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Abstract

Low-energy helium (He) plasma irradiations were conducted on ruthenium (Ru) and rhenium (Re), which have hexagonal close
packed (HCP) crystal structures. Growth of linear shaped fiberform nanostructures were identified on the surfaces of the both
metals after the He plasma irradiation. We also conducted He plasma irradiation while Re particles were deposited on tungsten
substrate; 3-mm-thick large scale fiberform nanostructures were grown on the surface. The crystal orientation was analyzed using
diffraction patterns of Re and Ru nanofibers together with detailed transmission electron microscope observations. It was found
that the growth of linear nanofibers has a preferential crystal orientation in the growth direction and it is always in the c-direction
of the HCP crystals. Potential growth processes and mechanisms are proposed based on the experimental observations.

1. Introduction

Helium (He) plasma irradiation leads to various morphol-
ogy changes on metals caused by He bubble growth. The He ir-
radiation effects were extensively investigated on tungsten (W),
because it is the leading candidate material for plasma facing
components in fusion devices, and the interaction with He ions
is one of the important issues [1]. It was found that fiber-
form nanostructures (FNs) were grown when certain condition
in terms of the surface temperature and the incident ion energy
was satisfied [2, 3, 4]. The FNs can be formed on various met-
als such as molybdenum, iron, nickel, tantalum, rhenium (Re),
rhodium, ruthenium (Ru), platinum, and so on [5, 6]. Helium-
plasma–induced FNs are important not only in nuclear fusion
research but also in various applications such as photocatalysis
[7, 8, 9], photo absorber [10] and gas sensors [11]. However,
the growth mechanism has yet to be fully understood.

Concerning the He induced FNs on W, it was often inferred
that some diffusion process likely controlled the growth mecha-
nism, because the thickness of the layer was proportional to the
square root of the irradiation time [12, 13]. From experimental
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observations, contributions of He bubble growth, surface dif-
fusion, swelling by He absorption, and a digging process by
rupturing of He bubbles have been discussed [14, 15]. Taka-
mura et al. suggested the importance of bubble-made holes
and loop-like structures [5]. From a modeling perspective, two
conceptual models emerged that explain the phenomena for our
understanding: visco-elastic model [16], which explained the
fiber growth by viscous flow of W near the fiber surface, and
adatom diffusion model [17, 18], in which the fiber growth was
explained by the kinetics of adatom diffusion. The latter adatom
effect has been supported with molecular dynamics (MD) sim-
ulations [19, 20], where it was shown that adatom island forma-
tions led to surface structuring. The visco-elastic model brought
up the importance of the shear strength for the FN growth [21].
Experiments on various metals suggested that the FNs forma-
tion tend to occur easily on metals with high shear strength
[5, 9].

Furthermore, the growth mechanism has been attempted to
be explained by many large scale simulations, as was summa-
rized well elsewhere [22, 4]. E.g., importance of ruptures/bursts
of He bubbles for surface roughness was shown from MD and
Monte Carlo simulations [23, 22]. Although initial growth can
be explained well by simulations, growth to micrometer-thick
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fiberform structures has yet to be fulfilled. In particular, be-
cause recent findings of large scale nanostructures called nano-
tendril bundles [24, 25, 26] and mm-thick fuzzy structures [27,
28], it became apparent that we have to revisit the growth mech-
anisms. In particular, it seems that pitting by He bubbles and
swelling processes [15] or visco-elastic models cannot explain
the growth of such large scale structures.

In this study, we have done He plasma irradiations to rhe-
nium (Re) and ruthenium (Ru), which have hexagonal close-
packed (HCP) crystal structures. On both surfaces, it has been
pointed out that straight FNs were formed by He plasma irradi-
ation [5, 29, 30]. In this study, the temperature dependences of
the morphology changes on Re and Ru are revealed, and, then,
a growth of 3-mm-thick Re large-scale FNs (LFNs) with pre-
cipitation of Re during He plasma irradiation is shown. Based
on transmission electron microscope (TEM) analysis, we will
discuss the potential growth process of the straight FNs during
the He plasma irradiation.

2. Methods

2.1. He plasma irradiation

Experiments were conducted in the linear plasma device
NAGDIS-II. Figure 1a shows a schematic of the experimen-
tal setup. It should be noted that the sputtering wire shown in
Fig. 1a was used only for the precipitation experiments shown
later and not installed in a conventional He plasma irradiation
explained here. A 2-m-long cylindrical shaped He plasma was
produced in a steady state, and samples were installed in the
downstream of the linear device. The incident ion energy, Ei,
which was determined by the potential difference between the
sample and the plasma (space potential), was controlled by chang-
ing the biasing voltage. The surface temperature, Ts, which was
measured with a radiation pyrometer, was controlled by chang-
ing the ion flux to the sample. Typically, when the surface tem-
perature was less than 1000 K, a water-cooled sample stage was
used to control the temperature. Concerning Re sample, 0.2
mm diameter wire (Nilaco Ltd.) was attached on a 0.2-mm-
thick molybdenum sheet and exposed to the He plasma. We
used 0.5-mm-thick Ru plate samples in this study.

2.2. Metal precipitation experiments

In addition to the conventional He plasma irradiation, for-
mation of Re LFNs was demonstrated by installing a Re sput-
tering wire (0.2 mm in diameter) adjacent to a W sample, as
shown in Fig. 1. The bias of the sputtering wire was −300 V
so that the incident ion energy to the sputtering wire was suffi-
cient to initiate sputtering of Re atoms. The energy was chosen
to be lower than previous W LFN cases [27] as considering the
fact that the sputtering yield of Re is higher than that of W. We
chose W for the substrate in this experiment, because Re sub-
strate was not available and it was likely that growth of FNs on
the substrate was prerequisite for the LFN growth [27].

B ~ 0.1 T

Helium
plasma

Sample 
w/ or w/o 
cooling stage

Sputtering 
wire (Re)

Figure 1: A schematic of the setup of He plasma irradiation.

2.3. Transmission electron microscope
Formed FNs were observed by spherical aberration-corrected

TEM/scanning TEM (STEM) (JEOL JEM-ARM 200F) [31]
operated at an accelerating voltage of 200 kV. A focused ion
beam (FIB) was not used to prepare TEM samples different
from previous studies [14], because a coating is required be-
fore the FIB milling process. To observe the FNs directly, a100

carbon micro-grid on a copper grid, which can be directly in-
stalled to TEM devices, was touched to sample surfaces to at-
tach FNs to the micro-grid. The sample holder was rotated in
two directions, which crosses in 90°each other. When conduct-
ing diffraction pattern observation, the two angles were care-
fully aligned so that the electron beam vertically hits a crystal
face of the fiber at a low Miller index. Selected area electron
diffraction (SAED) patterns are used to analyze the crystal ori-
entation of fibers. The projected size of aperture is ≈140 nm in
diameter.

3. Nanostructure growth

3.1. Helium plasma irradiation
Figure 2a and b shows SEM micrographs of Ru and Re sam-

ple surfaces, respectively, that were exposed to He plasma. The
irradiation conditions (Ei, Ts and the irradiation time, ti) were
as follows: a Ei = 55 eV, Ts=1000 K, and ti=7200 s and b
Ei = 75 eV, Ts=1220 K, and ti=1800 s. FNs were grown on the
surface of the both samples. It seemed that the nanostructured
layer was thin on the Ru sample as we could see the base of the
substrate. On the other hand, FNs fully covered the Re sample
surface.

Figure 3a shows a temperature programmed desorption (TPD)
spectrum of He from a Ru sample exposed to the He plasma.
TPD spectra give us clues about He behaviors inside metals at
different temperatures. The peak of the spectrum can be al-
tered by changing the ramp rate. For example, in the case of
W, peaks of He desorption at high (≈1000 K) and low (≈340
K) temperatures were shifted by ≈100 and 10 K, respectively,
when the ramp rate was changed 0.1 to 2.0 K/s [32]. Here,
we use desorption spectra as an indication of migration of He
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Figure 2: SEM micrographs of (a) Ru and (b) Re sample exposed to the He
plasmas. The irradiation conditions are as follows: (a) Ei = 55 eV, Ts=1000 K,
and ti=7200 s and (b) Ei = 75 eV, Ts=1220 K, and ti=1800 s.

atoms. Desorption started around 900 K, suggesting that mi-
gration of He atoms became active around that temperature. It
had a peak at ≈1300 K and decreased gradually with increasing
the temperature. When the temperature is too high, the migra-
tion of He atoms and surface diffusion are too active to form
fine nanostructures for reference. Figure 4a-d shows SEM mi-
crographs of Ru samples exposed to the He plasmas at differ-
ent Ts indicated at red arrows in Fig. 3a. When Ts was 770
K (Fig. 4a), which was lower than the inset of He desorption,
no significant surface morphology changes occurred. FNs were
formed at 1000 K (Fig. 4b), and sub-micrometer sized rough-
ness with finer structures were observed at 1130 K (Fig. 4c).
The results indicated that temperature window of the formation
of FNs for Ru was not so wide. Considering the fact that fine
structures were identified, FNs may be formed around 1100 K,
but it probably requires longer ti or higher He ion flux. Pre-
viously, FNs were formed on 1-µm-thick Ru film with W sub-
strate even when the temperature was 1190 K [30], which was
higher than that of Fig. 4c. A fraction of W (roughly 10%) due
to the diffusion of W to the Ru layer, could have increased the
temperature range of the FNs growth. When Ts was 1490 K,
which was higher than the peak temperature of ≈1300 K, the
surface was still very rough and fiberform microstructures were
identified on the surface.

Figure 3b shows a TPD spectrum of He from a Re sample
exposed to the He plasma. Desorption started around 800−900
K and had a peak at ≈1200 K. The desorption spectrum was
wider than that of Ru. Figure 5a-d shows SEM micrographs
of Re samples exposed to the He plasma at different Ts. No
significant morphology changes were caused by the He plasma
irradiation when Ts was 690 K (Fig. 5a), FNs were identified at
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Figure 3: TPD spectra of (a) Ru and (b) Re sample exposed to He plasma at the
heating rate of 1 K/s. The irradiation conditions are as follows: (a) Ei = 85 eV,
Ts=1130 K, and ti=7200 s, and (b) Ei = 85 eV, Ts=1130 K, and ti=7200 s.

1130 and 1240 K (Fig. 5b,c), where desorption peaked, and fine
structures were still observed at 1670 K (Fig. 5d). The width of
the structure at 1670 K is greater than those at 1130 or 1220 K.

The wider desorption spectrum and morphology changes in
this study revealed that the temperature window of Re for FN
formation is wider than that of Ru. Previously, it was shown
that 100 µm-thick FN layer was formed by 200 eV He ion ir-
radiation to Re at 1040 K [29]. Thus, it is likely that Re is
one of the easiest metals for the growth of FNs by He plasma
irradiation.

3.2. Re precipitation experiments
Figure 6a shows a picture of the sample after an hour-long

Re precipitation experiment. A 3-mm-thick LFN was grown
on a W substrate after the exposure to He plasma and Re parti-
cles (neutrals and ions). The thickness of LFN was greater than
that of W LFN cases, but the LFN did not expand so much to
the surface direction compared with W LFN. Figure 6b and c
shows SEM micrographs of the Re LFN at different magnifica-
tions. The LFN was mainly comprised of meshy structures. In
contrast to W LFN, no membrane structure [33] was identified.

Figure 7a and b shows SEM micrographs of LFN in higher
magnifications. Meshy structures were comprised of much finer
FNs. Figure 7c shows an enlarged SEM micrographs in the
yellow region in Fig. 7a. Fibers are longer than µm and curled.
Bifurcation of fiber occurred less frequent than conventional W
fuzz cases.

The LFNs are mechanically fragile and can be removed
from the substrate easily, similar to conventional fuzz. Using
another sample with Re LFNs that were formed under a similar
condition, we estimated the mass density of Re LFNs. First,
the mass of Re LFNs was measured from the mass change of
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Figure 4: SEM micrographs of Ru samples exposed to the He plasmas. The
irradiation conditions are as follows: (a) Ei = 85 eV, Ts=770 K, and ti=1800,
(b) Ei = 55 eV, Ts=1000 K, and ti=7200 s, (c) Ei = 85 eV, Ts=1130 K, and
ti=7200, and (d) Ei = 65 eV, Ts=1490 K, and ti=3600 s. (Note that the sample
was tilted by 30°in (d).)

the sample by removing the LFNs. The volume was estimated
using pictures of the sample taken from the top and side assum-
ing that the averaged heights are half the peak heights viewed
from a side of the sample. The mass of the LFNs was 1.01 mg,
and the volume was 42.3 mm3; the density was estimated to be
0.024 g/cm3, which was ≈0.1% of the bulk density. Consider-
ing the fact that the density of W fuzz was 6% of the bulk when
the thickness was 3 µm [34], the density of the LFNs was less200

than 1/10 of the conventional fuzz.

4. TEM observations

4.1. Nanofibers
First, we observed W nanostructures grown by He plasma

irradiation to compare to Re and Ru FNs. Figure 8a and b
shows a TEM micrograph and a high-angle annular dark field
(HAADF)-STEM image of W nanofiber, respectively. Because
HAADF-STEM is more sensitive to density variation [35], they
are useful to observe inner structural changes. As can be clearly
seen in Fig. 8b in particular, many He bubbles less than 10
nm in diameter existed inside the nanostructure. Because a
nanometer-thick oxidized layer covered the surface, the surface
border was not clear compared to other samples, as shown later.
Lattice fringe can be seen on W nanostructures as shown in an
inset in Fig. 8a, suggesting that the nanostructures has a crystal
structure, as was discussed previously [7, 36].

Figure 8c and e shows TEM micrographs of nanofibers from
Ru FN and Re FN samples, respectively. Hereafter, we call
the nanofiber samples in Fig. 8c and e as RuFN and ReFN sam-
ples, respectively. Figure 8d and f shows HAADF-STEM im-
ages of RuFN and ReFN samples, respectively. RuFN sample sur-
face was smooth with a roughness of one or two atomic scale,
while ReFN sample surface was rougher with a roughness of
several nm. Nano-bubbles can be scarcely identified on RuFN

1 mm 1 mm

0.5 mm2 mm

(a) (b)

(c) (d)

Figure 5: SEM micrographs of Re samples exposed to the He plasmas. The
irradiation conditions are as follows: (a) Ei = 55 eV, Ts=690 K, and ti=660 s,
(b) Ei = 55 eV, Ts=1130 K, and ti=2200 s, (c) Ei = 75 eV, Ts=1220 K, and
ti=1800 s, and (d) Ei = 75 eV, Ts=1670 K, and ti=1800 s.

and ReFN samples. On RuFN sample, elongate bubbles in trans-
verse direction of the fiber were found. Similar elongate bub-
bles were found on Rh FN previously [6], indicating that this
phenomenon was not peculiar to Ru or HCP metals. However,
such elongation of bubbles has never been clearly identified
from experiments on W cases, though hexagonal He bubbles
were found on W substrate when the surface temperature was
rather high [14]. Note that it has been shown in MD simulations
that bubbles on W tend to elongate toward the surface, typically
along 〈111〉 direction [19, 20]. It is likely that bubbles can be
grown easier in transverse direction than the axial direction in
Ru or some other metal cases. No such elongate bubbles were
found on ReFN sample.

The surface energy anisotropy, which was discussed recently
as related to He-plasma induced morphology changes by Parish
et al. [37], may be related to the elongation of bubbles. Al-
though different references reported different values, it was likely
less than 35% on major planes. The anisotropy has been calcu-
lated on various HCP metals including Ru and Re [38, 39]. It
was reported that the basal plane (0001) for Re and the sec-
ondary prism plane for Ru have the minimum surface energy.
Especially, for Ru case, the secondary prism plane has less than
half the surface energy of the basal plane. However, because the
elongation direction of He bubbles would corresponds to the
basal plane direction considering the crystal orientation anal-
ysis shown later, the direction seems unreasonable if the sec-
ondary prism plane has the minimum value. Although it is dif-
ficult to explain the elongation from the view point of surface
energy, further discussion considering the temperature depen-
dence of the free energy and the critical resolved shear stress in
the slip planes is of interest.

Figure 9a and b shows TEM micrograph and HAADF-STEM
image of Re nanofiber, respectively, that were formed by Re
precipitation experiments shown in Figs. 6 and 7. The sample
is called ReLFN sample hereafter in this paper. Lattice fringe can
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Figure 6: (a) A picture of the W substrate with Re LFN, and (b,c) SEM micro-
graphs of the Re LFN.

also be clearly identified on ReLFN sample, suggesting that the
FN has a crystal structure. Different from ReFN sample, many
bubbles existed inside the fiber. Not only elongate bubbles in
transverse direction of the fiber, but also round shaped bubbles
existed inside the fiber. The roughness of typically 1 nm ex-
isted on the fiber surface; it was much smoother than that of
ReFN sample shown in Fig. 8e.

The surface roughness could be dependent on the material
temperature during the irradiation, because the surface diffusion
is altered by the temperature. E.g., the rough surface identi-
fied on ReFN (Fig. 8e) may become smoother similar to the one
shown in Fig. 8a when increasing the temperature further. In
this study, we will focus on the crystal orientation of nanofibers
of RuFN, ReFN, and ReLFN samples.

4.2. Amorphous clusters

When observing ReFN and ReLFN samples carefully by TEM,
we identified many dusts, which had different features than nanofibers,
clung on the surface of fibers. In this study, we call these as
clusters. Figure 10a shows a TEM micrograph of ReFN sam-
ple. A flat cluster with the size of 100 − 200 nm is seen in the

10 mm

2 mm

(a)

(c)

(b)

20 mm

Figure 7: SEM micrographs of LFN formed by Re precipitation experiments.

intersection of fibers. It is likely that the thickness of the clus-
ter is similar to the fibers (10 − 20 nm) from the brightness of
the image. An inset shows the diffraction pattern of the clus-
ter. Only ring shaped diffraction pattern was seen, suggesting
that the cluster was amorphous. Figure 10b shows a TEM mi-
crograph of ReLFN sample; clusters were identified on ReLFN
sample as well. Figure 10c shows a TEM micrograph of the
cluster clung on ReLFN fiber, and the inset shows its diffraction
pattern. The diffraction pattern shows a ring structure in addi-
tion to some pattern, suggesting that the cluster was not entirely
amorphous but not entirely crystalline either. Hereafter, we call
it an amorphous-like structure in this study.

We conducted energy-dispersive X-ray spectroscopy (EDS)
analysis of the amorphous-like and pure fiber parts. On both
clusters attached on ReFN and ReLFN samples, the atomic frac-
tion of oxygen was higher than the fiber part and was ≈ 67%.
During the discharges in the NAGDIS-II devices, the fraction
of oxygen was very low, on the order of 100 ppm [40], and the
temperature of the sample should be higher than the melting
points of rhenium oxides during the irradiation. Therefore, it is
unlikely that oxides were formed while the sample was exposed300

to the He plasma; the amorphous-like structure would rather be
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Figure 8: (a-c) TEM micrographs (d-f) and high-angle annular dark field (HAADF) -STEM image of nanofibers from W FN, Ru FN, and Re FN, respectively.

oxidized after the irradiation. In other words, they could be
oxidized much more easily in the atmosphere than fiber part,
which has a definite crystal structure. Only Re was identified
on ReLFN sample, and small amount (< 2%) of Mo was found
on a ReFN sample. However, no difference was identified in the
metallic contents between the fiber and cluster parts on both of
ReFN and ReLFN samples.

These amorphous-like structures are quite different from the
nanofibers, which have always a clear crystal structure. It is at
the moment unclear whether those amorphous-like structures
have contributed to the growth of FNs/LFNs. They could be
just formed while adatoms diffused on the surface especially
in intersection area of nanofibers. However, because the size
would be too large for cluster diffusion [41], it was unlikely that
the cluster moved during the irradiation, while the shape could
be altered. Because the sizes were almost the same, typically
100 nm, some mechanism might have existed to determine the
size (growth and shrinking).

4.3. Crystal orientation

Figure 11a-c is SAED patterns of RuFN, ReFN, and ReLFN
samples, respectively. The patterns were taken from the parts
marked with red circles in insets. The central brightest spot in
diffraction patterns correspond to the transmission wave. Diffrac-
tion spot can be formed from the crystal surfaces which satisfy
Bragg condition. Since the distance between the diffraction
spots in reciprocal space corresponds to the distance between
crystal faces, face indexing can be done using the diffraction
pattern. We used a crystallography free software ReciPro [42]
for face indexing.

From Fig. 11a, the distances between two spots in the two
axes directions, i.e L1 in the fiber axis direction and L2 in the
perpendicular direction to the fiber axis, were deduced to be 9.2
and 8.3 nm−1, respectively. It was found that the growth direc-
tion corresponded to the 〈0001〉 direction, which is c-direction
in HCP crystal structure. We performed face indexing at two
more different locations; the result was consistent with that in
Fig. 11a. Similarly, the face indexing was performed on a Re
nanofiber shown in the inset of Fig. 11b. From the fact that
L1 = 9.0 nm−1 and L2 = 14.8 nm−1, it was found that the
growth direction was also in the c-direction on Re nanofibers.
The same analysis was performed on nine other locations, and
the growth direction was always in the c-direction. Figure 11c
shows an SAED pattern of ReLFN sample shown in the inset.
From the SAED pattern, L1 = 8.9 nm−1 and L2 = 8.1 nm−1,
suggesting that the growth direction was also in the c-direction.
The same analysis was conducted for ten other locations for
ReLFN sample, and the c-direction growth occurred on all the
locations.

Diffraction pattern of ReLFN sample had slightly different
from that of RuFN or ReFN. Splits occurred on diffraction spots,
probably because the direction of fibers changed slightly in a
scale smaller than the aperture size of 140 nm. Because the
two split spots were not far from each other, the variation in the
direction was not so large, say 5°. Because the growth rate of
LFN was greater than that of conventional FNs by 2-5 orders
of magnitude [27], variation in the growth direction occurred
more frequently compared with the conventional FN growth.
The results of the growth direction analysis are summarized in
table 1. The experiments revealed that the growth direction has
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Figure 9: (a) TEM micrograph and (b) HAADF-STEM image of Re LFN
formed by precipitation experiment.

Table 1: Summary of the growth direction analysis.
Sample Number of analyzed

fibers
Preferential growth
orientation

RuFN 3 c-axis
ReFN 10 c-axis
RuFN 11 c-axis

a preferential crystal orientation in c-direction on the straight
FNs found on Ru and Re samples.

4.4. Discussion
What is the mechanism for the growth of Re and Ru FNs by

He plasma irradiation or FNs growth by He plasma irradiation
in general? Here, based on the experimental results, we try to
discuss the possible mechanisms.

Before discussing FN growth by He plasma irradiation, three
different mechanisms for nano-sized fiber/whisker structural growth
are briefly referred here for comparisons: carbon nanotubes
(CNTs), tin (Sn) whisker, and molecular beam epitaxy (MBE).
Figure 12a-c presents schematics depicting the growth mecha-
nisms of CNT, Sn whiskers, and MBE, respectively, from refer-
ences [43, 44, 45]. CNTs by chemical vapor deposition (CVD)

0.2 mm

5 nm

(a)

(b) (c)

Figure 10: TEM micrographs of (a) ReFN sample and (b,c) ReLFN sample.
Amorphous like clusters were adhered on the nanofibers.

has a similar feature and has been well investigated [43]. Al-
though the growth condition is quite different from that of metal-
lic FNs and the chemistry of carbon is different from that of
metals, it is worth taking a look at it to introduce the various
possibilities to discuss the potential mechanism. In the most
widely-accepted CNT growth model, it was assumed that metal
nano-particles adsorbed hydrocarbon vapor. A supersaturation
of carbon species in the liquid metal nano-particle plays a cat-
alytic role and precipitate to form carbon cylinder. For the
CNT formations using catalyst nano-particles, both of bottom-
growth and tip-growth are possible depending on the catalyst-
substrate interaction. As one of similar fiberform growth, Sn
whisker growth have also been investigated [46, 44]. It is well
accepted that internal stresses in low-melting-point metals pro-
mote whisker growth through a creep-like process [46, 47], as
shown in Fig. 12b. In addition, for metal whiskers, the energy
gain due to the electrostatic polarization of metal filaments in an
electric field was suggested to be worked [48]. In either way,
the process is bottom-growth process; atoms are always sup-
plied from the substrate from the bottom of nanofibers. Con-
cerning MBE, which make it possible the growth of semicon-
ductor nanowires including Si and GaAs [49, 45], it is regarded
that diffusion of adsorbed atoms (adatoms) contributes to the
growth of nanofibers on the tip (tip-growth) (Fig. 12c).

For conventional He induced FNs, the growth of protrusions400

occurs in the initial phase due to He bubble growth and bursting
as well as swelling processes [50, 51, 15]. This process is likely
similar to the Sn whisker growth process; the stress inside metal
by He bubbles pushes up fiberform structures such as shown in
Fig. 12b. Or, the visco-elastic model [16], in which newly cre-
ated bubbles create an excessive force to form a flow in skin
of fibers, may be applied to the initial growth process. How-
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Figure 11: Diffraction patterns of (a) Ru FN, (b) Re FN, and (c) Re LFN samples. The patterns were taken from red marked regions in insets.
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Figure 12: Schematics representing the well-accepted growth processes of (a) carbon nanotubes by chemical vapor deposition process [43], (b) Sn whisker [46],
and (c) a nanowire by molecular beam epitaxy [45]. These are redrawn based on schematics in above references.
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Figure 13: A schematic of the proposed growth process of He induced LFN.

ever, because almost no bubbles were found inside RuFN and
ReFN samples and the enhanced growth occurred by precipita-
tion of Re particles, other mechanism should have worked for
the growth to thicker Re and Ru FN layer and LFNs.

In the case of MBE, adatoms are produced on the substrate
base by molecules from a molecular beam. For pure He plasma
irradiation, adatoms can be formed by He ion bombardment
[52]. Most of the adatoms were likely formed on the base of
the sample, because recent experiments using tracer gas (3He)
[53] suggested that He ions could be penetrated to the base

even when FNs layer was 3-µm-thick. For LFNs, on the other
hand, adatoms can be formed by deposition of metallic ions in
addition to the bombardment of He ions. Different from con-
ventional FNs, experiments suggested that the adatoms can be
formed on fiber surfaces. It was observed that the growth rate
exponentially increased with ti in the initial phase of the growth
of W LFNs until the height of the structure became comparable
to the sheath thickness [28]. This is most likely because an elec-
tric field formed around the nanofiber starts to attract ions when
the structure size is greater than the sheath thickness, and, sub-
sequently, metal ions precipitate on the fiber surfaces directly
together with He ions [27]. The precipitated metal ions form
adatoms on the fiber surface and start to diffuse on the fiber
surface. Thus, diffusion of adatoms is not required for fiber
growth, and the number of adatoms on the fiber surface can be
much greater than those formed in pure He plasma irradiation
cases. This would result in the increase in the growth rate by
2–5 orders of magnitude from that in the conventional FNs [27].

One thing that we would like to check here is that the ex-
perimental observations of LFNs support a tip-growth model.
It is difficult to explain the exponential increase in the growth
rate of LFNs with the bottom-growth models such as the ones
shown in Fig. 12c or the right model in Fig. 12a in the cur-
rent understanding. If the adatoms formed on the fiber surface
could contribute to the growth only in a bottom-growth manner,
the growth rate of LFNs should decrease with t. The tip-growth
model is plausible for the conventional FNs as well. Similar to
the MBE case (Fig. 12c), formed adatoms on the base can con-

8



tribute to growth after the diffusion on the fiber surface. The
fact that the thickness of the FN layer increased proportional to
t1/2
i could reflect this diffusion process of adatoms along fibers

[12], as was presented by Trufanov using an MD simulation
[18].

Finally, the present study found that Ru FNs and Re FNs/LFNs
always have crystal structures and they have preferential crys-
tal orientation in the growth axis. The results suggested that
growth occurs in the axial direction of fibers, preserving the
crystal structure of the fiber tip. In other words, it is highly
likely that epitaxial crystal growth occurs on the fiber tips when
adatoms reach them, similar to MBE cases. Figure 13 is a
schematic representing the proposed growth process of He-induced
LFN. When the structure size is comparable to the sheath thick-
ness, an electric sheath starts to form around the fiber. Metal
and He ions are collected by the electric field and adatoms form
on the fiber surfaces. The adatoms diffuse on the fiber surfaces
and contribute to the growth via epitaxial crystal growth when
they reached the fiber tip.

Although epitaxial growth is the best idea to our knowledge,
we should assume some special condition for the tip of fibers to
be the trap site of adatoms. In the CVD or MBE cases, it is
assumed that liquid nanoparticles play an essential role to drive
the growth of nanofibers on the tip. However, the present situa-
tion is different from those cases. Martynenko et al. discussed
that tip of nanofibers and thin shells of unopened bubbles can
be trap sites for adatoms in terms of chemical potential [17].
Further investigation including detailed TEM observations of
tip of fibers are required to reveal the mechanism of the entire
growth process.

One of major differences between whisker/CNT and He in-
duced FN/LFN in their features is in the fact that bifurcations,
kinks, and bending of nanofibers occur frequently on FN/LFN.
We thought that kinks and bending were caused by the influence
of pressurized He bubbles inside the nanofibers. Concerning bi-
furcations, an observation of Ru FN in previous study showed
that many He bubbles were frequently observed on node parts
of nanofibers [6]. Thus, it is also likely that He bubbles con-
tributed to the bifurcations. Distortion of crystal structure by He
bubbles might form another growth face in different direction
from the original fiber axis. Furthermore, on non-HCP metals,
considering the fact that no preferential growth direction was
found in the cases of W [36, 54], which has a body-centered
cubic (BCC) lattice, bifurcations can occur any locations.

5. Conclusions

In this study, we performed He plasma irradiation to form
FNs on Ru and Re surfaces. Moreover, by precipitating Re par-
ticles (ions and neutrals) together with He ions on W substrates,
we showed that a 3-mm-thick Re LFN layer was formed. Pri-
marily, linear shaped 10 − 20 nm width nanofibers comprised
the FNs/LFNs. The TPD spectra from Ru and Re samples that
were exposed to He plasmas showed that the temperature range
of desorption from Re sample was wider than that of Ru sam-
ple, and the temperature range to cause FN growth was wider on
Re (1130 − 1670 K) than that on Ru, on which FN growth was500

identified at ≈1000 K; the results suggest that the temperature
window of Re for FN formation is wider than that of Ru. From
TEM observation of FNs, it was found that almost no bubbles
existed inside the linear shaped Ru and Re nanofibers, while
many nano-sized bubbles were identified in Re LFNs. We deter-
mined the crystal orientation of FNs/LFNs from the diffraction
pattern. It was found that the fiber axis of FNs/LFNs was al-
ways in c-direction. Different from W case [36], where no pref-
erential crystal orientation in the growth direction was found,
Re and Ru, which has HCP crystal structure, have a clear pref-
erential growth orientation. Based on the experimental obser-
vations, we discussed the potential growth mechanism as com-
paring with growth mechanisms of several typical nanostruc-
tures (Sn whisker, CNTs growth by CVD, and nanowhiskers
by MBE). The nanofibers always have crystal structure with
preferential growth orientation; it is suggested that the epitax-
ial growth is the growth mechanism of nanofiber. Adatoms can
be formed on the side surface of nanofibers on LFN cases by
the bombardment of He ions and metallic ions, and diffused
adatoms can results in the growth on the tip of the nanofibers.
Assuming that the conventional FNs are the same growth mech-
anism as the LFNs, it is likely that adatoms formed on the bulk
surface diffused to and contribute to the crystal growth on the
tip of fibers for conventional He induced FNs.
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