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Abstract. We prove that the sign of the Gaussian curvature, which is closely related to the
diagonalizability of the shape operator, of any timelike minimal surface in the 3-dimensional
Lorentz-Minkowski space is determined by the degeneracy and the signs of the two null regular
curves that generate the surface. We also investigate the behavior of the Gaussian curvature near
singular points of a timelike minimal surface with some kinds of singular points, which is called
a minface. In particular we determine the sign of the Gaussian curvature near any non-degenerate
singular point of a minface.

1. Introduction

A timelike surface in the 3-dimensional Lorentz-Minkowski space L3 is a surface whose first
fundamental form is a Lorentzian metric. In contrast with surfaces in the 3-dimensional Euclidean
spaceE3 and spacelike surfaces inL3, timelike surfaces do not always have real principal curvatures,
that is, their shape operators are not always diagonalizable even over the complex number field C.
In general the diagonalizability of the shape operator of a timelike surface is determined by the
discriminant of the characteristic equation for the shape operator, which is H2 − K where H is the
mean curvature and K is the Gaussian curvature of the considered timelike surface. In this paper
we study the case that H vanishes identically.

A timelike surface whose mean curvature vanishes identically is called a timelike minimal
surface, and McNertney [16] proved that any such surface can be expressed as the sum of two null
regular curves (see also Fact 2.2), where a null regular curve is a regular curve whose velocity
vector field is lightlike. Based on the studies [7, 22] for spacelike case, Takahashi [21] introduced
a notion of timelike minimal surfaces with some kind of singular points of rank one, which are
called minfaces (see Definition 2.3 and Definition A.2). He also gave criteria for cuspidal edges,
swallowtails and cuspidal cross caps which appear frequently on minfaces.

The diagonalizability of the shape operator of a timelike minimal surface is determined by the
sign of the Gaussian curvature K . More precisely the shape operator is diagonalizable over the
real number field R on points with negative Gaussian curvature and diagonalizable over C \ R on
points with positive Gaussian curvature. Flat points consist of umbilic points and quasi-umbilic
points (see Definition 2.1). Therefore the problem of the diagonalizability of the shape operator
of a timelike minimal surface is reduced to the problem of the sign of the Gaussian curvature.
This would be quite different from minimal surfaces in E3, which have non-positive Gaussian
curvature, and from maximal surfaces in L3, which have non-negative Gaussian curvature. Hence,
to determine the sign of the Gaussian curvature of timelike minimal surfaces is an important
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problem. In this paper we investigate how to determine the sign of the Gaussian curvature of a
timelike minimal surface near regular and singular points.

To achieve our goal, we first give a characterization of flat points of a timelike minimal surface
by the notion of non-degeneracy of null regular curves which generate the surface (Proposition
3.1). Near non-flat points, we also prove that the sign of the Gaussian curvature is determined
only by the signs of two generating null regular curves (see Definition 2.8). In addition to this
result, by using the notion of pseudo-arclength parameters of null regular curves, we can also give
a construction method of conformal curvature line coordinate systems and conformal asymptotic
coordinate systems near non-flat points according to the sign of the Gaussian curvature of a timelike
minimal surface (Theorem 3.4).

About the behavior of the Gaussian curvature near singular points of surfaces in an arbitrary
3-dimensional Riemannian manifold, some notions of curvatures along singular points of frontals
and wave fronts (or fronts for short, and the definitions of frontals and fronts are given in Section
4) were introduced in [15, 20], and many relations between the behaviors of these curvatures and
the Gaussian curvature along singular points of frontals and fronts were revealed in [7, 15, 20].
On the other hand, in L3, Takahashi [21] proved that any minface is a frontal and gave a necessary
and sufficient condition for a minface to be a front (see Fact 4.2). Based on these backgrounds, we
prove the following result:

Theorem A. Let f : Σ −→ L3 be a minface and p ∈ Σ a singular point of f .
(i) If p is a cuspidal edge, then there is no umbilic point near p.
(ii) If f is a front at p and p is not a cuspidal edge, then there are no umbilic and quasi-umbilic

points near p. Moreover the Gaussian curvature K is negative near p and lim
q→p

K (q) = −∞.
(iii) If f is not a front at p and p is a non-degenerate singular point, then there are no umbilic

and quasi-umbilic points near p. Moreover the Gaussian curvature K is positive near p
and lim

q→p
K (q) = ∞.

On the Gaussian curvature near cuspidal edges, Saji, Umehara and Yamada pointed out in [20]
that the shape of singular points is restricted when the Gaussian curvature is bounded. In [20], they
introduced the singular curvature on cuspidal edges, and proved that if the Gaussian curvature with
respect to the induced metric from E3 is bounded and positive (resp. non-negative) near a cuspidal
edge, then the singular curvature is negative (resp. non-positive). Noting that for a timelike surface
the Gaussian curvatures with respect to the induced metrics from E3 and L3 have opposite signs,
we can prove the following statement for minfaces:

Theorem B. The Gaussian curvature with respect to the induced metric from L3 near a cuspidal
edge on a minface and the singular curvature have the same sign.

In fact we will prove a stronger result (Theorem 4.9) than Theorem B. By Theorems A and B, we
obtain criteria for the sign of the Gaussian curvature near any non-degenerate singular point on a
minface. Moreover we should remark that, by (ii) of Theorem A, we obtain a class of surfaces with
swallowtails near which the Gaussian curvature with respect to the Euclidean metric (we denote
it by KE ) is positive. There are a few explicitly known examples of such swallowtails, although
there are many known examples of swallowtails on surfaces with negative Gaussian curvature KE

(see Remark 4.6).
This article is organized as follows: In Section 2 we describe some notions of timelike surfaces

and null regular curves. We also give the definition of minfaces as a class of timelike minimal
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surfaces with singular points by using a representation formula derived in [21]. In Section 3 we
investigate the behavior of the Gaussian curvature near regular points. Finally, in Section 4 we
discuss the sign of the Gaussian curvature near singular points on minfaces and prove our main
results: Theorem A and Theorem 4.9. In Appendix A we review a precise description of geometry
of minfaces given in Takahashi’s Master thesis [21].

2. Preliminaries

2.1. Timelike surfaces and their shape operators. We denote by L3 the 3-dimensional Lorentz-
Minkowski space, that is, the 3-dimensional real vector space R3 with the Lorentzian metric

⟨ , ⟩ = −(dx0)2 + (dx1)2 + (dx2)2,
where (x0, x1, x2) are the canonical coordinates in R3. In L3, a vector v has one of the three causal
characters: it is spacelike if ⟨v, v⟩ > 0 or v = 0, timelike if ⟨v, v⟩ < 0, and lightlike or null if ⟨v, v⟩ =
0 and v , 0. We denote the set of null vectors by Q2 :=

{
v = (v0, v1, v2) ∈ L3 | ⟨v, v⟩ = 0, v0 , 0

}
and call it the lightcone. Let Σ := Σ2 be a two-dimensional connected and oriented smooth manifold
and f : Σ −→ L3 be an immersion. An immersion f is said to be timelike (resp. spacelike) if the
first fundamental form, that is, the induced metric I = f ∗⟨ , ⟩ is Lorentzian (resp. Riemannian) on
Σ.

For a timelike immersion f and its spacelike unit normal vector field ν, the shape operator S
and the second fundamental form II are defined as

df (S(X )) = −∇X ν, II(X,Y ) = ⟨∇df (X )df (Y ), ν⟩,

where X and Y are smooth vector fields on Σ, and ∇ is the Levi-Civita connection on L3. The
mean curvature H and the Gaussian curvature K are defined as H = (1/2) tr II and K = det S.
Let K̃ be the sectional curvature of the Lorentzian manifold (Σ, I). Then the Gauss equation

K̃ = K

implies that the Gaussian curvature K is intrinsic.
One of the most important differences between spacelike surfaces and timelike surfaces is the

diagonalizability of the shape operator, that is, the shape operator of a timelike surface is not
always diagonalizable even over C. For surfaces in E3 and spacelike surfaces in L3, the Gaussian
curvature K and mean curvature H satisfy H2 − K ≥ 0, and the equality holds on umbilic points,
where an umbilic point of a surface is a point on which the second fundamental form II is a scalar
multiple of the first fundamental form I. On the other hand, there are three possibilities of the
diagonalizability of the shape operator of a timelike surface in L3 as follows:

(i) The shape operator is diagonalizable over R. In this case H2 − K ≥ 0 with the equality
holds on umbilic points.

(ii) The shape operator is diagonalizable over C \ R. In this case H2 − K < 0.
(iii) The shape operator is non-diagonalizable over C. In this case H2 − K = 0.

About Case (iii), Clelland [4] introduced the following notion:

Definition 2.1 ([4]). A point p on a timelike surface Σ is called quasi-umbilic if the shape operator
of Σ is non-diagonalizable over C.
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2.2. Timelike minimal surfaces and minfaces. For a timelike surface f : Σ −→ L3, near each
point, we can take a Lorentz isothermal coordinate system (x, y), that is, the first fundamental
form I is written as I = E(−dx2 + dy2) with a non-zero function E, and a null coordinate system
(u, v) that is, I is written as I = 2Λdudv. A regular curve γ in L3 whose velocity vector field γ′
is lightlike is called a null regular curve, and a null coordinate system is a coordinate system on
which the image of coordinate curves are null regular curves. Moreover, up to constant multiple,
there is a one-to-one correspondence between these coordinate systems as follows:

x =
u − v

2
, y =

u + v
2

.

On each null coordinate system (u, v), an immersion f and its mean curvature H satisfy
Hν = 2

Λ

∂2 f
∂u∂v . Therefore, we obtain the following well-known representation formula.

Fact 2.2 ([16]). If φ(u) and ψ(v) are null regular curves in L3 such that φ′(u) and ψ ′(v) are
linearly independent for all u and v, then

f (u, v) =
φ(u) + ψ(v)

2
(1)

gives a timelike minimal surface. Conversely, any timelike minimal surface can be written locally
as the equation (1) with two null regular curves φ and ψ.

In this paper, we consider the following class of timelike minimal surfaces with singular points
of rank one, which was introduced in [21] (see also Definition A.2 in Appendix A):

Definition 2.3. A smooth map f : Σ −→ L3 is called a minface if at each point of Σ there exists
a local coordinate system (u, v) in a domain U, functions g1 = g1(u), g2 = g2(v), and 1-forms
ω1 = ω̂1(u)du, ω2 = ω̂2(v)dv with g1(u)g2(v) , 1 on an open dense set of U and ω̂1 , 0, ω̂2 , 0
at each point on U such that f can be decomposed into two null regular curves:

f (u, v) =
1
2

∫ u

u0

(
−1 − (g1)2, 1 − (g1)2, 2g1

)
ω1

+
1
2

∫ v

v0

(
1 + (g2)2, 1 − (g2)2,−2g2

)
ω2 + f (u0, v0). (2)

We denote these two null regular curves by φ = φ(u) and ψ = ψ(v). The quadruple (g1, g2, ω1, ω2)
is called the real Weierstrass data.

A singular point of a minface f is a point of Σ on which f is not immersed, and the set of
singular points on U of a minface f corresponds to the set {(u, v) ∈ U | g1(u)g2(v) = 1}.

Remark 2.4. In [21], Takahashi originally gave the notion of minfaces as Definition A.2 in
Appendix A by using the notion of para-Riemann surfaces. To study the local behavior of the
Gaussian curvature near singular points of timelike minimal surfaces, we adopt the above definition.
In Appendix A, we prove the representation formula (2) from the original definition of minfaces
(Fact A.7) and give a precise description of geometry of minfaces.

2.3. Null regular curves. In this subsection, we describe some notions of null regular curves.

Definition 2.5 (cf. [6, 19]). A null regular curve γ = γ(t) in L3 is called degenerate or non-
degenerate at t if γ′ × γ′′ = 0 or γ′ × γ′′ , 0 at t, respectively. If γ is non-degenerate everywhere,
it is called a non-degenerate null regular curve.
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A null regular curve which is degenerate everywhere is a straight line with a lightlike direction.
As pointed out in Section 2 in [19], the non-degeneracy of a null regular curve is characterized by
the following conditions.

Lemma 2.6 (cf. [19]). For a null regular curve γ = γ(t) in L3 the following (i), (ii) and (iii) are
equivalent:

(i) γ is non-degenerate at t,
(ii) γ′′(t) is a non-zero spacelike vector, that is, ⟨γ′′(t), γ′′(t)⟩ > 0,
(iii) det (γ′(t), γ′′(t), γ′′′(t)) , 0.

By Lemma 2.6, we can introduce the following notions for non-degenerate null regular curves.

Definition 2.7 ([3, 23]). For a non-degenerate null regular curve γ = γ(t), a parameter t is called
a pseudo-arclength parameter of γ if ⟨γ′′(t), γ′′(t)⟩ ≡ 1.

Definition 2.8. We define the sign of a non-degenerate null regular curve γ by the sign of
det (γ′, γ′′, γ′′′).

Remark 2.9. If we take a pseudo-arclength parameter s, then det (γ′, γ′′, γ′′′) = ±1, which
represents the sign of γ. Moreover, the sign of a non-degenerate null regular curve has the
following geometric meaning: If we consider the projection of γ′, which is on the lightcone Q2,
into the time slice x0 = 1, then the projected curve on S1 = {(1, x1, x2) | (1, x1, x2) ∈ Q2} is
anticlockwise if the sign is positive, and clockwise if the sign is negative as x0 increases. See
Figure 1 and Remark 3.5.

Figure 1. Examples of non-degenerate null regular curves with positive sign (the
left figure) and negative sign (the right figure).

3. The sign of the Gaussian curvature and signs of null regular curves

In this section we give a characterization of flat points and investigate the sign of the Gaussian
curvature of minfaces by using the notions of degeneracy and signs of null regular curves.

3.1. A characterization of flat points. As we saw in Section 2, flat points on each minface consist
of umbilic and quasi-umbilic points. First, we give a characterization of flat points of a minface
from a viewpoint of null regular curves.

Proposition 3.1. Let p be a regular point in a minface f . Then the following statements hold:
(i) p is an umbilic point of f if and only if the two null regular curves in the equation null

curves decomposition) are degenerate at p.
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(ii) p is a quasi-umbilic point of f if and only if only one of the two null regular curves in the
equation (1) is degenerate at p.

Proof. If we take a null coordinate system (u, v) on which f is written as (1), then the first and the
second fundamental forms can be written as follows:

I = 2Λdudv and II = Qdu2 + Rdv2.

Therefore, the shape operator is

S = I−1II =
(

0 1
Λ

1
Λ

0

) (
Q 0
0 R

)
=

(
0 R

Λ
Q
Λ

0

)
. (3)

On the other hand, we can see that there exists a real number a such that

2 fuu (p) = φ′′(p) = aφ′(p) + 2Q(p)ν(p).

Therefore, φ is degenerate at p if and only if Q(p) = 0. By using (3), we obtain the desired
result. □

Remark 3.2. The differential coefficients Q and R are called (coefficients of) Hopf differentials on
a timelike surface, which was introduced in [9]. The degenerate points of two null regular curves
φ and ψ correspond to zeros of these Hopf differentials Q and R, respectively.

Example 3.3. Let us take the two null regular curves φ and ψ

φ(u) =
(
u +

u5

5
,
2
3

u3, u − u5

5

)
, ψ(v) =

(
−v − v5

5
,
2
3
v3, v − v5

5

)
,

which are degenerate at the origin, and consider the timelike minimal surface constructed by the
equation (1). The Gaussian curvature K of this surface is K = − 4uv

(1+u2v2)8 . Proposition 3.1 states
that the set of flat points of this surface consists of quasi-umbilic points except the intersection and
the intersection is an umbilic point. See Figure 2. As this example, the quasi-umbilic points (and
also the umbilic points) of a timelike minimal surface are not isolated in general.

Figure 2. An example on which the sign of the Gaussian curvature changes along
quasi-umbilic curves (black curves except the intersection).

3.2. The sign of the Gaussian curvature near non-flat points. In the previous subsection we
gave a characterization of flat points using the notion of degeneracy of null regular curves of a
minface. In this subsection we investigate how to determine the sign of the Gaussian curvature and
give a construction method of conformal curvature line (resp. conformal asymptotic) coordinate
systems near non-flat points of a minface based on the study by Takahashi [21].

First we consider the two null regular curves φ = φ(u) and ψ = ψ(v) in the equation (2).
Away from flat points, the two null regular curves φ and ψ are non-degenerate by Proposition
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3.1, and hence we can take pseudo-arclength parameters of φ and ψ near non-flat points. Since
⟨φ′′, φ′′⟩ = 4g′1

2ω̂2
1, ω̂1 , 0, and (ii) of Lemma 2.6, g′1 , 0 near each non-flat point. Moreover, the

parameter u is a pseudo-arclength parameter of φ if and only if ω̂1 and g1 satisfy

g′1ω̂1(u) = −
εφ

2
, εφ = ±1.

After a straightforward calculation, we obtain the equation det(φ′, φ′′, φ′′′) = εφ , that is, εφ is
nothing but the sign of φ which was introduced in Definition 2.8. Similarly, the parameter v is a
pseudo-arclength parameter of ψ if and only if ω̂2 and g2 satisfy

g′2ω̂2(v) = −
εψ

2
, εψ = ±1,

and εψ also represents the sign of ψ. Therefore we obtain the following formula near non-flat
points

f (u, v) =
1
2

∫ u

u0

(
−1 − (g1)2, 1 − (g1)2, 2g1

) −εφ
2g′1

du

+
1
2

∫ v

v0

(
1 + (g2)2, 1 − (g2)2,−2g2

) −εψ
2g′2

dv + f (u0, v0). (4)

From now on, we consider the Lorentz isothermal coordinate system (x, y) = ( u−v2 , u+v2 ) associated
to the null coordinate system (u, v) constructed from pseudo-arclength parameters of φ and ψ. On
the coordinate system, the first and the second fundamental forms I and II can be written as follows:

I =
εφεψ

4g′1g
′
2

(1 − g1g2)2(−dx2 + dy2), II = (
εφ

2
−
εψ

2
)(dx2 + dy2) + (εφ + εψ )dxdy.

We denote the conformal factor εφεψ
4g′1g

′
2

(1 − g1g2)2 by E. Then the Gaussian curvature K of the
minface is written as

K =
εφεϕ

E2 . (5)

Therefore, the sign of the Gaussian curvature of the non-flat points of a minface is determined
only by the signs of two null regular curves φ and ψ. In summary, we have obtained the following
theorem, which also gives a construction method of conformal curvature line coordinate systems
and conformal asymptotic coordinate systems by using pseudo-arclength parameters.

Theorem 3.4. Away from flat points, each minface f : Σ → L3 can be written locally as the
equation (4). The Gaussian curvature K is positive (resp. negative) if and only if φ and ψ have
the same sign (resp. different signs). In this case, the Lorentz isothermal coordinate system
(x, y) = ( u−v2 , u+v2 ) associated to the null coordinate system (u, v) in (4) is a conformal asymptotic
(resp. conformal curvature line) coordinate system.

Remark 3.5. In Remark 1 in [17], Milnor normalized null coordinates u, v so that u and v are
Euclidean arclength parameters of φ/2 and ψ/2 in the equation (1), that is, on this coordinate
system a timelike minimal surface f can be written as

f (u, v) =
1
√

2

(
u − u0,

∫ u

u0

cos A(τ)dτ,
∫ u

u0

sin A(τ)dτ
)

+
1
√

2

(
v − v0,

∫ v

v0

cos B(τ)dτ,
∫ v

v0

sin B(τ)dτ
)
+ f (u0, v0),



8 S. AKAMINE

where, A and B are called the Weierstrass functions. By using these functions, Milnor gave the
following formula giving control over the sign of the Gaussian curvature K :

sgnK = sgn(A′B′) (6)

After a straightforward calculation, we get det(φ′, φ′′, φ′′′) = (A′)3, and hence sgn(A′B′) = εφεψ .
About the sign of the Gaussian curvature, the equation (5) is nothing but (6).

4. Behavior of the Gaussian curvature near singular points

In this section we investigate the behavior of the Gaussian curvature near non-degenerate singular
points on a minface by using some notions about null regular curves given in Section 2.3 and results
for the Gaussian curvature near regular points given in Section 3.

4.1. Frontals and fronts. First we recall the singularity theory of frontals and fronts, see [1, 7,
20, 22] for details. Let U be a domain in R2 and u, v are local coordinates on U . A smooth map
f : U −→ R3 is called a f rontal if there exists a unit vector field n on U such that n is perpendicular
to df (TU) with respect to the Euclidean metric ⟨ , ⟩E of R3. We call n the unit normal vector field
of a frontal f . Moreover if the Legendrian lift L of a frontal f

L = ( f , n) : U −→ R3 × S2

is an immersion, f is called a f ront. A point p ∈ U where f is not an immersion is called a
singular point of the frontal f , and we call the set of singular points of f the singular set. We can
take the following smooth function λ on U

λ = det( fu, fv, n) = ⟨ fu ×E fv, n⟩E,

where ×E is the Euclidean vector product of R3. The function λ is called the signed area density
function of the frontal f . A singular point p is called non-degenerate if dλp , 0. The set of
singular points of the frontal f corresponds to zeros of λ. Let us assume that p is a non-degenerate
singular point of a frontal f , then there exists a regular curve γ = γ(t) : (−ε, ε) −→ U such that
γ(0) = p and the image of γ coincides with the singular set of f around p. We call γ the singular
curve and the direction of γ′ = dγ

dt the singular direction. On the other hand, there exists a non-zero
vector η ∈ Ker(df p ) because p is non-degenerate. We call η the null direction.

Let Ui , i = 1, 2 be domains of R2 and pi , i = 1, 2 be points in Ui . Two smooth maps
f1 : U1 −→ R3 and f2 : U2 −→ R3 areA-equivalent (or right-left equivalent) at the points p1 ∈ U1
and p2 ∈ U2 if there exist local diffeomorphisms Φ of R2 with Φ(p1) = p2 and Ψ of R3 with
Ψ( f1(p1)) = f2(p2) such that f2 = Ψ ◦ f1 ◦ Φ−1. A singular point p of a map f : U −→ R3 is
called a cuspidal edge, swallowtail or cuspidal cross cap if the map f at p is A-equivalent to the
following map fC , fS or fCCR at the origin, respectively (see Figure 3):

fC (u, v) = (u2, u3, v), fS (u, v) = (3u4 + u2v, 4u3 + 2uv, v), fCCR (u, v) = (u, v2, uv3).
Cuspidal edges and swallowtails are non-degenerate singular points of fronts, and these two types
of singular points are generic singularities of fronts (cf. [2]). In addition to these singular points,
cuspidal cross caps often appear on minfaces, which are not singular points of fronts but are
non-degenerate singular points of frontals.
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Figure 3. A cuspidal edge, swallowtail and cuspidal cross cap.

4.2. Singular points on minfaces. In [7], Fujimori, Saji, Umehara and Yamada proved that
the singular points of spacelike maximal surfaces in L3 generically consist of cuspidal edges,
swallowtails and cuspidal cross caps. Similarly, these singular points frequently appear on timelike
minimal surfaces. By using Facts as mentioned above, Takahashi gave the following criteria for
cuspidal edges, swallowtails and cuspidal cross caps of minfaces by using their real Weierstrass
data (g1, g2, ω1, ω2). Now, we identify the Lorentz-Minkowski space L3 with the affine space R3.

Fact 4.1 ([21]). Let f : U −→ L3 be a minface and p ∈ U a singular point. If we take the real
Weierstrass data (g1, g2, ω̂1du, ω̂2dv) on U, then f is A-equivalent to

(i) a cuspidal edge at p if and only if
g′1

g2
1ω̂1

−
g′2

g2
2ω̂2
, 0 and

g′1
g2
1ω̂1
+

g′2
g2
2ω̂2
, 0 at p,

(ii) a swallowtail at p if and only if

g′1
g2
1ω̂1

−
g′2

g2
2ω̂2
, 0,

g′1
g2
1ω̂1
+

g′2
g2
2ω̂2
= 0, and *,

g′1
g2
1ω̂1

+-
′
g′2
g2
− *,

g′2
g2
2ω̂2

+-
′
g′1
g1
, 0 at p,

(iii) a cuspidal cross cap at p if and only if

g′1
g2
1ω̂1

−
g′2

g2
2ω̂2
= 0,

g′1
g2
1ω̂1
+

g′2
g2
2ω̂2
, 0, and *,

g′1
g2
1ω̂1

+-
′
g′2
g2
+ *,

g′2
g2
2ω̂2

+-
′
g′1
g1
, 0 at p.

To prove Fact 4.1, Takahashi used the following fact. We shall recall the proof in [21] which
will be helpful to prove our main results.

Fact 4.2 ([21]). Let f : U −→ L3 be a minface with the real Weierstrass data (g1, g2, ω̂1du, ω̂2dv).
Then

(i) a point p is a singular point of f if and only if g1(p)g2(p) = 1.
(ii) f is a frontal at any singular point p.
(iii) f is a front at a singular point p if and only if g′1

g2
1ω̂1
− g′2

g2
2ω̂2
, 0 at p. Moreover in this

case, p is automatically a non-degenerate singular point.

Proof. Let u, v be local coordinates on U . Since

fu =
ω̂1

2
(−1 − g2

1, 1 − g2
1, 2g1), fv =

ω̂2

2
(1 + g2

2, 1 − g2
2,−2g2),
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it holds that
fu × fv =

ω̂1ω̂2

2
(1 − g1g2)(−g1 − g2, g1 − g2,−1 − g1g2),

where × denotes the Euclidean outer product. Since f is a minface, we obtain ω̂1 , 0 and ω̂2 , 0
at any point, and hence p is a singular point if and only if g1(p)g2(p) = 1. Moreover f is a frontal
with unit normal vector field

n =
1√

(1 − g1g2)2 + 2(g1 + g2)2
(−g1 − g2, g1 − g2,−1 − g1g2).

Next we prove (iii). Since df p and dnp are written as

df p =
−g1ω1 + g2ω2

2
(g1 + g2, g1 − g2,−2), dnp =

(
− dg1

g1
+

dg2
g2

)
(g1 + g2)

√
2(g1 + g2)2

(0, 2, g1 − g2),

where ω1 = ω̂1du and ω2 = ω̂2dv, we obtain the following two vector fields η and µ such that
df p (ν) = 0 and dnp (µ) = 0:

η =
1

g1ω̂1

(
∂

∂u

)
p

+
1

g2ω̂2

(
∂

∂v

)
p

, µ =
g′2
g2

(
∂

∂u

)
p

+
g′1
g1

(
∂

∂v

)
p

. (7)

On the other hand, the minface f is a front at p if and only if the directions η and µ are linearly
independent (see, for example, proof of Lemma 3.3 in [22]) and by the equations (7) we get

det(η, µ) =
g′1

g2
1ω̂1

−
g′2

g2
2ω̂2

at p,

which proves the first part of the conclusion. Moreover, the signed area density function λ can be
written as

λ = −ω̂1ω̂2

2
(1 − g1g2)

√
(1 − g1g2)2 + 2(g1 + g2)2,

and hence its derivative at p can be written as follows:

dλp =
ω̂1ω̂2√

2
|g1 + g2 |

(
dg1

g1
+

dg2

g2

)
. (8)

Therefore a singular point p is non-degenerate if and only if g′1(p) , 0 or g′2(p) , 0, and hence we
have proved the desired result. □

4.3. Behavior of the Gaussian curvature near singular points. Now we are in the position to
investigate the behavior of the Gaussian curvature near singular points of minfaces by using the
facts given above.

Proof of Theorem A. We use the representation (2) for a minface f . Since φ in (2) satisfies
⟨φ′′, φ′′⟩ = 4g′1

2ω̂2
1 and ω̂1 , 0 on the minface f , φ is degenerate at p if and only if g′1(p) = 0.

Similarly, ψ is degenerate at p if and only if g′2(p) = 0. By (i) of Fact 4.1, near a cuspidal edge
g′1 , 0 or g′2 , 0. Hence there is no umbilic point near p by Proposition 3.1. Next we prove (ii).
If we assume that one of g′1(p) and g′2(p) vanishes, then the other one also vanishes by (i) of Fact
4.1. By (iii) of Fact 4.2, it contradicts the assumption that f is a front, that is, there is no flat point
near p. By Proposition 3.1 and Lemma 2.6, we can take pseudo-arclength parameters of φ and ψ,
that is,

g′1ω̂1(u) = −
εφ

2
, g′2ω̂2(v) = −

εψ

2
, (9)



GAUSSIAN CURVATURE OF TIMELIKE MINIMAL SURFACES 11

and hence
g′1

g2
1ω̂1

−
g′2

g2
2ω̂2
= −

εφ

2g2
1ω̂

2
1
+

εψ

2g2
2ω̂

2
2

and
g′1

g2
1ω̂1
+

g′2
g2
2ω̂2
= − *,

εφ

2g2
1ω̂

2
1
+

εψ

2g2
2ω̂

2
2

+- . (10)

Since f is a front at p, the quantity g′1
g2
1ω̂1
− g′2

g2
2ω̂2

does not vanish at p by (iii) of Fact 4.2. On
the other hand, if we assume that the singular point p is not a cuspidal edge, then the quantity
g′1

g2
1ω̂1
+

g′2
g2
2ω̂2

vanishes at p by (i) of Fact 4.1. Therefore by the second equation of (10), the signs of
φ and ψ are different. Hence, by Theorem 3.4, the Gaussian curvature K is negative and K diverges
to −∞ at p. Finally if we assume that f is not a front at p and p is a non-degenerate singular
point, then the quantity g′1

g2
1ω̂1
− g′2

g2
2ω̂2

vanishes at p. Hence, if one of g′1(p) and g′2(p) vanishes,
then the other one also vanishes, which contradicts the assumption that p is non-degenerate and
the equation (8). Therefore, there is no flat point near p. By taking pseudo-arclength parameters
of φ and ψ with (9) again and considering the first equation of (10), we conclude that the signs of
φ and ψ are the same. By Theorem 3.4, the Gaussian curvature K is positive and K diverges to∞
at p, which completes the proof. □

Remark 4.3. In general, the sign of the Gaussian curvature near cuspidal edges of a minface cannot
be determined. If we take the real Weierstrass data

g1(u) = u, g2(v) = 1 + v2, ω1(u) = du and ω2(v) = dv,
in the equation (2), then the singular set Σ f is determined by the equation g1(u)g2(v) = u(1+v2) =
1, that is, Σ f = {( 1

1+v2 , v) ∈ R2 | v ∈ R} and quantities in (i) of Fact 4.1 are computed as follows
g′1

g2
1ω̂1
± g′2

g2
2ω̂2
= 1

u2 ± 2v
(1+v2)2 =

(1+v2)4±2v
(1+v2)2 =

(1±v)2+3v2+6v4+4v6+v8

(1+v2)2 > 0 on Σ f .

Therefore, the set of singular points Σ f consists of only cuspidal edges. On the other hand, the
Gaussian curvature is K (u, v) = 2v

(u(1+v2)−1)4 . Hence the sign of the Gaussian curvature cannot be
determined near cuspidal edges in general. Moreover, the Gaussian curvature of this example does
not diverge along the quasi-umbilic curve v = 0 (the curve appears as the boundary of black and
gray parts in Figure 4).

Figure 4. A minface with cuspidal edges on which the sign of the Gaussian
curvature changes along a quasi-umbilic curve.

Remark 4.4. In [22], Umehara and Yamada introduced the notion of maxfaces in L3, and proved
that any maxface f is locally represented as

f (z) = ℜ
∫ z

z0

(−2G, 1 + G2, i(1 − G2))η,
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where (G, η) is a pair of a meromorphic function and a holomorphic 1-form on a simply connected
domain in C containing a base point z0 such that (1 + |G |2)2 |η |2 , 0 on the domain. Moreover,
the first fundamental form of f is given by I = (1 − |G |2)2 |η |2, and hence a point z is a singular
point of f if and only if |G(z) | = 1. By using (G, η), the intrinsic Gaussian curvature K of f can
be written as

K =
4|dG |2

(1 − |G |2)4 |η |2, (11)

where the non-degeneracy of a singular point p means dGp , 0 (Lemma 3.3 in [22]). Therefore
at a non-degenerate singular point p of any maxface, the Gaussian curvature K always diverges to
∞.

Example 4.5 ([9, 13, 21]). If we take the real Weierstrass data
g1(u) = u, g2(v) = −v, ω1(u) = 1

2 du and ω2(v) = 1
2 dv

in the equation (2), we obtain the following two null regular curves

φ(u) =
1
2

(−u − u3

3
, u − u3

3
, u2) and ψ(v) =

1
2

(v +
v3

3
, v − v3

3
, v2).

The surface obtained by these two null regular curves is called the timelike Enneper surface of
isothermic type or an analogue of Enneper’s surface. Since 2g′1ω̂1 = 1 and 2g′2ω̂2 = −1, φ and ψ
are parametrized by pseudo-arclength parameters and have negative and positive signs, respectively.
Hence, Theorem 3.4 states that the Gaussian curvature K is negative. Moreover the singular set
is Σ f = {(u, v) ∈ R2 | uv = −1} and the quantities in Fact 4.1 are computed as g′1

g2
1ω̂1
± g′2

g2
2ω̂2
=

2(v2 ± u2) on Σ f . Therefore, Σ f consists of cuspidal edges Σ f \ {(1,−1), (−1, 1)} and swallowtails
{(1,−1), (−1, 1)}. By (ii) of Fact A.12 in Appendix A, the conjugate minface of the timelike
Enneper surface of isothermic type f ∗ defined by (A.7) has cuspidal edges Σ f \ {(1,−1), (−1, 1)}
and cuspidal cross caps {(1,−1), (−1, 1)}, see Figure 5.

Figure 5. The timelike Enneper surface of isothermic-type and its conjugate.

Remark 4.6. There are many known examples of swallowtails on surfaces with negative Gaussian
curvature KE with respect to the Euclidean metric such as swallowtails on maxfaces in L3 and
surfaces with constant negative Gaussian curvature in E3. See [20, 22] for example. However, there
are a few explicitly known examples of swallowtails on surfaces with positive Gaussian curvature
so far. By (ii) of Theorem A and the fact that the Gaussian curvatures KE and K of a timelike
surface with respect to the metrics from E3 and L3 have opposite signs (see [24, Section 7.2]),
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minfaces in L3 with negative Gaussian curvature K give a class of surfaces with positive Gaussian
curvature KE and swallowtails.

As Example 3.3 umbilic points and quasi-umbilic points on a timelike minimal surface are
not isolated in general. We also saw an example in Remark 4.3 where a curve of quasi-umbilic
points on a minface accumulates to a cuspidal edge. As a corollary of Theorem A, we obtain the
following:

Corollary 4.7. The following (i) and (ii) hold:
(i) Umbilic points do not accumulate to a non-degenerate singular point of a minface.
(ii) If quasi-umbilic points accumulate to a non-degenerate singular point p of a minface, then

p is a cuspidal edge.

Proof. The claim (i) follows from the equation (8) and (i) of Proposition 3.1. To prove the claim
(ii), if we assume that quasi-umbilic points accumulate to a non-degenerate singular point p which
is not a cuspidal edge, then the condition K (p) = 0 contradicts to (ii) or (iii) of Theorem A. □

Remark 4.8. In contrast with the corollary as above, umbilic points on a maxface do not accumulate
to a non-degenerate singular point by the equation (11) and the non-degeneracy of a singular point
in Remark 4.4.

In the end of this section, we give a criterion for the sign of the Gaussian curvature near cuspidal
edges on minfaces. Let f : U −→ R3 be a front with the unit normal vector field n and γ = γ(t)
a singular curve on U consists of cuspidal edges. By (i) of Fact A.10, γ is a regular curve and
we can take the null vector fields η such that (γ′(t), η(t)) is positively oriented with respect to the
orientation of U . The singular curvature κs of the cuspidal edge γ was defined in [20] as

κs (t) = sgn(dλ(η))
det(γ̂′(t), γ̂′′(t), n)

|γ̂′(t) |3 ,

where γ̂ = f ◦ γ and |γ̂′(t) | = ⟨γ̂′(t), γ̂′(t)⟩1/2E . The singular curvature is an intrinsic invariant
of cuspidal edges, and related to the behavior of the Gaussian curvature as stated in Introduction.
For minfaces, the singular curvature characterizes the sign of the Gaussian curvature near cuspidal
edges:

Theorem 4.9. Let f : U −→ L3 be a minface with the real Weierstrass data (g1, g2, ω̂1du, ω̂2dv)
and γ(t) the singular curve passing through a cuspidal edge p = γ(0). Then the Gaussian curvature
K and the singular curvature κs have the same sign. In particular, zeros of κs correspond to either
zeros of g′1 or g′2.

Proof. By the proofs of Facts 4.1 (see Appendix A) and 4.2, we can compute

det(γ̂′(t), γ̂′′(t), n) = ω̂2
1ω̂

2
2g
′
1g
′
2

√
(g1 + g2)2

2
*,

g′1
g2
1ω̂1
+

g′2
g2
2ω̂2

+-
2

,

|γ̂′ | =

√
ω̂2

1ω̂
2
2(g1 + g2)2

2
*,

g′1
g2
1ω̂1
+

g′2
g2
2ω̂2

+- and sgn(dλ(η)) = sgn(ω̂1ω̂2),

where we take the null vector field η satisfying the condition

det(γ′, η) = *,
g′1

g2
1ω̂1
+

g′2
g2
2ω̂2

+- > 0.
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Therefore, the singular curvature κs is written as

κs =
2g′1g

′
2

ω̂1ω̂2(g1 + g2)2
1(

g′1
g2
1ω̂1
+

g′2
g2
2ω̂2

) . (12)

Hence, zeros of κs correspond to either zeros of g′1 or g′2. On the other hand, the Gaussian curvature
K of the minface f which is represented as (2) is written as

K =
4g′1g

′
2

ω̂1ω̂2(1 − g1g2)4
. (13)

By (12) and (13), we obtain the desired result. □

Acknowledgement. The author is grateful to Professor Atsufumi Honda for his valuable comments
and fruitful discussion. He is also grateful to Professor Miyuki Koiso for her encouragement and
suggestions, and to Professor Masaaki Umehara for suggesting the importance of swallowtails
on surfaces with positive Gaussian curvature. This work is supported by Grant-in-Aid for JSPS
Fellows Number 15J06677.

Appendix A. Geometry of minfaces

In this appendix we give a precise description of the notion of minfaces and their representation
formulas based on the work by Takahashi [21].

First we shall recall the notion of paracomplex algebra. For a more detailed exposition on
paracomplex numbers, see [5, 9, 13] and their references. LetC′ be the 2-dimensional commutative
algebra of the form C′ = R1 ⊕ R j with multiplication law:

j · 1 = 1 · j = j, j2 = 1.

An element of C′ is called a paracomplex number and C′ is called the paracomplex algebra. Some
authors use the terminology split-complex numbers or Lorentz numbers instead of paracomplex
numbers. For a paracomplex number z = x + jy, we call ℜz := x, ℑz := y and z̄ := x − jy the
real part, the imaginary part and the conjugate of z, respectively. The paracomplex algebra C′ can
be identified with the Minkowski plane L2 = (R2, ⟨ , ⟩L2 = −dx2 + dy2) as follows:

C′ ∋ z = x + jy ←→ z = (x, y) ∈ L2.

Under the identification, the scalar product ⟨z1, z2⟩L2 of L2 can be written as −ℜ( z̄1z2). In
particular, ⟨z, z⟩L2 = −zz̄ and we define ⟨z⟩2 := zz̄. We also define the n-dimensional paracomplex
space as C′n := {(z0, z1, · · · , zn−1) | z0, z1, · · · , zn−1 ∈ C′}.

A (1, 1)-tensor field J on a 2-dimensional oriented manifold Σ is called an almost paracomplex
structure if J satisfies J2 = id and dim(V−) = dim(V+) = 1, where V− and V+ are ±1-eigenspaces
for J. As pointed out in [9, 24] every almost complex structure J on Σ is integrable, that is, there
exists a coordinate system (u, v) compatible with the orientation of Σ such that J ( ∂

∂u ) = ∂
∂u and

J ( ∂
∂v ) = − ∂

∂v near each point. We also call (u, v) a null coordinate system, (x = u−v
2 , y = u+v

2 ) a
Lorentz isothermal coordinate system on (Σ, J) and (Σ, J) a para-Riemann surface.

A smooth map φ between para-Riemann surfaces (M, J) and (N, J ′) is called paraholomorphic
if dφ ◦ J = J ′ ◦ dφ. Paraholomorphicity of maps locally can be characterized as follows:

Fact A.1 ([21]). Let D ⊂ C′ be a domain with a coordinate z = x + jy = u−v
2 + j u+v2 . A function

φ = φ1 + jφ2 is paraholomorphic if and only if there exist functions f = f (u) and g = g(v) such
that φ(z) = f (u)+g(v)

2 + j f (u)−g(v)
2 .
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It follows directly from the observations that φ satisfies dφ(J ( ∂
∂u )) = J (dφ( ∂

∂u )) if and only if
there exists a function g = g(v) such that φ1 − φ2 = g, and dφ(J ( ∂

∂v )) = J (dφ( ∂
∂v )) if and only

if there exists a function f = f (u) such that φ1 + φ2 = f , where J is the canonical paracomplex
structure on C′. A 1-form ω is called paraholomorphic if ω can be written as ω = ω̂dz in any
local paracomplex coordinate z with a paraholomorphic function ω̂.

In [21], Takahashi introduced the notion of timelike minimal surfaces with some kind of singular
points of rank one, which are called minfaces as follows:

Definition A.2 ([21]). Let (Σ, J) be a para-Riemann surface. A smooth map f : Σ −→ L3 is a
minface if there is an open dense set W ⊂ Σ such that f is a conformal timelike minimal immersion
on W , and on each null coordinate system (u, v), fu , 0 and fv , 0 at each point. A point p ∈ Σ
is called a singular point of f if f is not an immersion at p.

Remark A.3. In [11], Kim, Koh, Shin and Yang defined the notion of generalized timelike minimal
surfaces as follows: Let Σ be a 2-dimensional C2-manifold. A non-constant map f : Σ −→ L3 is
called a generalized timelike minimal surface if at each point of Σ there exists a local coordinate
system (x, y) such that (i) ⟨ f x, f x⟩ ≡ −⟨ fy, fy⟩ ≥ 0, ⟨ f x, fy⟩ ≡ 0, (ii) f xx − fyy ≡ 0 and (iii)
⟨ f x, f x⟩ = −⟨ fy, fy⟩ > 0 almost everywhere on Σ. A singular point of such a surface is in
either A := {p | f x or fy is lightlike} or B := {p | df p vanishes}. By definition, a minface is
a generalized timelike minimal surface without singular points belonging to B. However, the
converse is not true, that is, we can construct an example of a generalized timelike minimal surface
with only singular points belonging to A which is not a minface by taking only one of two
generating null regular curves with a singular point.

A paraholomorphic map F = (F0, F1, F2) : Σ −→ C′3 is called a Lorentzian null map if
Fz · Fz := −(F0

z )2 + (F1
z )2 + (F2

z )2 ≡ 0

holds on Σ, where z = u−v
2 + j u+v2 is a local paracomplex coordinate in a domain U ⊂ Σ and

Fz =
∂F
∂z =

1
2

[(
∂F
∂u −

∂F
∂v

)
+ j

(
∂F
∂u +

∂F
∂v

)]
. By the paraholomorphicity of F and Fact A.1, we

can take the decomposition of F : U −→ C′3 as

F (z) =
φ(u) + ψ(v)

2
+ j

φ(u) − ψ(v)
2

. (A.1)

Since

Fz · Fz =
1
2

[⟨φ′(u), φ′(u)⟩ + ⟨ψ ′(v), ψ ′(v)⟩ + 2 j
(⟨φ′(u), φ′(u)⟩ − ⟨ψ ′(v), ψ ′(v)⟩)] ,

we have the following:

Fact A.4 ([21]). Let U be a domain in C′ and z = x+ jy = u−v
2 + j u+v2 be the canonical coordinate

on C′. If we take the decomposition (A.1), then the following conditions are equivalent:
(i) F is a Lorentzian null map,
(ii) φ and ψ satisfy ⟨φ′(u), φ′(u)⟩ = 0 and ⟨ψ ′(v), ψ ′(v)⟩ = 0.

Remark A.5. The condition (ii) above does not mean that null curves φ and ψ are regular because
there may be a point p such that φ′(p) = 0 or ψ ′(p) = 0. Since the Jacobi matrix of F can be
written as

JF =
1
2

(
φ′ ψ ′

φ′ −ψ ′
)
,
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a necessary and sufficient condition that the Lorentzian null map F as above is an immersion is
both ofnull curves φ and ψ are regular.

Similar to the case of maxfaces (see Proposition 2.3 in [22]), any minface can be written by
using a paraholomorphic Lorentzian null immersion as follows:

Fact A.6 ([21]). Let (Σ, J) be a para-Riemann surface and f : Σ → L3 be a minface. Then there
is a paraholomorphic Lorentzian null immersion F : Σ̃ −→ C′3 such that f ◦ π = F + F, where
π : Σ̃ −→ Σ is the universal covering map of Σ. Conversely, if F : Σ̃ −→ C′3 is a paraholomorphic
Lorentzian null immersion which gives a timelike minimal immersion f = F + F on an open dense
set, then f is a minface.

Proof. By Definition A.2, there exists an open dense set W ⊂ Σ such that f |W is a conformal
timelike minimal immersion. Then if we take a paracomplex coordinate z in a domain U, we obtain
fz z̄ ≡ 0 on U ∩W . Since W is a dense set, the equality as above holds on U, and hence ∂ f = fzdz
is a paraholomorphic 1-form on Σ. We can take a paraholomorphic map F : Σ̃ −→ C′3 such that
dF = ∂( f ◦ π). Since ∂(F + F̄) = dF, there exists a real number c such that F + F̄ = f ◦ π + c.
In particular, we can take c = 0. Let us take null coordinates u, v in a domain U ⊂ Σ near any
point p ∈ Σ, and consider null coordinates ũ, ṽ in each connected component of π−1(U) such that
π ◦ ũ = u and π ◦ ṽ = v. By Fact A.1, we can take the following decomposition

F (ũ, ṽ) =
φ(ũ) + ψ(ṽ)

2
+ j

φ(ũ) − ψ(ṽ)
2

.

Since F + F̄ = f ◦ π + c, we obtain

fu (π(ũ, ṽ)) = φ′(ũ), fv (π(ũ, ṽ)) = ψ ′(ṽ).

By the assumption that f |W is a conformal timelike minimal immersion and Fact A.4, F is a
Lorentzian null map on Σ̃. By Remark A.5, we conclude that F is an immersion on Σ̃. Next we
prove the converse. By the assumption, f = F + F̄ satisfies the condition (i) of Definition A.2, and
the condition (ii) of Definition A.2 follows from Remark A.5. □

In particular, any minface f can be written as the equation (1). We call the paraholomorphic
Lorentzian null immersion F as above the paraholomorphic lift of the minface f . Moreover the
following Weierstrass-type representation formula for minfaces is known.

Fact A.7 (Local version of the Weierstrass representation formula in [21]). Let f : Σ → L3 be
a minface. For each point p ∈ Σ, after a rotation with respect to the time axis, there exist a
paraholomorphic function g and a paraholomorphic 1-form ω = ω̂dz which are defined near p
such that f can be written as follows

f (z) = ℜ
∫ z

z0

(
−1 − g2, j (1 − g2), 2g

)
ω + f (z0). (A.2)

Moreover if we decompose paraholomorphic functions g and ω̂ into

g(z) =
g1(u) + g2(v)

2
+ j

g1(u) − g2(v)
2

, (A.3)

ω̂(z) =
ω̂1(u) + ω̂2(v)

2
+ j

ω̂1(u) − ω̂2(v)
2

, z = x + jy =
u − v

2
+ j

u + v
2

, (A.4)

then, a minface f can be decomposed into two null regular curves as the equation (2).
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Proof. Let us take a paracomplex coordinate z near p and consider the followings

ω = ω̂dz = (− f 0
z + j f 1

z )dz, g =
f 2
z

ω̂
.

Here, we shall prove that after a rotation with respect to the time axis, we can take ⟨ω̂(p)⟩2 , 0, that
is, g is locally paraholomorphic. Let us assume that ⟨ω̂(p)⟩2 = 0 and take the paraholomorphic
lift F of f as equation (A.1). Since ω̂ = − f 0

z + j f 1
z and fz =

φu−ψv

2 + j φu+ψv

2 , we obtain

⟨ω̂⟩2 = (− f 0
z + j f 1

z )(− f 0
z − j f 1

z )

= (−φ0
u + φ

1
u )(ψ0

v + ψ
1
v ).

For arbitrary θ ∈ R, let us define

f̃ := *.,
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

+/- f and ω̂θ := − f̃ 0
z + j f̃ 1

z .

Next we prove that there exists a θ such that ⟨ω̂θ⟩2 , 0 at p. A similar computation as above shows
that

⟨ω̂θ⟩2 = (−φ0
u + φ

1
u cos θ − φ2

u sin θ)(ψ0
v + ψ

1
v cos θ − ψ2

v sin θ).
Note that the assumption ⟨ω̂(p)⟩2 = 0 is equivalent to the condition

−φ0
u (p) + φ1

u (p) = 0 or ψ0
v (p) + ψ1

v (p) = 0.

In the former case, φ2
u (p) = 0 because F is a Lorentzian null map. Since f is a minface, we get

φ0
u (p) = φ1

u (p) , 0 and

⟨ω̂θ (p)⟩2 = φ0
u (p)(−1 + cos θ)(ψ0

v (p) + ψ1
v (p) cos θ − ψ2

v (p) sin θ). (A.5)
Let us consider the quantity ⟨ω̂π (p)⟩2 = −2φ0

u (p)(ψ0
v (p) − ψ1

v (p)). If it is non-zero then the
proof is completed. We consider the case ⟨ω̂π (p)⟩2 = 0. Again, we can see that ψ2

v (p) = 0 and
ψ0
v (p) = ψ1

v (p) , 0. The equation (A.5) can be written as

⟨ω̂θ (p)⟩2 = φ0
u (p)(−1 + cos θ)ψ0

v (p)(1 + cos θ),

and hence we can take a θ such that ⟨ω̂θ (p)⟩2 , 0. The proof for the case that ψ0
v (p)+ψ1

v (p) = 0 is
similar. Therefore we can take ω and g as paraholomorphic 1-form and paraholomorphic function
near p.

Next let us prove the equations (A.2) and (2). By a straightforward computation, we obtain

fzdz =
1
2

(−1 − g2, j (1 − g2), 2g)ω, (A.6)

and hence we obtain the equation (A.2). For the null coordinates u and v, f can be written as
fz =

fu− fv
2 + j fu+ fv

2 . By (A.6), we get the relation

fu − fv = ℜ(−1 − g2, j (1 − g2), 2g)ω̂.

By using the decompositions (A.3) and (A.4), the equation above can be written

fu − fv =
ω̂1

2

(
−1 − (g1)2, 1 − (g1)2, 2g1

)
+
ω̂2

2

(
−1 − (g2)2,−1 + (g2)2, 2g2

)
,

and hence

fu =
ω̂1

2

(
−1 − (g1)2, 1 − (g1)2, 2g1

)
and fv =

ω̂2

2

(
1 + (g2)2, 1 − (g2)2,−2g2

)
.
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By integrating the derivative df = fudu + fvdv, we obtain the desired equation (2). □

Remark A.8. The formula as mentioned above is valid locally, that is, we cannot choose the function
g in Fact A.7 as a paraholomorphic function globally. However, the notion of parameromorphic
function was introduced in [21] and by using it, Takahashi gave the same formula as (A.2) with a
paraholomorphic 1-form ω and a parameromorphic function g which are defined on the universal
cover Σ̃ of Σ. In this paper we only need the formulas (A.2) and (2) near each point to discuss
the local behavior of the Gaussian curvature, and hence we can always take the function g as a
paraholomorphic function locally.

Remark A.9. It should be remarked that Magid [14] originally proved a representation formula
using null regular curves similar to (2) away from singular points.

In [21], the pair (g, ω) and the quadruple (g1, g2, ω1, ω2) were called (paraholomorphic) Weier-
strass data and real Weierstrass data, respectively. The imaginary part

f ∗(z) := ℑ
∫ z

z0

(
−1 − g2, j (1 − g2), 2g

)
ω (A.7)

also gives a minface which is called the conjugate minface of f . The conjugate minface is defined
on Σ̃ and corresponding to a minface with the Weierstrass data (g, jω) or the real Weierstrass data
(g1, g2, ω1,−ω2).

In the end of the paper, we give a proof of Fact 4.1 and dualities of singular points on minfaces,
which were given in [21]. To prove Fact 4.1, we use the following criteria for cuspidal edges,
swallowtails and cuspidal cross caps:

Fact A.10 ([12]). Let f : U −→ R3 be a front and p ∈ U a non-degenerate singular point of f .
Take a singular curve γ = γ(t) with γ(0) = p and a vector field of null directions η(t). Then

(i) p is a cuspidal edge if and only if det (γ′(0), η(0)) , 0.
(ii) p is a swallowtail if and only if det (γ′(0), η(0)) = 0 and d

dt det (γ′(t), η(t))���t=0 , 0.

Fact A.11 ([7]). Let f : U −→ R3 be a frontal and p ∈ U a non-degenerate singular point of f .
Take a singular curve γ = γ(t) with γ(0) = p and a vector field of null directions η(t). Then p is
a cuspidal cross cap if and only if

det (γ′(0), η(0)) , 0, det (df (γ′(0)), n(0), dn(η(0))) = 0 and
d
dt det (df (γ′(t)), n(t), dn(η(t)))���t=0 , 0.

Proof of Fact 4.1. Since the singular set on U is written by {p ∈ U | g1(p)g2(p) = 1}, the
singular curve γ(t) = (γ1(t), γ2(t)) near the non-degenerate singular point p = γ(0) satisfies
g1(γ1(t))g2(γ2(t)) = 1. Taking the derivative, we obtain

g′1γ
′
1g2 + g1g

′
2γ
′
2 = 0.

By using the equality g1g2 = 1 on the singular set, we can parametrize γ as

γ′(t) =
g′2
g2

(
∂

∂u

)
γ(t )
−
g′1
g1

(
∂

∂v

)
γ(t )

and by the first equation (7), we obtain

det(γ′(t), η(t)) =
g′1

g2
1ω̂1
+

g′2
g2
2ω̂2

. (A.8)
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By (i) of Fact A.10 and (iii) of Fact 4.2, we have proved the claim (i). By (A.8), we can compute

d
dt

det
(
γ′(t), η(t)

) �����t=0 = *,
g′1

g2
1ω̂1

+-
′

γ′1 +
*,

g′2
g2
2ω̂2

+-
′

γ′2

= *,
g′1

g2
1ω̂1

+-
′
g′2
g2
− *,

g′2
g2
2ω̂2

+-
′
g′1
g1
. (A.9)

By the equations (A.8), (A.9), (ii) of Fact A.10 and (iii) of Fact 4.2, we obtain the claim (ii). Next
we prove the claim (iii). After a straightforward computation we obtain

det
(
df (γ′(t)), n(t), dn(η(t))

)
= α *,

g′1
g2
1ω̂1

−
g′2

g2
2ω̂2

+- , (A.10)

where α = α(t) = − ω̂1ω̂2
2

(
g′1

g2
1ω̂1
+

g′2
g2
2ω̂2

)
. Since cuspidal cross caps are non-degenerate singular

points on frontals, we always assume that α(0) , 0.
Moreover,

d
dt

det
(
df (γ′(t)), n(t), dn(η(t))

) �����t=0
= α′(0) *,

g′1
g2
1ω̂1

−
g′2

g2
2ω̂2

+- + α(0)
*,

g′1
g2
1ω̂1

+-
′
g′2
g2
+ *,

g′2
g2
2ω̂2

+-
′
g′1
g1

 . (A.11)

By the equations (A.8), (A.10), (A.11) and Fact A.11, we have proved the claim (iii). □

As a corollary of Fact 4.1, we obtain the following dualities of singular points corresponding to
results for maxfaces in [7] and [22]. It is known that these kinds of dualities also hold for other
surfaces, see also [8, 10, 18].

Fact A.12 ([21]). Let f : Σ −→ L3 be a minface and p ∈ Σ a singular point.
(i) A singular point p of a minface f is a cuspidal edge if and only if p is a cuspidal edge of

its conjugate minface f ∗.
(ii) A singular point p of a minface f is a swallowtail (resp. cuspidal cross cap) if and only if

p is a cuspidal cross cap (resp. swallowtail) of its conjugate minface f ∗.
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