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We investigate the wave optics in spherically symmetric spacetimes: Schwarzschild black hole,
spherical star with a perfect absorbing surface, and massless/massive Ellis wormholes. Assuming a
point wave source, wave patterns and power spectrums for scattering waves are obtained by solving the
scalar wave equation numerically. We found that the power spectrum at the observer in the forward
direction shows oscillations with two characteristic periods determined by the interference effect
associated with the photon sphere and the diffraction effect due to the absorbing boundary condition
inside of the photon sphere.
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I. INTRODUCTION

The photon sphere is a set of circular unstable photon
orbits around a gravitating object, and it forms a two-
dimensional sphere with a constant radius for spherically
symmetric static spacetimes. Recently, related to the
existence of the photon sphere, bright ring and the
“shadow” of M87 have been observed [1]. The properties
of shadows of strong gravitating objects such as black holes
have been studied in detail [2–10]. The shadow is a dark
region on the observer’s sky, and its rim corresponds to the
photon sphere projected onto the observer’s sky. By its
definition, information inside of the photon sphere cannot
be detectable by light rays unless an illuminating light
source is placed inside of the photon sphere.
Although the photon sphere is introduced in terms of null

geodesics, which are rays in the geometrical optics, the
relation to the quasinormal modes of the black hole has
been also discussed so far [11]. The quasinormal modes of
black holes are obtained as poles of the scattering matrix
in the complex frequency domain, and its eikonal limit
corresponds to light rays of the unstable photon orbits
around black holes. Based on the established treatment of

wave scattering problems (partial wave decomposition,
phase shift, etc.; see Refs. [12,13]), the photon sphere is
related to Regge poles, which are poles of the scattering
matrix in the complex angular momentum space. Thus it is
possible to understand properties of spacetimes with strong
gravitating objects using wave optics. As an application to
this direction, imaging of a black hole photon sphere with
waves was investigated by Kanai and Nambu [14] and
Nambu and Noda [15]. The reconstruction of black hole
images from scattering waves was attempted by Fourier
transform of scattered waves. Other approaches to the wave
scattering by black holes such as the evaluation of the
differential cross section have been investigated by many
authors [16–29]. Recently, wave scattering by stars is also
discussed [30–32].
Concerning the wave optical effect for the weak gravi-

tational lensing, interference fringe patterns in the spatial
domain (scattering amplitude) and the frequency domain
(power spectrum) are expected. They are caused by
interference between two coherent light rays (direct rays).
For the gravitational lensing by a black hole, an additional
interference effect associated with the photon sphere is
expected. Light rays can go around the black hole an
arbitrary number of times (orbiting), the direct rays and
these winding rays can interfere, and an additional com-
ponent of fringe appears in the power spectrum. In the
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paper [15], the analytic expression for scattering waves by
the Schwarzschild black hole was derived in the eikonal
limit (the leading order of the wave effect), and wave
optical images of Einstein rings and the photon sphere were
obtained. Moreover, modulation of power spectrums
caused by the photon sphere was also clarified. As an
astrophysical application of wave optics to gravitational
lensing systems, Yoo et al. [33] investigated the behavior of
power spectrums from a point source and discussed the
possibility to distinguish Ellis wormhole spacetimes from
spacetimes with a point mass. Their analysis is based on the
weak field approximation of the gravitational field (weak
lensing effect). They concluded that the Ellis wormhole
spacetime shows different behaviors of the power spectrum
due to the r−2 law of the wormhole’s gravitational potential.
However, their analysis lacks the strong lensing effect
associated with the photon sphere.
In this paper, we consider wave optical properties of

spacetimes with the photon sphere. Let us consider a
situation where a wave source is located outside of the
photon sphere of the gravitating object and an observer
detects a scattered signal. In the geometrical optics, as light
rays captured by the photon sphere cannot escape from it, we
cannot look inside of the photon sphere using a light source
placed outside of the photon sphere, if objects inside of the
photon sphere do not emit and reflect light rays. However, in
the wave optics, even if a part of the wave propagates inside
of the photon sphere, it can escape to outside due to the wave
effect and it is possible to extract information of the interior
of the photon sphere. This expectation is directly connected
to the discrimination problem of gravitating objects called
black hole mimickers such as ultracompact objects using
wave optical effects. The black hole mimickers have photon
spheres but no event horizons. Thus it is not possible to
discriminate between the black hole mimickers and black
holes using light rays. In this paper, as models of the black
hole mimickers, we consider a spherical star with a perfect
absorbing surface and massless/massive Ellis wormholes.
We mainly focus on behavior of power spectrums in the
forward scattering case; the path difference between two
direct rays is zero, and if the gravitating object has no
structure like the photon sphere, we do not have any
interference fringe in the power spectrum. However, if the
gravitating object has the photon sphere or some structures,
modulations of the power spectrum caused by interference
between direct rays and orbiting rays are expected.
The structure of the paper is as follows. In Sec. II, we

introduce our setup of the wave scattering problem in
spherically symmetric spacetimes and explain our numeri-
cal methods. We present our numerical results in Sec. III
for the Schwarzschild spacetime and the Ellis wormhole
spacetime. In Sec. IV, we apply a formula in the wave
optics to explain the interference fringe that appeared in
power spectrums. Section V is devoted to the summary and
conclusion.

II. WAVE OPTICS IN STATIC SPHERICALLY
SYMMETRIC SPACETIMES

In this section, we introduce the setup of the problem and
numerical method to obtain scattering waves by a spherical
gravitating object.

A. Wave equation with a point source

Figure 1 shows our setup of the wave scattering problem.
We consider a massless scalar field as the benchmark
treatment for wave scattering problems, and we do not
consider polarization degrees of freedom that are necessary
for the electromagnetic and gravitational waves. The back-
ground geometry is assumed to be static and spherically
symmetric spacetimes with the metric

ds2¼ gμνdxμdxν ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2dΩ2: ð1Þ

For a monochromatic stationary wave with time depend-
ence e−iωt, the wave equation for the massless scalar fieldΦ
reduces to the following Helmholtz type equation with a
source term

−g00ω2Φþ 1ffiffiffiffiffiffi−gp ∂jð
ffiffiffiffiffiffi
−g

p
gjk∂kΦÞ ¼ −Sωδ3ðr⃗; r⃗sÞ;

i; j; k ¼ r; θ;ϕ; ð2Þ

where a point wave source is placed at r⃗s and δ3ðr⃗; r⃗sÞ is the
invariant delta function 1ffiffiffiffi−gp δ3ðr⃗ − r⃗sÞ. Sω denotes the

Fourier amplitude of the wave source. In this paper, we
assume the spectrum of the wave source has no ω
dependence and Sω is the ω independent constant.
The power spectrum of the wave at the observing point
is given by jΦðωÞj2obs.1 We assume the wave source is
placed on the −z axis: r ¼ rs, θ ¼ π. That is, δ3ðr⃗; r⃗sÞ ∝
δðr − rsÞδðcos θ þ 1Þ. Owing to the symmetry of the
spacetime, the wave function can be separated as

FIG. 1. Configuration of our wave scattering problem. An
observer receives waves from a point wave source.

1Strictly speaking, jΦðωÞj2 represents the energy of the wave
per unit interval of the frequency, and the power of the wave for
the interval of the frequency Δω is represented as jΦðωÞj2Δω. In
this paper, we call jΦðωÞj2 the power spectrum for simplicity.
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Φðr; θÞ ¼ 1

r

X∞
l¼0

RlðrÞPlðcos θÞ; ð3Þ

and using the formula δðcos θ þ 1Þ ¼ P∞
l¼0ð−Þlðlþ 1=2Þ

Plðcos θÞ, the radial wave function Rl obeys the following
Schrödinger type equation:

d2Rl

dx2tot
þ ðω2 − VeffÞRl ¼ asð−Þlðlþ 1=2Þδðr − rsÞ; ð4Þ

where as denotes the ω independent amplitude of the point
source, the tortoise coordinate is introduced as

xtot ¼
Z

drffiffiffiffiffiffi
fh

p ; ð5Þ

and the effective potential is defined by

Veff ¼ f
lðlþ 1Þ

r2
þ ðfhÞ;r

2r
: ð6Þ

In this paper, we consider the Schwarzschild spacetime
and the Ellis wormhole spacetime. The metric of the
Schwarzschild spacetime with the tortoise coordinate xtot is

ds2Schw ¼
�
1 −

2M
r

�
ð−dt2 þ dx2totÞ þ r2dΩ2; ð7Þ

xtot ¼ rþ 2M ln

�
r
2M

− 1

�
; −∞ < xtot < þ∞: ð8Þ

The effective potential is

Veff ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�
: ð9Þ

The metric of the Ellis wormhole (massless case) is

ds2WH ¼ −dt2 þ dx2 þ r2dΩ2; ð10Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
; −∞ < x < þ∞; ð11Þ

where the parameter a represents the size of the wormhole’s
throat. The effective potential is

Veff ¼
lðlþ 1Þ

r2
þ a2

r4
: ð12Þ

The metric for the massive Ellis wormhole is presented in
Appendix A [Eq. (A2)]. Figure 2 shows these effective
potentials.

B. Our numerical methods

We present here the numerical method adopted in our
analysis. We first obtain the solution of the radial equa-
tion (4) numerically. We impose two boundary conditions
at r ¼ rin (an inner boundary corresponds to the black hole
horizon, the star’s surface, and another asymptotic flat
region of the wormhole) and r ¼ rout (an outer boundary
corresponds to the spatially far region). We prepare two
solutions of the homogeneous radial equation without a
source term:

u1ðrÞ; r ∈ ½rin; rsÞ; BC is imposed at rin;

u2ðrÞ; r ∈ ðrs; rout�; BC is imposed at rout;

where u1 is obtained by integrating the radial equation from
rin to rs and u2 is obtained by integrating the radial equation
from rout to rs.
Radial functions u1 and u2 do not satisfy the boundary

condition at the source rs which is obtained by integrating
(4) around rs:�

dR2

dr
−
dR1

dr

�
r¼rs

¼ asð−Þlðlþ 1=2Þ≡ Δl;

ðR2 − R1Þr¼rs ¼ 0; ð13Þ

where R1ðrÞ ¼ Rðr ≤ rsÞ and R2ðrÞ ¼ Rðr ≥ rsÞ. Using u1
and u2, we introduce new radial functions as

R1 ¼ c1u1; R2 ¼ c2u2; ð14Þ

where c1 and c2 are constants to be determined by the
matching condition (13) at rs:

c2u02ðrsÞ−c1u01ðrsÞ¼Δl; c1u1ðrsÞ¼c2u2ðrsÞ: ð15Þ

We obtain

c1 ¼
�

u2
W½u1; u2�

�
r¼rs

Δl; c2 ¼
�

u1
W½u1; u2�

�
r¼rs

Δl;

ð16Þ

where W ¼ u1u02 − u2u01 is the Wronskian. Thus, R1 and
R2 with required boundary conditions are

R1 ¼
Δl

W½u1; u2�rs
u1ðrÞu2ðrsÞ;

R2 ¼
Δl

W½u1; u2�rs
u1ðrsÞu2ðrÞ: ð17Þ

To obtain numerical solutions u1 and u2, we adopted the
fourth-order Runge-Kutta method. We obtained the radial
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wave function within the relative errors 10−5. Concerning
the value lmax for the summation of the partial waves (3),
we determined it by checking the convergence of
Φ at robs ¼ 20M, θ ¼ 0. For Mω < 1, we obtained
lmax ¼ 10–13. For 1 < Mω ≤ 10, we found that lmax ¼
9 × ðMωþ 1Þ for the black hole cases. For calculations
with stars and a wormhole, we determined lmax using the
same method.

III. RESULTS

We obtained the scattering wave from a monochromatic
point wave source for the Schwarzschild spacetime (black
hole, stars with a perfect absorbing surface) and the Ellis
wormhole spacetime. The point wave source is placed
at rs ¼ 6M, θ ¼ π with frequencies 0 < Mω ≤ 10. The
observing point of power spectrum is robs ¼ 20M.

A. Black hole case

Numerical results for the Schwarzschild spacetime are as
follows. Figure 3 shows the real part of scattering waves.
For Mω ¼ 10, we can see the circlelike wave pattern
corresponding to the photon sphere at r ≃ 3M and the
bright line (caustics) behind the black hole, while, for the
Mω ¼ 2 case, these features are blurred due to the wave
effect. Figures 4–5, and 6 show the intensity of scattered
waves at robs. They show interference fringes in both the
spatial domain (θ) and the frequency domain (ω). Namely,
jΦj2 on a constant-θ slice is the power spectrum at the
observing point, and jΦj2 on a constant-Mω slice repre-
sents the scattering amplitude for a fixed frequency.
We explain basic features of power spectrums (Fig. 6).

We observe interference fringes in the power spectrums.
For θ ¼ π=18, we have two components of oscillations.
The component with the longer period is originated from
interference between two light rays traveling far from the
black hole (direct rays) and is associated with the weak
gravitational lensing effect. The period of this oscillation is
proportional to the inverse of the path difference (∝ 1=θ)
for small θ; and for the θ ¼ 0 limit, the period becomes
infinite, and we do not have oscillation in the power
spectrum caused by the interference between direct rays.
The other component of oscillation has a shorter period
MΔω ∼ 0.2, which is independent of the scattering angle θ
and exists even for the forward direction θ ¼ 0; in this case
the path difference between two direct rays becomes zero
and we cannot expect interference fringe in the power
spectrum. Thus we conclude that this oscillation of the
power spectrum in the forward direction is caused by
interference between winding rays and direct rays, and is

FIG. 2. Effective potentials for the Schwarzschild spacetime
and the Ellis wormhole (massless) spacetime. The plot is with
l ¼ 2, a ¼ 3M. The circumference radius of the photon sphere
for both spacetimes is 3M.

FIG. 3. Real part of Φ for Mω ¼ 2, 10. The Cartesian coordinates x̄ and ȳ are introduced by x̄ ¼ r cos θ, ȳ ¼ r sin θ.
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peculiar to spacetimes with an unstable photon orbit
(photon sphere). As another feature, the power spectrum
at θ ¼ 0 increases with Mω. This is related to the caustics
where the scattered waves are focused and the intensity
diverges in the geometrical optics limit (Mω → ∞). The
caustic points of a spherical lens are located right behind
the lens object (θ ¼ 0 line), and the sharpness of the
divergence gets mild as the wavelength becomes large
due to a wave effect. Therefore, we can see the feature in
the left panel of Fig. 6.
To clarify that the period MΔω ∼ 0.2 corresponds to the

scale of the unstable photon orbit, we consider a toy model
of gravitational lensing by the black hole (Fig. 7). We
assume all rays follow straight lines as an approximation
and the impact parameter b is sufficiently smaller than L.
Rays 1 and 2 are direct rays, and their deflection angle is
assumed to obey Einstein’s formula

θdefl ¼ −
4M
b

; ð18Þ

where b denotes the impact parameter of each ray. The
position x on the screen and b are related by

b1;2 ¼
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 16LM

p

2
: ð19Þ

Rays 3 and 4 correspond to winding rays with the impact
parameter 3

ffiffiffi
3

p
M. The path lengths of each ray are

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðb1 − xÞ2

q
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðb2 − xÞ2

q
; ð20Þ

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðb3 − xÞ2

q
þ 2π × jb3j;

r4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðb4 − xÞ2

q
þ 2π × jb4j; ð21Þ

where b3 ¼ 3
ffiffiffi
3

p
M, b4 ¼ −3

ffiffiffi
3

p
M. We assume winding

rays go around the black hole one round. Then ignoring the

FIG. 4. jΦj2 at robs as a function of ðω; θÞ. Interference fringe appears in the two-dimensional parameter space.

FIG. 5. Sections of Mω ¼ 2 and Mω ¼ 10 of Fig. 4 (scattering amplitudes). These plots show interference fringes in the spatial
domain.
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difference of amplitudes for each ray, the wave on the
screen is given by

Φ ¼ eiωr1 þ eiωr2 þ cðeiωr3 þ eiωr4Þ; ð22Þ

where c ≈ 0.1 represents the relative amplitude for winding
rays but the value of this constant does not affect the period
of interference in our estimation. For the forward direction
θ ¼ 0ðx ¼ 0Þ, by neglecting Oðb=LÞ terms in the phase,
we obtain

jΦj2=4 ≈ 1þ c2 þ 2c cos
h
ω
�
6π

ffiffiffi
3

p
− 2

�
M
i
; ð23Þ

and the period of the power spectrum is given by

MΔω ¼ 1

3
ffiffiffi
3

p
− 1=π

≈
1

3
ffiffiffi
3

p ≈ 0.2: ð24Þ

This value is consistent with the period of oscillation
observed in our numerical calculation.

B. Star case

To clarify wave effects associated with the photon
sphere, we investigate stars with a perfect absorbing surface

in the Schwarzschild spacetime. We consider the following
form of the effective potential:

VðrÞ ¼ VBHðrÞθðr − rstarÞ; ð25Þ

where θðrÞ is the unit step function, VBHðrÞ denotes the
effective potential (9) of the Schwarzschild spacetime, and
rstar is the radius of the star. This form of the potential
models perfect absorptions of incoming waves at the
surface of the star:

RlðxtotÞ ∝ e−iωxtot for r ≤ rstar: ð26Þ

We consider four different values of radii rstar ¼ 2.5M;
3M; 3.5M; 4M. The obtained wave patterns in these models
are shown in Fig. 8. The star with radius 2.5M, which is
smaller than the photon sphere of the Schwarzschild
spacetime 3M, is a model of black hole mimickers
(gravastar, boson star, etc.). For this case, the power
spectrum shows oscillation with two different periods
(the upper left panel in Fig. 9). The shorter one is
MΔω1 ∼ 0.2, exactly the same value as the black hole
case, and is caused by interference between direct rays and
winding rays associated with the photon sphere. In addi-
tion, oscillations with the longer period MΔω2 ∼ 2 are
superposed. We expect this component is due to the
diffraction effect caused by the surface of the star. To
justify this interpretation, we also investigated power
spectrums for stars with other radii. For stars with a radius
larger than 3M, the photon spheres are hidden by the surface
of stars and we do not have oscillation with MΔω1 ∼ 0.2.
Power spectrums show oscillation with the longer period
MΔω > 2 depending on the radius of the stars. It is possible
to estimate this period based on the diffraction effect of
waves (see Sec. IV).
Figure 10 summarizes the behavior of power spectrums

for the black hole case and stars with different radii cases.

FIG. 6. Sections of θ ¼ 0 and θ ¼ π=18 of Fig. 4 (power spectrums). These plots show interference fringes in the frequency domain.

FIG. 7. A model of gravitational lensing by a black hole. Ray 1
and ray 2 represent direct rays of which the deflection angle is
given by θdefl. Ray 3 and ray 4 represent winding rays.
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C. Wormhole case

We present the numerical result for the Ellis wormhole
spacetime.

1. Massless case

We choose parameters of the Ellis wormhole as m ¼ 0,
a ¼ 3M. In this case, the circumference radius of the
wormhole throat and the photon sphere coincide. The
obtained wave patterns are shown in Fig. 11.
The power spectrum has the same behavior as that of

the black hole (Fig. 12): it shows an oscillation with a
period MΔω ∼ 0.4. We can explain this value using the
same toy model presented in Fig. 7. For the massless Ellis
wormhole, the deflection angle is given by [34]

θdefl ¼
π

4

�
a
b

�
2

: ð27Þ

Then the period of oscillation in the power spectrum
becomes

MΔω ¼ M

�
a −

1

4

�
a

2πL

�
2=3

�
−1

∼ 0.36 ð28Þ

for a ¼ 3M and L ¼ 20M, and this formula well explains
the value obtained by our numerical calculation. In this
formula, the dependence of L (distance from the observer
to the wormhole) appears due to b−2 behavior of the

FIG. 8. Real part ofΦwithMω ¼ 2 for stars with a perfect absorbing surface. Four panels correspond to different values of the radii of
stars 2.5M; 3M; 3.5M; 4M.
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FIG. 9. The power spectrum in the forward direction for stars with different radii 2.5M; 3M; 3.5M; 4M.

FIG. 10. Power spectrum at robs for the black hole and stars with radii 2.5M; 3M; 3.5M; 4M. The first panel is plotted in the range
0 ≤ Mω ≤ 5 to show the period of the oscillation clearly.
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deflection angle, which is different from that for the black
hole and stars.

2. Massive case

We choose the parameters of the wormhole as m ¼ M,
a ¼ 1.305716M. For these parameters, the size of the
throat is 3M and the photon sphere is 3.4823M.
We notice that intervals of the wave front are different for

the x > region and the x < 0 region (Fig. 13). This is
caused by different asymptotic behaviors of metric (A2).
For x → ∞, the metric is

ds2 ≈ −
�
1 −

2m
r

�
dt2 þ

�
1þ 2m

r

�
dr2 þ r2dΩ2; ð29Þ

whereas for x → −∞,

ds2 ≈ −α−2
�
1þ 2αm

r

�
dt2 þ

�
1 −

2αm
r

�
dr2 þ r2dΩ2;

ð30Þ

with α ¼ exp ðπm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p
Þ, and this metric represents a

spacetime with negative gravitational mass −αm. Let us
consider the radial null vector kμ ¼ ðω; kÞ. Then ω and k
are connected by the relation

k ¼ ω

ffiffiffiffiffiffiffiffiffiffi				 gttgrr

				
s

¼


ωð1þ 2m=rÞ for x → ∞
ωαð1 − 2αm=rÞ for x → −∞

: ð31Þ

FIG. 11. The real part of Φ for the massless wormhole withMω ¼ 2. The left and right panels correspond to wormhole regions x > 0
and x < 0, respectively. The point wave source is placed in the x > 0 region. The coordinates x̄ and ȳ are introduced by
x̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
cos θ, ȳ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
sin θ.

FIG. 12. Power spectrum at robs for the massless Ellis wormhole.
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As the interval of wave front Δr is determined by
kΔr ¼ const, thus Δr ∝ 1=k. For α ≫ 1, which holds
for values of present parameters, the interval of the wave
front in the region x < 0 becomes much smaller compared
to that in the region x > 0.
Figure 14 shows the power spectrum for the massive

wormhole. Power spectrums have oscillations with
two different periods. The shorter one MΔω1 ∼ 0.2 is
due to interference between direct rays and winding
rays, and the value coincides with that for the black
hole because the radius of the photon sphere and the
deflection angle for direct rays are the same as the
black hole. The longer one MΔω2 ∼ 2 comes from

the diffraction effect by the absorbing region: for the
massive wormhole, this region corresponds to the
wormhole throat 3M, which is smaller than the radius
of photon sphere 3.48M.

IV. INTERPRETATION OF POWER
SPECTRUM OSCILLATIONS

In this section, we will provide theoretical justification
for behaviors of the power spectrums based on analytic
formulas of wave optics. We have two key factors asso-
ciated with wave effects in our scattering problem: inter-
ference and diffraction.

FIG. 13. Real part of Φ for the massive wormhole withMω ¼ 2. The left and right panels correspond to worm hole regions x > 0 and
x < 0, respectively. The coordinates x̄ and ȳ are introduced as x̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2 −m2

p
cos θ, ȳ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2 −m2

p
sin θ.

FIG. 14. Left: Power spectrums at robs for the massive Ellis wormhole. Right: Power spectrums for the black hole and the massive Ellis
wormhole.
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At a distant observing point r, the scattering wave from a
point wave source at rs is represented as [15]

Φðr; θÞ ≈ eiωðxþxsÞ

4πiωrrs

X∞
l¼0

λei
λ2

2ωr̄e2iδlPlðcos θÞ;

λ ≔ lþ 1

2
; ð32Þ

where x and xs are tortoise coordinates corresponding to r
and rs, and r̄ ¼ rrs=ðrþ rsÞ. δl represents the phase shift.
Applying Poisson’s sum formula, we can replace the sum
with respect to l to the integral over continuous variable λ.
In the eikonal limit, it can be shown that

Φðr; θÞ ≈ eiωðxþxsÞ

4πiωrrs

�Z
∞

0

dλλei
λ2

2ωr̄e2iδλ−1=2J0ðλθÞ

þ 2πi
X∞
n¼0

λnγnei
λ2n
2ωr̄J0ðλnθÞfðλnÞ

�
; ð33Þ

where J0 is the Bessel function with the zeroth order and

λn ¼ λc þ i

�
nþ 1

2

�
; λc ¼ 3

ffiffiffi
3

p
Mω; ð34Þ

γn ¼ −
iffiffiffiffiffiffi
2π

p
�
λn
λc

��
nþ 1

2

�
nþ1=2 e−ðnþ1=2Þ

n!
;

fðλnÞ ¼
1

1 − e−2iπðλn−1=2Þ
: ð35Þ

The first term in (33) corresponds to the Fresnel-Kirchhoff
diffraction formula in the wave optics [35], and the second
term comes from the contribution of poles in the S matrix
e2iδl in the complex l plane (Regge poles). This term
represents the orbiting effect associated with the photon
sphere. After taking the n sum, we obtain [15]

Φðr; θÞ ∝ 1

ω

Z
∞

0

dλλei
λ2

2ωr̄e2iδλ−1=2J0ðλθÞ

þ 1

ω

ffiffiffi
π

2

r
e−π−iπ=4þiπλcλce

iλ2c
2ωr̄

ffiffiffiffiffiffi
ωr̄

p
J0ðλcθÞ: ð36Þ

For the forward direction θ ¼ 0,

FIG. 15. Effect of interference and diffraction in power spectrums. The first panel is the power spectrum obtained by taking into
account the interference between direct rays and winding rays. The second panel is the power spectrum obtained by taking into account
the diffraction effect for direct rays. The third panel is the power spectrum obtained by taking into account all effects. We assume
b0 ¼ 2.5M and bc ¼ 3

ffiffiffi
3

p
M in these plots.
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Φ ∝
1

ω

Z
∞

0

dλλei
λ2

2ωr̄e2iδλ−1=2 þ 1

ω

ffiffiffi
π

2

r
e−π−iπ=4þiπλcλce

iλ2c
2ωr̄

ffiffiffiffiffiffi
ωr̄

p

¼ ω

Z
∞

b0

dbbei
ωb2
2r̄ e2iδb þ

ffiffiffi
π

2

r
e−π−iπ=4þiπωbcbce

iωb2c
2r̄

ffiffiffiffiffiffi
ωr̄

p
;

ð37Þ

where we introduced the impact parameter b ¼ λ=ω and a
lower cutoff b0 of the integral, which represents the effect
of a perfect absorbing region (the black hole horizon,
surface of the stars). Concerning the form of the phase shift
for direct rays, we adopt δb ¼ −2Mω lnðbωÞ which results
in the scattering angle in the eikonal limit as

2
d

dðbωÞ δb ¼ −
4M
b

; ð38Þ

and reproduces Einstein’s formula of deflection angle.
Although this formula is correct only for rays with
sufficiently large impact parameters compared to the size
of the photon sphere, it is adequate for our purpose here
to obtain a qualitative understanding of the oscillation of
power spectrums. Then after performing the integral, the
first term in Eq. (37) becomes

r̄ð2ir̄ωÞ−2iMω

�
2MωΓð−2iMωÞ − i



Γð1 − 2iMωÞ

− Γ
�
1 − 2iMω;−

ib20ω
2r̄

���
; ð39Þ

where the third term denotes the incomplete gamma
function. We show the behavior of the obtained analytic
formula in Fig. 15. The analytic formula (37) well
reproduces behaviors of the power spectrum obtained by
our numerical calculation. We can estimate the period of
oscillations in the power spectrum. Using (37) and (39), the
period of oscillation due to the diffraction effect is

MΔω2 ∼ 2π

�
2 −

b20
2Mr̄

�−1

∼ 4.8 ðfor b0 ¼ 2.5M; r̄ ¼ 4.6MÞ: ð40Þ

Although this value is about 2 times larger than the value
obtained by the numerical calculation, the formula shows
an increase of the period for the larger size of the diffraction
region and qualitatively explains the behavior of the power
spectrum obtained by numerical calculations. The period of
the oscillation due to interference between direct rays and
winding rays is

MΔω1 ∼
M

bc −M=π
∼ 0.2

�
for bc ¼ 3

ffiffiffi
3

p
M
�
: ð41Þ

These values are consistent with the period of oscillations
in the power spectrums obtained by the numerical calcu-
lation for the black hole and stars with a smaller radius than
the photon sphere.

V. SUMMARY AND CONCLUSION

By solving the scalar wave equation numerically, we
obtained the scattering wave by the Schwarzschild black
hole, the spherical star with a perfect absorbing surface,
and the Ellis wormhole, and then we investigated the wave
pattern and the power spectrums. We focused on the case
that an observer is located at the forward position where we
do not expect the interference between direct rays due to the
difference of path lengths in the geometrical optics point of
view. Even in this case, we found two kinds of oscillations
in the power spectrums. When a gravitating object has
the photon sphere (black hole, star with rstar ≤ 3M, and
Ellis wormholes), we can see the oscillation of the power
spectrum reflecting the interference between the direct ray
and the winding ray. Moreover, diffraction effects due to
the absorption boundary condition were observed for stars
and massive Ellis wormholes. We have justified the periods
of these oscillations by analytic evaluation of the wave
scattering. As expected, it is possible to distinguish black
holes from their mimickers by looking inside of the photon
sphere using waves although we cannot tell the difference
in the geometrical optics for the present source-object-
observer configuration.
As other interesting models, we will consider stars with

an internal structure or a reflecting surface and wormholes
with a double-peak effective potential [36], which may give
echoes in the power spectrums of the scattered waves.
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APPENDIX: WORMHOLE SPACETIMES

As an example of spacetimes with the photon unstable
orbit without horizon, we consider the Ellis wormhole [37].
Although the wormhole spacetimes are unstable and may
not be realized in our universe, we use them as benchmark
models to detect wave optical effects for compact gravi-
tating objects.
The Ellis wormhole spacetime is obtained as the solution

of the Einstein-scalar system

Rμν ¼ 2χ;μχ;ν; □χ ¼ 0: ðA1Þ

The metric is given by [37]
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ds2 ¼ −fdt2 þ 1

f
ðdx2 þ ðx2 þ a2 −m2ÞdΩ2Þ;

−∞ < x < þ∞; ðA2Þ

f ¼ exp

�
−
2mχðxÞ

a

�
;

χðxÞ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p
�
π

2
− arctan

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p
�
; ðA3Þ

where a and m are constants representing the throat size
and the mass of the wormhole, respectively. The range
of the scalar field is 0ðx ¼ þ∞Þ ≤ χ ≤ πaffiffiffiffiffiffiffiffiffiffi

a2−m2
p ðx ¼ −∞Þ.

By introducing a new radial coordinate corresponding to
the circumference radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2 −m2

p

f1=2
; ðA4Þ

the metric becomes

ds2 ¼ −fdt2 þ dr2

h
þ r2dΩ2; h ¼ f

�
dr
dx

�
2

: ðA5Þ

In terms of the scalar field χ,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p
cot

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p

a
χ

�
; ðA6Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p
emχ=a

sin
� ffiffiffiffiffiffiffiffiffiffi

a2−m2
p

a χ
� ;

rmin ¼ a exp

�
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 −m2
p Arccot

�
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 −m2
p

��
; ðA7Þ

h¼
�
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p

a
χ

�
−

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −m2

p

a
χ

��2
:

ðA8Þ

rmin is the circumference radius of the wormhole throat (at
r ¼ m). The asymptotic behavior of the metric (A5) for
x → ∞ (χ → 0) is

x ∼
a
χ
; R ∼

a
χ
∼ x;

h ∼ 1 −
2m
x

−
a2 − 2m2

x2
; f ∼ 1 −

2mχ

a
∼ 1 −

2m
x

:

Thus the metric for x → ∞ becomes

ds2 ≈ −
�
1 −

2m
r

�
dt2 þ

�
1þ 2m

r
þ a2 þ 2m2

r2

�
dr2

þ r2dΩ2: ðA9Þ

On the other hand, the asymptotic behavior of the metric for
x → −∞ (χ → πaffiffiffiffiffiffiffiffiffiffi

a2−m2
p ) is

x ∼
−1

πffiffiffiffiffiffiffiffiffiffi
a2−m2

p − χ
a

; r ∼ −xe
πmffiffiffiffiffiffiffiffi
a2−m2

p
;

h ∼ 1 −
2m
x

∼ 1þ 2me
πmffiffiffiffiffiffiffiffi
a2−m2

p

r
;

f ∼ e
− 2πmffiffiffiffiffiffiffiffi

a2−m2
p

�
1 −

2m
x

�
∼ e

− 2πmffiffiffiffiffiffiffiffi
a2−m2

p
�
1þ 2me

πmffiffiffiffiffiffiffiffi
a2−m2

p

r

�
:

Thus the metric for x → −∞ represents a gravitating object

with negative mass −me
πmffiffiffiffiffiffiffiffi
a2−m2

p
. For massless case m ¼ 0,

the metric reduces to

ds2 ¼ −dt2 þ dx2 þ ðx2 þ a2ÞdΩ2: ðA10Þ

In this case, the gravitational potential in the weak field
region behaves as ∝ r−2 and the law of gravity is different
from that for a point mass.
The shape of the effective potential for the wormhole is

shown in Fig. 16. In our numerical calculations, we adopt
the wormhole parameters as a ¼ 3M;m ¼ 0 (massless
case) and a ¼ 1.305716M, m ¼ M (massive case). The
circumference radii of the throat for both wormholes are
3M, and the circumference radii of the photo sphere are 3M
(massless case) and 3.4823M (massive case).

FIG. 16. Effective potentials for the Ellis wormhole (l ¼ 10)
for the massless case (a ¼ 3M, m ¼ 0) and the massive case
(a ¼ 1.305716M,m ¼ M). The throat of the wormhole is located
at x ¼ m, and the peak of the potential in the eikonal limit l ≫ 1
is at x ≈ 2m. This place corresponds to the photon sphere.
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