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Abstract 

 

The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its 

paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF 

protein that is widely distributed in eukaryotes and interacts with a variety of proteins in 

a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various 

modulatory roles including roles in cell death, signal transduction, membrane repair, 

ER-to-Golgi vesicular transport and RNA processing. Some ALG-2-interacting proteins 

are key factors that function in the endosomal sorting complex required for transport 

(ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF 

domain but contains two microtubule-interacting and trafficking (MIT) domains in 

tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains 

and regulates EGF receptor downregulation. Structures and functions of ALG-2 and 

those of its interacting partners as well as relationships with the calpain family are 

reviewed in this article.    
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(Introduction) 

Calcium is a major essential mineral for animals and taken into the body from foods and 

milk. The total amount of calcium in the adult human body is as high as 1000-1200 

grams. Over 99% of calcium is present in the form of hydroxyapatite in bones and teeth, 

which provides strength of the hard tissues. The remaining calcium is present as cations 

in blood and body fluids inside and outside cells, and these cations play important roles 

in mediating vascular contraction, vasodilatation, muscle function, intracellular 

signaling, nerve transmission and hormonal secretion [1]. Calcium ions (Ca2+) are 

buffered with small organic compounds and with a variety of low-affinity Ca2+-binding 

proteins. Concentrations of Ca2+ in milk greatly differ among mammal species, but they 
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are closely correlated with concentrations of casein, the major acidic milk protein [2]. 

While the concentration of Ca2+ in extracellular fluid is 1-2 mM, it is maintained at an 

extremely low level (as low as 100 nM or less) in the cytosol. Thus, there is a more than 

10,000-fold difference between concentrations of Ca2+ outside and inside the cells. This 

feature is in marked contrast to Mg2+, the concentrations which are similar at the 

millimolar (mM) order on both sides of the cell membrane [3].   

Biological effects of Ca2+ are mediated through various types of Ca2+-binding 

proteins, which have structural motifs such as an EF-hand (helix-loop-helix), a C2 

domain, an endonexin fold (annexin domain) and acidic clusters [4]. Binding of Ca2+ to 

these motifs stabilizes protein structures, induces conformational changes to activate 

enzymatic activities, triggers interaction with target factors (proteins and phospholipids), 

and keeps the free Ca2+ concentrations at fixed levels by buffering actions. The EF-hand 

proteins are the most extensively studied Ca2+-binding proteins [5]. Calmodulin (CaM) 

is characterized by four EF-hands with sterically separated N- and C-terminal lobes, 

which contain two paired EF-hands, respectively. CaM is the best known signal 

transducer that plays important roles in eukaryotic cells and has been well reviewed in 

the literature [6-8]. Calpain was originally discovered as a Ca2+-dependent cysteine 

protease present in animal tissues, and it was found to possess a CaM-like Ca2+-binding 

domain in each large subunit and small subunit based on the primary structure [9,10]. 

However, 3D-structure analysis of the Ca2+-binding region revealed a novel domain 

structure with five EF-hand modules [11,12], which was later named penta-EF-hand 

(PEF) [13]. The PEF domain is also found in non-calpain proteins including ALG-2 [14], 

which is widely distributed in eukaryotes and regarded as a prototypic penta-EF-hand 

protein [15]. On the other hand, structurally related homologs of calpain that lack the 

PEF domain but retain the protease domain (designated non-classical calpains or 

atypical calpains) have been identified in a wide range of eukaryotes [16-19]. Amino 

acid sequences related to the cysteine protease domain of calpain have also been 

reported in bacteria [17,18]. In this review, the author focuses on physiological 
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relationships between ALG-2 and the non-classical calpain designated calpain-7 

(CAPN7) from the viewpoint of interacting partners. 

 

Partial overlap of the PEF family and the calpain family  

Ubiquitously expressed conventional calpains designated μ-calpain and m-calpain (~110 

kDa) are heterodimers of the large subunit (~80 kDa, CAPN1 or CAPN2) and the 

common regulatory small subunit (~30 kDa, CAPNS1). The required Ca2+ 

concentrations for protease activation in in vitro assays are at micromolar (μM) and 

millimolar (mM) levels for μ-calpain and m-calpain, respectively [20]. Calcium 

sensitivity increases by binding to phospholipids, N-terminal processing of subunits and 

phosphorylation [21-23]. Skeletal muscle-specific p94/calpain-3 (CAPN3) requires Na+ 

instead of Ca2+ for its rapid and exhaustive auto-degradation [24], suggesting a 

structural role of the PEF domain in CAPN3. Calpains have a cysteine protease core 

domain (CysPc; divided into the two subdomains PC1 and PC2), a calpain type 

β-sandwich domain (CBSW) (previously called domain III or C2-like domain) and a 

PEF domain (Figure 1, calpain family) [17,19]. In the human genome, fifteen genes 

encode the calpain protease domain-containing sequences designated CAPN1-CAPN16, 

whereas CAPN4, encoding the non-catalytic small subunit, has been renamed and 

replaced with CAPNS1. While nine calpain paralogs (CAPN1, 2, 3, 8, 9, 11, 12, 13, and 

14) contain PEF domains and are called classical or typical calpains, six calpain 

paralogs lack PEF domains and are called non-classical or atypical calpains [19]. 

CAPN7 contains additional domains in place of the PEF domain: two 

microtubule-interacting and trafficking (MIT) domains in tandem and an additional 

CBSW domain. CAPN16 (also called androglobin; expressed in mammalian testes) has 

a CAPN7-like protease domain without readily recognizable catalytic His/Asn residues 

in the corresponding PC2-like subdomain (PC2’) [25].   

In addition to the two calpain small subunit genes (CAPNS1 and intron-less 

CAPNS2), four genes for PEF proteins (22~30 kDa) that lack catalytic domains are 
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known (Figure 1, PEF protein family). While ALG-2 (gene name, PDCD6) has the 

shortest non-PEF N-terminal sequence (23 amino acid residues rich in Pro/Gly/Ala), the 

closest paralog named peflin (gene name, PEF1) has the longest non-PEF sequence 

with 113 amino acids containing nine repeats of a nonapeptide (A/PPGGPYGGP) 

sequence [15,26]. Sorcin and grancalcin also contain Gly/Pro-rich sequences at the 

N-terminal regions [15]. 

 

Evolutionary features of ALG-2 and CAPN7 

Sequence comparison of the PEF proteins has revealed that the calpain PEF domains are 

evolutionarily closer to the sorcin/grancalcin subfamily than to the ALG-2/peflin 

subfamily [15]. As shown in Table 1, ALG-2 and its orthologs are the most widely 

distributed PEF proteins in eukaryotes ranging from protists to mammals [27]. PEF 

domain-containing calpains and other PEF proteins are found in higher animals, but 

their presence depends on classes in other eukaryotes. Interestingly, the fly does not 

have genes for CAPN7 (ortholog of fungal PalB and yeast Rim13) nor those for calpain 

small subunits but possesses a PEF-containing classical calpain. Protists and plants have 

other types of non-classical calpain homologs [17,18]. 

 

ALG-2-interacting proteins and binding motifs 

Although ALG-2 was originally identified as a pro-apoptotic factor (apoptosis-linked 

gene 2) [14], roles of ALG-2 in cell death remain unclear. ALG-2 interacts in a 

Ca2+-dependent manner with a variety of proteins that function in (i) the endosomal 

sorting complex required for transport (ESCRT) system, (ii) regulation of endoplasmic 

reticulum (ER)-to-Golgi vesicular transport, (iii) RNA processing, (iv) protein 

phosphorylation, and (v) other cellular processes (Figure 2) (See Ref. 28 therein and 

Refs. 29-33 for new reports.). Binding of these proteins with ALG-2 may indirectly 

promote the cell death pathway at multiple steps. Importantly, the reported 

ALG-2-interacting partners are mutually physically associated or in close contact at 
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specific subcellular localizations, e.g., ESCRT system components (ALIX, HD-PTP, 

TSG101, VPS37B/C, IST1) [34-38], ER exit sites (Sec31A, annexin A11, and TFG) 

[30,39], and the ER-to-Golgi pathway (MISSL and MAP1B) [31,32].  

In vitro binding assays of various deletion and amino acid-substituted mutants 

enabled narrowing down of the major binding regions for ALG-2: ALIX [40,41], 

TSG101 [35], Scotin [42], PLSCR3 [43], MCOLN1 (mucolipin-1) [44], Sec31A [45], 

PATL1 [46], IST1 [38], CHERP [47], MAP1B [32], and SARAF [33,48]. Not all but the 

majority of ALG-2-interacting proteins possess Pro-rich regions (PRRs) (Figure 2). 

Comparison of the multiple predicted ALG-2-binding sequences has revealed at least 

three types of ALG-2-binding motifs (ABMs) that are rich in prolines (Figure 3(a)). 

X-ray crystal structure analyses of human recombinant ALG-2 proteins in complex with 

an ALIX peptide [49] and with a Sec31A peptide [48] further defined the motifs and 

clarified the nature of interactions. Unlike CaM, ALG-2 does not drastically change its 

conformation to bind its target [49]. Interestingly, ALIX and Sec31A bind ALG-2 at 

different hydrophobic pockets (Figure 3(b,c)). Although binding sites in some proteins 

have not been clarified yet, incomplete resemblance to the type 1 ABM (ABM-1) 

sequence (annexin A7, annexin A11, TSG101, VPS37B, VPS37C, MISSL and Scotin) 

or to the ABM-2 sequence (PLSCR3 and TFG) suggests that the binding strength of a 

suboptimal motif is augmented by surrounding sequences [48] or by 

oligomerization/polymerization [30]. ALIX and IST1 contain Met-Pro (MP) repeat 

sequences, designated ABM-3. While the ABM-3 sequence in IST1 is essential for 

interaction with ALG-2 [38], this short motif sequence found in ALIX may be 

subsidiary to the main ABM-1 sequence. The ALG-2 binding sites described above are 

all located in the predicted intrinsically disordered regions, which have advantages in 

protein-protein interactions [50,51]. However, ALG-2 also binds the structurally stable 

region of HEBP2 [29,52], indicating the presence of diversity in the binding modes.  

Calpastatin, an endogenous calpain inhibitor protein, has four repeated inhibitory 

domains [53-55]. Each inhibitory domain is comprised of three conserved regions, 
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among which region B is the inhibitory center [56,57], and both regions A and C 

augment inhibitory potency (Figure 3(d)) [58,59]. Regions A and C are similar in amino 

acid sequences (Figure 3(e)) but specifically bind PEF domains of the classical calpain 

large subunit (L-PEF) and the small subunit (S-PEF), respectively, in a Ca2+-dependent 

manner [57,60]. The peptides of regions A and C form acidic amphiphilic helices 

(Figure 3(f)) [61-63]. They bind each calpain PEF domain in the hydrophobic cavity 

similarly found as Pocket 3 in ALG-2. However, the modes of interactions analyzed in 

the 3D structures of complexes of respective peptides with ALG-2, sorcin and calpain 

are different and seem to have diverged during evolution of the PEF proteins [64].  

   

ALG-2 functions as a Ca2+-dependent adaptor protein 

PEF proteins form homodimers or heterodimers by pairing the fifth EF-hands (EF5s) as 

revealed by X-ray crystal structure analyses [11,12,65-69]. The presence of one or two 

ligand binding sites per one monomeric PEF molecule suggests a di- or multi-valent 

mode of interactions for dimeric PEF proteins. The Ca2+-dependent adaptor function of 

ALG-2 was first demonstrated for ALG-2 to bridge ALIX and TSG101 [70]. Results of 

in vitro multi-complex formation experiments using either mammalian cell expression 

constructs or recombinant proteins of ALG-2, ALIX, and ESCRT-I complex (TSG101, 

VPS28, MVB12A, and one of the VPS37 isoforms A/B/C/D) further indicated that 

VPS37 isoforms with no or different ALG-2-binding capacities differentially modulate 

the ternary complex formation of ALG-2, ALIX, and ESCRT-I [37]. Since ALIX 

contains a PSAP motif and weakly interacts with TSG101 [71], a role of ALG-2 appears 

to be stabilization of the complex between ALIX and ESCRT-I [28,72]. In the ESCRT 

system, ESCRT-III plays a key role in membrane deformation by spiral polymerization 

of CHMP (CHarged Multivesicular body Protein) subunit proteins on the membrane 

[73]. In mammals, twelve CHMP paralogs are known 

(CHMP1A/1B/2A/2B/3/4A/4B/4C/5/6/7 and IST1), among which CHMP4s (yeast Snf7 

orthologs) are major subunits of ESCRT-III and interact with the Bro1 domain of ALIX 
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[34,73]. Thus, ALIX is recognized as an ESCRT-III-recruiting adaptor and bridges 

ESCRT-I and -III, which is essential for membrane deformation of HIV-1 budding, 

abscission of cells at the final stage of cytokinesis, and membrane repair [73,74]. For 

multivesicular body (MVB) biogenesis, ALIX and the ALIX paralog HD-PTP 

differentially activate ESCRT-III depending on cargoes [75]. A complex of Hrs and 

STAM1/2 recruits ESCRT-I in MVB biogenesis and is sometimes called ESCRT-0 [73]. 

However, upstream factors that recruit ESCRT-I are different among the ESCRT 

systems employed in cellular functions: i.e., Gag in retrovirus budding, CEP55 in 

cytokinesis, and Arrestin-Domain Containing Protein 1 (ARRDC1) in extracellular 

release of microvesicles [73,74,76-78]. ALG-2 functions as an upstream factor of 

ESCRT-III or an initiator in membrane repair upon a plasma membrane lesion, where 

ESCRT-0 (Hrs-STAM1/2), ESCRT-I except for TSG101, and ESCRT-II are not 

recruited [79]. Injury of the plasma membrane causes Ca2+ flux into the cytoplasm and 

recruitment of the Ca2+-dependent phospholipid binding protein annexin A7, which 

forms a complex with ALG-2 [80,81], to facilitate proper recruitment of ALIX to the 

damaged membrane [82]. The ESCRT system is also involved in lysosomal membrane 

repair and precedes engulfment of unrepairable lysosomes by the autophagic membrane 

(lysophagy) [83,84]. Requirement of ALG-2 remains to be established in this case.  

  The Ca2+-dependent adaptor function of ALG-2 has also been demonstrated in 

proteins involved in regulation of the ER-to-Golgi vesicular transport system [85]: 

Sec31A-annexin A11 complex formation [39], MISSL-MAP1B complex formation 

[31,32], and TFG polymerization [30]. Peflin acts as a negative regulator in this 

transport system [86]. However, positive or negative effects of PEF proteins may 

depend on cargoes that are to be analyzed. An ALG-2/peflin heterodimeric complex 

plays a role as a co-adaptor to bridge ubiquitin ligase CUL3 and its substrate adaptor 

protein KLHL12 for mono-ubiquitination of Sec31A to form larger coat protein 

complex II (COPII) coats and promote collagen secretion from the ER exit sites [87]. 

CaM, which has two independently-folded Ca2+ binding N- and C-lobes that interact 
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differentially with target proteins, has also recently been reported to act as a 

Ca2+-dependent adaptor [88]. It remains unknown whether the presence of two 

separated binding sites in one ALG-2 molecule for different types of binding motifs 

(Pocket 1/2 and Pocket 3 for ABM-1 and ABM-2, respectively) enables monomeric 

ALG-2 to serve as a link to target proteins.        

  

Activation of calpain-7 in the ESCRT system  

An oligomeric complex of VPS4 (occasionally called ESCRT-IV), a member of meiotic 

clade AAA type ATPases (ATPases associated with diverse cellular activities), 

disassembles ESCRT-III complexes at the last stage of membrane remodeling and 

abscission [73,89]. The microtubule-interacting and trafficking (MIT) domain of VPS4 

binds the C-terminal regions of ESCRT-III proteins by recognizing MIT-interacting 

motifs (MIMs) [73,89]. Human CAPN7, a non-classical calpain, lacks the PEF domain 

but possesses a tandem repeat of the MIT domains located at the N-terminus (Figure 1). 

CAPN7 physically interacts with a subset of CHMP proteins (ESCRT-III subunit 

paralogs) through the MIT domains such as CHMP1A, CHMP1B, CHMP4B and IST1 

[90,91]. Orthologs of CAPN7 in yeast (Rim13) and Aspergillus (PalB) have been shown 

to be activated on the ESCRT-III platform and to play essential roles in alkaline 

adaptation by limited proteolysis of transcription factors [92]. These eukaryotic 

microbial CAPN7 orthologs have different preferences for interactions with ESCRT-III 

proteins, i.e., Rim13 to Snf7 (CHMP4) and PalB to Vps24 (CHMP3) [93,94]. Rim13 

does not contain any discernable MIT domain, and PalB has only one MIT domain in 

contrast to two MIT domains in mammalian CAPN7. The variation or lack of the MIT 

domains might have allowed the protease activation mechanism to evolve differently in 

the detailed process.  

Although physiological substrates have not been identified yet, human CAPN7 has 

been shown to possess both catalytic activities for autolysis of the monomeric green 

fluorescent protein (mGFP)-fused protease and those for processing of artificially 
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designed non-physiological substrates [91,95]. These proteolytic activities were 

abrogated by substitution of the active site Cys-290 with Ser (C290S) and were 

enhanced with different degrees of efficiency by overexpression of ESCRT proteins in 

HEK293 cells [95]. IST1 activated CAPN7 in an in vitro proteolytic assay [91] but 

showed little effects in transfected cells probably due to a sufficient basal level of the 

protein [95]. CAPN7 may form a ternary complex with IST1 and with CHMP1B [96]. 

Fluorescence microscopic analysis of autolysis-defective mGFP-CAPN7C290S revealed 

time-dependent transient accumulation of CAPN7 at epidermal growth factor (EGF) 

receptor (EGFR)-positive endosomes after stimulation of HeLa cells with EGF [97]. 

Knockdown of IST1 by the RNA interference method decreased the rate of subcellular 

localization of CAPN7 in the EGFR-positive endosomes. Knockdown of CAPN7 

caused a decrease in the rate of EGF-stimulated EGFR degradation in HeLa cells. 

Similarly, mouse embryonic fibroblast (MEF) cells derived from CAPN7 knockout 

(Capn7-/-) mice showed a reduced rate of EGFR degradation compared with that of 

wild-type MEF cells [97]. The rate of EGFR degradation was recovered by exogenous 

expression of wild-type CAPN7 but not by expression of the CAPN7C290S mutant. These 

experimental data clearly indicate that CAPN7 plays roles in degradation of 

endocytosed EGFR. However, the physiological substrate of CAPN7 has not been 

identified yet. CAPN7 may accelerate multivesicular body (MVB) sorting by cleaving 

unknown factors that are involved in the pathway from endocytosis to lysosomal 

degradation (Figure 4). 

 

Perspective 

ALIX is a scaffold protein that binds and recruits multiple proteins by using different 

domains: the Bro1 domain (CHMP4), the V domain (LYPXnL motif-containing proteins 

including HIV-1 Gag p6, PAR1, and Syntenin), and the Pro-rich region (TSG101, 

ALG-2, endophilin, and CIN85) (See Refs. 28,76,98, and references therein.). Yeast and 

fungal substrates of CAPN7 orthologs (yeast Rim13, Rim101; fungal PalB, PacC) bind 
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the V domain of ALIX homologs (yeast Rim20; fungal PalA) that recognize the YPXL/I 

motif [99]. During evolution of eukaryotes, a prototype of CAPN7 might have acquired 

a primitive MIT domain to localize the protease by interaction with ESCRT-III proteins 

and to increase efficiency of encountering substrates that are recruited by 

ESCRT-III-interacting adaptor proteins (ALIX homologs). Knockdown of ALG-2 

retards EGFR degradation, suggesting inhibition of ALIX activation by ALG-2 [100]. 

Interestingly, IST1 has a Met-Pro repeat sequence that serves as a binding site for 

ALG-2 [38]. Moreover, ALG-2 interacts with ESCRT-I proteins (TSG101, VPS37B and 

VPS37C) [35,37,70]. Thus, ALG-2 seems to play diverse modulatory roles in the MVB 

sorting pathway including the ESCRT system and CAPN7. It is intriguing to speculate 

that ALG-2 interacts with CAPN7 substrates directly or indirectly through either the V 

domain of ALIX (or HD-PTP) or IST1 in a Ca2+-dependent fashion and recruits them to 

the ESCRT platform on the endosomal membrane. Moreover, classical calpains might 

have evolved by acquiring PEF domains to change the Ca2+-dependent activation 

locality from the ESCRT platform to the phospholipid membranes. The author hopes 

that these hypothetical ideas will be verified in the future by finding endogenous 

substrates of CAPN7 and elucidating its proteolytic activation mechanism. 
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Figure legends 

 

Figure 1. Relationship between the penta-EF-hand (PEF) protein family and the calpain 

family in mammals. Classical (typical) calpain sequences contain the PEF domain and 

the calpain type β-sandwich domain (CBSW) in addition to the cysteine protease core 

domain (CysPc), which is further divided into two subdomains named PC1 (containing 

a catalytic Cys residue) and PC2 (containing catalytic His and Asn residues). 

Conventional calpains (μ-calpain and m-calpain) are comprised of each catalytic large 

subunit (designated CAPN1 for μ-calpain or CAPN2 for m-calpain) and a common 

regulatory small subunit (CAPNS1). Non-classical (atypical) calpain sequences lack the 

PEF domain but contain additional domains or motifs [calcium-binding C2 domain, 

microtubule-interacting and trafficking (MIT) domain, Zinc finger (ZnF), 

SOL-homology domain (SOH), and circularly permutated globin domain (cpGB) split 

by the calmodulin-binding IQ motif]. Calpain-3 (CAPN3), specifically expressed in 

skeletal muscles, has distinct sequences: N-terminal sequence (NS), insertion sequence 

1 (IS1), and insertion sequence 2 (IS2). Calpain-7 (CAPN7) is an ortholog of fungal 

PalB. PEF proteins are classified into two groups based on similarity of the first 

EF-hand (EF1) sequences [15].   

 

Figure 2. Schematic structures of ALG-2-interacting proteins reported in the literature. 

The human or murine ALG-2-interacting proteins are classified into five groups for 

convenience sake based on functional properties: (a) ESCRT system, (b) ER-to-Golgi 

vesicular transport, (c) RNA processing, (d) protein kinases, and (e) miscellaneous. 

Underlined proteins have been studied in the author’s group. Red boxes and thick violet 

bars indicate Pro-rich regions (PRRs) and determined ALG-2-binding regions, 

respectively. PTP, phosphotyrosine phosphatase; UEV, ubiquitin E2 variant; CC, 

coiled-coil; SB, steadiness box; LC1, light chain 1; CID, C-terminal domain 

(CTD)-interacting domain; ZnF, zinc finger; RRM, RNA recognition motif; Ig-like C2, 
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immunoglobulin-like constant domain type 2; ANK, ankyrin; TM, transmembrane; C2, 

Protein Kinase C C2-domain-like Ca2+-binding domain; vWFA, von Willebrand factor 

A.     

 

Figure 3. PEF-binding motifs and 3D structures. (a) Three types of Pro-rich 

ALG-2-binding motifs (ABMs). Residues conserved among the identified 

ALG-2-interacting proteins in each type of ABM are indicated in red, and residues 

compatible with the type 2 motif at the Ω position are indicated in violet. [PΦ], Pro or 

hydrophobic; [FW], Phe or Trp; Ω, large side chain; x, variable. (b) Overall 3D structure 

of the complex between ALG-2 (homodimer) and ALIX peptides (indicated by magenta 

arrows) is shown by a cartoon in rainbow colors (from blue in the N-terminal region to 

red in the C-terminal region) using the 3D presentation software PyMOL and Protein 

Data Bank (PDB) code 2ZNE. (c) Overall 3D structure of the complex between ALG-2 

and Sec31A peptides. PDB code 3WXA. A side view (left panel) and a 90°-rotated 

bottom view (right panel). (d) Schematic representation of a three-binding-site model of 

calpain inhibition by calpastatin. Among the three conserved regions of the four 

repeated domains of calpastatin, region B binds the protease domain and inhibits the 

proteolytic activity of calpain. Regions A and C bind the PEF domains of the large 

subunit (L-PEF) and the small subunit (S-PEF), respectively. (e) Amino acid sequences 

of regions A and C of human calpastatin. Conserved (identical or similar) residues are 

highlighted in light green for region A and in cyan for region C. Conserved residues 

between the two regions are marked with asterisks, where high conservation is indicated 

by bold face. (f) Overall 3D structure of the complex between rat m-calpain and 

calpastatin domain 1 (PDB code 3DF0). The PEF domains and the calpastatin peptide 

are shown by cartoon models in rainbow colors and in magenta, respectively. Other 

calpain domains are shown by surface representation in pale colors. 

 

Figure 4. Schematic diagram of calpain-7 actions on ESCRT-mediated EGF receptor 
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downregulation in the endosome-to-lysosome pathway. Calpain-7 (CAPN7) is recruited 

to endosomes after stimulation of cells with epidermal growth factor (EGF) and 

regulates downregulation of the ubiquitinated and endocytosed EGF receptor (EGFR). 

Calpain-7 interacts via the tandemly repeated microtubule-interacting and trafficking 

(MIT) domains with a subset of ESCRT-III subunits (CHMP proteins) and related 

proteins that contain MIT-interacting motifs (MIMs). ALG-2 interacts with IST1, a 

CHMP-like protein, in a Ca2+-dependent manner at the Met-Pro repeat (MP) region. 

Endogenous substrates of calpain-7 have not been identified yet. Fungal and yeast 

orthologs of calpain-7 cleave ALIX-homolog-interacting transcription factors in 

association with ESCRT-III proteins. VPS4 (isoforms A and B) and spastin, meiotic 

clade AAA ATPases containing MIT domains, disassemble ESCRT-III polymers and 

microtubules, respectively [101,102]. CHMP, charged multivesicular body protein; 

MTBD, microtubule binding domain; MVB, multivesicular body; Ub, ubiquitin. 

 



Table 1. Distribution of penta-EF-hand (PEF) proteins, classical calpains and calpain-7 orthologs in eukaryotes

PEF proteins and calpains Protist Plant Yeast Fungus Nematode Fly Mammal

＋ ＋ ＋ ＋ ＋ ＋ ＋
- - - - - ＋ ＋

classical calpains
Large subunit - - - - - ＋ ＋
Small subunit - - - - - - ＋

- - - - - - ＋
- - - - - - ＋

- - ＋ ＋ ＋ - ＋

1) Names of homologs are different among organisms, and functions of mammalian ALG-2 are different from
those of lower eukaryotic homologs.
2) PalB (fungus) and Rim13 (yeast) have similar functions of processing transcription factors involved in alkaline
adaptation system, but the physiological substrate of mammalian CAPN7 (calpain-7) has not been identified yet.
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