
PHYSICAL REVIEW C 100, 025205 (2019)

Constraint to chiral invariant masses of nucleons from GW170817
in an extended parity doublet model
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We construct nuclear matter based on an extended parity doublet model including four light nucleons,
N (939), N (1440), N (1535), and N (1650). We exclude some values of the chiral invariant masses by requiring
the saturation properties of normal nuclear matter: saturation density, binding energy, incompressibility, and
symmetry energy. We find a further constraint on the chiral invariant masses from the tidal deformability
determined by the observation of the gravitational waves from neutron star merger GW170817. Our result shows
that the chiral invariant masses are larger than about 600 MeV. We also give some predictions on the symmetry
energy and the slope parameters in the high density region, which will be measured in future experiments.
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I. INTRODUCTION

Chiral symmetry and its spontaneous breaking is one of
the important features in low-energy hadron physics based
on QCD. The breaking generates a part of hadron mass and
causes a splitting between chiral partners. It is interesting to
ask how much of the nucleon mass is generated by sponta-
neous chiral symmetry breaking and what is the chiral partner
to the nucleon.

In Ref. [1], a model based on the parity doublet struc-
ture was introduced, where the excited nucleon N (1535) is
regarded as the chiral partner to the nucleon N (939). It is
important to note that their masses include a chiral invariant
mass in addition to the mass caused by spontaneous chiral
symmetry breaking. The determination of the chiral invariant
mass using the phenomenology at vacuum is done in, e.g.,
Refs. [2–4], and shows that the chiral invariant mass of the
nucleon is smaller than about 500 MeV.

The parity doublet structure is extended to include hy-
perons and/or more nucleons in, e.g., Refs. [5–17]. In
Ref. [17], the authors of the present paper constructed a
model which includes two chiral representations, the [(2, 3) ⊕
(3, 2)] representation under SU(2)L ⊗ SU(2)R in addition to
the [(1, 2) ⊕ (2, 1)] representation, to study four nucleons,
N (939), N (1440), N (1535), and N (1650). It was shown that
there are wide range of two chiral invariant masses satisfying
vacuum properties of the nucleons—the masses, the axial
charges and the pionic decay widths—and that the solutions
are categorized into five groups.

The properties of hot and/or dense matter, including neu-
tron star matter based on the parity doublet structure, are
widely studied in Refs. [11,18–36]. In [11,18–22,24,26,28],
the authors studied the relation between the chiral invariant
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mass and the incompressibility K of nuclear matter, and their
results show that the empirical value K ≈ 240 MeV only
when the chiral invariant mass is close to nucleon’s mass,
m0 ≈ 900 MeV. In Ref. [29], six-point interaction of scalar
mesons was introduced and it was shown that the saturation
properties are reproduced for a wide region of the chiral
invariant mass, i.e., 500 � m0 � 900 MeV. In Ref. [36], the
constraint on the chiral invariant mass from the properties
of neutron stars, including the tidal deformability observed
from GW170817 [37–39], was obtained as 780–810 MeV. Re-
cently, the parity doublet model was used to study nuclei with
finite size in Ref. [40], which showed that m0 ∼ 700 MeV is
preferred to reproduce the properties of nuclei. The relatively
large value of the chiral invariant mass seems also consistent
with lattice analyses in Refs. [41–43].

In this paper, we construct nuclear matter and neutron star
matter using the model introduced in Ref. [17] based on the
mean field approximation. For the meson parts, we use the
model introduced in Ref. [29]; the six-point interaction of
the scalar field is introduced and the ω and ρ mesons are
included based on the hidden local symmetry [44,45]. We
will show that requiring the saturation properties of normal
nuclear matter excludes some combinations of two chiral
invariant masses. We solve the Tolman-Oppenheimer-Volkov
(TOV) equation [46,47] to determine the energy density and
tidal deformability of neutron stars. Then, we will show that
the tidal deformability observed from GW170817 [37–39]
provides a further constraint on the chiral invariant masses.

This paper is organized as follows: In Sec. II, we include
the ω and ρ mesons in the model introduced in Ref. [17].
We give formulations to study nuclear matter in the mean
field approximation in Sec. III. Here we show formulas to
study saturation properties of normal nuclear matter and the
equation of state for neutron star matter. Section IV is de-
voted to the main part where we obtain constraints on the
chiral invariant masses from the saturation properties and tidal
deformability from GW170817. We also provide predictions
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for the relations between the mass and radius as well as for
the mass and the central density of neutron stars and for the
symmetry energy and the slope parameter in dense matter.
Finally, we give a summary and discussions in Sec. V.

II. MODEL

In this section, we introduce an extended parity dou-
blet model to describe nuclear matter based on the model
constructed in Ref. [17]. The model includes four baryon
fields corresponding to the following representations under
SU(2)L × SU(2)R chiral symmetry:

ψ1l ∼ (2, 1), ψ1r ∼ (1, 2),

ψ2l ∼ (1, 2), ψ2r ∼ (2, 1),

η1l ∼ (2, 3), η1r ∼ (3, 2),

η2l ∼ (3, 2), η2r ∼ (2, 3). (1)

The isosinglet scalar meson σ and the isotriplet pseudoscalar
meson π are included in a matrix field M, which transforms
as

M → gLMg†
R, (2)

where gL,R ∈ SU(2)L,R. Following Ref. [29], we include ω

and ρ mesons as the gauge bosons of hidden local symmetry
[44,45] by performing the polar decomposition of the field M
as1

M = ξ
†
L

σ

2
ξR = σ

2
ξ

†
L ξR = σ

2
U . (3)

We introduce the same potential for M as used in Ref. [29]:

VM = − μ̄2tr[MM†] + λ4[tr[MM†]]2 − 4
3λ6[tr[MM†]]3

− 1
2ε(tr[M†M] + tr[MM†]), (4)

where ε is a parameter with dimension 2 and M is the quark
mass matrix defined as

M =
(

mu 0
0 md

)
(5)

with mu and md begin the masses of up and down quarks. In
the present analysis, we neglect the difference between these
masses, and take mu = md = m̄. In vacuum, the combination
m̄ε is related the pion mass as

m̄ε = m2
π fπ . (6)

We adopt the Yukawa interaction terms among M and the
nucleons as in Ref. [17], so that we omit those in this paper.

We introduce the interaction terms among the vector
mesons and nucleons similarly to Ref. [29]. Here, instead of
writing the full Lagrangian, we shall show the relevant terms
in the present analysis. The resultant interaction term for the
ω meson is written as

LωN = −gω

⎛
⎝∑

i=1,2

ψ̄i /ωψi +
∑
j=1,2

η̄ j /ωη j

⎞
⎠. (7)

1The normalization of the M field in this paper is half of the one in
Ref. [29].

Here we assume that the coupling to ψ is the same as that to η

for simplicity. Similarly, the interaction for ρ mesons is given
by

LρN = −1

2
gρ

⎛
⎝∑

i=1,2

ψ̄iτ · ρ/ψi +
∑
j=1,2

η̄ jτ · ρ/η j

⎞
⎠. (8)

We note that the mass terms for ω and ρ mesons are written
as

Vω = − 1
2 m2

ωωμωμ, Vρ = − 1
2 m2

ρρμρμ. (9)

III. FORMULATION

In this section, we present formulations to study nuclear
matter in the mean field approximation based on the model
introduced in the previous section. Here we assume that all
the parameters of the model do not depend on the chemical
potentials.

A. Thermodynamic potential

In the present analysis, we assume that there are no neutral
and charged pion condensations, and that the fields have their
vacuum expectation values (VEVs) as

σ = σ0 ωμ=0 = ω, ρ3
μ=0 = ρ. (10)

In the mean field approximation, the thermodynamic potential
is obtained by

� =
∑

i=1,2,3,4, N=p,n

�N (i) + VM + Vω + Vρ, (11)

where

VM = − μ̄2

2
σ 2

0 + λ4

4
σ 4

0 − λ6

6
σ 6

0 − m2
π fπσ0, (12)

Vω = −1

2
m2

ω ω2, (13)

Vρ = −1

2
m2

ρρ
2. (14)

The contribution from the nucleons, �N (i) is expressed as

�N (i) = 2
∫

d3k

(2π )3

(
E (i)

N − μ̄
(i)
N

)
θ
(
μ̄

(i)
N − E (i)

N

)
, (15)

where θ (x) is the step function defined as

θ (x) =
{

1 (x > 0),
0 (x < 0), (16)

E (i)
N is an energy of the nucleon

E (i)
N =

√
k2 + (

m(i)
N

)2
. (17)

μ̄
(i)
N is the effective chemical potential defined by

μ̄(i)
p = μ̄B + 1

2 μ̄I , μ̄(i)
n = μ̄B − 1

2 μ̄I , (18)

with

μ̄B = μB − gωω, μ̄I = μI − gρρ. (19)
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We should note that, in the above expression, the mean
fields σ0, ω, and ρ are solutions of the stationary conditions

0 = ∂�

∂σ0
= −μ̄2σ0 + λ4σ

3
0 − λ6σ

5
0 − m2

π fπ

+ 2
∑
i,N

∂m(i)
N

∂σ0

∫
d3k

(2π )3

m(i)
N

E (i)
N

θ
(
μ̄

(i)
N − E (i)

N

)
, (20)

0 = ∂�

∂ω
= −m2

ωω + gωρB, (21)

0 = ∂�

∂ρ
= −m2

ρρ + gρρI , (22)

where

ρB =
∑

i

(
ρ (i)

p + ρ (i)
n

)
, ρI =

∑
i

ρ (i)
p − ρ (i)

n

2
, (23)

with

ρ
(i)
N = 2

∫
d3k

(2π )3
θ
(
μ̄

(i)
N − E (i)

N

)
. (24)

B. Saturation properties at normal nuclear density

In this subsection, we provide formulas to calculate several
physical quantities of nuclear matter at normal nuclear den-
sity.

From the thermodynamic potential obtained in the previous
section, the baryon number density and the isospin density are
calculated as

ρB = −
(

∂�

∂μB

)
μI

, ρI = −
(

∂�

∂μI

)
μB

, (25)

where ( )μI
implies that the derivative in terms of μB is taken

with fixed μI , and similarly for ( )μB
. One can easily confirm

that ρB and ρI in Eq. (25) agree with those in Eq. (23). The
saturation density ρ0 is calculated as

ρ0 = ρB(μB = μ0, μI = 0), (26)

where μ0 is the value of the baryon number chemical potential
at the saturation point.

The pressure of the system is given by

P = −�. (27)

From the thermodynamic relation, the energy density is ob-
tained as

ε = −P + μBρB + μIρI . (28)

Then, the binding energy is given by

Ebind,ρ0 = −
(

E

A

∣∣∣∣
μB=μ0,μI =0

− mN

)

= −
(

ε

ρB

∣∣∣∣
μB=μ0,μI =0

− mN

)
. (29)

From this, μ0 in Eq. (26) is given as

μ0 = m(1)
N − Ebind,ρ0 , (30)

where m(1)
N is the mass of lightest nucleon. We note that, using

the above conditions, we can easily show that the pressure at
normal nuclear density vanishes:

P(μB = μ0, μI = 0) = 0. (31)

The incompressibility is calculated as

K = 9ρ2
B

∂2(ε/ρB)

∂ρ2
B

∣∣∣∣
ρB=ρ0

= 9ρB
∂μB

∂ρB

∣∣∣∣
ρB=ρ0

(32)

The symmetry energy per nucleon is given as

Esym = 1

2

∂2(ε/ρB)

∂δ2

∣∣∣∣
δ=0

= ρB

8

∂μI

∂ρI

∣∣∣∣
ρI =0

, (33)

where δ is an asymmetric parameter defined as

δ ≡ ρp − ρn

ρB
= 2ρI

ρB
. (34)

From Eq. (23), this is calculated as

Esym = ρB

8

(
2π2∑

N,i k(i)
FN E (i)

FN

+ g2
ρ

m2
ρ

)
, (35)

where the summation is taken over N = p, n and i =
1, 2, 3, 4, and k(i)

FN and E (i)
FN are the Fermi momentum and

Fermi energy of the nucleon. The slope parameter L is given
by

L = 3ρB
∂Esym(ρB)

∂ρB
. (36)

Here, we assume that only the lightest nucleon exist in the
nuclear matter at normal nuclear density. Then, this is reduced
to

L = 3ρB
∂Esym

∂ρB

∣∣∣∣
ρB=ρ0

(37)

= 3ρ0

[
1

8

(
2π2

kF EF
+ g2

ρ

m2
ρ

)
− π2

(
2k2

F + (
m∗

N

)2)
24kF E3

F

]
, (38)

where EF = μ̄B is the Fermi energy of the lightest nucleon,
and kF is the Fermi momentum, kF =

√
μ̄2

B − (m∗
N )2 .

C. Neutron star matter and tidal deformability

In this subsection, we construct neutron star matter based
on the model introduced in Sec. II. Here we assume that there
are no hyperons and quarks in the matter constructed below.

To construct the neutron star matter, we introduce the
electron and muon into matter, and require conditions for
the charge neutrality and the beta equilibrium. The charge
neutrality condition is written as∑

i

ρ (i)
p = ρe + ρμ, (39)

where ρ (i)
p is given in Eq. (24). The electron density and the

muon density are given by

ρl = 2
∫

d3k

(2π )3
θ (μl − El ) (l = e, μ), (40)
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where μl is the corresponding chemical potential and

El =
√

k2 + m2
l , (41)

with ml being the lepton mass. Here we assume that the
lepton masses in the neutron star matter are the same as those
in vacuum. The chemical potentials for leptons satisfy the
chemical equilibrium conditions

−μI = μe = μμ. (42)

The mass and radius of neutron star are determined by
solving the Tolman-Oppenheimer-Volkov (TOV) equations
[46,47] given by

dP(r)

dr
= − ε(r) + P(r)

r[r − 2M(r)]
[M(r) + 4π2r3P(r)],

dM(r)

dr
= 4π2r2ε(r). (43)

The solution of the above TOV equations determines the
radius R and the mass M of the neutron star as

P(r = R) = 0, M = M(r = R). (44)

The dimensionless tidal deformability is defined as [48–50]

� = 2
3 k2C

−5, (45)

where C = M/R is the compactness parameter and k2 is the
tidal Love number calculated by

k2 = 8C5

5
(1 − 2C)2[2 + 2C(yR − 1) − yR]

× [2C{6 − 3yR + 3C(5yR − 8)}
+ 4C3

{
13 − 11yR + C(3yR − 2) + 2C2(1 + yR)

}
+ 3(1 − 2C)2{2 − yR + 2C(yR − 1)ln(1 − 2C)}]−1.

(46)

In this expression, the quantity yR = y(r = R) is obtained by
solving the following differential equation:

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2 + r2Q(r) = 0, (47)

where

F (r) = r − 4πr3[ε(r) − P(r)]

r − 2M(r)
,

TABLE I. Physical inputs used to determine the couplings of
nucleons to scalar and pseudoscalar mesons. Units of masses and
widths are in MeV. Note that we adopt the restriction of −0.25 �
gA(1535) � 0.25 from the lattice analysis [51] showing gA(1535) ∼
O(0.1).

Mass Width [�N∗→Nπ ] Axial charge

N (939) 939 1.272
N (1440) 1430 228
N (1535) 1535 68 −0.25–0.25 [lat]
N (1650) 1655 84 [to N (939)] 0.55 [lat]

22 [to N (1440)]

FIG. 1. Allowed region for two chiral invariant masses. Painted
regions indicate the solutions which reproduce the physical inputs at
vacuum shown in Table I as obtained in Ref. [17]. For combinations
of two chiral invariant masses indicated by black, yellow, and red
points, we checked whether the saturation properties are satisfied.
For black points, the saturation properties of normal nuclear matter
are not satisfied (see Sec. IV A). For combinations indicated by
yellow and red points, we calculate the tidal deformability. For the
yellow points the obtained tidal deformability does not satisfy the
constraint obtained by GW170817, while the predictions for red
points satisfy the constraints (see Sec. IV B).

Q(r) =
4πr

(
5ε(r) + 9P(r) + ε(r)+P(r)

∂P(r)/∂ε(r) − 6
4πr2

)
r − 2M(r)

− 4

[
M(r) + 4πr3P(r)

r2 − 2M(r)r

]2

. (48)

The gravitational wave GW170817 was measured from a
binary neutron star merger, so that it gives an constraint to the
binary dimensionless tidal deformability, defined as

�̃ = 16

13

(M1 + 12M2)M4
1�1 + (M2 + 12M1)M4

2�2

(M1 + M2)5
. (49)

FIG. 2. Density dependencies of the pressure (left panel) and
the binding energy (right panel). Black dashed curves are for
(m(1)

0 , m(2)
0 ) = (325, 155) MeV, and the red solid curves are for

(900,700) MeV.
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TABLE II. Inputs values of the saturation saturation density
ρ0, the binding energy Ebind,ρ0 , the incompressibility K , and the
symmetry energy Esym at normal nuclear density. Unit of ρ0 is fm−3

and units of others are MeV.

ρ0 Ebind,ρ0 K Esym

0.16 −16 240 31

where �i (i = 1, 2) is the tidal deformability of each neutron
star.

IV. NUMERICAL ANALYSIS

In Ref. [17], we determined ten couplings of nucleons
to scalar and pseudoscalar mesons from ten physical inputs
shown in Table I for fixed values of two chiral invariant masses
and the pion decay constant fπ = 92.4 MeV. In the analysis,
we varied the values of the chiral invariant masses m(1)

0 and
m(2)

0 in 5 MeV steps from 0 to 1500 MeV and then fixed the
other parameters from masses, partial decay widths, and axial
charges. It was shown that only certain combinations of the
two masses can reproduce these parameters as shown in Fig. 1.
In this figure, we group the solutions into regions, indicated
by the purple + symbols (group 1), blue � symbols (group
2), light green × symbols (group 3), light blue � symbols
(group 4), and yellow � symbols (group 5). In the following
we shall show that some regions are excluded by requiring the
saturation properties of normal nuclear matter and the tidal
deformability constraint from the observation of GW170817
[37–39]. Here we assume that all the model parameters do not
have any density dependence.

A. Saturation properties

In addition to the parameters determined in Ref. [17] at
vacuum, as explained at the beginning of this section, we use
the masses of ρ and ω mesons as

mω = 783 MeV, mρ = 775 MeV. (50)

FIG. 3. Binary dimensionless tidal deformability (�bi ≡ �̃) for
several choices of two chiral invariant masses in group 2. The hori-
zontal axis shows the ratio of two masses of neutron stars. Here we
use the constraint of the mass ratio, 0.7 < M2/M1 < 1 [37,54]. The
dashed curves, from top to bottom, are for (m(1)

0 , m(2)
0 ) = (600, 695),

(650,705), (705,790), (795,860) MeV, respectively. The black solid
line at �̃ = 800 is the upper bound of the constraint from the
observation of GW170817 [37,54].

FIG. 4. Binary dimensionless tidal deformability (�bi ≡ �̃) for
several choices of two chiral invariant masses in group 3. The
dashed curves, from to to bottom, are for (m(1)

0 , m(2)
0 ) = (800, 500),

(800,550), (800,600), (900,650), (900,700) MeV, respectively.

Then, for fixed values of two chiral invariant masses, we
determine four parameters, gω, gρ , λ4, and λ6 to reproduce the
saturation density, the binding energy, the incompressibility,
and the symmetry energy at normal nuclear density shown in
Table II.

We used the combinations of two chiral invariant masses
as shown by black, yellow, and red points in Fig. 1, and
found that the saturation properties cannot be reproduced
for the combinations indicated by the black points. Let us
explain the reason why we excluded the combinations where
both the chiral invariant masses are small. For this purpose,
we plot the density dependencies of the pressure and en-
ergy density for (m(1)

0 , m(2)
0 ) = (325, 155) MeV (black dashed

curves), which we excluded, together with (900,700) MeV
(red curves) which satisfies the saturation properties, in Fig. 2.
Although both combinations satisfy P = 0 and E/A − mN =
−16 MeV at ρ0 = 0.16 fm−3, the black dashed curves show
that the binding energy is not minimized at ρ0 and there is
a global minimum around ρB ≈ 0.05 fm−3. This implies that
the matter at ρ0 is not stable. This is because, for small chiral
invariant masses, the coupling of the nucleon to σ is large, and
the attractive force is strong.

FIG. 5. Binary dimensionless tidal deformability (�bi ≡ �̃) for
several choices of two chiral invariant masses in group 4. The
dashed curves, from top to bottom, are for (m(1)

0 , m(2)
0 ) = (550, 800),

(600,1000), (650,1000), (700,1000), (800,1000), (900,1000) MeV,
respectively.
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FIG. 6. Binary dimensionless tidal deformability (�bi ≡ �̃) for
several choices of two chiral invariant masses in group 5. The dashed
curves, from top to bottom, are for (m(1)

0 , m(2)
0 ) = (1105, 675),

(1155,765), (1170,795), (1230,850) MeV, respectively.

A similar situation occurs when one of two chiral invariant
masses is small. When both the chiral invariant masses are
very large, on the other hand, the attractive force is too weak
to keep the matter.

B. Tidal deformability

In this subsection, we construct the neutron star matter and
calculate the tidal deformability using the formulas shown
in the previous section. Here we assume that there are no
hyperons and quarks in the matter.

When we solve the TOV equation (43), we use the equation
of state (EOS) obtained from the present model for ρB >

0.1 fm−3, while we use the EOS given in Refs. [52,53] for
ρB < 0.1 fm−3, regarding this region as the crust. Then, we
calculate the binary tidal deformability for the Chirp mass of

MChirp = (M1M2)3/5

(M1 + M2)1/5 = 1.118M�, (51)

FIG. 7. Relation between the mass and radius of neutron stars for
several combinations of two chiral invariant masses in group 2. The
curves are for (m(1)

0 , m(2)
0 ) = (650, 705), (705,790), (795,860) MeV

from top to bottom. Solid curves imply that the central density ρc

is smaller than three times normal nuclear matter density, ρc < 3ρ0,
and the dashed curves are for ρc > 3ρ0. Dots on the curves express
that the central density is three times the normal nuclear density,
ρc = 3ρ0.

FIG. 8. Relation between the mass and central density of neutron
stars for several combinations of two chiral invariant masses in
group 2. The curves are for (m(1)

0 , m(2)
0 ) = (650, 705), (705,790),

(795,860) MeV from top to bottom.

where M� is the solar mass. We show the resultant values of
the binary tidal deformability for several combinations of two
chiral invariant masses for group 2 in Fig. 3. Here the dashed
curves, from top to bottom, are for (m(1)

0 , m(2)
0 ) = (600, 695),

(650,705), (705,790), and (795,860) MeV, respectively. We
also plotted the black solid line at �̃ = 800, which we regard
as the upper bound of the constraint from the observation
of GW170817 [37,54]. Figure 3 shows that the �̃ become
smaller for larger chiral invariant mass. This is because the
EOS becomes softer for larger chiral invariant mass.

As a result, the constraint �̃ < 800 excludes the region
where chiral invariant masses are small. For example, the
combination (m(1)

0 , m(2)
0 ) = (600, 695) MeV is excluded, as

one can see easily in Fig. 3.
We next show the predicted �̃ for groups 3, 4, 5 in

Figs. 4, 5, 6, respectively. One can easily see that �̃ is larger
for smaller chiral invariant masses, and the combinations
(m(1)

0 , m(2)
0 ) = (800, 500), (550,800) MeV are excluded. We

summarize the results in Fig. 1, where red points show that
�̃ < 800 is satisfied while yellow points show that the combi-
nation of the chiral invariant masses is excluded. From this, we
conclude that the chiral invariant masses must be larger than

FIG. 9. Relation between the mass and radius of neutron stars
for several combinations of two chiral invariant masses in group 3.
The curves are for (m(1)

0 , m(2)
0 ) = (800, 550), (800,600), (900,600),

(900,700) MeV from top to bottom.
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FIG. 10. Relation between the mass and central density of neu-
tron stars for several combinations of two chiral invariant masses
in group 3. The curves are for (m(1)

0 , m(2)
0 ) = (800, 550), (800,600),

(900,600), (900,700) MeV from top to bottom.

about 600 MeV to satisfy the tidal deformability constraint
from the observation of GW170817.

C. M-R relation

In this subsection, we show our results for the M-R relation
and the central density.

We plot the relation between neutron star mass and radius
in Fig. 7 and the relation between the mass and the central
density in Fig. 8 for several combinations of two chiral
invariant masses (m(1)

0 , m(2)
0 ) in group 2 which satisfy the

constraint of the tidal deformability. Here, solid curves imply
that the central density ρc is smaller than three times nor-
mal nuclear matter density, ρc < 3ρ0, and the dashed curves
are for ρc > 3ρ0. Note that the combination (m(1)

0 , m(2)
0 ) =

(795, 860) MeV is excluded, since the present prediction
does not reproduce superheavy neutron stars with 2M� mass
[55,56]. However, we note that, in this study, we assume that
the core of a neutron star is composed of protons, neutrons,
and leptons only and that no hyperons, meson condensation,
and quark degrees appear. We expect that the predictions
shown by solid curves are not changed significantly, but
those by dashed curves will be changed. Then, although the

FIG. 11. Relation between the mass and radius of neutron
stars for several combinations of two chiral invariant masses in
group 4. The curves are for (m(1)

0 , m(2)
0 ) = (600, 1000), (650,1000),

(700,1000), (800,1000), (900,1100) MeV from top to bottom.

FIG. 12. Relation between the mass and central density of neu-
tron stars for several combinations of two chiral invariant masses in
group 4. The curves are for (m(1)

0 , m(2)
0 ) = (600, 1000), (650,1000),

(700,1000), (800,1000), (900,1100) MeV from top to bottom.

present prediction for (m(1)
0 , m(2)

0 ) = (795, 860) MeV does not
reproduce superheavy neutron stars with 2M� mass [55,56],
it will be changed by, e.g., including effects of quark degrees
(see, e.g., Refs. [26,33,57–64]).

We also list the relations for groups 3–5 in Figs. 9–14.
From these figures, we can see that the larger chiral invariant
mass provides the softer EOS, leading to smaller radius and
lighter mass. This is because the larger chiral invariant mass
leads to smaller repulsive interaction.

D. Symmetry energy and slope parameter

In this subsection, we calculate the symmetry energy and
the slope parameter in high density matter. The plots for
(m(1)

0 , m(2)
0 ) = (900, 1100), (800,1000), (600,1000) MeV are

shown in Fig. 15. We can see that three predictions are
almost the same, and we checked that other predictions are
similar. This is because, in Eq. (35), the second term in the
parentheses is dominant and the symmetry energy is propor-
tional to the baryon number density ρB. The slope parameters
predicted here seem a little larger than the one constrained in
Refs. [65,66]. In the present model, the large slope parameter
causes the large radius of neutron stars.

FIG. 13. Relation between the mass and radius of neutron
stars for several combinations of two chiral invariant masses in
group 5. The curves are for (m(1)

0 , m(2)
0 ) = (1105, 675), (1155,765),

(1170,795), (1230,850) MeV from top to bottom.
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FIG. 14. Relation between the mass and central density of neu-
tron stars for several combinations of two chiral invariant masses in
group 5. The curves are for (m(1)

0 , m(2)
0 ) = (1105, 675), (1155,765),

(1170,795), (1230,850) MeV from top to bottom.

V. A SUMMARY AND DISCUSSION

In this paper, we constructed nuclear matter including
neutron star matter from an extended parity doublet model,
which we developed in the previous publication [17], wherein
two sets of chiral representations having two chiral invariant
masses are introduced. We showed that some combinations
of two chiral invariant masses are excluded by requiring the
saturation properties of normal nuclear matter: the saturation
density, the binding energy, the incompressibility, and the
symmetry energy. Then, we found that a further constraint
on the chiral invariant masses is obtained from the tidal
deformability determined by the observation of GW170817.
Out result shows that the chiral invariant masses are larger
than about 600 MeV, which is consistent with the constraint
obtained in Ref. [36]. We also showed predictions of the
mass-radius relation of neutron stars, as well as the symmetry
energy and the slope parameter at high density.

In this paper, we regard the density region ρB < 0.1 fm−3

as the crust and use the EOS given in Refs. [52,53]. We studied
the sensitivity of our results to the treatment of the crust by
changing a way of connecting the EOS of the crust to the
EOS of the core. We checked the following three different
ways: (1) using crustal EOS for ρB < 0.08 fm−3; (2) using
crustal EOS for ρB < 0.13 fm−3; (3) adopting a way proposed
in Ref. [67] and regarding 0.08 < ρB < 0.16 fm−3 as the
crust-core connecting region. We found that the constraint on
the chiral invariant masses is changed by 20–30 MeV at most.

In the present analysis, some of our predictions do not
reproduce superheavy neutron stars with 2M� [55,56], and a

FIG. 15. Predicted symmetry energy (lower three curves) and
slope parameter (upper three curves). The three curves for the sym-
metry energy are hard to be distinguished, while those for the slope
parameter are for (m(1)

0 , m(2)
0 ) = (900, 1100), (800,1000), (600,1000)

MeV, from top to bottom.

constraint from an x-ray burst given in Ref. [68]. However, we
think that our model may not be applicable in the high-density
region. It might be changed by, e.g., including effects of quark
degrees (see, e.g., Refs. [26,33,57–64].). It will be interesting
to obtain more constraints on the chiral invariant masses by
including such effects.

The slope parameters predicted here seems a little larger
than the one constrained in Ref. [65,66]. In the present
model, the large slope parameter causes the large radius of
neutron stars, which is comparable with the results in, e.g.,
Refs. [69–71], but larger than the ones in Refs. [61–63,72–74].

The large slope parameter implies that the proton fraction
increases rapidly in the interior of the neutron star, which
would lead to the rapid neutron star cooling via the direct Urca
process (see, e.g., Ref. [75]). Observations of cooling neutron
stars might provide more constraint to the invariant masses

In our model, we include the six-point interaction of the
σ meson. The existence of the six-point interaction might be
driven by the violation of scale symmetry [76].

It will be interesting to apply the present analysis to study
the modification of the spectrum of heavy-light mesons in
dense matter, as was done in, e.g., Refs. [77,78].
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