Supplementary material for

Synthesis of Ba_{1-x}Sr_xYSi₂O₅N and Discussion based on Structure

Analysis and DFT Calculation

Takuya Yasunaga^a, Makoto Kobayashi^{b,*}, Kenta Hongo^{c,d,e,f,g}, Kotaro Fujii^h, Shunsuke Yamamoto^a, Ryo Maezono^{f,g}, Masatomo Yashima^h, Masaya Mitsuishi^a, Hideki Kato^{a,*} and Masato Kakihana^a

^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University,2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

^b Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

^c Research Center for Advanced Computing Infrastructure, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

^d Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan

^e PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 322-0012, Japan

^f Computational Engineering Applications Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

^g School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

^h Department of Chemistry, School of Science, Tokyo Institute of Technology,2-12-1-W4-17, O-okayama, Megro-ku, Tokyo 152-8551, Japan

* Corresponding authors: Makoto Kobayashi (mkoba@imass.nagoya-u.ac.jp)

Hideki Kato (hideki.kato.e2@tohoku.ac.jp)

-		Ba	Sr	Y	Si
	Measured	21.0	0	28.1	51.0
x = 0	Ideal	25.0	0 25.0 2.4 27.3		50.0
	Measured	20.3	2.4	27.3	50.0
x = 0.1	Ideal	22.5	2.5	25.0	50.0
u = 0.22	Measured	12.3	7.7	28.3	51.6
x = 0.33	Ideal	16.7	8.3	25.0	50.0
	Measured	9.8	11.6	26.3	52.3
x = 0.50	Ideal	12.5	12.5	25.0	50.0
<i>x</i> = 0.75	Measured	5.4	16.8	27.9	50.0
	Ideal	6.3	18.8	25.0	50.0

Table S1. Contents in atomic% of cations in single crystals determined by EDX analysis.

Table S2. Bond length of *AE*–(O,N) and Y-(O,N).

	x = 0	x = 0.1	x = 0.33	x = 0.5	x = 0.75
Bond	Length / Å				
		A	<i>E</i> 1		
-(O,N)1	2.659(5)	2.659(3)	2.641(3)	2.629(5)	2.592(7)
-(O,N)2	3.278(5)	3.286(3)	3.271(4)	3.260(5)	3.220(8)
-(O,N)4	2.795(5)	2.789(3)	2.765(4)	2.743(5)	2.708(8)
-(O,N)5	2.925(4)	2.918(3)	2.893(4)	2.881(4)	2.847(8)
-(O,N)6	2.891(6)	2.888(4)	2.892(4)	2.908(6)	2.909(9)
-(O,N)6	2.919(5)	2.919(3)	2.922(4)	2.919(5)	2.882(9)
–(O,N)7	2.783(4)	2.780(3)	2.762(3)	2.747(4)	2.697(6)
-(O,N)7	2.801(5)	2.795(3)	2.792(4)	2.788(5)	2.745(7)
-(O,N)9	3.257(6)	3.252(4)	3.255(5)	3.270(6)	3.280(10)
Ave.	2.92	2.92	2.91	2.91	2.88
		A	E2		
-(O,N)1 × 2	2.683(4)	2.680(3)	2.649(4)	2.637(4)	2.602(6)
-(O,N)3 × 2	2.961(5)	2.961(3)	2.934(3)	2.904(5)	2.861(7)
$-(O,N)5 \times 2$	2.655(5)	2.649(4)	2.614(4)	2.594(5)	2.568(7)
-(O,N)8 × 2	2.997(5)	3.002(4)	3.004(4)	3.010(5)	2.984(9)
-(O,N)9 × 2	2.901(6)	2.896(4)	2.891(5)	2.890(6)	2.877(9)
Ave.	2.84	2.84	2.82	2.81	2.78
			71		
-(O,N)1	2.263(5)	2.262(3)	2.263(3)	2.271(5)	2.264(7)
-(O,N)2	2.323(4)	2.320(3)	2.320(4)	2.317(4)	2.318(8)
-(O,N)2	2.348(5)	2.346(3)	2.344(4)	2.343(5)	2.320(8)
-(O,N)3	2.254(4)	2.255(3)	2.252(3)	2.263(4)	2.258(6)
-(O,N)4	2.266(5)	2.267(3)	2.269(4)	2.272(5)	2.264(7)
-(O,N)7	2.272(5)	2.272(3)	2.268(4)	2.276(5)	2.283(7)
Ave.	2.29	2.29	2.29	2.29	2.28
		Y	72		
-(O,N)3 × 2	2.469(4)	2.462(3)	2.455(3)	2.459(4)	2.447(6)
$-(O,N)4 \times 2$	2.536(4)	2.544(3)	2.530(4)	2.537(4)	2.526(7)
$-(O,N)5 \times 2$	2.428(5)	2.425(4)	2.443(4)	2.456(5)	2.455(7)
$-(O,N)9 \times 2$	2.301(6)	2.302(4)	2.305(5)	2.333(6)	2.311(10)
Ave.	2.43	2.43	2.43	2.45	2.43

Table S3. Refinement parameters obtained using the model with g(Sr, AE1) = 0.625.

<i>g</i> (Sr, <i>AE</i> 1)	0.6251	$0.6420(3)^2$
GoF	1.251	1.257
<i>R</i> , w <i>R</i> [$F^2 > 2\sigma(F^2)$]	4.66%, 10.63%	4.63%, 10.58%
$R, WR(F^2)$	5.21%, 10.87%	5.18%, 10.82%
Min./ max. residual electron density / eÅ ⁻³	1.119, -1.223	1.128, -1.237

¹ The value was fixed. ² The value was refined.

Table S4. Results of geometry optimization for x = 0 and 1. The lattice parameters are *a*, b = 6.65670 Å (6.66510 Å), c = 18.81460 Å (18.49490 Å), α , $\beta = 96.7436^{\circ}$ (96.9847°), and $\gamma = 101.0314^{\circ}$ (101.3262°) for X = 0 (X = 1).

	x = 0 (Sp	ace group: Cc))		x = 1 (Sp	ace group: Cc)	1
Atom	x	У	Ζ	Atom	x	У	Ζ
Ba	-0.20623	0.57238	0.58192	Sr	-0.21121	0.56657	0.58574
Ba	0.21952	1.41841	0.42357	Sr	0.2408	1.40404	0.42296
Ba	0.08952	0.91384	0.74881	Sr	0.09942	0.90223	0.74805
Y	0.01288	1.60853	0.91686	Y	0.02084	1.62268	0.91762
Y	-0.01921	0.39116	0.08339	Y	-0.03037	0.37869	0.08227
Y	-0.35287	1.34954	0.74956	Y	-0.35866	1.35164	0.74982
Si	0.29233	1.47638	0.61043	Si	0.28771	1.46782	0.60785
Si	-0.29216	0.53018	0.3919	Si	-0.28514	0.53946	0.395
Si	-0.06644	1.12816	0.59614	Si	-0.07441	1.12023	0.59797
Si	0.06762	0.87155	0.40302	Si	0.07583	0.87984	0.40071
Si	0.11625	1.41037	0.73533	Si	0.11095	1.40617	0.73606
Si	-0.11481	0.59579	0.26261	Si	-0.11091	0.6002	0.26119
0	0.05838	0.93866	0.59911	О	0.04701	0.92873	0.60456
Ο	-0.05909	1.05937	0.39794	0	-0.04743	1.06974	0.3919
Ο	-0.29124	1.04196	0.54193	0	-0.29723	1.03098	0.54308
Ο	0.29049	0.95929	0.45715	0	0.29651	0.97867	0.45553
Ο	-0.00381	1.51323	0.79845	0	0.00118	1.52505	0.79964
Ο	0.00262	0.48193	0.20335	0	-0.00287	0.46906	0.2026
Ο	0.46341	1.32922	0.62626	0	0.46422	1.32648	0.6229
Ο	-0.46357	0.66747	0.37303	0	-0.46511	0.66818	0.37736
Ο	0.30204	1.31073	0.7765	0	0.2843	1.29317	0.77897
Ο	-0.3026	0.69255	0.22647	0	-0.28629	0.71024	0.22244
Ο	0.08323	1.30987	0.55542	0	0.07657	1.29631	0.55453
Ο	-0.08254	0.68777	0.44319	0	-0.0755	0.70407	0.44398
Ο	-0.614	0.63772	0.55615	0	-0.62244	0.62577	0.55104
Ο	0.62079	1.35651	0.44032	0	0.63455	1.36682	0.44571
Ο	-0.20804	0.42965	0.31996	0	-0.21415	0.43768	0.31907
Ν	0.20165	1.58706	0.68042	Ν	0.20593	1.58129	0.68085
Ν	-0.09486	1.23623	0.68011	Ν	-0.1052	1.23999	0.68066
Ν	0.0925	0.75272	0.3207	Ν	0.10097	0.74831	0.31992

Table S5. Absorption rate, internal quantum efficiency (IQE), and external quantum efficiency (EQE) of 2 mol% Eu- or Ce-doped $Ba_{1-x}Sr_xYSi_2O_5$ (x = 0, 0.1, 0.33, 0.5, and 0.75).

Samp	le	Abs. %	IQE %	EQE %
2 mol% Eu $\lambda_{\text{ex}} = 340 \text{ nm}$	X = 0	76.0	25.9	19.7
	X = 0.1	73.1	27.4	20.0
	X = 0.33	76.9	22.6	17.4
	X = 0.5	81.2	20.2	16.4
	X = 0.75	73.4	15.6	11.4
	X = 0	66.2	43.5	28.8
2	X = 0.1	77.3	40.2	31.1
$\lambda_{\rm ex} = 345 \ \rm nm$	X = 0.33	70.0	39.3	27.6
	X = 0.5	74.1	36.3	26.9
	X = 0.75	72.6	30.5	22.2

Figure S1. A SEM image of a BaYSi₂O₅N single crystal.

Figure S2. Occupancy of Sr at two AE sites.

Figure S3. Models used for phonon calculation of (a) x = 0 and (b) x = 0.75 with Ba (green), Sr (orange), Y (gray), Si1, Si2 (blue), Si3 (purple), O (red), and N(black). Si3B site was deleted and Si3A was fully occupied by Si, and anion occupancies were determined in terms of bond length, resulting in formation of a Si₃O₇N₂ ring. At the

same time, site symmetry can be changed to Cc from C2/c. To save machine time, Cc was applied.

Figure S4. XRD patterns of 2 mol% Eu-doped Ba_{1-x}Sr_xYSi₂O₅N (x = 0, 0.1, 0.33, 0.5, and 0.75) samples. (b) was a magnified pattern in the range of $2\theta = 20^{\circ}-30^{\circ}$.

Figure S5. XRD patterns of 2 mol% Ce-doped Ba_{1-x}Sr_xYSi₂O₅N (x = 0, 0.1, 0.33, 0.5, and 0.75) samples. (b) was a magnified pattern in the range of $2\theta = 20^{\circ}-30^{\circ}$.

Figure S6. Decomposition of emission curves of Eu-doped samples at (a) x = 0 and (b) 0.75. Red, black, blue, and green curves are observed, fitting, component 1 and component 2 curves, respectively.

Figure S7. Luminescence decay curves of x = 0 and 0.75 samples with 2 mol% Eu activation.

The decay curves of Eu-doped samples can be fitted by the following double exponential equation:

$$I = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$
(S1)

where *I* is the luminescence intensity, A_1 and A_2 are constants, *t* is the time, and τ_1 and τ_2 are the decay times for the exponential components. The average decay times (τ_{ave}) can be calculated by the following equation:

$$\tau_{\text{ave}} = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2)$$
(S2)

 τ_{ave} are reasonable in comparison to other phosphors with Eu activation [1,2].

Figure S8. PL and PLE spectra of the 2 mol% Eu-doped sample synthesized at x = 1.

Figure S9. Temperature dependence of PL intensity of 2 mol% (a) Eu- or (b) Ce-doped $Ba_{1-x}Sr_xYSi_2O_5N$ (x = 0, 0.1, 0.33, 0.5, and 0.75) powders.

Figure S10. Band structures of (a) BaYSi₂O₅N (x = 0) and (b) Ba_{0.25}Y_{0.75}YSi₂O₅N (x = 0.75). Conduction and valence bands were composed of Ba 5*d*, Sr 4*d*, and Y 4*d*, and O and N 2*p* orbitals, respectively.

References

(1) V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Color Point Tuning for (Sr,Ca,Ba)Si₂O₂N₂:Eu²⁺ for White Light LEDs, *Chem. Mater.* 21 (2009) 316–325.

(2) J. Li, J. Ding, Y. Cao, X. Zhou, B. Ma, Z. Zhao, Y. Wang, Color-Tunable Phosphor [Mg_{1.25}Si_{1.25}Al_{2.5}]O₃N₃:Eu²⁺–A New Modified Polymorph of AlON with Double Sites Related Luminescence and Low Thermal Quenching, *Appl. Mater. Interfaces* (2018) 37307–37315.