grid increased. The multi-grid resolution

technique can be applied to the model for gas–liquid two-phase flow. When using this

technique, in the bubble plume case, the high and low grid resolutions can be set to

calculate the flow quantities in the inner and outer bubble plume, respectively.

Last, in this study, no turbulence model was employed for the liquid phase. The

turbulence model can be applied to the approach to simulate the turbulent bubbly flows.



Appendix A

Numerical simulation of flow around two tandem

cylinders by vortex-in-cell method combined with

immersed boundary method

A.1 Introduction

Flows around two cylinders in tandem arrangement have attracted the interest of many

researchers. This is because the flows are frequently observed in various engineering

devices such as heat exchangers, chemical reactors and oil pipelines. The interactions

between the wakes of each cylinder, the vortex shedding and the fluid forces acting on

the cylinders have been investigated to develop the high-efficiency devices.

A number of experimental researches on incompressible flows around two tandem

cylinders have been conducted for the wide range of the Reynolds number (Thomas

and Kraus, 1964; Kostic and Oka, 1972; Tanida et al., 1973; Zdravkovich, 1987; Sumner

et al., 1999). They clarified that the reattachment of shear layers separated from the

front cylinder to the rear one occurs when the distance between the cylinders is small

and the vortical flow downstream of the rear cylinder is similar to that downstream of a

single cylinder. They also revealed that the vortex formation behind the rear cylinder is

affected by the vortical flow formed near the front cylinder when the distance between

the cylinders is larger than a threshold value. Numerical simulations have also been

performed (Jester and Kallinderis, 2003; Meneghini and Saltara, 2001; Kitagawa and

Ohta, 2008; Vakil and Green, 2013; Mittal et al., 1997). They explored the effects of the

Reynolds number and distance between the cylinders on the flow and fluid force acting

on the cylinders. The simulations were chiefly based on finite element methods and finite

volume methods.

Vortex-in-cell (VIC) method is one of the vortex methods to simulate incompressible

flows (Christiansen, 1973). It discretizes the vorticity field into vortex elements and

computes the time evolution of the flow by tracing the convection of each vortex

element using the Lagrangian approach. The Lagrangian calculation markedly reduces

numerical-dissipation errors and also improves numerical stability. Thus, the VIC method

86
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is eminently suitable for direct numerical simulation (DNS) of free turbulent flows (Cottet

and Poncet, 2003; Winckelmens et al., 2005; Cocle et al., 2008; Chatelain et al., 2008).

Uchiyama et al. (2014b) applied a VIC method to the DNS of a turbulent channel flow.

The DNS highlighted the successful capture of organized flow structures, such as streaks

and streamwise vortices in the near wall region, demonstrating that the VIC method is

applicable to DNS of wall turbulent flows. The DNS of a rotating channel flow (Uchiyama

et al., 2014a) and that of a jet issued from a rectangular nozzle (Uchiyama et al., 2013)

were also performed, and the vortical structures were successfully simulated. Uchiyama

(2013) also proposed a VIC method for incompressible gas flows laden with small solid

particles. The method was favorably used to investigate the interactions between a vor-

tex pair and solid particles near a horizontal wall in the air (Uchiyama and Shimada, 2014).

In this study, the VIC method is applied to the simulation of incompressible flows

around two cylinders in tandem arrangement. In the simulation, the solid wall of the

cylinder should be considered or the non-slip condition on the wall should be satisfied.

Therefore, this study employs an immersed boundary (IB) method proposed by Peskin

(1972). Such simulations by using the VIC and IB methods have been presented, and

various flows were successfully analyzed (Rossinelli et al., 2010; Mimeau et al., 2015;

Gazzola et al., 2011; Rasmussen et al., 2011). But the applicability of the VIC and IB

methods to simulate the flows around two tandem cylinders has not been examined. The

present simulation of the flows around two tandem cylinders highlights that the methods

can successfully simulate the behavior of the shear layers separated from the cylinders,

the vortex shedding and the fluid forces acting on the cylinders. It also demonstrates that

the methods can analyze the effects of the Reynolds number and distance between the

cylinders on the flow characteristics.

A.2 Numerical method

A.2.1 Vorticity equation and orthogonal decomposition of velocity

The conservation equations for mass and momentum of viscous incompressible flows are

written as follows

∇ · u = 0 (A.1)

∂ω

∂t
+∇ · (uω) = ∇ · (ωu) + ν∇2ω (A.2)

where t is the time, u is the velocity, and ν is the kinematic viscosity. The vorticity ω is

defined as:

ω = ∇× u (A.3)

The second term on the left-hand side of Eq. (A.2) is convection, and the first and

second terms on the right-hand side are vortex stretching and diffusion, respectively. In

two-dimensional simulation, the stretching term disappears out of the governing equation.
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The convective form of Eq. (A.2) and its term are explained in Appendix D.

According to the Helmholtz theorem, the velocity u is represented as the summation

of the curl of a vector potential ω and the gradient of a scalar potential φ:

u = ∇×ψ +∇φ (A.4)

The velocity calculated from Eq. (A.4) remains unaltered even when any gradient of scalar-

potential function is added to ω. To remove this arbitrariness, a solenoidal condition is

imposed on ψ:

∇ ·ψ = 0 (A.5)

Taking the curl of Eq. (A.4) and substituting Eq. (A.5) into the resultant equation, the

vector Poisson equation for ψ) is derived:

∇2ψ = −ω (A.6)

When substituting Eq. (A.4) into the continuity equation, Eq. (A.1), and rewriting the

resultant equation by using the relation ∇·(∇×ψ), the Laplace equation for φ is obtained:

∇2φ = 0 (A.7)

A.2.2 Vortex-in-cell method

The VIC method discretizes the vorticity field ω into vortex particles p carrying the

vorticity ωp. Vortex particles move at their velocity u(x p) given by the value of the

velocity field at their location, x p. The vorticity–velocity equation, Eq. (A.2), is rewritten

based on the Lagrangian description of vortex particles as follows

dx p
dt

= u(x p) (A.8)

dωp
dt

= ∇ ·
(
ω(x p)u(x p)

)
+ ν∇2ω(x p) (A.9)

At the beginning, the vortex particles, carrying the vorticity, lay on the regular Eulerian

grid nodes. The vortex-particle velocity is obtained from Eq. (A.4), while the vector and

scalar potentials, ψ and φ , are calculated through Eqs. (A.6) and (A.7), respectively.

The vorticity carried by vortex particles is computed from Eq. (A.9). Subsequently, the

vortex particles carrying their calculated vorticity move to the Lagrangian location by the

convection equation, Eq. (A.8). Finally, the vortex particles with the vorticity ωp at their

Lagrangian location x p are redistributed onto the grid location x g = (xg, yg) as follows

ω(x q) =

Np∑
p

ωpW
(xq − xp

∆x

)
W
(yq − yp

∆y

)
(A.10)

where Np is the number of vortex particles, and ∆x and ∆y are the grid widths. The

W is a third-order accurate kernel-interpolation function which is proposed by Monaghan
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(1985) for one-dimensional SPH methods, and by Cottet and Koumoutsakos (2000) for

two- and three-dimensional vortex methods, and it is expressed as

W (x) =


1− 5

2
|x|2 +

3

2
|x|3 if |x| ≤ 1

1

2
(2− |x|)2(1− |x|) if 1 < |x| ≤ 2

0 if |x| > 2

(A.11)

Herein, the order of accuracy indicates the number of the flow momentum conserved when

redistributing vortex elements from Lagrangian to Eulerian locations. With the use of

the above kernel-interpolation function, the first three vorticity momentums of the flow,

(Ωi, i = 0, 1, 2) , are conserved as

Ω0 =

∫∫∫
V

ωdV (A.12)

Ω1 =
1

2

∫∫∫
V

x × ωdV (A.13)

Ω2 =
1

3

∫∫∫
V

x × (x × ω)dV (A.14)

A.2.3 Immersed-boundary method

The IB method was proposed by Peskin (1972) to simulate the flow around a solid body.

This study uses the IB method with the VIC method to satisfy the no-slip condition of

the flow on the body surface. When using the Brinkman penalization method (Cottet and

Poncet, 2003), one type of IB method, the vorticity equation (Eq. (A.2)) is rewritten as

∂ω

∂t
+∇ · (ωu) = ∇ · (uω) + ν∇2ω +∇×

[
λχs(us − u)

]
(A.15)

where us is the solid-body velocity and λ is the penalization parameter. χs classifies the

solid and fluid regions, and it is given as

χs(x) =

1 if x ∈ S

0 if x ∈ F
(A.16)

where S and F denote the solid and fluid regions, respectively, as shown in Fig. A.1. The

χs is varied smoothly from 0 to 1 near fluid–solid interface using the following Heaviside

function:

χs(d) =


0 if d < −ε
1

2

[
1 +

1

ε
+

1

π
sin
(
π
d

ε

)]
if |d| ≤ ε

1 if d > ε

(A.17)

where ε is set as 2
√

2∆x and d is a sign-distance from fluid–solid interface to the grid

node. It can image that the fluid is a continuous phase through solid body because of a
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Figure A.1: Configuration of solid and fluid regions S and F , respectively

continuous change of the liquid velocity through fluid–solid interface. By choosing λ = 1
∆t

and using first-order finite-difference schemes, the velocity field is obtained as

uλ = (1− χs)u + χsus (A.18)

The penalization vorticity is calculated from the penalization velocity uλ as follows

ωλ = ω +∇× (uλ − u) (A.19)

A.2.4 Numerical procedure

Given a flow at time t, the flow at t+ ∆t is calculated by the following procedure:

(1) calculate the vorticity ωp from Eq. (A.9) to account for vortex diffusion;

(2) calculate the Lagrangian location of vortex particles x p from Eq. (A.8);

(3) calculate ω from Eq. (A.10) to redistribute vortex particles onto the grid;

(4) calculate the vector potential ψ from Eq. (A.6);

(5) calculate the scalar potential φ from Eq. (A.7);

(6) calculate the velocity field u from Eq. (A.4);

(7) calculate the penalization velocity uλ from Eq. (A.18) to satisfy the no-slip con-

dition of the flow at the fluid–solid interface;

(8) calculate the penalization vorticity ωλ from Eq. (A.19).

A.3 Results and discussions

First, the VIC method combined with the IB method is applied to the simulation of flows

around a single circular cylinder so as to examine the applicability. The Reynolds number,

Re = U0D/ν, ranges from 40 to 9500, where U0 is the velocity upstream of the cylinder
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and D is the cylinder diameter. The cylinder is located at the coordinate origin as shown

in Fig. A.2. The drag and lift coefficients of the cylinder are defined Cd = 2Fx/(ρU
2
0D),

Cl = 2Fy/(ρU
2
0D), where ρ is the fluid density and the fluid forces Fx and Fy are calculated

according to the formula proposed by Noca et al. (1999) and deployed by Mimeau et al.

(2015).

Figure A.2: Configuration of solid and fluid regions S and F , respectively

Flows at Re = 100 and 200 are simulated by using a computational domain

(−7D, 68D) × (−7.5D, 7.5D). The number of computational grids is 7500 × 1500, and

therefore the grid width in the x and y directions is 0.01D. The time increment ∆t∗ is

set at ∆tU0/D = 0.0025. Vortex shedding from the cylinder is successfully simulated at

Re = 100 and 200. Figure A.3 shows the vorticity distribution of the fully-developed flow

at Re = 200.

Figure A.3: Instantaneous vorticity distribution around a single cylinder at Re = 200

The time-averaged drag coefficient C̄d and the Strouhal number St at Re = 100 and

200 are listed in Table A.1. The present results are favorably compared to the existing nu-

merical simulations (Meneghini and Saltara, 2001; Mimeau et al., 2015; Braza et al., 1986).

To validate the present simulation method at other Reynolds numbers, the simulations

of the flow around a single circular cylinder at Re = 40, 550, 1000, 3000 and 9500 are

performed. The simulation conditions are listed in Table A.2. The time variation of the
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Table A.1: Time-averaged drag coefficient and Strouhal number of single cylinder at Re =

100, 200

Authors Re = 100 Re = 200

C̄d St C̄d St

Present authors 1.35 0.162 1.40 0.191

Meneghini and Saltara (2001) 1.37 0.165 1.30 0.196

Mimeau et al. (2015) 1.40 0.165 1.44 0.200

Braza et al. (1986) 1.36 0.160 1.40 0.190

Table A.2: Simulation parameters of flow around a single cylinder at Re =

40, 550, 1000, 3000, 9500

Case Computational Domain Number of grid nodes U0∆t/D

Re = 40 (-5D, 15D)×(-5D, 5D) 1000×500 0.001

Re = 550 (-4D, 12D)×(-4D, 4D) 3200×1600 0.001

Re = 1000 (-4D, 12D)×(-4D, 4D) 3200×1600 0.001

Re = 3000 (-4D, 12D)×(-4D, 4D) 4800×2400 0.0005

Re = 9500 (-4D, 12D)×(-4D, 4D) 9600×6400 0.00025

drag coefficient Cd in the starting period are shown in Fig. A.4. They agree well with

the simulation results of Koumoutsakos and Leonard (1995). The time evolution of the

vorticity distribution around the cylinder at Re = 9500 is shown by the plots in the right

column of Fig. A.5. The vorticity near the cylinder is clearly resolved, and it agrees well

with the simulation results of Rasmussen et al. (2011) shown by the plots in the lower

column of Fig. A.5. Figure A.6 shows other results to detail the evolution of vorticity

around the cylinder at this Reynolds number.

In order to observe a long wake behind the rear cylinder and to obtain the time-

averaged drag and lift coefficients of the cylinders at Re = 1000, a simulation with a

computational domain (−4D, 26D)× (−5D, 5D) is also conducted. The number of grids

is 6000 × 2000, and the simulation is performed in a time period U0t/(D/2) ≤ 400.

The domain and the time period are larger and longer, respectively, than those of the

simulation obtaining the time variation of Cd shown in Fig. A.4. Figure A.7 shows

the vorticity distribution at U0t/(D/2) = 400. Vortices are periodically shed from the

cylinder, producing the Karman vortices downstream of the cylinder. Such periodical

shed is reconfirmed from the time variations of the drag and lift coefficients Cd and Cl

respectively plotted in Fig. A.8. The time-averaged drag coefficient C̄d and the Strouhal

number St are favorably compared to the existing numerical results (Mimeau et al., 2015;
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Figure A.4: Time variation of drag coefficient of single cylinder at Re = 40, 550, 1000, 3000,

and 9500. The dotted lines are results using vortex methods by Koumoutsakos and

Leonard (1995), while the solid lines are present results

Ape et al., 2009; Mittal and Kumar, 2001) as shown in Table A.3.

A.3.1 Flow around two tandem cylinders at Re = 200

Flows around two cylinders in tandem arrangement are simulated at Re = 200, where Re

is defined by the diameter of each cylinder D and the uniform velocity U0 upstream of the

front cylinder. The distance between the front and rear cylinders, L, ranges from 1.5D to

8D. The front cylinder is located at (x, y) = (0, 0) in the computational domain shown

in Fig. A.2. The computational domain (−7D, 68D) × (−7.5D, 7.5D) is discretized into

7500× 1500 grid nodes.

Figure A.9 shows the instantaneous vorticity distribution of the fully-developed flow.

When the distance L is small as L = 1.5D, 2D and 3D, the vortical flows downstream of

the rear cylinder are almost similar to the flow downstream of a single cylinder shown in

Fig. A.3. Such flows were also reported by Zdravkovich (1987). This is explained by the

fact that the tandem arrangement of cylinders affects the flow as a single cylinder. In the
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Table A.3: Time-averaged drag coefficient and Strouhal number of a single cylinder at

Re = 1000

Authors C̄d St

Present authors 1.56 0.236

Mimeau et al. (2015) 1.51 0.245

Ape et al. (2009) 1.50 0.238

Mittal and Kumar (2001) 1.48 0.250

case of L = 4D, the shear layers separated from the front cylinder roll up between the

cylinders and change into vortices. Such vortices collide with the rear cylinder. When L

increases to 6D and 8D, the vortices shed from each cylinder interact. The vortical flows

downstream of the rear cylinder seem to be different from Karman vortices.

The drag and lift coefficients, Cd and Cl respectively, vary with the lapse of time as

shown in Fig. A.10, where the subscripts 1 and 2 denote the front and rear cylinders,

respectively. When the distance L is small as 1.5D, 2D and 3D, the drag coefficient of

the front cylinder Cd1 remains almost unaltered and positive. The time-averaged value is

about 1, which is smaller than that of a single cylinder (C̄d = 1.4 shown in Table A.1).

The drag coefficient of the rear cylinder Cd2 is negative. The lift coefficients Cl1 and Cl2

fluctuate. The fluctuation amplitude of Cl2 is larger than that of Cl1. This is ascribed

to the fact that the flow around the rear cylinder is more affected by the shear layers

separated from the front cylinder. In the case that L is greater than 4D, Cd1 fluctuates,

though the amplitude is not necessarily large. This is attributable to the periodical vortex

shedding from the front cylinder, as shown in Fig. A.9. With increasing L, Cd1 becomes

larger and approaches the value of a single cylinder. Because the rear cylinder less affects

the flow around the front cylinder. But Cd2 is still small. The amplitudes of Cl1 and

Cl2 are larger than those at L ≤ 4D. The amplitude of Cl2 is not constant. This is due

to the fact that the vortex shedding from the rear cylinder is not periodic owing to the

interactions of the vortices produced at the front and rear cylinders.

The time-averaged drag coefficients of the front and rear cylinders, C̄d1 and C̄d2,

respectively, are shown in Table A.4. The Strouhal numbers of the front and rear

cylinders, St1 and St2 respectively, are also shown. They are in good agreement with the

simulation results of Meneghini and Saltara (2001) at L ≤ 4D.

A.3.2 Flow around two tandem cylinders at Re = 1000

The flow around two tandem cylinders at Re = 1000 are simulated. The distance

L between the cylinders is varied from 2D to 4D. To simulate accurately the

vortical flow downstream of the rear cylinder, the computation domain is set as
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Table A.4: Time-averaged drag coefficients and Strouhal numbers of two tandem cylinders

at Re = 200

Case Coefficients Present simulation Meneghini and Saltara (2001)

L = 1.5D

C̄d1 1.07 1.060

C̄d2 −0.20 −0.187

St1 = St2 0.15 0.167

L = 2.0D

C̄d1 1.05 1.03

C̄d2 −0.21 −0.195

St1 = St2 0.127 0.13

L = 3.0D

C̄d1 1.0 1.0

C̄d2 −0.13 −0.08

St1 = St2 0.12 0.125

L = 4.0D

C̄d1 1.12 1.18

C̄d2 0.31 0.38

St1 = St2 0.168 0.174

L = 6.0D

C̄d1 1.30 −

C̄d2 0.37 −

L = 8.0D

C̄d1 1.36 −

C̄d2 0.34 −
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(−7D, 30D)× (−7.5D, 7.5D) divided into 7400× 3000 grid nodes.

Figure A.11 shows the vorticity distribution for the fully-developed stage of the flow.

When the distance L is small as 2D, the vortical flow downstream of the rear cylinder

is similar to that downstream of a single cylinder. This is caused by the fact that the

free shear layers separated from the front cylinder reattach to the rear one. Such vortical

flow is also simulated at Re = 200 with L ≤ 3D as shown in Fig. A.9. When L = 2.5D,

vortices are periodically produced between the cylinders by the roll up of the shear layers

separated from the front cylinder, and they interact with the vortices shed from the rear

cylinder. The vortical flow downstream of the rear cylinder is composed of such vortices.

When L = 3D and 4D, the vortex sheddings from the cylinders do not synchronize, and

therefore the flow downstream of the rear cylinder is not periodic.

The time variation of the drag and lift coefficients is shown in Fig. A.12. When

L = 2D, the drag coefficient of the front cylinder Cd1 remains almost unaltered and it is

smaller than the value for a single cylinder (C̄d = 1.56 shown in Table A.3). However,

the drag coefficient of the rear cylinder Cd2 slightly fluctuates and it is negative. The

time-averaged values of Cd1 and Cd2 are 0.94 and -0.2 respectively. The amplitudes of

the lift coefficients Cl1 and Cl2 are smaller than that of the single cylinder shown in Fig

A.8. In the case of L = 2.5D,Cd1 fluctuates. Though the time-averaged value is larger

than that at L = 2D, it is still lower than that for the single cylinder. The amplitude of

Cl1 is also larger than that at L = 2D. For the rear cylinder, the drag coefficient Cd2

varies around zero, and the amplitude of Cl2 is larger than that for the single cylinder.

The variations of the drag and lift coefficients are nearly periodical. When L = 3D and

4D, the time-averaged value of Cd1 is slightly lower than that for the single cylinder.

But the lift coefficient Cl1 is almost parallel with that for the single cylinder. It should

be noted that the amplitude of Cl2 is not constant. This is owing to the passage of the

vortices shed from the front cylinder, as found from Fig. A.9. The lift coefficients Cl2

fluctuates markedly owing to the vortex shedding from the rear cylinder shown in Fig.

A.11.

A.3.3 Flow around two tandem cylinders at Re = 9500

The flow at Re = 9500 with L = 1.5D and 2D are simulated by a computational domain

(−4D, 8D)× (−4D, 4D) divided into 9600×6400 grid nodes. The simulation is performed

in a period of U0t/(D/2) ≤ 35.

Figure A.13 shows the time evolution of the vorticity distribution in the case of

L = 1.5D. The shear layers separated from the front cylinder roll up between the two

cylinders and flow down with colliding at the rear cylinder. When U0t/(D/2) ≤ 10, the

flow is symmetric with respect to a centerline passing through the cylinder centers. Such

the symmetry collapses greatly at U0t/(D/2) = 15. The vortex shedding occurs behind
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both the cylinders during U0t/(D/2) ≥ 25.

The time evolution of the vorticity distribution in the case of L = 2D is shown in

Fig. A.14. The flow characteristics are almost parallel with those in the case of L = 1.5D

shown in Fig. A.13.

The time variations of the drag and lift coefficients are shown in Fig. A.15. The drag

coefficient of the front cylinder Cd1 is always positive irrespective of the L value. It begins

to fluctuate markedly at U0t/D = 25.

This is owing to the vortex shedding from both cylinders as depicted in Figs. A.13

and A.14. The drag coefficient of the rear cylinder Cd2 is positive at the beginning of the

flow. But it is negative when the rear cylinder is immersed in the symmetrically vortical

flow. After the symmetry collapses, Cd2 fluctuates markedly. The lift coefficients Cl1

and Cl2 fluctuate slightly when the flow remains symmetric. But they fluctuate markedly

when the vortex shedding occurs.

A.4 Conclusions

The numerical simulation of incompressible flows around two circular cylinders in tandem

arrangement is performed by the VIC method combined with an IB method. The

vorticity fields are discretized into vortex particles by the VIC method, and the Brinkman

penalization method is employed to guarantee the no-slip condition of the fluid flow

implemented at the fluid-solid interface. The Reynolds number Re based on the cylinder

diameter D and the velocity upstream of the front cylinder ranges from 200 to 9500, and

the distance L between the cylinders is varied from 1.5D to 8D.

The simulation shows that the flow characteristics, such as the behavior of the shear

layers separated from the cylinders, the vortex shedding and the fluid forces acting on

the cylinders, are favorably compared to the existing simulation results and experimental

measurements. It also indicates that the effects of Re and L on the flow characteristics are

successfully analyzed. These demonstrate the applicability of the VIC and IB methods

for the simulation of incompressible flows around two tandem cylinders.
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Figure A.5: Time evolution of vorticity field near a single cylinder at Re = 9500. The

plots in the right column represent the present simulation. The plots in the left column

represent the results by Rasmussen et al. (2011)
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Figure A.6: Time evolution of vorticity field near a single cylinder at Re = 9500.

Figure A.7: Instantaneous vorticity distribution of the flow around a single cylinder at

Re = 1000
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Figure A.8: Time variation of drag and lift coefficients of a single cylinder at Re = 1000

Figure A.9: Instantaneous vorticity distribution at Re = 200
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Figure A.10: Time variation of the drag and lift coefficients of each cylinder at Re = 200
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Figure A.11: Instantaneous vorticity distribution at Re = 1000
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Figure A.12: Time variation of drag and lift coefficients of two tandem cylinders at Re =

1000
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Figure A.13: Time evolution of vorticity distribution at Re = 9500 with the distance of

L = 1.5D
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Figure A.14: Time evolution of vorticity distribution at Re = 9500 with the distance of

L = 2D
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Figure A.15: Time variation of drag and lift coefficients of two tandem cylinders at Re =

9500



Appendix B

The momentum equation of the bubbly flow in the

velocity–vorticity form

Considering the following equations

αl
Du l
Dt

= − 1

ρl
∇p+ νl∇2u l + αlg (B.1)

∂ω

∂t
+
(
u l · ∇

)
ω =

(
ω · ∇

)
u l +

νl
αl
∇2ω +

1

αl
∇αl ×

(
g − Du l

Dt

)
(B.2)

where

ω = ∇× u l (B.3)

∇ · ω = 0 (B.4)

it is stated that the Eq. (B.2) is obtained by taking the curl operation of the Eq. (B.1).

Proof :

The following properties of the vector calculus identities are used for the expression:

∇× ϕ = 0 (B.5)

∇× (ϕA) = ϕ(∇×A) +∇ϕ×A (B.6)

∇(A ·B) = (A · ∇)B + (B · ∇)A + A× (∇×B) + B× (∇×A) (B.7)

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B (B.8)

where ϕ is a scalar field, and A and B are vector fields. When A = B, the Eq. (B.7) are

rewritten as

(A · ∇)A =
1

2
∇(A ·A)−A× (∇×A) =

1

2
∇(A2)−A× (∇×A) (B.9)

Taking the curl of both sides of the Eq. (B.1), the following equation is obtained

∇×
(
αl
Du l
Dt

)
= ∇×

(
− 1

ρl
∇p
)

+∇× (νl∇2u l) +∇× (αlg) (B.10)

The terms on the right-hand side of the Eq. (B.10) are expressed as

∇×
(
− 1

ρl
∇p
)

= − 1

ρl
∇(∇× p) Eq.(B.5)

= 0 (B.11)
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∇× (νl∇2u l) = νl∇2(∇× u l)
Eq.(B.3)

= νl∇2ω (B.12)

∇×
(
αlg

)
(B.6)
= αl(∇× g) +∇αl × g

Eq.(B.5)
= ∇αl × g (B.13)

The term on the left-hand side of the Eq. (B.10) is explained as

∇×
(
αl
Du l
Dt

)
Eq.(B.6)

= αl

(
∇× Du l

Dt

)
+∇αl ×

Du l
Dt

(B.14)

where
Du l
Dt

=
∂u l
∂t

+ (u l · ∇)u l (B.15)

The Eq. (B.14) is rewritten as

∇×
(
αl
Du l
Dt

)
Eq.(B.3)

= αl

{
∂ω

∂t
+∇×

[
(u l · ∇)u l

]}
+∇αl ×

Du l
Dt

(B.16)

where

∇×
[
(u l ·∇)u l

]
Eq.(B.9)

= ∇×
[1

2
∇(u2

l )−u l×(∇×u l)
]
Eqs.(B.5),(B.3)

= −∇×(u l×ω) (B.17)

Applying the property of vector calculus identity, Eq. (B.8), the Eq. (B.17) is obtained

as

∇×
[
(u l · ∇)u l

]
= −

[
u l(∇ · ω)− ω(∇ · u l) + (ω · ∇)u l − (u l · ∇)ω

]
(B.18)

The term ω(∇ · u l) is ignored because its value is very small compared to the terms of

(ω · ∇)u l and (u l · ∇)ω. Therefore, the Eq. (B.18) is rewritten as

∇×
[
(u l · ∇)u l

]
Eq.(B.4)

= −
[
(ω · ∇)u l − (u l · ∇)ω

]
(B.19)

When substituting the Eq. (B.19) into the Eq. (B.16), the left-hand side of the Eq. (B.10)

is expressed as

∇×
(
αl
Du l
Dt

)
= αl

(
∂ω

∂t
− (ω · ∇)u l + (u l · ∇)ω

)
+∇αl ×

Du l
Dt

(B.20)

When substituting the Eqs. (B.11), (B.12), (B.13), and (B.20) into the Eq. (B.10), a

result is obtained as follows:

αl

(
∂ω

∂t
− (ω · ∇)u l + (u l · ∇)ω

)
+∇αl ×

Du l
Dt

= νl∇2ω +∇αl × g (B.21)

The Eq. (B.21) is rearranged as

∂ω

∂t
+
(
u l · ∇

)
ω =

(
ω · ∇

)
u l +

νl
αl
∇2ω +

1

αl
∇αl ×

(
g − Du l

Dt

)
(B.22)

Therefore, the statement is proved.
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Convective outflow boundary condition

The general form of convective outflow boundary condition is rewritten as

∂f(x , t)

∂t
+ uc(x , t)

[
∇(f(x , t)) · n̂

]
(C.1)

where uc(x , t) is the scalar convective velocity and n̂ is the unit normal vector of the

surface ∂Ω. Considering this boundary condition for the liquid phase at the top domain

(z = zmax), the following equations are expressed as

∂ω

∂t
+ uc(zmax, t)

∂ω

∂z
= 0 (C.2)

∂ψ

∂t
+ uc(zmax, t)

∂ψ

∂z
= 0 (C.3)

∂φ

∂t
+ uc(zmax, t)

∂φ

∂z
= 0 (C.4)

∂u l
∂t

+ uc(zmax, t)
∂u l
∂z

= 0 (C.5)

Eq. (C.2), the condition of the vorticity field, is discretized using the staggered-grid finite-

difference schemes as

ωn+1
x,(i,j,kmax) − ω

n
x,(i,j,kmax)

∆t
+ uc(zmax, t) +

ωnx,(i,j,kmax) − ω
n
x,(i,j,kmax−1)

∆z
= 0 (C.6)

ωn+1
y,(i,j,kmax) − ω

n
y,(i,j,kmax)

∆t
+ uc(zmax, t) +

ωny,(i,j,kmax) − ω
n
y,(i,j,kmax−1)

∆z
= 0 (C.7)

ωn+1
z,(i,j,kmax) − ω

n
z,(i,j,kmax)

∆t
+uc(zmax, t)+

3ωnz,(i,j,kmax) − 4ωnz,(i,j,kmax−1) + ωnz,(i,j,kmax−2)

∆z
= 0

(C.8)

The discretization of Eq. (C.3) is the same as that of Eq. (C.2) because the arrangement

of components of ω and ψ on the staggered grid is the same. Eqs. (C.4) and (C.5), the

conditions of the scalar potential velocity and the velocity field, respectively, are discretized

as

φn+1
(i,j,kmax) − φ

n
(i,j,kmax)

∆t
+uc(zmax, t)+

3φn(i,j,kmax) − 4φn(i,j,kmax−1) + φn(i,j,kmax−2)

∆z
= 0 (C.9)

un+1
x,(i,j,kmax) − u

n
x,(i,j,kmax)

∆t
+uc(zmax, t)+

3unx,(i,j,kmax) − 4unx,(i,j,kmax−1) + unx,(i,j,kmax−2)

∆z
= 0

(C.10)
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un+1
y,(i,j,kmax) − u

n
y,(i,j,kmax)

∆t
+uc(zmax, t) +

3uny,(i,j,kmax) − 4uny,(i,j,kmax−1) + uny,(i,j,kmax−2)

∆z
= 0

(C.11)
un+1
z,(i,j,kmax) − u

n
z,(i,j,kmax)

∆t
+ uc(zmax, t) +

unz,(i,j,kmax) − u
n
z,(i,j,kmax−1)

∆z
= 0 (C.12)

The scalar convective velocity uc(zmax, t) is calculated based on each simulation case.



Appendix D

Discretization of Navier–Stokes equation

D.1 Expression of forms and terms of Navier–Stokes equa-

tion

The Navier–Stokes momentum equation for the fluid is written in the velocity–vorticity

form as
∂ω

∂t
+∇ · (uω) = ∇ · (ωu) + ν∇2ω (D.1)

Applying the following property of vector calculus identities:

∇ · (ba) = ∇ · (baT ) = a(∇ · b) + (b · ∇)a (D.2)

where a and b are vectors, the second term on the left-hand side and first term on the

right-hand side of Eq. D.1 can be expressed as:

∇ · (uω) = ω(∇ · u) + (u · ∇)ω = (u · ∇)ω (D.3)

∇ · (ωu) = u(∇ · ω) + (ω · ∇)u = (ω · ∇)u (D.4)

because of ∇ · u = 0 (incompressible flow) and ∇ · ω = 0 (ω is a solenoidal vector).

Substituting Eqs. (D.3) and (D.4) into Eq. (D.1), the Navier–Stokes momentum equation

is written in convective form as

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω (D.5)

In Eq. (D.1), the ωu is dyadic product of two vectors, also expressed as outer product or

tensor dot product of two vectors, (ω ⊗ u), and they have a relation as

ωu ≡ ω ⊗ u ≡ ωuT =
(
ωx ωy ωz

)
u

v

w

 =


ωxu ωxv ωxw

ωyu ωyv ωyw

ωzu ωzv ωzw

 (D.6)

The i-th component of vortex stretching term ∇ · (ωu) is calculated as:(
∇ · (ωu)

)
i

= ∇ · (ωui) = (∇ · ω)ui + (ω · ∇)ui = (ω · ∇)ui (D.7)
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Eq. D.7 is further expressed as

(
∇ · (ωu)

)
x

= ωx
∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z(
∇ · (ωu)

)
y

= ωx
∂v

∂x
+ ωy

∂v

∂y
+ ωz

∂v

∂z(
∇ · (ωu)

)
z

= ωx
∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z

(D.8)

where
(
∇ · (ωu)

)
x
,
(
∇ · (ωu)

)
y

and
(
∇ · (ωu)

)
z

indicate the components of
(
∇ · (ωu)

)
in

x, y and z directions, respectively. Three components of the diffusion term in Eq. (D.1),

are expressed as 

(
ν∇2ω

)
x

= ν
(∂2ωx
∂x2

+
∂2ωx
∂y2

+
∂2ωx
∂z2

)
(
ν∇2ω

)
y

= ν
(∂2ωy
∂x2

+
∂2ωy
∂y2

+
∂2ωy
∂z2

)
(
ν∇2ω

)
z

= ν
(∂2ωz
∂x2

+
∂2ωz
∂y2

+
∂2ωz
∂z2

) (D.9)

D.2 Regular- and staggered-grid finite difference schemes

Considering a point A at middle of the point n − 1 and and n, i.e., xA = (xn−1 + xn)/2,

the value of a function f at xA is interpolated by using formulas with second and fourth

orders of accuracy, respectively, as follows:

f(xA) =
fn−1 + fn

2
+O(∆2) (D.10)

f(xA) =
−fn−2 + 9fn−1 + 9fn − fn+1

16
+O(∆4) (D.11)

where ∆ is width of a grid cell. The first derivatives of f according to x at xA at xA are

expressed as

f
′
(xA) =

fn − fn−1

∆
+O(∆2) (D.12)

f
′
(xA) =

fn−2 − 27fn−1 + 27fn − fn+1

24∆
+O(∆4) (D.13)

In current method, the stretching term is approximated by using fourth-order accuracy,

Eqs. (D.11) and (D.13). In the diffusion term, the second derivative is calculated on the

regular grid as

f
′′
n =

−fn−2 + 16fn−1 − 30fn + 16fn+1 − fn+2

12∆2
+O(∆4) (D.14)
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