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S1 Rouse model

We use the Rouse model to treat the dynamics of a chromatin fiber that is
extruded by cohesin. With this model, the chromatin fiber is treated as beads
that are connected by springs of the spring constant k (= 3kBT/b

2), where kB
is the Boltzmann constant, T is the absolute temperature, and b is the Kuhn
length. For simplicity, we here treat the dynamics of the z-component of the
positions of the beads. The position zn(t) of the n-th bead is derived as a
function of time t by the Langevin equation

ζ
∂

∂t
zn(t) = k

∂2

∂n2
zn(t) + fn(t) + Fm(t)δmn, (S1)

where n = 1, 2, · · ·. Eq. (S1) represents the fact that the friction force applied
to the bead (the left side) is balanced by the elastic force generated by the
springs (the first term in the right side), the random force fn(t) due to the
random collision of solvent molecules (the second term in the right side), and
the force Fm(t) generated by the loop extrusion process (the third term in the
right side). ζ is the friction constant of a bead. The random force fn(t) is the
Wiener process with ⟨fn(t)⟩ = 0 and ⟨fn(t)fn′(t′)⟩ = 2ζkBTδnn′δ(t − t′). δmn

is 1 for m = n and 0 otherwise; eq. (S1) implies that the force Fm(t) is applied
only to the m-th bead at which the cohesin is located. The boundary condition
of eq. (S1) is ∂zn

∂n = 0 at the ends of the chain.
Taking the average to the both sides of eq. (S1) leads to the form

ζ
∂

∂t
⟨zn(t)⟩ = k

∂2

∂n2
⟨zn(t)⟩+ Fm(t)δmn. (S2)

The Green function G(t) of eq. (S2) is thus defined by the solution of the
equation

∂

∂t
G(n,m, t) =

k

ζ

∂2

∂n2
G(n,m, t) + δ(t)δmn. (S3)
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Comparing eqs. (S2) and (S3) leads to the form

⟨zn(t)⟩ − ⟨zn(0)⟩ =
1

ζ

∫ t

0

dt′ G(n,m, t− t′)F (t′). (S4)

When the chain is infinitly long, the solution of eq. (S3) has the form

G(n,m, t) =

(
ζ

4πkt

)1/2

e−ζ(n−m)2/(4kt), (S5)

where this solution satisfies the boundary condition ∂
∂nG(n,m, t) = 0 for n → ∞

and −∞. Eqs. (S4) and (S5) imply that distant beads are not influenced by
the force Fm(t) until the tension generated by the force diffuses to these beads.
Restoring the contribution of the random force to eq. (S4) leads to the form

zn(t)− zn(0) =
1

ζ

∫ t

0

dt′ G(n,m, t− t′)F (t′) + rn(t), (S6)

where rn(t) is the Wiener process with ⟨rn(t)⟩ = 0 and

⟨rn(t)rm(t)⟩ = 2kBT

ζ

∫ t

0

dt′ G(n,m, t− t′). (S7)

Eq. (S7) is derived by using the fluctuation-dissipation theorem. For simplicity,
we neglect the contribution rn(t) of the random force in the main article and
the rest of this Supplementary Material.

S2 Loop extrusion at an interface

The Laplace transformation of the both sides of eq. (S6) has the form

∆zLn(s) =
1

ζ
GL(n,m, s)FL(s), (S8)

where ∆zLn(s) is the Laplace transform of the displacement ∆zn(t) (= zn(t) −
zn(0)), G

L(n,m, s) is the Laplace transform of the Green function G(n,m, t),
and FL(s) is the Laplace transform of the force Fm(t) generated by the loop
extrusion process (the superscript L indicates the Laplace transform). The
Green function GL(n,m, s) has the form

GL(n,m, s) =
π

2
τ1

e−π|n−m|√sτ1

√
sτ1

, (S9)

where τ1 (= ζ/(π2k)) is the relaxation time of a monomer.
We here treat the case in which the cohesin is entrapped at the interface

(z = 0). The force that is necessary to displace the m-th bead (which is bound
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by the cohesin) by um and to fix the bead at the position has the form

FL(s) =
ζum

sGL(m,m, s)

=
2

π

ζum√
sτ1

, (S10)

where we used the fact that the Laplace transform of the displacement is um/s.
The inverse Laplace transform of eq. (S10) leads to eq. (7) in the main article.
Substituting eq. (S10) into eq. (S8) leads to the displacement ∆zLn(s) of the
n-th bead

∆zLn(s) =
um

s
e−π|n−m|√sτ1 . (S11)

The inverse Laplace transform of eq. (S11) leads to the form

zn(t)− zn(0) = umerfc

(
π

2
|n−m|

√
τ1
t

)
, (S12)

where erfc(x) is the complementary error function that is defined by

erfc(x) =
2√
π

∫ ∞

x

du e−u2

. (S13)

The cohesin drives the loop extrusion process with a constant rate τ−1
c in a

finite region, starting from n = 1 and ending at n = N . This region is bound
by the CTCF molecules that suppress the cohesin to diffuse outside of this
region. The m-th bead (from the starting site) is extruded at time mτc. The
displacement of the n-th bead at time t due to the extrusion of the m-th bead
has the form

zn(t)− zn(mτc) = −zm(mτc)erfc

(
π

2
|n−m|

√
τ1

t−mτc

)
, (S14)

where we used the fact that them−1-th bead is localized at the interface (z = 0)
and the displacement um thus has the form um = −zm(mτc), see eq. (S12). The
beads 1, 2, · · ·, m− 1 have been extruded by the time that the cohesin extrudes
the m-th bead. Summing up the contributions of the extrusion steps leads to
the form

zn(t)− zn(0) = −
m−1∑
l=2

zl(lτc)erfc

(
π

2
|n− l|

√
τ1

t− lτc

)
, (S15)

see eq. (8) in the main article.
The position zm(mτc) of the m-th bead at the moment of the extrusion

process is derived by using the form

zm(mτc)− zm(0) = −
m−1∑
l=2

zl(lτc)erfc

(
π

2

√
m− l

√
τ1
τc

)
, (S16)
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where this equation is derived by replacing t and n in eq. (S15) to mτc and m.
We solve eq. (S16) in the form

zm(mτc) =
m∑
l=0

Γmlzl(0), (S17)

where Γml is derived by the form

Γmm′ = δmm′ −
m−1∑
l=m′

Γlm′erfc

(
π

2

√
α

√
m− l

N

)
. (S18)

We used the parameter

α =
τN
τex

. (S19)

to represent the ratio of the Rouse time τN (= N2τ1) to the time scale τex (=
Nτc) of the loop extrusion process. Eq. (S18) is derived by substituting eq.
(S17) into eq. (S16).

Substituting eq. (S17) into eq. (S15) leads to the form

zn(t)− zn(0) = −
m∑
l=2

Ξnl(t)zl(0), (S20)

where Ξnl(t) has the form

Ξnm(t) =

t/τc∑
l=m

Γlmerfc

(
π

2
|n− l|

√
τ1

t− lτc

)
. (S21)

Because the starting site is bound by the cohesin, the mean square of the end-
to-end distance has the form

3⟨z2N (t)⟩
Nb2

=
3⟨z2N (0)⟩
Nb2

− 6

Nb2

t/τc∑
l=2

ΞNl(t)⟨zN (0)zl(0)⟩

+
3

Nb2

t/τc∑
p=2

t/τc∑
q=2

ΞNp(t)ΞNq(t)⟨zp(0)zq(0)⟩

= 1− 2

N

t/τc∑
l=2

lΞNl(t) +
2

N

t/τc∑
p=2

p−1∑
q=2

qΞNp(t)ΞNq(t)

+
1

N

t/τc∑
l=2

lΞ2
Nl(t), (S22)

where we used ⟨zn(0)zm(0)⟩ = b2

6 (m+ n− |m− n|) to derive the last equation.
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For α → ∞, the solution of eq. (S18) has an asymptotic form

Γmm′ = δmm′ . (S23)

Substituting eq. (S23) into eq. (S21) leads to the form

Ξnm = erfc

(
π

2
(n−m)

√
τ1

t−mτc

)
≃ 2N

π3/2

1√
α

1

1− u

√
t

τex
− ue−

π2

4 α(1−u)2/(t/τex−u), (S24)

where we used u = m/N and the steepest descent to derive the last equation.
The mean square of the end-to-end distance thus has an asymptotic form

3⟨z2N (t)⟩
Nb2

= 1− 4

π3/2

N√
α

∫ t/τc

0

du
u

1− u

√
t

τex
− ue−

π2

4 α(1−u)2/(t/τex−u)

≃ 1− 4

π2

N

α

(
2

t

τex
− 1

)
e−π2α(1−t/τex), (S25)

where we used the steepest descent to derive the last equation.

S3 Loop extrusion in a bulk solution

The bead that is bound by the cohesin diffuses freely in the bulk solution. The
force Fm(t) is thus applied to the bead only during the extrusion process. For
the case in which the applied force is a constant F0 during the extrusion process,
the displacement ∆zm(t) of the m-th bead (at which the cohesin is located) due
to the extrusion process has the form

∆zm =
F0

ζ

∫ rτc

0

dt′ G(m,m, rτc − t′)

=
√
π
F0

ζ

√
rτ1τc, (S26)

which is derived by using eq. (S6), neglecting the contribution rn(t) of the
random force. r is the duty ratio of the cohesin. The force F0 that is necessary
to displace the m-th bead by um thus has the form

F0 =
1√
π

ζum√
rτcτ1

. (S27)

In a long time scale, t > rτc, the force Fm(t) that is applied to the bead has an
asymptotic form

Fm(t) = F0rτcδ(t)

=
ζum√

π

√
rτc
τ1

δ(t). (S28)
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Substituting eq. (S28) into eq. (S6) leads to the displacement zn(t) of the
n-th bead due to the extrusion of the m-th bead. The displacement zn(t) has
the form

zn(t)− zn(mτc) = −(zm(mτc)− zm−1(mτc))K(n,m, t−mτc), (S29)

where we used the fact that the extrusion of the m-th bead starts at t = mτc and
the displacement um of the m-th bead has the form um = zm−1(mτc)−zm(mτc).
The function K(n,m, t) is defined by the form

K(n,m, t) =
1√
π

√
rτc
τ1

G(n,m, t). (S30)

The beads 1, 2, · · ·, m − 1 have been extruded by the time that the cohesin
extrudes the m-th bead. Summing up the contributions of the extrusion steps
leads to the form

zn(t)− zn(0) = −
m∑
l=2

(zl(lτc)− zl−1(lτc))K(n, l, t− lτc). (S31)

Eq. (S31) implies that the position of the m-th bead right before the extru-
sion of this bead has the form

zm(mτc)− zm(0) = −
m−1∑
l=2

(zl(lτc)− zl−1(lτc))K(m, l, (m− l)τc). (S32)

The position of the m− 1-th bead at the time has the form

zm−1(mτc)− zm−1(0) = −
m−1∑
l=2

(zl(lτc)− zl−1(lτc))K(m− 1, l, (m− l)τc).(S33)

By using eqs. (S32) and (S33), we derive the relationship

zm(mτc)− zm−1(mτc) = zm(0)− zm−1(0)−
m−1∑
l=2

(zl(lτc)− zl−1(lτc))

×[K(m, l, (m− l)τc)−K(m− 1, l, (m− l)τc)].

(S34)

We derive the solution of eq. (S34) in the form of

zm(mτc)− zm−1(mτc) =

m∑
l=1

Γml(zl(0)− zl−1(0)), (S35)

where Γml follows from the form

Γmn = δmn −
m−1∑
l=n

Γln [K(m, l, (m− l)τc)−K(m− 1, l, (m− l)τc)]. (S36)
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Eq. (S36) is derived by substituting eq. (S35) into eq. (S34).
Substituting eq. (S35) into eq. (S31) leads to the form

zn(t)− zn(0) = −
t/τc−1∑
l=2

Ξnl(t)(zl(0)− zl−1(0)), (S37)

where the function Ξnl(t) has the form

Ξnl(t) =

t/τc−1∑
m=l

ΓmlK(n,m, t−mτc). (S38)

The mean square of the end-to-end distance thus has the form

⟨(zN (t)− zt/τc(t))
2⟩ = ⟨(zN (0)− zt/τc(0))

2⟩

−2

t/τc−1∑
l=2

(ΞNl(t)− Ξt/τc−1,l(t))⟨(zl(0)− zl−1(0))(zN (0)− zt/τc(0)⟩

+

t/τc−1∑
p=1

t/τc−1∑
q=1

(ΞNp(t)− Ξt/τc−1,p(t))

×(ΞNq(t)− Ξt/τc−1,q(t))⟨(zp(0)− zp−1(0))(zq(0)− zq−1(0)⟩

=
b2

3

(
N − t

τc

)
+

b2

3

t/τc∑
l=2

(ΞNl(t)− Ξt/τc−1,l(t))
2, (S39)

where we used ⟨(zp(0)−zp−1(0))(zq(0)−zq−1(0)⟩ = δpq and ⟨(zl(0)−zl−1(0))(zn(0)−
zt/τc(0)⟩ = 0 for l < t/τc to derive the last equation.

For large values of α (defined by eq. (S19)), the square bracket in eq. (S36)
has an approximate form

K(m, l, (m− l)τc)−K(m− 1, l, (m− l)τc)

=
1

π

√
rτc
τN

(
π2

4
α

N

m− l

)1/2(
e−

π2

4 αm−l
N − e−

π2

4 α 1
N

(m−l−1)2

m−l

)
≃ −

√
r

2
δl,m−1, (S40)

where we used the fact that the right hand side is very small except at m−l ≃ 1.
Substituting eq. (S40) into eq. (S36) leads to the form

Γmn = δmn +

√
r

2
(1− δmn)Γm−1,n. (S41)

The solution of the recursion relationship has the form

Γmn =

(√
r

2

)m−n

. (S42)
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Substituting eq. (S42) into eq. (S38) leads to the form

ΞNl(t)− Ξt/τc−1,l(t) =

t/τc−1∑
m=l

Γml(K(N,m, t−mτc)−K(t/τc − 1,m, t−mτc))

=
√
N

∫ t/τex

l/N

du
1√

t/τex − u

(√
r

2

)Nu−l+1
(
e
−π2

4 α
(1−u)2

t
τex

−u − e−
π2

4 α( t
τex

−u)

)

≃ −2
√
N√
πα

(√
r

2

)N(t/τex−l/N)+1
[
1− e−π2α(1−t/τex)

(√
r

2

)N(t/τex−1)
]
,

(S43)

where we used the steepest descent to derive the last equation. The second term
of the last form of eq. (S39) is rewritten in the form

t/τc∑
l=2

(ΞNl(t)− Ξt/τc−1,l(t))
2 =

N2r

πα

∫ t/τex

1/N

du

(√
r

2

)2N(t/τex−u)

×

[
1− e−π2α(1−t/τex)

(√
r

2

)N(t/τex−1)
]2

= − Nr

2πα log(
√
r/2)

[
1−

(√
r

2

)2Nt/τex
]

×

[
1−

(√
r

2

)−N(1−t/τex)

e−π2α(1−t/τex)

]2
.

(S44)

The mean square of the end-to-end distance thus has the form

3⟨(zN (t)− zt/τc(t))
2

Nb2
= 1− t

τex
− Nr

2πα log(
√
r/2)

[
1−

(√
r

2

)2Nt/τex
]

×

[
1−

(√
r

2

)−N(1−t/τex)

e−π2α(1−t/τex)

]2
. (S45)
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