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We study the static and spherical symmetric configurations in the nonminimal model of the de Rham-
Gabadadze-Tolley (dRGT) massive gravity with a flat reference metric. Considering the modified Tolman-
Oppenheimer-Volkof equation, the Bianchi identity, and energy-momentum conservation, we find a new
algebraic equation for the radial coordinate of the reference metric. We demonstrate that this equation
suggests an absence of the Vainshtein mechanism in the minimal model of the dRGT massive gravity, while
it has two branches of solutions where one connects with the Schwarzschild spacetime and another implies
the significant deviation from the asymptotically flat spacetime in the nonminimal model. We also briefly
discuss the boundary conditions for the relativistic stars in the dRGT massive gravity and a potential
relation with the mass-radius relation of the stars.
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I. INTRODUCTION

One of the aims of modified gravity theories is to explain
phenomena that are hardly understood in the framework of
the general relativity. Several modified gravity theories are
motivated to study the dark energy related to the accel-
erated expansion of the Universe [1–3]. The cosmological
constant Λ gives us a simple solution to the dark energy
problem, where Λ may be interpreted as the vacuum
energy induced from the quantum fluctuation of matter
fields. However, it suffers from two theoretical problems:
the fine-tuning problem and the coincidence problem (e.g.,
see [4,5]).
To explain the late-time acceleration of our Universe

without invoking the cosmological constant, one needs to
introduce the long-distance (IR) modifications of gravity
theories so that the modification is responsible for the
cosmic acceleration at present. On the other hand, such
modifications often bring us the unsuitable feature that is to
be excluded by the observations. It is well known that the
Solar System observations are consistent with the

prediction in the general relativity (see [6] for a review),
and thus, the IR modification should be hidden in such a
situation.
The modification for the dark energy is often regarded as

the dynamical dark energy characterized by additional
fields. Thus, if such dynamical fields induced from the
IR modification are suppressed on local scales, one can
safely avoid the constraint from the observations in the
Solar System. The screening mechanisms [7–9] suggest the
way for making the additional degrees of freedom inef-
fective in a short distance. Therefore, the viable modified
gravity theories should possess the screening mechanism,
and then, they do not conflict with Solar System con-
straints, keeping the validity to introduce the IR modifi-
cation for the dark energy problem.
Although plenty of the previous research has verified the

screening mechanisms in the static and spherical symmetric
(SSS) configurations, the screening mechanisms are not
well understood in the highly dense matter region to
study the effect of the modification on the short-distance
behavior. A typical situation can be found in the relativistic
star. The hydrostatic equilibrium, which is maintained in
the balance between the pressure of internal matters and its
gravity, determines the inner and outer structures of
relativistic stars. It means that the series of mass and radius
of relativistic stars depends on the models of hadron
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physics in the high-density matter and gravitational theories
in the strong-gravity region. From the perspective of hadron
physics, various equations of state (EoS) have been inves-
tigated [10], corresponding to the inner structure of rela-
tivistic stars as in [11]. The EoS determines the mass-radius
relation of relativistic stars and the maximum mass, and the
existence of a massive neutron star with the mass larger
than 2 M⊙ is, at present, one of the criteria for the realistic
model of EoS [12].

From another point of view, the gravity theories also
determine the mass-radius relations, where the behavior in
the nonperturbative or nonlinear region is of great impor-
tance to the inner structure of the relativistic stars. In the
previous works [13–15], one of the authors has applied
FðRÞ gravity theories to the study on the relativistic stars.
Because the curvature of spacetime, the Ricci scalar R,
around relativistic stars is larger than that in the Solar
System, some models of FðRÞ gravity show significant
differences from general relativity [FðRÞ ¼ R] around
the relativistic stars. These notable results imply that the
relativistic stars can be a useful tool for investigating
the modifications of gravity. Furthermore, the study on
the relativistic stars also provides us with a better under-
standing of screening mechanisms. Several works have
attempted to study the Vainshtein mechanism [7], which is
one of the screening mechanisms. By assuming a constant-
density profile inside the star, the Vainshtein mechanism
has been discussed [16] in the presence of matter fields.
In this work, we study the relativistic stars in the de

Rham-Gabadadze-Tolley (dRGT) massive gravity [17],
which is the theory of a ghost-free massive spin-2 particle.
The theory has five ghost-free modes that are two tensor
modes, two vector modes, and a scalar mode. The vector
modes cannot couple with matters because of the energy-
momentum conservation, while the additional scalar mode
can produce different matter coupling with gravity from
that in the general relativity. This additional scalar mode is
considered to be suppressed by the Vainshtein mechanism;
the nonlinear derivative couplings hide the scalar mode,
and the gravitational coupling with matter becomes similar
to that in the general relativity inside the so-called
Vainshtein radius.
In our previous work [18], we studied the relativistic

stars in the minimal model of dRGT massive gravity for the
SSS configuration with a flat reference metric and found
that the maximum mass of relativistic stars becomes
smaller than that of general relativity. In the light of these
results, we postulate that the lack of the Vainshtein
mechanism results in the smaller maximal mass, due to
the absence of nonlinear kinetic couplings in the relativistic
star scales. A theoretical analysis for the minimal model
shows that the minimal model does not have the Vainshtein
mechanism [19].
The purpose of this article is to study the system of the

relativistic stars in the nonminimal model, which is the
broader framework of dRGT massive gravity, and to
determine how the Vainshtein mechanism would affect

the mass-radius relation of the relativistic star. We will
derive the modified Tolman-Oppenheimer-Volkoff (TOV)
equations to see how the modifications of gravity change
the inside and outside structures of the relativistic star. After
that, we will discuss the behavior of the solutions of
modified TOV equations according to their mathematical
structure, to find that the system of interest has a solution
which is very similar to that in the general relativity thanks
to the nonlinear kinetic terms. This study provides new
insights into the nonperturbative aspects of dRGT massive
gravity, and we argue that the Vainshtein mechanism
potentially works around the relativistic star.

II. MODIFIED TOV EQUATION IN dRGT
MASSIVE GRAVITY

A. dRGT massive gravity

In this section, we derive equations of motion of dRGT
massive gravity in the SSS configuration and show the
modified TOV equations. In the units of c ¼ ℏ ¼ 1, the
action of the dRGT massive gravity [20] can be written as

SdRGT ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p

×

�
RðgÞ − 2m2

0

X3
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q ��
þ Smat; ð1Þ

where κ2 ¼ 8πG is the gravitational coupling constant and
Smat is the matter action. We are using the units of
c ¼ ℏ ¼ 1. The ekðXÞ are polynomials defined as the
antisymmetric products of the components

ekðXÞ ¼ 1

k!
XI1 ½I1 � � �XIk

Ik�: ð2Þ

The action (1) includes the two metric tensors gμν and fμν;
gμν denotes the dynamical variable in the dRGT massive
gravity while fμν is fixed by hand and called the reference

or fiducial metric. The
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
represents the matrix such

that

ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þμ

ρ
ð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þρ

ν
¼ gμρfρν: ð3Þ

Here, m0 is a parameter that defines the graviton mass, and
in the following analysis, we set it as

m0 ≡ 10−33 eV ∼ ð1026 mÞ−1: ð4Þ

This value is the same order of the cosmological constant,
which represents the IR modification for the dark energy,
and it is consistent with several observations (see for a
review [21]). The parameters βn’s are free and expressed by
only two parameters if we demand the flat Minkowski
spacetime as a solution of the field equations and the
appropriate coefficient of the graviton-mass term as in the
Fierz-Pauli theory [22],
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β0 ¼ 6 − 4ᾱ3 þ ᾱ4; β1 ¼ −3þ 3ᾱ3 − ᾱ4;

β2 ¼ 1 − 2ᾱ3 þ ᾱ4; β3 ¼ ᾱ3 − ᾱ4; ð5Þ

and they lead to the algebraic relations between
parameters βn,

β2 ¼ 1 − β0 − 2β1; β3 ¼ −3þ 2β0 þ 3β1: ð6Þ

We call the case that

β0 ¼ 3; β1 ¼ −1; β2 ¼ β3 ¼ 0; ð7Þ

as theminimalmodel [22] bymeaning theminimal nonlinear
extension of the Fierz-Pauli theory [23]. In this work, we
restrict our discussion for the case that βn∼Oð1Þ; otherwise,
conditions for the UV completion are violated [24].
By the variation of action (1) with respect to the

dynamical metric gμν, we obtain the equations of motion
in the dRGT massive gravity as follows (for the derivation,
see [18]):

Gμν þm2
0Iμν ¼ κ2Tμν; ð8Þ

where

Iμν ≡
X3
n¼0

ð−1ÞnβngμλYλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ; ð9Þ

Yλ
ðnÞνðXÞ≡Xn

r¼0

ð−1ÞrðXn−rÞλνerðXÞ: ð10Þ

Here, the matrix YðnÞðXÞ is written in the following forms:

Y0ðXÞ ¼ 1; Y1ðXÞ ¼ X − 1½X�;

Y2ðXÞ ¼ X2 −X½X� þ 1

2
1ð½X�2 − ½X2�Þ;

Y3ðXÞ ¼ X3 −X2½X� þ 1

2
Xð½X�2 − ½X2�Þ

−
1

6
1ð½X�3 − 3½X�½X2� þ 2½X3�Þ: ð11Þ

Now, we have to pay attention to the lack of diffeo-
morphism invariance because of the existence of graviton
mass. While the diffeomorphism invariance guarantees the
universal graviton-matter coupling in the general relativity,
we should assume the universal couplings, which ensures
the elimination of the ghost modes in the dRGT massive
gravity.

B. Ansatz for SSS configuration

Considering a relativistic star, we impose the SSS
configuration to the gμν metric. Then, the ansatz for gμν
can be written as

gμνdxμdxν ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dΩ2: ð12Þ

νðrÞ and λðrÞ are functions with respect to r, and e2λðrÞ is
related to the mass function in the ordinary TOV equation:

e−2λðrÞ ≡ 1 −
2GMðrÞ

r
; ð13Þ

where MðrÞ is the mass parameter. The functions νðrÞ and
λðrÞ should satisfy boundary conditions that they vanish at
the center of the star

νðr ¼ 0Þ ¼ λðr ¼ 0Þ ¼ 0; ð14Þ

which suggests that the conical singularity should be
removed [25]. The boundary conditions indicate that the
mass parameter MðrÞ should also vanish at the center,

Mðr ¼ 0Þ ¼ 0: ð15Þ
The equation of motion (8) determines the asymptotic
behavior of these three functions. Note that the spacetime
around the SSS configurations asymptotically matches with
the Minkowski spacetime in the general relativity.
We assume the fμν metric as follows in our model:

fμνdxμdxν ¼ −dt2 þ dχðrÞ2 þ χðrÞ2dΩ2

¼ −dt2 þ χ0ðrÞ2dr2 þ χðrÞ2dΩ2; ð16Þ

where the prime denotes the derivative with respect to r.
The reference metric fμν is chosen to represent the flat
spacetime, while the radial coordinate is, in general,
different from that of the physical metric gμν. The relation
of the radial coordinate between gμν and fμν spacetime is
reflected to the new function χðrÞ.
We note that the function χðrÞ plays a similar role to the

Stukelberg field. The nondynamical fμν chosen by hand
breaks the general coordinate transformation invariance,
but it can be restored by changing the Stukelberg field as
was discussed in our previous work [18]. If we use the
gauge fixing condition χðrÞ ¼ r, the fμν describes exactly
the Minkowski spacetime from the observer in the coor-
dinate system of gμν. In our case, the radial coordinate can
be chosen so that we can treat the equation of motion of the
gμν in a similar way to the ordinary TOVequation thanks to
the χðrÞ. The equations of motion of gμν contain a gauge
fixing condition that determines χðrÞ. The solution of the
gauge fixing condition gives the configuration of χðrÞ.
The calculation hereafter depends on the specific form of

the reference metric. Although we conventionally choose
the reference metric, we practically solve it as well as the
dynamical metric according to the equation of motion.
As we will see later, the function χðrÞ is determined
by the fourth-order algebraic equation derived from the
divergence of equations of motion. Then, our choice of the
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reference metric can be justified when we find the solution
with respect to χðrÞ and gμν.

C. Modified TOV equation

Substituting the ansatz with respect to the dynamical and
reference metrics, gμν and fμν, into the equation of motion
(8), we obtain the modified TOV equations:

−κ2ρ ¼ −
1

r2
þ 1

r2
ð1þ r∂rÞe−2λ þm2

0I
t
t; ð17Þ

κ2p ¼ −
1

r2
þ 1þ 2rν0

r2
e−2λ þm2

0I
r
r; ð18Þ

κ2p ¼
�
ν00 þ ν02 þ ν0 − λ0

r
− ν0λ0

�
e−2λ þm2

0I
θ
θ: ð19Þ

And the conservation law of the energy-momentum tensor
leads to

−
p0

pþ ρ
¼ ν0: ð20Þ

Rewriting the above four equations, Eqs. (17), (18), (19),
and (20), we obtain the following expressions:

GM0 ¼ 4πGρr2 þ 1

2
m2

0r
2Itt; ð21Þ

−
p0

pþ ρ
¼ ν0 ¼ 4πGpr3 þGM − 1

2
m2

0r
3Irr

rðr − 2GMÞ ; ð22Þ

κ2p ¼
�
ν00 þ ν02 þ ν0

r

��
1 −

2GM
r

�

þ 1

2

�
1

r
þ ν0

��
1 −

2GM
r

�0
þm2

0I
θ
θ: ð23Þ

One can find that the original TOVequations in the general
relativity are modified by the interaction terms m2

0I
i
i, where

i ¼ t, r, θ. We can compute the modification terms Itt, Irr,
and Iθθ with the ansatz for the physical and reference
metrics as follows:

Itt ≡ β0 þ β1

�
2χ

r
þ χ0e−λ

�
þ β2

�
χ2

r2
þ 2χχ0

r
e−λ

�

þ β3
χ2χ0

r2
e−λ; ð24Þ

Irr≡β0þβ1

�
2χ

r
þ e−ν

�
þβ2

�
χ2

r2
þ2χ

r
e−ν

�
þβ3

χ2

r2
e−ν;

ð25Þ

Iθθ≡β0þβ1

�
χ

r
þχ0e−λþ e−ν

�

þβ2

�
1

r
χχ0e−λþ1

r
χe−νþχ0e−λ−ν

�
þβ3

χχ0

r
e−λ−ν:

ð26Þ

In addition to the equations of motion for the tt and rr
components, we need to take into account the divergence of
equations of motion,

∇μðGμν þm2
0I

μνÞ ¼ κ2∇μTμν: ð27Þ

If we assume the conservation of the energy-momentum
tensor ∇μTμν ¼ 0, we obtain the new algebraic equations

∇μIμν ¼ 0 ð28Þ

from the Bianchi identities ∇μGμν ¼ 0. Substituting
Eqs. (24), (25), and (26) into (28), we find that t, θ, and
ϕ components of Eq. (28) are identically satisfied, and that
the nontrivial r component leads to the following equation:

0 ¼ ðβ1r2 þ 2β2rχ þ β3χ
2ÞðeνÞ0

þ ½2β2ðeν − eλþνÞ þ 2β3ð1 − eλÞ�χ
þ 2β1rðeν − eλþνÞ þ 2β2rð1 − eλÞ: ð29Þ

The ν0 contains the modification term Irr as in Eq. (22), and
it can be written by up to second-order nonderivative terms
for χ as given in Eq. (25). Therefore, the new constraint
displays the fourth-order algebraic equation for χ.
Because the new constraint equation is the fourth-order

algebraic equation, we can solve it analytically. For the
convenience in the order estimation, we replace the
variables to dimensionless ones as follows:

rg≡GM⊙ ⇔ κ2 ¼ 8π
rg
M⊙

; r→ rrg;

χ→ χrg; MðrÞ→MðrÞM⊙;

ρ→ ρðM⊙=r3gÞ; p→pðM⊙=r3gÞ; m0→
m0

rg
: ð30Þ

Here, we note that the dimension of graviton mass is ½L−1�
because of our units, and the magnitude of the dimension-
less graviton mass is very tiny such as

m0 ∼ 10−23 ð31Þ

because we assume that the graviton mass is of order
of the observed dark energy. Since we also demand that
βn ¼ Oð1Þ, the modification of gravity seems to give the
tiny effects to the observables. However, the additional
algebraic equation (29), which cannot be found in the
general relativity, changes the mathematical structures of
the equations of motion.

III. ABSENCEOF THE VAINSHTEINMECHANISM
IN MINIMAL MODEL

To solve Eqs. (21), (22), and (29) and obtain the mass-
radius relation of the relativistic star, we have to construct
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the solutions with a specific equation of state numerically.
The typical way is imposing a boundary condition and
solving it as a two-point boundary value problem. One of
the two points in our case is the center of the relativistic
star, and we impose Eq. (14). Another is the point far away
from the star (analytically, at infinity), and thus, we need to
check the asymptotic behaviors of the solutions. If the
Vainshtein mechanism works outside the star, we can
impose the boundary condition so that the Schwarzschild
solution describes the spacetime outside the star.
When we solve the equation of motion, the fact that the

relativistic star system in massive gravity has two scales
makes the analysis complicated. These are the solar mass
M⊙, which characterizes the astrophysical scale, and the
graviton mass m0, which characterizes the cosmological
scale. In this section, instead of solving the system numeri-
cally, we evaluate the behavior of χðrÞ near and far from the
star by approximations analytically. When we find the
whole structure of the solution in the relativistic star
system, it allows us to examine whether the screening
mechanism can work or not, which determines the appro-
priate boundary condition outside the relativistic stars in the
dRGT massive gravity.

A. χ ðrÞ for Asymptotically flat spacetime

Before we study the asymptotic behavior of the space-
time, we think of a link between gμν and χðrÞ. First, when
we make an assumption that e2ν ¼ e2λ ¼ 1 in the physical
metric gμν and χðrÞ ¼ r in the reference metric fμν, one
finds that it is consistent with the equation of motion
because gμν ¼ fμν ¼ ημν is the solution with generic
choices of the parameters βn [26]. In the above case,
one finds

Iμν ¼ ðβ0 þ 3β1 þ 3β2 þ β3ÞEð4Þμν; ð32Þ

whereEð4Þ represents the 4 × 4 identity matrix. Equation (6)
leads to

β0 þ 3β1 þ 3β2 þ β3 ¼ 0; ð33Þ

where the modification terms vanish. Because the energy-
momentum tensor Tμν also vanishes outside the star, the
equation ofmotion (8) reduces to theEinstein equation in the
vacuum.
However, it is not trivial that the asymptotic flatness in

gμν is identical to the condition χðrÞ ¼ r. Next, we only
assume that the physical spacetime shows the asymptotic
flatness outside the star, gμν ¼ ημν. Because the Einstein
tensor Gμν and energy-momentum tensor Tμν vanish, the
modification terms should vanish, Iμν ¼ 0, which suggests
that Eq. (28) also satisfies. Thus, we find Eqs. (24), (25),
and (26) lead to

0¼ β0þβ1

�
2χ

r
þχ0

�
þβ2

�
χ2

r2
þ2χχ0

r

�
þβ3

χ2χ0

r2
; ð34Þ

0¼ðβ0þβ1Þþ2ðβ1þβ2Þ
χ

r
þðβ2þβ3Þ

�
χ

r

�
2

; ð35Þ

0¼ðβ0þβ1Þþðβ1þβ2Þ
�
χ

r
þ χ0

�
þðβ2þβ3Þ

χχ0

r
: ð36Þ

Using Eq. (6) for Eq. (35), we obtain

0 ¼
�
χ

r
− 1

��
ðβ0 þ β1 − 2Þ χ

r
− ðβ0 þ β1Þ

�
; ð37Þ

and the solutions are

χ

r
¼ 1;

β0 þ β1
β0 þ β1 − 2

: ð38Þ

Note that we have only the first solution in the minimal
model because the second one diverges. Moreover, we
always have χ=r ¼ 1 in the case β0 þ β1 ¼ 2. The second
solution does not give χ=r ¼ 1 when β0 þ β1 takes a finite
value. In any models, one can find that the χ should take the
form of χðrÞ ¼ Ar, where A is a constant.
When we substitute this linear solution to Eq. (36),

we find

0 ¼ ðA − 1Þ½ðβ0 þ β1 − 2ÞA − ðβ0 þ β1Þ�; ð39Þ

and thus, we obtain the results identical with Eq. (38),

A ¼ 1;
β0 þ β1

β0 þ β1 − 2
: ð40Þ

By substituting χðrÞ ¼ Ar into Eq. (34), we find

0¼ β0þ3β1Aþ3β2A2þβ3A3

¼ðA−1Þ½ð2β0þ3β1−3ÞA2− ðβ0þ3β1ÞA−β0�: ð41Þ

One solution is A ¼ 1 and the others satisfy the following
equation:

ð2β0 þ 3β1 − 3ÞA2 − ðβ0 þ 3β1ÞA − β0 ¼ 0: ð42Þ

Note that A ¼ 1 does not satisfy Eq. (42) in any choice of
β0 and β1. When we substitute the second solution of
Eqs. (35) or (36) into Eq. (42), we obtain the consistent
solution χðrÞ ¼ Ar for the specific choices of β0 and β1.
We have found that χðrÞ ¼ r with the generic parameters

and that χðrÞ ¼ Ar with A ≠ 1 for the specific parameters
when we require the asymptotic flatness for gμν. If we
substitute χðrÞ ¼ Ar in Eq. (16), the reference metric takes
the following form:
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fμνdxμdxν ¼ −dt2 þ A2dr2 þ A2r2dΩ2: ð43Þ

If one redefines the radial coordinate Ar → r, we can
remove the factor A in the reference metric. We can absorb
the scaling by A into the scaling ambiguity of the defini-
tion of χðrÞ; therefore, χðrÞ ¼ Ar also represents the
Minkowski spacetime in the reference metric fμν. We also
note that the scaling factor A, which is determined by βn, is
of the order of unity when we assume βn ¼ Oð1Þ and do
not use the specified choice so that β0 þ β1 ≈ 2. In the
following, we calculate the case of A ¼ 1, χðrÞ ¼ r for
simplicity.
Finally, we consider the inverse problem and only

assume that χðrÞ ¼ r outside the star. Because p and M0
vanish, the equations of motion (21)–(23) give

0 ¼ β0 þ β1ð2þ e−λÞ þ β2ð1þ 2e−λÞ þ β3e−λ; ð44Þ

2re2λν0 ¼ ð1 − e−2λÞ −m2
0r

2½β0 þ β1ð2þ e−νÞ
þ β2ð1þ 2e−νÞ þ β3e−ν�; ð45Þ

0 ¼
�
ν00 þ ν02 þ ν0

r

�
e−2λ þ 1

2

�
1

r
þ ν0

�
ðe−2λÞ0

þm2
0½β0 þ β1ð1þ e−λ þ e−νÞ

þ β2ðe−λ þ e−ν þ e−λ−νÞ þ β3e−λ−ν�: ð46Þ

Here, we have used e−2λ ≡ 1–2GM=r. When we substitute
Eq. (6) into Eq. (44), we find

e−λ ¼ 1; ð47Þ

and furthermore, Eqs. (45) and (46) are given by

0 ¼ 2ν0

r
þm2

0ð1 − e−νÞ; ð48Þ

0 ¼
�
ν00 þ ν02 þ ν0

r

�
þm2

0ð1 − e−νÞ: ð49Þ

For the general m2
0, we only find the trivial solution

eν ¼ 1: ð50Þ

Based on the discussion in this subsection, we have found
that asymptotic flatness in gμν is equivalent to χðrÞ ¼ r,
which allows us to study the behavior of the physical
spacetime in terms of the χðrÞ. If χðrÞ shows the asymp-
totically flat feature, we can infer and conclude that the
physical spacetime is also asymptotically flat.

B. Asymptotic behavior near and away from stars

To study the asymptotic behavior of χðrÞ, we introduce a
mass scale Ms, to denote the dimensionless mass of the

relativistic star. Since we formulated the equations in terms
of dimensionless quantities normalized by the solar scale,
and we expect Ms is also at the solar scale, Ms ¼ Oð1Þ.
Around the object with a particular mass scale, we can
introduce the significant scale, the Vainshtein radius. In the
dRGT massive gravity, the Vainshtein radius is defined by

rV ¼
�
Ms

MPl

�
1=3 1

Λ3

; ð51Þ

where MPl is the Planck mass and Λ3 is the cutoff scale in
the dRGT massive gravity, defined as

Λ3 ¼ ðMPlm2
0Þ1=3: ð52Þ

In our normalization, rescaled by the solar-mass scale,
we find

rV ¼
�
Ms

m2
0

�
1=3

: ð53Þ

Assuming Ms ¼ Oð1Þ, the Vainshtein radius is rV ¼
m−2=3

0 ∼ 1015.
As we have mentioned, the possible difficulty is that the

Vainshtein radius is the product of astrophysical Ms and
cosmological scales m0. In order to deal with the important
intermediate scale rV , we focus on the scale Ms ≪ r ≪ rV
to address the spacetime outside but not far away from the
star. If the Vainshtein mechanism works, the dRGTmassive
gravity restores the results in the general relativity inside
the Vainshtein radius, and the physical spacetime should
be the Schwarzschild spacetime. Thus, in the region
Ms ≪ r ≪ rV , we assume that the physical metric is given
by the Schwarzschild spacetime,

e2νðrÞ ¼ 1 −
2Ms

r
; e−2λðrÞ ¼ 1 −

2Ms

r
: ð54Þ

Ms=r ≪ 1 in Ms ≪ r ≪ rV , and we can treat Ms=r as the
perturbation from the Minkowski spacetime.
Furthermore, the discussion in the previous subsection

implies χðrÞ should take the following form:

χðrÞ
r

¼ 1þO
�
Ms

r

�
ð55Þ

to balance the order of the perturbations in both sides of the
equations of motion. Note that we can rescale χðrÞ with the
arbitrary factor to express the above form if it is necessary.
In other words, when we find the above χðrÞ as a solution to
the equation of motion in Ms ≪ r ≪ rV , we have the
Schwarzschild spacetime outside the star, which suggests
the Vainshtein mechanism works properly. If χðrÞ shows
the large deviation from the asymptotic form χðrÞ ¼ r, it
implies that the Vainshtein mechanism does not work.
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C. Asymptotic flatness around and away
from the stars

Before we discuss the relativistic star in the general case
of the dRGT massive gravity, we consider the minimal
model in which the parameters βn are chosen as in Eq. (7).
In our previous work, we directly derived the mass-radius
relation in the minimal model by the numerical simulation
and discussed the effect of the modification on the maximal
mass of the stars. Here, we refine our previous result
from the viewpoints of the boundary conditions and the
Vainshtein mechanism.
Substituting βn in the minimal model (7) into Eq. (29),

we obtain the following algebraic equation:

ν0 ¼ 2

r
ðeλ − 1Þ: ð56Þ

And Eq. (22) is given by

ν0 ¼ 1

2

�
κ2prþ 1

r
−m2

0rI
r
r

�
e2λ −

1

2r
;

Irr ¼ 3 −
�
2χ

r
þ e−ν

�
: ð57Þ

By eliminating ν0, we find the first-order algebraic equation
for χ, whose solution is

χ¼ r
2

�
3− e−νþ 1

m2
0r

2
½ð4eλ−3Þe−2λ−1− κ2pr2�

�
: ð58Þ

This result shows that the minimal model does not
have the Vainshtein mechanism because the additional
terms proportional to 1=ðm2

0r
2Þ become relevant at the

small scale r ≪ 1=m0, including the interior region of
the star.
As an illustration, we assume the Schwarzschild space-

time outside the star. If this assumption is appropriate, we
get Eq. (55) from Eq. (58). Substituting Eq. (54) and p ¼ 0,
we obtain

χ

r
¼ 1 −

Ms

2r
þO

�
M2

s

r2

�
þ 1

m2
0r

2

�
Ms

r
þO

�
M2

s

r2

��

¼
�
rV
r

�
3
�
1þO

�
Ms

r

��
þ 1 −

Ms

2r
þO

�
M2

s

r2

�
: ð59Þ

Equation (59) displays the significant deviations from
Eq. (55) because the first term becomes dominant inside
the Vainshtein radius, rV=r ≫ 1. It suggests that the
physical metric gμν does not describe the Schwarzschild
spacetime outside the star. Therefore, we can conclude that
the Vainshtein mechanism does not work in the minimal
model with the flat reference metric.

IV. SCREENED AND UNSCREENED SOLUTIONS
IN NONMINIMAL MODEL

In the previous section, we have discussed the physical
spacetime around the star in the context of χðrÞ. We have
found that the Vainshtein mechanism does not always work
around the star in the minimal model, where βn’s are
specially chosen. In this section, we consider the general
case, the nonminimal model of the dRGT massive gravity
and check the asymptotic behavior of χðrÞ and examine the
Vainshtein mechanism.

A. Fourth-order equation for χ ðrÞ
To solve the new algebraic equation, we eliminate

the ν0 from Eq. (22) with Eq. (29) as we performed in
the case of the minimal model. For the convention, we
express Eq. (22) in the following form written in the
new variables:

ν0 ≡ n0 −m2
0n1I

r
r ðn0; n1 > 0Þ; ð60Þ

where we define

n0 ≡ 1

2
κ2pre2λ þ 1

2r
ðe2λ − 1Þ; n1 ≡ 1

2
re2λ: ð61Þ

Using Eqs. (22) and (25), we find that Eq. (29) in the
generic case of the parameters βn leads to

0 ¼ ðβ1r2 þ 2β2rχ þ β3χ
2Þeνðn0 −m2

0n1I
r
rÞ þ ½2β2ðeν − eλþνÞ þ 2β3ð1 − eλÞ�χ þ 2β1rðeν − eλþνÞ þ 2β2rð1 − eλÞ

¼ −m2
0n1e

νðβ3χ2 þ 2β2rχ þ β1r2Þ
�
1

r2
ðβ2 þ β3e−νÞχ2 þ

2

r
ðβ1 þ β2e−νÞχ þ ðβ0 þ β1e−νÞ

�
þ β3n0eνχ2 þ ½2β2rn0eν þ 2β2ðeν − eλþνÞ þ 2β3ð1 − eλÞ�χ þ 2β1rðeν − eλþνÞ þ 2β2rð1 − eλÞ þ β1r2n0eν: ð62Þ

Expanding the above expression as the polynomial with respect to χ, we obtain the following fourth-order algebraic
equation:
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0 ¼ −
m2

0n1e
ν

r2
β3ðβ2 þ β3e−νÞχ4 −

2m2
0n1e

ν

r
½β2ðβ2 þ β3e−νÞ þ β3ðβ1 þ β2e−νÞ�χ3

þ fβ3n0eν −m2
0n1e

ν½β1ðβ2 þ β3e−νÞ − 4β2ðβ1 þ β2e−νÞ − β3ðβ0 þ β1e−νÞ�gχ2
þ f2½β2n0reν þ β2ðeν − eλþνÞ þ β3ð1 − eλÞ�−2m2

0n1re
ν½β1ðβ1 þ β2e−νÞ þ β2ðβ0 þ β1e−νÞ�gχ

þ r½2β1ðeν − eλþνÞ þ 2β2ð1 − eλÞ þ β1n0reν� −m2
0n1r

2eνβ1ðβ0 þ β1e−νÞ: ð63Þ

As we mentioned below Eq. (7), we need to choose β2,
β3 ≠ 0 to realize the nonminimal model of the dRGT
massive gravity. For this restriction of β2 and β3, we find
that Eq. (63) is the fourth order with respect to χ. Note that
in the minimal model, one can confirm that Eq. (63) is
indeed reduced to the first-order equation, which restores
Eq. (58).
For the further convenience in the later calculation,

we rewrite Eq. (63) with normalizing the coefficient of
the χ4 term,

χ4 þ aχ3 −
1

m2
0

½ðb0 þm2
0b1Þχ2 þ ðc0 þm2

0c1Þχ

þ ðd0 þm2
0d1Þ� ¼ 0; ð64Þ

where we define the coefficients as follows:

a ¼ 2r½β3ðβ1 þ β2e−νÞ þ β2ðβ2 þ β3e−νÞ�
β3ðβ2 þ β3e−νÞ

;

b0 ¼
n0r2

n1ðβ2 þ β3e−νÞ
;

b1 ¼ −
r2½4β22e−ν þ β0β3 þ β1ð5β2 þ 2β3e−νÞ�

β3ðβ2 þ β3e−νÞ
;

c0 ¼
2r2½β2rn0 þ β2ð1 − eλÞ þ β3ðe−ν − eλ−νÞ�

n1β3ðβ2 þ β3e−νÞ
;

c1 ¼ −
2r3½β2ðβ0 þ β1e−νÞ þ β1ðβ1 þ β2e−νÞ�

β3ðβ2 þ β3e−νÞ
;

d0 ¼
r3½β1rn0 þ 2β1ð1 − eλÞ þ 2β2ðe−ν − eλ−νÞ�

n1β3ðβ2 þ β3e−νÞ
;

d1 ¼ −
r4β1ðβ0 þ β1e−νÞ
β3ðβ2 þ β3e−νÞ

: ð65Þ

When we obtain the real solutions of Eq. (64) and
study their asymptotic behavior away from the star,
we can discuss the physical spacetime to connect the
Schwarzschild spacetime as we have done in the case of
the minimal model of the dRGT massive gravity.

B. Branch analysis for χ around star

As we have performed in the minimal model, we assume
the Schwarzschild spacetime in the region Ms ≪ r ≪ rV
and study χðrÞ outside the star in the nonminimal model.

If χðrÞ shows the asymptotic behavior as expected in
Eq. (55), we can conclude that the Vainshtein mechanism
works in the nonminimal model; otherwise, the screening
mechanism does not work in the general model of the
dRGT massive gravity.
Compared with the minimal model, we have a remark-

able difficulty to obtain χðrÞ in the nonminimal model
because of the higher-order algebraic equation, Eq. (64). To
make it manageable in an analytical manner, we begin the
analysis with the assumption that the physical spacetime is
described by the Schwarzschild solution outside the star,
instead of looking for the exact solutions. Then, we
examine the asymptotic behavior of χðrÞ and check
whether it is consistent with the assumption. When we
use Eq. (54) with the condition p ¼ 0, we find

n0 ¼
1

r

�
Ms

r
þO

�
M2

s

r2

��
;

1

n1
¼ 2

r

�
1 −

2Ms

r

�
: ð66Þ

Furthermore, when we use βn ¼ Oð1Þ, we can expand the
coefficients of the fourth-order equation, Eq. (65), in terms
of OðMs=rÞ as follows:

a¼ 2r

�
Aþ Ã

Ms

r
þO

�
M2

s

r2

��
;

b0 ¼ B0

Ms

r
þO

�
M2

s

r2

�
;

b1 ¼ −r2
�
B1 þ B̃1

Ms

r
þO

�
M2

s

r2

��
;

c0 ¼ rC0

�
Ms

r
þO

�
M2

s

r2

��
;

c1 ¼ −2r3
�
C1 þ C̃1

Ms

r
þO

�
M2

s

r2

��
;

d0 ¼ r2D0

�
Ms

r
þO

�
M2

s

r2

��
;

d1 ¼ −r4
�
D1 þ D̃1

Ms

r
þO

�
M2

s

r2

��
; ð67Þ

where
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A ¼ β3ðβ1 þ β2Þ þ β2ðβ2 þ β3Þ
β3ðβ2 þ β3Þ

; Ã ¼ 2β2β3 − β23A
β3ðβ2 þ β3Þ

;

B0 ¼
2β3

β3ðβ2 þ β3Þ
; B1 ¼

4β22 þ β0β3 þ β1ð5β2 þ 2β3Þ
β3ðβ2 þ β3Þ

; B̃1 ¼
ð4β22 þ 2β1β3Þ − β23B1

β3ðβ2 þ β3Þ
;

C0 ¼
−4β3

β3ðβ2 þ β3Þ
; C1 ¼

β2ðβ0 þ β1Þ þ β1ðβ1 þ β2Þ
β3ðβ2 þ β3Þ

; C̃1 ¼
2β1β2 − β23C1

β3ðβ2 þ β3Þ
;

D0 ¼
−2β1 − 4β2
β3ðβ2 þ β3Þ

; D1 ¼
β1ðβ0 þ β1Þ
β3ðβ2 þ β3Þ

; D̃1 ¼
β21 − β23D1

β3ðβ2 þ β3Þ
: ð68Þ

Therefore, when we assume the Schwarzschild spacetime for the physical metric gμν, the fourth-order equation takes the
following form:

0 ¼
�
χ

r

�
4

þ
�
2Aþ 2Ã

Ms

r
þO

�
M2

s

r2

���
χ

r

�
3

−
1

m2
0r

2

��
B0

Ms

r
þO

�
M2

s

r2

��
−m2

0r
2

�
B1 þ B̃1

Ms

r
þO

�
M2

s

r2

����
χ

r

�
2

−
1

m2
0r

2

��
C0

Ms

r
þO

�
M2

s

r2

��
−m2

0r
2

�
2C1 þ 2C̃1

Ms

r
þO

�
M2

s

r2

����
χ

r

�

−
1

m2
0r

2

��
D0

Ms

r
þO

�
M2

s

r2

��
−m2

0r
2

�
D1 þ D̃1

Ms

r
þO

�
M2

s

r2

���
: ð69Þ

We find that 1=ðm2
0r

2Þ corrections show up as in Eq. (58) for the minimal model, which would bring the origin of the large
deviation from the asymptotic flatness. Noting m2

0r
2 ≪ Ms=r ≪ 1 in the region Ms ≪ r ≪ rV because

Ms=r
m2

0r
2
¼

�
rV
r

�
3

≫ 1; ð70Þ

the fourth-order equation Eq. (69) can be further approximated and given by

0 ¼
�
χ

r

�
4

þ
�
2Aþ 2Ã

Ms

r
þO

�
M2

s

r2

���
χ

r

�
3

−
�
rV
r

�
3
��

B0 þO
�
Ms

r

���
χ

r

�
2

þ
�
C0 þO

�
Ms

r

���
χ

r

�
þ
�
D0 þO

�
Ms

r

���
: ð71Þ

Finally, we solve the above algebraic equation
Eq. (71) to χðrÞ. If we assume the asymptotically flat
solution for the reference metric fμν, χ=r ¼ Oð1Þ þ
OðMs=rÞ up to the scaling, the first line of Eq. (71) is
of order of Oð1Þ, while the second line is of order
OððrV=rÞ3Þ ≫ 1. Thus, the first line is negligible, the
second line is dominant, we find

0 ¼
�
B0 þO

�
Ms

r

���
χ

r

�
2

þ
�
C0 þO

�
Ms

r

���
χ

r

�

þ
�
D0 þO

�
Ms

r

��
; ð72Þ

and the solution is given by

χ

r
¼ −C0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
0 − 4B0D0

p
2B0

þO
�
Ms

r

�
: ð73Þ

Actually, the above solution is consistent with the
assumption χ=r ¼ Oð1Þ þOðMs=rÞ, and after rescaling
the solution, we find

χ

r
¼ 1þO

�
Ms

r

�
: ð74Þ

This solution suggests that the nonminimal model of the
dRGTmassive gravity possesses the Vainshtein mechanism
around the relativistic star. Therefore, one can study the
relativistic star with the particular equation of state with
the boundary condition to connect to the Schwarzschild
spacetime outside the star, as in the general relativity.
We emphasize that the existence of the real solutions
depends on the parameter βn’s whose region is evaluated
with the condition that the determinantD¼C2

0−4B0D0≥0.
Moreover, we need to require that, at least, one of the
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two solutions is positive definite to express the radial
coordinate.
On the other hand, in general, we have four solutions for

Eq. (71). Since we have two of the four, which are of the
order of unity at the leading order, we can analyze the
leading order of the other two according to the coefficients
of Eq. (71). When we express the four solutions as α, β, γ,
and δ, they satisfy

αþ β þ γ þ δ ¼ −
�
2AþO

�
Ms

r

��
; ð75Þ

αβþαγþαδþβγþβδþ γδ¼−
�
rV
r

�
3
�
B0þO

�
Ms

r

��
;

ð76Þ

αβγþαβδþαγδþβγδ¼
�
rV
r

�
3
�
C0þO

�
Ms

r

��
; ð77Þ

αβγδ ¼ −
�
rV
r

�
3
�
D0 þO

�
Ms

r

��
: ð78Þ

Furthermore, if we assume α and β approximately obey
Eq. (72), we find

αþβ¼−
C0

B0

þO
�
Ms

r

�
; αβ¼D0

B0

þO
�
Ms

r

�
: ð79Þ

Thus, the sum and product of the other two solutions are
given by

γþδ¼
�
C0

B0

−2A

�
þO

�
Ms

r

�
; γδ¼−

�
rV
r

�
3B0

D0

: ð80Þ

In order to satisfy the above relation, we can deduce the
relevant expressions of the two solutions, γ and δ, as
follows:

γ ¼
ffiffiffiffiffiffi
B0

D0

s �
rV
r

�
3=2

þOð1Þ; ð81Þ

δ ¼ −

ffiffiffiffiffiffi
B0

D0

s
R

�
rV
r

�
3=2

þOð1Þ: ð82Þ

We find that these two solutions include the significant
deviation from the asymptotically flat reference metric. As
in the minimal model, we can understand that the non-
minimal model includes the asymptotically nonflat solu-
tions, Eq. (81), although it potentially possesses the
asymptotically flat solutions, Eq. (74). We note again that
the existence of the real solutions depends on the parameter
choice βn; for instance, we would find the proper parameter
regions so that B0=D0 > 0.

From Eq. (71), we have found the two different branches
of solutions for Eq. (71),

χ ¼
�
rV
r

�
3=2

þOð1Þ; 1þO
�
Ms

r

�
: ð83Þ

The former has the large correction OððrV=rÞ3=2Þ ≫ 1 in
the region of our interest Ms ≪ r ≪ rV although the latter
is of the order of unity. Only one branch exists in the
minimal model, which does not admit the Vainshtein
mechanism, while the new branch appears in the non-
minimal model. It is notable that the minimal model
predicts OððrV=rÞ3Þ, while the nonminimal model predicts
OððrV=rÞ3=2Þ.

V. SUMMARY AND DISCUSSION

We have studied the asymptotic behavior of the space-
time around the relativistic star in the dRGT massive
gravity with the flat reference metric. We have explicitly
shown that the Vainshtein mechanism does not work in the
minimal model, which is consistent with the previous
theoretical analysis [19]. Remarkably, we have found that
the modification terms become relevant even inside the
relativistic star, and thus, that the modification of gravity
becomes reasonable not only outside the star but also inside
the star. Using the same analysis method, we have consid-
ered the nonminimal model of the dRGT massive gravity.
We have derived the fourth-order algebraic equation based
on several approximations and demonstrated the solutions
that suggest the nonminimal model has the relativistic star
solutions with and without the Vainshtein mechanism.
The condition that the Vainshtein mechanism works or

not gives a definite difference in the equation of motion.
The modification terms to the Einstein equation are
integrated into m2

0Iμν, and χðrÞ characterizes Iμν.
Because Iμν contains the third order terms of χðrÞ in
Eq. (11), the condition χ ∼Oð1Þ implies that the modifi-
cation term is of Oðm2

0Þ, and, on the other hand, the
condition χ ∼Oð1=m0Þ predicts that the modification
includes the term of Oð1=m0Þ in general. The former case
shows that the modifications to the equation of motion can
be ignored, and the latter case shows that the essential
contributions from the modifications arise in the modified
TOV equation. Therefore, the absence of the Vainshtein
mechanism drastically changes the mass-radius relation of
the relativistic star. In our previous work [18], we have
obtained the mass-radius relations for the neutron star and
quark star in the minimal model of the dRGT massive
gravity, which displays significant differences from those in
the general relativity. From the above discussion, we can
understand that the lack of the Vainshtein mechanism in the
minimal model has produced the differences because the
TOV equations receive the non-negligible modifications.
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A couple of comments and discussion on prospects
regarding what we have elucidated in the present paper are
as follows: The branch including the Vainshtein mechanism
allows us to impose the ordinary boundary condition,
where we connect the external solution with the
Schwarzschild spacetime, around the relativistic star.
Therefore, we can compute the mass-radius relation even
in the nonminimal model of the dRGT massive gravity
based on the techniques that had been established in our
previous work. Although we might face another difficulty
to solve the fourth-order equation of χðrÞ, we can solve the
modified TOV equation with the arbitrary EoS. However,
the Vainshtein mechanism may result in almost the same
mass-radius relation as that in the general relativity.
Regarding the two branches in the nonminimal model,

we have not constrained the parameter regions to obtain the
realistic solution of χðrÞ although we have discussed the
leading order and deviation from the Minkowski spacetime.
Concerning the relativistic star solution, we should evaluate
the parameters as well as the mass-radius relation. Because

we have derived the fundamental equations, we could
discuss the particular combination of the parameters to
simplify the equation but obtain the physical solutions,
which we will address in our future works.
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