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Abstract. The solution to a free boundary problem of Bernoulli type, also

known as Alt-Caffarelli problem, is studied via shape optimization techniques.
In particular, a novel energy-gap cost functional approach with a state con-
straint consisting of a Robin condition is proposed as a shape optimization

reformulation of the problem. Accordingly, the shape derivative of the cost is

explicitly determined, and using the gradient information, a Lagrangian-like
method is used to formulate an efficient boundary variation algorithm to nu-

merically solve the minimization problem. The second order shape derivative
of the cost is also computed, and through its characterization at the solution of

the Bernoulli problem, the ill-posedness of the shape optimization formulation

is proved. The analysis of the proposed formulation is completed by addressing
the existence of optimal solution of the shape optimization problem and is ac-

complished by proving the continuity of the solution of the state problems with

respect to the domain. The feasibility of the newly proposed method and its
comparison with the classical energy-gap type cost functional approach is then

presented through various numerical results. The numerical exploration issued

in the study also includes results from a second-order optimization procedure
based on a Newton-type method for resolving such minimization problem. This

computational scheme put forward in the paper utilizes the Hessian information
at the optimal solution and thus offers a state-of-the-art numerical approach

for solving such free boundary problem via shape optimization setting.

1. Introduction. In this work, we are interested in the so-called exterior Bernoulli
free boundary problem which is described as follows: given a bounded and connected
domain A ⊂ R2 with a fixed boundary Γ := ∂A and a constant λ < 0, find a bounded
connected domain B ⊂ R2 with a free boundary Σ := ∂B, B ⊃ Ā, and an associated
state function u := u(Ω), where Ω = B \ Ā, such that the following conditions are
satisfied

−∆u = 0 in Ω, u = 1 on Γ, u = 0 and ∂nu = λ on Σ, (1)

where ∂nu := ∇u · n denotes the normal derivative of u and n is the outward unit
normal vector to Σ.

The problem under consideration models various physical phenomena and is also
known in the literature as the Alt-Caffarelli problem (see [1]). For a discussion of
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the physical background and an exhaustive bibliography regarding the problem we
refer the reader to [23, 24].

The presence of overdetermined conditions on Σ makes the problem ill-posed and
difficult to solve. Nevertheless, the method known as shape optimization (see, e.g.,
[18, 30, 45]) is already an established tool to solve the free boundary problem. The
point of departure of this approach is the observation that the original problem can
be written as an optimization problem of the form

min
Ω

J(Ω, uΩ) subject to e(uΩ) = 0,

where J denotes a suitable objective functional that depends on a domain Ω as well
as on a function uΩ, which is the solution of a partial differential equation e(u) = 0
posed on Ω.

There are different ways to reformulate (1) into a shape optimization setting and
one possibility is to consider the minimization problem

min
Ω

J̃(Ω) = min
Ω

∫
Ω

|∇(uD − uN)|2 dx, (2)

where the state functions uD and uN are the solutions of the following PDE systems

−∆uD = 0 in Ω, uD = 1 on Γ, uD = 0 on Σ; (3)

−∆uN = 0 in Ω, uN = 1 on Γ, ∂nuN = λ on Σ, (4)

respectively. Such shape optimization reformulation of (1) has already been studied
and exploited in the literature (see, e.g., [9, 11, 19]). We mention here that the

energy-gap cost functional J̃ is often attributed to Kohn and Vogelius [33] since
they were among the first to use it in the context of inverse problems.

The minimization problem (2) can be carried out numerically using different
strategies [41]. One particular choice is the application of a gradient type method
for which gradient information is needed. Accordingly, sensitivity analysis is in-
dispensable in any optimization problem such as (2). In a recent paper, Eppler
and Harbrecht [19] computed the first- and second-order shape derivatives (shape

gradient and shape Hessian, respectively) of J̃ through formal differentiation (see
[18, 30, 45]). These authors also proved algebraic ill-posedness of the Kohn-Vogelius
formulation (2)–(4) through the investigation of sufficient second-order conditions.
The technique used by Eppler and Harbrecht in [19], which was inspired by [21, 22],
however, restricts their findings to starlike domains. In [11], another method using
only the Eulerian derivatives [18] of the states was used to characterize the shape

gradient of J̃ . By this approach, Ben Abda et al. were able to extend the results in
[19] to more general C1,α domains. It was pointed in [11] that an alternative tech-

nique in computing the shape gradient of J̃ using the concept of shape derivatives
of uD and uN combined with the calculus for domain integral cost functionals could
be given. This suggested approach was delivered by Bacani in [9] wherein he also
demonstrated how to apply yet another technique called rearrangement method,
first used in [31], to establish the expression for the shape gradient of J̃ .

Similar to [11, 19], our present investigation is primarily devoted to the numerical
solution of (1) by means of shape optimization methods. Our motivation roots from
the fact that in most, if not all, shape optimization formulation of the Bernoulli
problem, one is required to solve at least two systems of partial differential equations
(PDEs) in order to evaluate the gradient of the associated cost function (see, for

instance, [10, Thm. 33] or [11, Thm. 2] for the case of J̃ , and also [19, Thm. 1]
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for the n-dimensional case of the problem). In this work, we show that the number
of state constraints to be solved when considering an energy-gap cost functional
approach to (1) (such as that of (2)) can be reduced. To accomplish such objective,
we replace the pure Dirichlet problem (3) with a different state system consisting
of a boundary condition of the third kind. More precisely, we let β > 0 be a fixed
number, and consider the equivalent form of (1) with a Robin boundary condition:

−∆uR = 0 in Ω, uR = 1 on Γ, ∂nuR + βuR = λ on Σ, (5)

as one of the state system. With this new state constraint, the shape optimization
problem now reads as

min
Ω

J(Ω) = min
Ω

∫
Ω

|∇(uR − uN)|2 dx, (6)

where the state functions uN and uR are the only solutions to (4) and (5), respec-
tively. Contrary to the classical Kohn-Vogelius formulation (2)–(4), we shall see in
Section 3 that, with the right choice of β and an additional assumption on uR, the
shape gradient of the cost function obtained from this new formulation depends only
on the solution of the state system (4) (see Proposition 1). As a result, the proposed
formulation is more attractive compared to that of the classical setting, especially
in terms of numerical computations. Here, we numerically solve the minimization
problem (6) using a Lagrangian-like method as opposed to [11] which applies an
Eulerian type approach to solve the Bernoulli problem. We announce in advance
that, in most of the numerical examples considered here, the proposed formulation
provides less computing time per iteration than the classical Kohn-Vogelius formu-
lation. The two formulations, however, are comparable in terms of mean over-all
computing time. In addition, it seems that the proposed formulation provides a
somewhat more accurate approximation of the optimal solution than the classical
Kohn-Vogelius approach. We support these claims with various numerical examples
that are reported in subsections 5.2.2 and 5.2.3.

It is worth mentioning that, to the best of our knowledge, the shape optimization
formulation (6), with state systems (4) and (5), of (1) has not yet been used in any
previous investigations. Therefore, the proposed formulation is novel to our work.
In addition, a numerical realization of the shape optimization problem (2)–(4) via a
Lagrangian method has not yet been provided in any foregoing investigation. This
fact further warrants the need to carry out a numerical exploration of the classical
Kohn-Vogelius formulation via a different numerical technique to [11].

The rest of the paper is organized as follows. In Section 2, we describe the weak
formulations of the state equations and briefly discuss the regularity of their solu-
tions. In Section 3, we recall a few basic concepts from shape calculus which are
used in subsequent parts of the paper. Then, we examine the sensitivity of the
cost function with respect to the domain. We compute the shape gradient of the
cost through chain rule approach and exhibit the explicit expression for the shape
Hessian using Hadamard’s domain differentiation formula. Also, we characterize
the shape Hessian at the solution of the Bernoulli problem and prove the instabil-
ity of the optimization problem. We show the latter result by proving that strict
coercivity of the shape Hessian at the solution of the Bernoulli problem cannot be
established in the energy space associated with the shape Hessian. In Section 4, we
address the issue of existence of optimal solution of the proposed shape optimiza-
tion formulation. We first introduce a suitable family of admissible domains for
the shape optimization problem and then show the existence of optimal solution by
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proving in particular, the continuity of the state problems (4) and (5) with respect
to the domain. We then complete the proof of existence of optimal solution by
establishing the lower semi-continuity of the cost function J . In Section 5, we de-
scribe how the computed shape gradient can be utilized in a gradient-based scheme
to obtain numerical solutions of the present problem and outline the algorithm to
be implemented. In addition, we demonstrate how to use the Hessian informa-
tion at the optimal solution to formulate a second-order optimization procedure
for resolving the minimization problem. Afterwards, we present several numerical
tests illustrating the feasibility of the newly proposed shape optimization formula-
tion of (1). We also compare our results with the ones obtained via the classical
Kohn-Vogelius formulation. Finally, we end the paper with a conclusion in Section
6.

2. Preliminaries. Here let us review an essential quality of the state solutions
which is vital in guaranteeing the existence of shape derivatives.

2.1. Weak formulation of the state equations. In this section, we state the
variational formulations of the state equations (4) and (5) and briefly discuss the
solvability of their solutions.

Consider the Hilbert space V0(Ω)

V0(Ω) = {v ∈ H1(Ω) : v|Γ = 0}

endowed with the norm

∥v∥V0(Ω) =

(∫
Ω

|∇v|2 dx
)1/2

,

and the linear manifold defined by

Vg(Ω) = {v ∈ H1(Ω) : v|Γ = g}

for g ∈ H1/2(Γ).
Note that ∥ · ∥V0(Ω) is basically the H1(Ω)-seminorm.
For the weak formulation of (4) and (5), we consider two fixed functions uN0, uR0 ∈

H1(U) such that uN0 = uR0 = 1 on Γ.
Now, the weak formulation of (4) can be stated as follows:
Find zN = uN − uN0 ∈ V0(Ω) such that∫

Ω

∇zN · ∇φdx+

∫
Ω

∇uN0 · ∇φdx−
∫
Σ

λφdσ = 0, ∀φ ∈ V0(Ω). (7)

Similarly, the weak form of (5) can be expressed as follows:
Find zR = uR − uR0 ∈ V0(Ω) such that∫

Ω

∇zR · ∇φdx+

∫
Ω

∇uR0 · ∇φdx+

∫
Σ

βzRφdσ −
∫
Σ

λφdσ = 0,

∀φ ∈ V0(Ω).

(8)

The variational equation (7) is known to admit a unique solution in H1(Ω), while
it can easily be verified (for instance, by means of Lax-Milgram lemma) that (8)
also have a unique solution in H1(Ω) (see [26]).
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2.2. Higher regularity of the states. The unique solution uN of the PDE system
(4) actually possesses higher regularity property because of the regularity assump-
tion on Ω. In fact, since Ω is of class C2,1, the weak solution uN ∈ H1(Ω) to (4)
is also in H3(Ω), and in general, if Ω is of class Ck+1,1, where k is a non-negative
integer, then uN is Hk+2 regular. This assertion can easily be established since
dist(Γ,Σ) > 0, as demonstrated in [10].

Similarly, the unique solution uR ∈ H1(Ω) of (5) also have higher regularity
depending on the degree of smoothness of Ω. More precisely, if Ω is of class Ck+1,1

(again k is a non-negative integer), then uR is also an element of Hk+2(Ω) (see,
e.g., [32, Rem. 3.5]).

3. Shape sensitivity analysis of the states and cost function. Let us consider
a fixed, bounded and connected C2,1 domain U ⊃ Ω̄ and a family of deformation
fields

Θ := {V ∈ C2,1(U,R2) : V = 0 on ∂U ∪ Γ}. (9)

Given an element of Θ, we perturb Ω by means of the so-called perturbation of the
identity operator (see, e.g., [18, Sec. 2.5.2, p. 147] or [10]):

Tt : Ω 7−→ Ωt, x 7−→ Tt(x) = x+ tV(x).

For sufficiently small t and for each V ∈ Θ, one can show that Tt is a C2,1 diffeo-
morphism from Ω onto its image (cf. [45]). Note that, in view of (9), Γ remains
invariant after a deformation since V vanishes on Γ. Hence, Γ is a component of
the boundary of Ωt for all t. Further, we note Ω0 = Ω and Γ0 = Γ.

On the perturbed domain Ωt, the state solutions uNt and uRt satisfy

−∆uNt = 0 in Ωt, uNt = 1 on Γt,
duNt

dnt
= λ on Σt; (10)

−∆uRt = 0 in Ωt, uRt = 1 on Γt,
duRt

dnt
+ βuRt = λ on Σt, (11)

respectively, where nt is the unit outward normal to Σt. Here, we can actually drop
t in Γt since Γt = Γ for all t.

In what follows, we recall some definitions from shape calculus. We say that the
function u(Ω) has a material derivative u̇ and a shape derivative u′ at zero in the
direction V if the limits

u̇ = lim
t↘0

u(Ωt) ◦ Tt − u(Ω)

t
, u′ = lim

t↘0

u(Ωt)− u(Ω)

t
,

exist, respectively, where (u(Ωt) ◦ Tt)(x) = u(Ωt)(Tt(x)). These expressions are
related by

u′ = u̇− (∇u ·V)

provided that ∇u ·V exists in some appropriate function space [18, 45]. In general,
if u̇ and ∇u ·V both exist in the Sobolev space Wm,p(Ω), then u′ also exists in that
space.

Given a functional J : Ω → R, we say that it has a directional Eulerian derivative
at Ω in the direction V if the limit

lim
t↘0

J(Ωt)− J(Ω)

t
=: dJ(Ω)[V]

exists. In addition, if dJ(Ω)[V] exists for all V and the map V 7→ dJ(Ω)[V] is
linear and continuous, then J is shape differentiable at Ω, and this mapping will be
referred to as the shape gradient of J at Ω.
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3.1. Shape derivative of the states. In order to prove the existence of dJ(Ω)[V],
one needs to show that the material and shape derivatives of the states uN and uR

exist and, consequently, apply the chain rule. Deriving the expressions for these
aforementioned quantities are quite laborious. Fortunately, the system of PDEs
which the shape derivatives of uN and uR satisfy were already established in [9] and
[46], respectively. To guarantee their existence, however, we require Ω to be at least
C2,1 regular.

Lemma 3.1 ([9]). Let Ω be a bounded C2,1 domain and V ∈ Θ. Then, uN ∈
H3(Ω) is shape differentiable with respect to the domain, and its shape derivative
u′
N ∈ H1(Ω) is the unique solution of the mixed Dirichlet-Neumann problem −∆u′

N = 0 in Ω,
u′
N = 0 on Γ,

∂nu
′
N = B(uN)[V] on Σ,

(12)

where
B(φ)[V] := divΣ(V · n∇Σφ) + λκV · n, (13)

where κ denotes the mean curvature of Σ.

Lemma 3.2 ([46]). Let Ω be a bounded C2,1 domain and V ∈ Θ. Then, uR ∈
H3(Ω) is shape differentiable with respect to the domain, and its shape derivative
u′
R ∈ H1(Ω) is the unique solution of the mixed Robin-Neumann problem −∆u′

R = 0 in Ω,
u′
R = 0 on Γ,

∂nu
′
R + βu′

R = B(uR)[V]− β(∂nuR + κuR)V · n on Σ,
(14)

where B(·)[V] is given by (13). If β = κ, then for the shape derivative uR of the
solution of (5), it holds that u′

R ≡ 0 when Σ is the free boundary.

Remark 1. The last statement in the previous lemma can easily be verified as fol-
lows. Indeed, from (14), we note that the shape derivative u′

R satisfies the equation∫
Ω

∇u′
R · ∇φdx+

∫
Σ

βu′
Rφdσ

=

∫
Σ

[
−∇Σu

′
R · ∇Σφ− β

(
∂uR

∂n
+ κuR

)
φ+ λκφ

]
V · n dσ, ∀φ ∈ V0(Ω).

Hence, if Σ is the free boundary, then uR = 0 on Σ, and so −∇Σu
′
R ·∇Σφ = 0. This

leaves us the equation∫
Ω

∇u′
R · ∇φdx+

∫
Σ

βu′
Rφdσ =

∫
Σ

(
−β

∂uR

∂n
+ λκ

)
φV · ndσ, ∀φ ∈ V0(Ω).

Since ∂nuR = λ on Σ, then by choosing β = κ, the right side of the above equation
vanishes and we get u′

R ≡ 0. We emphasize that this result plays an important
part in this investigation, particularly in simplifying the expression for the shape
derivative of J which would make the minimization problem easier to solve.

3.2. First-order shape derivative of the cost function. Now, our objective
here is to derive the shape derivative of the cost function J in the direction of the
deformation field V ∈ Θ. For this purpose, we utilize Hadamard’s differentiation
formula (cf. [18, Thm. 4.3, p. 486], see also [30, 45])

d

dt

∫
Ωt

f(t, x) dxt

∣∣∣∣
t=0

=

∫
Ω

∂f

∂t
(0, x) dx+

∫
Σ

f(0, s)V · ndσ. (15)
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This formula holds when f ∈ C([0, ε],W 1,1(U)) and d
dtf(0) exists in L1(U).

In addition to (15), we shall also use the so-called tangential Green’s formula (cf.
[18, Eq. 5.27, p. 498]): let U be a bounded domain of class C1,1 and Ω ⊂ U with
boundary Γ. For V ∈ C1,1(U,R2) and f ∈ W 2,1(U), we have∫

Γ

(fdivΓV +∇Γf ·V) dσ =

∫
Γ

κfV · n dσ, (16)

where κ is the mean curvature of Γ and the tangential gradient ∇Γ is given by

∇Γf = ∇f |Γ − (∂nf)n.

We are now ready to prove the following result.

Proposition 1. Let Ω be of class C2,1 and V ∈ Θ. Then, the energy-gap cost
functional J is shape differentiable with

dJ(Ω)[V] =

∫
Σ

[G0n ·V − β(uR − uN)u
′
R] dσ, (17)

where

G0 = λ2 − λβuR − β(uR − uN)(∂nuR + κuR)−∇uR∇uN

− (∇uR · τ)(∇uN · τ) + 1

2

[
β2u2

R − (∇uR · τ)2 − (∇uN · τ)2
]
. (18)

Here, κ denotes the mean curvature of Σ. Moreover, τ represents the unit tangent
vector on Σ and it is oriented in such a way that Σ is at the left of τ ; that is, if
n = (n1, n2)

⊤, then τ = (−n2, n1)
⊤.

If, in addition, u′
R is the shape derivative of the solution of (5) where Σ is the

free boundary, then, for β = κ, the shape gradient considerably simplifies to

dJ(Ω)[V] =

∫
Σ

Gn ·V dσ, (19)

where

G = λκuN − 1

2
(∇uN · τ)2. (20)

Proof. Let Ω be of class C2,1 and V ∈ Θ. Since uN and uR are sufficiently regular,
we can apply (15) to obtain

dJ(Ω)[V] =

∫
Ω

∇(uR − uN) · ∇(u′
R − u′

N) dx+
1

2

∫
Σ

|∇(uR − uN)|2V · ndσ, (21)

where u′
N and u′

R satisfy (12) and (14), respectively. The second integral can be
easily expanded as

1

2

∫
Σ

|∇(uR − uN)|2V · n dσ =
1

2

∫
Σ

[
λ2 − 2λβuR + β2u2

R + (∇uR · τ)2
]
V · ndσ

+
1

2

∫
Σ

[
−2∇uR∇uN + λ2 + (∇uN · τ)2

]
V · ndσ.

On the other hand, we can write the first integral as follows∫
Ω

∇(uR − uR) · ∇(u′
R − u′

N) dx
⟨1⟩
=

∫
Σ

(uR − uN)∂n(u
′
R − u′

N) dσ

⟨2⟩
=

∫
Σ

(uR − uN)divΣ(V · n∇Σ(uR − uN)) dσ
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−
∫
Σ

β(uR − uN)[(∂nuR + κuR)V · n+ u′
R] dσ

⟨3⟩
= −

∫
Σ

[(∇uR · τ)2 + (∇uN · τ)2]V · n dσ

−
∫
Σ

2(∇ΣuR · ∇ΣuN)V · n dσ

−
∫
Σ

β(uR − uN)[(∂nuR + κuR)V · n+ u′
R] dσ.

Equality ⟨1⟩ was obtained through Green’s formula. Meanwhile, ⟨2⟩ follows from
(12) and (14). Lastly, equality ⟨3⟩ was derived through the identity∫

Σ

φdivΣ(V · n∇Σφ) dσ = −
∫
Σ

(∇φ · τ)2V · n dσ, φ ∈ H3(Ω),

which holds since V · n∇Σφ · n = 0 (see (16)). Further, in ⟨3⟩, we may write
∇ΣuR · ∇ΣuN = (∇uR · τ)(∇uN · τ). Hence, combining the computed expressions
for the first and second integral of (21), we get (17).

Letting β = κ and u′
R be the shape derivative of the solution of (5) where Σ

is the free boundary, we get uR = 0 and ∂nuR = λ on Σ. By virtue of [46, Lem.
1], u′

R ≡ 0. In addition, we obtain the relation ∇uR = (∂nuR)n on Σ from which
we deduce that ∇uR · τ = 0 on Σ. Direct substitutions of these identities in (17)
eventually lead to (19), completing the proof of the proposition.

Remark 2. Note that since uN ∈ H2(Ω), (∇uN · τ)2 ∈ L1(Σ). Also, for C1,1

domains, the outward unit normal vector n to Σ is Lipschitz continuous. By
Rademacher’s theorem the mean curvature κ then belongs to L∞(Σ). So λκuN ∈
L2(Σ). Since, in addition, V · n ∈ C0,1(Σ) ⊂ L∞(Σ), we find that dJ(Ω)[V] is
well-defined. Moreover, J is shape differentiable at Ω because dJ(Ω)[V] exists for
all V ∈ Θ. Noting that dJ(Ω)[V] ⩽ |G |L1(Σ)|V|C1,1(Ū), we also conclude that the

map V 7→ dJ(Ω)[V] is linear and continuous with respect to V ∈ Θ.

As an immediate consequence of Proposition 1, we have the following.

Corollary 1. Let the domain Ω∗ be such that u = u(Ω∗) satisfies the overdetermined
boundary value problem (1); i.e., it holds that

u = uR = uN on Ω̄∗.

Then, the domain Ω∗ fulfils the necessary optimality condition

dJ(Ω∗)[V] = 0 for all V ∈ Θ.

Proof. At the shape solution Ω = Ω∗ of the Bernoulli problem (1), uN = 0 on Σ.
Hence, ∇uN = (∂nuN)n on Σ and it follows that ∇uN · τ = 0 on Σ. Thus, G is zero
which implies the assertion.

Remark 3. We reiterate that, as opposed to the classical Kohn-Vogelius formula-
tion (2)–(4) of the Bernoulli problem, one only needs to solve (4) in order to evaluate
the shape gradient of J . We recall from [10, Thm. 33] (see also [11, Thm. 2] and
[19, Thm. 1]) that under the classical setting, the first-order shape derivative of the
Kohn-Vogelius cost functional in (2) is given by

dJ̃(Ω)[V] =

∫
Σ

G̃V · ndσ, (22)
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where

G̃ =
1

2
(λ2 − (∇uD · n)2 + 2λκuN − (∇uN · τ)2), (23)

and the state functions uD and uN are the unique solutions to (3) and (4), respec-
tively. Apparently, the shape gradient of J is obtained from (22) when ∂nuD = λ.
Of course, this condition holds in the case of (5) if one assumes that β = κ and u′

R

is the shape derivative of the solution of (5) where Σ is the free boundary (cf. [46]).

3.3. Second-order shape derivative of the cost function. LetW be a velocity
field in Θ. By virtue of Proposition 1 together with Remark 2, the derivative
dJ(Ωs(W))[V] exists for all sufficiently small s. Our next objective now is to find
an expression for the limit

lim
s↘0

dJ(Ωs(W))[V]− dJ(Ω)[V]

s
=: d2J(Ω)[V,W],

where

dJ(Ωs(W))[V] =

∫
Σs

Gsns ·V dσs =

∫
Σs

(
λκsuNs −

1

2
(∇uNs · τs)2

)
ns ·V dσs.

Here, Σs := Σs(W) denotes the free boundary of the deformed domain Ωs :=
Ωs(W) perturbed via the velocity field W ∈ Θ and uNs ∈ H3(Ωs) is the unique
solution of the state system (4) on Ω̄ = Ω̄s (cf. equation (10) with t replaced by
s). In addition, κs = divΣsns; and ns and τs refer to the unit outward normal and
unit tangent vectors on Σs, respectively.

If for all V and W, d2J(Ω)[V,W] exists and is bilinear and continuous with
respect to V and W, then J is said to be twice shape differentiable at Ω. In this
case, the map (V,W) 7→ d2J(Ω)[V,W] is called the shape Hessian of J in the
directions of V and W.

Before we give the characterization of the shape Hessian below, we first introduce
some notations. For convenience, we use the notation Vn := V · n for V ∈ Θ.
Moreover, we let v = V|Σ and v = vΣ + vnn := (v · τ)τ + (v · n)n. Also, we recall
from [18, Eq. (5.2), p. 495] the definition of the tangential differential operator DΣ

called the tangential Jacobian matrix given as

DΣv = DV|Σ − (DVn)n⊤.

Furthermore, we denote by φ′
W the shape derivative of φ along a deformation field

W ∈ Θ. Lastly, we recall the shape derivatives of the mean curvature κ and the
tangential vector τ in the direction ofW which are respectively given as (see [18, 45])

κ′
W = trace

{
D

[
(DWn · n)n− (DW)⊤n

]
−DnDW

}
−∇κ ·W, (24)

τ ′W = [(DW)⊤n · τ ]n− (Dτ)W. (25)

We now state the shape Hessian of J at Ω in the following proposition.

Proposition 2. The second-order shape derivative d2J(Ω)[V,W] of the cost func-
tional J at Ω in the directions of the deformation fields V,W ∈ Θ has the following
structure:

d2J(Ω)[V,W] =

∫
Σ

[G ′
WVn + (∂nG + κG )VnWn − GK + G (DV)Wn] dσ, (26)



10 JULIUS FERGY T. RABAGO AND HIDEYUKI AZEGAMI

where G is given by (20) and

G ′
W = λ(κ′

WuN + κu′
NW )− (∇uN · τ)(∇u′

NW · τ +∇uN · τ ′W ), (27)

∂nG = λuN∂nκ+ λ2κ, (28)

K = vΣ · (DΣn)wΣ + n · (DΣv)wΣ + n · (DΣw)vΣ. (29)

Proof. Using Stoke’s formula, we write the gradient as

dJ(Ωs)[V] =

∫
Ωs

div(Gsns ·V) dxs.

From (15), we easily find that

d2J(Ω)[V,W] =

∫
Σ

G ′
WV · n dσ +

∫
Σ

div(GV)W · ndσ, (30)

where G ′
W given by (27) is simply obtained by differentiating G .

Note that the shape Hessian (30) is consistent with the Hadamard-Zolésio struc-
ture theorem provided that u′

NW is linear and continuous function of Vn on the
boundary Σ (cf. [18]). Moreover, notice in equation (30) the non-symmetry of the
second integral in Vn and Wn.

Now we further extract from the second integral in (30) a few more symmetric
expressions of the shape Hessian. The non-symmetric part will be obtained from
(19) applied to the deformation field DVW (cf. [37]). Since Ω is a C2,1 domain
and we have enough regularity for the state uN, then in view of [18, Chap. 9, Sec.
6] (or, in particular, [18, Eq. 6.10, p. 505]), the following identity actually holds∫

Σ

div(GV)W · ndσ =

∫
Σ

[(∂nG + κG )VnWn − GK + G (DV)Wn] dσ, (31)

where K is given by (29). Here, the explicit form of ∂nG is computed as follows

∂n

(
κλuN − 1

2
(∇uN · τ)2

)
= λuN∂nκ+ λ2κ− (∇uN · τ)(∇[(∇uN · n) · τ)]. (32)

Since ∂nuN = λ on Σ, the last expression in (32) disappear and we immediately
arrive at (28). Substituting this expression into (30) proves the expression for the
shape Hessian given by (26).

We point out that we may in fact consider velocity fields V ∈ Θ that are normal
to Σ, i.e., V|Σ = Vnn. In this case, we observe that the expression in (29) vanishes.
Moreover, the last integrand in (26) can be expressed as G (DV)Wn = G ∂nvnwn

since (DV)Wnn = D(vnn)wnn ·n = wnn
⊤[n(∇(vn))

⊤ + vnDn]n and Dn ·n = 0 on
Σ (cf. [45]). Thus, for deformation fields V,W ∈ Θ with null tangential part, the
shape Hessian (26) simplifies to

d2J(Ω)[V,W] =

∫
Σ

[G ′
W vn + (∂nG + κG ) vnwn + G ∂nvnwn] dσ.

Note that, in the proof of Proposition 2, we managed not to use the second-order
shape derivative of the states in characterizing the second-order Eulerian derivative
of J contrary to [21]. Thanks to identity (31), the characterization of the shape
Hessian was easily accomplished.

Remark 4. Notice in (27) the term κ′
W which represents the shape derivative of

the mean curvature κ along the deformation field W ∈ Θ. Note that the explicit
form of κ′

W given in (24) essentially consists of a second order tangential derivative
of the vector field W, and this derivative actually exists due to our assumption that
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Ω is of class C2,1 (cf. [18, 45]). Hence, we deduce that the shape Hessian defines a
continuous bilinear form

d2J(Ω)[V,W] : H1(Σ)×H1(Σ) → R.

Let us now consider the shape solution Ω∗ of the Bernoulli problem (1), focusing
on the case when β = κ. In order to study the stability of the shape optimization
problem (6) at the solution of the Bernoulli problem, we first characterize the shape
Hessian of J along the deformation fields V,W ∈ Θ at Ω∗.

Corollary 2. At the solution of the Bernoulli problem (1), i.e., Ω = Ω∗, we have

d2J(Ω∗)[V,W] =

∫
Σ∗

λκu′
NWV · ndσ +

∫
Σ∗

λ2κ(V · n)W · n dσ. (33)

Proof. Using Stoke’s theorem, we write

dJ(Ω)[V] =

∫
Σ

λκuNV · n dσ − 1

2

∫
Σ

(∇uN · τ)2V · ndσ

=

∫
Ω

div(λκuNV) dx− 1

2

∫
Ω

div((∇uN · τ)2V) dx =: J1 − J2.

Then, in the direction of a velocity field W ∈ Θ, we have

dJ1(Ω)[W] =

∫
Ω

div(λκu′
NWV) dx+

∫
Σ

div(λκuNV)Wn dσ

=

∫
Σ

λκu′
NWVn dσ +

∫
Σ

divV(λκuN)Wn dσ

+

∫
Σ

VΣ · ∇(λκuN)Wn dσ +

∫
Σ

∂n(λκuN)VnWn dσ,

where VΣ := V−Vnn. At the shape solution Ω = Ω∗ of the Bernoulli problem (1),
we know that uN = 0 on Σ. Hence, the second and the third integral disappear,
and we are left with

dJ1(Ω
∗)[W] =

∫
Σ∗

λκu′
NWVn dσ +

∫
Σ∗

λ2κVnWn dσ.

For J2, we have

dJ2(Ω)[W] =

∫
Ω

div((∇u′
NW · τ)(∇uN · τ)V) dx+

1

2

∫
Σ

div((∇uN · τ)2V)Wn dσ

=

∫
Σ

(∇u′
NW · τ)(∇uN · τ)Vn dσ +

1

2

∫
Σ

divV(∇uN · τ)2Wn dσ

+
1

2

∫
Σ

VΣ · ∇((∇uN · τ)2)Wn dσ +
1

2

∫
Σ

∂n((∇uN · τ)2)VnWn dσ.

Furthermore, at Ω = Ω∗, we have that ∇uN · τ = 0 on Σ. Thus, dJ2(Ω
∗)[W]

vanishes, and we conclude that d2J(Ω∗)[V,W] = dJ1(Ω
∗)[W] as desired.

Alternative Proof. Of course, equation (33) can be proven directly from Proposition
2 together with Corollary 1. Indeed, at Ω = Ω∗, we get G = 0 and (27) reduces to
G ′
W = λκu′

NW . Moveover, we have ∂nG = λ2κ. Inserting these identities to

d2J(Ω∗)[V,W] =

∫
Σ∗

(G ′
WVn + ∂nGVnWn) dσ

yield (33) as announced.
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3.4. Ill-posedness of the shape optimization problem. Here we prove the
ill-posedness of the present shape optimization problem using the method already
used in [20]. Particularly, we use a local regularity argument in order to prove that
the shape optimization problem under consideration is not well-posed. To this end,
we recall from [16, 17] an important result about sufficient second order conditions:
a local minimizer Ω∗ is stable if and only if the shape Hessian d2J(Ω∗) is strictly
coercive in its corresponding energy space H1(Σ∗) (see also [19]).

Throughout this section, for convenience, we use the standard notation “≲”,
i.e., by B ≲ D we mean that there is some constant C > 0 such that B ⩽ CD.
Obviously, D ≳ B is defined as B ≲ D.

Proposition 3 (Coercivity of the Hessian at the solution of the Bernoulli problem).
Let the mean curvature κ of Σ∗ be non-negative. Then, the shape Hessian at the
solution of the Bernoulli problem (1) is strictly H1/2(Σ∗)-positive, i.e.,

d2J(Ω∗)[V,V] ≳ ∥V∥2H1/2(Σ∗).

To justify the above result, we first prove that multiplication by a Lipschitz
function defines a bounded operator in H1/2(∂Ω).

Lemma 3.3. Let Ω ⊂ R2 be a bounded Lipschitz domain with boundary Γ := ∂Ω.
Then, the map v 7→ ϕv is continuous in H1/2(Γ) for any v ∈ H1/2(Γ) and ϕ ∈
C0,1(Γ).

Proof. Recall that the fractional Sobolev space H1/2(Γ) (the trace space for H1(Ω))
is equipped with the norm

∥v∥1/2,2 = ∥v∥L2(Γ) + |v|1/2,2,Γ, |v|1/2,2,Γ =

(∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|2
dxdy

)1/2

.

Let ϕ be a Lipschitz function with Lipschitz constant L. Then, we get the inequality

|ϕ(x)v(x)− ϕ(y)v(y)| ⩽ ∥ϕ∥∞|v(x)− v(y)|+ L|v(y)||x− y|.
Hence, we can estimate |ϕv|1/2,2,Γ as follows

|ϕv|1/2,2,Γ =

(∫
Γ

∫
Γ

|ϕ(x)v(x)− ϕ(y)v(y)|2

|x− y|2
dxdy

)1/2

≲ ∥ϕ∥∞|v|1/2,2,Γ + L

(∫
Γ

∫
Γ

|v(y)|2 dx dy
)1/2

≲ ∥ϕ∥∞|v|1/2,2,Γ + L|Γ|1/2∥v∥L2(Γ).

Since ∥ϕv∥L2(Γ) ⩽ ∥ϕ∥∞∥v∥L2(Γ), then the assertion is proved.

With the aid of Lemma 3.3, the following multiplication operators are continuous:

L : H1/2(Σ∗) → H1/2(Σ∗), LV := −λVn,

M : H1/2(Σ∗) → H1/2(Σ∗), Mv := κv.

Here, of course, κ denotes the mean curvature of Σ∗. We note that, in addition to
being continuous, the map L : Hs(Σ∗) → Hs(Σ∗) is also bijective for all s ∈ [0, 1].

To complete our preparation for the proof of Proposition 3, let us define S as the
Steklov-Poincaré operator on Σ∗ which is defined by (see [46])

S : H1/2(Σ∗) → H−1/2(Σ∗), S(Φ) :=
∂Ψ

∂n

∣∣∣∣
Σ∗

(34)
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where Ψ ∈ H1(Ω∗) satisfies

−∆Ψ = 0 in Ω∗, Ψ = 0 on Γ, Ψ = Φ on Σ∗. (35)

The operator S, also called the Dirichlet-to-Neumann map (see, e.g., [19]), is
H1/2(Σ∗)-coercive (cf. [19, Lem. 2]). Its inverse R called the Neumann-to-Dirichlet
map is defined by

R : H−1/2(Σ∗) → H1/2(Σ∗), R
(
∂Ψ

∂n

)
:= Φ |Σ∗ , (36)

where Φ ∈ H1(Ω∗) satisfies

−∆Φ = 0 in Ω∗, Φ = 0 on Γ, ∂nΦ = ∂nΨ on Σ∗. (37)

Proof of Proposition 3. Using R, we can write (33) as

d2J(Ω∗)[V,W] = ⟨LV,R(MLW) + LW⟩L2(Σ∗). (38)

Using the continuity of the maps L and M, the bijectivity of R, and the fact that
the imbedding of H1/2(Σ∗) into H−1/2(Σ∗) is compact, we easily arrive at

d2J(Ω∗)[V,V] ≳ ∥V∥2H1/2(Σ∗),

whenever κ is non-negative.

As we have just shown, the coercivity of the shape Hessian can only be attained
with respect to a Sobolev space weaker than the energy space. Hence, the shape
optimization problem (6), subject to (4) and (5), is algebraically ill-posed. This
result also indicates that the gradient does not have a uniform sensitivity with
respect to the deformation directions.

4. Existence of optimal domains of the shape optimization problem. Be-
fore we proceed to the numerical realization of the proposed shape optimization
formulation of (1), we first address the issue of existence of optimal solution to
the shape optimization problem (6), subject to (4)–(5). Meanwhile, regarding the
existence of solution to the exterior Bernoulli free boundary problem (1), we refer
the readers to [1].

We emphasize that in (6), we are actually trying to minimize the cost functional
J(Ω) =

∫
Ω
|∇(uR(Ω)− uN(Ω))|2 dx for all Ω in some space of admissible domains

Oad, where uN = uN(Ω) and uR = uR(Ω) are solutions to the PDE systems (4) and
(5), respectively. In view of their respective weak formulations (7) and (8), noting
that each of these systems admits a unique solution in H1(Ω), we can then define
the mapping Ω 7→ (zN, zR) = (zN(Ω), zR(Ω)) and denote its graph by

F = {(Ω, zN(Ω), zR(Ω)) : Ω ∈ Oad and zN(Ω), zR(Ω) satisfies (7)–(8) on Ω}.

So, in (6), we are actually looking for a solution (Ω, zN(Ω), zR(Ω)) that minimizes
J(Ω) = J(Ω, zN(Ω), zR(Ω)) on F . This minimization problem is usually solved by
endowing the set F with a topology for which F is compact and J is lower semi-
continuous. In accomplishing the task, we shall follow the ideas developed in [27]
and the ones used in [12, 28]. To do this, we first need to define the set of admissible
domains Oad and then give an appropriate topology on it. From Subsection 3.1,
we recall that we used C2,1 regularity of the free boundary Σ to guarantee the
existence of the shape derivatives of the states. For the analysis of existence of
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optimal solution to (6), we may as well suppose that the free boundary Σ is C2,1-
regular, however, as we have seen in [12], a C1,1 regularity on the free boundary is
enough to carry out the task. So, we assume that Σ is parametrized by

Σ = Σ(ϕ) = {ϕ = (ϕ1(t), ϕ2(t)) : t ∈ R},

where ϕ ∈ Uad and Uad is the set of vector functions ϕ ∈ C1,1(R,R2) having the
following properties:

(P1) ϕ is injective on (0, 1] and is 1-periodic;
(P2) there exist positive constants c0, c1, c2 and c3 such that

|ϕ(t)| ⩽ c0, c1 ⩽ |ϕ′(t)| ⩽ c2, |ϕ′′(t)| ⩽ c3, a.e. in (0, 1);

(P3) Ω = Ω(ϕ) ⊂ U , U is a fixed, connected, bounded open subset of R2;
(P4) there is a positive constant γ such that dist(Γ,Σ(ϕ)) ⩾ γ.

The set U in assumption (P3) and the one introduced in Section 3 are not nec-
essarily the same set. However, we point out that in (P3), we are assuming that
all admissible domains Ω(ϕ) are contained in the hold-all domain U (in the same
manner that the universal set U in equation (9) holds all the possible deformations
of the reference domain Ω). Here, we are in fact requiring that dist(Σ(ϕ), ∂U) > 0.

Remark 5. The function ϕ described above can actually be viewed as a mapping
from the quotient space R/Z to R2. Moreover, it is known that R/Z is a compact
metric space endowed with the distance d(t+Z, t′+Z) = inf{|x−x′| : x ∈ t+Z, x′ ∈
t′ + Z} = inf{|t− t′ + k| : k ∈ Z}, t+ Z and t′ + Z being two elements of R/Z [12].

Remark 6. Note that, in assumption (P2), we are already requiring the free bound-
ary Σ to be represented by a closed C1,1-curve. In [28], a C2-regularity of the free
boundary was used to construct a C1-diffeomorphism of a uniform tubular neigh-
borhood of the free boundary. Hence, as a consequence of the definition of Oad,
every admissible domain Ω(ϕ), ϕ ∈ Uad, is a uniformly open set in R2 and therefore
satisfy the uniform cone property (cf. [30]). We also mention that it is actually
possible to construct a C1-diffeomorphism of a uniform tubular neighborhood of
the boundary by using only C1-regularity of the boundary (see [12, Cor. 1]).

Given the definition of elements of Uad, the set of admissible domains Oad is then
defined by

Oad = {Ω = Ω(ϕ) ⊂ U : ϕ ∈ Uad}. (39)

In view of the Remark 6, we mention that the class of domains Ω(ϕ), ϕ ∈ Uad, being
considered here possesses a very important extension property. In fact, for every
k ⩾ 1, p > 1 and domain Ω ∈ Oad, there exists an extension operator

EΩ : W k,p(Ω) → W k,p(U) (40)

such that

∥EΩu∥Wk,p(U) ⩽ C∥u∥Wk,p(Ω), (41)

and C > 0 is independent of the domain Ω [15]. The uniform cone property of every
admissible domain Ω(ϕ), together with the previously mentioned result, ensured
that every function u ∈ H1(Ω) has a uniform extension ũ ∈ H1(U) from Ω to U .

With the above results now at our disposal, we now define the topology we shall
work with. First, we define the convergence of a sequence {ϕn} ⊂ Uad by

ϕn → ϕ ⇐⇒ ϕn → ϕ and ϕ′
n → ϕ′ uniformly on [0, 1], (42)
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i.e., if and only if ϕn → ϕ in the C1-topology. Then, the convergence of a sequence
of domains {Ωn} := {Ω(ϕn)} ⊂ Oad is simply defined by

Ωn → Ω ⇐⇒ ϕn → ϕ. (43)

Meanwhile, the convergence of a sequence {zNn} of solutions of (7) on Ωn to the
solution of (7) on Ω can then be defined by

zNn → zN ⇐⇒ z̃Nn → z̃N weakly in H1(U). (44)

Similarly, we define the convergence of a sequence {zRn} of solutions of (8) on Ωn

to the solution of (8) on Ω by

zRn → zR ⇐⇒ z̃Rn → z̃R weakly in H1(U). (45)

Of course, in (44) and (45), the extensions z̃i, z̃in, i = N,R, are actually defined as
EΩzi, EΩzin, i = N,R, respectively, where EΩ is the extension operator (40).

Finally, the topology we introduce on F is the one induced by the convergence
defined by

(Ωn, zNn, zRn) → (Ω, zN, zR) ⇐⇒

 ϕn → ϕ,
zNn → zN,
zRn → zR.

(46)

We now state the main result of this section.

Proposition 4. The minimization problem{
Find Ω∗ ∈ Oad such that

J(Ω∗, zN(Ω
∗), zR(Ω

∗)) ⩽ J(Ω, zN(Ω), zR(Ω)), ∀Ω ∈ Oad,
(47)

where zN and zR are weak solutions to (7) and (8), respectively, admits a solution
in F .

As already mentioned, we established the above result by proving the compact-
ness of F and the lower semi-continuity of J . Regarding the compactness of F with
respect to the convergence (46), we note that the convergence ϕn → ϕ easily follows
from the compactness of Uad and the Arzelà-Ascoli theorem. Indeed, by the said
theorem, there is a subsequence {ϕk} that converges uniformly in the C1([0, 1],R2)-
norm. Denoting its limit by ϕ, we know that |ϕ| ⩽ c0. Since c1 ⩽ |ϕ′

k| ⩽ c2 a.e.
in (0, 1) and we have the uniform convergence ϕk → ϕ and ϕ′

k → ϕ′ in (0, 1), we
deduce that c1 ⩽ |ϕ′| ⩽ c2 a.e. in (0, 1). Hence, ϕ ∈ Uad. This implies that we only
need to show the continuity of the state problems (4) and (5) with respect to the
domain in order to complete the proof of compactness of F .

4.1. Continuity of the state problems. In the next result, we state the conti-
nuity of the state problems.

Proposition 5. Let {(ϕn, zNn, zRn)} be a sequence in F where zNn := zN(ϕn) and
zRn := zR(ϕn) are the weak solutions of (7) and (8) on Ωn := Ω(ϕn), respectively.
Then, there exist a subsequence {(ϕk, zNk, zRk)} and elements ϕ ∈ Uad and zN, zR ∈
H1(U) such that  ϕn → ϕ,

z̃Nk ⇀ zN in H1(U),
z̃Rk ⇀ zR in H1(U).

In addition, zN(ϕ) = z̃N|Ω(ϕ) and zR(ϕ) = z̃R|Ω(ϕ) are the solutions of equations (7)
and (8) on Ω := Ω(ϕ), respectively.
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Proof. The first convergence has already been verified to hold via the compactness
of Uad and the Arzelà-Ascoli theorem. So, we proceed on showing the validity of
the last two convergences. We only prove the convergence z̃Rk ⇀ zR in H1(U) since
the proof for the other one uses the same argument. First, we prove the following
claim.

Claim. There exists a uniform extension z̃Rk of zRk from Ωk to U and a constant
C > 0 independent of k such that ∥z̃Rk∥H1(U) ⩽ C.

By a result of D. Chenais [15], we know that a solution zRk of (8) on Ωk admits an

extension z̃Rk in H1(U) such that for some non-negative constant C̃ (independent
of k), the following inequality holds:

∥z̃Rk∥H1(U) ⩽ C̃∥zRk∥H1(Ωk).

Clearly, to verify our claim, we need to show that ∥zRk∥H1(Ωk) is bounded. In view
of (8), letting the test function be φ = zRk ∈ V0(Ωk), we have∫
Ωk

∇zRk · ∇zRk dx = −
∫
Ωk

∇uR0 · ∇zRk dx−
∫
Σ(ϕk)

β|zRk|2 dσ+

∫
Σ(ϕk)

λzRk dσ.

From this equality, we get the estimate

∥zRk∥2V0(Ωk)
⩽ ∥uR0∥H1(U)∥zRk∥V0(Ωk) +max(β, |λ||U |1/2)∥zRk∥L2(Σk), (48)

where Σk := Σ(ϕk).
Next, we find an estimate for ∥zRk∥L2(Σk) in terms of ∥zRk∥V0(Ωk). To do this,

we use a uniform Poincaré inequality proved in [14], apply the inequality (41), and
utilize the uniform continuity of the trace operator with respect to the domain. The
former result is precisely given by the following inequality:

∥zRk∥L2(Ωk) ⩽ M∥zRk∥V0(Ωk) (M > 0). (49)

Note that, since every domain in Oad satisfies the uniform cone property, the above
result actually follows from [14, Cor. 3(ii)]. On the other hand, concerning the trace
operator, the following inequality holds for all real number q such that 1

2 < q ⩽ 1,

ϕ ∈ Uad and functions z ∈ H1(U) (cf. [12, Thm. 4]):

∥z∥L2(Σ(ϕ)) ⩽ K∥z∥Hq(U) (K > 0), (50)

where, of course, ∥ · ∥Hq(U) denotes the Hq(U)−norm. (In fact, due to assumption
(P3) and the uniform cone property of the domain Ω(ϕ) ∈ Oad, the norm of the trace
map tr : H1

0 (U) → L2(Σ(ϕ)) can be bounded uniformly with respect to Ω(ϕ) ∈ Oad;
see [35].)

We first apply inequality (50) (with q = 1), making use of the extension of
zRk ∈ H1(Ωk) to H1(U), then apply (41), and finally employ (49) to obtain

∥zRk∥L2(Σk) ⩽ K∥z̃Rk∥H1(U) ⩽ KC̃
(
∥zRk∥2L2(Ωk)

+ ∥zRk∥2V0(Ωk)

)1/2

⩽ KC̃
√
1 +M2∥zRk∥V0(Ωk).

Hence, going back to (48), we have

∥zRk∥V0(Ωk) ⩽ ∥uR0∥H1(U) +max(β, |λ||U |1/2)KC̃
√
1 +M2.

Thus, after some manipulations, we eventually get

∥zRk∥H1(Ωk) ⩽
√
1 +M2

(
∥uR0∥H1(U) +max(β, |λ||U |1/2)KC̃

√
1 +M2

)
.
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This proves our claim which means that the sequence {∥z̃Rk∥H1(U)} is bounded. ■

Passing again to a new subsequence if necessary, we conclude (and as already
announced) that an element z̃R inH1(U) exists such that z̃Rk ⇀ z̃R inH1(U). Now,
the statement that zR = z̃R|Ω(ϕ) is in V0(Ω(ϕ)) follows from the boundedness of the

trace operator. Indeed, since the fixed boundary Γ ∈ C0,1, the trace operator |Γ :
H1(U) → L2(Γ) is compact, so it takes weakly convergent sequences into strongly
convergent sequences. In particular, we have the limit limk→∞ z̃Rk|Γ = z̃R|Γ in
L2(Γ). Note that z̃Rk|Ωk

= zRk. Hence, zR|Γ = limk→∞ z̃Rk|Γ = limk→∞ zRk|Γ = 0,
from which we infer that zR ∈ V0(Ω(ϕ)).

Now, in what follows, we show that zR(ϕ) = z̃R|Ω(ϕ) is the solution of (8) on
Ω(ϕ). In fact, we will show that the variational equation∫

Ω(ϕ)

∇zR · ∇v dx+

∫
Ω(ϕ)

∇uR0 · ∇v dx

+

∫
Σ(ϕ)

βzRv dσ −
∫
Σ(ϕ)

λv dσ = 0, ∀v ∈ V0(Ω(ϕ)), (51)

also holds for all test functions v ∈ Ṽ0 := V0(U) = {ṽ ∈ H1(U) : ṽ = 0 on Γ}.
Clearly, the restriction on Ωk of any element v of Ṽ0 is in V0(Ωk), for all k, which
is exactly the test space of (8) on Ωk. Hence, we have∫

Ωk

∇zRk · ∇v dx+

∫
Ωk

∇uR0 · ∇v dx

+

∫
Σk

βzRkv dσ −
∫
Σk

λv dσ = 0, ∀v ∈ Ṽ0. (52)

Now, we prove that, by passing to the limit, we will obtain (51) from (52). To see
this, we simply take the difference of equations (51) and (52) and then let k → ∞.
As for the difference of the last two integrals, we have

I4 =

∣∣∣∣∣
∫
Σ(ϕk)

λv dσ −
∫
Σ(ϕ)

λv dσ

∣∣∣∣∣
⩽ |λ|

∣∣∣∣∫ 1

0

((v ◦ ϕk)(t)|ϕ′
k(t)| − (v ◦ ϕ)(t)|ϕ′(t)|) dt

∣∣∣∣
⩽ |λ|

∣∣∣∣∫ 1

0

(v ◦ ϕk − v ◦ ϕ)|ϕ′
k(t)|dt

∣∣∣∣+ |λ|
∣∣∣∣∫ 1

0

(v ◦ ϕ)(|ϕ′
k(t)| − |ϕ′(t)|) dt

∣∣∣∣
⩽ c2|λ| ∥v ◦ ϕk − v ◦ ϕ∥L2([0,1]) +

|λ|
c1

sup
[0,1]

|ϕ′
k − ϕ′| ∥v∥L2(Σ(ϕ)) ,

where in the last inequality, we applied assumption (P2). Since v ∈ Ṽ0 ⊂ H1(U),
then, according to [13, Cor. 1], the following limit actually holds

lim
k→∞

∥v ◦ ϕk − v ◦ ϕ∥L2([0,1]) = 0,

for any sequence {ϕn} ⊂ Uad and element ϕ ∈ Uad such that ϕn → ϕ in the sense of
(42). In addition, we have, in view of (50), the estimate ∥v∥L2(Σ(ϕ)) ⩽ K ∥v∥H1(U).

Finally, using the convergence ϕ′
k → ϕ′ in the C1([0, 1],R2)-norm (cf. (42)), we get

limk→∞ I4 = 0 as desired.
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Similarly, we have

I3 =

∣∣∣∣∣
∫
Σ(ϕk)

βzRkv dσ −
∫
Σ(ϕ)

βzRv dσ

∣∣∣∣∣
⩽ β

∣∣∣∣∫ 1

0

[
(zRk ◦ ϕk)(v ◦ ϕk)(t)|ϕ′

k(t)| − (zR ◦ ϕ)(v ◦ ϕ)(t)|ϕ′(t)|
]
dt

∣∣∣∣
⩽ β

∣∣∣∣∫ 1

0

(zRk ◦ ϕk − zRk ◦ ϕ)(v ◦ ϕk)|ϕ′
k| dt

∣∣∣∣+ β

∣∣∣∣∫ 1

0

(zRk ◦ ϕ− zR ◦ ϕ)(v ◦ ϕk)|ϕ′
k| dt

∣∣∣∣
+ β

∣∣∣∣∫ 1

0

(zR ◦ ϕ)(v ◦ ϕk − v ◦ ϕ)|ϕ′
k| dt

∣∣∣∣+ β

∣∣∣∣∫ 1

0

(zR ◦ ϕ)(v ◦ ϕ)(|ϕ′
k| − |ϕ′|) dt

∣∣∣∣
⩽ β

√
c2∥v∥L2(Σk)

∥zRk ◦ ϕk − zRk ◦ ϕ∥L2([0,1]) + β
√
c2∥v∥L2(Σk)

∥zRk − zR∥L2(Σ(ϕ))

+ β
√
c2∥zR∥L2(Σ(ϕ))∥v ◦ ϕk − v ◦ ϕ∥L2([0,1]) +

β

c1
sup
[0,1]

|ϕ′
k − ϕ′| ∥zR∥L2(Σ(ϕ)) ∥v∥L2(Σ(ϕ)) .

Now, using the fact that zRk = z̃Rk|Ωk
∈ H1(U), together with the estimate (50), we

deduce, via the application of [13, Cor. 1], that the first and the third summands in
the last inequality above eventually vanished. Also, using (50), and the compactness
of the injection of H1(U) into Hq(U) for 1

2 < q < 1, the left side of the inequality

∥v∥L2(Σk)∥zRk − zR∥L2(Σ(ϕ)) ⩽ K̃1∥v∥H1(U)∥z̃Rk − z̃R∥Hq(U) (K̃1 > 0),

also goes to zero as k → ∞. Likewise, the right side of the inequality

sup
[0,1]

|ϕ′
k−ϕ′| ∥zR∥L2(Σ(ϕ)) ∥v∥L2(Σ(ϕ)) ⩽ K̃2 sup

[0,1]

|ϕ′
k−ϕ′| ∥z̃R∥H1(U) ∥v∥H1(U) (K̃2 > 0)

also disappears because of (42). Hence, we also have limk→∞ I3 = 0.
For the remaining two differences

I1 =

∫
Ω(ϕk)

∇zRk · ∇v dx−
∫
Ω(ϕ)

∇zR · ∇v dx

=

∫
U

χΩ(∇z̃Rk −∇z̃R) · ∇v dx+

∫
U

(χΩk
− χΩ)∇z̃Rk · ∇v dx;

I2 =

∫
Ω(ϕk)

∇uR0 · ∇v dx−
∫
Ω(ϕ)

∇uR0 · ∇v dx

=

∫
U

(χΩk
− χΩ)∇uR0 · ∇v dx,

the desired limits limk→∞ I1 = limk→∞ I2 = 0 are obtained by applying the con-
vergence z̃Rk ⇀ z̃R in H1(U)-weak and the convergence of characteristic functions
(see, e.g., [30, Prop. 2.2.28, p. 45]):

χΩk
→ χΩ in L∞(U)-weak∗, (53)

together with the fact that the sequence {∥z̃Rk∥H1(U)} is bounded. This proves that
zR(ϕ) = z̃R|Ω(ϕ) is the solution of (8) on Ω(ϕ).

Applying the same arguments used above, we can also show that there exists
a sequence of uniform extensions {z̃Nk} of {zNk} which is uniformly bounded in
H1(U), i.e., {∥z̃Nk∥H1(U)} is bounded. Utilizing this result, we can also prove
(again, following the lines of arguments used above) that zN(ϕ) = z̃N|Ω(ϕ) is in fact
the solution of (7) on Ω(ϕ), finally completing the proof of Proposition 5.
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4.2. Lower semi-continuity of the cost function J . To complete the proof of
Proposition 4, let us now establish the lower semi-continuity of J in the following
result.

Proposition 6. The cost functional

J(Ω) = J(Ω, uN(Ω), uR(Ω)) =

∫
Ω

|∇(uR(Ω)− uN(Ω))|2 dx

is lower semi-continuous on F in the topology induced by (46).

Proof. Let {(Ωn, uNn, uRn)} be a sequence in F , Ωn = Ω(ϕn), and assume that

(Ωn, uNn, uRn) → (Ω, uN, uR) as n → ∞,

where Ω = Ω(ϕ) and (Ω, uN, uR) ∈ F . For convenience, we let wn = uRn−uNn and
w = uR − uN. Moreover, we denote their respective extensions by w̃n, w̃ ∈ H1(U).
In proving that J(Ωn, uNn, uRn) → J(Ω, uN, uR), we use the identity a2 − b2 =
(a− b)2 + 2b(a− b). First, we note that

J = J(Ωn, uNn, uRn)− J(Ω, uN, uR)

=

∫
Ωn

|∇w̃n|2 dx−
∫
Ω

|∇w|2 dx

=

∫
U

(χΩn
− χΩ)|∇w̃n|2 dx+

∫
U

χΩ(|∇w̃n|2 − |∇w̃|2) dx

=: J1 + J2.

Using (53) and the fact that {w̃n} is bounded, we get limn→∞ J1 = 0. Meanwhile,
we can write J2 as

J2 =

∫
U

χΩ|∇(w̃n − w̃)|2 dx+

∫
U

2χΩ∇w̃ · ∇(w̃n − w̃) dx

Hence, we also have limn→∞ J2 = 0 because w̃n ⇀ w̃ in H1(U)-weak. Therefore,
limn→∞ J = 0.

Also, since Ωn ⊂ U , for all n, we have∣∣∥w̃n∥V0(Ωn) − ∥w̃∥V0(Ωn)

∣∣ ⩽ ∥w̃n − w̃∥V0(Ωn)
n→∞−−−−→ 0.

It follows that, limn→∞{∥w̃n∥V0(Ωn) − ∥w̃∥V0(Ωn)} = 0. On the other hand, since

we have the convergence ϕn → ϕ in the C1 topology, the Lebesgue Dominated
Convergence theorem implies that the limit limn→∞ ∥w̃∥V0(Ω(ϕn)) = ∥w̃∥V0(Ω(ϕ))

also holds. This proves that limn→∞ ∥w̃n∥V0(Ω(ϕn)) = ∥w̃∥V0(Ω(ϕ)). Consequently,

lim
n→∞

J(Ωn, uNn, uRn) = J(Ω, uN, uR);

that is, J is continuous, and in particular, lower semi-continuous.

To end this section, let us formally provide the proof of Proposition 4 using the
main results established in the last two subsections.

Proof of Proposition 4. Let (Ωn, zNn, zRn), Ωn = Ω(ϕn), be a minimizing sequence
for the cost function J ; that is, (Ωn, zNn, zRn) is such that

lim
n→∞

J(Ωn, zNn, zRn) = inf{J(Ω, zN, zR) : (Ω, zN, zR) ∈ F}.

We apply Proposition 5 to obtain a subsequence (Ωk, zNk, zRk) and an element
Ω = Ω(ϕ) ∈ Oad such that Ωk → Ω (i.e., ϕk → ϕ uniformly in the C1 topology),
z̃Nk ⇀ z̃N, z̃Rk ⇀ z̃R in H1(U), and the functions z̃N|Ω and z̃R|Ω are the solutions
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to the variational equations (7) and (8) in Ω, respectively. Using these, together
with the continuity of J proved in Proposition 6, we conclude that (by virtue of [27,
Thm. 2.10])

J(Ωn, z̃N|Ω, z̃R|Ω) = lim
k→∞

J(Ωk, zNk, zRk) = inf{J(Ω, zN, zR) : (Ω, zN, zR) ∈ F}.

5. Numerical algorithm and examples. To numerically solve the minimization
problem (6), we propose to apply a gradient based scheme by means of a Lagrangian-
like method as oppose to [11] which employs an Eulerian-like type method known as
level-set method (see [39]). Alternatively, one could also apply a variant of Newton’s
method which, in addition to the shape gradient, also requires the knowledge of
the shape Hessian. This approach, however, is much more difficult to utilize and
numerically implement (see, e.g., [38, 44], and the references therein). Nevertheless,
we shall present in Subsection 5.1.4 a second-order method based on a modified
H1-Newton method (see [2]).

5.1. Numerical algorithm.

5.1.1. The Sobolev gradient method. Let us denote by Ωk the shape of the domain
at the kth iteration. Then, at the (k+1)th iteration, the shape Ω could be updated
as Ωk+1 := Ωtk+1

= (I2 + tkV)Ω, where tk ⩾ 0 is some small step size parameter.
In perturbing the domain Ω, we may take

V = −Gn (54)

as the descent direction. This choice of the descent direction, however, may cause
undesirable oscillations on the boundary of the approximate shape solution. To
avoid such phenomena, we define the descent direction based from a variant of
what we call Sobolev gradient method (cf. [4, 36]); that is, we compute V as the
unique solution in [V0(Ω)]

2 of the variational problem∫
Ω

∇V : ∇φdx+

∫
Σ

κ(V · n)n ·φ dσ = −
∫
Σ

Gn ·φ dσ, ∀φ ∈ [V0(Ω)]
2. (55)

Here, of course, κ denotes the mean curvature of the boundary Σ. In this sense, the
vector fieldV provides a smooth extension of Gn over the entire domain Ω which not
only smoothes the boundary [5] but also preconditions the descent direction. In (55),
the boundary integral with the term κ can be viewed as a perimeter regularization,
weighted with weights Vn. Computing the descent direction V using (55) is actually
inspired by the so-calledH1 gradient method [4] which, on the other hand, was based
on the idea of the traction method [5, 6, 7, 8].

Notice in equations (20) and (55) that, in addition to solving the state equations
(4) and (5), we also need to evaluate the mean curvature κ of Σ to compute the
descent direction V. We recall from [30, Prop. 5.4.8, p. 218] (see also [25, Lem.
16.1, p. 390]) that, for a domain Ω of C2 class, the mean curvature can be defined
as

κ = divΣn = divN,

where N is any (unitary) extension of n that is of class C1. Having this idea in
mind, we calculate κ by evaluating the expression divN, where N is the unique
element in [H1(Ω)]2 of the variational equation∫

Ω

∇N : ∇φ dx+

∫
Σ

N ·φdσ =

∫
Σ

n ·φ dσ, ∀φ ∈ [H1(Ω)]2. (56)
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5.1.2. Step Size. The choice of the step size parameter tk is not a straightforward.
Too large, the algorithm is unstable; too small, the rate of convergence is insignifi-
cant. In updating tk, one could follow a heuristic approach inspired by the Armijo-
Goldstein line search strategy similar to [11] or use a back-tracking procedure dis-
cussed, for instance, in [40]. In this work, we follow the former procedure with a
slight modification on the main formula for the step size. According to [11], the
step size tk ∈ (0, ε], where ε > 0 is some small real number, can be updated as
follows. Using the definition of Ωε and V|Σ = −Gn, we have

J(Ωε) ≃ J(Ω0) + εdJ(Ω0)[V] = J(Ω0)− ε∥G ∥2L2(Σ0)
.

The requirement J(Ωε) = (1−α)J(Ω0) for some α ∈ (0, 1) then suggests the choice
ε = αJ(Ω0)/∥G ∥2L2(Σ0)

. Hence, at each iteration, we may choose for a fixed α,

tk = α
J(Ωk)

∥G ∥2L2(Σk)

as the step size. However, in this investigation, we take into account the fact that
the deformation field V is computed through equation (55). So, we replace the
denominator ∥G ∥2L2(Σk)

by ∥V∥2L2(Σk)
(see [41]) and take, for a fixed α ∈ (0, 1), the

step size parameter tk as

tk = α
J(Ωk)

∥V∥2L2(Σk)

. (57)

The above step size value is chosen whenever J(Ωk+1) ⩽ J(Ωk). Otherwise, we
reduce the step size and go backward: the next iteration is initialized with the
previous shape Ωk. The step tk is also decreased if reversed triangles are detected
within the mesh update.

5.1.3. The Boundary Variation Algorithm. Now we summarize the main steps re-
quired for the computation of the kth domain as follows:

Step 1: Set the parameters α and η. Also, choose an initial shape Ω0.

Step 2: Compute the solutions uN of the state problem (4) on Ωk and evaluate
the mean curvature κ = divN, where N is obtained from (56).

Step 3: Compute the descent direction Vk using (55).

Step 4: Using Vk and the current step size tk, perturb the current domain by

Ωk+1 = (I2 + tkVk)Ωk.

Finally, to complete the above steps, we need to specify the stopping condition.
A classical stopping criterion is to find that whether the shape gradients in some
suitable norm are small enough, but here we terminate the algorithm as soon as the
inequality condition

|J(Ωk+1)− J(Ωk)| < η (58)

is satisfied for some sufficiently small real number η > 0.

5.1.4. Second order optimization method. We remark that, with the help of the
shape Hessian information, a regularized Newton method could be used as a nu-
merical procedure to solve the minimization problem (6) (see, e.g., [20]). However,
we emphasize that our main purpose in this investigation is to reduce the number
of associated PDE systems to be solved during the optimization procedure. Apply-
ing a second-order method will obviously lessen the number of iterations needed to
reduce the cost at certain magnitude. The disadvantage, however, is the additional
computational burden and time to carry out the task. Moreover, note that u′

NW
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depends on the velocity field W. Hence, applying a second-order method would
require the solution of a system of PDEs for each velocity field W. This, in turn,
will make the computation of the descent direction more involved. Nevertheless, the
said issue can be resolved by introducing the adjoint method. Here, for the sake of
comparison, we shall also formulate a second-order optimization algorithm to solve
the minimization problem (6). To do this, we follow the idea about a second-order
method for solving shape optimization problems proposed by Azegami in [3] (see
also [2]). Particularly, we use a variant of the so-called H1 Newton method which
utilizes the Hessian information to compute the descent direction.

For our purpose, we use the Hessian information at the solution of (1). Using
(12), we introduce the adjoint variable pN ∈ H1(Ω) which is the only solution to
the PDE system

−∆pN = 0 in Ω, pN = 0 on Γ, ∂npN = λκVn on Σ. (59)

Hence, we may write the shape Hessian d2J(Ω)[V,W] at Ω = Ω∗ as

d2J(Ω∗)[V,W] =

∫
Σ∗

H ∗[V]n ·W dσ :=

∫
Σ∗

(λκpN + λ2κVn)n ·W dσ.

Having this expression at our disposal, we define the descent direction W ∈ [V0(Ω)]
2

as the unique solution of the variational equation∫
Ω

∇W : ∇φdx+

∫
Σ

κ(W · n)n ·φ dσ

= −
∫
Σ

(G + H ∗[V])n ·φ dσ, ∀φ ∈ [V0(Ω)]
2. (60)

Now, the main steps to compute the kth domain Ωk are basically the same as that
given in Section 5.1.3. However, in order to take into account the procedure in
computing W, we divide Step 3 of the original algorithm as follows:

Step 3.1: Compute the descent direction Vk using (55).

Step 3.2: Compute pN by solving the system (59) at Ω = Ωk.

Step 3.3: Compute the descent direction Wk using (60).

Of course, in Step 4, we must replace Vk with the new deformation field Wk; that
is, we perturb the kth domain by Ωk+1 = (I2 + tkWk)Ωk. Here, however, the step
size tk is still chosen on the basis of the formula given by (57). We emphasize that
the adjoint variable pN satisfying (59) is essentially the shape derivative u′

NV at Ω∗.
In the next section we illustrate the feasibility of the above methods in solving

the minimization problem (6). We first test the accuracy of the proposed method
in Subsection 5.2.1 by examining a particular test case with known analytical solu-
tion. Also, we show in the same subsection that the proposed second-order method
could improve the number of iterations required for solving the optimization process.
Then, in Subsection 5.2.2, we consider an L-shaped fixed boundary with different
values for λ and compare the results of the proposed method with that of the classi-
cal Kohn-Vogelius formulation. In Subsection 5.2.3, we feature a numerical example
wherein the fixed boundary is a union of two disjoint curves. We mention here that
by providing numerical results using the classical formulation using the boundary
variation algorithm presented in Subsection 5.1.3, we are able to exhibit an alter-
native numerical scheme via a Lagrangian formulation to [11] which considers a
level-set approach in numerically solving the optimization problem (2)–(4).
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5.2. Numerical examples. The numerical simulations exhibited here are per-
formed in two-dimension using the programming software FreeFem++ (see [29]).
All systems of partial differential equations are solved using P2 finite element dis-
cretization where the number of discretization points on the free and fixed bound-
aries are initially set to Next and Nint, respectively. In deforming the shape of the
domain during the optimization procedure, we utilize the function movemesh of
FreeFem++ and use the function adaptmesh to refine and avoid the degeneracy
of the triangles in the meshes with a maximum edge size hmax. In all test cases,
the exterior and interior boundaries are discretized with Next × Nint = 120 × 100
discretization points. All computations are carried out on a 1.6 GHz Intel Core i5
Macintosh computer with 4GB RAM processors.

5.2.1. Example 1: Accuracy of the computed gradient. We begin by testing the
accuracy of the computed gradient. To do this, we consider the exterior Bernoulli
problem with

Γ = C(0, r), λ =
1

R(log r − logR)
, 0 < r < R,

where C(0, r) is the circle centered at the origin with radius r. In this case, the
only solution is the circle C(0, R).

We let r = 0.3 and R = 0.5. These give us λ = −3.9152. We consider three
different initial guesses defined as follows (see Figure 1a for illustration):

Test 1: Σ1
0 = C(0, 0.6);

Test 2: Σ2
0 = C(0, 0.4);

Test 3: Σ3
0 = {(0.01 + 0.6 cos θ, 0.01 + 0.4 sin θ)⊤, 0 ⩽ θ ⩽ 2π}.

In all cases, we take hmax = 0.01 and set η = 10−6, i.e., we stop the algorithm
as soon as |J(Ωk+1) − J(Ωk)| < 10−6. The results of the accuracy tests with pa-
rameter values α = 0.10, 0.50, 0.99 are summarized in Table 1. The table shows, in

Σi
0 α cost dH(Σ

∗,Σi
f ) R̄ |R− R̄|/R iter. cpu time

Σ1
0

0.10 2.85× 10−5 0.005072 0.500888 0.001776 72 115 sec
0.50 2.32× 10−7 0.004983 0.500002 0.000004 17 26 sec
0.99 8.55× 10−8 0.004984 0.499865 0.000270 8 12 sec

Σ2
0

0.10 1.77× 10−5 0.005044 0.499343 0.001314 70 103 sec
0.50 9.26× 10−7 0.005003 0.499878 0.000244 16 28 sec
0.99 3.91× 10−9 0.004998 0.499956 0.000088 7 14 sec

Σ3
0

0.10 1.65× 10−5 0.005887 0.500051 0.000102 76 122 sec
0.50 6.64× 10−7 0.004991 0.500002 0.000004 19 29 sec
0.99 8.77× 10−7 0.005001 0.499993 0.000014 9 13 sec

Table 1. Convergence test toward exact solution using the pro-
posed formulation via the modifiedH1-gradient method with initial
free boundaries Σi

0, i = 1, 2, 3, and α = 0.10, 0.50, 0.99 in (57)

particular, the final values of the cost, the Hausdorff distances between the com-
puted optimal shape and the exact shape, the average distances R̄ of points on the
computed free boundaries to the origin, the relative errors between R̄ and the exact
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radius of the free boundary R, the number of iterations until termination of the al-
gorithm and over-all computing times. Clearly, as α increases in value, the number
of iterations, as well as the computing time, decreases. Moreover, except for the
case when the initial guess is Σ3

0 and α = 0.1, the Hausdorff distance between the
exact optimal shape Σ∗ = C(0, 0.5) and each of the computed optimal (final) shape
Σi

f , i = 1, 2, 3, is (approx.) equal to 0.005. Meanwhile, we notice large number
of iterations required to reach convergence when α is set to 0.1. These values can
obviously be reduced by applying a second-order method. Indeed, by employing the
modified H1-Newton method presented in subsection 5.1.4, we obtain a significant
reduction in the number of iterations needed to reach convergence as evident in
Table 2. The computed optimal free boundaries when α = 0.1, as well as the fixed

α Σi
0 cost dH(Σ

∗,Σi
f ) R̄ |R− R̄|/R iter. cpu time

0.1
Σ1

0 6.17× 10−7 0.005007 0.500139 0.000278 7 25 sec
Σ2

0 1.57× 10−8 0.005003 0.500013 0.000026 8 41 sec
Σ3

0 4.47× 10−6 0.005130 0.500101 0.000202 14 35 sec

Table 2. Convergence test toward exact solution using the pro-
posed formulation via the modified H1-Newton method with α =
0.1 and different initial free boundary Σi

0, i = 1, 2, 3
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Figure 1. Initial (left) and final (right) free boundaries for Ex-
ample 1 with α = 0.1 in (57)

boundary Γ, are depicted in Figure 1b. The histories of cost values and Hausdorff
distances obtained through the first- and second-order method with α = 0.1 and ini-
tial profiles Σi

0, i = 1, 2, 3, for the free boundary Σ are depicted in the plots shown
in Figure 2. Looking at Figure 2a and Figure 2c, we observe that the first and
second tests, where we respectively took Σ1

0 and Σ2
0 as initial guesses, have almost

the same rate of convergence and are both faster compared to when taking Σ3
0 as

the initial profile for the free boundary Σ. However, in terms of convergence to the
exact solution (measuring the Hausdorff distance between the kth approximation
Σk of the free boundary and its exact profile Σ∗ = C(0, 0.5)), the choice Σ2

0 gives
the fastest rate of convergence among the three choices for Σ0 (with the third choice
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Σ3
0 as the initial guess for the free boundary giving the slowest convergence rate to

the exact solution) in case of using the first-order method is applied (see Figure 2b).
On the other hand, it appears that the first and second test cases have almost the
same convergence rate when using the second-order method (refer to Figure 2d).
In testing the accuracy of the computed gradient, we also considered coarser mesh
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Figure 2. (a)-(b): Respective histories of cost values and Haus-
dorff distances via first-order method with α = 0.1 in (57) and
varying initial free boundary Σi

0, i = 1, 2, 3; (c)-(d): respective
histories of cost values and Hausdorff distances via second-order
method with α = 0.1 in (57) and different initial free boundary Σi

0,
i = 1, 2, 3

in solving the PDE systems involved in the formulations. It seems that the coarser
the mesh is, the less computing time is needed to complete the optimization process
(as expected). However, we obtained a more accurate final free boundary in all test
cases when using finer mesh during the discretization process (also as expected).

5.2.2. Example 2: An L-shaped fixed domain. Next, we consider the boundary Γ =
∂S of the L-shaped domain S = (−0.25, 0.25)2 \ [0, 0.25]2 and compute the optimal
shape for all integers λ = −10,−9, . . . ,−1. In all situations, we take α = 0.99 and
choose C(0, 0.6) as the initial shape of the free boundary Σ. We compare our results
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with the ones obtained using the classical Kohn-Vogelius formulation (2)–(4). As
in the previous example, we also set η = 10−6 in the stopping condition (58) and
set hmax = 0.01. Table 3 summarizes the computational results for the present test

λ formulation t0 cost iteration cpu time

−10
proposed 0.228150 1.37× 10−6 14 14 sec
classical 0.767890 0.000137 19 55 sec

−9
proposed 0.221636 6.25× 10−7 13 16 sec
classical 0.738627 3.11× 10−5 25 96 sec

−8
proposed 0.213501 7.94× 10−7 12 14 sec
classical 0.702851 7.17× 10−5 19 57 sec

−7
proposed 0.203058 1.23× 10−6 10 13 sec
classical 0.658125 0.000628 12 34 sec

−6
proposed 0.189163 8.27× 10−7 10 14 sec
classical 0.600640 0.000190 13 34 sec

−5
proposed 0.169783 2.61× 10−7 10 16 sec
classical 0.524113 0.000948 18 54 sec

−4
proposed 0.140942 2.04× 10−7 10 17 sec
classical 0.417590 0.000186 8 24 sec

−3
proposed 0.094111 5.68× 10−7 9 14 sec
classical 0.262124 4.95× 10−5 11 29 sec

−2
proposed 0.039805 2.37× 10−7 10 17 sec
classical 0.120956 6.48× 10−6 10 27 sec

−1
proposed 0.312388 1.08× 10−6 13 25 sec
classical 0.615256 5.69× 10−7 9 24 sec

Table 3. Summary of computational results for an L-shaped fixed
boundary Γ = ∂S with λ = −10,−9, . . . ,−1 where α = 0.99 in (57)
and η = 10−6 in the stopping condition (58)

cases obtained through the proposed shape optimization formulation (6), subject to
(4) and (5), versus the classical Kohn-Vogelius formulation (2)–(4). The table shows,
in particular, the initial step sizes, the final cost values, the number of iterations
until termination of the algorithm and over-all computing times for each of the
two formulations. Notice that when λ = −9, the computing time for the classical
formulation is too large compared to other cases. Also, we observe that only in
cases when λ = −4,−1 that the number of iterations of the proposed formulation is
higher compared to the classical formulation. The resulting exterior boundaries are
shown in Figure 3 (blue-colored lines) where the outermost boundary corresponds
to λ = −1 and the innermost boundary to λ = −10. The fixed boundary Γ and
the initial shape of the free boundary Σ are also depicted in the figure, and are
respectively colored with black and magenta colors.

We compared the computed optimal free boundaries from the two formulations
and we noticed that, in all cases being considered, the results are indistinguish-
able from each other (see, e.g., Figure 4a for λ = −9). Also, we observed that
the histories of cost values (as well as the L2-norms of the descent direction V,
and hence the descent step sizes) from the proposed formulation exhibit an almost
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Figure 3. Blue solid lines: Optimal free boundaries for Example
2 when λ = −10,−9, . . . ,−1 (the outermost boundary corresponds
to λ = −1 and the innermost boundary to λ = −10); dashed-dot
magenta line: initial guess for the free boundary

uniform convergence rate, while the classical formulation do not (see, e.g., Figures
4b–4d for the case λ = −9). We believe that this is due to large deformations of
the domain caused by large values of descent step sizes (and therefore has to be
reduced) during the optimization process. In addition to these observations, we
also mention the following important remarks regarding the computational results
summarized in Table 3. Firstly, for α = 0.99 and η = 10−6 in (58), it seems that
the proposed formulation requires less computing time to complete the optimization
process than the classical formulation. Secondly, it appears that, for all values of
λ ∈ {−10,−9, . . . ,−1}, the initial step size for the classical formulation is larger (in
fact, more than three times) than the magnitude of the initial step size for the pro-
posed formulation. Lastly, we observed that the final cost values from the classical
formulation are only of magnitude 10−4 (or lower) while the proposed formulation
produces final cost values that in the magnitude 10−6 (or lower). Because of the last
two remarks, it is actually difficult to say that the proposed formulation possesses
faster convergence rate to the optimal solution than the classical Kohn-Vogelius
formulation.

We further assess the quality of the two formulations in terms of numerically solv-
ing the exterior Bernoulli problem (1) by taking into account the above-mentioned
key observations. To do this, instead of taking the same value of α for the two
formulations, we choose α in such a way that the difference between the initial step
sizes from the two formulations is small as possible. For simplicity, we take α = 0.99
for the proposed formulation and adjust the value of α in the classical scheme so
that the initial step size for the two formulations are as close as possible. Also, for
this purpose, we focus our attention to the case when λ = −9,−4,−1 since these are
the cases where we see some sort of inconsistencies in the number of iterations and
computing times shown in Table 3. Table 4 shows the results of the computations
using the classical Kohn-Vogelius formulation with η = 10−6 in (58). It seems that
for λ = −9 (and possibly for smaller values of λ), the computing time when using
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Figure 4. Results of Example 2 for λ = −9 when η = 10−6 in the
stopping condition (58) and α = 0.99 in (57)

the classical formulation varies greatly with respect to a small change in the value
of α. In contrast, for λ = −1 (and possibly for values of λ < 0 near zero), the
computing time is not sensitive to small change in α. Meanwhile, we notice that,
still, the proposed formulation (refer to Table 3) requires less number of iterations
and computing times to reach convergence to the optimal solution than the classical
formulation.

We also examine the results of the two formulations when η is set to 10−4 in the
stopping condition (58) while taking the initial step size for the two formulations as
close as possible. Among the three values of the parameter α listed in Table 4, we
take the corresponding value of α2 for each λ = −9,−4,−1 for the classical formula-
tion. Table 5 shows the corresponding results for the given setup. Observe that, for
the three cases considered, the proposed formulation requires less computing time
than the classical one except for the case when λ = −4 where both formulations
require 11 seconds to complete the optimization process. However, it seems that the
classical formulation requires less number of iterations than the proposed scheme
if we compare the number of iterations for the proposed formulation tabulated in
Table 3 with that of the classical formulation shown in Table 5. Nevertheless, no-
tice that, in most cases, the proposed formulation requires less computing time per
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iteration than the classical formulation. The histories of descent step sizes for the
proposed and classical formulations are plotted in Figure 5a. Figure 5b, on the
other hand, depicts the computed (optimal) exterior boundaries obtained through
the proposed formulation versus the ones computed via the classical Kohn-Vogelius
shape optimization formulation when η = 10−4. We observe that, in all cases exam-
ined, the computed optimal free boundaries from the two formulations are almost
indistinguishable.

λ i αi t0 cost iteration cpu time

−9
1 0.2970642705 0.2216361137 1.34× 10−5 22 74 sec
2 0.2970642710 0.2216361144 3.70× 10−5 18 102 sec
3 0.2970642715 0.2216361144 6.40× 10−5 17 32 sec

−4
1 0.334138300 0.1409423055 1.03× 10−5 11 23 sec
2 0.334138305 0.1409423076 4.57× 10−6 12 26 sec
3 0.334138310 0.1409423098 4.92× 10−5 14 40 sec

−1
1 0.502658435 0.3123875250 1.34× 10−6 14 34 sec
2 0.502658440 0.3123875282 1.17× 10−6 14 35 sec
3 0.502658445 0.3123875313 1.24× 10−6 14 34 sec

Table 4. Computational results obtained via the classical formu-
lation with η = 10−6 in the stopping condition (58) for an L-shaped
fixed boundary Γ = ∂S when λ = −9,−4,−1 for different values
of α in (57)

λ formulation α t0 cost iteration cpu time

−9
proposed 0.990000000 0.2216361144 1.55× 10−5 9 10 sec
classical 0.297064271 0.2216361144 14.2× 10−5 12 16 sec

−4
proposed 0.990000000 0.1409423086 6.37× 10−6 7 11 sec
classical 0.334138305 0.1409423076 4.57× 10−6 7 11 sec

−1
proposed 0.990000000 0.3123875327 4.39× 10−5 8 17 sec
classical 0.502658440 0.3123875282 5.51× 10−5 9 24 sec

Table 5. Comparison of computational results obtained through
the proposed and classical formulations with η = 10−4 in (58) for
an L-shaped fixed boundary Γ = ∂S when λ = −9,−4,−1 with
almost the same initial step size t0 for both formulations

We provide a few more numerical examples comparing the results between the
proposed and classical formulation when λ = −10 for η = 10−4, 10−5, 10−6 in
(58). In this test case, we consider two different initial guesses given in Example
1. Particularly, we consider Σ0 as the circle Σ1

0 and as the ellipse Σ3
0. For the

proposed formulation, we again take α = 0.99 which gives us t0 = 0.2281500068
when Σ0 = Σ1

0 and t0 = 0.1918396442 in case of taking Σ0 = Σ3
0. On the other

hand, by taking α = 0.2941418090 when Σ0 = Σ1
0 in the classical formulation,

we get t0 = 0.2281500069. Also, with α = 0.2904954592 when Σ0 = Σ3
0 in the

classical formulation, we get t0 = 0.1918396442. We examine the convergence of
the approximate free boundaries to the optimal shape obtained through the two
formulations. Because we do not know precisely the exact profile of the optimal
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Figure 5. (a): Histories of descent step sizes for the proposed
and classical formulations (with almost equal initial step size t0 for
the two formulations); (b): optimal free boundaries obtained when
λ = −9,−4,−1 in Example 2 using the proposed and classical
formulations with η = 10−4 in the stopping condition (58)

domains corresponding to the solution of the test case in consideration, we use the
computed optimal free boundary Σin obtained using the improved Neumann-data-
tracking cost functional approach proposed in [41] as our benchmark. The results
of the computations are summarized in Table 6 where we show the final cost values,
the Hausdorff distance of the computed optimal free boundary Σi

f , i = 1, 3, with

respect to Σin, the number of iterations and the total computing times for each
of the two formulations. Comparing the results of the proposed formulation when
η = 10−6 with that of the classical formulation when η = 10−4 (see highlighted
rows), we observe that the former formulation needs less computing time per iter-
ation to complete the iteration process than the latter one. In addition, it seems
that the computed optimal free boundary obtained through the proposed formu-
lation is closer (in terms of the Hausdorff distance) to Σin than the one obtained
via the classical formulation when Σ0 = Σ3

0. However, when Σ0 = Σ1
0, the classical

formulation produces smaller Hausdorff distance with respect to Σin than the pro-
posed formulation. The evolutions of the domains or histories of free boundaries
computed for each of the cases considered through the two formulations are shown
in Figure 6. Looking at the plots depicted in the said figures, we notice that the
proposed formulation yields a more stable convergence behavior (in the sense that
the shape evolution is almost monotone) to the optimal solution than the classical
formulation. We also looked at the histories of the minimum, the maximum and the
mean curvatures (respectively denoted by κ2, κ1 and κ) of the free boundaries (see
Figure 7) plotted in Figure 6, and we found out that the mean curvatures of the
computed optimal free boundaries Σf for all considered cases are positive. Hence,
according to Proposition 3, the shape Hessian at the solution Ω∗ of the Bernoulli
problem (1) when Γ = ∂S and λ = −10 (and therefore, for −10 < λ < 0,) is strictly
H1/2-positive. Moreover, we noticed that, after a certain number of iterations,
the history of minimum curvatures that corresponds to the histories of free bound-
aries obtained through the proposed formulation (refer to Figure 7a and Figure 7b)
projects a decreasing trend. This is in contrast to the behavior of the graph of
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the minimum curvatures corresponding to the history of free boundaries obtained
via the classical setting where we noticed an increase in the value of the minimum
curvature from the 7th to the 8th iteration (see Figure 7c and Figure 7d).

Σi
0 formulation η cost dH(Σ

in,Σi
f ) iteration cpu time

Σ1
0

proposed

10−4 2.93× 10−5 0.023850 9 10 sec

10−5 4.46× 10−6 0.008586 12 13 sec

10−6 1.38× 10−6 0.008586 14 14 sec

classical

10−4 0.001627 0.008435 9 14 sec

10−5 0.001627 0.010512 9 14 sec

10−6 0.000224 0.007484 15 30 sec

Σ3
0

proposed

10−4 5.69× 10−5 0.026360 8 9 sec

10−5 1.22× 10−5 0.008565 10 10 sec

10−6 9.47× 10−7 0.007675 14 14 sec

classical

10−4 0.000644 0.008637 9 15 sec

10−5 0.000062 0.007394 15 30 sec

10−6 0.000027 0.007394 19 114 sec

Table 6. Comparison of computational results obtained through
the proposed and classical formulations for an L-shaped fixed
boundary Γ = ∂S when λ = −10 with almost the same initial
step size t0 for both formulations

Before we go to our next and final set of examples, we reiterate the following key
findings drawn in this subsection. For the same value of α, the classical formulation
produces larger magnitude for t0 than the proposed formulation. Moreover, it seems
that the appropriate value of η in (58) is 10−4 for the classical formulation and
10−6 for the proposed formulation. One of the possible reason for this difference
in the right choice for η is the fact that the classical formulation produces larger
initial cost values than the proposed formulation. Furthermore, instead of simply
comparing just the number of iterations or computing time to complete an iteration
process, it seems reasonable to compare the mean computing time per iteration
of the two formulations to evaluate their performance in numerically solving the
optimization problem. This way of comparing the two formulations seems sensible
because the two formulations almost have the same computing time. Moreover, we
emphasize that we are actually applying the same algorithm for each of the two
formulations, hence, considering the computing time per iteration as performance
metrics in evaluating the two methods is justifiable. Lastly, we emphasize that the
classical formulation requires less iteration number to complete an iteration process
than the proposed formulation.

To end this section, let us complete Table 5 and compare the mean computing
time per iteration and standard deviations for all λ = −10,−9, . . . ,−1. Table 7
shows the final cost values, the number of iterations and computing times for all
λ ∈ {−10,−8,−7,−6,−5,−3,−2} when using the classical approach. The values
of α chosen for each cases and the corresponding sizes of the initial step t0 are
also shown in the table. Meanwhile, in Table 8, we show the means and standard
deviations of the number of iterations, computing time and computing time per
iteration from the two formulations for the present optimization problem. Notice
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Figure 6. (a)-(b): histories of free boundaries obtained through
the proposed formulation with initial guess Σ1

0 and Σ3
0, respec-

tively, where η = 10−6 in (58); (c)-(d): Histories of free boundaries
obtained via the classical Kohn-Vogelius formulation with initial
guess Σ1

0 and Σ3
0, respectively, where η = 10−4 in (58)

that the two formulations are comparable in terms of the mean over-all computing
time. However, it requires two additional iterations for the proposed formulation
to complete the optimization process than the classical formulation. Nevertheless,
the proposed formulation needs less computing time per iteration than the classical
setting.

5.2.3. Example 3: A domain with fixed boundary having two disjoint components.
For the third and final example, we look at a similar test case studied in [34].
Particularly, we define the fixed boundary Γ as the union of two disjoint kite-shaped
figures which are parametrically defined as follows:

Γ1 = {(0.1 + 0.07 cos θ − 0.04 cos 2θ, 0.1 sin θ)⊤, 0 ⩽ θ ⩽ 2π},

Γ2 = {(−0.2 + 0.1 cos θ + 0.04 cos 2θ, 0.05 + 0.07 sin θ)⊤, 0 ⩽ θ ⩽ 2π}.

As in Example 2, we compute the optimal shape for all integers λ = −10,−9, . . . ,−1
with C(0, 0.6) as the initial shape for the free boundary Σ. We set α = 0.99 for
the proposed formulation and choose α for the classical formulation in such a way
that it results to an initial step size having (almost) the same value as that of the
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Figure 7. (a)-(b): corresponding histories of curvatures of the
free boundaries obtained through the proposed formulation with
initial guess Σ1

0 and Σ3
0, respectively, shown in Figure 6a-6b; (c)-

(d): Corresponding histories of curvatures of the free boundaries
obtained via the classical Kohn-Vogelius formulation with initial
guess Σ1

0 and Σ3
0, respectively, shown in Figure 6c-6d

proposed setting. Moreover, we stop the algorithm with η = 10−6 in (58) when
using the proposed formulation and take η = 10−4 for the classical formulation.
Also, in all cases, hmax = 0.01. The computed exterior boundaries are shown in
Figure 8 (blue-colored lines) where the outermost boundary corresponds to λ = −1
and the innermost boundary to λ = −10. The fixed boundary Γ (black line) and
the initial shape of the free boundary Σ (dashed-dot magenta line) are also shown
in the figure. Table 9 summarizes the computational results obtained through the
two formulations. It shows in particular the values of α used for each of the two
formulations, the resulting initial step sizes, the final values of the costs, the number
of iterations and over-all computing time to reach convergence to the optimal solu-
tion. Meanwhile, in Figure 9, we show a comparison between the results obtained
through the proposed and classical formulation for the case λ = −10,−4,−1. In
Figure 9a, we see that the computed optimal free boundaries obtained from the
two formulations are indistinguishable from each other. The histories of the costs
values, the L2-norms of V and the histories of the descent step sizes are plotted
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λ α t0 cost iteration cpu time

−10 0.29414181 0.22815001 0.001628 9 14 sec

−8 0.30072761 0.21350176 0.000119 12 17 sec

−7 0.30545458 0.20305801 0.001727 10 17 sec

−6 0.31178679 0.18916314 0.000137 8 13 sec

−5 0.32070413 0.16978307 0.000925 6 10 sec

−3 0.35544029 0.09411051 7.89× 10−5 6 14 sec

−2 0.32579718 0.03980505 2.08× 10−5 7 14 sec

Table 7. Computational results obtained through the classical
formulation with η = 10−4 in (58) for an L-shaped fixed boundary
Γ = ∂S for λ = −10,−8,−7,−6,−5,−3,−2 with almost the same
initial step size t0 with respect to that of the proposed formulation
shown in Table 3

formulation
iteration cpu time cpu time

iteration
mean std mean std mean std

proposed ≈ 11(11.1) ≈ 2(1.73) 16 3.46 1.46 0.29
classical ≈ 9(8.6) ≈ 2(2.22) 15 3.92 1.77 0.42

Table 8. Means and standard deviations (std) of the number of
iterations, computing time and computing time per iteration for
the proposed formulation with η = 10−6 and classical formulation
with η = 10−4 in (58)

in Figures 9b–9d, respectively. Looking at these figures, we observe that we get a
more comparable convergence rate from the two formulations as λ < 0 closes to
zero; that is, in case of λ = −1, the rate of convergence, for instance, of the cost
for the proposed formulation is almost of the same value with that of the classi-
cal scheme. On the other hand, when λ = −10, the convergence rates of the two
formulations differ greatly from each other. Meanwhile, in Figure 10, we show the
evolutions or the histories of the free boundaries when λ = −10 for each of the two
formulations (see, particularly, Figure 10a and Figure 10c for the respective results
of the proposed and classical formulation). The figure also shows the evolutions of
the free boundaries (refer to Figure 10b and Figure 10d) when the initial shape Σ0

of the free boundary is taken to be the ellipse

Υ := {(−0.1 + 0.4 cos θ, 0.05 + 0.5 sin θ)⊤, 0 ⩽ θ ⩽ 2π}.

As in the previous example, we noticed that the proposed formulation yields a more
stable convergence behavior (again, in the sense that the shape evolution is mono-
tone) to the optimal solution than the classical formulation. The histories of the
minimum, the maximum and the mean curvatures of the free boundaries depicted
in Figure 10 are plotted in the graphs shown in Figure 11. Clearly, the optimal free
boundary for the present test case has positive mean curvature. Finally, in Table
10, we show the means and standard deviations of the number of iterations, com-
puting times and computing times per iterations for the present test case. Looking
at the results shown in the table, we see that the numerical algorithm presented in
Subsection 5.1.3 requires 12 iterations to complete the optimization process when
using the proposed formulation. This is two iterations higher compared to when
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using the classical formulation. However, we get a comparable result for the two
formulations in terms of computing time which means that the proposed formula-
tion actually requires less computing time per iteration than the classical setting.

Figure 8. Blue solid lines: Optimal free boundaries for Example
3 when λ = −10,−9, . . . ,−1 (the outermost boundary corresponds
to λ = −1 and the innermost boundary to λ = −10); dashed-dot
magenta line: initial guess for the free boundary

6. Conclusion. In this work, we have presented a new shape optimization formu-
lation of the exterior Bernoulli free boundary problem which was formulated by
modifying the classical Kohn-Vogelius formulation of the original overdetermined
problem. Using the first-order shape derivative of the energy-gap type cost func-
tional studied in the paper, we have successfully devised an efficient iterative scheme
based on a Lagrangian-like method to numerically solve the minimization problem.
Based on the numerical results, we found that the proposed shape optimization
formulation and the classical classical Kohn-Vogelius approach are comparable in
terms of mean over-all computing time. The classical setting, however, requires
less number of iterations to complete the optimization process than the proposed
method. This fact, on the other hand, means that the proposed formulation actu-
ally demands less computing time per iteration to finish the computations. Fur-
thermore, by inspecting the evolution of the free boundaries and the corresponding
histories of their curvatures, we found out that the proposed method exhibits a
more stable approximation of the optimal shape solution than the classical Kohn-
Vogelius formulation, in the sense that the shape evolution of the free boundary is
monotone. These observations lead us to conclude that the proposed energy-cost
functional approach is somewhat more robust than the classical Kohn-Vogelius for-
mulation. Meanwhile, using the shape Hessian information at the solution of the
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λ α t0 cost iter cpu time

−10
0.990000000 0.337420581 1.33× 10−7 14 14 sec
0.386646216 0.337420581 0.001223 15 24 sec

−9
0.990000000 0.331971040 5.73× 10−7 13 16 sec
0.388463867 0.331971040 0.000473 11 20 sec

−8
0.990000000 0.325160189 5.07× 10−7 13 14 sec
0.390736229 0.325160189 0.000582 10 17 sec

−7
0.990000000 0.316405255 3.36× 10−7 12 18 sec
0.393657966 0.316405255 0.000745 10 16 sec

−6
0.990000000 0.304735585 3.79× 10−7 11 14 sec
0.397552887 0.304735585 9.84× 10−5 12 20 sec

−5
0.990000000 0.288405794 3.33× 10−7 11 13 sec
0.403001262 0.288405794 4.38× 10−5 13 18 sec

−4
0.990000000 0.263931464 2.09× 10−7 11 14 sec
0.411150343 0.263931464 2.25× 10−5 9 16 sec

−3
0.990000000 0.223215311 1.45× 10−7 11 13 sec
0.424571657 0.223215311 3.88× 10−5 7 11 sec

−2
0.990000000 0.142355886 1.70× 10−7 10 17 sec
0.448686986 0.142355886 1.30× 10−5 7 13 sec

−1
0.990000000 0.111335863 9.21× 10−7 12 23 sec
0.482819584 0.111335863 3.54× 10−5 8 16 sec

Table 9. Summary of computational results of Example 3 for
λ = −10,−9, . . . ,−1 where the highlighted rows correspond to the
results due to the proposed formulation

formulation
iteration cpu time cpu time

iteration
mean std mean std mean std

proposed ≈ 12(11.8) ≈ 1(1.23) 16.5 3.41 1.46 0.34
classical ≈ 10(10.2) ≈ 3(2.61) 17.1 3.70 1.77 0.17

Table 10. Means and standard deviations (std) of the number of
iterations, computing time and computing time per iteration of the
computational results shown in Table 9

free boundary problem, we have also formulated a state-of-the-art second-order op-
timization procedure based on a Newton-type method to numerically resolve the
minimization problem. Although the second-order algorithm requires additional
computing time, as expected, improvements in terms of number of iterations and
accuracy of computed optimal shapes were observed from its numerical results.
Consequently, the newly proposed shape optimization formulation of (1) provides
an alternative computational strategy to [11] which, on the other hand, utilizes the
classical Kohn-Vogelius formulation in a level-set approach to numerically solve the
exterior Bernoulli free boundary problem. We expect that the computational tech-
nique offered in this investigation, especially the second-order optimization scheme,
will also provide efficient numerical resolution to other related free boundary prob-
lems in the framework of shape optimization.
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(a) Optimal free boundaries
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Figure 9. Results of Example 3 when λ = −10,−4,−1 for both
of the proposed and classical formulations
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Equations, 32 (2007), 1439–1447.



A NEW ENERGY-GAP COST FUNCTIONAL APPROACH . . . 39

Iterations

0 5 10

C
u
rv
a
tu
re
s

-4

-2

0

2

4

6

8

10

12

κ
1

κ
2

κ

(a)

Iterations

0 2 4 6 8 10 12

C
u
rv
a
tu
re
s

-4

-2

0

2

4

6

8

10

12

(b)

Iterations

0 5 10 15

C
u
rv
a
tu
re
s

-10

-5

0

5

10

15

20

(c)

Iterations

0 2 4 6 8 10

C
u
rv
a
tu
re
s

-10

-5

0

5

10

15

(d)

Figure 11. (a)-(b): Corresponding histories of curvatures of the
free boundaries obtained through the proposed formulation with
initial guess Σ1

0 and Σ3
0 shown in Figure 10a-10b, respectively; (c)-

(d): corresponding histories of curvatures of the free boundaries
obtained via the classical Kohn-Vogelius formulation with initial
guess Σ1

0 and Σ3
0 shown in Figure 10c-10d, respectively

[15] D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal.
Appl., 52 (1975), 189–219.

[16] M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of

critical shapes, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat., 96 (2002), 95–121.
[17] M. Dambrine and M. Pierre, About stability of equilibrium shapes, Model Math. Anal. Nu-

mer., 34 (2000), 811–834.

[18] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential
Calculus, and Optimization, 2nd edition, Adv. Des. Control 22, SIAM, Philadelphia, 2011.

[19] K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems,
Comput. Optim. App., 52 (2012), 69–85.

[20] K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomogra-

phy using shape Hessian information, Control Cybern., 34 (2005), 203–225.
[21] K. Eppler, Boundary integral representations of second derivatives in shape optimization,

Discuss. Math. Differ. Incl. Control. Optim., 20 (2000), 63–78.

[22] K. Eppler, Optimal shape design for elliptic equations via BIE-methods, J. Appl. Math.
Comput. Sci., 10 (2000), 487–516.



40 JULIUS FERGY T. RABAGO AND HIDEYUKI AZEGAMI

[23] A. Fasano, Some free boundary problems with industrial applications, in Shape Optimization
and Free Boundaries (eds. M. C. Delfour and G. Sabidussi), vol. 380 of NATO ASI Series (C:

Mathematical and Physical Sciences), Springer, Dordrecht, (1992), 113–142.
[24] M. Flucher and M. Rumpf, Bernoulli’s free-boundary problem, qualitative theory and numer-

ical approximation, J. Reine. Angew. Math., 486 (1997), 165–204.

[25] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order ,
Springer-Verlag, Berlin-New York, 1977.

[26] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing, Marshfield, Mas-

sachusetts, 1985.
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