1	A unique system that can sensitively assess the risk of chemical leukoderma by using
2	murine tail skin
3	
4	Machiko Iida ^a , Akira Tazaki ^a , Yuqi Deng ^a , Wei Chen ^a , Ichiro Yajima ^a , Lisa Kondo-Ida ^a ,
5	Kazunori Hashimoto ^a , Nobutaka Ohgami ^a , Masashi Kato ^{a*}
6	
7	^a Department of Occupational and Environmental Health, Nagoya University Graduate
8	School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
9	
10	*Corresponding author: Masashi Kato M.D., Ph.D. Department of Occupational and
11	Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho,
12	Showa-ku, Nagoya, Aichi 466-8550, Japan. E-mail: katomasa@med.nagoya-u.ac.jp
13	
14	Conflict of interest: The authors have no conflict of interest to declare.
15	

16 Abstract

17 Chemical leukoderma is a patchy hypopigmentation in the skin. Phenol derivatives such as 18 raspberry ketone have been reported to cause the development of occupationally induced 19 leukoderma. Recently, 2% (w/w) rhododenol, a reduced form of raspberry ketone used in a 20 skin-lightening agent, also caused the development of leukoderma in >16,000 users, about 21 2% of all users, in Asian countries including Japan. However, a method for assessing the risk 22 of leukoderma caused by 2% rhododenol has not been established despite the fact that the 23 development of leukoderma caused by 30% rhododenol was previously shown in animal 24 experiments. Establishment of a novel technique for risk assessment of leukoderma in 25 humans caused by external treatment with chemicals is needed to prevent a possible future chemical disaster. This study demonstrated that external treatment with 2% rhododenol and 26 27 the same concentration of raspberry ketone caused the development of leukoderma in murine 28 tail skin without exception with significant decreases in the amount of melanin and number 29 of melanocytes in the epidermis. Thus, a novel *in vivo* technique that can assess the risk of 30 leukoderma caused by 2% rhododenol was developed. The unique technique using tail skin 31 has the potential to prevent chemical leukoderma in the future.

32

33 Keywords

34 Chemical leukoderma, Raspberry ketone, Rhododenol, Risk assessment,	Tail	skin
--	------	------

35

1. Introduction

38	Chemical leukoderma, a patchy hypopigmentation in the skin, is caused by various
39	chemicals such as phenol derivatives and catechol derivatives (Hariharan et al., 2010; Harris,
40	2017; Lengagne et al., 2004). Leukoderma that is occupationally induced by raspberry
41	ketone, 4-(4-hydroxyphenyl)-2-butanone (Fig. 1a), which is a phenol derivative, has been
42	reported (Fukuda et al., 1998). In 2013, more than 16,000 patients developed leukoderma
43	caused by using skin-lightening agents that contained 2% (w/w) rhododenol
44	(4-(4-hydroxyphenyl)-2-butanol) (Fig. 1a), a reduced form of raspberry ketone (Nishigori et
45	al., 2015; Sasaki et al., 2014). The rhododenol-induced leukoderma was improved or
46	completely resolved in 72% of the patients (Nishigori et al., 2015), but the remaining
47	patients were resistant to conventional therapy (Watabe et al., 2018). External treatment with
48	2% rhododenol caused leukoderma in about 2% of the skin-lightning agent users (Nishigori
49	et al., 2015), indicating that these patients with leukoderma must be hypersensitive to
50	rhododenol. A previous study showed that external treatment with 30% but not 10%
51	rhododenol caused the development of leukoderma in the dorsal skin of haired guinea pigs,
52	in which skin pigmentation was induced by ultraviolet light irradiation before treatment with
53	rhododenol (Kuroda et al., 2014). It was also shown that external treatment with 30% but not
54	2% rhododenol caused the development of leukoderma in the dorsal skin of hairless
55	transgenic mice carrying murine stem cell factor under control of the human keratin 14

56	promoter (Abe et al., 2016). These previous studies are important for risk assessment of
57	chemical leukoderma. However, cases of chemical leukoderma have been occurring for
58	more than 75 years (Harris, 2017), indicating that there is no system that is sensitive enough
59	to assess the risk for chemical leukoderma at present. To prevent a possible chemical disaster
60	in the future, the development of a novel technique that can sensitively assess the risk for
61	chemical leukoderma, even with a low rhododenol concentration of 2%, is needed.
62	
63	2. Materials and Methods
64	2.1. Mice and chemicals
65	After hairless homozygous (Hr/Hr) mice (HOS:HR-1) purchased from Hoshino
66	Laboratory Animals, Inc. had been backcrossed to C57BL/6-mice for 6 generations, an
67	inbred line was developed by brother-sister mating for >10 generations. The hairless mice at
68	10 weeks of age were used in this study. This study was approved by the Animal Care and
69	Use Committee (approval no. 30258) in Nagoya University. Raspberry ketone (Cas#
70	5471-51-2; Tokyo Chemical Industry Co., Ltd.) and rhododenol (Cas# 69617-84-1; Wako
71	Pure Chemical Industries, Ltd.) were dissolved in 50% ethanol according to the method
72	previously described (Abe et al., 2016). Each solution was applied to dorsal skin (6 μ l/cm ²)
73	and tail skin (6 μ l/cm ²).
74	
75	2.2. Histological analysis
76	Immunohistochemical analysis was performed according to the method previously
77	described (Iida et al., 2016; Kato et al., 2004). Paraffin sections were treated with 10 mM

sodium citrate (pH 6.0) for antigen retrieval as previously reported (Ohgami et al., 2010).

79	Anti-TRP2 antibody (1:100; Santa Cruz) and alexa Fluor 594 anti-goat IgG (1:1000; Thermo
80	Fisher Scientific Inc.) were used as a first antibody and a secondary antibody, respectively.
81	Fontana-Masson staining was performed according to the protocol of the manufacturer
82	(40592, Muto Pure Chemicals Co., Ltd.).
83	
84	2.3. Semiquantitative analysis
85	
86	2.3.1. Evaluation of the skin colors of dorsal skin and tail skin
87	L*-values (worldwide standard values for lightness) of the dorsal skin were analyzed
88	by using a reflectance spectrophotometer (CR-400; Konica Minolta Sensing, Inc.) according
89	to the method previously described (Kato et al., 2011). Darkness of the tail skin was
90	analyzed by the software program WinROOF (Mitani Corp., Japan) after capturing digital
91	images of the tail skin with a darkness standard because a reflectance spectrophotometer for
92	tail skin with a round shape is not available.
93	
94	2.3.2. Evaluation of melanin density
95	Digital images of epidermal melanin detected by Fontana-Masson staining were traced
96	by binarization using the software program WinROOF, and the total amounts of traced dots
97	(digitally traced melanin) in the epidermis were divided by the area of the epidermis in the
98	analyzed field.
99	
100	2.4. Statistical analysis
101	Paired Wilcoxon's signed rank test (Fig. 1) and the chi-square test (Fig. 3) were used
102	for comparison between two groups. Comparisons among three groups were performed by
103	using the Steel-Dwass test (Fig. 2). JMP Pro (version 11.0.0; SAS Institute) was used in all

104 statistical analyses in this study.

3. Results

107	Following the usual method for assessing the risk of external treatment with chemicals
108	(Abe et al., 2016; Kuroda et al., 2014), dorsal skin (Fig. 1) was treated with 2% (w/w)
109	rhododenol and the same concentration of raspberry ketone in addition to their solvent in
110	wild-type hairless mice crossed with C57BL/6N previously described (Yajima et al., 2017).
111	Unfortunately, however, no macroscopic hypopigmentation developed in the dorsal skin
112	even 14 weeks after the treatment (Fig. 1b, c). Correspondingly, our microscopic analyses
113	showed comparable amounts of melanin and numbers of tyrosinase-related protein-2
114	(TRP-2)-positive cells (melanocytes) in the epidermis of dorsal skin in mice treated with
115	rhododenol and raspberry ketone and control mice treated with the solvent even 14 weeks
116	after the treatment (Fig. 1d-g). Our macroscopic and microscopic results indicate that
117	sensitive risk assessment for chemical leukoderma by using dorsal skin of mice is difficult.
118	Generally, it is very rare to use tail skin for risk assessment of external treatment with
119	chemicals. However, the tail skin of mice was used to assess the risk of leukoderma caused
120	by 2% rhododenol and the same concentration of raspberry ketone because of our failure in
121	risk assessment using dorsal skin. At 4 weeks after treatment (Fig. S1), mild but
122	macroscopically detectable hypopigmentation (early stage of leukoderma) had developed in
123	tail skin treated with 2% raspberry ketone and rhododenol but not with their solvent. An

124	advanced stage of hypopigmentation limited to areas treated with 2% raspberry ketone and
125	2% rhododenol was observed in the tail skin of all mice up to 14 weeks after treatment (Fig.
126	2a). Semiquantitative analysis of macroscopic images also showed that dark levels in the
127	tail skin treated with raspberry ketone and rhododenol were more than 99% decreased
128	compared to those in tail skin treated with their solvent (Fig. 2b). Microscopic analysis
129	further showed that the level of melanin (Fig. 2c, d) in the epidermis of tail skin treated with
130	2% raspberry ketone and 2% rhododenol was undetectably low even by Fontana-Masson
131	staining, a sensitive method for histologically detecting melanin (Kato et al., 2011). The
132	number of TRP-2-positive cells (melanocytes) in the epidermis of tail skin treated with 2%
133	raspberry ketone and 2% rhododenol was less than 12% of that in tail skin treated with their
134	solvent (Fig. 2e, f).
135	Melanin production activities of dorsal skin melanocytes and tail skin melanocytes
136	were analyzed. Morphological analysis (Fig. 3a-h) showed that the melanin production level
137	in TRP-2-positive cells was higher in tail skin than in dorsal skin. Further analysis (Fig. 3i)
138	also showed that 13% and 83% of TRP2-positive cells in the dorsal skin and tail skin were
139	positive for melanin, respectively.

4. Discussion

142 Generally, there is a limited number of dermal melanocytes in humans (Hoerter et al.,

143 2012). It has been reported that rhododenol-induced leukoderma in humans was caused by 144 depletion of epidermal melanocytes (Tokura et al., 2015). Since the main purpose of this study was to develop a novel system to sensitively assess the risk for leukoderma, we 145 focused on epidermal melanocytes. 146 147 There are several possible reasons why tail skin is more suitable than dorsal skin for risk assessment of chemical leukoderma. We first showed that melanin density and number 148 of melanocytes in the epidermis of tail skin were >50-fold and >4.5-fold greater than those 149 150 in dorsal skin, respectively. These results suggest that there are quantitative differences for 151 melanin production and melanocyte number between dorsal skin and tail skin. We also 152 showed that the number of melanin-producing melanocytes in tail skin was 6.2-fold larger than that in dorsal skin. Melanocytes with dendrites in tail skin morphologically seem to be 153 154 more differentiated than those with a limited number of dendrites in dorsal skin, because fully differentiated melanocytes are characterized by melanin-producing activity as well as 155 by well-developed dendrites (Hirobe, 2005). In addition, the proportion of 156 TRP2-positive/Ki67-positive cells in dorsal skin was shown to be only 3% in our previous 157 158 study, in which the same hairless mice were used, indicating that most melanocytes in dorsal 159 skin are TRP2-positive/Ki67-negative cells with limited melanin production (Yajima et al., 160 2017). These results suggest that there are qualitatively different melanocytes with different degrees of differentiation in dorsal skin and tail skin. Since previous studies showed that 161

162	rhododenol-induced melanocyte cytotoxicity is dependent on tyrosinase activity that
163	regulates melanin production in melanocytes (Giebel et al., 1990; Kasamatsu et al., 2014;
164	Sasaki et al., 2014), the qualitative differences as well as the quantitative differences
165	between dorsal skin and tail skin may result in the different sensitivities of dorsal skin and
166	tail skin to rhododenol. On the other hand, the thicknesses of dorsal skin and tail skin of the
167	hairless mice used in this study were about 30 μm and about 90 μm , respectively (data not
168	shown). However, leukoderma was induced by rhododenol in tail skin but not in dorsal skin,
169	although tail skin is about 3-fold thicker than dorsal skin. These results suggest that different
170	levels of chemical penetration based on the different thicknesses of dorsal skin and tail skin
171	have a limited effect on sensitivity to leukoderma.
172	To our knowledge, rhododenol is the only chemical for which a leukoderma-inducible
173	concentration (2%) has been detected in a large number (>16,000) of people (Nishigori et al.,
174	2015; Sasaki et al., 2014). In this study, we chose rhododenol as a concentration-known
175	leukoderma inducer and raspberry ketone as a concentration-unknown leukoderma inducer
176	in humans. The same concentrations (2%) of rhododenol and raspberry ketone induced
177	leukoderma in all cases in our risk assessment system of tail skin. Further study of higher
178	concentrations of chemicals showed that an early stage of leukoderma was already
179	detectable in tail skin treated with 30%, but not 10%, raspberry ketone and rhododenol at 2
180	weeks after treatment (Fig. S2). Leukoderma caused by 30% raspberry ketone and

181	rhododenol was more severe than that caused by 10% raspberry ketone and rhododenol at 2
182	weeks and 10 weeks after treatment (Fig. S2). Our results suggest that these chemicals have
183	comparable risks for leukoderma. The results are reasonable since raspberry ketone and
184	rhododenol are analog chemicals. Thus, our system can sensitively assess the risk for the
185	development of leukoderma in only 2% of users of skin-lightning agents including 2%
186	rhododenol (Nishigori et al., 2015). Our results encourage us to assess the risks of various
187	previously reported chemical inducers for leukoderma by our assessment system in the
188	future.
189	In this study, we demonstrated for the first time a unique technique that can assess the
190	risk of chemical leukoderma induced by 2% rhododenol by using murine tail skin. Our risk
191	assessment system does not require either ultraviolet light irradiation or gene modification.
192	Our system has the potential to prevent chemical leukoderma due to its convenience as well
193	as sensitivity. Further study to clarify the mechanism of chemical leukoderma by using our
194	system in vivo might lead to the development of a novel in vitro system for sensitively
195	assessing the risk for leukoderma.
196	
197	Declarations of interest
198	None.

200 Acknowledgements

- 201 This study was supported in part by Grants-in-Aid for Scientific Research on Innovative
- Areas (16H01639 and 18H04975), Research Activity start-up (18H06125) and Scientific
- 203 Research (A) (15H01743, 15H02588 and 19H01147), (B) (16H02962 and 17KT0033) and
- 204 (C) (16K08343, 16K11177, 16K10152 and 17K09156) from the Ministry of Education,
- 205 Culture, Sports, Science and Technology (MEXT), Mirai-Program Small Start Type from the
- 206 Japan Science and Technology Agency (JST), Kobayashi International Scholarship
- 207 Foundation, Daiko Foundation, Foundation for the Vitamin & Biofactor Society and
- 208 Research Foundation from Center for Advanced Medical and Clinical Research Nagoya
- 209 University Hospital.
- 210

211

213 **References**

- Abe, Y., Okamura, K., Kawaguchi, M., Hozumi, Y., Aoki, H., Kunisada, T., Ito, S.,
- 215 Wakamatsu, K., Matsunaga, K., Suzuki, T., 2016. Rhododenol-induced leukoderma in a
- 216 mouse model mimicking Japanese skin. J. Dermatol. Sci. 81, 35–43.
- 217 https://doi.org/10.1016/j.jdermsci.2015.10.011
- 218 Fukuda, Y., Nagano, M., Futastuka, M., 1998. Occupational Leukoderma in Workers
- Engaged in 4-(p-Hydroxyphenyl)-2-Butanone Manufactunng. J. Occup. Health 40,
- 220 118–122. https://doi.org/10.1539/joh.40.118
- 221 Giebel, L.B., Strunk, K.M., King, R.A., Hanifin, J.M., Spritz, R.A., 1990. A frequent
- 222 tyrosinase gene mutation in classic, tyrosinase-negative (type IA) oculocutaneous
- 223 albinism. Proc. Natl. Acad. Sci. U. S. A. 87, 3255–3258.
- Hariharan, V., Klarquist, J., Reust, M.J., Koshoffer, A., McKee, M.D., Boissy, R.E.,
- 225 Caroline Le Poole, I., 2010. Monobenzyl Ether of Hydroquinone and 4-Tertiary Butyl
- 226 Phenol Activate Markedly Different Physiological Responses in Melanocytes:
- 227 Relevance to Skin Depigmentation. J. Invest. Dermatol. 130, 211–220.
- 228 https://doi.org/10.1038/jid.2009.214
- Harris, J.E., 2017. Chemical-Induced Vitiligo. Dermatol. Clin. 35, 151–161.
- 230 https://doi.org/https://doi.org/10.1016/j.det.2016.11.006
- Hirobe, T., 2005. Role of keratinocyte-derived factors involved in regulating the

232	proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cel

- 233 Res. 18, 2–12. https://doi.org/10.1111/j.1600-0749.2004.00198.x
- 234 Hoerter, J.D., Bradley, P., Casillas, A., Chambers, D., Denholm, C., Johnson, K.,
- 235 Weiswasser, B., 2012. Extrafollicular dermal melanocyte stem cells and melanoma.
- 236 Stem Cells Int. 2012, 407079. https://doi.org/10.1155/2012/407079
- 237 Iida, M., Nakano, C., Tamaki, M., Hasegawa, M., Tsuzuki, T., Kato, M., 2016. Different
- biological effects of a constant dose for single UVB irradiation with different intensities
- and exposure times. Exp. Dermatol. 25, 386–388. https://doi.org/10.1111/exd.12969
- 240 Kasamatsu, S., Hachiya, A., Nakamura, S., Yasuda, Y., Fujimori, T., Takano, K., Moriwaki,
- 241 S., Hase, T., Suzuki, T., Matsunaga, K., 2014. Depigmentation caused by application of
- the active brightening material, rhododendrol, is related to tyrosinase activity at a
- certain threshold. J. Dermatol. Sci. 76, 16–24.
- 244 https://doi.org/https://doi.org/10.1016/j.jdermsci.2014.07.001
- Kato, M., Iida, M., Goto, Y., Kondo, T., Yajima, I., 2011. Sunlight exposure-mediated DNA
- damage in young adults. Cancer Epidemiol. Biomarkers Prev. 20, 1622–1628.
- 247 https://doi.org/10.1158/1055-9965.EPI-11-0228
- 248 Kato, M., Takeda, K., Kawamoto, Y., Tsuzuki, T., Hossain, K., Tamakoshi, A., Kunisada, T.,
- 249 Kambayashi, Y., Ogino, K., Suzuki, H., Takahashi, M., Nakashima, I., 2004.
- 250 c-Kit-Targeting Immunotherapy for Hereditary Melanoma in a Mouse Model. Cancer

Res. 64, 801 LP – 806. https://doi.org/10.1158/0008-5472.CAN-03-2532

- 252 Kuroda, Y., Takahashi, Y., Sakaguchi, H., Matsunaga, K., Suzuki, T., 2014. Depigmentation
- of the skin induced by 4-(4-hydroxyphenyl)-2-butanol is spontaneously re-pigmented in
- brown and black guinea pigs. J. Toxicol. Sci. 39, 615–623.
- 255 https://doi.org/10.2131/jts.39.615
- Lengagne, R., Le Gal, F.-A., Garcette, M., Fiette, L., Ave, P., Kato, M., Briand, J.-P.,
- 257 Massot, C., Nakashima, I., Rénia, L., Guillet, J.-G., Prévost-Blondel, A., 2004.
- 258 Spontaneous Vitiligo in an Animal Model for Human Melanoma. Cancer Res. 64, 1496
- 259 LP 1501. https://doi.org/10.1158/0008-5472.CAN-03-2828
- 260 Nishigori, C., Aoyama, Y., Ito, A., Suzuki, K., Suzuki, T., Tanemura, A., Ito, M., Katayama,
- 261 I., Oiso, N., Kagohashi, Y., Sugiura, S., Fukai, K., Funasaka, Y., Yamashita, T.,
- 262 Matsunaga, K., 2015. Guide for medical professionals (i.e. dermatologists) for the
- 263 management of Rhododenol-induced leukoderma. J. Dermatol. 42, 113–128.
- 264 https://doi.org/10.1111/1346-8138.12744
- 265 Ohgami, N., Ida-Eto, M., Shimotake, T., Sakashita, N., Sone, M., Nakashima, T., Tabuchi,
- 266 K., Hoshino, T., Shimada, A., Tsuzuki, T., Yamamoto, M., Sobue, G., Jijiwa, M., Asai,
- 267 N., Hara, A., Takahashi, M., Kato, M., 2010. c-Ret-mediated hearing loss in mice with
- 268 Hirschsprung disease. Proc. Natl. Acad. Sci. U. S. A. 107, 13051–13056.
- 269 https://doi.org/10.1073/pnas.1004520107

270	Sasaki, M., Kondo, M., Sato, K., Umeda, M., Kawabata, K., Takahashi, Y., Suzuki, T.,
271	Matsunaga, K., Inoue, S., 2014. Rhododendrol, a depigmentation-inducing phenolic
272	compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism.
273	Pigment Cell Melanoma Res. 27, 754–763. https://doi.org/10.1111/pcmr.12269
274	Tokura, Y., Fujiyama, T., Ikeya, S., Tatsuno, K., Aoshima, M., Kasuya, A., Ito, T., 2015.
275	Biochemical, cytological, and immunological mechanisms of rhododendrol-induced
276	leukoderma. J. Dermatol. Sci. 77, 146–149.
277	https://doi.org/10.1016/j.jdermsci.2015.02.001
278	Watabe, A., Yamasaki, K., Asano, M., Kanbayashi, Y., Nasu-Tamabuchi, M., Terui, H.,
279	Furudate, S., Kakizaki, A., Tsuchiyama, K., Kimura, Y., Ito, Y., Kikuchi, K., Aiba, S.,
280	2018. Efficacy of oral cholecalciferol on rhododendrol-induced vitiligo: A blinded
281	randomized clinical trial. J. Dermatol. 45, 456–462.
282	https://doi.org/10.1111/1346-8138.14244
283	Yajima, I., Kumasaka, M.Y., Iida, M., Oshino, R., Tanihata, H., Al Hossain, A., Ohgami, N.,
284	Kato, M., 2017. Arsenic-mediated hyperpigmentation in skin via NF-kappa
285	B/endothelin-1 signaling in an originally developed hairless mouse model. Arch.
286	Toxicol. 91, 3507–3516. https://doi.org/10.1007/s00204-017-1975-0
287	

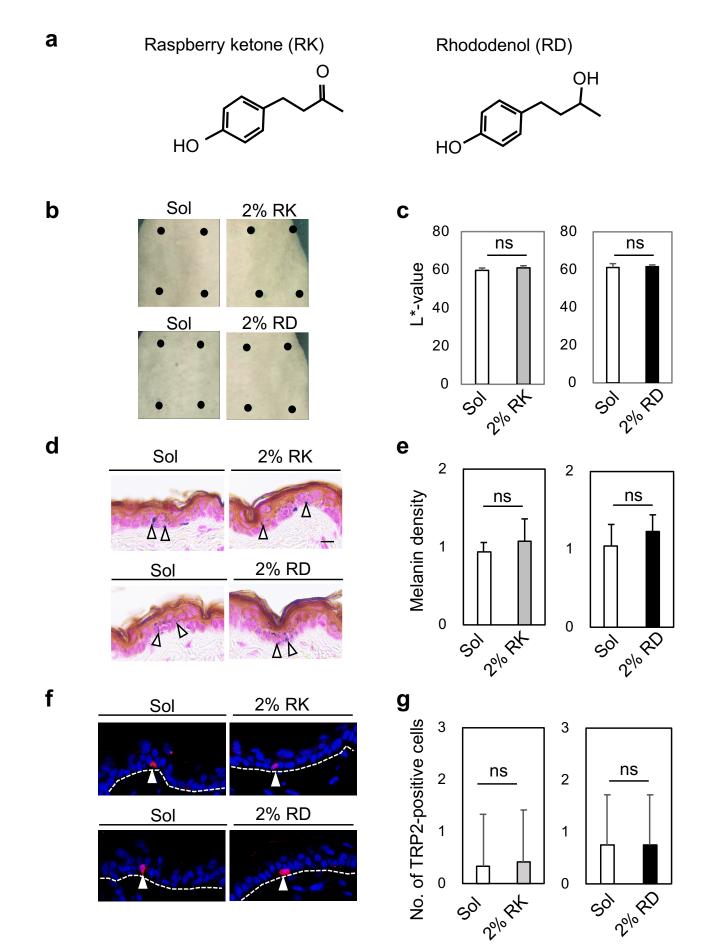
289 Figure legends

290

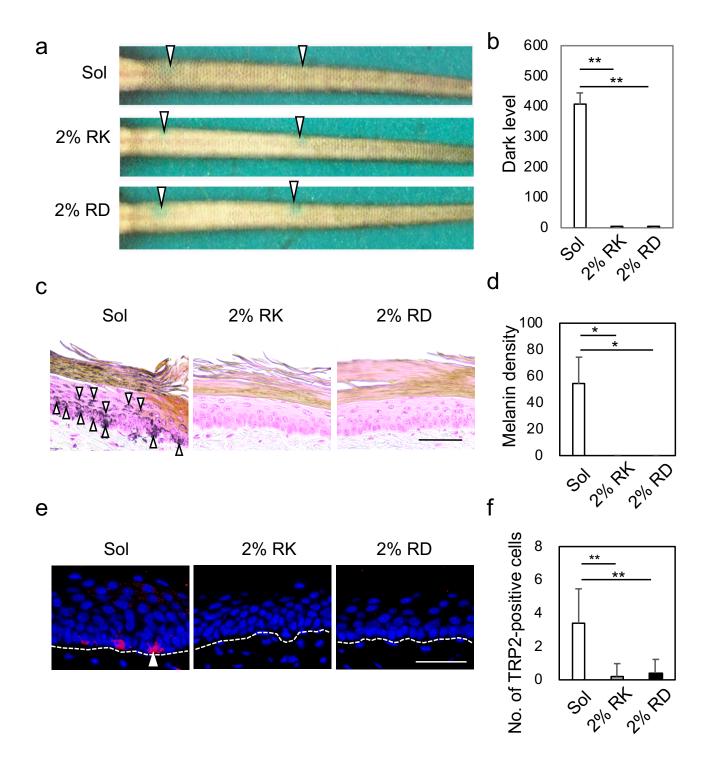
291 (a) Chemical structures of raspberry ketone (RK) and rhododenol (RD) are presented. (b-g) 292 Macroscopic and microscopic results of the dorsal skin of 24-week-old hairless mice treated 293 with 2% (w/w) RK, 2% (w/w) RD and their solvent (Sol) of 50% ethanol once a day for 5 294 days per week for a period of 14 weeks are presented. (b) Representative macroscopic 295 images of murine dorsal skin. Dots in the skin indicate the corners of the area treated with 296 the chemicals. (c) L*-values (mean \pm standard deviation) of 9 dorsal skin areas (3 skin areas 297 in 3 mice) treated with Sol, 2% RK and 2% RD according to the previously described 298 method (Kato et al., 2011). L*-values analyzed by using a reflectance spectrophotometer 299 (CR-400; Konica Minolta Sensing, Inc.) show digitalized levels of pigmentation in dorsal 300 skin (Kato et al., 2011). A representative result is shown (b, c) after the same experiments were independently repeated 3 times. (d) Level of melanin in the epidermis of dorsal skin 301 302 evaluated by Fontana-Masson staining is shown. Nuclei were stained with nuclear fast red (pink). White arrowheads indicate melanin. (e) Melanin density (melanin-containing area per 303 304 analyzed field) of 15 sections (5 sections in 3 mice) in the dorsal skin (mean \pm standard 305 deviation) treated with Sol, 2% RK and 2% RD was analyzed by WinROOF. (f) 306 Representative results of immunohistochemical analyses of TRP2-positive cells (red 307 immunofluorescent cells indicated by white arrowheads) in the epidermis. White broken 308 lines show the border between the epidermis and dermis. Nuclei were stained with DAPI 309 (blue). (g) Number of TRP2-positive cells per analyzed field (600 µm along the border 310 between the epidermis and dermis) in the epidermis of dorsal skin (mean \pm standard 311 deviation) in 12 sections (4 sections in 3 mice) treated with Sol, 2% RK and 2% RD is 312 shown. ns, not significant. Bars, 10 µm.

Fig. 1. Limited effect of chemicals on pigmentated level of dorsal skin

Fig. 2. Hypopigmented effect of chemicals on the tail skin


315	(a-f) Macroscopic and microscopic results of the tail skin of 24-week-old hairless mice
316	treated with 2% (w/w) raspberry ketone (RK), 2% (w/w) rhododenol (RD) and their solvent
317	(Sol) of 50% ethanol once a day for 5 days per week for a period of 14 weeks are presented.
318	(a) Representative macroscopic images of murine tail skin. Green tattoos (white arrowheads)
319	in the tail skin indicate the ends of the areas treated with the chemicals. A representative
320	result is shown after the same experiments were independently repeated 3 times. (b) Dark
321	levels (mean \pm standard deviation) of 9 tail skin areas (3 skin areas in 3 mice) treated with
322	Sol, 2% RK and 2% RD were analyzed by the software program WinROOF (Mitani Corp.).
323	(c) Melanin levels in the epidermis of tail skin evaluated by Fontana-Masson staining are
324	shown. Nuclei were stained with nuclear fast red (pink). White arrowheads indicate melanin.
325	(d) Melanin density (melanin-containing area per analyzed field) of 15 sections (5 sections
326	in 3 mice) in the tail skin (mean \pm standard deviation) treated with Sol, 2% RK and 2% RD
327	was analyzed by WinROOF. (e) Representative results of immunohistochemical analyses of
328	TRP2-positive cells (red immunofluorescent cells indicated by white arrowheads) in the
329	epidermis. White broken lines show the border between the epidermis and dermis. Nuclei
330	were stained with DAPI (blue). (f) Number of TRP2-positive cells per analyzed field (600
331	μ m along the border between the epidermis and dermis) in the epidermis of 12 sections (4
332	sections in 3 mice) in the tail skin (mean \pm standard deviation) treated with Sol, 2% RK and

333 2% RD is shown. **
$$p < 0.01$$
, * $p < 0.05$. Bars, 50 µm.


Fig. 3. Different morphologies and different melanin production activities of dorsal skin melanocytes and tail skin melanocytes

337	(a-i) Results of morphologic (a-h) and quantitative analyses (i) of TRP2-positive cells
338	(melanocytes) in dorsal skin and tail skin from 24-week-old hairless mice are presented.
339	Results of immunohistochemical analyses of TRP2-positive cells (red immunofluorescent
340	cells indicated by arrowheads) in the epidermis of dorsal skin (a, b) and tail skin (c, d) are
341	shown. Nuclei were stained with DAPI (blue) (a-d). Representative merged images of bright
342	fields showing melanin (brown) and immunofluorescent fields showing TRP2-positive cells
343	(orange) in the epidermis of dorsal skin (e, f) and tail skin (g, h) are presented. Magnified
344	images (b, d, f, h) of TRP2-positive cells in the presence (d, h) or absence (b, f) of dendrites
345	in the dotted boxed areas (a, c, e, g) are shown. A limited amount and a large amount of
346	melanin production in TRP2-positive cells were obtained in dorsal skin (white arrowheads)
347	and tail skin (yellow arrowheads), respectively. (i) Percentages (n=60) of melanin-negative
348	and melanin-positive TRP2-positive cells in the epidermis of dorsal skin and tail skin from 3
349	mice were analyzed. *p < 0.01. Bars, 25 μ m.

Figure 1

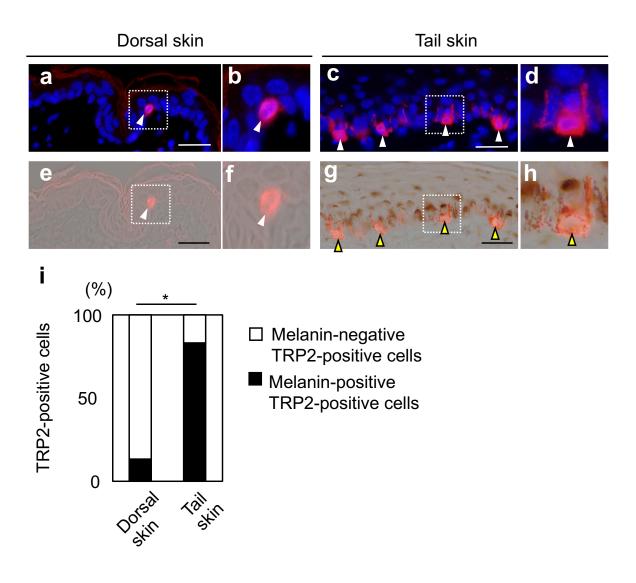
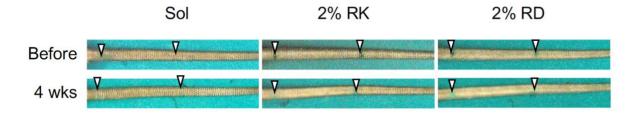
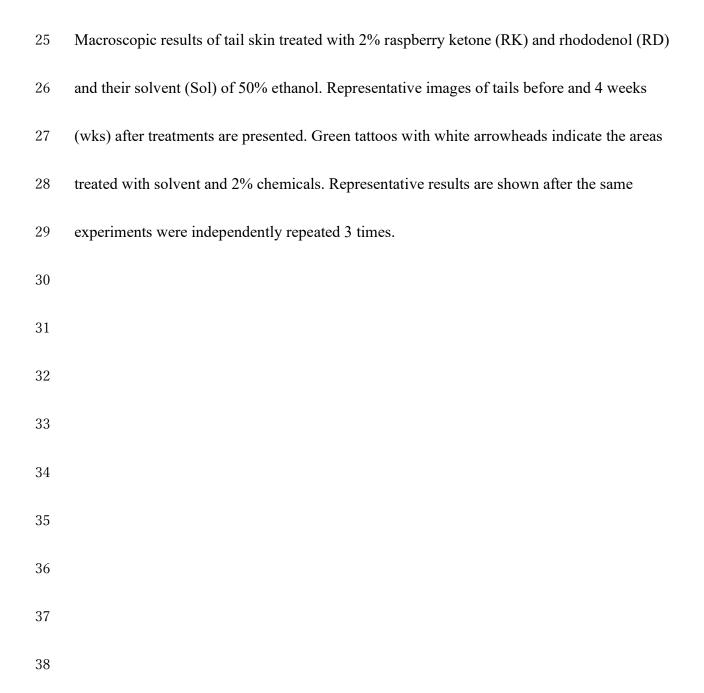
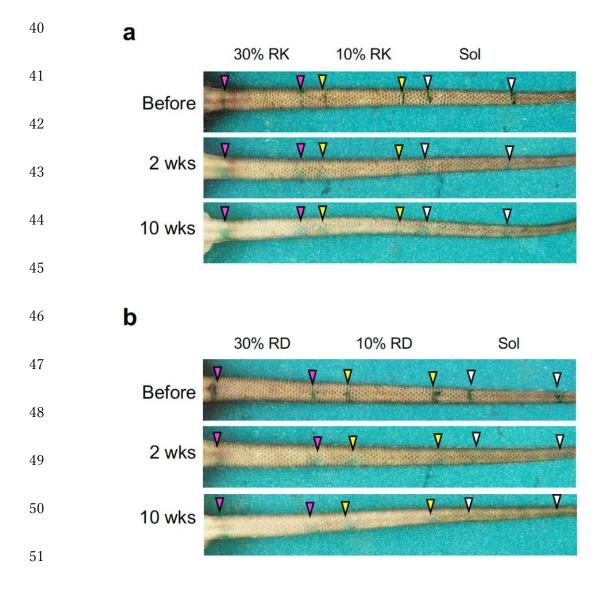


Figure 2

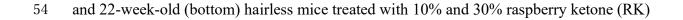
Figure 3


lida *et al*.


1	Suppl	lementary	material


2	
3	A unique system that can sensitively assess the risk of chemical leukoderma by using
4	murine tail skin
5	
6	Machiko Iidaa, Akira Tazakia, Yuqi Denga, Wei Chena, Ichiro Yajimaa, Lisa Kondo-Idaa,
7	Kazunori Hashimotoa, Nobutaka Ohgamia, Masashi Katoa*
8	
9	aDepartment of Occupational and Environmental Health, Nagoya University Graduate
10	School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
11	
12	*Corresponding author: Masashi Kato M.D., Ph.D. Department of Occupational and
13	Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho,
14	Showa-ku, Nagoya, Aichi 466-8550, Japan. E-mail: katomasa@med.nagoya-u.ac.jp
15	
16	Number of pages: 3
17	Number of figures: 2
18	
19	
20	
21	

23 Figure S1


Fig. S1. Development of leukoderma caused by 2% chemicals

52 Fig. S2. Kinetics of leukoderma development caused by 10% and 30% chemicals

53 (**a**, **b**) Macroscopic results of the tail skin of 12-week-old (top), 14-week-old (intermediate)

- 55 (a), 10% and 30% rhododenol (RD) (b) and their solvent (Sol) of 50% ethanol three times a
- 56 day for 5 days per week for a period of 10 weeks are presented. Green tattoos with white,
- 57 yellow and magenta arrowheads indicate the areas treated with the solvent and 10% and 30%

- 58 chemicals, respectively. Representative results are shown after the same experiments were
- 59 independently repeated 3 times.