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Chapter 1

Introduction

1.1 Background

Swirling flows are widely used in many engineering applications, such as in-

dustrial burners (Dinesh & Kirkpatrick (2009); Stopper et al. (2010)), combustion

engines (Dembinski & Angstrom (2012); Wei et al. (2013)), and heat exchangers

(Kurtbaş et al. (2007); Eiamsa-ard et al. (2014)). As far as the industrial burners

are concerned, it is desired to have the reduced length of combustion flame as well

as to increase the efficiency by reusing the unburned products of combustion and

the high heat energy existing in the burned products of combustion. The jets with

swirling motion fulfill these characteristics by enhancing the mixing between fuel

and oxidant jets, and recirculating the burned/unburned products of combustion

in order to ignite the incoming mixture, which make the swirling jets an essential

constituent of burners and thus gain the attention of many researchers.

The burners can be of two different configurations: (a) the single swirling

jet, and (b) coaxial jet with swirl imparted to one of two jets. The former con-

figuration is mainly associated with the premixed combustion in which the fuel

and oxidant are mixed prior to their injection in combustion chamber, and later

configuration is associated with the non-premixed combustion in which the fuel

and oxidant are injected directly in combustion chamber through separate jets,

i.e., without being premixed. To illustrate these configurations, the examples of

industrial burners are shown in Figure 1.1. In Siemens G30 DLE Burner, the fuel

and air are premixed, and the mixture is injected into the combustion chamber

through the swirlers. On the other hand, the Sydney Swirl Burner consists of

1
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(a)

(b)

Figure 1.1: Schematic of different burners. (a) Siemens G30 DLE Burner.
Adapted from Stopper et al. (2010). (b) Sydney Swirl Burner. Adapted from
Dinesh & Kirkpatrick (2009).
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coaxial jet with the swirl in the outer air jet (a secondary ambient air jet is also

injected).

The single swirling jet has been studied by numerous researchers: Harvey

(1962); Cassidy & Falvey (1970); Narain (1977); Leschziner & Rodi (1984); Komori

& Ueda (1985); Mehta et al. (1991); Billant et al. (1998); Gallaire et al. (2004);

Lu et al. (2005); Örlü & Alfredsson (2008); Shiri (2010); Stopper et al. (2010);

Oberleithner et al. (2011); Markovich et al. (2014); Wan et al. (2015); Sieber et al.

(2017); Clees et al. (2018); Moise & Mathew (2019); to name a few. Although

the coaxial swirling jet has gained the attention of some researchers: Ribeiro &

Whitelaw (1980); Roback & Johnson (1983); Ben-Yeoshua (1993); Champagne &

Kromat (2000); Huang & Tsai (2001); Dinesh & Kirkpatrick (2009); Santhosh

et al. (2014); Rajamanickam & Basu (2018), it has been not studied extensively

and hence focused in this thesis.

1.1.1 Swirling jet

To achieve the optimal mixing characteristics for coaxial jet, one must focus

on reducing the spans of the potential cores of jets and increasing jet growth. This

can be achieved by changing the velocity ratio between two jets for a given set of

jet diameters (Champagne & Wygnanski (1971); Rehab et al. (1997); Buresti et al.

(1998); Abboud & Smith (2014); Li et al. (2017)). However, it has been observed

that potential cores are still extended over a considerable downstream length, even

when the outer jet (OJ) velocity exceeds the inner jet (IJ) velocity by a factor of

two. The introduction of swirl into one of the jets can help to overcome this

drawback, as demonstrated by Ribeiro & Whitelaw (1980); Ben-Yeoshua (1993);

Champagne & Kromat (2000). They illustrated that in the presence of the swirl,

a radial static pressure gradient is set up as it is proportional to the mean squared

azimuthal velocity divided by the radial distance (∂p/∂r ∝ Vθ
2
/r yielded from

the approximation of equation for mean radial momentum. Here p and Vθ are

the mean static pressure and mean azimuthal velocity, respectively). This results

in the pressure deficit at the centerline. The fact of decay in azimuthal velocity

in the downstream region creates an adverse (positive) pressure gradient in the

axial direction. The outcome of this process is the decay of centerline streamwise

velocity and the increased rate of spread of the jet.

Furthermore, if the swirling strength exceeds a certain threshold value, the

recirculation, a property of the vortex breakdown (VB), appears at the central
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Figure 1.2: State of the flow. Adapted from Ben-Yeoshua (1993). The swirl

number Sw = (
∫ Ro
0 U Vθ r

2 dr)/(Ro
∫ Ro
0 (U

2−Vθ
2
/2) r dr). Here, Ro and Do are

outer radius and diameter of OJ, respectively, Di is the diameter of IJ and U
is the mean streamwise velocity. The mass flow rate ratio ṁr = ṁOJ/ṁIJ .
The dividing strip in the plot separates the areas of absence and presence of
recirculation or VB.

region (Ben-Yeoshua (1993); Champagne & Kromat (2000)). The swirl number

Sw (the ratio of the axial flux of momentum in the azimuthal direction to that

in the axial direction) and ṁr (the ratio of the mass flow rate through OJ to

that through the IJ) dictate the occurrence of recirculation. Ben-Yeoshua (1993)

performed numerous experiments to demonstrate this (see Figure 1.2). It was

observed that the recirculation occurs when Sw > 0.78 for around ṁr ≈ 8.5, and

then Sw limit decreases to 0.58 for ṁr > 18.0.

1.1.2 Vortex breakdown

The distinct types of VB reported for the configuration of coaxial swirling

jet (Dinesh & Kirkpatrick (2009); Santhosh et al. (2013, 2014)) are namely, (a)

bubble, and (b) conical. These two types of VB have also been reported for

the configuration of a single swirling jet (Billant et al. (1998)). As the name
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Figure 1.3: Effect of modified Rossby number on coaxial swirling jet inves-
tigated by Santhosh et al. (2013). (a) Pre-VB state. (b) VBB. (c) Transition
state. (d) CTRZ.

suggests, the bubble type of VB or simply the vortex breakdown bubble (VBB) is

characterized by axisymmetric bubble-shaped structure, whereas the conical type

is of axisymmetric conical-shaped structure with the recirculation at the central

region. Santhosh et al. (2013) demonstrated the transformation from pre-VB to

various structures (see Figure 1.3). They used a modified Rossby number along

with the swirl number for this study. Here, modified Rossby number is taken as

Rom = |∆U | /Vθ,avg, where numerator is the velocity deficit between two coaxial

jet (i.e., |∆U | = |UIJ − UOJ |, where UIJ and UOJ are the bulk velocities of IJ and

OJ, respectively) and denominator is the mass flow averaged azimuthal velocity

at the nozzle exit (i.e., Vθ,avg =
∫

2πrVθdr/A, where A is the cross-sectional area

of nozzle). The swirl number is taken as S = (
∫ Ro
0

ρU Vθ r
2 dr)/(Ro

∫ Ro
0

ρU
2
r dr),

where U is the mean streamwise velocity. They varied the Rom substantially

(3.15 − 0.02) with a slight change in S (0.592 − 0.801). It was observed that

for Rom � 1, two vortex rings are appeared in the annular region between two

jets and is called as the pre-VB state. By decreasing Rom to ≈ 1, the structures

evolve into the VBB partially penetrated by IJ. With further decrement in Rom,

the penetrated part slackens, and the structure is called as the central toroidal



6 Chapter 1 Introduction

recirculation zone (CTRZ) or simply a toroidal recirculation bubble. In their other

study (Santhosh et al. (2014)), it was observed that by keeping approximately same

Rom (i.e., Rom ≈ 1 for partially penetrated VBB and Rom → 0 for CTRZ) and

by increasing S, the corresponding structures evolved into the conical breakdown.

However, further substantial increment in S transformed the conical breakdown

back to the VBB.

1.2 Motivation

Although some efforts have been made by researchers in the past to study

the influence of swirl on the coaxial jet, some issues are yet to be addressed:

• Mehta et al. (1991) demonstrated this experimentally for the single swirling

jet configuration. It was shown that the introduction of swirl elevates all the

six independent components of Reynolds stresses. The increase in the radial

spread of the Reynolds stresses was also observed indicating the growth of the

mixing layer. Similar observations were also made by Ribeiro & Whitelaw

(1980) for the configuration of coaxial swirling jet. This feature of increase

in the Reynolds stresses along with their spread is vital for the mixing en-

hancement. However, the reasons for this change in Reynolds stresses, and

hence the turbulent kinetic energy (TKE) in coaxial swirling jet have not

been thoroughly explored yet.

• Passive scalars have been widely used to demonstrate mixing in various jet

flows in the past. The mean and root-mean-squared (RMS) fluctuations

and turbulent fluxes of passive scalars all provide information about mixing.

Roback & Johnson (1983) attempted to analyze the effects of swirl on these

statistics by introducing passive scalars through IJ only and found that the

spreading rate of scalars increases with an increase in swirling strength. Di-

nesh et al. (2010) made similar observations based on the mean and RMS

fluctuation distributions of IJ scalars. However, in the past studies, the in-

jection of passive scalars through only one of the two jets of coaxial swirling

jet limited the investigations aiming the mixing features in swirling jets,

especially due to the VBB. The simultaneous injection of passive scalars

through both the jets of coaxial jet would provide more insight into mixing

characteristics.
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• Over the years, various techniques of modal decomposition have been devel-

oped to better understand the physically important structures or modes in

the swirling jets. Some studies (Oberleithner et al. (2011); Markovich et al.

(2014); Wan et al. (2015); Sieber et al. (2017); Clees et al. (2018)) have fo-

cused on the visualization of coherent structures using these techniques for

the configuration of single swirling jet only, but that for the coaxial swirling

jet is scarcely investigated (Rajamanickam & Basu (2018)).

This thesis focuses on the above topics and attempts to enhance the knowl-

edge in the field of coaxial swirling jet.

1.3 Outline of thesis

In order to acquire an in-depth knowledge of the effects of swirl, compu-

tational fluid dynamics tool is used for this work. The outline of this thesis is as

follows:

• In Chapter 2, the numerical details are explained. It includes the generation

of an adequate inflow boundary condition as the swirling jet results in the

non-standard profiles at the nozzle exit.

• In Chapter 3, the flow development is illustrated along with the code val-

idation. The change in Reynolds stresses and the TKE due to the swirl is

focused in this chapter.

• Chapter 4 concentrates on the investigation of mixing characteristics by in-

jecting passive scalars through both the jets.

• In Chapter 5, modal decomposition is carried out to investigate the coherent

structures present in the flow for a case of strong swirl.

• Chapter 6 summarizes the conclusions of this study.

The parts of this thesis (Chapters 2, 3, and 4) are based on the works of

Kadu et al. (2019a,b).



Chapter 2

Numerical method and flow

conditions

In this chapter, the numerical methodology and flow conditions used for the

investigation are explained. The §2.1 presents the governing equations along with

their solution methodology. The method to obtain the inlet boundary condition,

which is a critical part of simulation of swirling flows, is detailed in §2.2. It is

followed by remaining boundary conditions in §2.3. The simulation details are

then presented in §2.4.

2.1 Governing equations and numerical method-

ology

The direct numerical simulations (DNS) is employed to compute the tran-

sient flow fields by solving the 3D Navier-Stokes and continuity equations with the

assumption of an incompressible Newtonian flow. The dimensionless equations,

which are formed using IJ bulk velocity UIJ and IJ diameter D, are defined as

follows:

∂ui
∂xi

= 0, (2.1a)

∂ui
∂t

+ uj
∂ui
∂xj

=− ∂p

∂xi
+

1

ReD

∂2ui
∂xj∂xj

, (2.1b)

where the IJ Reynolds number ReD is defined as ReD = UIJD/ν and ν is the

kinematic viscosity.

8
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Figure 2.1: Schematic of the computational domain and inlet configuration.
An annular wall with a thickness of 0.1D is present between the IJ and OJ. The
cross-stream domain size (Ly × Lz) is larger in the swirling cases compared to
the non-swirling case, as mentioned in §2.4.

A schematic of the computational domain and the inlet configuration is

presented in Figure 2.1. Note that the inlet configuration is taken as per the

experimental setup available in the laboratory, and the numerical results are ver-

ified with the experimental results in §3.2. The coordinate system is centered

on the center of the inlet plane and the x axis coincides with the jet axis. The

governing equations are solved using the fractional-step method (Kim & Moin

(1985)). The pressure Poisson equation is solved using the conjugate gradient

method (Nocedal & Wright (2006)). Time integration is performed using a second-

order Runge-Kutta method. A conventional staggered grid system is implemented

using equally-spaced, structured-Cartesian grid points. The conservative scheme

(Morinishi et al. (1998)) and central difference scheme are employed for spatial

discretization of the convection and viscous terms, respectively. The discretiza-

tion provides fourth-order accuracy in the x direction and second-order accuracy

in the y and z directions. The coordinate transformation is performed to present

the results in a cylindrical coordinate system.
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(a)

(b)

Figure 2.2: Nozzle configuration. Dimensions are mentioned in terms of IJ
diameter D. (a) OJ nozzle: bird’s eye view and plane view. Vanes are removed
for the non-swirling case. Swirling cases with vane angles, α = 90◦ and 80◦ are
considered. (b) IJ nozzle (representative geometry): cross-sectional view.

2.2 Inlet boundary condition

The method of swirl generation influences the profiles of the mean veloc-

ity components, which affects vortex behavior (Xia et al. (1997); Lucca-Negro

& O’doherty (2001)). To obtain the desired mean inflow conditions and statisti-

cally correct turbulent fluctuations, precursor simulations (Tabor & Baba-Ahmadi

(2010)) were performed for the jet nozzles prior to the main simulations. The strat-

egy includes the mapping of instantaneous velocity components at the nozzle exit

onto the main simulation inlet.

SolidWorks 2017 software is used to create the geometries. Figure 2.2

presents the nozzle configuration for OJ and IJ. The inner and outer diameters

of the OJ pipe are 1.2D and 2.6D, respectively. The swirl in the OJ is gener-

ated using four vanes mounted over the OJ pipe with a span of 90◦. The swirling



Chapter 2 Numerical method and flow conditions 11

strength is controlled by the vane angle α. Two cases with different vane angles

α = 80◦ and 90◦, and a case with the absence of vanes are considered. The case

of α = 90◦ is considered to obtain the highest possible swirling strength for the

present configuration, whereas the case of α = 80◦ is taken to obtain the interme-

diate swirling strength. The vanes are enclosed by a casing with four inlets. Note

that the configuration of OJ nozzle is same as that in the experimental setup. The

mesh is generated using the Pointwise Version 18.0 R4 software. The cell count

of OJ nozzle is around 4.39 million and the cells are of prism type. For the IJ, an

annular pipe of length 5.5D is positioned upstream of the 24.0D long inner round

pipe to generate turbulence. The cell count of IJ nozzle is 3.13 million and the

cells are also of prism type. The Reynolds number for the IJ, ReD, is 2200. ReD

is limited to such a low magnitude based on the requirement of the grid resolution

required for DNS and the available computational resources. The ratio of the total

flow rate through OJ to that through the IJ, QOJ/QIJ , is 10.64, and the result-

ing bulk velocity ratio, UOJ/UIJ , is 2.00. Note that QOJ/QIJ (= ṁr) is chosen as

equal to 10.64 because it is well beyond the limit where the recirculation can occur

(see Figure 1.2). These precursor simulations for the nozzles were performed using

the open-source software OpenFOAM Version 2.4.0. Large eddy simulation (LES)

with the dynamic Smagorinsky model is used here due to the limitation of the

computational resources. The second-order implicit scheme is used for the time

derivative and Gauss linear scheme (second-order Gaussian finite volume integra-

tion) is used for the spatial discretization (Greenshields (2015)). The solver used is

the pimpleFoam which is based on the PIMPLE (merged PISO-SIMPLE: pressure

implicit with splitting of operator and semi-implicit method for pressure-linked

equations) algorithm.

Figure 2.3(a) presents the radial profiles of the mean streamwise velocity

(U) and mean azimuthal velocity (Vθ) at the nozzle exits for the three cases con-

sidered in this study. The streamwise velocity of IJ has a peak at approximately

1.5 times the IJ bulk velocity. The distribution of the OJ streamwise velocity is

slightly modified by the presence of vanes. Naturally, the azimuthal velocity is

observed to be affected by vanes and its peak in the case with α = 90◦ is more

than twice that in the case with α = 80◦. The swirl number Sw is used to quantify

swirling strength (Rajaratnam (1976); Ribeiro & Whitelaw (1980); Ben-Yeoshua
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(a)

(b)

Figure 2.3: Results at the nozzle exit (x = 0.0D). (a) Radial distribution
of the mean velocity components. (b) Radial distribution of the turbulence
intensities.

(1993)) and is calculated as

Sw =

∫ Ro

0

U Vθ r
2 dr

Ro

∫ Ro

0

(U
2 − Vθ

2
/2) r dr

. (2.2)

Here, Ro is the outer radius of the OJ. The numerator in the formula above

is the streamwise flux of the azimuthal momentum and the denominator is the

streamwise flux of the streamwise momentum. Note that the term −Vθ
2
/2 in the

denominator represents an approximation of the static pressure obtained from the

radial component of the momentum equation (refer to Rajaratnam (1976) for this

formulation). The value of the swirl number for the case with α = 80◦ is 0.5 and
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that for the case with α = 90◦ is 1.8. Note that the case with Sw = 0.5 lies in

the region of no recirculation of Figure 1.2 (the criterion of Ben-Yeoshua (1993)),

whereas the case with Sw = 1.8 lies in the region of occurrence of recirculation.

The case with no vanes yields a value of Sw = 0 based on negligible azimuthal

momentum. The nozzle exit streamwise (
√
u′2/UIJ), azimuthal (

√
vθ ′2/UIJ), and

radial (
√
vr ′2/UIJ) turbulence intensities are reported in Figure 2.3(b). Here, u′,

vθ
′ and vr

′ are the streamwise, azimuthal and radial velocity fluctuations, respec-

tively. The IJ exhibits the typical distribution of velocity fluctuations as seen

for the internal flow. The turbulence level in the OJ is observed to be higher as

compared to IJ which may have occurred because of the insufficient length of OJ

nozzle pipe to dampen the turbulence fluctuations. Also, note that the turbulence

intensities presented here are based on UIJ and would be ≤ 20% if calculated

based on UOJ . Furthermore, the fluctuations are increased considerably with the

increase in swirl number.

The precursor and main simulations can be linked through the libraries of

instantaneous velocity components at the jet exits by maintaining consistent time

steps for both simulations. Considering memory limitations and computational

costs, these libraries consist of instantaneous data for only 40, 000 time steps and

are used repeatedly. However, the total time represented by the libraries is suffi-

ciently large and is equal to 162.0D/UIJ for the non-swirling case and 76.8D/UIJ

for the swirling cases. These instantaneous velocity components are mapped onto

the staggered grid for DNS using mixed linear weighted / cell-face interpolation

(cellPointFace interpolation scheme of OpenFOAM) because the grids are of dif-

ferent types. Note that based on the use of fourth-order accurate discretization in

the x-direction and fully conserved schemes, the libraries contain data for three

x-directional cross-sections separated by the spatial grid size ∆X of DNS.

2.3 Outflow, cross-stream, and wall boundary

conditions

The convective outflow boundary condition (Dai et al. (1994)) is used for

the outlet plane as follows:

∂Θ

∂t
+ Uc

∂Θ

∂x
=

1

ReD

∂2Θ

∂xj∂xj
, (2.3)
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Figure 2.4: Representative diagram for the outflow boundary condition.

where Θ refers to the velocity components. The convective velocity Uc is computed

over the circular strips (see Figure 2.4) at each time-step to account for the radial

variation in the streamwise velocity as

Uc =

∑
(up · Ap)∑

Ap
. (2.4)

Here, up is the instantaneous streamwise velocity of the cell p and Ap is the corre-

sponding area of that cell. The numerator in this formulation computes the flow

rate through the circular strip and the denominator is the area of strip. Here,
∑

is the summation over the strip. The innermost strip is nothing but a circle with

radius equal to 0.2D and the radii of the subsequent annular (circular) strips are

incremented by 10% relative to the radius of the preceding strip.

The lateral and spanwise boundaries are treated with the Neumann bound-

ary condition ∂Θ/∂n = 0. This allows fluid to come in or out in the normal direc-

tion of computational domain. A no-slip boundary condition ui(xboundary, t) = 0

is employed for the wall between the two nozzle outlets and the wall surrounding

the outer nozzle.

2.4 Simulation details

The cases are labeled as Sw0, Sw05, and Sw18 for cases with swirl num-

bers of 0, 0.5, and 1.8, respectively. The DNS domain size Lx × Ly × Lz is

20D × 20D × 20D for case Sw0 and 20D × 28D × 28D for cases Sw05 and Sw18.



Chapter 2 Numerical method and flow conditions 15

Figure 2.5: Radial distribution of ∆/η at various cross-sections for all three
cases.

The larger cross-stream domain Ly×Lz for the swirling cases is adopted based on

the greater expected spread of the jets. The grid points Nx ×Ny ×Nz, which are

uniformly distributed, are of size 700×700×700 for case Sw0 and 700×980×980

for cases Sw05 and Sw18. The resolution of the grid ∆ = (∆X∆Y ∆Z)1/3 is of the

order of the Kolmogorov length scale η. The maximum ∆/η (see Figure 2.5) is

located at the cross-section x = 1.0D in all three cases and is equal to 5.1, 6.6,

and 7.1 for cases Sw0, Sw05, and Sw18, respectively. Here, η = (ν3/ε)1/4 and ε

is the kinetic energy dissipation rate per unit mass. The fluid in the domain is

initially in the stationary state. The time-steps for cases Sw0, Sw05, and Sw18

are 0.00405D/UIJ , 0.00192D/UIJ , and 0.00192D/UIJ , respectively, and the corre-

sponding Courant number is around 0.3. The Fortran programming language was

used to develop the code and the message passing interface (MPI) library was used

for code parallelization. Implementation of MPI is done using the two-dimensional

domain decomposition in the y − z plane.



Chapter 3

Momentum transport

3.1 Introduction

As demonstrated by Mehta et al. (1991) for a single swirling jet and by

Ribeiro & Whitelaw (1980) for the coaxial swirling jet, the swirling flows are

responsible for the intensification of the Reynolds stresses and TKE. This conse-

quence of the swirl is an important point for the mixing enhancement. However,

the reason of intensification of Reynolds stresses in coaxial jet due to the swirl has

not been explored in detail. In this chapter, this is achieved by investigating the

budgets of TKE and Reynolds normal stresses. Moreover, the analysis of budgets

of TKE and Reynolds normal stresses for the coaxial swirling jet is rarely reported

in the previous studies, and hence this study can form the basis for the turbulence

modeling work.

The statistical data (i.e., Reynolds time-averaged data) are evaluated from

the instantaneous data of 1296, 652, and 1056 time scales D/UIJ for the cases Sw0,

Sw05, and Sw18 respectively, which are observed to be enough to get statistically

steady results for the mean velocity components and Reynolds stresses. Note that

the cases Sw0 and Sw18 are simulated for longer time as the budget analysis is

performed for those cases which contains third-order statistics.

In §3.2, the numerical results are verified with the experimental results.

After a brief explanation about the instantaneous flow features in §3.3, the mean

flow development is depicted in §3.4. The development of the Reynolds stresses

and TKE is presented in §3.5, and the budgets of TKE and Reynolds normal

16
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stresses are then presented for the cases Sw0 and Sw18 in §3.6. The conclusion is

summarized in §3.7.

3.2 Code validation

Basic statistics of the flow fields obtained through simulations are verified

based on experimental measurements in this section.

3.2.1 Experimental details

Experiments are performed by Mr. Masatoshi Sugino in the laboratory

for the cases Sw0 and Sw18 with the identical nozzle configuration and the flow

parameters. The measurements of flow field are carried out by particle image ve-

locimetry (PIV) and the fluid used for the experiment is water. The streamwise

and radial components of velocity field are measured in the x − y plane and az-

imuthal component in the y − z plane. An Nd: Yag laser (DANTEC RayPower

5000) sheet of wavelength 532 nm and thickness 1 mm is used for the illumina-

tion of the test section. The seeded particles dispersed in both the jets have the

mean diameter 11 µm and 50 µm while carrying out measurements in x − y and

y − z planes respectively. Note that the seeded particles are larger in y − z plane

as compared to that in x − y plane because the distance of visualizing camera

from the test section is comparatively longer in the case of y − z plane and larger

seeded particles are required for them to be recognized by camera. The flow is

visualized by a high-speed video camera (Ametek Phantom V210) of 1280 × 800

pixel resolution. The band-pass filter (Asahi spectrometer PB0040) is affixed to

the camera. The images are captured for 12 s in x − y plane with the sampling

frequency of 2000 Hz. In the y − z plane, the sampling frequency spans around

1000 Hz to 600 Hz for the different locations and the images are captured for the

same time. The spatial resolution to estimate the velocity field is 0.91 mm for the

x − y plane measurements, while that for the y − z plane measurements ranges

between 1.03 and 0.98 mm at different cross-sections. The captured images are

converted into 8-bit digital codes. Both the camera and laser are mounted on the

traversing beams with a jack to allow movement for the camera in the direction

perpendicular to image capturing plane. The analysis of the flow field is carried

out by a commercial software, DANTEC DynamicStudio.
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(a)

(b)

Figure 3.1: Comparison between numerical study and experiment: radial
distribution of the mean velocity components. (a) Mean streamwise velocity.
Dashed lines in region y/D < 0 enclose shear layers for case Sw0 and that in
region y/D > 0 enclose shear layers for case Sw18. (b) Mean azimuthal velocity.

3.2.2 Comparison of results

Figure 3.1 compares the radial distribution of mean velocity components

at various streamwise locations. The azimuthal velocity measurements are only

carried out for the case Sw18. The computed mean streamwise velocity distribu-

tion for the case Sw0 depicted in Figure 3.1(a) shows very good agreement with
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the measurements. The two shear layers, inner one (denoted as ISL) between the

two jets and outer one (denoted as OSL) in between the peak in OJ region and

surrounding ambient, are estimated correctly along with the peaks at jet cores.

Inner shear layer (or can also be termed as inner mixing layer) is sub-divided for

future reference into ISL1- between the axis and local minimum position of mean

streamwise velocity separating two jets and, ISL2- between local minimum posi-

tion and peak in the OJ region. Now we focus on the case Sw18. The measured

mean streamwise velocity profile for OJ is inclined outwards at the upstream-most

location x/D = 0.3. This outward inclination is also appeared for the simulation

results at the nozzle exit (Figure 2.3(a)) and is carried forward to the downstream.

The IJ mean streamwise velocity decays faster at around x/D = 1.0 for the ex-

periment than that for simulation, but the agreement is better in OJ region. The

recirculation is observed at x/D = 3.0 for both simulation and experiment, which

also shows the improved agreement in the IJ region. In Figure 3.1(b), the peaks

of upstream mean azimuthal velocity for the case Sw18 shows a discrepancy be-

tween the simulation and experiment, although the radial positions of peaks are

same and profiles in the shear layers resemble each other. This disagreement can

be attributed to the deviation of the simulation inlet condition from the experi-

mental inflow. The distribution at downstream locations demonstrates the better

agreement.
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(a)

(b)
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(c)

Figure 3.2: Comparison between numerical study and experiment: radial
distribution of the turbulence intensities. Legend same as that for Figure 3.1.
(a) Streamwise RMS velocity. (b) Azimuthal RMS velocity. (c) Radial RMS
velocity.

Figure 3.2 shows the radial distribution of turbulence intensities. The com-

puted streamwise and radial RMS velocities for case Sw0 display a good agreement

with the experiment at all the streamwise locations. For the case Sw18, the level of

upstream streamwise velocity fluctuations in the measurements is seen to be higher

in OJ regions as compared to that in the simulation. At x = 1.0D, the IJ region of

experiment exhibits higher fluctuations than that in the simulation, but the pro-

file of computed fluctuations for OJ approaches towards the measurements. The

downstream region displays the equivalent turbulence level. The simulation results

show two peaks in a radial direction for the azimuthal RMS velocity, whereas the

experiment shows the single peak. The presence of two peaks in OJ region can

be traced back to the inlet condition (Figure 2.3(b)). Due to the unavailability

of experimental upstream location data for azimuthal velocity fluctuations, the

inflow distribution cannot be confirmed. At x = 3.0D, the simulation also shows

a single peak in a radial direction, but the level is higher than the experimental

intensity. From Figure 3.2(c), it is found that the profiles of radial velocity fluctu-

ations for the simulation and experiment are reasonably collapsed at the location

x/D = 0.3 in the IJ region, while OJ again exhibits the lower turbulence level for

the simulation. The downstream simulation results show better agreement with

the experimental ones.
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The overall results suggest that the agreement between the simulation and

experiment for the case Sw0 is remarkable. The discrepancy is observed for the case

Sw18, but the trends seem to be identical. Note that the mean and RMS velocities

presented here are just for the purpose of comparison between the simulation and

experiment, and they are detailed in the subsequent sections.

3.3 Instantaneous flow features

Figure 3.3 shows the contours for the instantaneous streamwise velocity

with vector field for the three cases. The instantaneous streamwise velocity con-

tours show the negligible decay in the non-swirling case, while its overall vector

field aligns with the streamwise direction. In case Sw05, the effect of swirl can

be seen in both streamwise velocity and the vector field. The decay of stream-

wise velocity is observed with the spread. Vector field is in the state of slight

disorder. Case Sw18, i.e., the case of strong swirl, has by far undergone the sig-

nificant change. The spread of the jets is increased. The flow reversal is observed

in the annular region between two jets at upstream and in the central region at

downstream. Note that the occurrence of IRZ is consistent with the findings of

Ben-Yeoshua (1993) (see Figure 1.2 and note that the conditions of present case

Sw18 are ṁr = 10.64 and Sw = 1.8). Vector field demonstrates the chaotic

structures initiating close to the nozzle exit.
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Figure 3.3: Instantaneous streamwise velocity u/UIJ contours with vector
field at the central plane for cases (a) Sw0, (b) Sw05, and (c) Sw18.

3.4 Mean flow development

Figures 3.4 and 3.5 present mean streamwise velocity contour maps with

mean streamlines and mean static pressure, respectively, at the central cross-

sectional plane for the three test cases. Figure 3.6 compares the centerline varia-

tion of mean streamwise velocity and mean static pressure. Figure 3.7 presents the

mean azimuthal velocity contour maps for the swirling cases only, i.e., cases Sw05

and Sw18 (it is not presented for the case Sw0 due to the absence of azimuthal

momentum).

The case Sw0 (shown in Figures 3.4(a) and 3.6) exhibits a decrease in

centerline streamwise velocity until x ≤ 2.0D. This is caused by the positive

pressure gradient of static pressure (see Figure 3.5(a)) and was also observed by

Rehab et al. (1997). The gradual increase in mean streamwise velocity thereafter

marks the entrainment of OJ fluid having a high streamwise velocity toward the

centerline.
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With the introduction of swirl in case Sw05, a large deficit in static pressure

is established in the central region r ≤ 0.6D close to the nozzle exit (see Figures

3.5(b) and 3.6), which is caused by centrifugal force that leads to the positive

radial gradient of static pressure in the OJ region 0.6 < r/D < 1.3 (because

the approximation equation for mean radial momentum yields ∂p/∂r ∝ Vθ
2
/r).

Based on the fact that azimuthal velocity decays in the downstream region (see

Figure 3.7(a)), the static pressure at the downstream region approaches that in

the ambient region and an adverse pressure gradient is generated in the axial

direction. Figure 3.4(b) reveals a brief deceleration in the region x < 2.0D based

on this adverse axial gradient of static pressure. However, an increase in centerline

streamwise velocity can be observed in the region 1.0 ≤ x/D ≤ 2.0 and can

be attributed to the slightly negative axial gradient of static pressure in that

region. The strong influence of swirl at the centerline can be observed in the

downstream region, where the flow decelerates continuously with expansion of the

jets. Furthermore, the streamwise velocity in the OJ region decreases at a rate

more rapid than that in case Sw0.

With a further increase in the swirling strength in case Sw18 (see Figure

3.7(b)), a very strong adverse pressure gradient is established (see Figures 3.5(c)

and 3.6). The contour maps of streamwise velocity, which are presented in Figure

3.4(c), reveal an internal recirculation zone (IRZ) or a feature of VB spanning

over 2.5 ≤ x/D ≤ 8.1 on the centerline. This is formed as a result of the adverse

pressure gradient. Similar IRZ structure is observed by Santhosh et al. (2013)

and they termed it as a partially-penetrated VBB since the IJ penetrates the IRZ.

The IRZ is characterized by flow reversal in the annular region between the two

jets and the axis-symmetric vortex ring located in the downstream region. The

latter characteristic is responsible for bringing the OJ fluid into the central region,

ultimately resulting in mixing improvement. The stronger ISL (i.e., steeper radial

gradient of mean streamwise velocity) is featured as a consequence of annular

reversed flow. Furthermore, the IJ flow is directed radially outward through the

annular reversed flow, which also improves mixing characteristics. Thus, IRZ is a

key outcome of the swirling jet. The radial extent of the OJ also steadily increases

in the streamwise direction.
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Figure 3.4: Mean streamwise velocity U/UIJ contour maps with mean stream-
lines for cases (a) Sw0, (b) Sw05, and (c) Sw18. The pink line for case Sw18,
which is an isoline of U/UIJ = 0, encloses an internal recirculation zone (IRZ).
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Figure 3.5: Mean static pressure P/(ρU2
IJ) contour maps for cases (a) Sw0,

(b) Sw05, and (c) Sw18.
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Figure 3.6: Centerline distribution of mean streamwise velocity and mean
static pressure. Solid lines: mean streamwise velocity, and dotted lines: mean
static pressure.
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Figure 3.7: Mean azimuthal velocity Vθ/UIJ contour maps for cases (a) Sw05,
and (b) Sw18.
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3.5 Reynolds stresses and turbulent kinetic en-

ergy

Figure 3.8 shows the radial distribution of Reynolds normal stresses and

TKE at various streamwise locations. The streamwise stress, u′2, plotted in Figure

3.8(a) exhibits the same level of intensity for all the cases in the inner region

(r ≤ 0.3D) close to the jet exit, with a slight increase in the region 0.3 < r/D ≤
1.0 of case Sw18. The level of outer peaks for both swirling cases is increased

with case Sw18 having highest u′2. At x = 1.0D, cases Sw0 and Sw05 exhibit a

considerable increment in the level of streamwise stress, however, the level for case

of Sw18 is immensely increased, especially in the ISL2 (0.6 ≤ r/D ≤ 1.2) and OSL

(1.2 ≤ r/D ≤ 1.8). The peaks in case Sw18 are also moved radially outward and

the peak in ISL2 (r ≈ 0.9D) exceeds the OSL peak (r ≈ 1.4D) in magnitude. The

downstream region sees the spread of streamwise stress in radial outward as well

as inward directions. The inner region r < 0.5D of case Sw18 exhibits the higher

streamwise stress at the pre-IRZ location x = 2.0D, thereafter it starts reducing.

The case Sw05 shows higher u′2 at the location x = 3.0D than that for the non-

swirling case but still has a lower magnitude than case Sw18. By x = 5.0D, only

a single peak is observed in all three cases, and by x = 8.0D, the swirling cases

show the approximately equal peak magnitudes as in the non-swirling case, which

lacks the spread.

The remaining Reynolds normal stresses, i.e., azimuthal (v′2θ ) and radial

(v′2r ) stresses, depicted in Figures 3.8(b) and 3.8(c) respectively, show similar trend

as that of streamwise stress with varied magnitudes. Both components are smaller

in magnitude for the non-swirling case as compared to the swirling cases. The

distribution again shows two peaks at x = 1.0D for both components of all the

cases, however outer peaks of swirling cases are higher in magnitude. TKE (k)

in Figure 3.8(d) replicates the similar trend as that in the normal stresses. A

noteworthy intensification in the level of TKE is observed at x = 1.0D for case

Sw18 as compared to other two cases. Moreover, the two peaks observed at x =

1.0D in shear layers are of the same magnitude in case Sw18. The peak levels for

swirling cases become comparable to that for non-swirling case by x = 8.0D.
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The radial distribution of the Reynolds primary shear stress, u′v′r, is shown

in Figure 3.9(a). The shear stress u′v′r, which is responsible for the radial flux of

axial momentum and hence for the spread of jets, is observed to be very high in

the region x ≤ 5.0D for case Sw18. This is the consequence of the large velocity

gradients developed due to the IRZ, forming the strong shear layers. The peak

levels in case Sw18, however, approaches to the other two cases in the downstream

region. The Reynolds secondary shear stresses u′v′θ and v′θv
′
r are plotted in Figures

3.9(b) and 3.9(c) respectively. A substantial increment for both secondary shear

stress is noted in the presence of swirling motion. On the other hand, the case Sw0

does not show significant secondary shear stresses, which is due to the absence

of credible azimuthal as well as radial momentum resulting into the negligible

production.

The above discussion shows significant variations in the distributions of

Reynolds stresses and TKE due to the introduction of swirl. Thus, to examine

the enhancement of turbulence level, the budgets of TKE and Reynolds normal

stresses are investigated along for cases Sw0 and Sw18 at the locations x/D = 0.3,

1.0, and 3.0, which see rapid changes.
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3.6 Budgets analysis

3.6.1 Turbulent kinetic energy

The collective contribution of Reynolds stresses in generating TKE is stud-

ied in this section. The transport equation for TKE is given by,

0 = Ck +DP
k +DT

k +Dν
k + Pk + εk, (3.1)

where Ck is convection term, DP
k is pressure diffusion term, DT

k is turbulent diffu-

sion term, Dν
k is viscous diffusion term, Pk is production term, and εk is dissipation

term. The equation is normalized by U3
IJ/D. Flow axis-symmetry allows the an-

gular gradient of mean variable to be neglected. Terms of TKE budget are taken

in the cylindrical coordinate system. Each term is stated as follows (Shiri (2010)):

Ck =−

{
U
∂k

∂x
+ Vr

∂k

∂r
− Vθ

v′rv
′
θ

r
+ Vr

v′2θ
r

}
, (3.2a)

DP
k =−

{
∂p′u′

∂x
+

1

r

∂rp′v′r
∂r

}
, (3.2b)

DT
k =− 1

2

{
∂u′q2

∂x
+

1

r

∂rv′rq
2

∂r

}
, (3.2c)

Dν
k =

1

ReD

{
∂

∂x

(
∂k

∂x
+
∂u′2

∂x
+

1

r

∂ru′v′r
∂r

)

+
1

r

∂

∂r
r

(
∂k

∂r
+
∂u′v′r
∂x

+
1

r

∂rv′2r
∂r
− v′2θ

r

)}
, (3.2d)

Pk =− u′2∂U
∂x
− u′v′r

∂U

∂r
− u′v′r

∂Vr
∂x
− v′2r

∂Vr
∂r

− u′v′θ
∂Vθ
∂x
− v′rv′θ

∂Vθ
∂r

, (3.2e)

εk =− 1

ReD

{
2

(
∂u′

∂x

)2

+ 2

(
∂v′r
∂r

)2

− 2
v′2r
r2

+ 2
1

r2

(
∂v′θ
∂θ

)2

+

(
∂v′r
∂x

+
∂u′

∂r

)2

+

(
1

r

∂v′r
∂θ

+ r
∂

∂r

(v′θ
r

))2

+

(
∂v′θ
∂x

+
1

r

∂u′

∂θ

)2
}
. (3.2f)
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Figure 3.10: TKE budget at locations x/D = 0.3, 1.0, and 3.0 for cases Sw0
and Sw18.

Figure 3.10 shows the budget of TKE for the both cases at streamwise

locations x/D = 0.3, 1.0, and 3.0. At x = 0.3D, TKE budgets exhibit insignificant

activity in the jet central regions of both cases Sw0 (r/D ≤ 0.5 for IJ and 0.7 ≤
r/D ≤ 1.0 for OJ) and Sw18 (r/D ≤ 0.5 for IJ and 0.9 ≤ r/D ≤ 1.1 for OJ).

Both the cases see the significant convection with negative contribution and the

production of energy, whereas diffusion and dissipation also take part in a lesser

extent. Note that the magnitudes of production peaks in the swirling case are
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approximately 15 time higher than that in the non-swirling case.

At the downstream location x = 1.0D, the upstream trend continues for the

case Sw0 with increased contribution from the turbulent diffusion and dissipation

terms. However, the central regions of both jets (r/D ≤ 0.25 for IJ and 0.7 ≤
r/D ≤ 1.0 for OJ) continue to show negligible values. For case Sw18, apart from

the significantly higher production of TKE, a noteworthy turbulent diffusion is

observed. Here, TKE produced in the regions 0.8 ≤ r/D ≤ 1.0 and 1.3 ≤ r/D ≤
1.5 is transported in the central region of OJ (1.0 ≤ r/D ≤ 1.3) due to the

turbulent diffusion, and hence the corresponding region sees a significant TKE

(see Figure 3.8(d)). The convection term is remained to be negative in both the

cases and sizable pressure diffusion and dissipation are also observed.

At location x = 3.0D, the budgets are expanded radially with the reduced

order of magnitude. Diffusion of the energy from shear layers (0.3 ≤ r/D ≤ 0.7 and

1.0 ≤ r/D ≤ 1.4) to the central region of OJ (0.7 ≤ r/D ≤ 1.0) in case Sw0, which

was seen at the upstream location x = 1.0D in case Sw18, is taken place here. The

IJ region (r/D ≤ 0.3) of case Sw0 and the central region (r/D ≤ 0.8) of case Sw18

see considerable positive contribution of turbulent diffusion. Unlike the upstream

location, energy is gained due to the convection in the region 0.7 < r/D < 2.0

of case Sw18, while the equivalent amount of energy is dissipated. This suggests

an important feature in which the energy for r/D > 0.5 (not the IRZ region)

is convected forward from the upstream highly-energetic region to this location.

However, the positive contribution of the convective term is smaller in case Sw0.

Since the interesting features, such as heightened production and higher

turbulent diffusion at upstream region due to the introduction of swirl, are ap-

peared in the TKE budget, more insight can be obtained into these features by

investigating the budgets of individual Reynolds normal stresses (presented in

§3.6.2).

3.6.2 Reynolds normal stresses

Transport equation for Reynolds stresses is given by,

0 = Cij + Πij +DP
ij +DT

ij +Dν
ij + Pij + εij, (3.3)

where C is convection term, Π is pressure-strain correlation term, DP is pressure

diffusion term, DT is turbulent diffusion term, Dν is viscous diffusion term, P is
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production term, and ε is dissipation term. Subscripts for the terms of equation

denote the corresponding Reynolds stress component. Terms of the above equa-

tion for each Reynolds stress are taken in the cylindrical coordinate system (Shiri

(2010); Moser & Moin (1984)). The equations are normalized by U3
IJ/D. The

terms in the production are designated individually to study them separately.

Terms of momentum transfer equation for Reynolds normal stress u′2,

Cuu =−

{
U
∂u′2

∂x
+ Vr

∂u′2

∂r

}
, (3.4a)

Πuu = 2 p′
∂u′

∂x
, (3.4b)

DP
uu = − 2

∂p′u′

∂x
, (3.4c)

DT
uu =− ∂u′3

∂x
− 1

r

∂ru′2v′r
∂r

, (3.4d)

Dν
uu =

1

ReD

{
∂2u′2

∂x2
+

1

r

∂

∂r

(
r
∂u′2

∂r

)}
, (3.4e)

Puu =−2u′2
∂U

∂x︸ ︷︷ ︸
PU,xuu

−2u′v′r
∂U

∂r︸ ︷︷ ︸
PU,ruu

, (3.4f)

εuu =− 2

ReD

{(
∂u′

∂x

)2

+

(
∂u′

∂r

)2

+

(
1

r

∂u′

∂θ

)2
}
. (3.4g)

Terms of momentum transfer equation for Reynolds normal stress v′2θ ,

Cvθvθ =−

{
U
∂v′2θ
∂x

+ Vr
∂v′2θ
∂r

+ 2Vr
v′2θ
r

}
, (3.5a)

Πvθvθ =
2

r
p′
∂v′θ
∂θ

, (3.5b)

DP
vθvθ

= 0, (3.5c)

DT
vθvθ

=− ∂u′v′2θ
∂x

− 1

r

∂rv′rv
′2
θ

∂r
− 2

v′rv
′2
θ

r
, (3.5d)

Dν
vθvθ

=
1

ReD

{
∂2v′2θ
∂x2

+
1

r

∂

∂r

(
r
∂v′2θ
∂r

)
− 2

r2
(
v′2θ − v′2r

)}
, (3.5e)

Pvθvθ =−2u′v′θ
∂Vθ
∂x︸ ︷︷ ︸

P
Vθ,x
vθvθ

−2v′rv
′
θ

∂Vθ
∂r︸ ︷︷ ︸

P
Vθ,r
vθvθ

−2v′rv
′
θ

Vθ
r︸ ︷︷ ︸

P extravθvθ

, (3.5f)
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εvθvθ =− 2

ReD

{(
∂v′θ
∂x

)2

+

(
∂v′θ
∂r

)2

+
1

r2

(
∂v′θ
∂θ

+ v′r

)2
}
. (3.5g)

Terms of momentum transfer equation for Reynolds normal stress v′2r ,

Cvrvr =−

{
U
∂v′2r
∂x

+ Vr
∂v′2r
∂r
− 2Vθ

v′rv
′
θ

r

}
, (3.6a)

Πvrvr = 2 p′
∂v′r
∂r

, (3.6b)

DP
vrvr =− 2

r

∂rp′v′r
∂r

, (3.6c)

DT
vrvr =− ∂u′v′2r

∂x
− 1

r

∂rv′3r
∂r

+ 2
v′rv
′2
θ

r
, (3.6d)

Dν
vrvr =

1

ReD

{
∂2v′2r
∂x2

+
1

r

∂

∂r

(
r
∂v′2r
∂r

)
+

2

r2
(
v′2θ − v′2r

)}
, (3.6e)

Pvrvr =−2u′v′r
∂Vr
∂x︸ ︷︷ ︸

PVr,xvrvr

−2v′2r
∂Vr
∂r︸ ︷︷ ︸

PVr,rvrvr

+2v′rv
′
θ

Vθ
r︸ ︷︷ ︸

P extravrvr

, (3.6f)

εvrvr =− 2

ReD

{(
∂v′r
∂x

)2

+

(
∂v′r
∂r

)2

+
1

r2

(
∂v′r
∂θ
− v′θ

)2
}
. (3.6g)

At x = 0.3D (see Figure 3.11), the budgets for case Sw18 are significantly

higher in magnitude than the budgets for case Sw0. In case Sw0, the production

term is only significant in u′2 budget compared to that in other Reynolds normal

stresses. On the other hand, the swirling case sees the significant increase in pro-

duction for all the normal stresses. Comparing peaks of Puu for the cases Sw0 and

Sw18, the value in swirling case is about 5 times of the value in the non-swirling

case. This is reflected in the radial distribution of u′2 presented in Figure 3.8(a),

where the streamwise component of Reynolds normal stress in case Sw18 is higher

than that in case Sw0. The production Pvθvθ is notably high in the swirling case,

which justifies larger v′2θ in the region (see Figure 3.8(b)). However, the produc-

tion of v′2r in case Sw18 is comparatively smaller than that of other normal stress

components and the region 0.5 ≤ r/D ≤ 0.8 sees a distinctive negative production

of v′2r . As a consequence of this, v′2r profile in case Sw18 exhibits lower intensity

than u′2 (see Figure 3.8(a)) and v′2θ (see Figure 3.8(b)). The pressure-strain cor-

relation term Π, which is responsible for the redistribution of energy among the

stress components, acts as a sink for the stress u′2 and a source for v′2θ and v′2r in
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Figure 3.11: Budgets of Reynolds normal stresses at location x = 0.3D for
cases Sw0 and Sw18.

both cases. However, for case Sw18, the negative production of v′2r is compensated

by higher Πvrvr . As observed in the budgets of TKE (see Figure 3.10), both cases

exhibit negative convection. In both cases, the pressure diffusion and turbulent

diffusion terms show their presence in all the normal stresses. The dissipation is

observed to be smaller for all normal stresses of both the cases.

At the downstream location x = 1.0D (see Figure 3.12), the budget magni-

tudes are drastically changed for both the cases with the most effect being observed
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Figure 3.12: Budgets of Reynolds normal stresses at location x = 1.0D for
cases Sw0 and Sw18. Same legend as Figure 3.11.

in case Sw18. The overall trend in the budgets of case Sw0 is similar to the up-

stream location, except the turbulent diffusion term which starts to become more

dominant for the budgets of all normal stress components. However, the turbulent

diffusion term in case Sw0 lacks in transporting the energy from the shear layers

to the central region of OJ (0.7 ≤ r/D ≤ 1.0) in contrast to the case Sw18, which

sees the positive contribution of the turbulent diffusion term in the central region

of OJ (1.0 ≤ r/D ≤ 1.3). For case Sw18, a significant spread is observed in the
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budgets, thus broadening the profiles of turbulence intensities (see Figures 3.8(a),

3.8(b) and 3.8(c)). A greater peak is seen at around r ≈ 0.9D in the profile of

u′2 of case Sw18 (see Figure 3.8(a)) which can be justified by the tremendously

higher production in the corresponding region. The production of v′2θ is negli-

gible for case Sw0 as observed at the upstream location x = 0.3D whereas its

two peaks become comparable in the case Sw18 as opposed to the upstream lo-

cation. The positive contribution of production Pvrvr is observed in case Sw0,

however, a significant negative contribution of Pvrvr is observed in case Sw18 at

the ISL2 (0.6 ≤ r/D ≤ 1.2). The pressure-strain rate correlation term at the OSL

(1.2 ≤ r/D ≤ 1.6) of case Sw18 exhibits a noteworthy feature in which it acts as

a sink for v′2r , and the minor source for u′2 and v′2θ .

Further downstream at location x = 3.0D (see Figure 3.13), the order of

magnitude of budgets of the case Sw18 becomes comparable to that of case Sw0.

In non-swirling case, the previously equivalent two production Puu peaks differ in

magnitude at this location with the higher production at the OSL (0.8 ≤ r/D ≤
1.7). This is also reflected in the distribution of the u′2 where profile shows a

greater peak in the same region (see Figure 3.8(a)). In contrast, the previously

greater peak of Puu in case Sw18 at the ISL2 (r ≈ 1.0D) become equivalent to OSL

peak (r ≈ 1.7D) and is also reflected in the distribution of u′2 (see Figure 3.8(a)).

Negative convection witnessed at the upstream location is seen to be positive in

case Sw18 and can be a reason for increasing stresses in the central region of OJ

(around r/D = 1.5) (see Figure 3.8). Although the comparatively less activity is

seen at the upstream locations in the central region (r < 0.3D) in the budgets

except for u′2 and v′2r budgets of case Sw18, the terms are observed to be non-

negligible in this region at location x = 3.0D. The dissipation ε becomes one of

the dominant terms at this location.
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Figure 3.13: Budgets of Reynolds normal stresses at location x = 3.0D for
cases Sw0 and Sw18. Same legend as Figure 3.11.
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(a) (b)

Figure 3.14: Production terms of Reynolds stress u′2 at location x = 1.0D for
cases (a) Sw0, and (b) Sw18.

In order to investigate the cause of higher production in swirling case than

the non-swirling case, the contribution of each term in the production of Reynolds

normal stresses is demonstrated at the location x = 1.0D. Figures 3.14(a) and

3.14(b) demonstrates the production terms of u′2 for cases Sw0 and Sw18 respec-

tively. The term PU,r
uu is the dominant one with a positive contribution to the

production in both the cases. A higher magnitude of PU,r
uu in case Sw18 is caused

by the higher radial gradient of mean streamwise velocity resulted from the flow

reversal between two jets (see Figure 3.4(c)). The least dominant term PU,x
uu in

the non-swirling case becomes larger in the swirling case. Moreover, the radial

outward displacement of the outer peak of mean streamwise velocity due to the

centrifugal force along with its narrowed profile results into the sign-change and

inflation of ∂U/∂x. As a consequence, negative contribution of the term PU,x
uu is

seen at the OSL (1.2 ≤ r/D ≤ 1.8) for case Sw18, while it adds into the production

at ISL2 (0.6 ≤ r/D ≤ 1.2).

Figure 3.15 demonstrates the production terms of v′2θ for case Sw18 only

since the azimuthal momentum is negligibly small in non-swirling case resulting

into the vanished Pvθvθ . Here also the radial gradient term P Vθ,r
vθvθ

is dominating,

whereas the axial gradient term P Vθ,x
vθvθ

is comparable to the radial gradient term

at ISL2 (0.6 ≤ r/D ≤ 1.2). The extra term P extra
vθvθ

also shows its presence.

Production terms of v′2r are demonstrated in Figures 3.16(a) and 3.16(b)

for cases Sw0 and Sw18 respectively. In non-swirling case, the radial gradient

term P Vr,r
vrvr is only seen to be contributing to the production. In swirling case,

although the radial gradient term is observed to be dominant, the axial gradient

term P Vr,x
vrvr and extra term P extra

vrvr also contribute to Pvrvr . Negative production of
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Figure 3.15: Production terms of Reynolds stress v′2θ at location x = 1.0D for
case Sw18.

(a) (b)

Figure 3.16: Production terms of Reynolds stress v′2r at location x = 1.0D for
cases (a) Sw0, and (b) Sw18.

v′2r observed in the ISL2 (0.6 ≤ r/D ≤ 1.2) is the result of flow divergence due to

the swirling motion, which in turn results in the steep radial profiles of Vr. This

causes highly positive and negative radial gradients of Vr in the shear layers ISL2

(0.6 ≤ r/D ≤ 1.2) and OSL (1.2 ≤ r/D ≤ 1.8) respectively, which drive the term

P Vr,r
vrvr .

3.7 Conclusions

Direct numerical simulations were performed to investigate the coaxial

swirling jet with the swirl numbers 0, 0.5, and 1.8. Simulation results exhib-

ited remarkable agreement with the experiment for the non-swirling case, while

that for the strongly swirling case were satisfactory. This also demonstrated the

usefulness of precursor simulation for the nozzle.
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In intermediate swirl case (i.e., case Sw05), a contrasting acceleration after

a brief decay in streamwise velocity was observed at the upstream region due to the

negative pressure gradient. However, the downstream region exhibited a centerline

decay and radial spread of streamwise velocity. The rates of centerline decay and

spread of jet were further enhanced with the increment in swirling strength (i.e.,

case Sw18), which eventually formed the IRZ or partially-penetrated VBB.

Other prime consequences of swirling motion were observed in the Reynolds

stresses and TKE, which were seen to be substantially increasing with the swirl.

The budgets of TKE and Reynolds normal stresses were investigated for cases Sw0

and Sw18, and the following key observations were made:

• Due to swirl, the turbulent diffusion term in TKE budget became more active

in the upstream region (around x = 1.0D). This caused the energy level to

increase in the central region of OJ of swirling case.

• TKE in the region outside of IRZ was convected from highly energetic up-

stream region (x = 0.3D, 1.0D) to the downstream region (x = 3.0D) in the

swirling case, whereas the positive contribution by the convection term in

non-swirling case seemed to be smaller.

• At x = 1.0D, the pressure-strain correlation term acted as energy sink for

radial component of Reynolds normal stress at OSL in the swirling case

contrary to the non-swirling case.

• The analysis of production terms of Reynolds normal stresses at x = 1.0D

(where the great difference is observed between cases Sw0 and Sw18) showed

that in addition to the higher production for the streamwise component of

normal stress, the significant production was observed for the other compo-

nents with the introduction of swirl. This was due to the fact that with the

introduction of swirl, the terms having streamwise gradient of mean velocity

also contributed to the production in addition to the terms with the radial

gradient of mean velocity. In the region upstream of central stagnation point

(case Sw18), a distinctive negative production at ISL was observed for the

radial component of normal stress, which was the consequence of positive

radial gradient of mean radial velocity in the region caused by the spreading

of jets.
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Passive scalar transport

4.1 Introduction

In addition to the conventional statistics (i.e., RMS scalar fluctuations and

turbulent scalar fluxes), numerous measures have been devised for mixing quan-

tification and are used in various studies for different problems. Everson et al.

(1998) proposed a novel measure to quantify mixing called entropy, which has

been used in several recent studies (Ito et al. (2018); Tsujimoto et al. (2011)) to

analyze turbulent jets. However, only the diffusion of scalars can be inferred from

entropy and this quantification seems to be insufficient for deriving insights into

mixing efficiency when two jet streams are considered. Danckwerts (1952) intro-

duced a segregation parameter based on the correlation between scalar fluctuations

normalized by the product of their mean concentrations. It is clear that the sign

and magnitude of the segregation parameter indicate mixing characteristics, where

positive values correspond to “mixedness” and negative values correspond to “un-

mixedness”. Experimental studies (Tong & Warhaft (1995); Cai et al. (2011);

Komori et al. (1991)) have demonstrated the significance of the segregation pa-

rameter. Despite these advances in the analysis of mixing characteristics, the

analysis of coaxial swirl jet has not been reported.

Additionally, swirling motion promotes the entrainment of surrounding am-

bient fluid into the main flow (Komori & Ueda (1985); Park & Shin (1993)). Note

that this can be considered as a favorable characteristic for non-premixed confined

combustion because the entrained fluid, which is composed of heated products

and unburned reactants, will improve combustion efficiency. The effect of ambient

50
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fluid on the statistics of IJ and OJ scalars, which are not found in previous studies,

are also required to investigate.

In this chapter, the mixing characteristics is studied for coaxial jet under

the influence of swirl introduced in OJ for the three cases Sw0, Sw05, and Sw18. As

mentioned earlier in §1.2 that injection of passive scalars through only one of the

two jets of coaxial swirling jet limited the investigations aiming the mixing features,

simultaneous passive scalars are introduced from each jet to better understand the

mixing characteristics. Moreover, the effect of ambient fluid on the statistics of

passive scalars is also explored. The §4.2 presents the numerical methodology

used for the transport of passive scalars. It is followed by the development of

mean scalar fields and the entrained fluid in §4.3. The RMS scalar fluctuations

and the turbulent scalar fluxes are presented in the §4.4 and §4.5, respectively. The

§4.6 presents the quantification of mixing between two scalars based on entropy

and the segregation parameter. In §4.7, the joint probability density functions

(JPDFs) between scalars and velocity are illustrated for the leading stagnation

point on the centerline of the case Sw18. The conclusion is made in §4.8.

4.2 Numerical method

The equation used for the computation of transport of passive scalars is

defined as follows:

∂φk
∂t

+ uj
∂φk
∂xj

=
1

ReD Scφk

∂2φk
∂xj∂xj

. (4.1)

Here, k = 1, 2, where k = 1 for the scalar injected through the IJ and k = 2

for the scalar injected through the OJ. Additionally, Scφk = ν/Dφk is the Schmidt

number and Dφk is the mass diffusivity of scalar k.

The transport equation for passive scalars are solved in conjunction with the

momentum equations (Equation 2.1), and with the same discretization schemes

for the time advancement and spatial differentiation (see §2.1). Passive scalars are

not considered in the precursor simulations (presented in §2.2) and are injected

with the top-hat profiles at the jet exits. The scalar φ1 is set to one for the IJ

and zero for the OJ, while the scalar φ2 is set to one for the OJ and zero for the

IJ. The Schmidt numbers for both scalars are set to one. Moreover, the cross-

stream boundaries are treated with the Neumann boundary condition and the
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convective outflow boundary condition is used for the outlet plane (by equating Θ

with φk in Equation 2.3). Because the inlet conditions and Schmidt numbers for

the scalars are of unit magnitude, φ1 represents the mass fraction of the IJ fluid

and φ2 represents the mass fraction of the OJ fluid. The domain initially contains

only stationary ambient fluid (i.e., the φA value representing the mass fraction of

the ambient fluid is initially equal to one). Note that the transport equation for

φA is not solved explicitly because the equation φ1 +φ2 +φA = 1 holds true at any

given location in the domain to conserve mass and φA can be estimated using this

equation. The statistical data from the main simulations are 972, 480, and 556.8

time scales D/UIJ for cases Sw0, Sw05, and Sw18 respectively. These values are

sufficient to derive statistically reliable results.

4.3 Mean scalar fields

Figure 4.1 presents the contour maps of mean IJ scalar φ1 at the central

cross-section for the three test cases. Case Sw0, which is presented in Figure

4.1(a), exhibits an outward radial spread with a very slow rate downstream of the

streamwise location 1.0D, followed by centerline decay from x = 2.0D. Similarly,

case Sw05, which is presented in Figure 4.1(b), exhibits a slower spreading rate

in the upstream region (x ≤ 4.0D). However, the centerline decay is slower in

case Sw05 compared to that in case Sw0 in the upstream region x ≤ 4.0D, which

is undesirable for mixing. This may be a result of the flow acceleration in the

region 1.0 ≤ x/D ≤ 2.0 in case Sw05 (see Figures 3.4(b) and 3.6), resulting

in the advection of the scalar φ1 to the downstream region at a greater rate.

Regardless, the spreading rate is enhanced in the downstream region x > 4.0D

based on the greater spread of the jet. A drastically enhanced rate of spread and

centerline decay can be observed for case Sw18 in Figure 4.1(c). This phenomenon

is essentially prompted by the IRZ. The central recirculating flow acts as a barrier

to the IJ scalar and the annular reversed flow combined with the radially outward

directing flow advects the scalar beyond the radial extent of 0.5D. The magnitude

of φ1 is less than 0.2 in the downstream region x > 4.0D.
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Figure 4.1: Contour maps of the mean IJ scalar φ1 for cases (a) Sw0, (b)
Sw05, and (c) Sw18.

Figure 4.2 presents the contour maps of the mean OJ scalar φ2. The contour

maps for case Sw0, which are presented in Figure 4.2(a), exhibit a monotonous

spread in both radial directions and the centerline magnitude exceeds 0.4 for lo-

cations of x > 4.0D prior to reaching a maximum value in the region around

the location x = 9.0D. The obvious centerline decay caused by this spread can

be observed at farther downstream region. Figure 4.2(b) reveals that it takes an

extra 1.0D for case Sw05 compared to case Sw0 to exceed a magnitude of 0.4 at

the centerline. The downstream region (x > 4.0D) in case Sw05 exhibits radial

outward spread at a greater rate than that in case Sw0. Compared to the other

cases, the OJ scalar in case Sw18, which is presented in Figure 4.2(c), reaches

the centerline earlier and exceeds the magnitude of 0.4 just downstream of the

stagnation point, which is located at x = 2.5D. The IRZ formed in the region

2.5 ≤ x/D ≤ 8.1 is responsible for advection of the OJ scalar toward the axis and

upstream. Greater radial outward spread can also be observed.
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Figure 4.2: Contour maps of the mean OJ scalar φ2 for cases (a) Sw0, (b)
Sw05, and (c) Sw18.

The mean scalar distributions demonstrate that case Sw05 exhibits an un-

desirable spread of both scalars in the upstream region (x < 4.0D), unlike case

Sw0, further delaying mixing between the two scalars. However, it exhibits im-

proved spread in the downstream region. In contrast, case Sw18 is only preferable

for the mixing of scalars immediately downstream of jet the exits. However, this

phenomenon can only be confirmed through further investigation, which is pre-

sented in §4.6.

The entrainment rate Ψ is calculated as (Q−Qx0)/Qx0 and its streamwise

variation is presented in Figure 4.3. Here, Q is the total flow rate through a

cross section and is calculated as Q =
∫∫

Udydz, and Qx0 is the flow rate at the

nozzle exit plane. The entrainment rate represents the ratio between the amount

of ambient fluid entrained and the amount of fluid injected through the nozzles.

This rate increases constantly in the streamwise direction for case Sw0 whereas its

slope increases with the increase in swirl number. This observation of increase in

entrainment rate with the swirl number is consistent with Komori & Ueda (1985);

Park & Shin (1993). The mean amount of entrained ambient fluid φA at a location



Chapter 4 Passive scalar transport 57

Figure 4.3: Centerline distribution of the mean ambient fluid and variation in

the entrainment rate in the streamwise direction. Solid lines: φA, and dotted
lines: Ψ.

can be estimated as 1 − φ1 − φ2. Figure 4.3 presents the mean ambient fluid at

the centerline. The entrained ambient fluid reaches the centerline at x ≈ 4.0D

for cases Sw0 and Sw05. However, its volume in the latter case increases in the

streamwise direction compared to the former case based on the higher entrainment

rate in case Sw05. In contrast, the entrained ambient fluid in case Sw18 reaches

the centerline at far upstream location of x < 2.0D, which is upstream of the

stagnation point. This is the combined effect of a higher entrainment rate and

IRZ. The amount of entrained fluid at the centerline is always higher for case

Sw18 than for the other two cases.

4.4 RMS fluctuations of scalars

Figure 4.4 compares the centerline distributions of RMS fluctuations of

both scalars for all three test cases. Here, σ1 and σ2 are the RMS fluctuations

of the IJ and OJ scalars, respectively, which are calculated as σ1 = (φ
′2
1 )1/2 and

σ2 = (φ
′2
2 )1/2, respectively. The profiles for case Sw0 show insignificant fluctuations

for both scalars of x < 2.0D, indicating that the OJ scalar φ2 did not reach the

centerline. In other words, there is no mixing between the scalars. The RMS

fluctuations for the scalars continue to increase thereafter prior to reaching to
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Figure 4.4: Centerline distribution of RMS fluctuations of the IJ scalar (σ1)
and OJ scalar (σ2). Solid lines: σ1, and dotted lines: σ2.

a peak value of ≈ 0.28 at x ≈ 4.0D. The equality between σ1 and σ2 can be

attributed to the absence of entrained fluid, which is explained mathematically

in Appendix A. In the downstream region, the profiles exhibit a decline, and

σ1 and σ2 begin to differ from each other. This phenomenon is a result of the

entrainment of ambient fluid. However, the OJ scalar fluctuation σ2 increases

slightly in the downstream region. The trends in RMS fluctuations in case Sw05

are similar to those in case Sw0, except that the peak fluctuations are located

farther downstream with the peak of σ2 being smaller than the σ1 peak and the

differentiation of profiles of σ1 and σ2 initiates earlier compared to case Sw0. The

non-zero RMS fluctuations at x ≈ 1.1D in case Sw18 confirm that the OJ scalar

reaches the centerline earlier compared to the other two cases. Similar to case

Sw05, the peak of σ2 in case Sw18 is smaller than that of σ1, but the difference is

greater in case Sw18 based on its higher entrainment rate. Note that the peaks in

case Sw18 are farther upstream than in the other two cases and are located close

to the leading stagnation point (x = 2.5D). The fluctuation σ2 exhibits a greater

magnitude than σ1 in the downstream region in case Sw18, similar to the other

two cases, starting from x ≈ 3.5D.

The radial profiles of the RMS fluctuations of the scalars at six downstream

locations are compared for the three test cases in Figure 4.5. The RMS fluctuations

of the IJ scalar σ1 in Figure 4.5(a) indicate that at the cross-section x = 0.3D,

there is only a single peak for all three cases at approximately 0.5 ≤ r/D ≤ 0.6



Chapter 4 Passive scalar transport 59

(a
)

(b
)

F
ig

u
r
e

4
.5

:
R

a
d

ia
l

d
is

tr
ib

u
ti

on
s

of
th

e
R

M
S

fl
u

ct
u

at
io

n
s

of
th

e
(a

)
IJ

sc
al

a
r

a
n

d
(b

)
O

J
sc

a
la

r.



60 Chapter 4 Passive scalar transport

(i.e., in the ISL). However, the profile for case Sw18 exhibits higher peaks and a

greater spread. At x = 1.0D, the peak values in cases Sw0 and Sw05 increase

with a slight broadening of profiles, whereas the profile spans over a much larger

radial area in case Sw18 with unchanged peak value. In the downstream region,

the profiles continue to show similarities between cases Sw0 and Sw05, and the

peak positions in these cases move toward the centerline. The fluctuations in case

Sw18 show remarkable decay and a nearly flat profile at x = 5.0D. However, it

should be noted that φ1 also decays by that point (see Figure 4.1(c)). Roback

& Johnson (1983) reported similar development for σ1 compared to that in case

Sw18. The other two cases exhibit fluctuation decay in the downstream region

with a slower rate. Figure 4.5(b) shows that the OJ RMS scalar fluctuations σ2

exhibit two distinct peaks for x < 8.0D for cases Sw0 and Sw05, and x < 3.0D for

case Sw18. One peak lies at the ISL between the two jets and the other lies at the

OSL between the OJ and ambient fluid. Although the radial location of the inner

peak is consistent with the single peak of σ1 in all three test cases, the magnitude

of the peak seems to be affected at the downstream locations of x ≥ 5.0D for

case Sw05 and x ≥ 2.0D for case Sw18 based on the entrainment of ambient fluid.

At downstream locations fo x > 2.0D, the higher rate of jet spread in case Sw05

causes the outer peak to move radially outward compared to case Sw0, whereas

case Sw18 exhibits this tendency only in the upstream region.

4.5 Turbulent scalar fluxes

Figure 4.6 presents the radial distributions of the turbulent fluxes of the

IJ scalar φ1 at six downstream locations. Cases Sw0 and Sw05 exhibit a similar

trend of u′φ′1 with a less significant inner positive peak and an outer negative peak

in ISL. In addition to the increased magnitude of the negative peak, enhanced

positive streamwise flux of the IJ scalar can be observed in case Sw18. This is

caused by enhanced production as a result of the steeper streamwise and radial

gradients of the mean variables because of the IRZ. The positive peak moves

toward the centerline and continues to increase in strength until reaching the

leading stagnation point of the IRZ. The positive and negative peaks of u′φ′1 can

be explained based on its production as

Puφ1
∼= −u′φ′1

∂U

∂x︸ ︷︷ ︸
PU,xuφ1

− v′rφ′1
∂U

∂r︸ ︷︷ ︸
PU,ruφ1

−u′2∂φ1

∂x︸ ︷︷ ︸
P
φ1,x
uφ1

−u′v′r
∂φ1

∂r︸ ︷︷ ︸
P
φ1,r
uφ1

. (4.2)
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(a) (b)

Figure 4.7: Production terms for turbulent streamwise flux of the IJ scalar

u′φ′1 at a downstream location of x = 2.0D for cases Sw0 and Sw18.

Figure 4.7 presents the radial distribution of the production Puφ1 and its terms

for cases Sw0 and Sw18 (case Sw05 is not presented because it exhibits a similar

trend of u′φ′1 compared to case Sw0) at a downstream location of x = 2.0D. The

high positive value of u′φ′1 in the central region r < 0.7D in case Sw18 (see Figure

4.6(a)) can be attributed to the production gain in this region. An analysis of terms

suggests that this primarily occurs as a result of the terms involving the axial gra-

dients of the mean streamwise velocity and mean IJ scalar. In contrast, case Sw0

exhibits negligible production in the central region r ≤ 0.3D based on the absence

of any significant axial or radial gradients of mean flow quantities. Negative pro-

duction Puφ1 in both cases can be observed in the outer regions (0.3D < r ≤ 0.9D

for case Sw0 and 0.7D ≤ r ≤ 1.3D for case Sw18), resulting in a negative value

of u′φ′1. The terms with radial gradients for the mean streamwise velocity and

mean IJ scalar are responsible for the negative production in cases Sw0 and Sw18.

The turbulent streamwise flux (see Figure 4.6(a)) becomes negligible at x = 5.0D

for case Sw18 and x = 8.0D for the other two cases. The profiles of turbulent

radial flux v′rφ
′
1 exhibit a single peak for all three cases. The peak magnitudes at

x = 2.0D and x = 3.0D are higher for case Sw0 than for case Sw05. However,

the magnitude of peaks in the downstream region are consistent and the spread

is greater for the profile in case Sw05. Case Sw18 shows a smaller peak, but with

substantial radial spread. The turbulent azimuthal flux v′θφ
′
1 is negligible for case

Sw0 (see Figure 4.6(c)). The production of v′θφ
′
1 can be expressed as

Pvθφ1
∼= −u′φ′1

∂Vθ
∂x
− v′rφ′1

∂Vθ
∂r
− u′v′θ

∂φ1

∂x
− v′rv′θ

∂φ1

∂r
. (4.3)
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The absence of any azimuthal momentum and the negligible shear stresses u′v′θ
and v′rv

′
θ in case Sw0 (see Figures 3.9(b),(c)) lead to negligible production, which

dictates that v′θφ
′
1. In contrast, the swirling cases exhibit significant azimuthal

momentum and secondary shear stresses, which lead to the production of flux

v′θφ
′
1. This phenomenon contributes to mixing enhancement in the swirling cases.

The radial distribution of the turbulent fluxes of the OJ scalar φ2 are pre-

sented in Figure 4.8. The flux u′φ′2 exhibits a similar distribution for cases Sw0

and Sw05 with two significant positive peaks. Case Sw18 exhibits a strong up-

stream flux of φ2, especially in the region close to the leading stagnation point. As

expected, the radial distribution of v′rφ
′
2 exhibits radial inward and outward flux of

the OJ scalar in all three test cases. The radial inward flux, which is of particular

interest when considering the mixing of φ2 with φ1, is slightly higher in case Sw0

at locations of x = 2.0D and x = 3.0D when compared to case Sw05. This factor

combined with the comparatively lower v′rφ
′
1 (see Figure 4.6(b)) indicates poor

mixing characteristics in this region for case Sw05 compared to case Sw0. Similar

to the IJ scalar, the azimuthal flux is negligible in case Sw0 for the OJ scalar. The

swirling cases exhibit a stronger flux of v′θφ
′
2.

4.6 Mixing quantification

This section discusses the quantification of mixing between two scalars

based on entropy and the segregation parameter. The advantage of injecting

separate scalars from each jet at a time can be noticed in the later quantifications.

4.6.1 Entropy

Simply put, entropy (Everson et al. (1998)) measures the probabilities of

different arrangements of scalar scattering occurring over a target area. Therefore,

entropy represents the diffusion of scalars. Entropy is formulated as follows:

Sk = kB Φk ln Φk − kB
∫∫

φk lnφk dydz, (4.4)

where kB is the Boltzmann constant, which is assumed to be equal to one, and

Φk =
∫∫

φk dydz. The integrations in Φk and the second term of Sk are applied

over the entire cross-section (i.e., y − z plane). The first term in this formulation

represents statistical entropy (Sstak) and the second term represents fluctuation
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(a)

(b)

(c)

Figure 4.9: Axial variation of (a) total entropy, (b) statistical entropy, and
(c) fluctuation entropy for an IJ scalar. Profiles are normalized by the total
entropy at x = 0.0D.
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(a)

(b)

(c)

Figure 4.10: Axial variation of (a) total entropy, (b) statistical entropy, and
(c) fluctuation entropy for an OJ scalar. Profiles are normalized by the total
entropy at x = 0.0D.
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entropy (Sfluk). Figure 4.9 presents the streamwise evolution of total entropy and

its terms for an IJ scalar. The values are normalized by the total entropy at the

nozzle exit cross-section. For x < 5.0D, the total entropy values for cases Sw0 and

Sw05 are comparable in magnitude. However, the entropy of case Sw05 increases

at a greater rate in the downstream region. Case Sw18 consistently exhibits higher

total entropy compared to the other two cases. The contribution of fluctuation

entropy is greater than that of statistical entropy by over two times in all three

cases. Figure 4.10, which presents the total entropy and its terms for an OJ

scalar, reveals the same trends in the evolution of total entropy as those for the IJ

scalar. However, statistical entropy scales higher than fluctuation entropy for the

OJ scalar, unlike the IJ scalar. The above observations from the distribution of

total entropy support the previous observations based on contour maps of mean

scalars that case Sw05 exhibits greater diffusion of the two scalars compared to

case Sw0 in the region of x ≥ 5.0D. Additionally, case Sw18 exhibits greater

diffusion than the other two cases from the nozzle exit only.

4.6.2 Segregation parameter

The segregation parameter α is defined as φ′1φ
′
2/(φ1 φ2). The numerator

in this expression represents the correlation between fluctuations of two scalars

at a point, which drives the sign of α. The denominator is the product of mean

scalars at that point. If α ≤ 0, its magnitude can be interpreted as the degree of

“unmixedness” between two scalars. In contrast, it is an indicator of the degree

of “mixedness” if α > 0. It is worth noting that φ′1φ
′
2 > 0 is only ensured by the

presence of an ambient fluid. However, the converse statement is not always true

(Tong & Warhaft (1995); Cai et al. (2011)) (refer to Appendix A for a mathe-

matical explanation). This is because if there is no ambient fluid at a location,

the scalars hold the relationship φ1 + φ2 = 1, which means their fluctuations are

anti-correlated. Furthermore, it becomes clear that positive values of α will first

become evident in the radial outward region before they appear in the downstream

centerline region because additional downstream distance is required to reach the

ambient fluid at the centerline.

Figure 4.11 presents the contour maps of α for the three test cases at the

central cross-section plane. To retain a considerable amount of scalars and prevent

α from approaching an unrealistic value, regions with φ1 < 0.05 or φ2 < 0.05 are

ignored. The centerline evolutions of α for the three test cases are compared in

Figure 4.12. Case Sw0 exhibits large negative values of α in the upstream region,
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Figure 4.11: Segregation parameter contour maps for cases (a) Sw0, (b) Sw05,
and (c) Sw18. The black line is the isoline of α = 0, where the downstream
region has α > 0. The regions where φ1 < 0.05 or φ2 < 0.05 are whited out.
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Figure 4.12: Centerline distribution of the segregation parameter.

indicating weak mixing. The centerline distribution shows an initial decrease, fol-

lowed by a rapid increase in α. The positive α values first appear at approximately

x = 4.5D near r = 0.9D and are visible closer to the centerline in the downstream

region. The centerline distribution reveals that α becomes positive at x ≈ 10.0D,

but it approaches a constant value of ≈ 0.06 in the downstream region. This

trend in the centerline distribution, where α decreases and then rapidly increases

before reaching to a positive constant value, was also observed by Cai et al. (2011).

Case Sw05 exhibits inferior α values at the region close to the centerline compared

to case Sw0. However, the α value in case Sw05 tends to become positive at a

farther upstream region compared to case Sw0. It is also slightly greater in the

downstream region. This suggests that even though the mixing characteristics in

case Sw05 are poor in the central upstream region, mixing in the radial outward

region and downstream region is improved. In case Sw18, α does not decrease

beyond −0.35, unlike the other two cases, and its minimum value occurs at the

stagnation point. It quickly increases to a positive value by x = 3.5D, which is

far upstream compared to the other two cases. Although case Sw18 exhibits lower

α values in the downstream centerline region compared to the other two cases, its

performance in the radially outward region is superior.
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4.7 JPDFs at centerline stagnation point

Because the leading stagnation point on the centerline of case Sw18 (i.e.,

(x, r) = (2.5D, 0.0D)) represents large scalar fluctuations, it is interesting to ex-

amine this point further. Figure 4.13 presents the JPDF of the fluctuations of two

scalars, as well as the JPDFs of the fluctuations of the streamwise velocity and

each scalar. The JPDF of (φ′1, φ
′
2) in Figure 4.13(a) indicates negative correlation

between the fluctuations of the two scalars, which was also observed for α. The

distribution is a line-like shape with two noteworthy peaks: one at the second

quadrant with a higher probability and the other in the fourth quadrant with a

relatively low probability. The line-like shape is a consequence of insufficient am-

bient fluid at this location. The two peaks, however, indicate a strong flapping

between φ1 and φ2. This flapping is caused by the oscillating stagnation point

(note that the stagnation point separates the upstream region enriched with φ1

and the downstream region enriched with φ2) and it results in the poor mixing

between φ1 and φ2 at this location (also evidenced by the highly negative value

of α, see Figures 4.11(c) and 4.12). Figure 4.13(b) presents the JPDF of (u′, φ′1),

which exhibits a positively correlated parallelogram-like shape distribution. This

suggests a stronger streamwise flux for the IJ scalar. In addition to having a

primary peak in the third quadrant, there is a secondary peak in the first quad-

rant with a lower probability. Similarly, the JPDF of (u′, φ′2) in Figure 4.13(c)

exhibits a parallelogram-like shape with anti-correlation between the fluctuations

in streamwise velocity and the OJ scalar.
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(c)

Figure 4.13: Joint probability density functions (JPDFs) of the (a) inner and
OJ scalar fluctuations, (b) streamwise velocity and IJ scalar fluctuations, and
(c) streamwise velocity and OJ scalar fluctuations for case Sw18 at the leading
centerline stagnation point (i.e., (x, r) = (2.5D, 0.0D)). The contour levels are
0.167:0.167:3.340 for (a), 0.034:0.034:0.680 for (b), and 0.030:0.030:0.600 for (c).

4.8 Conclusions

In this section, the transport of separate passive scalars injected through

each jet is studied and an attempt is made to examine the mixing between the

scalars with the help of different statistics. The intermediate swirling case (i.e.,

case Sw05), exhibiting a contrasting acceleration in the upstream central region,

exhibited a slower decay of the mean IJ scalar and slower growth of the mean

OJ scalar compared to the non-swirling case. However, the downstream region

exhibited a wider spread of scalars, which was confirmed by quantifying the dif-

fusion of scalars based on entropy. In the strongly swirling case (i.e., case Sw18),

the formation of an IRZ led to a dramatically improved spreading rate of mean

scalars, which was also confirmed based on entropy evolution. This spreading was

more prominent in this case than in the other two cases.

Enhancement of the entrainment rate because of an increase in swirling

strength resulted in the enhanced mixing of both scalars with ambient fluid, since

the enhanced entrainment rate is a key factor enabling positive correlation between

scalar fluctuations. The greater presence of ambient fluid in the swirling cases is
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also a reason for the declining peaks of OJ scalar fluctuation at the centerline com-

pared to the IJ scalar fluctuations. A distinctively stronger turbulent azimuthal

flux was observed in the swirling cases compared to the non-swirling case, where

this flux was negligible. The segregation parameter demonstrates the positive cor-

relation between scalar fluctuations, which signifies better mixing characteristics,

in strongly swirling case from far upstream region. Furthermore, the maximum

negative magnitude of the segregation parameter, which represents the degree of

“unmixedness”, was lower in the strongly swirling case compared to the other two

cases.

The JPDF of the scalar fluctuations at the leading centerline stagnation

point in the strongly swirling case contained two peaks, which indicates the flap-

ping between IJ and OJ scalars caused by the oscillation of the stagnation point.



Chapter 5

SPOD analysis for strongly

swirling case

5.1 Introduction

Various techniques of modal decomposition have been employed to bet-

ter understand the physically important structures or modes in the flow fields.

These techniques include proper orthogonal decomposition (POD) (Lumley (1967);

Sirovich (1987)), dynamic mode decomposition (DMD) (Schmid (2010)), and spec-

tral proper orthogonal decomposition (SPOD) (Sieber et al. (2016)), the last of

which, as its name suggests, is based on POD. The method of POD focuses on the

coherent structures with maximum TKE, whereas DMD separates out those coher-

ent structures with a particular frequency. SPOD, however, attempts to leverage

the characteristics of both methods, resulting in a clearer representation of the

structures involved. These methods are used for the identification of structures in

the swirling flows. Oberleithner et al. (2011) applied POD to a single swirl jet flow

and demonstrated the presence of helical structures surrounding the recirculation

zone. This was confirmed by Stöhr et al. (2011) and Markovich et al. (2014) with

the help of modal decomposition techniques. However, the analysis in the past

studies is mostly limited to the single swirling jet and that for the coaxial swirling

jet is rarely explored (Rajamanickam & Basu (2018)).

The effect of the coherent structures on the passive scalars can be insightful

for the investigation of mixing characteristics. Borée (2003) proposed an extension

to the POD technique to investigate the influence of coherent structures on other

simultaneously measured physical quantities in the system, such as pressure and

76
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scalar concentration. Antoranz et al. (2018) used the extended POD modes to

demonstrate a correlation between velocity and temperature in pipe flow. Stöhr

et al. (2011) used this approach to correlate the flow and a combustion flame in

swirling flow, while Sieber et al. (2017) also employed it in their SPOD analysis.

In this chapter, SPOD analysis is carried out at 2D planes to investigate the

coherent structures present in the flow for the case of strong swirl (i.e., case Sw18).

Note that the configuration of swirling coaxial jet has been rarely examined using

modal decomposition techniques. The effect of the existing flow field structures on

the passive scalar transport, which has also been scarcely reported, is addressed

in the present study. A brief description of the SPOD methodology in §5.2 is

followed by an illustration of the first few most energetic modes for the velocity

and scalar fields at various cross-sections in §5.3. The influence of low-order modes

on the turbulent quantities is then demonstrated in §5.4 by reconstructing those

quantities. The conclusion is made in §5.5 from the implications of the results.

5.2 Method for structure identification

5.2.1 Spectral proper orthogonal decomposition

The SPOD method of Sieber et al. (2016) used in the present study re-

sembles the snapshot POD method introduced by Sirovich (1987) except for the

prior filtering of the correlation matrix. Consider M time-series data or snapshots

collected for N grid points in a 2D plane with M < N . Here, each snapshot

contains the three components (U, V,W ) of the velocity vector U , which can be

decomposed into mean 〈U〉 and fluctuating u′ parts. The fluctuating part u′ is

arranged in matrix form as
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u′ =



u′(x1, t1) u′(x1, t2) · · · u′(x1, tM)
...

...
...

...

u′(xN , t1) u′(xN , t2) · · · u′(xN , tM)

v′(x1, t1) v′(x1, t2) · · · v′(x1, tM)
...

...
...

...

v′(xN , t1) v′(xN , t2) · · · v′(xN , tM)

w′(x1, t1) w′(x1, t2) · · · w′(x1, tM)
...

...
...

...

w′(xN , t1) w′(xN , t2) · · · w′(xN , tM)



, (5.1)

where x denotes the coordinate and ti denotes the ith snapshot. To find the opti-

mal basis (based on optimizing the mean square of the data variable or turbulent

kinetic energy while considering the fluctuating velocity field), the correlation ma-

trix R is obtained by computing the inner product (denoted by 〈 , 〉) between

every pair of snapshots (temporal correlation):

Ri,j =
1

M
〈u′(x, ti),u′(x, tj)〉, (5.2a)

=
1

M

N∑
l=1

(
u′(xl, ti) u

′(xl, tj) + v′(xl, ti) v
′(xl, tj) + w′(xl, ti) w

′(xl, tj)
)
.

(5.2b)

Thus, the correlation matrix R is simply equal to (u′Tu′)/M and its size is

M ×M . A filtering operation is now performed on the correlation matrix R to

improve the diagonal similarity of R, which allows continuous shifting between

the energetically optimal POD and the spectrally clean DMD. A simple Gaussian

low-pass filter is given by

Si,j =

Mf∑
k=−Mf

gk Ri+k,j+k, (5.3)

where gk represents the coefficients of the symmetric finite-impulse-response filter

of length 2Mf + 1. Generally, the filter length Mf can be chosen to correspond

to the characteristics time scale, and in the present study it is taken as equivalent

to the time D/UIJ , leading to Mf = 100. Here, the Gaussian filter is used for

the smooth temporal response taking account of periodicity at the extremes of

the time series. It is given by gk = (1/
√

2πσ)e−k
2/2σ2

, with standard deviation

σ = Mf/5. The eigenvalues λi and eigenvectors ai of the filtered correlation

matrix S are then computed by solving the eigenvalue problem. Note that the
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eigenvalues λi represent the modal energies and are arranged in descending order of

magnitude λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0, whereas the eigenvectors ai are the temporal

mode coefficients. The ith SPOD spatial modes Φi(x) are now determined by

projecting the snapshots onto the temporal coefficients:

Φi(x) =
1

Mλi

M∑
j=1

ai(tj) u′(x, tj). (5.4)

Finally, the fluctuations in the vector field are reconstructed by

u′(x, tj) =
m∑
i=1

ai(tj) Φi(x). (5.5)

Here, m denotes the number of modes used for the reconstruction of the field,

and its magnitude can be scaled anywhere between 1 and M to demonstrate the

contribution of low-order modes.

5.2.2 Extension to the passive scalar field

The above analysis is then extended to the simultaneously computed scalar

field by using the approach of Borée (2003) which demonstrates the correlation

between the flow structures and scalar field. Similar to the velocity field, the

scalar φ is decomposed into mean 〈φ〉 and fluctuating φ′ parts (the subscript on φ

denoting the IJ or OJ scalar is omitted here to avoid confusion). Analogously to

Equation 5.4, the extended SPOD modes Ψi(x) are determined for each scalar:

Ψi(x) =
1

Mλi

M∑
j=1

ai(tj) φ
′(x, tj), (5.6)

where the modal energies λi and the temporal mode coefficients ai(tj) are the same

as those obtained from the decomposition of the velocity field. It was shown by

Borée (2003) that these modes give only the part that is correlated with the SPOD

velocity modes Φi(x), while reconstructing the field of scalar fluctuations,

φ′corr(x, tj) =
m∑
i=1

ai(tj) Ψi(x), (5.7)

whereas the part that is uncorrelated with these modes is given by

φ′uncorr(x, tj) = φ′(x, tj)− φ′corr(x, tj). (5.8)
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In the present study, φ′uncorr(x, tj) is calculated exactly by prior calculation of

φ′corr(x, tj) by taking m = M , while the effect of the correlated low-order modes

is demonstrated by varying m,

φ′(x, tj) = φ′uncorr(x, tj) +
m∑
i=1

ai(tj) Ψi(x). (5.9)

5.2.3 Data extraction

The number of snapshots (M) taken for SPOD analysis is 10, 000. The

cross-sections just upstream and downstream of the central leading stagnation

point are focused in this study. Thus, the data is extracted from the 2d cross-

sections at x/D = 0.3, 1.0, 2.5, and 3.5. The corresponding extracted cross-

sectional domains (Ly × Lz) are 2D × 2D, 3D × 3D, 4D × 4D, and 4D × 4D,

while the corresponding grid points (Ny×Nz) are 141×141, 211×211, 281×281,

and 281× 281, respectively. Thus, the number of snapshots is such that M < N ,

where total grid points N = Ny×Nz. The SPOD analysis is carried out using the

computing language MATLAB.
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Figure 5.1: Percentage energy content of velocity fluctuations (K =

λi/
∑M

k=1 λk) in the considered four downstream y-z sections associated with
SPOD mode i.

5.3 SPOD spatial modes

5.3.1 SPOD spatial modes of velocity field

Figure 5.1 shows the percentage energy content of the SPOD mode of ve-

locity fluctuations (K = λi/
∑M

k=1 λk) at the four selected cross-sections (i.e., at

x/D = 0.3, 1.0, 2.5, and 3.5). The first four (most energetic) SPOD spatial

modes of the velocity field (Φ1, Φ2, Φ3, and Φ4) are then as depicted in Figures

5.2-5.5, with the contour maps representing the streamwise velocity component

and the vectors representing the resultant of the cross-streamwise velocity com-

ponents. Red and blue in the contour maps indicate positive and negative values,

respectively.

At the cross-section x/D = 0.3, the first four modes contribute 6.6% of the

total energy (for the first, second, third, and fourth modes, K = 2.1%, 2.0%, 1.3%,

and 1.2%, respectively), and 50% of the total energy is recovered by 141 modes.

The first two spatial modes Φ1 and Φ2 (see Figure 5.2) resemble each other with

a phase shift and thus form the first pair of modes. Three pairs of alternate lobe-

like structures appear in these two modes at the ISL (around r/D = 0.7). Here, a

pair of alternate lobe-like structures refers to the alternate regions of positive (red

contours) and negative (blue contours) streamwise components of the spatial mode

of the velocity field. It can be observed that the positive streamwise component

of the spatial mode of the velocity field is associated with the counterclockwise
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Figure 5.2: First four SPOD spatial modes of the velocity field in the y-z
plane at the cross-sections x/D = 0.3. Contour maps represent the streamwise
velocity component.

(swirling direction) vectors and the negative one with the clockwise (opposite to

swirling direction) vectors. The next two modes Φ3 and Φ4 form the second

pair of modes with a phase shift, and these modes contain four pairs of alternate

lobe-like structures with similar characteristics to those in the preceding modes.

Further downstream at the cross-section x/D = 1.0, the contribution of

the first four modes is slightly reduced compared with that at the upstream cross-

section, to 6.3% of the total energy (for the first, second, third, and fourth modes,

K = 1.6%, 1.6%, 1.5%, and 1.5%, respectively). It can be seen that these four
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Figure 5.3: First four SPOD spatial modes of the velocity field in the y-z plane
at the cross-sections x/D = 1.0. Contour maps represent the streamwise veloc-
ity component. Green colored + symbol is used for counter-clockwise vortices
and pink colored + symbol is used for clockwise vortices.

modes represent approximately equal energy content, unlike that in the upstream

cross-section, where the first pair of modes represents slightly higher energy content

compared with the second pair. Fewer modes (130) are required to recover the 50%

of total energy at this cross-section x/D = 1.0 compared with the upstream cross-

section. The spatial modes of the velocity field at this downstream cross-section

x/D = 1.0 (see Figure 5.3) show notable features. Apart from having three pairs

of alternate lobe-like structures in modes Φ1 and Φ2 (the first pair of modes),

and four pairs of alternate lobe-like structures in Φ3 and Φ4 (the second pair of
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Figure 5.4: First four SPOD spatial modes of the velocity field in the y-z
plane at the cross-sections x/D = 2.5. Contour maps represent the streamwise
velocity component.

modes), three pairs of counter-rotating vortical structures appear in the first pair

of modes, and four pairs of such structures appear in the second pair of modes.

The centers of these vortical structures lie at approximately r/D = 0.9 (situated

at the outer region of the ISL). Lobe-like structures have also been reported in

other studies. Stöhr et al. (2011) reported a pair of similar lobe-like structures for

the first two POD modes in their study on co-swirling flows. The configuration of

coaxial jet with swirl in the OJ was studied by Rajamanickam & Basu (2018), who

also reported the existence of similar three and four pairs of lobe-like structures
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Figure 5.5: First four SPOD spatial modes of the velocity field in the y-z
plane at the cross-sections x/D = 3.5. Contour maps represent the streamwise
velocity component.

for the first and second pairs of POD modes, respectively, in their pre-vortex-

breakdown case (which exhibits a separated recirculation zone surrounding the IJ

flow).

At the downstream cross-section x/D = 2.5, there is a slightly higher energy

contributionK from the first four modes compared with the upstream cross-section

x/D = 1.0 (for the first, second, third, and fourth modes, K = 1.8%, 1.7%, 1.6%,

and 1.5%, respectively). However, the spatial modes of the velocity field (see
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Figure 5.4) suggest that the organized lobe-like structures as well as counter-

rotating vortical structures are disrupted. Furthermore, modes Φ1 and Φ2 and

modes Φ3 and Φ4 are not paired, since they exhibit dissimilar structures. At the

cross-section x/D = 3.5, the spatial modes of the velocity field (see Figure 5.5)

are featureless, with no clear evidence of counter-rotating vortical structures.

The development of the spatial modes (the most energetic four modes)

of the velocity field reveals that counter-rotating vortical structures form at the

upstream region around the IRZ and eventually fade out in the downstream region.

The effects of these structures on the passive scalar fields and turbulent quantities

are discussed in §5.3.2 and §5.4, respectively. The cross-section x/D = 3.5 is not

considered for further investigation, since it shows featureless structures.
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Figure 5.6: First four extended SPOD spatial modes of the IJ scalar (φ1) field
in the y-z plane at the cross-section x/D = 0.3.

5.3.2 Extended SPOD spatial modes of passive scalar fields

This section presents the first four (most energetic) extended SPOD spatial

modes (Ψi(x)) of IJ and OJ scalar fields at cross-sections x/D = 0.3, 1.0, and 2.5.

At x/D = 0.3, the extended spatial modes of both scalar fields (see Figures

5.6 and 5.7) exhibit three and four pairs of alternate lobe-like structures (although

not very clearly) in modes Ψ1 and Ψ2 (first pair of modes), and Ψ3 and Ψ4 (second

pair of modes), respectively, at the ISL 0.4 ≤ r/D ≤ 0.7. Note that the positive

mode values of the IJ scalar coincide with the negative mode values of the OJ scalar
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Figure 5.7: First four extended SPOD spatial modes of the OJ scalar (φ2)
field in the y-z plane at the cross-section x/D = 0.3.

in this region, which suggests a negative covariance between the two scalars. This

is caused by the insufficiency of ambient fluid at this cross-section (as explained

in §4.6.2). The spatial modes of the OJ scalar show featureless structures at the

OSL (r/D > 1.0).

Noteworthy features in the extended spatial modes of both scalar fields

are observed at the downstream location x/D = 1.0 (see Figures 5.8 and 5.9). To

demonstrate the effect of counter-rotating vortical structures, the vector plots from

spatial modes of velocity field are superimposed on the contour maps of first and

third modes of scalar fields. Three and four pairs of lobe-like structures clearly
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Figure 5.8: First four extended SPOD spatial modes of the IJ scalar (φ1) field
in the y-z plane at the cross-section x/D = 1.0. Vectors from spatial modes
of velocity field are superimposed on first and third modes to demonstrate the
effect of counter-rotating vortices.

appear in the first and second pairs of spatial modes, respectively, of the two

scalars. Moreover, these structures for spatial modes of the IJ scalar are confined

to the ISL r/D ≤ 1.2, while the spatial modes of the OJ scalar exhibit distinct

patterns in both the ISL r/D ≤ 1.2 and OSL r/D > 1.2. It can be observed that

positive values of the spatial modes of the IJ scalar are predominantly associated

with outward (radially) vectors and negative values are associated with inward

vectors. In the case of the spatial modes of the OJ scalar, the opposite behavior

is seen in the ISL r/D ≤ 1.2, since positive and negative values of spatial modes
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Figure 5.9: First four extended SPOD spatial modes of the OJ scalar (φ2) field
in the y-z plane at the cross-section x/D = 1.0. Vectors from spatial modes
of velocity field are superimposed on first and third modes to demonstrate the
effect of counter-rotating vortices.

are associated with inward and outward vectors, respectively. This reflects the

fact that the counter-rotating vortices stimulate outward and inward radial fluxes

of the IJ and OJ scalars, respectively, which is essential for mixing between the

two scalars. However, the structures in the OSL r/D > 1.2 exhibit outward radial

flux of the OJ scalar, since positive values of spatial modes are accompanied by

outward vectors.

At the downstream cross-section x/D = 2.5 (see Figures 5.10 and 5.11),
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Figure 5.10: First four extended SPOD spatial modes of the IJ scalar (φ1)
field in the y-z plane at the cross-section x/D = 2.5.

the first four spatial modes of both scalars do not show organized structures like

those in the upstream sections. Moreover, these spatial modes are not paired with

each other.
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Figure 5.11: First four extended SPOD spatial modes of the OJ scalar (φ2)
field in the y-z plane at the cross-section x/D = 2.5.
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5.4 Reconstruction of turbulent quantities

In this subsection, various turbulent quantities are reconstructed from the

SPOD modes with m = 1, 2, 4, 8, 50, and 200 at the cross-section x/D = 1.0

to demonstrate the effect of the organized counter-rotating vortical structures

present in the region. These reconstructed turbulent quantities are compared

with the quantities evaluated from the original instantaneous total data (i.e., a

total of 10,000 snapshots). Although the extracted data is processed in Cartesian

coordinate system (not the cylindrical coordinate), the reconstructed turbulent

quantities Wrms, Vrms and 〈v′φ′k〉 presented in this subsection are referred to the

azimuthal RMS velocity, radial RMS velocity and radial fluxes of scalar since the

turbulent quantities are reconstructed over the vertical line passing through the

center (0, 0) of cross-section.

5.4.1 RMS velocity fluctuations

Figure 5.12 presents the radial distributions of the streamwise (Urms), az-

imuthal (Wrms), and radial (Vrms) components of the RMS velocity reconstructed

using m = 1, 2, 4, 8, 50, and 200, and compares them with the respective quanti-

ties determined using the original instantaneous data. For Urms, the contribution

of the first four modes (m = 4) is significantly higher for the upper inner peak at

y/D ≈ 0.9 (situated in the outer region of the ISL); however, it is lower for the

lower inner peak at y/D ≈ −0.9 (also situated in the outer region of the ISL).

Note that the locations of the centers of the counter-rotating vortices also lie at

r/D ≈ 0.9. Thus, the greater contributions of the first four modes can be at-

tributed to the presence of counter-rotating vortical structures. This inequality in

contribution between the upper and lower regions is caused by the asymmetrical

nature (in the axial direction) of the spatial modes (see Figure 5.3). The contribu-

tion of low-order modes (m ≤ 8) is smaller for the outermost peaks at y/D ≈ ±1.4

(situated in the OSL), which manifests the dominance of the high-order structures

(or small-scale structures) in the OSL region. The modes m = 200 are observed to

be insufficient to completely recover the profile obtained from total data in both the

inner and OSL. Similar trends are also observed in the profiles of Wrms and Vrms.

Although the contribution from the low-order modes (m ≤ 8) for the outermost

peaks at y/D ≈ ±1.4 is observed to be considerably greater in the cases of Wrms

and Vrms compared with Urms, it is still lower compared with the respective inner

peaks at y/D ≈ ±0.9 in the cases of both Wrms and Vrms. The above discussion
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Figure 5.12: Reconstruction of RMS velocities using first m number of modes
at the cross-section x/D = 1.0. (a) Streamwise RMS velocity. (b) Azimuthal
RMS velocity. (c) Radial RMS velocity. “Total data” represents the quantity
evaluated from the original instantaneous data.

demonstrates that the counter-rotating vortices are essentially contributing to the

RMS velocity peaks in the ISL (y/D ≈ ±0.9), whereas the high-order structures

are the sources of the RMS velocity peaks in the OSL (y/D ≈ ±1.4).

5.4.2 RMS scalar fluctuations, covariance between two scalars,

and radial turbulent flux of scalars

Figure 5.13 shows the radial distributions of the RMS fluctuations of the

IJ scalar (φ1−rms) and OJ scalar (φ2−rms), and Figure 5.14 shows the covariance

between the two scalars (〈φ′1φ′2〉) reconstructed using m = 1, 2, 4, 8, 50, and 200,

and compares them with the respective quantities evaluated using the original

instantaneous data. The first four modes (m = 4) contribute significantly to the

ISL peak (y/D ≈ ±0.7) of both φ1−rms and φ2−rms. However, the contribution

is less in the lower region (y/D < 0) than the upper region (y/D > 0), which is
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Figure 5.13: Reconstruction of RMS scalar fluctuations using first m number
of modes at the cross-section x/D = 1.0. (a) The RMS fluctuations of IJ scalar.
(b) The RMS fluctuations of OJ scalar.
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Figure 5.14: Reconstruction of covariance between two scalar fluctuations
using first m number of modes at the cross-section x/D = 1.0.

also observed in the case of Urms. A second radial peak is observed for φ2−rms in

the OSL region (y/D ≈ ±1.5) and there is also a significant contribution from

the first four modes. However, this contribution is lower than that at the ISL

peak. Despite the significant contribution from the first few modes (m ≤ 8) in

both φ1−rms and φ2−rms, the high-order modes (which correspond to the high-order

structures) are required to completely recover the profile obtained from the total

data. As stated earlier in §4.6.2 and §5.3.2, a negative 〈φ′1φ′2〉 is observed at the

cross-section x/D = 1.0 owing to insufficiency of the ambient fluid. In contrast to

the RMS velocity fluctuations and the RMS fluctuations of the scalars, the only

radial peak of 〈φ′1φ′2〉 (present in the ISL y/D ≈ ±0.7) has a smaller contribution

from the first four modes, and thus high-order modes are required to recover 〈φ′1φ′2〉
obtained from the total data.

Figure 5.15 presents the radial profiles of the radial turbulent fluxes of

the IJ scalar (〈v′φ′1〉) and OJ scalar (〈v′φ′2〉) reconstructed using selected modes

and compares them with the respective quantities determined using the original

instantaneous data. Note that the radial flux here refers to the flux in the lateral

(i.e., y) direction. An outward radial flux of the IJ scalar is observed in the ISL
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Figure 5.15: Reconstruction of radial turbulent flux of scalars using first ‘m’
number of modes at the cross-section x/D = 1.0. (a) Radial turbulent flux of
IJ scalar. (b) Radial turbulent flux of OJ scalar.

(r/D ≤ 1.2), whereas an inward radial flux of the OJ scalar is observed in the same

region. As mentioned earlier in §5.3.2, the counter-rotating vortical structures

exhibit radial outward and inward fluxes of the IJ and OJ scalars, respectively, in
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the ISL, and thus the contribution from the first four modes is higher for 〈v′φ′1〉
and 〈v′φ′2〉 in the upper region (0 < y/D ≤ 1.2). However, this contribution is

less in the lower region (0 > y/D ≥ −1.2) owing to the asymmetry of the spatial

modes around the jet axis (see Figures 5.8 and 5.9). Although the first four spatial

modes of the OJ scalar exhibit an outward radial flux of the OJ scalar in the OSL

(r/D > 1.2), its contribution to the total 〈v′φ′2〉 is not large. Therefore, high-order

modes play a vital role in the flux 〈v′φ′2〉.

5.5 Conclusions

In this study, the spectral proper orthogonal decomposition (SPOD) was

employed to elucidate the physically important structures or modes in the strongly

swirling coaxial jet flow (i.e., case Sw18). The analysis was extended to the trans-

port of two separate passive scalars that were simultaneously injected through

each jet.

At the cross-stream section present in the region upstream of the central

stagnation point (x/D = 1.0), the first two (most energetic) spatial modes of

the velocity field revealed three pairs of counter-rotating vortical structures, while

the two succeeding modes revealed four pairs of such structures. The centers of

these vortical structures were found to lie in the ISL present between the two jets.

Spatial modes (extended) of scalars also exhibited three and four pairs of alternate

positive–negative organized lobe-like structures in this region for the first two and

succeeding two modes, respectively. The vortical structures were observed to result

in a radial outward flux of the IJ scalar and a radial inward flux of the OJ scalar

in the ISL, which is crucial for mixing between the two jets. However, distinct

structures appeared in the spatial modes of the OJ scalars in the OSL. These

organized structures were subsequently disrupted in the downstream region.

The significance of these pairs of counter-rotating vortical structures was

demonstrated by reconstructing various turbulence statistics, namely, the RMS

velocities, the RMS scalar fluctuations, the covariance between the two scalars,

and the radial turbulent fluxes of the scalars. The results showed that the first

four modes make a greater contribution to these statistics except for the covariance

between the two scalars, particularly in the ISL. However, this contribution was

asymmetric about the axis.
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Conclusions and future prospects

6.1 Conclusions

In this thesis, DNS was used to study the single-phase, unconfined coaxial

jet under the influence of swirl introduced in OJ. Two cases with coaxial jet with

varying swirling strengths (Sw = 0.5 and 1.8) were investigated and compared to

a non-swirling case (Sw = 0). In order to better the inlet boundary condition,

which was crucial in case of swirl jet, the separate simulations were performed for

the nozzles, and the data of instantaneous velocity components at the nozzle exit

was mapped onto the DNS computational grid. The numerical results were also

verified with the experimental measurements and seemed to be satisfactory.

In Chapter 3, the results of momentum transport were presented and the

following conclusions were drawn.

• The findings of Ben-Yeoshua (1993) was confirmed in which IRZ was resulted

for the case Sw18 and is not observed for the case Sw05.

• The coaxial swirling jet can lead to a contrasting acceleration, as observed in

the intermediate swirling case (i.e., case Sw05) at the upstream region due to

the negative pressure gradient. However, the downstream region exhibited

a centerline decay and radial spread of streamwise velocity.

• As a result of swirl, the Reynolds stresses and TKE were observed to be

intensified. Analysis of budgets of TKE and Reynolds normal stresses was

carried out for cases Sw0 and Sw18, and following key conclusions were made.

100
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– Turbulent diffusion term caused TKE level to increase in the central

region of OJ of swirling case.

– TKE in the region outside of IRZ was convected from highly energetic

upstream region (x = 0.3D, 1.0D) to the downstream region (x = 3.0D)

in the swirling case. However, the positive contribution by the convec-

tion term in non-swirling case seemed to be smaller.

– The pressure-strain correlation term distinctively acted as an energy

sink at x = 1.0D for radial component of Reynolds normal stress at

OSL in the swirling case contrary to the non-swirling case.

– Production of Reynolds normal stresses was enhanced due to the swirl

as the terms having streamwise gradient of mean velocity also con-

tributed to the production in addition to the terms with the radial

gradient of mean velocity.

In Chapter 4, the separate passive scalars were injected simultaneously

through each jet of coaxial jet to study the mixing between two jet fluids. The

conclusions based on this study are summarized as follows.

• The intermediate swirling case exhibited a slower decay of the mean IJ scalar

and slower inward growth of the mean OJ scalar due to the acceleration in

the upstream central region compared to the non-swirling case. However, the

downstream region exhibited a wider spread of scalars, which was confirmed

by quantifying the diffusion of scalars based on entropy.

• Occurrence of an IRZ in strongly swirling case led to a dramatically improved

spreading rate of mean scalars, which was also confirmed based on entropy

evolution. This spreading was more prominent in this case than in the other

two cases.

• Turbulent azimuthal flux was observed distinctively stronger in the swirling

cases compared to the non-swirling case, in which this flux was negligible.

• Positive segregation parameter signifying better mixing characteristics was

observed at far upstream in the strongly swirling case as compared to other

two cases. Furthermore, the maximum negative magnitude of the segregation

parameter, which represents the degree of “unmixedness”, was lower in the

strongly swirling case compared to the other two cases.
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• The JPDF of the scalar fluctuations at the leading centerline stagnation

point in the strongly swirling case contained two peaks, which indicates the

flapping between IJ and OJ scalars caused by the oscillation of the stagnation

point.

In Chapter 5, SPOD analysis and its extension to passive scalars were

presented for the strongly swirling case. Following conclusions were made from

the findings.

• At the cross-stream section present in upstream region of central stagnation

point, first two and succeeding two spatial modes of velocity field revealed

three and four pairs of counter-rotating vortical structures, respectively, and

these vortical structures were centered at the ISL.

• In the same upstream region of central stagnation point, spatial modes of

scalars also exhibited three and four pairs of the alternate positive-negative

organized lobe-like structures in ISL for the first two and succeeding two

modes, respectively. However, different structures were appeared in the spa-

tial modes of OJ scalars in the OSL.

• The first four modes were appeared to have higher contribution in the RMS

velocities, RMS scalar fluctuations and radial turbulent fluxes of scalars.

However, this contribution was asymmetric about the axis.

The results of this work can be useful for understanding and designing

practical combustors, which often have swirling flows. Based on the observation

in the intermediate swirling case that the flow was accelerated in the upstream

region, it can be said that the swirling coaxial jet does not always ensure the

decay of jet and hence the spread, and this observation needs to be considered

while designing the combustors. Another significance of this study is that the

budget analysis of TKE and Reynolds normal stresses may provide an useful basis

for turbulence modeling work.

6.2 Future prospects

As the coaxial swirling jet is widely used in combustors, it can be of special

interest to investigate the reaction occurring between two jet species. This can be
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achieved by using the conserved scalar theory (Bilger et al. (1991); Watanabe et al.

(2014)). It investigates the isothermal one-step irreversible reaction, i.e., species

A (here it can be IJ species) reacts with species B (here it can be OJ and ambient

species) to form product P irreversibly. In the future work, this method can be

used to determine the region where the production rate of product P is higher

and the transport of product P . The case of strongly swirling case is of special

interest as it exhibits IRZ. Furthermore, SPOD analysis can reveal the influence

of vortical structures on the species transport.
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Appendix A

Effects of ambient fluid on the

statistics of scalars

The entrained ambient fluid plays a crucial role in the development of the

statistics of scalars injected through both jets. The first effect is deviation between

the σ1 and σ2 profiles and the second effect is the determination of the sign of φ′1φ
′
2.

These effects are mathematically explored in this appendix.

We begin with the law of the conservation of mass for the instantaneous

and mean flows (which is valid at any given location in the domain) as follows:

φ1 + φ2 + φA = 1, (A.1a)

φ1 + φ2 + φA = 1. (A.1b)

These equations will be used frequently in the following formulations. The corre-

lation term φ′1φ
′
2 can be calculated by expanding and rearranging the equations

above as

φ′1φ
′
2 = φ1φ2 − φ1 φ2, (A.2a)

= (1− φ2 − φA)φ2 − (1− φ2 − φA) φ2, (A.2b)

=−
(
φ2

2 − φ2
2)− φ2φA + φ2 φA, (A.2c)

=− σ22 − φ2φA + φ2 φA. (A.2d)

If there is no ambient fluid (i.e., φA = 0 and φA = 0), then the correlation φ′1φ
′
2

will be equal to −σ22, which is always negative. This also suggests that positive

correlation φ′1φ
′
2 can only be achieved with σ2

2 + φ2φA < φ2 φA, which proves the
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second effect of ambient fluid. For the sake of completeness, the counter-equation

to Equation A.2d can be derived as follows:

φ′1φ
′
2 = −σ12 − φ1φA + φ1 φA. (A.3)

From Equations A.2d and A.3, we obtain,

σ1
2 = σ2

2 + φ2φA − φ2 φA − φ1φA + φ1 φA, (A.4a)

= σ2
2 + φ′2φ

′
A − φ′1φ′A. (A.4b)

This indicates that σ1 = σ2 is ensured by the absence of ambient fluid. However,

the occurrence of φ′2φ
′
A = φ′1φ

′
A also results in equality of the RMS fluctuations of

scalars.



Appendix B

Criterion for the occurrence of

vortex breakdown

As discussed in Chapter 1, the researchers (Ben-Yeoshua (1993); Cham-

pagne & Kromat (2000); Santhosh et al. (2013)) have used the swirl number and

experimentally or numerically investigated its threshold value for the occurrence

of VB in the swirling jets. However, a criterion based on the theoretical con-

siderations has been proposed by Billant et al. (1998) and is explained in this

appendix.

Consider a strongly swirling jet injected in an open environment resulting

in a conical VB (see Figure B.1). At an streamwise distance x1, a stagnation point

is shown on the axis along with the conical stagnation zone in the downstream

region which demonstrates a typical conical VB. Here, the streamwise, azimuthal,

and radial velocities are represented by Vx, Vθ, and Vr. The static pressure is

represented by P with P0 being static pressure at a location x0 far upstream of

stagnation point, P1 being the static pressure at the stagnation point on the axis

(i.e., at location x1), and P∞ being the ambient pressure. Applying Bernoulli’s

principal (which states that the total head in the flow should be constant) along

the axis, we get
P0

ρ
+
V 2
x (0, x0)

2
=
P1

ρ
. (B.1)

where, Vx(0, x0) is the streamwise velocity on the axis (i.e., at r = 0) at x0. The

approximation of equation for mean radial momentum gives,

∂P

∂r
=

ρ V 2
θ

r
. (B.2)
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Figure B.1: Schematic of conical VB. Adapted from Billant et al. (1998).

Integrating with respect to r,

P0 = P∞ −
∫ ∞
0

ρ V 2
θ (r, x0)

r
dr. (B.3)

Substituting in Equation B.1 and rearranging,

P∞ −
∫ ∞
0

ρ V 2
θ (r, x0)

r
dr +

ρ V 2
x (0, x0)

2
= P1. (B.4)

It is assumed that the velocity inside the stagnation zone is negligibly small

(also observed by Escudier & Keller (1983); Escudier (1988)). Moreover, the am-

bient fluid is stationary and the stagnation zone is open to the ambient fluid.

This indicates that the pressure in the stagnation zone is equal to the ambient

pressure and thus, P1 = P∞. After substituting this identity in Equation B.4 and

rearranging, we get, ∫ ∞
0

V 2
θ (r, x0)

r
dr

V 2
x (0, x0)

=
1

2
. (B.5)

This forms the necessary condition for the occurrence of VB. Billant et al. (1998)

have demonstrated the usefulness of this criterion with the help of experimental

investigations. However, the above criterion may not hold true for the bubble
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type VB or VBB as the stationary ambient fluid and the stagnation zone are not

directly connected, and the pressure deficit is generated in VBB as a result of

Equation B.3. Thus, the identity P1 = P∞ does not hold true and needs to be

replaced by P1 < P∞ (also observed in Figure 3.5(c) and by Ben-Yeoshua (1993);

Champagne & Kromat (2000)). This modifies the above criterion as follows,∫ ∞
0

V 2
θ (r, x0)

r
dr

V 2
x (0, x0)

>
1

2
. (B.6)

This forms a weak criterion necessary for the occurrence of VB. Moreover, the

turbulence and the configuration of coaxial swirling jet complicate the above cri-

terion. In the present thesis, the left-hand side of above criterion is equal to 0.74

and 2.67 for the cases Sw05 and Sw18, respectively. This demonstrates the weaker

nature of above criterion and the obstacle in proposing a criterion based on theo-

retical consideration. Hence the researchers widely use swirl number and rely on

experimentally or numerically investigated threshold value of swirl number for the

occurrence of VB.



Appendix C

Types of vortex breakdown

In past researches, several types of VB have been observed in the swirling

flows and are summarized in this appendix.

(a) Bubble:

Sarpkaya (1971a) imparted a single swirling jet in a slightly diverging tube

and the structure of VB was visualized by injecting the dye into the flow field.

For a set of Reynolds number and swirling strength, an axisymmetric bubble was

appeared at the central region with a downstream tail (see Figure C.1). The bubble

was characterized by low velocity recirculating fluid. The bubble type of VB or

VBB is commonly found by many researchers in both the single swirling jet (Faler

& Leibovich (1977); Billant et al. (1998); Moise & Mathew (2019)) as well as the

coaxial swirling jet (Dinesh & Kirkpatrick (2009); Santhosh et al. (2013)). Note

that Santhosh et al. (2013) reported two separate types of VBB (see Figure 1.3):

VBB penetrated by central jet (also found in the present study, see Figure 3.4(c))

and CTRZ in which the penetrated part was absent.

(b) Spiral:

Prior to VBB with a slow increment in the swirling strength, Sarpkaya

(1971a) observed that the dyed filament decelerated and subsequently spiraled in

the downstream region after an abrupt kink (see Figure C.2). Spiral VB was also

observed to be evolved into the VBB. Faler & Leibovich (1977) also reported the

similar type of VB. As per our knowledge, such type of VB is not found in the

coaxial swirling jet as no past research results could be found for the same.
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Figure C.1: Bubble type of VB. Adapted from Sarpkaya (1971a).

Figure C.2: Evolution of spiral type of VB presented by Sarpkaya (1971a)
based on the increment in the angle of swirl generating vanes.

(c) Double helix:

With a very slow increment in the swirling strength, Sarpkaya (1971a)

exhibited that the spiral VB evolved into a double helix type of VB (see Figure C.3)

before ultimately evolving into the VBB. Double helix VB was characterized by

the expansion of dyed filament into a slightly curved triangular sheet. Each half

of the sheet wrapped around the other half to form a double helix. This type of
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Figure C.3: Double helix type of VB. Adapted from Sarpkaya (1971a).

Figure C.4: Conical type of VB. Adapted from Billant et al. (1998).

VB was also reported by Faler & Leibovich (1977). Similar to spiral VB, double

helix VB is not found in the coaxial swirling jet.

(d) Conical:

Billant et al. (1998) reported the conical type of VB for their experimental

study of a single swirling jet (see Figure C.4). It exhibited the expansion of the

vortex at the stagnation point which was followed by the diversion of conical sheet.

This sheet was not reattached in the downstream region. The similar structure of

VB was also observed by Moise & Mathew (2019) for a single swirling jet whereas

Santhosh et al. (2014) observed it for their study of the coaxial swirling jet.
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Sarpkaya (1971a,b) has also presented the conditions for the occurrence

of first three types of VB (i.e., bubble, spiral, and double helix) based on the

numerous experimental measurements for the single swirling jet configuration. It

was reported that for the Reynolds number Re just greater than 2000, the spiral

VB occurred for even a low circulation number Ω (Ω = Γ/UD, where U and D are

mean velocity and diameter of jet at the nozzle exit, and Γ circulation imparted

to flow = 2πRiVi sinβ. Ri and β are the radial distance to the tip of a vane

and the vane angle, respectively, and Vi is the mean velocity of flow between two

vanes. Vi sinβ is the mean azimuthal velocity at the tip of vane. Refer Figure 2

in Sarpkaya (1971a) for the vane configuration. Note that Ω can be said to be

directly proportional to Sw.). However, with the increase in Ω, the occurrence

of spiral VB was also noticed for smaller Re. Spiral VB was observed to lead to

two types of VB with the increment in Ω, i.e., either into double helix VB or into

VBB. However, the double helix occurred only for Re < 2000 and Ω > 2.3, and

the double helix VB ultimately transformed to VBB for Ω > 2.5. For Re > 2000

and Ω > 2.3, the spiral VB directly transformed into VBB.

In the configuration of coaxial swirling jet, Santhosh et al. (2014) ob-

served VBB for Rom = 1.12 and S = 0.75 (here, Rom = |∆U | /Vθ,avg and

S = (
∫ Ro
0

ρU Vθ r
2 dr)/(Ro

∫ Ro
0

ρU
2
r dr)). However, for the slight increase in S

with approximately constant Rom resulted in conical VB before returning to VBB

at S ≈ 0.92. This was observed for all Rom ≤ 1.12, however, the minimum S

required for the occurrence of VBB increases slightly with the decrease in Rom

(refer Figure 4 in Santhosh et al. (2014)).

In summary, although the above various types of VB have been reported,

a universal criterion or parameter governing the type of VB has not been intro-

duced clearly. Thus, this forms a scope for future researchers to investigate the

parameters governing the different types of VB.
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