
Indexing, Retrieval, and Compression

of Moving Objects in Networks:

A String Processing Approach

KOIDE, Satoshi

Abstract

Nowadays, smartphones and automobiles equip location information devices, such as

global positioning systems (GPS). Spatial data collected from those devices are used

to provide useful information services, including maps, traffic information, and social

networks, to name a few.

We focus on trajectory data, which is a series of positions sequentially collected from

location devices. In particular, our interest is on trajectories in (road) networks. This

particular form of trajectory is important, because human movements are essentially

constrained in road networks. Especially, spatial trajectories obtained from automobiles

play important roles in many applications, such as data-driven navigation systems and

automotive development. In this thesis, we consider fundamental problems for data

management of trajectories in networks; we develop a series of new techniques that are

useful for trajectory processing.

In the first part of this thesis, we develop a novel indexing method that allows us

to treat various types of spatio-temporal queries that involve routing in road networks

such as 1) finding moving objects that have traveled along a given path during a given

time interval, 2) extracting all paths traveled after a given spatio-temporal context, 3)

enumerating all paths between two locations traveled during a certain time interval. Our

finding is that these queries can be solved efficiently using a common data structure,

which we refer to as SNT-index. A key feature of our approach is the use of string

indexing techniques. We regard a trajectory as a string, because a trajectory constrained

in a network can be regarded as a sequence of discrete symbols (i.e., road segment IDs).

Concretely, trajectories are stored in FM-index, which is a fast and compact in-memory

data structure for strings. We propose how to connect temporal information with spatial

information stored in FM-index.

An issue of FM-index is its large memory footprint when we treat large trajectory

datasets. To address this issue, we tackle the data compression problem for trajecto-

ries stored in an FM-index, which is the main topic of the second part of this thesis.

We achieve a significant improvement compared with the existing techniques in string

processing fields. This improvement comes from the fact that trajectories in road net-

works can be regarded as walks in a large but sparse directed graph. On basis of this

idea, we develop relative movement labeling, which transforms trajectories into easy-to-

iii

compress sequences. We also show that important features of FM-index (e.g., its fast

query processing) are still available even if we apply such transformation. Moreover,

we make detailed analysis from information theoretic perspective, and reveal that the

road network sparsity plays an essential role in our method. Surprisingly, we show that

query processing of our proposed method becomes faster than that of the uncompressed

FM-index.

iv

Acknowledgement

The author would like to express my sincere gratitude to my advisor Professor Yoshiharu

Ishikawa for his continuous support of my Ph.D study and related research. Without

his patience, encouragement, and immense knowledge, this thesis would not have been

materialized. I also thank for offering me many opportunities that broaden my knowledge

and network. The experiences during my Ph.D study will definitely benefit me in my

future life. I would like to thank my thesis committee, Professor Shigeki Matsubara,

Associate Professor Yousuke Watanabe, and Associate Professor Chuan Xiao for their

insightful comments.

I want to express my gratitude to Associate Professor Chuan Xiao, as a co-author, for

his continuous support and insightful comments during my Ph.D study. It has been a

great opportunity and pleasure for me to have a technical discussion with him.

I also would like to thank to Toyota Central R&D Labs., Inc. and the colleagues,

who understood and encouraged me during my Ph.D study. In particular, I thank my

co-authors, Dr. Yukihiro Tadokoro and Dr. Takayoshi Yoshimura, who gave me helpful

comments during the early phase of my Ph.D study. I also thank all co-authors of the

papers that are not directly involved in the main topic of this thesis. I have greatly

benefited from discussion with them regarding a broad research topics and fields.

Finally, I appreciate my wife, Kumiko, for her understanding and kind support during

my Ph.D study. Also, I have to say thanks to my parents for their love and support;

especially, without their financial support during the six years at Osaka University, I

would not come here now. The last word goes to my baby boy, Kazuto. You have been

the light of my life for the last two years of my Ph.D study.

Satoshi Koide

January 24, 2020

v

Contents

Abstract iii

Acknowledgement v

List of Figures xii

List of Tables xiii

Abbreviations 1

I. Introduction 3

1. Introduction 5

1.1. Background . 5

1.2. Research Objective and Contribution . 6

1.3. Thesis Organization . 7

2. String Processing and Spatial Trajectories: Preliminaries 9

2.1. Trajectory as a String . 9

2.2. Strings and Related Data Structures . 11

2.2.1. Strings . 11

2.2.2. Suffix Arrays . 12

2.2.3. Burrows-Wheeler Transform . 13

2.3. FM-index . 16

2.3.1. Pattern Matching Query . 16

2.3.2. Substring Extraction Query . 17

2.3.3. Wavelet Trees . 18

2.4. Summary . 20

vii

Contents

II. Trajectory Indexing 21

3. Research Issues and Problem Definition 23

3.1. Research Issues . 23

3.2. Problem Definition and Path-based Queries 27

3.2.1. Data Model . 28

3.2.2. SPQ: Strict Path Query . 29

3.2.3. TEQ: Trajectory Extraction Query 31

3.2.4. TAPEQ: Time-period-based All Path Enumeration Query 32

3.2.5. Summary . 33

4. Indexing and Querying Methods 35

4.1. SNT-index . 35

4.1.1. Overview . 35

4.1.2. Spatial FM-index . 35

4.1.3. Temporal B+-trees . 37

4.1.4. Index Construction and Implementation 39

4.1.5. Summary . 39

4.2. Algorithm for SPQs . 40

4.2.1. Proposed SPQ algorithm . 40

4.2.2. Existing SPQ Algorithms . 41

4.2.3. Summary . 43

4.3. Algorithm for TEQs . 43

4.3.1. Baseline Method: Adding TB-tree-like Pointers to NETTRA . . . 43

4.3.2. Proposed TEQ Algorithm . 44

4.3.3. Summary . 45

4.4. Algorithm for TAPEQs . 46

4.4.1. Baseline Method: PrefixSpan for TAPEQs 46

4.4.2. Proposed TAPEQ algorithm . 46

4.4.3. Summary . 49

4.5. Appending New Data to SNT-index . 49

4.5.1. Partitioning the FM-index for Appending New Data 50

4.5.2. Spatial Partitioning of the FM-index 51

5. Experiments 53

5.1. Setup and Implementation Details . 53

5.2. SPQ Results . 54

5.3. TEQ Results . 57

5.4. TAPEQ Results . 59

viii

Contents

5.5. Index Size and Index Construction Time 61

5.6. Effect of Buffer Caches . 63

5.7. Summary . 63

5.8. Discussion . 64

6. Related Work 67

6.1. Trajectory Indexing . 67

6.2. Related Queries . 69

7. Summary 71

III. Trajectory Compression 73

8. Research Issues and Preliminaries 75

8.1. Research Issue . 75

8.2. Preliminaries . 77

8.2.1. Huffman-shaped Wavelet Tree . 77

8.2.2. Compressed Variants of FM-index 80

9. Compressing FM-index for Trajectories 83

9.1. Relative Movement Labeling . 83

9.2. Data Structure . 86

9.3. Query Processing . 87

9.3.1. PseudoRank . 88

9.3.2. Suffix Range Query with CiNCT 89

9.3.3. Extracting a Substring with CiNCT 90

9.4. Theoretical Analysis . 91

9.4.1. Optimality of RML . 91

9.4.2. Space Complexity . 92

9.4.3. Time Complexity . 93

9.4.4. Comparison of RML with MEL 93

9.5. Proofs . 94

9.5.1. Proof of Theorem 9.2 . 94

9.6. Proof of Theorem 9.3 . 97

10.Experiments 99

10.1. Experimental setup . 99

10.2. Results . 100

10.2.1. Comparison with Various FM-indexes 100

ix

Contents

10.2.2. Comparison with Several Compression Methods 102

10.2.3. Effect of Labeling Strategy . 103

10.2.4. Effect of ET-graph size/shape . 104

10.2.5. Sub-path Extraction Time . 105

10.2.6. Index Construction Time . 105

11.Related Work 107

11.1. Trajectory Compression . 107

11.2. FM-index . 108

12.Summary 109

IV. Conclusion 111

13.Conclusion and Future Work 113

Bibliography 114

Publications by the Author 123

x

List of Figures

1.1. Thesis overview . 7

2.1. Visualization of network-constrained trajectories 10

2.2. Schematic explanation of suffix array . 13

2.3. Schematic explanation of the Burrows-Wheeler transform (BWT) 14

2.4. Schematic explanation of wavelet trees 20

3.1. Overview of SNT-index . 24

3.2. Example trajectories . 24

3.3. Typical data structure for NCT indexing 25

3.4. Strict path query . 29

3.5. SPQ application scenario . 30

3.6. Time-period-based all-path enumeration query (TAPEQ) 33

4.1. Data structure of SNT-index . 36

4.2. SNT-index construction . 38

4.3. Modified TB-tree . 44

4.4. ST-join . 48

4.5. Append-supported SNT-index . 51

5.1. SPQ processing time for various |P | . 56

5.2. FM-search (the Singapore dataset) . 56

5.3. Scalability (RGSxN, |P | = 50, 100% temporal selectivity) 56

5.4. SPQ processing time for various |I| (high temporal selectivity; 25% – 100%) 57

5.5. SPQ processing time for various |I| (low temporal selectivity; 2% – 25%) 57

5.6. TEQ processing time for various L . 58

5.7. TEQ processing time for various |I| (temporal selectivity 2% – 100%) . . 58

5.8. FM-extract (Singapore dataset) . 59

5.9. TEQ scalability (RGSxN, L = 10, 100% temporal selectivity) 59

5.10. TEQ example (L = 10) . 59

5.11. TAPEQ processing time for various ξ . 60

5.12. TAPEQ processing time for various |I| (temporal selectivity 2% – 100%) . 60

5.13. Effect of duv (Roma, ξ = 2, temporal selectivity 100%) 61

xi

List of Figures

5.14. Scalability (RGSxN, ξ = 50, temporal selectivity 100%) 61

5.15. TAPEQ example . 61

5.16. Effect of buffer caches for SPQs . 64

5.17. Effect of buffer caches for TEQs . 64

5.18. Effect of buffer caches for TAPEQs . 64

8.1. Main idea of our trajectory compression 76

8.2. Schematic explanation of BWT . 78

8.3. Schematic explanation of wavelet tree . 79

8.4. Schematic explanation of compresson boosting 80

9.1. ET-graph and labeled BWT . 84

9.2. Comparison of Huffman trees . 87

9.3. Schematic explanation of PseudoRank 89

9.4. Difference between RML and MEL . 94

10.1. Comparison of data size and processing time 101

10.2. |P | vs. search time: (Singapore dataset) 102

10.3. Dependence on alphabet size σ . 102

10.4. Dependence on out-degree . 103

10.5. Comparison of labeling strategies . 105

10.6. Extraction time . 106

10.7. Index construction time (Singapore dataset) 106

xii

List of Tables

3.1. Notation . 27

5.1. Dataset statistics . 53

5.2. Summary of algorithms and data structures used in the experiment . . . 54

5.3. Index size and index construction time (ICT) 62

10.1. Our proposed method and its competitors∗ 100

10.2. Statistics of each dataset . 101

10.3. Compression ratio (larger is better) . 103

10.4. Comparison of entropy (RML and MEL) 104

xiii

Abbreviations

BWT Burrows-Wheeler Transform

CB Compression Boosting

CiNCT Compressed-index for Network Constrained Trajectories

HWT Huffman-shaped Wavelet Tree

ISA Inverse Suffix Array

MSB Most Significant Bit

NCT Network-Constrained Trajectory

SA Suffix Array

SNT-index Suffix-array-based Network-constrained Trajectory index

SPQ Strict Path Query

TEQ Trajectory Extraction Query

TAPEQ Temporally-constrained All Path Enumeration Query

WT Wavelet Tree

1

Part I.

Introduction

3

1. Introduction

1.1. Background

In recent years, a massive amount of spatio-temporal trajectory data has become avail-

able from automobiles and smartphones. This data is used in many applications, such

as traffic information systems, map generation, and location-based social networks [63].

Recent low-cost communication links allowed us to collect not only GPS data but also a

massive amount of automotive sensor data, such as camera images. This rapid increase

in the volume and variety of data collected has had a large impact on the develop-

ment of autonomous vehicles, which is a hot topic in the automotive industry. Such

advanced automotive systems are developed in a data-driven way, and the development

involves frequent access to historical spatio-temporal data. Another application of such

huge spatio-temporal data resources is data-driven navigation systems. Recently, for

example, problems like time-dependent travel time distribution estimation [8] and time-

dependent extraction of frequently-used routes between two locations [31] have been

investigated on the basis of automotive trajectory data. While the recent increase in the

volume of data available makes it possible to apply such data-driven methods, we also

need to frequently access huge trajectory datasets when deploying such methods on a

large scale. This motivates us to develop an efficient method for retrieving trajectories

based on their routes.

As surveyed in [36, 42], numerous studies have been conducted on indexing and re-

trieving trajectories. Typically, most of these studies model trajectories as sequences

of points in two or three dimensional Euclidean space, which are suitable to model raw

GPS traces; these methods often support range queries, which find trajectories in a

spatio-temporal rectangle. An important observation here is that trajectories generated

by automobiles are usually constrained in a road network. By treating trajectories in a

network-aware way, we can consider semantics of location information that is associated

with road networks (e.g., type or speed-limit of road segments). For example, even if

two coordinates are spatially close, they might have different semantics; one is traveling

on a highway and another is not. Such a semantics is important for real applications

such as navigation systems.

Basing the observation above, some studies have focused on indexing and retrieval

5

1. Introduction

of such network-constrained trajectories (NCTs) [9, 12, 25, 46, 48, 51, 58, 59]. Several

types of queries have been considered for NCT representation. Range queries, which are

also considered for trajectories in Euclid space, have been treated in early studies (e.g,

[9, 12, 46]). Recent studies treat more complex but practical queries that are related to

routing [25, 59, 60, 62]. However, there is plenty of room for research; e.g., improving

efficiency of query processing, and defining new types of queries that are important in

emerging applications. In order to clarify the novelty, we will make detailed comparison

of our method with these related studies in each part of this thesis.

1.2. Research Objective and Contribution

In this thesis, we aim to develop a novel index structure and associated query processing

algorithms that allow us to handle huge numbers of historical automotive trajectories.

We focus on the fact that automobile trajectories are fundamentally constrained to a

road network. Since road networks can be represented as directed graphs, each trajectory

can be represented as a sequence of road segment IDs and timestamps, which we referred

to as NCT in the previous subsection.

Our key finding throughout the present thesis is as follows.

• Data structures and algorithms developed in string processing field, also referred

to as stringology, provide efficient methods for NCT processing.

We emphasize that this point is different from techniques used in the previous methods [9,

12, 25, 46, 48, 51, 58, 59] , because those methods essentially rely on the traditional tree-

based indexing and do not employ string algorithms.

Based on the finding, this thesis makes the following two main contributions for the

research community.

• We propose a novel indexing method, SNT-index, that efficiently realizes several

types of spatio-temporal queries for NCTs. We first provide a way to integrate the

FM-index from string processing field with a method from spatial database field.

• In order to cope with the large memory footprint of FM-index used in the SNT-

index, we propose a novel compression method of FM-index, referred to as CiNCT,

that significantly improves not only memory footprint but also query processing

speed. Our idea for trajectory compression is substantially different from those

considered in database research field.

The contents that correspond to these two contributions are described in Part II and

Part III, respectively. In each part, we mention detailed contributions for each method

against the existing methods.

6

1.3. Thesis Organization

1.3. Thesis Organization

The present thesis is organized as follows.

• In the remainder of this Part I (Chapter 2), we introduce important concepts in

stringology, including FM-index, commonly used in this thesis, as well as how we

treat trajectories as strings.

• In Part II (Chapter 3–7), we propose the SNT-index, which integrates FM-index

with spatial databases.

• In Part III (Chapter 8–12), we propose a novel FM-index compression method for

trajectories. This reduces the memory footprint of the FM-index.

• At the end of the present thesis (part IV), we make concluding remarks, followed

by the bibliography and the author’s publication list.

Readers who are only interested in the compression method (Part III) can skip Part

II (and vice versa), because technical contents of these two parts are independent. Note

that, as mentioned in the previous section, the motivations of these parts are strongly

connected. The relationship among the four parts (Part I–IV) are depicted in Figure 1.1.

Part II (Chapter 3-6)
SNT-index

Part I (Chapter 1-2)
Introducing data representation and concepts in stringology, such as FM-index

Part III (Chapter 7-10)
CiNCT (Compressed-index for NCTs)

A novel indexing method for
network-constrained trajectories
that employs FM-index

A novel FM-index compression method
for network-constrained trajectories

Part IV : Conclusion

Figure 1.1.: Thesis overview

7

2. String Processing and Spatial

Trajectories: Preliminaries

In this chapter, we describe string processing techniques, which are deeply integrated

with our trajectory processing methods in the subsequent parts. In Section 2.1, we

introduce the concept how to treat trajectory as a string. In Section 2.2, we describe

several important concepts from the stringology, such as suffix arrays, Burrows-Wheeler

transform, and wavelet trees. These are commonly used throughout this thesis. In

Section 2.3, we provide a detailed description on a string index called FM-index, which

is the most important concept in this thesis. Readers who are familiar with string

processing can skip these Section 2.2 and Section 2.3.

2.1. Trajectory as a String

Throughout this thesis, we assume that road networks are modeled as directed graphs,

denoted as G = (V,E), where V is a set of vertices (or road intersections) and E is a

set of road segments (or called edges). For an edge e ∈ E, we denote head(e) ∈ V and

tail(e) ∈ V by its head and tail vertices, respectively. We assume the road network G is

static, i.e., G does not vary during the data period. Although this assumption is valid

for a short term, we will also show how to treat varying road networks in Chapter 4

(§ 4.5).

Trajectories are often obtained through GPS devices. Such trajectories are usually

given as two dimensional time series, x1 · · ·xm where xi ∈ R2. Map-matching tech-

niques are commonly used to convert such two dimensional time series into a sequence

of road segments. Figure 2.1 visualizes map-matched trajectories in a road network.

Throughout this thesis, we assume that trajectories are map-matched. Formally, we

define trajectories as follows.

Definition 2.1 (Network-Constrained Trajectory; NCT) A trajectory of length

n is a sequence of road edges denoted as e1 · · · en, where ei ∈ E. Importantly, ei−1

and ei are assumed to be connected, i.e., head(ei−1) = tail(ei). We refer to such a con-

nected sequence of edges as a path. Also, unless otherwise noted, the term trajectory

9

2. Preliminaries

Figure 2.1.: Visualization of trajectories in a road network (Roma, Italy). Colors repre-
sents frequency of occurrence of road segment in the dataset.

indicates such network-constrained trajectory (or NCT, shortly).

With this representation, a trajectory is regarded as a symbolic sequence, thus can be

regarded as a string on E. Of course, trajectories consist of not only spatial information

as mentioned above but also temporal information (e.g., timestamps). We introduce

how to treat temporal information in Part II, and currently regard trajectories just as

strings on E.

Remark 1 (Erroneous map-matching results) Simple map-matching algorithms (e.g.,

mapping a coordinate to the nearest road segment) often fail due to the observation noise

included in GPS data. To improve the accuracy of the matching, an algorithm based

on the Hidden Markov model (HMM) is often applied [41], where the observation is a

sequence of GPS coordinates and the hidden states are road segments. However, the

estimated sequence of road segments might still have error. We emphasize that all the

methods presented in this thesis are independent from map-matching algorithms, and

work even if the matching error is included; however, such erroneous sequences may

not be found through the search algorithm (because a query sequence is in general a

“correct” sequence). To fix the error, general strategies are (1) improving the data col-

lection process (e.g., increasing sampling rate), and/or (2) using better map-matching

algorithms. Although we use the most-widely used algorithm proposed in [41] through-

out this thesis, we point out that there are many variants aiming at the improvement of

accuracy and computational cost [30, 56].

10

2.2. Strings and Related Data Structures

Trajectory Strings As we introduce later, FM-index is a data structure that indexes

one (large) string T . To use FM-indexes for document retrieval, a set of documents

(strings) is usually concatenated into one large string. Similarly, we consider concate-

nation of spatial paths into a trajectory string, which plays important roles throughout

this thesis, defined as follows.

Definition 2.2 (Trajectory String) Let T = {pi}Ni=1 be a collection of trajectories in

a road network G = (V,E). A trajectory string T is defined as a string composed of the

reversals of all paths pi concatenated using the special character $, i.e.,

T = pr0$p
r
1$ · · · $prD−1$#, (2.1)

where the string pri is the reverse of pi. Here, # is another special character that marks

the end of T . The alphabet set Σ is defined as Σ := E ∪ {$, #}, where E is the set of

road segments in the road network G = (V,E).

Remark 2 As we describe later, pattern matching in FM-index proceeds backwardly.

By storing reversed trajectories as in Definition 2.2, several queries can be processed

efficiently.

Example 2.1 Suppose four trajectories: p1 = ABEF, p2 = ABC, p3 = BC, and p4 = AD,

where A–F are road segment IDs. Then, the corresponding trajectory string is as follows.

T = FEBACBACBDA#. (2.2)

Once we convert trajectories into a trajectory string, we expect that string processing

techniques can be adopted. In the following sections, we introduce string algorithms

that are fundamental but has not been employed in spatial trajectory processing thus

far.

2.2. Strings and Related Data Structures

We describe important string concepts related to FM-index. We first introduce basic

notation, followed by suffix arrays, Buffows-Wheeler transform, and wavelet trees. Then,

we elaborate FM-index based on those concepts.

2.2.1. Strings

First, we introduce notation that is often used in stringology. Let Σ be an alphabet set

and S be a string on Σ of length |S|.1 To clarify the length n of S, we often use S[0, n).

1As defined in Definition 2.2, we define Σ = E ∪ {$, #} throughout this thesis.

11

2. Preliminaries

The size of Σ is denoted by σ. Σk and Σ∗ denote a set of strings of length k and a set

of strings of arbitrary length defined on an alphabet Σ, respectively. Strings (or arrays)

have 0-based subscripts. The ith element of S and the substring from i to j are denoted

by S[i] and S[i..j], respectively. We also use the half-open interval notation S[i..j) to

mean the substring that does not include S[j]. Further, we assume that the subscripts

are defined in a circular manner, i.e., S[i] is defined for any i ∈ N by S[i mod |S|].
An ith suffix of a string S is defined as a substring S[i, |S|). The concatenation of two

strings S1 and S2 is denoted by S1S2. The reversal of S is denoted by Sr, and is defined

by Sr = S[|S| − 1]S[|S| − 2] · · ·S[0].

Lexicographic order We assume lexicographic order on Σ = E∪{$, #}. This is impor-

tant to define several concepts introduced in the subsequent sections. For our purposes,

we may use any ordering, and thus we use the natural ordering defined by the road

segment IDs, which are often given as integers. For the special characters ($ and #), we

assume # < $ < w (∀w ∈ E).

Remark 3 (Integer-valued alphabet) Although Σ usually consists of non-integer

symbols (like English letters), we map them onto integers [0, σ) with keeping its lex-

icographical order. Hence, we can assume Σ = [0, σ) without loss of generality. In

addition, we assume that each symbol w ∈ Σ appears at least once in T ; otherwise, we

remove such a symbol w from Σ without loss of generality. These assumptions are useful

when we define C-array in Section 2.2.3.

2.2.2. Suffix Arrays

Let T be a string of length n. Denote the ith suffix of T by Si := T [i..n) (see “Suffixes”

in Figure 2.2). The suffixes {Si | 0 ≤ i < n} are then sorted in lexicographical order

(see “Sorted Suffixes” in Figure 2.2). The suffix array [33] SA of T is an integer array

of length n whose jth element SA[j] is equal to i iff Si is the jth smallest suffix (where

we use “smallest” in a lexicographical sense).

Example 2.2 In Figure 2.2, we have SA[0] = 15 because S15 = # is the smallest suffix.

Besides, we have SA[5] = 13 because S13 = A$# is the fifth smallest suffix, as we can

see among the “sorted suffixes” in Figure 2.2.

We introduce an important fact regarding SA. In Figure 2.2, the substring BA appears

as the prefix of two suffixes, S2 and S6. In the list of sorted suffixes, they appear

consecutively in the range R(BA) = [9, 11) = {9, 10} (R is formally defined below). We

thus have SA[9] = 6 and SA[10] = 2, which tells us that BA appears in the original string

12

2.2. Strings and Related Data Structures

i Suffixes S Sorted Suffixes S j SA[j] i ISA[i]
0 FEBACBACBDA# # 0 15 0 15
1 EBACBACBDA# $# 1 14 1 14
2 BACBACBDA# CBDA$# 2 8 2 10
3 ACBACBDA# CBACBDA# 3 4 3 7
4 CBACBDA# DA# 4 11 4 3
5 CBACBDA$# A$# 5 13 5 12
6 BACBDA$# A$CBDA# 6 7 6 9
7 ACBDA$# A$CBACBDA$# 7 3 7 6
8 CBDA$# B$DA$# 8 10 8 2
9 CBDA# BACBDA$# 9 6 9 11
10 BDA# BACBACBDA# 10 2 10 8
11 DA# CBDA# 11 9 11 4
12 DA$# CBA$CBDA# 12 5 12 13
13 A$# DA$# 13 12 13 5
14 $# EBACBACBDA# 14 1 14 1
15 # FEBACBACBDA# 15 0 15 0

SA[j]i

Sort in the
lexicographical
order

Inverse
Func.

R(B)
R(BA)

Figure 2.2.: Suffix array: This example is based on the trajectory string given in
Eq. (2.2). If suffix Si is the jth smallest, we have SA[j] = i. The “ISA”
at the rightmost is an inverse of SA, referred to as an inverse suffix array,
which is introduced in Definition 2.5.

at positions 6 and 2. This observation leads us to the following important relationship

between suffix arrays and pattern matching.

Lemma 2.1 Let T be a string and Q be a query pattern of length m that appears at least

once in T . Then, there exists a unique range R(Q) := [sp, ep) such that T [SA[j], SA[j]+

m) = P iff sp ≤ j < ep.

Proof Considering all the suffixes of T sorted in the lexicographical order, there exists

a unique range of the sorted suffixes such that the prefixes of the sorted suffixes in the

range have a given pattern Q. Let the indexes of such a range be R(Q) = [sp, ep).

Remembering that SSA[j] is the jth smallest suffix, we have that SSA[j][0,m) = Q and

sp ≤ j < ep are equivalent. This leads to the conclusion because, for any i and m, we

have Si[0,m) = T [i, i+m).

Definition 2.3 (Suffix Range) Given a pattern Q ∈ Σ∗ and a string T , we refer to

the unique range R(Q) determined by Lemma 2.1 as the suffix range of Q.

2.2.3. Burrows-Wheeler Transform

The Burrows–Wheeler transform (BWT) [5] is closely related to pattern matching and

is used in FM-index. This is an invertible transform of a string, formally defined as

follows.

13

2. Preliminaries

i Rotations j Sorted Rotations BWT
0 FEBACBACBDA# 0 #FEBACBACBDA $
1 EBACBACBDA#F 1 $#FEBA$CBACBDA A
2 BACBACBDA#FE 2 CBDA$#FEBA$CBA A
3 ACBACBDA#FEB 3 CBACBDA#FEBA A
4 CBACBDA#FEBA 4 DA#FEBACBACB B
5 CBACBDA$#FEBA$ 5 A$#FEBA$CBACBD D
6 BACBDA$#FEBA$C 6 ACBDA$#FEBA$CB B
7 ACBDA$#FEBA$CB 7 ACBACBDA#FEB B
8 CBDA$#FEBA$CBA 8 BDA#FEBACBAC C
9 CBDA#FEBACBA 9 BACBDA$#FEBA$C C
10 BDA#FEBACBAC 10 BACBACBDA#FE E
11 DA#FEBACBACB 11 CBDA#FEBACBA $
12 DA$#FEBA$CBACB 12 CBACBDA$#FEBA$ $
13 A$#FEBA$CBACBD 13 DA$#FEBA$CBACB $
14 $#FEBA$CBACBDA 14 EBACBACBDA#F F
15 #FEBACBACBDA 15 FEBACBACBDA# #

Sort
Last
Column

Figure 2.3.: Burrows-Wheeler Transform: BWT corresponds to the last column of
the sorted rotations of T . This example is based on the trajectory string
T = FEBACBACBDA# in Eq. (2.2).

Definition 2.4 (BWT) Given a string T of length n, BWT of T is also a string of

length n, defined as follows.

Tbwt[i] = T [SA[i]− 1] (0 ≤ i < n), (2.3)

where SA is the suffix array of T . Note that, if SA[i] = 0, we have Tbwt[i] = T [−1] =

T [n− 1] because of the circular subscripts as mentioned in Section 2.2.1.

Example 2.3 Besides the definition above, we provide another explanation that is equiv-

alent to Definition 2.4. Given a string T , its BWT Tbwt also can be defined as the last

column of all sorted rotations, as depicted in Figure 2.3. As a result, this example

generates the BWT as follows.

Tbwt = $AAABDBBCCE$$$F#. (2.4)

Note that the order of the sorted rotations is equivalent to that corresponding to Fig-

ure 2.2, because the smallest symbol # appears only once in T .

Next, we introduce an important property of BWT called LF-mapping, that makes

BWT invertible. For the sake of this, we introduce inverse suffix array, rank function,

and C-array, respectively defined as follows.

Definition 2.5 (Inverse suffix array; ISA) Consider a string T of length n and its

suffix array SA. Inverse suffix array, denoted by ISA, is an integer array of length n

defined as the inverse function of SA, i.e., ISA satisfies ISA[SA[i]] = i for 0 ≤ i <

n. Note that the inverse function is well-defined because SA is a one-to-one map by

definition.

14

2.2. Strings and Related Data Structures

Definition 2.6 (Rank function) Given a string T of length n, a symbol w ∈ Σ, and

a position 0 ≤ i < n, the rank function, denoted by rankw(T, i), returns a number of w’s

occurrences within a prefix T [0, i).

Definition 2.7 (C-array) Let T be a string on an alphabet Σ of size σ. An element

C[w] of the C-array of T , denoted by C[0, σ], is defined as the number of elements in T

that are (strictly) lexicographically smaller than w ∈ Σ. Formally, C[w] := #{a ∈ Σ |
a < w}.

The length of C-array is σ + 1. By definition, we always have C[0] = 0 and C[σ] = n,

and C is an increasing function. Note that the C-arrays of T and Tbwt are equivalent

because the numbers of symbol occurrences in T and Tbwt are the same by definition.

Example 2.4 We confirm the concepts above using the running example (note: Tbwt =

$AAABDBBCCE$$$F#).

• ISA[i] can be regarded as a function that returns the lexicographical rank of ith

suffix Si. In Figure 2.2, as the suffix S15 = # is the zeroth smallest suffix, we have

ISA[15] = 0.

• Consider the rank function for rankw(Tbwt, i). If i = 5, we have Tbwt[0, 5) =

$AAAB; hence, we have rankA(Tbwt, 5) = 3 because w = A occurs three times.

• Finally, we see the C-array of Tbwt. For example, C[A] = 5 because the frequency

of symbols $, # < A is five in total. Similarly, C[B] = 8 because $, #,A appear eight

times.

Property of BWT Let us show an important observation regarding BWT. In the first

column of Figure 2.3, we observe four “$” from i = 1 to i = 4. At the last column, we

also see four “$”. Importantly, the order of these symbols are the same. For example,

“$” for i = 1 in the first column corresponds to that for i = 0 in the last column.

Similarly, i = 2 at the first column is connected to i = 11; i = 3 goes to i = 12; and

i = 4 goes to i = 13. This is because that the order of sorted rotations with the same

first symbol is kept even if the first symbol is removed.

Now, we are ready to explain the LF-mapping. Roughly, the LF-mapping maps the

last column of the sorted rotations in Figure 2.3 to the corresponding positions of the first

column (note: “LF” stands for Last-to-First). For example, consider the last character $

of the zeroth sorted rotation in Figure 2.3. This $ appears at the first position in the first

sorted rotation. Therefore, i = 0 is mapped to i = 1. Similarly, the last A for i = 1 is

15

2. Preliminaries

mapped to the first A for i = 5. By definition, this mapping is denoted by ISA[SA[i]−1]

(rank of the suffix corresponding to the previous position of the ith smallest suffix). The

following well-known proposition provides how to compute the mapping.

Proposition 2.1 (LF-mapping) Suppose Tbwt[i] = w. We have

ISA[SA[i]− 1] = C[w] + rankw(Tbwt, i). (2.5)

Proof By definition, pos = rankw(Tbwt, i) represents the number of w in Tbwt[0, i). This

corresponds the rank of w = Tbwt[i] among all occurrences of w. In the first column of

the sorted rotations, w begins at position C[w]. Therefore, pos-th w appears at position

C[w] + pos.

2.3. FM-index

FM-index [11] is a data structure based on BWT.2 Concretely, given a string T to be

indexed, we store its BWT in a data structure called wavelet tree. We first introduce

two types of queries used in this thesis (i.e., pattern matching and extraction queries),

and then introduce wavelet trees, which enable efficient query processing.

2.3.1. Pattern Matching Query

Throughout this thesis, we define pattern matching query, also referred to as suffix range

query, in the following sense.

Definition 2.8 (Pattern matching query) Given a string T ∈ Σ∗ and a query Q ∈
Σ∗, pattern matching query, or suffix range query, is to find the suffix range R(Q),

which was defined in Definition 2.3.

Algorithm With BWT Tbwt, we can answer the pattern matching query as shown in

Algorithm 1. This algorithm starts from the last symbol of a query Q (of length m)

and sequentially updates the suffix range [sp, ep). First, we initialize this range as

sp := C[Q[m− 1]] and ep := C[Q[m− 1] + 1], which corresponds to the suffix range of

Q[m− 1].

Suppose we are at the ith step (i > 1). Then, [sp, ep) corresponds to the suffix range

of Q[i + 1,m). Considering the next symbol w = Q[i], we must have the following:

substrings in T corresponding to Q[i,m) appear at positions where the substring Q[i+

1,m) appears and w is the previous symbol. Such positions are equivalent to those

2“FM” stands for the names of authors of the original paper by Ferragina and Manzini.

16

2.3. FM-index

Algorithm 1: Pattern Matching Query: Finding the suffix range R(Q) = [sp, ep)
for a given query Q of length m based on Tbwt
Input: BWT string: Tbwt, Query string: Q, Integer array: C

1 w ← Q[m− 1]
2 sp← C[w]
3 ep← C[w + 1]
4 for i← 2 to m do
5 w ← Q[m− i]
6 sp← C[w] + rankw(Tbwt, sp)
7 ep← C[w] + rankw(Tbwt, ep)
8 if sp ≥ ep then return NotFound

9 return [sp, ep)

satisfying Tbwt[sp, ep) = w since Tbwt[i] represents the previous symbol of the position

SA[i]. Therefore, using LF-mapping, we can obtain the suffix range of Q[i,m) as follows.

sp := C[w] + rankw(Tbwt, sp),

ep := C[w] + rankw(Tbwt, ep).

If w does not appear in Tbwt[sp, ep), it implies the substring Q[i,m) never appears in T .

Hence we return NotFound at Line 8.

2.3.2. Substring Extraction Query

In this thesis, we also focus on another query, substring extraction query, that recovers

a part of the original string T from the BWT string Tbwt. This is formulated as follows.

Definition 2.9 (Substring extraction query: Type I) Given a position on the suf-

fix array j and an extraction length L, the substring extraction query recovers a substring

T [SA[j]− L, SA[j]) from the BWT Tbwt of T .

In addition, we also consider a modified version of the query. Instead of the extraction

length L, we specify a symbol v ∈ Σ and continue extraction until v appears.

Definition 2.10 (Substring extraction query: Type II) Given a position on the

suffix array j and a symbol v ∈ Σ, we extract a substring T [SA[j]− L′, SA[j]) from the

BWT Tbwt of T , where T [SA[j]− L′] = v and T [SA[j]− k] 6= v for 1 ≤ k < L′.

Example 2.5 Suppose j = 3 in Figure 2.3 and we extract a substring of length L = 4.

As SA[3] = 4, the query extracts T [SA[3] − L, SA[3]) = T [0, 4) = FEBA. In fact, this

corresponds to the last four symbols at j = 3rd row (underlined). In other words, a length

17

2. Preliminaries

L suffix of the jth smallest sorted rotation is extracted by this query. Furthermore, if

j = 15 and L = |T | = 16, the substring extraction query recovers the whole T . In this

sense, BWT is invertible.

Algorithm Algorithm 2 and Algorithm 3 show how we can extract substrings from Tbwt.

Starting from a given position j, these algorithms read Tbwt[j] (using access method)

and repeatedly apply the LF-mapping to update the current position j until meeting

the stopping condition.

Algorithm 2: FM-extract(Tbwt, j, l): Extract the original substring T [i− l, i) of
length l, where i = SA[j].

1 S ← empty string
2 for k ∈ 1, · · · , l do
3 w ← access (Tbwt, j) // Tbwt[j]
4 S ← wS // concatenate w
5 j ← C[w] + rankw(Tbwt, j)

6 return S as T [i− l, i)

Algorithm 3: FM-extract-until (Tbwt, j, v): This variant decodes the original
substring until v is found.

1 S ← empty string
2 repeat
3 w ← access (Tbwt, j) // Tbwt[j]
4 S ← wS // concatenate w
5 j ← C[w] + rankw(Tbwt, j)

6 until w 6= v
7 return S

2.3.3. Wavelet Trees

Algorithms 1–3 all require computing rankw(Tbwt, j). This indicates that fast calcula-

tion of rankw enables the fast execution of those algorithms because all the operations

except for rankw(Tbwt, i) are merely either substitutions or summations. However, näıve

calculation of rankw with cumulative counting incurs an unacceptable O(|Tbwt|) time.

A wavelet tree [16] storing Tbwt enables fast calculation of rankw(Tbwt, i); its time

complexity does not depend on the data size |Tbwt|. In the following, we explain wavelet

tree using an example in Figure 2.4. See [38] for detailed description.

18

2.3. FM-index

Data structure A wavelet tree storing S = $AAABDBBCCE$$$F# is depicted in Fig-

ure 2.4. The bit representation of each symbol w ∈ Σ is predefined, as illustrated on

the right side (e.g., Huffman coding based on the frequency of each symbol in S). Each

node v in the tree stores a bit vector Bv. In the root node v0, Bv0 stores the most

significant bit (MSB) of each symbol in S. As the MSB of {$,A,C} is 1, those 1’s are

stored in Bv0 with keeping the original order. For the others, we store 0’s. At the second

level, the symbols are divided into two parts based on the bit value at the first level,

while keeping the ordering. Each bit vector stores the second MSB. Repeating such

partitioning recursively, we obtain the wavelet tree. In fact, Bv is stored in a succinct

dictionary [20, 49], which is a bit vector that supports a bit-wise rank (i.e., rank0(Bv, j)

and rank1(Bv, j)) in O(1) time using a lookup table.

Rank computation With wavelet trees, we can compute rankw(S, j) by traversing the

tree along with the bit representation of w. We explain how to compute rankw(S, j)

with the wavelet tree shown in Figure 2.4. Suppose j = 5 and w = $, whose bit

representation is ‘10’. At the root node, we compute the bit-wise rank of $’s MSB

(=1), that is, rank1(Bv0 , 5) = 4. We then go to the right child, say v, because MSB

1 corresponds to the right child. We know four symbols come from the parent node

owing to the rank value at the parent. As the second MSB of $ is 0, we compute

rank0(Bv, 4) = 1. Here, we used j = 4, which is the rank result at the parent. Then, we

go to the left child, which is a leaf node. Arriving at a leaf node, we return the current

bit-wise rank value, 1, as rank$(S, 5).

Remark 4 Importantly, the time complexity of rank computation does not depend on

the length of string S because bit-wise rank is (assumed to be) computed in O(1) time,

as mentioned above. Therefore, the query processing algorithms of FM-index run very

efficiently even for large data.

Remark 5 (Time and space complexities) In Part III, time complexity of rank

computation and space complexity (i.e., how small wavelet tree is) are elaborated. In

Part II, we employ uncompressed wavelet trees and does not go into details of the

FM-index data structure itself. Here, we mention the time/space complexities of the

uncompressed wavelet tree. Unlike HWTs, the uncompressed wavelet tree uses equi-

length bit representation; In our example, all symbols have 3 bits because the alphabet

size of Σ is 8 = 23 (Σ = {#, $,A,B,C,D,E,F}). This means that the total size of bit

vectors in the uncompressed wavelet tree is |T | lg |Σ| bits. The time complexity of rank

computation is O(lg |Σ|) because the depth of wavelet tree is lg |Σ| and the complexity

of bit-wise rank is O(1). Hence, the time complexity of Algorithm 1 is O(|P | lg |Σ|),

19

2. Preliminaries

{#,B,D,E,F}

B

E F D#

$

C A

Bit Repr.

#: 0110

$: 10

A: 111

B: 00

C: 110

D: 0111

E: 0100

F: 0101

$AAABDBBCCE$$$F#

1111000011011100

BDBBEF#

0100111

$AAACC$$$

011111000

{$,A,C}

DEF#

1001

{B} {#,D,E,F} {$} {A,C}

AAACC

11100

{A}{C}

EF

01

D#

10

{E,F} {#,D}

{E} {F} {#} {D}

MSBs

Level 1

Level 2

Level 3

Level 4

Figure 2.4.: Wavelet tree: a bit representation of each symbol in a string S is stored in a
binary tree (this example is the HWT of the BWT of the trajectory string
Eq. (2.4)). Note that only bit vectors are stored in each node.

because rank values are computed |P | times in the algorithm. Similarly, Algorithm 2

runs in O(L lg |Σ|) time. In Part II, we refer to these complexity results.

2.4. Summary

In this chapter, we first described how to represent trajectory as a string. Then, we

described FM-index and the related string data structures and algorithms. In particular

we showed two kinds of queries, namely pattern matching query and extraction queries.

These queries can be efficiently answered with FM-index, a data structure in which BWT

string is stored in a wavelet tree. In Part II, we propose a data structure for spatio-

temporal queries for trajectories based on FM-index introduced here. As FM-index is

memory-intensive if used for large data, we need to reduce memory usage. In Part III,

we propose a compression method for FM-index that significantly reduces the memory

footprint.

20

Part II.

Trajectory Indexing

21

3. Research Issues and Problem

Definition

3.1. Research Issues

As we discussed in Chapter 1, data management for large trajectory data is impor-

tant in modern applications, such as data-driven navigation systems and automotive

development.

In Part II, we develop an efficient index structure and associated query processing al-

gorithms that allow us to handle huge numbers of historical trajectories in road networks.

Figure 3.1 shows an overview of the proposed method. As we defined in Section 2.1,

we focus on the fact that automobile trajectories are fundamentally constrained to a

road network. Such network-constrained trajectories (NCTs) can be represented as a

sequence of road segment IDs and timestamps. Figure 3.2 illustrates four example NCTs.

In spatial database research, several papers have focused on methods for indexing NCTs

[9, 12, 25, 46, 48, 51, 58, 59]. Unlike these existing methods, our method, referred to

as SNT-index,1 employs suffix arrays, which enable efficient retrieval of NCTs. In the

remainder of this section, we motivate our research and describe some issues by review-

ing the existing NCT-indexing methods in terms of query types they allow and data

structures they use.

Several types of queries have been considered for NCTs. Early studies (e.g., Pfoser

and Jensen [46], FNR-tree [12], and MON-tree [9]) mainly focused on spatio-temporal

range queries, which find all trajectories that touch one of the road segments in a given

spatial rectangle R during a given time interval I. This is one of the most widely-studied

types of query in the spacial database research field. On the other hand, for applica-

tions like automotive development or navigation systems, data access under route rather

than spatial rectangle constraints becomes important (detailed application scenarios are

shown in Section 3.2.2). Such queries were first considered in Popa et al. [48], which

find trajectories that touch one of road segments in a given path P (i.e., a sequence

of road segments) during a given time interval I. Strict path queries (SPQs) [25] are

1SNT-index stands for Suffix-array-based network-constrained trajectory index

23

3. Research Issues and Problem Definition

GPS
Trajectories

Network-constrained
Trajectories (NCTs)

Road
Network

Spatial Paths

Temporal
Information

Suffix Array
(FM-index)

Posting Lists
(B+tree)

SNT-index
Path-based queries

(SPQ, TEQ, TAPEQ)

Applications
(Sensor data retrieval for automotive

development, Navigation,
Routing behavior analysis...)

Map Matching

Figure 3.1.: Overview of SNT-index, suffix-array-based network-constrained trajectory
index.

A B C

D E

F G

T4

T2 & T3

T1 A B C
23 28 33

A B E G
59 71 76 84

A B E G
46 53 59 68

A D F G
32 41 47 52

T1

 p:
 ts:

T2

 p:
 ts:

T3

 p:
 ts:

T4

 p:
 ts:

Figure 3.2.: Examples of NCTs (T1, T2, T3, and T4). Here, p and ts show a sequence of
traveled road segment IDs, and the corresponding timestamps, respectively.

another typical example of this type of query and are one of the types treated in this

thesis. SPQs find all trajectories that have traveled along a given path P during a given

time interval I. In this thesis, we mainly focus on such path-based queries, for which the

precise shape of the path plays an important role (in the later sections, we introduce

novel types of path-based queries).

The existing NCT-indexing methods all use a common data structure [9, 12, 25, 59],

an example of which is shown in Figure 3.3. For each road segment e ∈ E, a table Φe

is created, its records essentially consisting of (tid, ts) pairs, where tid is a trajectory ID

and ts is the timestamp when trajectory tid traversed the road segment e. Then, for

each Φe, a tree-based index is built using the ts values to support fast temporal filtering.

In this example, ts is indexed using a B+-tree, as proposed by Vieira et al. [59].2

This data structure (Figure 3.3) is similar to an inverted index in document re-

trieval [34], which typically consists of postings lists Φe for each term e. Each postings

list Φe stores the IDs of the documents that include term e. In the NCT-indexing meth-

ods discussed above, the trajectory ID (tid) and road segment ID (e) correspond to the

document ID and term ID, respectively. We thus refer to such NCT-indexing methods

as inverted-index-like methods in this thesis.

2In contrast, FNR-tree [12] stores both of entered and left timestamps and uses 1D R-tree.

24

3.1. Research Issues

A B C

D E

F G

tid ts

 2 71
 1 28

 3 53

tid ts

 3 59
 2 76

B+trees on
timestamp (ts)

Posting ListsRoad Network

B

E

Figure 3.3.: Typical data structure used for NCT indexing (referred to as an inverted-
index-like method in this thesis). Posting lists are defined for each road
segment and store pairs consisting of a trajectory IDs (tid) and a timestamp
(ts) . A tree-based index is built based on the timestamps.

Research Issue and Main Idea For path-based queries, the inverted-index-like ap-

proach is slow due to the need for a large number of disk accesses. As an example, let

us consider an SPQ for a given route P and time interval I. Since the SPQ aims to find

the NCTs that visited all of the road segments e in P , the simplest approach based on

an inverted-index-like method, would be as follows.

1. (Select) For each e ∈ P , find the trajectory IDs Se := {tid} that traveled along

e during I by retrieving the postings list Φe (using B+-tree search for temporal

selection).

2. (Join) Find the trajectory IDs that are common to all the Se, that is, ∩e∈PSe. (To

be exact, we also need to ensure that the ordering is valid.)

The number of B+-tree retrievals and join operations is |P |, which is problematic when

|P | is large. In particular, the first step is slow because the posting lists Φe must be stored

on disk for huge trajectory datasets. Krogh et al. [25] proposed a method of reducing

the number of these operations, but it still requires O(|P |) operations to ensure there are

no false positives (we review this method in Section 4.2.2). In data-driven automotive

development, there are situations where we need to handle frequent SPQs, motivating us

to develop a more efficient method for dealing with them (see the application scenarios

in Section 3.2.2).

The proposed SNT-index addresses the problem discussed above. Technically, the SNT-

index incorporates another important paradigm in document retrieval, the suffix array

(SA) [33], which we intoduced in Section 2.2 for efficient pattern matching. However,

applying SAs for NCT-indexing is not straightforward because SAs cannot take account

of temporal information. Our research question is thus summarized as follows:

• How can we integrate the suffix arrays into NCT-indexing?

25

3. Research Issues and Problem Definition

We answer this question by employing an inverse suffix array, and we show that inverse

suffix arrays can successfully combine the conventional NCT-indexing methods (i.e., the

inverted-index-like methods discussed above) used for spatial databases and the suffix

arrays used in stringology. This technique allows us to achieve flexible and fast query

processing, not only for the abovementioned SPQs but also for other path-based queries.

In the subsequent sections, we formulate these queries and propose suitable query pro-

cessing algorithms. In order to make the algorithms efficient, SNT-index employs an

FM-index [11], an efficient suffix array implementation. As we described in Section 2.3,

FM-indexes support not only pattern matching queries but also fast substring extraction

queries. The use of substring extraction queries enables SNT-index to support several

other types of queries besides SPQ. Experiments with real data show that the proposed

algorithms are orders of magnitude faster than baseline algorithms that do not use suffix

arrays.

That said, the price that must be paid for this significant improvement in query pro-

cessing is that dynamic updating becomes impossible. We should emphasize, however,

that this is not a big problem for the applications considered here, because our main

motivation is the development of automotive systems, where retrieving historical data is

more important. Nonetheless, we will also discuss strategies for mitigating this updating

problem.

Contributions The technical contributions of this Part II can be summarized as follows.

• We propose SNT-index, which provides a concrete method of integrating suffix

arrays with inverted-index-like approaches to NCT indexing. We incorporate two

concepts from stringology into conventional NCT indexing: inverse suffix arrays

and FM-index (a compact implementation for suffix arrays).

• We formulate various types of spatio-temporal path-based queries and propose

efficient algorithms for processing these queries. These algorithms utilize properties

of inverse suffix arrays and FM-indexes that have not been considered in NCT-

indexing before.

• We provide a practical and efficient method of appending new data to the SNT-

index, even though the FM-index is a static index.

• Experiments with real datasets show that the proposed algorithms can process

target queries for more than one million trajectories in a few tens of milliseconds,

which is a significant improvement over baseline algorithms that do not use suffix

arrays.

26

3.2. Problem Definition and Path-based Queries

Table 3.1.: Notation

Notation Description

G = (V,E) Road network (directed graph)

T = {(ptid, tstid)}D−1
tid=0 Target NCTs

Φe Posting-list (a set of tuples) of a road segment e ∈ E
U,W,X, Y, Z ⊂ Φe Temporally-filtered posting lists
x.attr The value of attribute attr of tuple x ∈ X
T, Tbwt Trajectory string and its Burrows-Wheeler transform
F(T) FM-index of T
Σ := E ∪ {$, #} Alphabet set of T and Tbwt
R(P) (= [sp, ep)) Range of suffix for a pattern P
S[i, j), Sr Substring (from i to j) and the reversed string of S
C[w] The number of symbols in Tbwt lexicographically smaller than w ∈ Σ
rankw(Tbwt, k) Rank function. The number of w ∈ Σ in Tbwt[0..k)

Outline of Part II The rest of Part II is organized as follows. In the rest of Chapter 3,

we describe the problem definition. The several types of path-based queries considered

in Part II are introduced. In Chapter 4, we describe the SNT-index data structure. In

addition, algorithms for the target path-based queries are proposed. We also introduce

a series of baseline algorithms and discuss the efficiency of the proposed algorithms.

Furthermore, we discuss how to append new data to SNT-index. In Chapter 5, the

results of experiments with real trajectory datasets are presented. Finally, we discuss

related work and the conclusions of Part II in Chapter 6 and Chapter 7, respectively.

3.2. Problem Definition and Path-based Queries

In this section, we give formal definitions of our queries of interest — SPQs, TEQs and

TAPEQs. We also discuss potential applications of these queries.

Throughout Part II, we basically use notation from string algorithms defined in Sec-

tion 2.2. We also use notation from the relational database field. A relation (table) X

is a set of tuples (also referred to as records). For each tuple x ∈ X, an attribute named

attr is accessed by x.attr. For example, table ΦB in Figure 3.3 has three tuples, and we

can access the timestamp of a given tuple x ∈ ΦB by x.ts. Moreover, basic SQL is used

to keep the notation simple. For convenience, we show the notation used throughout

Part II in Table 3.1.

27

3. Research Issues and Problem Definition

3.2.1. Data Model

Road networks are treated as directed graphs G = (V,E) and each trajectory is repre-

sented as a path on G, as we introduced in Section 2.1. Similar to the existing methods,

we additionally consider temporal information associated with the spatial path, as a

sequence of timestamps.

Definition 3.1 A network-constrained trajectory (NCT) of length m is a tuple (p, ts)

where p is a path of length m on G, and ts is a sequence of timestamps of length m.

Here, ts[i] means the timestamp when the moving object left p[i]. A set of NCTs to be

indexed is denoted by T := {(ptid, tstid)}D−1
tid=0, where tid is the trajectory identifier (ID)

and D is the number of trajectories in T.

Remark 6 (Other possibilities of NCT representation) As mentioned above, we

define ts[i] as the timestamp when the moving object left the corresponding edge p[i].

We could also have considered tsin[i] to be the timestamp when it entered the edge p[i]

(like FNR-tree), but the explicit storage of tsin[i] leads to redundancy because tsin[i] is

equal to ts[i − 1]. We thus consider only the timestamp when the object left the edge.

This prevents us from searching based on tsin[i], but we do not consider this a problem

for the following reason. As will be shown later, range searches that check whether a

timestamp is within a given time interval I are important for our application. If the

interval I is large, measured in hours or days, the two conditions ts[i] ∈ I and tsin[i] ∈ I
are almost equivalent because the difference ts[i]− tsin[i] is much smaller than |I|. We

can therefore omit storing tsin[i] because I is measured in hours or days in our target

application. We should, however, emphasize that it would be easy to store tsin[i] in

SNT-index, using a similar way to the FNR-tree.

One might also wonder why we have adopted an edge-based representation, instead of

the vertex-based representation that represents NCTs as sequences of vertexes. Although

these two representations are essentially equivalent and convertible with each other, we

chose an edge-based representation for the following reason: the number of NCTs in T
that follow a road segment e ∈ E during a given I is typically much smaller than the

number that pass the edge’s tail node v because many other NCTs also pass v going in

other directions. This implies that join operations (or other refinement steps) can be

more expensive if we adopt a vertex-based representation.

Storage model We essentially store all data in a secondary memory, such as magnetic

or solid-state disks. We also allow the data to be stored in the main memory, but our

assumption is that we have sufficient secondary memory (e.g., tens of terabytes) while

main memory is limited (e.g., tens of gigabytes).

28

3.2. Problem Definition and Path-based Queries

A B C

D E

F G
P = BEG

[s, t)
Time constraint

Path constraint

Figure 3.4.: Strict path query: SPQsimple(P, I) finds all trajectories that include P as a
subtrajectory and where the timestamp at the end of P is within I.

3.2.2. SPQ: Strict Path Query

Given a path P and a time interval I, strict path queries (SPQs) aim to find all the

trajectories in T that traveled the subtrajectory P during the time interval I. It is

formally defined as follows.

SPQ(P, I) =
{
tid | ∃i s.t.

(
ptid[i..i+|P |) = P

)
∧
(
tstid[i] ∈ I

)
∧
(
tstid[i+ |P | − 1] ∈ I

)}
.

(3.1)

The timestamps are constrained at the beginning and end of the given path, namely

P [0] and P [|P | − 1], respectively.3 In the present study, we also consider a simplified

version of an SPQ (see Fig. 3.4):

SPQsimple(P, I) = {tid | ∃i s.t. (ptid[i..i+ |P |) = P) ∧ (ttid[i+ |P | − 1] ∈ I)}. (3.2)

This is different from a standard SPQ in that the timestamp is only constrained at the

end of P . Although our method supports both types of time constraints, SPQsimple can

be processed more efficiently. We also note that SPQ(P, I) and SPQsimple(P, I) return

similar results when the time interval I is larger than the typical time needed to travel

along P (see also the discussion in Remark 6).

To keep the explanation simple, we assume that a query P does not include loops, i.e.,

P [i] 6= P [j] implies i 6= j. We would like to emphasize that this assumption is usually

satisfied in practice.

SPQ Examples Here, we provide some examples of SPQs based on the example NCTs

in Figure 3.2. Consider P = AB and I = [0, 70). The NCTs that have AB as a

subtrajectory are T1, T2, and T3. The T1 timestamps for the road segments A and B

3This time constraint is slightly different from the one originally introduced in Krogh et al. [25],
where the timestamp for the first edge P [0] is constrained on the head node of P [0]. In contrast,
our definition constrains the tail node of P [0]. Although we consider this modification is not to
be critical practice, we also note that the original constraint can easily be applied by posterior
refinement with the additional information tsin (see the discussion in Section 3.2.1).

29

3. Research Issues and Problem Definition

Database

SNT-index

Sensor data

(P , I)(1) (1) (P , I)(N) (N)...SPQ

Result
{tid } ...(1)

j {tid }(N)
j

Test routes

Matched Trajectories

Corresponding sensor data
(images, handling, accerelation, ...)

Machine learning apps.
Training & Testing
(e.g., Image recognition algorithms)...

P(1)

P(2)

P(N)

Figure 3.5.: SPQ application scenario

are 23 and 28, respectively. Hence, T1 satisfies the time constraint I. Also, the T3

timestamps for the road segments A and B are 46 and 53, respectively. Hence, T3 also

satisfies I. However, T2 traveled along B at ts = 71 /∈ [0, 70), indicating that only T1 and

T3 satisfy the constraint and SPQ(P, I) = {1, 3}. Similarly, if P = ABE and I = [0, 70),

we obtain SPQ(P, I) = {3} because T1 does not follow P = ABE. Finally, if P = ABE

and I = [0, 50), SPQ(P, I) = ∅ (the empty set) because the T3’s timestamp at E is

59 /∈ [0, 50).

SPQ Application Scenarios Let us consider a machine learning application that aims

to detect lane markings based on in-vehicle camera images (Figure 3.5). We have to

test, as exhaustively as possible, whether the image recognition algorithm works, even

in extreme conditions. To do this, we first prepare thousands of test routes involving

extreme conditions, such as tight curves, rainy nights, and backlit conditions. These

routes can be extracted based on historical weather conditions and roadmap geometries.

For each given route P (i) and corresponding time interval I(i), we execute an SPQ and

obtain the trajectory ID set {tid(i)
j }. Based on the retrieved trajectory IDs, we can obtain

the corresponding camera images that are required for the exhaustive image recognition

algorithm test.4 In this application, quick retrieval of historical data is important because

thousands of queries must be executed.

Another direct application of SPQs is for travel time distribution estimation [8]. Here,

we need travel time histograms for several paths Pi during a given period. These can be

calculated directly from the differences in the timestamps at the first and the last road

segments in the SPQ results. Furthermore, SPQs can also be used as a component for

4Considering this application more precisely, we need not only camera images but also other sensor
data (e.g., precise positions on the traveling road segment, speed profile, and so on), or ground truth
data for the supervised learning (i.e., “true” lane information in the images annotated by hand in
case of lane marking detection). Such additional information can be attached on the records in the
postings-list (using relational tables). We do not discuss this issue in this thesis any more because our
method is independent from the additional information, and it highly depends on the application.

30

3.2. Problem Definition and Path-based Queries

processing more complicated queries related to navigation and route prediction, which

are described in the following sections.

3.2.3. TEQ: Trajectory Extraction Query

Models for predicting future positions of moving objects are important, because they

have a variety of potential applications in automotive systems, including anticipatory

driver warning systems (e.g., of hazardous road conditions), information services (e.g.,

advertising), and automatic monitoring and control of the vehicle’s behavior (e.g., engine

load anticipation). Krumm [27] studied probabilistic models based on kth-order Markov

chain that aims to predict the next road segment e after traveling a path P of length

k (i.e., the conditional probability p(e|P) based on the frequency). We consider the

following two natural extensions of this basic idea.

• (C1) Time-dependent models: for the objects that traveled along P during I,

which road segments do they go next?

• (C2) L-step ahead models: predict the next L (≥ 2) road segments after P .

To obtain the frequency corresponding to a given (P, I, L), precomputation is not

realistic because there are too many possibility of (P, I, L); hence, we need to retrieve

the data on demand. We can formulate this problem as the following trajectory extraction

query (TEQ).

TEQ(P, I, L) = {ptid[i..i+ L̂) | tid ∈ SPQ(P, I) ∧ (∃i s.t. ptid[i− |P |..i) = P)}, (3.3)

where L̂ := min(L, |ptid| − i). (3.4)

The first condition selects the moving objects that traveled along P during I using an

SPQ (corresponding to C1). The second condition then selects the subscripts i such that

the substring ptid[i − |P |..i) matches P . For each tid and i, the subtrajectory of length

L after P is extracted as ptid[i..i + L̂) (corresponding to C2). When trajectory tid has

less than L edges after P , we cannot extract L edges. Therefore, we stop extraction at

the end of ptid. This is why we use L̂ instead of L.

TEQ Example: Now, we give an example of a TEQ(P, I, L) query using Figure 3.2.

Let us consider P = AB, I = [0, 70], and L = 2. First, we call SPQ(P, I), finding that T1

and T3 match the condition (see the example in Section 3.2.2). The paths of T1 and T3

after P = AB are C and EG, respectively. Hence, TEQ(P, I, L) = {C,EG}. Note that the

length of the extracted trajectory for T1 is one because T1 does not have subtrajectory

of length L = 2 after P .

31

3. Research Issues and Problem Definition

3.2.4. TAPEQ: Time-period-based All Path Enumeration Query

Route planning is another important application of spatio-temporal trajectories. Navi-

gation systems are often given two locations (i.e., the origin and destination) and asked

to output routes between them. These routes are usually calculated by minimizing the

total cost [10]. By using different link cost definitions (e.g., physical distance or average

travel time), we can extract different routes.

An alternative approach to route planning is to use the frequencies of real trajecto-

ries, as we might expect that real trajectories reflect drivers’ preferred routes. Existing

methods [6, 31] aim to find the most frequent route (MFR) using specialized data struc-

tures. In contrast, we consider queries that enumerate all routes that occur in the

database. This can be regarded as a generalization of MFR, because by definition the

MFR is included among the enumerated routes. We call this a time-period-based all-

path enumeration query (TAPEQ). TAPEQs could be useful for navigation (finding not

just popular routes but also little-known shortcuts), and urban planning (e.g., analyzing

changes in drivers’ routing choices).

Formally, for a given road segment pair u, v ∈ E and a time interval I, a TAPEQ

enumerates all u-v paths that were traveled during I as shown in Fig. 3.6. Let Π(u, v)

be the set of all possible paths between u and v. We assume that each path P ∈ Π(u, v)

passes u and v only once, i.e., P [j] 6= u and P [j] 6= v (1 ≤ j ≤ |P |−2). This assumption

is reasonable because, in practical applications like route planning, we do not need paths

with loops. In addition, let supp(P, I) be the number of NCTs in T that follow the path

P during I. We take this as the size of SPQ, i.e., supp(P, I) := |SPQ(P, I)|. Note that

supp(P, I) > 0 implies that at least one NCT in T traveled along P during I. A TAPEQ

is formally defined as follows:

TAPEQ(u, v, I, ξ) = {P ∈ Π(u, v) | supp(P, I) ≥ ξ}, (3.5)

where ξ > 0 specifies the minimum support of the result. Although T consists of

historical data, prior enumeration is impossible because there are infinitely many possible

(u, v, I) configurations.

We should also emphasize that TAPEQs also consider NCTs whose subpaths are u-

v paths. In other words, NCTs considered in TAPEQ are not only NCTs that match

regular expression u.*v but also those that match .*u.*v.* (here, .* matches any

sequence).

TAPEQ Examples: Here, we give four examples of a TAPEQ(u, v, I, ξ) based on the

example in Figure 3.2.

a) Let us consider u = A, v = G, I = [0, 100), and ξ = 1. We can see that there

32

3.2. Problem Definition and Path-based Queries

A B C

D E

F G

[s, t)
Time constraint

Destination: v

Origin: u

[s, t)
Time constraint

Figure 3.6.: Time-period-based all-path enumeration query: TAPEQ(u, v, I) finds all u-v
paths that appear at least once (or, optionally, more than ξ times) in the
database as subtrajectories.

are two possible paths from A to G: P1 = ABEG and P2 = ADFG. We then find

SPQ(P1, I) = {2, 3} and SPQ(P2, I) = {4}. Since |SPQ(P1, I)| = |{2, 3}| = 2 ≥ ξ

and |SPQ(P2, I)| = |{4}| = 1 ≥ ξ, we obtain TAPEQ(A,G, [0, 100), 1) = {P1, P2}.

b) If ξ = 2 and the other constraints are as before, we obtain TAPEQ(A,G, [0, 100), 2) =

{P1} because P2 occurs only once.

c) If I = [0, 60), ξ = 1, and u and v are as before, we have TAPEQ(A,G, [0, 60), 1) =

{P2} because SPQ(P1, [0, 60)) is an empty set.

d) Let us consider u = A, v = E, I = [0, 100), and ξ = 1. In this case, there is only

one path from A to E: P3 = ABE. Since both T2 and T3 satisfy the time constraint,

we obtain TAPEQ(A,E, I, ξ) = {P3}.

3.2.5. Summary

In this chapter, we have defined the data model and the SPQs, TEQs, and TAPEQs

considered in Part II, and have also described some applications of these queries. These

queries all operate on paths in road networks, which are represented as sequences of

road segment IDs. We will show that these queries can be processed using a common

indexing structure, SNT-index, which is introduced in the next chapter.

33

4. Indexing and Querying Methods for

Trajectories

In this chapter, we describe index structure and query processing algorithms of SNT-

index. In Section 4.1, we provide a key statement that connects temporal information

with spatial paths stored in FM-index (Lemma 2.1). Subsequently, we describe the

proposed algorithms for SPQs, TEQs, and TAPEQs (Section 4.2–4.4).

4.1. SNT-index

4.1.1. Overview

In this section, we describe the proposed data structure, the SNT-index, which consists

of the following two data structures (Figure 4.1):

1. an FM-index for spatial paths, and

2. posting lists (using B+-tree indexed by timestamps).

We need to develop a method of integrating the spatial information and temporal in-

formation because standard FM-index cannot consider temporal information. The key

idea for SNT-index is to combine these two data structures using inverse suffix array

(ISA). Unlike the existing inverted-index-like methods shown in Figure 3.3, the SNT-

index postings-lists, shown in Figure 4.1, have an additional column (isa) to store the

ISA values. In the remainder of this section, we first show a key statement regarding

the ISA in Section 4.1.2. Then, we describe the postings-lists (B+-tree for timestamps)

in Section 4.1.3. As we will see later, the isa column makes a connection with the

FM-index and enables efficient query processing. The query processing algorithms for

SPQs, TEQs, and TAPEQs are then described.

4.1.2. Spatial FM-index

In this section, we describe how SNT-index indexes the spatial information of NCTs and

a key statement how we connect spatial information with temporal information.

35

4. Indexing and Querying Methods

tid ts isa

 2 59 7
 1 23 6

 3 46 8

B+trees on
timestamp (ts)

Postings-lists (temporal info)

tid ts isa

 2 71 10
 1 28 9

 3 53 11

FM-index (spatial paths)

Trajectory String: T

Stored to disk
Stored in memory

(BWT: T)bwt

Wavelet tree: wt(T)bwt

 4 32 5

Figure 4.1.: An SNT-index consists of two data structures; an FM-index and B+-trees of
posting lists. Unlike the existing inverted-index-like methods, our postings-
lists additionally store an inverse suffix array (ISA).

Let T = {ptid, tstid}D−1
tid=0 be a set of NCTs to be indexed. We first consider the

trajectory string, denoted by T , consisting of all paths in T (Definition 2.2):

T = pr0$p
r
1$ · · · $prD−1$#. (4.1)

With the example trajectories in Figure 3.2, we obtain the following trajectory string,

which is used as a running example below:

T = CBA$GEBA$GEBA$GFDA$#. (4.2)

Next, the trajectory string T is stored in an in-memory FM-index. We call this FM-

index the spatial FM-index F(T). As described in Section 2.3, the spatial FM-indexes

enable fast pattern matching and substring extraction, functions that play crucial roles

in the proposed algorithms.

Key Property of ISA As defined in Definition 2.5, the inverse suffix array ISA is the

inverse function of SA, that is, ISA[SA[j]] = j (0 ≤ j < |T |). Further, the suffix range

R(Q) was defined in Definition 2.3 to represent the range of sorted suffixes whose prefix

is Q. We have the following proposition, which provide a bridge between the suffix range

and ISA.

Proposition 4.1 Consider a string T and its inverse suffix array ISA. Let R(Q) :=

[sp, ep) be the suffix range of a given pattern Q of length m. Then, the following two

statements are equivalent: 1) sp ≤ ISA[i] < ep, and 2) T [i, i+m) = Q.

Proof In Lemma 2.1, let us replace the terms SA[j] and j with i and ISA[i], respec-

tively. This leads to the statement.

36

4.1. SNT-index

This proposition implies that, if we know the suffix range R(Q) = [sp, ep) for a

given Q, we can check whether Q appears at position i just by checking the inequality

sp ≤ ISA[i] < ep. This property plays important roles in the proposed algorithms

for SPQs, TEQs, and TAPEQs. Importantly, as mentioned in Section 2.3, we can find

the suffix range R(Q) very efficiently using FM-index. As shown in the next section,

we describe a data structure that stores both the inverse suffix array and temporal

information; combining such a data structure with the spatial FM-index F(T), we obtain

efficient algorithms.

There are several FM-index variants that have different strengths in terms of query

processing speed and compression performance. In this Part II, we employ the simplest

one: we store Tbwt in a balanced wavelet tree with uncompressed bit vectors. With this

implementation, time complexity to compute rankw(Tbwt, j) is O(log |Σ|).

4.1.3. Temporal B+-trees

For the temporal B+-trees, SNT-index employs an inverted-index-like approach. For

each road segment e ∈ E, the postings-list Φe is formally defined as a table (relation)

consisting of tuples of the form (tid, ts, isa). The postings-list Φe represents a set of

NCTs that traveled along the road segment e. Figure 4.2(a) shows the postings-lists for

the example trajectories in Figure 3.2. The postings-list ΦA stores four records because

four NCTs, T1, T2, T3, and T4 traveled along the road segment A at ts = 23, 59, 46, and

32, respectively.

The “NCT-table” in Figure 4.2(b) explains how the isa column of each postings-lists is

defined. Each row corresponds to an NCT element. For example, since T1 (i.e., tid = 1)

traveled along the road segment eid = C at ts = 33 (see T1 in Figure 3.2), these values

appear in the first row of the NCT-table. The records are sorted in the same order

as in the trajectory string (Eq. (4.2)), which means that the eid column of this table

corresponds to the trajectory string T . There are also two additional columns, i and

isa, defined as follows.

• Column i gives the position i in T for which data is given in that row.

• Column isa gives the ith element of the inverse suffix array of T (i.e., ISA[i]).

To build the posting list Φe, all records with eid = e are selected and stored in Φe

(see the arrows from (b) to (a) in Figure 4.2). Since Φe has to support range queries by

timestamp, a B+-tree is built using the ts column as key. This allows us to quickly find

records in Φe within a given time interval I, i.e.,

RangeQuery(e, I) = {(tid, ts, isa) ∈ Φe | ts ∈ I}. (4.3)

37

4. Indexing and Querying Methods

 0 1 C 33 12
 1 1 B 28 9
 2 1 A 23 6
 3 $ 2
 4 2 G 84 17
 5 2 E 76 14
 6 2 B 71 10
 7 2 A 59 7
 8 $ 3
 9 3 G 68 18
10 3 E 59 15
11 3 B 53 11
12 3 A 46 8
13 $ 4
14 4 G 52 19
15 4 F 47 16
16 4 D 41 13
17 4 A 32 5
18 $ 1
19 # 0

NCT-table

i

Trajectory
String T

ISA of T

T1

T2

T3

T4

(a) (b)

tid ts isa

tid ts isa

tid ts isa tid eid ts isa

A

G

 1 23 6
 2 59 7
 3 46 8
 4 32 5

 2 84 17
 3 68 18
 4 52 19

Pos�ngs-list of A:

Pos�ngs-list of G:

 1 28 9
 2 71 10
 3 53 11

BPos�ngs-list of B:

.
.
.

Step 3.
Building
a pos�ng-list
for each edge

Step 4. Construc�ng
 FM-index of T

(c)
FM-index of

Trajectory String T

Step 2.
Compu�ng ISA of T

Step 1.
Concatena�ng
all the NCT data

Figure 4.2.: Schematic representation of SNT-index construction. (a) Postings-lists {Φe}
for each road segment e ∈ E. (b) This NCT-table explains how the postings-
list is constructed; (Step 1) All the NCT elements in T are concatenated;
(Step 2) ISA of the trajectory string T is computed; (Step 3) The records in
NCT-table are inserted in the corresponding posting list Φe. (c) FM-index
of the trajectory string T is constructed (Step 4).

This can be seen as filtering the postings-list Φe based on the given time interval I. We

refer to the result as a temporally-filtered postings-list. The I/O complexity of this query

is O(occ+ log |Φe|), where occ is the number of records in the result set.

Relationship to the Existing NCT Indexing Methods Our approach is different from

that of the existing methods in the following sense. Compared with the inverted-index-

like methods for NCTs, SNT-index has an additional column, isa, that connects the

FM-index with the postings-lists and plays an important role in query processing.

The data structure proposed by Krogh et al. [25] has a different additional column for

efficient SPQ processing. Since this method is closely related to our method, we briefly

describe it in Section 4.2.2 and conduct an experimental comparison in Chapter 5.

38

4.1. SNT-index

4.1.4. Index Construction and Implementation

We summarize the index construction scheme and discuss an actual implementation

using an off-the-shelf RDBMS. To construct an SNT-index for a given set T of NCTs,

we first calculate the suffix array of the trajectory string T (Definition 2.2). We can

calculate SA in linear time, O(|T |), by using the induced sorting algorithm [43]. Then,

the BWT Tbwt is calculated using SA, and the FM-index F(T) is obtained by storing

Tbwt in an in-memory wavelet tree (the arrow (b)→(c) in Figure 4.2). Since the FM-

index is a compact data structure, we expect that it will fit in memory. If there is

insufficient memory, however, we can divide the FM-index into sections and store them

in a distributed manner (Section 5.8), or use a compressed FM-index (Part III).

To build the postings-lists, the inverse suffix array ISA is calculated from SA. Since

ISA is just the inverse of SA, the calculation is straightforward (and thus runs in

linear time, O(|T |)). We then store the records in the postings-lists {Φe}, as shown in

Figure 4.2 (b→a). Finally, a B+-tree is constructed for each Φe.

We employ an off-the-shelf RDBMS to implement the postings-lists, storing all the

lists in one table. This table is similar to NCT-table shown in Fig. 4.2 (b). To simulate

RangeQuery(e, I), we created a B+-tree index on (eid, ts). This index was constructed

as a clustered index, which speeds up disk access by storing the records physically in

(eid, ts)-order. Using the NCT-table, RangeQuery(e, I) could be implemented as the

following SQL query (where I = [Ibegin, Iend]).

RangeQuery(e, I) : SELECT tid, ts, isa FROM NCT-table

WHERE eid = e AND ts BETWEEN Ibegin AND Iend.

4.1.5. Summary

In this section, we have described the data structure of SNT-index, which consists of

two indexes, namely an FM-index and B+-trees. The spatial paths of the NCTs are

indexed using an FM-index. Although this does not store temporal information, it does

enables fast pattern matching and substring extraction, and it is compact and can thus

fit in memory. The temporal information is indexed using B+-trees. This is similar to

the existing inverted-index-like methods, but SNT-index employs an additional column

for the inverse suffix array (ISA), which connects the B+-trees with the FM-index. In

the following sections, we present algorithms for several different types of queries using

SNT-index.

39

4. Indexing and Querying Methods

Algorithm 4: Proposed algo-
rithm for SPQsimple(P, I) (proposed-
SPQsimple)

1 W ← φ
2 [sp, ep)← FM-search (P r, Tbwt)
3 Y ← RangeQuery (P [|P | − 1], I)
4 for each record y ∈ Y do
5 if sp ≤ y.isa < ep then
6 W ← W ∪ {y}
7 return W. tid

Algorithm 5: Proposed algorithm
for SPQ(P, I) (proposed-SPQ)

1 W ← φ
2 [sp, ep)← FM-search (P r, Tbwt)
3 Y ← RangeQuery (P [|P | − 1], I)
4 for each record y ∈ Y do
5 if sp ≤ y. isa < ep then
6 W ← W ∪ {y}
7 X ← RangeQuery (P [0], I)
8 U ← ST-join (X,W)

// intersection of X and W

9 return U.tid

4.2. Algorithm for Strict Path Queries

4.2.1. Proposed SPQ algorithm

Here, we propose algorithms for SPQ with SNT-index. We first present the algorithm

for SPQsimple, followed by the algorithm for SPQ.

The method of dealing with SPQsimple(P, I) is shown in Algorithm 4. FM-search at

Line 2 conducts a spatial search for the route pattern P using the spatial FM-index

(P r is the reverse of P). Then, RangeQuery at Line 3 conducts a temporal search

to find the NCTs that visited the last road segment P [|P | − 1] during I. Only this

RangeQuery requires disk access in this algorithm. Finally, Lines 4–6 integrate the

spatial and temporal search results. The correctness of Algorithm 4 is guaranteed by

the following proposition.

Proposition 4.2 Algorithm 4 finds the correct result of SPQsimple(P, I).

Proof At Line 3, RangeQuery finds the set Y of NCTs that visited the last road

segment P [|P |−1] during I, meaning that SPQsimple(P, I) ⊂ Y.tid. Here, Y.tid denotes

the set of trajectory IDs in Y . Thus, all we need to show is that the remainder of the

algorithm removes all the elements in Y that do not match P . Remembering that y.isa

means ISA[i] where i is the corresponding position in the trajectory string T , sp ≤ y.isa

< ep is equivalent to T [i..i + |P r|) = P r due to Proposition 4.1. Since the trajectories

are stored in reverse order in the trajectory string T , we can say that y.tid matches P

iff sp ≤ y.isa< ep. Thus, the result W.tid at Line 7 is equivalent to SPQsimple(P, I).

Next, we propose an algorithm to handle SPQ(P, I) as shown in Algorithm 5. This

is similar to Algorithm 4 but we have to consider the additional temporal constraint at

40

4.2. Algorithm for SPQs

P [0]. By definition, we have a relation SPQ(P, I) ⊂ SPQsimple(P, I). Hence, our strategy

is as follows: we first find SPQsimple (Lines 1–6), and we then filter out NCTs that do not

travel along P [0] during I (Lines 7–8). Lines 1–6 are the same as those in Algorithm 4.

At Line 7, we find the posting list X of NCTs that visited the first road segment P [0]

during I. At Line 8, the result of SPQsimple, denoted by W , is filtered with ST-join using

X to remove the NCTs in W that did not visit P [0] during I. This ST-join takes the

intersection of two temporally-filtered postings-lists W and X w.r.t. the trajectory IDs,

that is,

ST-join(X,W) :

SELECT W.* FROM X JOIN W ON X.tid = W.tid and X.ts < W.ts. (4.4)

Here, we have an additional condition X.ts < Y.ts, which is needed to filter out NCTs

that traveled along P [0] after P [|P | − 1]. At Line 9, the set of trajectory IDs in the

result of ST-join (U.tid) are returned as the SPQ(P, I) result.

Efficiency In our proposed method, pattern matching for paths P of any length is

replaced by a single scalar inequality, sp ≤ y.isa < ep. With this technique, only one

RangeQuery call is required in Algorithm 4 for SPQsimple (and two in Algorithm 5 for

SPQ). This is much fewer calls than with the existing algorithms, which need to execute

RangeQuery O(|P |) times for pattern matching, as will be discussed in the next section.

Instead, our method has to calculate [sp, ep) for a given P using Algorithm 1. As

mentioned in Remark 5, this algorithm runs in O(|P | log |Σ|) time; this is several orders

of magnitude faster than RangeQuery in practice thanks to the in-memory processing.

Our method is therefore expected to be much faster than the existing methods, especially

when |P | is large.

4.2.2. Existing SPQ Algorithms

Here, we briefly review the NETTRA data structure and three existing SPQ algorithms

proposed by Krogh et al. [25]. These algorithms are compared with our proposed method

in Section 5.

These algorithms are based on “hash” values h(e) (integers) that are defined for each

road segment e ∈ E. Two methods were considered for defining the hash values: 1) the

physical length of e, and 2) the rounded logarithm of a random (and large) prime number.

Given a path P , its hash value is defined as the sum of hash values of the corresponding

road segments, i.e., h(P) =
∑|P |−1

i=0 h(P [i]). For the ith element of path ptid, the hash

41

4. Indexing and Querying Methods

Algorithm 6: Approximation al-
gorithm for SPQ(P, I) (DHash-join)
[25]

1 ∆ = h(P)
2 X ← RangeQuery (P [0], I)
3 Y ← RangeQuery (P [|P | − 1], I)
4 X ← ∆-join (X, Y,∆)
5 return X.tid // Traj-IDs in X

Algorithm 7: Näıve algorithm for
SPQ(P, I) (Full-join) [25]

1 X ← RangeQuery (P [0], I)
2 for i = 1..(|P | − 1) do
3 Y ← RangeQuery (P [i], I)
4 X ← ∆-join (X, Y, h(P [i]))

5 return X.tid // Traj-IDs in X

value is defined as hash[i] := h(ptid[0..i)). Krogh et al. [25] proposed to store these hash

values for each element in the posting lists. By definition, we have hash[j] − hash[i] =

h(P) if P = ptid[i..j), which allows us to check whether a subpath of ptid matches a given

pattern P just by looking up the two hash values. However, incorrect matches (false

positives) can happen due to hash collisions, and thus we cannot guarantee P = ptid[i..j)

even if the hash values are the same.

Based on these hash values, the three SPQ algorithms were proposed. First, an ap-

proximate SPQ algorithm using this hash approach is shown in Algorithm 6 (DHash-join).

This requires only two RangeQuery calls, for the first and the last road segments of P .

These two lists are then joined using the the following subroutine, which we refer to as

∆-join.

∆-join(X, Y,∆) :

SELECT Y.* FROM X JOIN Y ON X.tid = Y.tid AND ∆ = Y.hash−X.hash,

where X and Y are the temporally-filtered postings-lists. This method might yield false

positive results because more than two routes can have the same hash value.1

Second, an exact algorithm for SPQ(P, I) was proposed using ∆-join (Algorithm 7),

which we call Full-join. This algorithm takes the intersection of all the temporally-filtered

posting lists corresponding to e ∈ P . A drawback of the Full-join algorithm is the large

number of disk accesses required due to the need for multiple range queries (|P | queries),

which is inefficient when |P | is large.

To improve efficiency, a third method (Optimal-join) was introduced. This can guar-

antee exact results and the number of joins required is less than with Full-join. This

reduction is achieved by partitioning P into substrings (i.e., P = P1P2 · · ·Pk), each of

which guarantees no hash collisions. This partition is calculated via a shortest path al-

1We cannot avoid possibility of this hash collision in principle because there can be a combinatorial
number of routes between two positions while the hash value is an integer with the finite number of
bits (e.g., 32 bits or 64 bits).

42

4.3. Algorithm for TEQs

gorithm in terms of the hash values. The Optimal-join only requires k+ 1 range queries,

at Pi[0] (1 ≤ i ≤ k) and Pk[|Pk| − 1]. Although k is less than |P | in general, it is usually

proportional to |P |, implying that the number of RangeQuery calls is still O(|P |). See

Krogh et al. [25] for further details of these algorithms.

4.2.3. Summary

In this section, we have proposed SPQ algorithms based on SNT-index. The multiple

(O(|P |)) B+-tree retrievals required by the existing algorithms (Full-join and Optimal-

join) are replaced with two B+-tree retrievals and some in-memory operations (FM-

search). Although the FM-search operations require O(|P | log |Σ|) time, this can be

ignored in practice as we will see in the experiments. The other existing algorithm

(DHash-join) also requires only two B+-tree retrievals, but its query results may contain

false positives.

4.3. Algorithm for Trajectory Extraction Queries

4.3.1. Baseline Method: Adding TB-tree-like Pointers to NETTRA

Before describing the proposed algorithm for TEQs, we first present a baseline algorithm

that does not use an SNT-index. For this, we extend the NETTRA data structure de-

scribed in Section 4.2.2, because the existing inverted-index-like methods do not support

TEQs. As defined in Eq. (3.3), TEQs aim to extract the paths of length L that were

followed after traveling along P during I. A natural algorithm for TEQ(P, I, L) can be

described as follows.

1. Execute SPQ(P, I) to obtain the NCTs that traveled along P during I.

2. For each trajectory in SPQ(P, I), extract the path of length L that was followed

after traveling P .

How, then, do we handle the second extraction step? In inverted-index-like methods

like NETTRA, the records in the postings-lists do not include pointers to records corre-

sponding to the next road segment. Hence, we cannot easily find the subsequent records

starting from a given record. This problem can be solved by adding pointers to the

next record as shown in Figure 4.3. Pointers from ΦA to ΦB and from ΦB to ΦC have

been added to the records with tid = 1 because the spatial path of T1 (tid = 1) in

Figure 3.2 is ABC. This idea was proposed for TB-tree [47], an indexing method for free

(i.e., non-constrained) trajectories.

43

4. Indexing and Querying Methods

tid ts

tid ts

tid ts

 1 28
 2 71
 3 53

tid ts
 1 23
 2 59
 3 46
 4 32

tid ts

 4 41

A

B

D

 1 33

...

C

E

 2 76
 3 59

...

...

Figure 4.3.: Baseline method for TEQs (modified TB-tree). Successor record pointers
are added to the postings-lists.

Using this structure, we can process TEQs as follows. For the first step, the Optimal-

join algorithm can be used to process the SPQ. Then, for each record found in the first

step, the corresponding paths of length L are extracted by tracing the pointers. This

baseline method is relatively efficient compared with the case without pointers, however,

we still need to access the disk every time we follow a pointer. Our algorithm, proposed

in the next subsection, avoids need for the disk access by using the spatial FM-index.

4.3.2. Proposed TEQ Algorithm

Our SNT-index allows for a more efficient algorithm by using the spatial FM-index.

First, we introduce a fundamental property that connects the temporal B+-trees in the

SNT-index with FM-extract (Algorithm 2). For example, let us focus on the i = 16th

record of the NCT-table in Figure 4.2, that is, (i, tid, eid, ts, isa) = (16, 4,D, 41, 13).

By the FM-extract definition (Algorithm 2), we have FM-extract(Tbwt, isa = 13, l =

2) = T [i− l, i) = T [14, 16) = GF, which corresponds to the path of length 2 traveled by

this NCT (T4) after eid = D. More generally, we have the following property.

Proposition 4.3 Consider any road segment e ∈ E and any record u := (tid, ts, isa) ∈
Φe. Then, FM-extract(Tbwt, u.isa, L) gives the path of length L after the corresponding

record u, i.e., the path of length L traveled by the corresponding NCT (u.tid) after the

road segment e at time u.ts.

Proof As defined in Section 4.1.3, we have u.isa = ISA[i], where i specifies the record

in the NCT-table (Figure 4.2(b)). Hence, by definition, FM-extract(Tbwt, u.isa, L) =

FM-extract(Tbwt, ISA[i], L) returns T [i − L, i). Since the trajectory string T stores the

paths in reverse order, T [i− L, i) gives the path of length L after the record u.

Algorithm 8 (proposed-TEQ) is our proposed TEQ algorithm. As in the baseline algo-

rithm in the previous subsection, we first execute SPQ(P, I) and obtain the temporally-

filtered postings-list U (Line 2), in this case using proposed-SPQ (Algorithm 5). Although

44

4.3. Algorithm for TEQs

the original proposed-SPQ returns U.tid, we can easily modify it to return U instead

(i.e., U includes isa values). By definition, we have U ⊂ Φẽ, where ẽ is the last element

of P . Therefore, the desired subtrajectories of length L can be obtained by executing

FM-extract(Tbwt, u.isa, L) using the ISA values of the tuples u in U (Proposition 4.3).

Finally, Line 5 removes symbols in p after $ (if there is $ in p) because FM-extract

returns a subtrajectory of length L even if the corresponding NCT does not have a

subtrajectory of length L after traveling P .

Algorithm 8: Proposed algorithm for TEQ(P, I, L) (proposed-TEQ)

1 Paths← ∅ // Empty set

2 U ← proposed-SPQ (P, I) // Return U instead of U.tid

3 for u ∈ U do
4 p← FM-extract (Tbwt, u.isa, L) // Path extraction of length L

5 p← RemoveAfter-$ (p) // Remove symbols after $ (e.g. AB$CD->AB)

6 Paths← Paths ∪ {p} // Add the extracted path p to the result

7 return Paths

Efficiency The disk access cost for the baseline algorithm in Section 4.3.1 is O(L),

because we need to trace the pointer L times to extract a subtrajectory of length L. The

proposed-TEQ algorithm replaces the pointer-tracing step with FM-extract. Although the

time complexity of FM-extract is O(L log |Σ|) as mentioned in Remark 5 (Chapter 2), in

practice FM-extract is much faster because it only needs memory access. In the proposed

algorithm, disk access is only needed when we call proposed-SPQ (i.e., two RangeQuery

calls for any given (P, I, L)). Hence, the proposed algorithm is expected to be much

faster than the baseline. In fact, we will show experimentally that our algorithm is tens

of times faster (Section 5.3).

4.3.3. Summary

In this section, we have proposed an algorithm for TEQs that utilizes the isa values

in the posting lists in a different way from the proposed-SPQ algorithm. This idea,

extracting subtrajectories based on the isa values in the posting lists, are also used in

the proposed TAPEQ algorithm.

45

4. Indexing and Querying Methods

4.4. Processing Time-period-based All-Path

Enumeration Queries

4.4.1. Baseline Method: PrefixSpan for TAPEQs

Remembering the definition of a TAPEQ, a näıve solution for TAPEQs is to check whether

supp(P, I) ≥ ξ holds by executing SPQ(P, I) for all P ∈ Π(u, v). However, this would

be impossible because there can be a massive number of possible paths between u and

v. For example, let us consider a small 32× 32 grid network and paths from top left to

bottom right. Even if we consider only the shortest paths, there are
(

32
64

)
> 260 possible

paths, which is an unrealistic number to process.

TAPEQs are closely related to sequential pattern mining, because they can be regarded

as enumerating all symbol sequences in a database satisfying a given condition. In this

section, we present a baseline approach based on the inverted-index-like method without

suffix arrays and highlight its inefficiency. Again, we employ the NETTRA structure for

this.

For sequential pattern mining, the PrefixSpan algorithm [45] is one of the most widely-

used algorithms in practice. Although there are numerous variants of this algorithm, we

employ one similar to Traj-PrefixSpan [37] here as a baseline for TAPEQ algorithm.

Traj-PrefixSpan restricts the sequence P to be a substring of the sequences in the

database (i.e., patterns with gaps are prohibited). Algorithm 9 shows our customized

Traj-PrefixSpan algorithm, which can be executed using NETTRA. Unlike the original

Traj-PrefixSpan, our modified version considers temporal constraints (Line 1 in Algo-

rithm 10). In Algorithm 9, OutGoingEdges(P.last) returns a set of road segments that

are directly accessible from the last segment of P . Further, the path length dist(P) is

restricted to θ (Line 1). Without this restriction, this algorithm would not terminate in a

reasonable time (note that this restriction is not part of the original TAPEQ). To process

TAPEQ(u, v, I, ξ), we call PrefixSpan(u,T|u), where T|u = RangeQuery(u, I). Note that

this algorithm requires one disk access (RangeQuery) per recursion in the Projection

function, which means that the disk access cost is large.

4.4.2. Proposed TAPEQ algorithm

Unlike the previous PrefixSpan algorithm, our proposed TAPEQ algorithm does not

require an explicit projection operation, and thus can avoid the large associated disk

access cost. The proposed algorithm consists of the following two steps.

1. Candidate generation: Find all NCTs that traveled along both u and v during I.

46

4.4. Algorithm for TAPEQs

Algorithm 9: PrefixSpan algo-
rithm tailored for TAPEQ (baseline):
PrefixSpan(P,T|P , I)

1 if
∣∣T|P ∣∣ < ξ or dist(P) > θ then

2 return // Terminate if T|P is

too small or P is too long

3 if P.last = v then
4 yield P and return
5 for ∀w ∈ OutGoingEdges(P.last) do
6 P ′ ← Pw // Concatenate P and w

7 T|P ′ ← Projection (w,T|P , I)
8 PrefixSpan (P ′,T|P ′ , I)

Algorithm 10: Obtain
Pw-projected database:
Projection(w,T|P , I)

1 T|w ← RangeQuery (w, I)
2 return

∆-join (T|P ,T|w, h(w))

2. Path recovery : For each NCT found in the previous step, recover the route traveled

between u and v using the FM-index.

This method is expected to be more efficient than PrefixSpan because only two disk

accesses are required (for u and v) in the first step. The complete algorithm is shown in

Algorithm 11.

Algorithm 11: Proposed algorithm for TAPEQ(u, v, I, ξ)

1 ITree← Empty interval tree
2 X ← RangeQuery (u, I)
3 Y ← RangeQuery (v, I)
4 Z ← RestrictToAdj (ST-join2(X, Y)) // NCTs that visited u->v during I

5 for z ∈ Z do
6 R← ITree.find (z.isav) // R is a suffix range that contains isav
7 if R is null then
8 P ← FM-extract-until (v, z.isau, Tbwt) // Recover the u-v path

9 R← FM-search (P, Tbwt) // Find suffix range for P

10 ITree.insert (R) // Register the suffix range R to ITree

11 A[R]← (path = P, count = 0)

12 A[R].count← A[R].count + 1

13 return [(A[R].path, A[R].count) for R in A.keys if A[R].count ≥ ξ]

Lines 2–4 correspond to the first step. Here, Z is the set of candidate NCTs that

traveled along both u and v during I. In this algorithm, we need isau and isav, ISA

values from the posting list of u and v, respectively. We thus modify ST-join to keep

47

4. Indexing and Querying Methods

ts

A1 B1 A2 B2
ptid

t2t1 t3 t4

...

(A1)
(A2)

(B2)
(B1)

(A1, B1)
(A2, B1)
(A1, B2)
(A2, B2)

(A1, B1)
(A2, B2)

tid ts

tid

tidtid

tid

B

A

t2

t1

t4

t3

RestrictToAdjtid ts isa
tid tstid ts isa

isa1

isa3 isa2

isa4
tid

tid

tid tstid ts isa
t2

t4

isa2

isa4

(a)

(b)

tid

tid t2

t4

tid tstid ts isa
isa2

isa4

tid t4 isa4

tid t2 isa2

join(,)A B

Figure 4.4.: An explanation of RestrictToAdj. (a) An example NCT with loops (road
segments A and B are traveled twice). (b) Only the neighboring pairs (cor-
responding to the arcs in (a)) are selected.

them, as follows.

ST-join2(X, Y) : SELECT X.isa AS isau, Y.isa AS isav

FROM X JOIN Y ON X.tid = Y.tid AND X.ts < Y.ts (4.5)

Note that, at Line 4, RestrictToAdj (Figure 4.4) is applied in order to filter out pairs

that are not temporally-adjacent. This is useful because we do not aim to extract paths

P ∈ Π(u, v) that travels along u (or v) more than once, as discussed in Section 3.2.4.

The remainder (Lines 5–12) corresponds to the second step, which we will describe

from Line 8. For each NCT z in Z, the actual route between u and v is extracted as P

(Line 8). Similar to Proposition 4.3, FM-extract-until (Algorithm 3) extracts P from the

FM-index F(T), starting from isa.u, until v is found. Once a new P has been found, its

suffix range R is calculated (Line 9) and is inserted into the interval tree ITree (Line 10).

The newly found path P is registered to the association array A using R as a key (Line

11). Now, we return to Lines 6–7. If possible, we would like to avoid FM-extract-until

operations, because these operations are relatively expensive. Fortunately, we can avoid

this extraction step if P has already been found: if z.isav is within one of the ranges

that are already registered in ITree, the corresponding path has already been found

because of Proposition 4.1. Therefore, we can avoid FM-extract-until and only need to

increment the count of the corresponding u-v path (Line 12). Finally, at Line 13, the

u-v paths that occur more than ξ times are returned as the result of the TAPEQ.

Efficency Clearly, our algorithm requires only two disk accesses thanks to the use of

an FM-index. In contrast, the baseline PrefixSpan algorithm needs at least L accesses,

where L is the number of distinct road segments in the TAPEQ result (which can be

48

4.5. Appending New Data to SNT-index

large if u and v are distant).

Although the path extraction phase (Lines 5–12) is an in-memory operation, it can

be costly if Z is large. To improve the efficiency of this phase, we can filter out some

of the elements in Z based on estimated frequency using the hash values discussed in

Section 4.2.2. To implement this idea, we also calculate the difference between the hash

values of u and v at Line 4 by selecting ∆ := Y.hash−X.hash in Eq. (4.5). After Line

4, we count how many times each hash value appears in Z. If count(∆) < ξ for the

hash value ∆, all z ∈ Z with this hash value must correspond to a path P that does not

satisfy supp(P, I) ≥ ξ.2 We can therefore remove these candidates from Z, reducing the

number of FM-extract-until operations required at Line 8. As will be demonstrated in

the experiments, our algorithm can be hundreds times faster than PrefixSpan in practice.

4.4.3. Summary

In this section, we have discussed two TAPEQ algorithms. First, we presented a baseline

algorithm based on the famous PrefixSpan algorithm, which is based on an existing

inverted-index-like method and involves many B+-tree accesses. Then, we proposed a

more efficient algorithm based on SNT-index, which uses the spatial FM-index for path

enumeration and only requires two B+-tree accesses.

4.5. Appending New Data to SNT-index

SNT-index does not explicitly support dynamic updating for two reasons. First, the suffix

array (FM-index) is essentially a static index. Second, even if the suffix array could be

updated dynamically, data insertion would affect the ISA values of all (existing) leaves

of the B+-trees because the insertion would destroy the suffix order.

As we have repeatedly emphasized, because our target application is the retrieval of

historical data, real-time updating is not needed for our purposes. However, it may still

be necessary to add new data at a certain time interval. There are two ways to do this.

The first method is to reconstruct the index, including the new data. While this would

allow us to apply the proposed method without changing the data structure at all, the

update cost would increase over time. In the following, we show the second method.

2Although the same ∆ can refer to different paths due to hash collisions, count(∆) can give an upper
bound on the true support supp(P, I), which is enough to guarantee the filtering scheme discussed
here.

49

4. Indexing and Querying Methods

4.5.1. Partitioning the FM-index for Appending New Data

The second method is to build an FM-index using only the newly added data, that is,

to build a new FM-index Fτ for each period τ (Figure 4.5). For a given set of new

NCTs T(τ) at a period τ , we first generate its trajectory string T (τ), and then compute

the corresponding BWT string T
(τ)
bwt. This new BWT string is separately stored in a

new wavelet tree, which consists of a new FM-index Fτ . For a given pattern P , we can

conduct a pattern matching using Algorithm 12. Unlike Algorithm 1, we obtain a set

of ranges each of which corresponds to a period. This algorithm requires multiple FM-

search executions, but it can be calculated in parallel if the FM-indexes are stored in

a distributed manner. Given J FM-indexes, the time complexity of Multi-FM-search is

O(J · |P | log |Σ|) (non-parallel case), and O(|P | log |Σ|) (parallel case). We consider that

this multiple execution of FM-search is generally not a problem because the processing

time of FM-search is two orders of magnitude faster than RangeQuery as we see in our

experiments.

Algorithm 12: Multi-FM-search(P, {T (τ)
bwt}): Find the suffix range for a pattern

P of length m for given multiple BWT strings {T (τ)
bwt}

// The following loop can be parallelized if T
(τ)
bwt’s are stored in a

parallel manner.

1 for each T
(τ)
bwt in {T (τ)

bwt} do

2 [sp(τ), ep(τ))← FM-search(T
(τ)
bwt, P)

3 return {[sp(τ), ep(τ))} // A set of suffix ranges over all periods are

returned

In this case, we should store not just the ISA value but also an identifier for the

period τ in the leaves of the B+-trees. Here, we refer to this new column as “period”,

and thus the new postings-lists consist of tuples of the form (tid, ts, period, isa), as

illustrated in Figure 4.5. With these modifications, we can process SPQs as follows. Let

[sp(τ), ep(τ)) be the result of the suffix range query for Fτ for a given pattern P . In this

case, the condition in Proposition 4.1 (and thus Line 5 in Algorithms 4 and 5) simply

becomes

∨τ (period = τ ∧ sp(τ) ≤ isa < ep(τ)), (4.6)

where ∨τ means logical OR over τ corresponding to a given interval I. Hence, this change

imposes little additional cost on the query processing phase. In addition, we emphasize

that, in this scheme, the cost for index construction per period does not increase over

time because we do not need to update the data records we have already stored.

50

4.5. Appending New Data to SNT-index

tid ts period isa

 2 23 1 7
 1 19 1 6

 3 46 2 3

B+trees on
timestamp (ts)

Pos�ng Lists (temporal info)

 2 30 1 10
 1 25 1 9

 3 53 2 9

FM-indexes (spa�al paths)

Stored to diskStored in memory

 4 32 2 4

tid ts period isa
ti

m
e

period=1

period=2

period=3

1

2

3

Figure 4.5.: Append-supported SNT-index structure. A new column “period” is used to
specify one of the partitioned FM-indexes.

The proposed algorithms for TEQs and TAPEQs in the previous sections require ex-

traction of a sub-path for a given ISA value in a postings-list record. With the modified

structure above, this extraction is straightforward because the period (= τ) value is now

stored in B+-trees, which allows us to specify the FM-index Fτ and execute FM-extract

starting from the isa value stored together. More specifically, Tbwt is replaced with T
(τ)
bwt

(Line 4 in Algorithm 8 and Line 8 in Algorithm 11). For TAPEQs, we also have to replace

FM-search with Multi-FM-search in Line 9 of Algorithm 11. Since Multi-FM-search re-

turns multiple ranges, the interval tree used in this algorithm also has to be parametrized

by τ (i.e., ITree(τ)). Accordingly, ITree.find (z.isav) becomes ITree(z.period).find (z.isav).

Such a semi-dynamic update scheme would be conceptually close to data warehous-

ing. Spatial FM-indexes represent summary data in data warehousing, that is, they

are intended to make heavy query processing more efficient, rather than focusing on

processing transactions to maintain consistency.

4.5.2. Spatial Partitioning of the FM-index

Finally, we discuss a possibility of spatial partitioning of the FM-index, which would

be useful when the spatial FM-index is too large to fit into the memory of a single

server. Unlike the time-period partitioning discussed above, we would divide the data

based on spatial proximity in this case. Specifically, given a set T of NCTs, we divide

T into groups, say T1, · · ·TR, considering the spatial proximity (e.g., we can use a tra-

jectory clustering method). When storing each Tr into postings-lists, we also record the

subscript r in a new region column. Furthermore, we build an FM-index Fr for each

Tr. Similar to the above temporal partitioning case, we can support SPQs, TEQs, and

TAPEQs using this new region column. In this spatial partitioning case, we have to

develop an efficient partitioning/clustering scheme. Such a partitioning scheme should

51

4. Indexing and Querying Methods

be determined based on the application scenario.

52

5. Experiments

5.1. Setup and Implementation Details

Dataset We use three datasets for the evaluation. The first dataset is called Singapore

and consists of real trajectories obtained from taxi cabs in Singapore [55]. The trajec-

tories have already been matched to the map, but the NCTs in this dataset sometimes

have gaps (i.e., there are transitions between road segments that are not physically

connected). We therefore filled in these gaps with shortest paths and calculated the

corresponding timestamps using linear interpolation based on driving distance. We also

split NCTs into multiple pieces if they stayed on the same road segment more than 10

minutes. The resulting dataset contained more than 340K NCTs, each consisting of

road segment sequences of length 290 (on average). Therefore, the total length of the

trajectory string T for Singapore dataset was about 98 million.

The second dataset is called Roma, and consists of GPS coordinates from taxi cabs in

Rome, Italy. We applied HMM map-matching [41] to obtain NCT representations. The

resulting dataset contained more than 130,000 NCTs with an average length of 92. The

total length of the trajectory string T was therefore 12 million.

The third dataset is the RGSx5 dataset which was synthesized by random sampling

based on 5-gram probability p(et|et−5, et−4, et−3, et−2, et−1) calculated using the Singapore

dataset. The average travel times were used to generate timestamps. This dataset

was five times larger than the Singapore dataset, containing about 1.7 million NCTs of

average length 290. Hence, the total length of the trajectory string T was about 500

million. We also used the RGSx1, RGSx2, RGSx3, and RGSx4 datasets, created similarly,

to evaluate the scalability of the algorithms. The statistics of the dataset are summarized

in Table 5.1.

Table 5.1.: Dataset statistics

Dataset #traj |T | |Σ| Storage Source

Singapore 340K 98M 55,892 SSD Song et al. [55]
Roma 130K 12M 56,653 SSD Bracciale et al. [3]
RGSx5 1.7M 500M 55,892 HDD Synthesized based on Singapore

53

5. Experiments

Implementation As discussed in Section 4.1.4, the posting lists were implemented as

one table (NCT-table) using PostgreSQL (version 9.6.2) with default settings. The

size of cache buffers were set to 3GB. The Singapore and Roma datasets were stored

on the SSD, while the HDD was used for the largest RGSx5 dataset. All algorithms

were implemented in C++ and compiled with g++ (version 4.8.4) with the -O3 option.

We used the sdsl-lite1 library for the (in-memory) wavelet trees. The BWTs were

calculated using sais.hxx2 which implements a linear-time sorting algorithm [43]. All

experiments are conducted on a workstation with the following specifications: Intel Core

i7-K5930 3.5GHz CPU (64-bit, 12 cores), 32GB DDR4 RAM, Ubuntu Linux 14.04.

Table 5.2 summarizes the algorithms implemented in this experiment. All the algo-

rithms used for comparison were introduced in previous sections, which are based on

NETTRA [25], the state-of-the-art (disk-based) NCT-indexing method for path-based

queries. Our NETTRA implementation is also based on PostgreSQL, which is the same

as the original implementation in Krogh et al. [25]. NETTRA also uses a hub-labeling

index as an in-memory auxiliary data structure. We implemented this by modifying

publicly available library.3 For the hash function, we used the physical length of each

road segment (in meter).

Table 5.2.: Summary of algorithms and data structures used in the experiment
Query Algorithm Data structure / Description
SPQ Full-join NETTRA (Section 4.2.2)

Optimal-join NETTRA / Additional hub-labeling index is needed
(Section 4.2.2)

DHash-join NETTRA / Exact result is not guaranteed (Section 4.2.2)
Proposed-SPQ SNT-index (Section 4.2.1)
Proposed-SPQsimple SNT-index / Slightly different query definition Eq. (3.2)

(Section 4.2.1)
TEQ Modified TB-tree NETTRA + TB-tree-like pointers (Section 4.3.1)

Proposed-TEQ SNT-index (Section 4.3.2)
TAPEQ Modified PrefixSpan (MPS) PrefixSpan algorithm implemented on NETTRA (Sec-

tion 4.4.1)
Proposed-TAPEQ SNT-index (Section 4.4.2)

5.2. SPQ Results

We evaluated the average query processing time over 1000 queries, randomly sampled

from the dataset. We tested using queries of various lengths |P | ∈ {5, 10, · · · , 50}. In

1http://github.com/simongog/sdsl-lite/
2http://sites.google.com/site/yuta256/sais/
3http://github.com/savrus/hl

54

http://github.com/simongog/sdsl-lite/
http://sites.google.com/site/yuta256/sais/
http://github.com/savrus/hl

5.2. SPQ Results

the first experiment, we used the time interval I = [tmin, tmax], where tmin and tmax are

the minimum and the maximum timestamps appearing in the dataset, respectively (i.e.,

100% temporal selectivity).

For comparison, we used the three algorithms discussed in Section 4.2.2: Full-join,

Optimal-join, and DHash-join. Note that the DHash-join method does not guarantee

exact results due to potential hash collisions. (This is the only algorithm in this study

that can produce false positive results for SPQs.)

Effect of |P |: Figure 5.1 shows the average query processing time results. Here,

“Proposed-SPQsimple” and “Proposed-SPQ” are the proposed methods (Algorithms 4 and

5). While the processing times for Proposed-SPQsimple, Proposed-SPQ and DHash-join

were constant with respect to the length |P |, those for Full-join and Optimal-join increased

as |P | increased. Although the Optimal-join method was about four times faster than the

Full-join for the Singapore dataset, the processing time still grew linearly, indicating that

the average size of the skips realized by the substring partitioning in the Optimal-join was

about four. The DHash-join method was as fast as the Proposed-SPQ because the both

methods access the B+-trees twice per query. In this experiment, 0.1% of the results

returned by the DHash-join were false positives while the other methods yielded no false

positives for any dataset (these false positives can be reduced if we use a different hash

function, see Section 5.8 for details). In addition, the Proposed-SPQsimple method was

twice as fast as that of the Proposed-SPQ because the Proposed-SPQsimple only requires

one B+-tree retrieval, while the Proposed-SPQ needs two.

As discussed previously, the proposed methods require additional operations using the

FM-index to find the suffix range R(P). Theoretically, this cost is O(|P | log σ), but the

actual processing time of the proposed methods appeared to be constant for different

lengths |P |. This is because the additional processing time required to find R(P) is

negligible compared with the cost of the B+-tree retrievals. The average processing time

only to find R(P) using the FM-index in Figure 5.2. Since the time needed for this

operation is less than 0.1ms, it does not affect the total processing time. This is why

the Proposed-SPQ method shows similar processing times compared to the DHash-join

method. In fact, we observe that the DHash-join is slightly faster than Proposed-SPQ

(e.g., see Figure 5.5). This difference is due to the additional FM-search execution in

the Proposed-SPQ method. Therefore, the difference is less than 0.1ms, as observed in

Figure 5.2.

Scalability: Figure 5.3 shows how the SPQ processing time scaled as the dataset size

increased. For this evaluation, we used the RGSx1, RGSx2, · · · , and RGSx5 datasets.

The proposed methods show the best scalability, indicating that the SNT-index works

very well in practice for huge datasets. Despite the fact that the time complexity of

55

5. Experiments

0 10 20 30 40 50
Lenght of pattern: |P|

0

50

100

150

200

250

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y) Full-join (exact)
Optimal-join (exact)
DHash-join (not exact)
Proposed-SPQ (exact)
Proposed-SPQ-simple
(exact)

(a) Singapore

0 10 20 30 40 50
Lenght of pattern: |P|

0

20

40

60

80

100

120

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y) Full-join (exact)
Optimal-join (exact)
DHash-join (not exact)
Proposed-SPQ (exact)
Proposed-SPQ-simple
(exact)

(b) Roma

0 10 20 30 40 50
Lenght of pattern: |P|

0
100
200
300
400
500
600
700

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y) Full-join (exact)
Optimal-join (exact)
DHash-join (not exact)
Proposed-SPQ (exact)
Proposed-SPQ-simple
(exact)

(c) RGSx5

Figure 5.1.: SPQ processing time for various |P |

0 10 20 30 40 50
Length of pattern: |P|

0.00

0.02

0.04

0.06

0.08

0.10

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y)

Figure 5.2.: FM-search (the Singa-
pore dataset)

x1 x2 x3 x4 x5
Data size

0

200

400

600

800

1000

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y)

Full-join (exact)
Optimal-join (exact)
DHash-join (not exact)
Proposed-SPQ (exact)
Proposed-SPQ-simple
(exact)

Figure 5.3.: Scalability (RGSxN, |P | = 50,
100% temporal selectivity)

B+-tree retrieval is O(log(data size)), the processing time increased linearly. The reason

for this is similar to the one in the temporal selectivity case: when data size doubles,

occ also doubles on average, and thus the cost grows linearly with data size.

Effect of |I|: Here, we investigate the effect of changing the length of the time interval

I. For this experiment, we used |P | = 50 (fixed) and varied the length of I. Figure 5.4

and Figure 5.5 show the average processing times over 1,000 SPQs, randomly sampled in

the same manner as in the previous experiment. The horizontal axis represents temporal

selectivity, which was calculated as follows. First, we calculated the ts2%, ts5%, ts10%,

ts25%, ts50%, ts75% quantiles of ts in the database, and then we processed 1,000 random

SPQs for Ix% := [tsmin, tsx%).

In Figure 5.4 and Figure 5.5, the proposed method shows the best performance among

all the competitors. Again, this result is mostly explained by the number of B+-tree re-

trievals needed to process each SPQ. Unlike Figure 5.1, the processing times of the pro-

posed methods (proposed-SPQ and proposed-SPQsimple) slightly increase as |I| increases,

despite the fact that the number of RangeQuery calls is constant (two and one, respec-

tively). This is because the number of candidates occ := |Y | (see Section 4.2.1) increased

for longer time intervals. Because the actual number of data blocks fetched from storage

is O(occ) ' O(|I|), the processing time increased slightly as |I| increased.

56

5.3. TEQ Results

25% 50% 75% 100%
Temporal selectivity

0

50

100

150

200

250

300

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y) Full-join (exact)
Optimal-join (exact)
DHash-join (not exact)
Proposed-SPQ (exact)
Proposed-SPQ-simple
(exact)

(a) Singapore (|P | = 50)

25% 50% 75% 100%
Temporal selectivity

0

20

40

60

80

100

120

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y) Full-join (exact)
Optimal-join (exact)
DHash-join (not exact)
Proposed-SPQ (exact)
Proposed-SPQ-simple
(exact)

(b) Roma (|P | = 50)

25% 50% 75% 100%
Temporal selectivity

0

150

300

450

600

750

900

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y) Full-join (exact)
Optimal-join (exact)
DHash-join (not exact)
Proposed-SPQ (exact)
Proposed-SPQ-simple
(exact)

(c) RGSx5 (|P | = 50)

Figure 5.4.: SPQ processing time for various |I| (high temporal selectivity; 25% – 100%)

2% 5% 10% 25%
Temporal selectivity

10-1

100

101

102

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y)

(a) Singapore (|P | = 50)

2% 5% 10% 25%
Temporal selectivity

10-2

10-1

100

101

102

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y)

(b) Roma (|P | = 50)

2% 5% 10% 25%
Temporal selectivity

100

101

102

103

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y)

(c) RGSx5 (|P | = 50)

Figure 5.5.: SPQ processing time for various |I| (low temporal selectivity; 2% – 25%).
The legend is the same as Figure 5.4.

5.3. TEQ Results

To evaluate the processing time required for TEQ(P, I, L), we used randomly-generated

paths P of length 5. For comparison, we implemented the modified TB-tree described

in Section 4.3.1.

Figure 5.6 shows the processing time for various extraction lengths L (100% tempo-

ral selectivity case). The proposed method was more than ten times faster than the

modified TB-tree (50 times faster for L = 20 for the Singapore dataset), and its pro-

cessing time slightly increased as L increased. This is due to the substring extraction

used in the proposed algorithm (Line 4 in Algorithm 8), which takes O(L log σ) time.

The actual processing time for substring extraction from the spatial FM-index F(T) is

shown in Figure 5.8 for the Singapore dataset. While this was as fast as FM-search (Fig-

ure 5.2), substring extraction is executed |U | times per query, leading to a total time of

O(|U |L log σ). Here, |U | is the number of NCTs that followed P during I (see Algorithm

8). This differs from the SPQ case, which requires only one FM-search. For the Singapore

dataset, |U | was about 2,000 on average, and thus the processing time increased slightly

as L increased, even though substring extraction is an in-memory operation. However,

we should emphasize that the processing time of the proposed method increased much

57

5. Experiments

0 5 10 15 20 25 30 35
Length of extraction: L

101

102

103

104

105

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s/

qu
er

y)

SNT-index (Proposed)
Modified-TB-tree

(a) Singapore (|P | = 5)

0 5 10 15 20 25 30 35
Length of extraction: L

100

101

102

103

104

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s/

qu
er

y)

SNT-index (Proposed)
Modified-TB-tree

(b) Roma (|P | = 5)

0 5 10 15 20 25 30 35
Length of extraction: L

101

102

103

104

105

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s/

qu
er

y)

SNT-index (Proposed)
Modified-TB-tree

(c) RGSx5 (|P | = 5)

Figure 5.6.: TEQ processing time for various L. Error bars show 25%-75% quantiles.

2% 5% 10% 25% 50% 100%
Temporal selectivity (%)

10-1

100

101

102

103

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s/

qu
er

y)

SNT-index (Proposed)
Modified-TB-tree

(a) Singapore (|P | = 5, L = 10)

2% 5% 10% 25% 50% 100%
Temporal selectivity (%)

10-1

100

101

102

103

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s/

qu
er

y)

SNT-index (Proposed)
Modified-TB-tree

(b) Roma (|P | = 5, L = 10)

2% 5% 10% 25% 50% 100%
Temporal selectivity (%)

10-1

100

101

102

103

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s/

qu
er

y)

SNT-index (Proposed)
Modified-TB-tree

(c) RGSx5 (|P | = 5, L = 10)

Figure 5.7.: TEQ processing time for various |I| (temporal selectivity 2% – 100%). Error
bars show 25%-75% quantiles.

more slowly than that of the modified TB-tree with respect to L, as shown in Figure 5.6.

In fact, for the Singapore dataset, the proposed method took 0.9L+ 21.3 ms per query,

as opposed to 49.5L ms for the modified TB-tree.

Figure 5.7 shows the TEQ processing time for various temporal selectivity (2% –

100%). The results show that the processing times of both methods are proportional to

the temporal selectivity. This is because the number of NCTs to be extracted, |U |, is

proportional to the temporal selectivity |I|.

Next, Figure 5.9 shows the change in processing time as the data size increases. The

datasets used for this evaluation were the same as those used in Figure 5.3 (i.e., RGSx1,

RGSx2, · · · , and RGSx5). The proposed method showed better scalability than the

modified TB-tree method. Finally, Figure 5.10 visualizes an example TEQ result (|P | =
5, L = 10) for the Singapore dataset. The red road segments correspond to the query

pattern P , and the other road segments are shaded based on the frequency which they

appeared in TEQ(P, I, L). These results gives a probabilistic prediction of the object’s

likely movements after P during I.

58

5.4. TAPEQ Results

0 10 20 30 40 50
Length of extraction: L

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
oc

es
si

ng
 ti

m
e

(m
s/

qu
er

y)

Figure 5.8.: FM-extract (Singapore
dataset)

x1 x2 x3 x4 x5
Data size

0
200
400
600
800

1000
1200
1400

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s/

qu
er

y)

SNT-index (Proposed)
Modified-TB-tree

Figure 5.9.: TEQ scalability (RGSxN, L =
10, 100% temporal selectivity)

Figure 5.10.: TEQ example (L = 10)

5.4. TAPEQ Results

Here, we evaluate the average TAPEQ processing time for two algorithms: modified Pre-

fixSpan (the baseline algorithm described in 4.4.1) and the proposed algorithm (Section

4.4.2).

For this evaluation, we generated 100 random queries as follows: 1) for u and v, we ran-

domly drew from the 100 most frequent road segments; 2) for I, we used I = [tmin, tmax],

as in the SPQ experiments, and 3) for ξ, we evaluated ξ ∈ {1, 2, 5, 10}. The modified

PrefixSpan (MPS) algorithm has an additional parameter, θ, that restricts the length of

the extracted paths to θ · duv, where duv is the shortest-path distance between u and v.

We evaluated values for θ, namely θ ∈ {1.5, 2.0, 3.0}, and refer to algorithms as modified-

PrefixSpan(1.5), modified-PrefixSpan(2.0), and modified-PrefixSpan(3.0), respectively. For

the proposed algorithm, we used the modified version, enhanced with the hash values,

for evaluation (see Section 4.4.2).

Figure 5.11 shows a comparison of the TAPEQ processing times for each dataset. The

proposed method is 100–1000 times faster than the competing methods. Similar to

the SPQ case, this improvement is due to the small number of B+-tree retrievals: the

59

5. Experiments

1 2 5 10
Minimum support: ξ

100

101

102

103

104

105

106

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s)

MPS (1.5)
MPS (2.0)

MPS (3.0)
Proposed

(a) Singapore

1 2 5 10
Minimum support: ξ

101

102

103

104

105

106

107

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s)

MPS (1.5)
MPS (2.0)

MPS (3.0)
Proposed

(b) Roma

5 10 20 50 100
Minimum support: ξ

100

101

102

103

104

105

106

107

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s)

MPS (1.5)
MPS (2.0)

MPS (3.0)
Proposed

(c) RGSx5

Figure 5.11.: TAPEQ processing time for various ξ with 25%-75% quantiles. MPS (θ) is
an abbreviation for Modified-PrefixSpan (θ).

2 5 10 25 50 100
Temporal selectivity (%)

10-1

100

101

102

103

104

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s)

MPS (2.0)
Proposed

(a) Singapore (ξ = 2)

2 5 10 25 50 100
Temporal selectivity (%)

10-1

100

101

102

103

104

105

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s)

MPS (2.0)
Proposed

(b) Roma (ξ = 2)

2 5 10 25 50 100
Temporal selectivity (%)

100

101

102

103

104

105

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s)

MPS (2.0)
Proposed

(c) RGSx5 (ξ = 10)

Figure 5.12.: TAPEQ processing time for various |I| (temporal selectivity 2% – 100%).
Error bars show 25%-75% quantiles.

proposed algorithm only requires two, while the modified-PrefixSpan(θ) requires many

more B+-tree retrievals.

Figure 5.12 shows the TAPEQ processing time for various temporal selectivity (2% –

100%). Again, the proposed method is faster than modified-PrefixSpan(2.0). We observe

that the difference between the proposed method and the modified-PrefixSpan(2.0) gets

smaller for lower temporal selectivity. This is because, for low temporal selectivity, the

condition
∣∣T|P ∣∣ < ξ in Algorithm 9 (modified-PrefixSpan) prunes the search branches in

early stage and this reduces the number of RangeQuery calls.

Figure 5.13 shows how the TAPEQ processing time increased with the shortest-path

distance duv between the origin u and destination v. Each data point corresponds to

one query. The processing times of both methods increased as the distance duv became

longer, because there tend to be more paths between u and v if they are distant. However,

the proposed method demonstrated even greater improvement for more distant duv.

For example, when duv was 1000 meters, the proposed method was 1000 times faster.

Figure 5.14 illustrates the scalability of TAPEQ, again showing that our method gave

better results than the competitors for every data size.

Figure 5.15 shows an example TAPEQ result, obtained with ξ = 3 for the Singapore

60

5.5. Index Size and Index Construction Time

102 103

Distance between u and v (meter): duv

101

102

103

104

105

106

107

Pr
oc

es
si

ng
 ti

m
e

(m
s)

0. 0035× d 2. 75

2. 34× d 0. 72

Modified-PrefixSpan (2.0)
Proposed

Figure 5.13.: Effect of duv (Roma,
ξ = 2, temporal selec-
tivity 100%)

x1 x2 x3 x4 x5
Data size

10-1

100

101

102

103

104

105

M
ed

ia
n

of
 P

ro
ce

ss
in

g
Ti

m
es

 (m
s)

Modified-PrefixSpan (2.0)
Proposed

Figure 5.14.: Scalability (RGSxN,
ξ = 50, temporal
selectivity 100%)

Figure 5.15.: TAPEQ example

dataset. This shows that there were three frequent routes (A, B, and C) between the

origin and the destination, with frequencies NA = 4, NB = 29, and NC = 3. We can

therefore guess that route B was the standard route and that the others were detour.

If we instead use ξ = 1 for this u-v pair, many noisy routes are found, indicating

that appropriate ξ values need to be chosen to obtain suitable route recommendations.

However, because the appropriateness depends on the application scenario, we will not

discuss this issue further here.

5.5. Index Size and Index Construction Time

As we have repeatedly emphasized, SNT-index consists of B+-trees stored on disk, while

the spatial FM-index is held in memory. The disk storage 4 and memory storage require-

4The disk storage measurement includes not only the table size but also the B+-tree index size. The
table and index sizes are calculated using PostgreSQL built-in functions, pg relation size and
pg indexes size. Therefore, the size includes all meta data and system columns.

61

5. Experiments

ments for each dataset are shown in Table 5.3. This shows that the memory (FM-index)

required by an SNT-index is not very large, about 4% of the amount stored on disk.

The memory footprint of our FM-index implementation is about |T | log2 σ bits in total.

Therefore, we need log2 σ ' 16 bits (2 bytes) per symbol for all datasets. Note that

the memory usage shown here is for an uncompressed FM-index; to reduce the memory

footprint, we could also have compressed the FM-index using the techniques described

in Part III. Table 5.3 also shows the NETTRA index size (for both the original data

structure and the TB-tree version). The disk storage for NETTRA+TB-tree is larger

because the pointers introduced by TB-tree increase the size of the B+-tree index. The

memory required by NETTRA represents the size of the Hub-labeling index, which is

required by the Optimal-join algorithm to avoid dynamic programming for the shortest

path computation. Note that this size depends only on the road network. Finally, the

disk space required for the SNT-index is slightly larger than that for original NETTRA,

due to the additional isa column.5

The ICT column in Table 5.3 shows the time needed to construct the spatial FM-

index. (Note that no ICT values are given for the other methods, because these do not

use an FM-index.) This shows that the FM-index construction time is relatively short,

even for the largest RGSx5 dataset, because we can calculate the BWT in O(|T |) using

linear-time sorting [43]. This is typically much shorter than the time needed for B+-

tree construction on disks: B+-tree construction took more than 1 hour for the RGSx5

dataset, for both the SNT-index and NETTRA. Hence, FM-index construction is not a

bottleneck during the index construction phase.

Table 5.3.: Index size and index construction time (ICT)

Dataset Method Disk (GB) Memory (GB) ICT (sec)

Singapore SNT-index 5.96 0.209 113
NETTRA (original) 5.18 0.023 —
NETTRA (+TB-tree) 8.00 0.023 —

Roma SNT-index 0.73 0.033 14
NETTRA (original) 0.63 0.038 —
NETTRA (+TB-tree) 0.98 0.038 —

RGSx5 SNT-index 30.4 1.066 580
NETTRA (original) 26.4 0.023 —
NETTRA (+TB-tree) 40.8 0.023 —

5In our implementation, we retained the hash column in the SNT-indexbecause it is useful for TAPEQs.
Without this column, the disk space required by the SNT-indexand the original NETTRA would have
been the same.

62

5.6. Effect of Buffer Caches

5.6. Effect of Buffer Caches

In the previous experiments, we used 3GB buffer caches for PostgreSQL. In addition,

the SNT-indexuses an in-memory FM-index. As we have shown in Table 5.3, the memory

footprint of the FM-index was about 1 GB for the largest RGSx5 dataset. One might

wonder whether the comparative methods become more efficient if more cache buffers

are used, which can reduce the I/O cost.

In this section, we consider three configurations that have different buffer cache sizes

(3 GB, 6 GB, and 9 GB) and investigate how the efficiency of each method scales.

Generally, the buffer cache effect depends on the access pattern. In this experiment,

we consider randomly generated queries (SPQs, TEQs, and TAPEQs) as in the previous

experiments. Figures 5.16, 5.17, and 5.18 show the results for SPQs, TEQs, and TAPEQs,

respectively. Here, the processing times are normalized by the corresponding 3 GB buffer

cache case. These results indicates that the buffer cache size does not have significant

impact on the processing time, which would imply that 3 GB buffer caches are sufficient.

Exceptionally, for RGSx5 dataset, the results for TEQs and TAPEQs (100% temporal

selectivity) show that larger buffer cache size can reduce the processing time by up to

40%. This would be because

• RGSx5 is the largest dataset (more than 25 GB disk storage), which is larger than

the buffer cache size, and

• TEQs and TAPEQs sequentially access the same posting-lists in one query execu-

tion, which can increases the cache hit ratio.

Although these results can change if we use different configurations (e.g., non-random

query pattern, and different cache algorithm), we would like to emphasize that the

following consequences do not change.

• The SNT-index enables efficient processing (two orders of magnitude faster for some

cases) by adding in-memory data structure of moderate size, and

• this is more efficient than appending buffer caches of the same size.

5.7. Summary

In this section, we have evaluated the processing times for SPQs, TEQs, and TAPEQs.

The proposed algorithms showed overwhelmingly (10–1000 times) better performance

compared with baseline algorithms that did not use the spatial FM-index. The improve-

ments were all due to the reduction in the number of B+-tree accesses (RangeQuery).

63

5. Experiments

80%

90%

100%

110%

N
or

m
al

iz
ed

pr
oc

es
si

ng
 ti

m
e

Pr
op

os
ed

-S
PQ

Fu
ll-

jo
in

O
pt

im
al

-jo
in

D
H

as
h-

jo
in

Pr
op

os
ed

-S
PQ

Fu
ll-

jo
in

O
pt

im
al

-jo
in

D
H

as
h-

jo
in

Pr
op

os
ed

-S
PQ

Fu
ll-

jo
in

O
pt

im
al

-jo
in

D
H

as
h-

jo
in

Singapore Roma RGSx5 3GB 6GB 9GB

80%

90%

100%

110%

N
or

m
al

iz
ed

pr
oc

es
si

ng
 ti

m
e

Pr
op

os
ed

-S
PQ

Fu
ll-

jo
in

D
H

as
h-

jo
in

O
pt

im
al

-jo
in

Pr
op

os
ed

-S
PQ

Fu
ll-

jo
in

D
H

as
h-

jo
in

O
pt

im
al

-jo
in

Pr
op

os
ed

-S
PQ

Fu
ll-

jo
in

D
H

as
h-

jo
in

O
pt

im
al

-jo
in

Singapore Roma RGSx5 3GB 6GB 9GB

Figure 5.16.: Effect of buffer caches for SPQs (top: 100% temporal selectivity, bottom:
10% temporal selectivity). The processing times are normalized by the
corresponding 3 GB case.

80%

90%

100%

110%

N
or

m
al

iz
ed

pr
oc

es
si

ng
 ti

m
e

M
od

ifi
ed

TB
-tr

ee

Pr
op

os
ed

-T
EQ

M
od

ifi
ed

TB
-tr

ee

Pr
op

os
ed

-T
EQ

M
od

ifi
ed

TB
-tr

ee

Pr
op

os
ed

-T
EQ

Singapore Roma RGSx5 3GB
6GB
9GB

80%

90%

100%

110%

N
or

m
al

iz
ed

pr
oc

es
si

ng
 ti

m
e

Pr
op

os
ed

-T
EQ

M
od

ifi
ed

TB
-tr

ee

Pr
op

os
ed

-T
EQ

M
od

ifi
ed

TB
-tr

ee

Pr
op

os
ed

-T
EQ

M
od

ifi
ed

TB
-tr

ee

Singapore Roma RGSx5 3GB
6GB
9GB

Figure 5.17.: Effect of buffer caches for TEQs (left: 100% temporal selectivity, right:
10% temporal selectivity). The processing times are normalized by the
corresponding 3 GB case.

60%
70%
80%
90%

100%
110%
120%

N
or

m
al

iz
ed

pr
oc

es
si

ng
 ti

m
e

Pr
op

os
ed

-
TA

PE
Q

M
PS

 (2
.0

)

Pr
op

os
ed

-
TA

PE
Q

M
PS

 (2
.0

)

Pr
op

os
ed

-
TA

PE
Q

M
PS

 (2
.0

)

Singapore Roma RGSx5 3GB
6GB
9GB

60%
70%
80%
90%

100%
110%
120%

N
or

m
al

iz
ed

pr
oc

es
si

ng
 ti

m
e

M
PS

 (2
.0

)

Pr
op

os
ed

-
TA

PE
Q

M
PS

 (2
.0

)

Pr
op

os
ed

-
TA

PE
Q

M
PS

 (2
.0

)

Pr
op

os
ed

-
TA

PE
Q

Singapore Roma RGSx5 3GB
6GB
9GB

Figure 5.18.: Effect of buffer caches for TAPEQs (left: 100% temporal selectivity, right:
10% temporal selectivity). The processing times are normalized by the
corresponding 3 GB case.

Moreover, the proposed algorithms showed better scalability. The index size evaluation

also showed that the memory required for the FM-index was relatively small (less than

3% of the amount stored on disk), which easily fitted into memory, even for the largest

dataset. These results demonstrate the practical advantages of the proposed method

compared with existing methods that do not use string algorithms.

5.8. Discussion

SNT-index and NETTRA In the previous section, we have compared SNT-index and

NETTRA (and its modified version). For TEQs and TAPEQs, the proposed SNT-

index was faster than the baseline algorithms. For SPQs, the Proposed-SPQ method

64

5.8. Discussion

was faster than the Full-join and Optimal-join methods and showed similar performance

to the DHash-join. In our experiment, we used network distance for the hash function.

In Krogh et al. [25], another hash function based on randomly chosen prime values was

also proposed (here, we call it log-prime-hash). Generally, this log-prime-hash makes the

Optimal-join slower, but the number of false positives in the DHash-join is significantly

reduced. Therefore, NETTRA with the log-prime-hash can be a good solution in some

applications. However, we cannot guarantee no false positive theoretically because the

number of routes between two locations is a combinatorial number that cannot be rep-

resented as a 64-bit hash integer. On the other hand, in return for the relatively larger

memory footprint, the SNT-index guarantees that there is no false positive. For auto-

motive development (Section 3.2.2), we cannot admit false positives because such false

positive data would behave as noisy training data that may lead to a bad recognition

model. In summary, the SNT-index and the NETTRA have several trade-offs among

processing speed, memory usage, supported queries, updating support, and guarantee

of no false positive. Users have to choose them based on their application requirements.

We consider that the memory usage is the main drawback of the proposed method. We

discuss how to mitigate this in detail at the end of this section.

Possible Alternative Data Structures and Queries Classical NCT-indexing methods,

like FNR-tree and MON-tree, manage temporal information as time intervals and use

R-tree to manage them. We could also adopt such a data structure to implement the

posting lists in SNT-index, instead of the forest of B+-trees used in our implementation.

We would like to emphasize that SNT-index provides a general concept how to utilize

suffix arrays for NCT-indexing, rather than a particular data structure. In addition, we

did not consider using a spatial index (2D R-tree) for the road network G = (V,E) in

this study for simplicity. For SNT-index, it would be straightforward to use such a 2D

R-tree to index the road network, and this would allow us to handle window queries

(finding moving objects within a given spatial rectangle during a time interval I) in

the same way as the classical NCT-indexing methods. Furthermore, to enhance the

window query performance, we can combine an advanced NCT-indexing method, such

as PARINET [48], instead of the simple posting lists used in the SNT-index. Specifically,

we can implement this idea by storing an ISA value to each records of PARINET. Note

that window queries on SNT-index with this 2D R-tree would show similar performance

compared to the corresponding classical methods, because the FM-index cannot be used

to process those queries.

Choice of FM-index The practical performance (i.e., size and search speed) of the

FM-index depends on the choice of wavelet tree. In this Part II, we did not need to

65

5. Experiments

compress the FM-index because the uncompressed FM-index we used was moderate in

size (approximately 1 GB, even for the largest RGSx5 dataset). If we had used larger

dataset, we may need compression techniques. In Part III, we propose a compression

method for FM-index storing a trajectory string.

66

6. Related Work

6.1. Trajectory Indexing

Many methods have been proposed for indexing spatial trajectories, and these can be

divided into two categories: indexing for non-constrained trajectories and indexing for

network-constrained trajectories (NCTs). A comprehensive list of these methods can be

found in [36, 42].

For non-constrained trajectories, there have been a large number of studies, including

TB-tree [47], which we treated in Section 4.3.1. Methods for non-constrained trajectories

are typically based on R-trees [17]. Since NCTs can also be regarded as non-constrained

trajectories, we can use those indexing methods to index NCTs as well, but the space

efficiency would be low because the geographic coordinates of NCTs tend to concentrate

around road segments. This is why dedicated indexing methods for NCTs have been

considered.

Several NCT indexing methods also have been studied. FNR-tree [12] is one of the

earliest, and consists of a 2D R-tree to index line segments and a forest of 1D R-trees for

each segment to index time intervals. MON-tree [9] improves on FNR-tree in terms of

data model. In the present thesis, we refer to these data structure as inverted-index-like

methods because the forest of R-trees for temporal information is similar to an inverted

index in document retrieval [34] (i.e., a path can be regarded as a document). Another

important NCT-indexing method is T-PARINET [51], which can also be regarded as an

inverted-index-like methods. This improves disk access locality by grouping neighboring

road segments via graph partitioning. This idea could also be applied to SNT-index,

although we have not implemented it explicitly in this thesis. An in-memory indexing

method called SPNET [26] also partitions road graphs based on spatial proximity to

enhance query processing, although it is not an inverted-index-like method. TRIFL [58]

proposed a cost model and a self-tuning algorithm when trajectories are stored in flash

storage. Although these methods handle NCTs, they mainly focus on range queries,

which find moving objects that intersect a given spatial region during a given time

interval. The most closely-related topic to SNT-index was studied in Krogh et al. [25],

which proposed the NETTRA indexing structure and SPQs. An advantage of NETTRA

over SNT-index is its support for real-time updating. The inability of SNT-index to

67

6. Related Work

handle real-time updates can be considered as the price of query processing efficiency.

The choice of indexing method therefore depends on the application scenario.

The hash-based method (Section 4.2.2) proposed in NETTRA can be regarded as a

special case of a rolling hash [23] in pattern matching. The suffix array [33] is also

one of the most important tools in pattern matching. These relationships imply that

string algorithms and NCT-indexing are strongly connected. We therefore expect that

NCT-indexing will be further improved by advanced string algorithms in the future.

An important aspect of trajectory indexing is trajectory preservation, which enables

accessing the data sequentially along a trajectory. This property was first considered in

TB-tree [47] for non-constrained trajectories. The FM-index and ISA fields employed in

SNT-index also provide sequential access to the next road segment, and can be regarded

as an in-memory emulation of TB-tree pointers. In this sense, SNT-index has the tra-

jectory preservation property while classical NCT-indexing methods, such as FNR-tree,

MON-tree, and NETTRA, do not.

As pointed out in Section 5.8, our proposed method is conceptually related to tra-

jectory data warehousing, which stores several aggregate measures of moving objects.

Orland et al. [44] discussed data warehousing for non-constrained trajectories and pro-

posed an efficient method for counting trajectories in a given spatial region during a

given time interval.

In spatio-temporal database research, there are a number of data structures that

support queries over past, present, and futures. For non-constrained trajectories, for

example, RUM-tree [53] provides an efficient indexing for current position of moving

objects, and TPR-tree/TPR*-tree [50, 57] index future positions of moving objects.

Our SNT-index is essentially for historical data and cannot deal with present and future

data. In the following, we discuss present data, and then discuss future data. In our

opinion, data structures for past and present data should be built separately, otherwise

we cannot support several path-based queries for huge past data efficiently. Based on

this idea, we decided to omit an ability for frequent updating but to obtain an ability to

process more complicated queries (SPQs, TEQs, and TAPEQs). For queries over future,

Jeung et al. [21] and Hendawi et al. [19] treated the predictive queries for NCTs. We

consider that the future position prediction has to be made based on large historical

data. SNT-index can be useful when constructing probabilistic prediction models in an

on-demand manner. It is an interesting future research question whether such various

predictive queries can be supported by extending the proposed SNT-index.

Recently, in-memory indexing methods for NCTs have been proposed. Brisaboa et al.

[4] proposed a data structure for counting queries, such as counting NCTs with origin u ∈
E and destination v ∈ E under a temporal constraint. Although the spatial component

is similar to our method, the temporal information is stored in an in-memory data

68

6.2. Related Queries

structure called wavelet matrix [7]. As shown in their experiment, lossless compression

of temporal information is difficult, that is, it consumes much more space than the

spatial information. This is one of the reasons why we have not employed an in-memory

data structure for temporal information. Some researchers have instead proposed lossy

compression for temporal information [26, 55]. To the best of our knowledge, however,

no lossless compression method exists that can achieve high compression ratio while still

supporting useful queries. In this thesis, we did not consider compressing the temporal

information because we assumed a sufficient amount of disk space. This is a reasonable

assumption because disk prices have been dropping in recent years.

6.2. Related Queries

Spatio-temporal range queries have been widely studied for trajectory retrieval in clas-

sical settings. Although this type of query is still one of the most important queries for

now, it is not adequate for the recent data-centric development in automotive technology

and systems mentioned in Section 3.2.2. In Part II, we have considered SPQs, TEQs,

and TAPEQs, which involve the spatial paths of the NCTs, but now we briefly describe

related queries and methods.

Vieira et al. [59] conducted important related research, which treats cell phone tra-

jectories, also regarded as symbolic trajectories, using an inverted-index-like structure.

They considered a type of query called a flexible pattern query (FPQ), which is concep-

tually an SPQ superset. Their FPQ algorithm involves multiple RangeQuery executions

and join operations, similar to Algorithm 7. SNT-index can also handle FPQs because

our proposed data structure is equivalent to Vieira’s structure, apart from the FM-index

and the ISA column in the postings-lists.

The concept of combined queries [47] has been proposed for non-constrained trajecto-

ries. This is a query of the following form: for all objects in the spatial range R during I,

extract their trajectories during hour after they left R. It can be answered by combining

a spatio-temporal range query with trajectory extraction (using TB-tree). This is sim-

ilar to a TEQ, with a spatial range query instead of an SPQ. Therefore, SNT-index can

process this combined query by replacing the SPQ in a TEQ with a spatio-temporal

range query.

Krumm [27] studied a driver turn prediction model based on a high-order Markov

chain. TEQ generalizes this concept, as pointed out in Section 3.2.3. Other related

probabilistic methods include, for example, Predestination [28], SubSyn [61], and PRO-

CAB [64]. By observing partial initial trajectories, these aim to predict their destinations

based on probabilistic models. TEQs would be useful as a preprocessing step for these

methods, because it can find the paths that follow a given initial trajectory.

69

6. Related Work

Time-period-based most-frequent path (TPMFP) [31] queries are conceptually similar

to TAPEQs. Although the detailed definition is different, the motivation is the same: find

routes between two locations based on frequencies during a given time interval. We can

say that TAPEQ includes TPMFP, because TAPEQ finds all routes, including the ones

with low frequency. Furthermore, we also note that our method is more versatile because

the proposed SNT-index can process not only TAPEQs but also other types of queries

(i.e., SPQs, TEQs, as well as spatio-temporal range queries mentioned in Section 5.8).

In contrast, TPMFP needs a specialized data structure.

In addition, probabilistic models for predicting driver’s routes between two locations

have been also studied [54, 64]. Like these methods, TAPEQ results can also be regarded

as probabilistic predictions (see Figure 5.15). TAPEQ prediction accuracy would be

improved by using such a probabilistic smoothing method for the retrieved routes.

70

7. Summary

In this Part II, we have proposed SNT-index, a novel indexing method for historical

trajectories on a road network (NCTs) that is able to processes path-based queries

efficiently. In Chapter 3, we discussed the fact that the existing NCT-indexing methods

need multiple joins to process path-based queries, which is inefficient when the related

paths are long. Then, we described the proposed method in Chapter 4. In Section 4.1,

we presented a novel indexing method based on two data structures, B+-trees and a

suffix array (FM-index), showing that these two structures can be connected with an

inverse suffix array. Using the proposed SNT-index, we have also proposed algorithms

for processing several types of path-based queries, including SPQs, TEQs, and TAPEQs

(Sections 4.2–4.4). We believe that these algorithms demonstrate a general strategy on

how to utilize FM-indexes and inverse suffix arrays for retrieval of NCTs, which could be

useful in designing algorithms for queries not treated here. Comprehensive experiments

have also been performed to evaluate the efficiency and effectiveness of the proposed

method (Chapter 5), showing great improvements in processing time by factors of a

hundred or more in some cases.

In this way, we have successfully introduced string indexing and algorithms (i.e., suffix

range and substring extraction queries) to NCT-indexing. Although stringology is an

important research field, based on well-established theory, it has not been studied in

the context of spatial databases. For trajectory processing, we have to take account

of not only spatial movement but also other attributes, such as temporal information,

which are not usually considered in string processing. There may even be other, still-

unknown connections between NCT-indexing and string algorithms that have not been

investigated here. It would be interesting to find such unknown links that can improve

the processing of practically-important spatio-temporal queries.

We have focused on efficient query processing for static data, rather than real-time

update. This is mainly because our target application is accessing historical data, which

is required in the development of automotive systems based on data-driven methodolo-

gies like machine learning. Nonetheless, for the case where index updates are required,

we have also proposed a semi-dynamic update scheme based on temporal partitioning

in Section 4.5. However, some applications may require more frequent updates, and

developing a suitable data structure based on string algorithms is an interesting future

71

7. Summary

research direction.

72

Part III.

Trajectory Compression

73

8. Research Issues and Preliminaries

In Part II (Chapters 3–7), we presented that the SNT-index can process several path-

based queries for trajectories in road networks. FM-index storing spatial paths, referred

to as trajectory string, is key to SNT-index. As FM-index is an in-memory index, it

would not fit in memory if we have a huge number of trajectories. In this Part III, we

study compression methods for spatial paths stored in FM-index.

8.1. Research Issue

Thus far, several compression methods for trajectories and those for strings have been

studied independently. We first review compression methods for spatial paths. Loss-

less compression methods based on shortest-path encoding have been studied in [18, 24],

and [26]. To compress spatial paths, these methods remove partial shortest paths in-

cluded within each spatial path because such shortest paths can be recovered from the

road network itself. However, this approach cannot be applied to FM-index straightfor-

wardly. Another drawback is that it cannot guarantee the information-theoretic upper

bound of the compressed data size. A recent lossless path compressor introduced in [18]

called minimum entropy labeling (MEL) guarantees a theoretic bound and also achieves

practically higher compressibility than the shortest-path encoding methods.

In stringology, many compression methods for strings have been studied, including

several variants of FM-index. In Part II, we employed a simple implementation of FM-

index; we stored the BWT Tbwt in a balanced-shaped wavelet tree with uncompressed

bit vectors. This version of FM-index is, however, not very efficient for NCTs due to the

following reason. As we described in Section 2.3.3 (and Figure 2.4), wavelet trees store

the bit representation of each symbol w ∈ Σ. Accordingly, if the alphabet size σ := |Σ|
is large, the resulting wavelet tree has many nodes and the tree becomes deep. This

makes the wavelet tree larger (and also makes the pattern matching query slower).

In general, alphabet size of trajectory strings is huge because the alphabet consists

of all edges in a certain city, which is potentially huge. Therefore, the FM-index for

trajectory strings is memory-intensive and suffers from slow query processing. Note

that genomic sequences, one of the most important and widely-used application fields of

FM-index, include only four characters (i.e., A, C, G, and T), and they are compactly

75

8. Research Issues and Preliminaries

stored and efficiently processed using the simple FM-index (i.e., space consumption is

only 2 bits/symbol).

Research Issue and Main Idea As mentioned above, we study a compression method

for trajectory strings. A noteworthy feature of our approach is that our method utilizes a

structure of road networks, while the most existing methods in stringology are designed

for general strings. Concretely, our main idea relies on the following fact:

• NCTs can only move along physically connected road segments.

This feature is quite different from general sequences, as illustrated in Figure 8.1. In

Figure 8.1(a), we show four example NCTs in a small network with six road segments

(A–F). The corresponding graph shown in Fig. 8.1(b) represents symbol transitions for

these four NCTs. Here, each vertex corresponds to a symbol (i.e., a road segment), and

directed edges exist between two vertices if the corresponding two symbols can appear

successively. For example, in Figure 8.1(b), vertex A is connected with vertexes B and

D because we can only move to road segment B or D from A. For NCTs, this empirical

transition graph (ET-graph) becomes a sparse graph, reflecting the physical topology of

road networks. This sparsity cannot be obtained for general sequences, which leads to

a denser ET-graph, as illustrated in Fig. 8.1(c).

A

B C

D

EF

A B C

D E

F

(a) Network-constrained

 trajectories (NCTs)

(b) ET-graph for

 NCTs

(c) ET-graph for

 general strings

Figure 8.1.: (a) Network-constrained trajectories (NCTs), and both (b) sparse and (c)
dense symbol transition graphs (ET-graphs).

Contribution Our proposed method, Compressed-index for NCTs (CiNCT), signifi-

cantly improves the compression and pattern matching operations when applied to se-

quences with a sparse ET-graph. To realize a high compression ratio with keeping its

ability of fast pattern matching, we propose a series of novel techniques. We summarize

our contributions as follows.

• We propose relative movement labeling (RML), which converts sequences on a

sparse graph to low-entropy sequences. We theoretically prove its optimality and

76

8.2. Preliminaries

show that RML provides a more compact representation of NCTs than that of the

MEL method [18].

• We incorporate RML into FM-index by introducing a new concept called Pseudo-

Rank, which leads to significant improvements in both size and query processing

speed (i.e., the speed of pattern matching and sub-path extraction) as compared

to existing FM-index variants. We also explain theoretically why this occurs.

• Using several real NCT datasets, we show that our method outperforms the state-

of-the-art methods in stringology that do not consider graph sparsity.

Outline of Part III The remainder of Part III is organized as follows. In the rest of

Chapter 8, we describe necessary concepts regarding compression, especially on Huffman-

shaped wavelet trees and compression boosting, as well as some concepts from informa-

tion theory. In Chapter 9, we describe our proposed method. Also, we provide informa-

tion theoretic analysis of the proposed method and reveal the reason that our proposed

FM-index is compact and fast. In Chapter 10, we demonstrate that our method outper-

forms existing methods using real datasets. In Chapter 11 and Chapter 12, we describe

the related work and summary of Part III, respectively.

8.2. Preliminaries

In this section, we introduce necessary concepts for compression in addition to those

introduced in Chapter 2. Specifically, in Section 8.2.1, we introduce Huffman-shaped

wavelet tree (HWT) and the related complexities. In Section 8.2.2, further compression

technique called compression boosting is introduced with the related compressed bit

vector called RRR. With the compression boosting, FM-index can be compressed to the

kth order empirical entropy (Eq. (8.4)). At the end of this section, we discuss the issues

of these techniques.

8.2.1. Huffman-shaped Wavelet Tree

As a running example, we consider the following trajectory string consisting of four

NCTs in Figure 8.1:

T = FEBA︸ ︷︷ ︸
T r
1

$CBA︸︷︷︸
T r
2

$ CB︸︷︷︸
T r
3

$ DA︸︷︷︸
T r
4

$#. (8.1)

77

8. Research Issues and Preliminaries

i Rotations j Sorted Rotations BWT
0 FEBACBACBDA# 0 #FEBACBACBDA $
1 EBACBACBDA#F 1 $#FEBA$CBACBDA A
2 BACBACBDA#FE 2 CBDA$#FEBA$CBA A
3 ACBACBDA#FEB 3 CBACBDA#FEBA A
4 CBACBDA#FEBA 4 DA#FEBACBACB B
5 CBACBDA$#FEBA$ 5 A$#FEBA$CBACBD D
6 BACBDA$#FEBA$C 6 ACBDA$#FEBA$CB B
7 ACBDA$#FEBA$CB 7 ACBACBDA#FEB B
8 CBDA$#FEBA$CBA 8 BDA#FEBACBAC C
9 CBDA#FEBACBA 9 BACBDA$#FEBA$C C
10 BDA#FEBACBAC 10 BACBACBDA#FE E
11 DA#FEBACBACB 11 CBDA#FEBACBA $
12 DA$#FEBA$CBACB 12 CBACBDA$#FEBA$ $
13 A$#FEBA$CBACBD 13 DA$#FEBA$CBACB $
14 $#FEBA$CBACBDA 14 EBACBACBDA#F F
15 #FEBACBACBDA 15 FEBACBACBDA# #

Sort
Last
Column

Figure 8.2.: The BWT of T is defined to be the last column of the sorted rotations of
T . This example is based on the trajectory string T in Eq. (8.1).

For convenience, we illustrates the corresponding BWT in Figure 8.2, which is obtained

as follows.

Tbwt = $AAABDBBCCE$$$F#. (8.2)

For each symbol w ∈ Σ, we can assume several coding schemes. The Huffman coding

assigns a shorter code to a more frequent symbol, while the standard coding assigns

equi-length codes. For the example string T , the codes are assigned as follows.

w Frequency Huffman Standard

1 0110 000

$ 4 10 001

A 3 111 010

B 3 00 011

C 2 110 100

D 1 0111 101

E 1 0100 110

F 1 0101 111

Avg. Code Len. — 2.8125 3.0

With the Huffman coding, we obtain a wavelet tree storing T as illustrated in Fig-

ure 8.2. As we see in the table above, the average code length of the Huffman coding

(2.8125) is shorter than that of the standard coding (3.0). It is known that the average

code length of the Huffman coding for a string S is at most (1+H0(S)) bits; here, H0(S)

78

8.2. Preliminaries

is the 0th order empirical entropy [35]:

H0(S) =
∑
w∈Σ

nw
n

lg
n

nw
, (8.3)

where nw is the number of occurrences of w in S.

Wavelet trees with Hufman coding is referred to as Huffman-shaped wavelet trees

(HWTs; Figure 8.3). If we use the standard coding, we obtain the balanced-shaped

wavelet trees, which has been employed throughout Part II.

{#,B,D,E,F}

B

E F D#

$

C A

Bit Repr.

#: 0110

$: 10

A: 111

B: 00

C: 110

D: 0111

E: 0100

F: 0101

$AAABDBBCCE$$$F#

1111000011011100

BDBBEF#

0100111

$AAACC$$$

011111000

{$,A,C}

DEF#

1001

{B} {#,D,E,F} {$} {A,C}

AAACC

11100

{A}{C}

EF

01

D#

10

{E,F} {#,D}

{E} {F} {#} {D}

MSBs

Level 1

Level 2

Level 3

Level 4

Figure 8.3.: Wavelet tree for the string S = $AAABDBBCCE$$$F#.

As described in Section 2.3, each node v in a wavelet tree stores a bit vector Bv.

The total length of bit vectors Bv over nodes in a wavelet tree can be represented as∑
v |Bv|. For HWTs, the total length is |S|(1 +H0(S)), which implies the total number

of bits stored in HWT becomes small if S becomes a string with small H0(S). As will be

described, our method uses this fact by converting Tbwt to a string with smaller entropy.

To calculate rankw(S, j), the wavelet tree calculates the bit-wise rank value at each

node v0, v1, · · · , vk between the root and the leaf corresponding to the bit representation

w = b0b1 · · · bk (see Section 2.3). This indicates that bit-wise rank operations required

to obtain rankw(S, j) is equal to k (i.e., the length of the bit representation of w). This

fact leads to the following result [38].

Theorem 8.1 (Rank on HWT) If rankw(S, j) is executed on uniformly random w

over S[0, n), it runs in O(1 +H0(S)) time on average.

This implies that a string with small entropy H0(S) achieves not only a small size but

also a fast rank computation, which plays an important role in our theoretical analysis.

79

8. Research Issues and Preliminaries

F # CC D $$$ $ AA BB A B E

$ $$ $ AAA B BB CC D E F

$ A AA B DBB C CE $$ $ F #

1st column

2nd column

last column ()

Contexts

(length 2)

Figure 8.4.: Compression boosting of FM-index: Tbwt is divided into contexts and each
partition is compressed separately.

8.2.2. Compressed Variants of FM-index

We consider further compression of FM-index. Let us imagine a sub-path of length 3 in a

real NCT dataset: et−2 et−1 et. It is unlikely that two right turns occur in a row because

most vehicles go toward their destinations. Considering such high-order correlations

among symbols, we can boost the compression. Let us go back to Figure 8.2. A substring

W =“BA” appears as prefix in the range R(BA) = [9, 11). The other prefixes W ∈ Σ2

have their corresponding ranges.

Let us divide Tbwt based on such prefixes W (called contexts of length two) as in

Figure 8.4. These context blocks represent the next segment et given the context W =

et−1 et−2. We have a chance of compression because the frequency of symbols in each

context is biased as discussed above.

Compression Boosting (CB) The above idea can be generalized to any length of

context. Let us divide Tbwt into l blocks of contextW ∈ Σk of length k: Tbwt = L1L2 · · ·Ll
(l ≤ σk). Storing each Lj in a 0-th order entropy compressor (i.e., in |Lj|H0(Lj) bits;

this is approximately achieved by HWTs), we can compress Tbwt in nHk(T) bits. Here,

Hk is k-th order empirical entropy [35]:

Hk(T) :=
∑
W∈Σk

nW
n
H0(TW), (8.4)

where TW is the concatenation of all symbols in T that precede the occurrences of

the context W . To support a fast rank operation on those divided blocks, we need to

precompute and store the rank results at each location of l blocks for all w ∈ Σ.

Taking larger k seems to be desirable because we have Hk(T) ≥ Hk+1(T) for all k ≥ 0

[35]. However, partitioning into many blocks leads to the following problems in practice:

P1) Blocks of variable length lead to inefficient random access to Tbwt.

P2) Index size increases because of the overhead of block-wise storage (e.g., pointers

in Huffman trees or overhead spaces due to bit vectors).

P3) We have to save lσ integers for the rank results. This is unrealistic for huge σ even

80

8.2. Preliminaries

if k = 1 (l = σ).

Practical Implementation of Compression Boosting There are some CB variants

that avoid the above problems. Fixed-block boosting [22] adopts blocks of a fixed size.

Although this solves P1 (and P2 partially), problem P3 remains for huge σ. Implicit

compression boosting (ICB) [32] avoids such explicit block partitioning by using com-

pressed bit vectors called RRR [49] in the wavelet tree of Tbwt. This solves P1 and

P3. In the following, we consider two types of implicit compression boosters, namely

ICB-Huff and ICB-WM. The former is ICB with an HWT, while the latter is ICB with

a wavelet matrix [7], which is an efficient alternative to a wavelet tree. As discussed in

our theoretical analysis, ICBs still suffer from large overheads when applied to a string

with large alphabet, such as a trajectory string.

81

9. Compressing FM-index for

Trajectories

For NCTs, the alphabet size σ can be millions because it is the number of road segments

in a road network. As discussed in the previous chapter, this makes the compression

of trajectory strings inefficient, because the redundant bits in wavelet trees increase as

σ increases. To avoid this, we propose to convert trajectory strings into strings on a

small alphabet via relative movement labeling (RML), which relies on the sparsity of

road networks. We give an overview of how to construct the proposed data structure

(CiNCT) in the following.

1. Convert a set of NCTs into a trajectory string T .

2. Calculate the BWT of T and obtain Tbwt.

3. Construct an ET-graph GT and a relative movement labeling (RML) function φ

based on T (Section 9.1)

4. Label Tbwt based on the RML function φ and obtain the labeled BWT φ(Tbwt)

(Section 9.2).

5. Store φ(Tbwt) in an HWT with RRR and obtain the proposed index structure

(Section 9.2).

As steps 1 and 2 are straightforward, we describe the details of steps 3–5 in the sub-

sequent sections. We emphasize that the NCTs are labeled after the BWT construction

(step 4), otherwise we would be unable to implement the pattern matching query. Due

to this labeling step, we need to develop an algorithm that differs from Algorithm 1.

Such an algorithm is described in Section 9.3. The theoretical consequences of CiNCT

are described in Section 9.4.

9.1. Relative Movement Labeling

The RML converts trajectory strings into strings with small alphabet based on the

following fact: NCTs can only move between physically connected road segments. First,

83

9. Compressing FM-index for Trajectories

A

B C

D

EF#

$

1

2

1

2

1 1

11

1

1

2

(a) ET-graph and RML

$$$$ AAA BBB CC D E F

$ AAAB DBB CCE $$ $ F #

1 1112 211 112 11 1 1 1

Context

(k=1)

(b) Labeling Tbwt with RML

Figure 9.1.: (a) ET-graph of the example trajectory string T = FEBACBACBDA#:
each node represents a road segment, and an edge exists if the corresponding
transition occurs in T . The integer on each edge is the corresponding label.
(b) Relative movement labeling: φ(Tbwt) produces a string with a lower
entropy than that of Tbwt.

we describe its idea based on the example in Figure 8.1 (a). If a vehicle is traveling along

a road segment w′ = A, the next segment w has to be B or D. Hence, we label them

1 and 2, respectively. Generally, if there are k connected road segments from a certain

segment, we can label them with 1, · · · , k. The sequences converted with this relative

movement labeling (RML) are expected to have small alphabet because k is smaller than

the maximum out-degree of the road network. To define RML formally, let us define an

empirical transition graph (ET-graph).

Definition 9.1 (ET-graph) Let T be a string defined on an alphabet Σ. An ET-graph

GT of T is a directed graph defined as follows: 1) the vertex set is Σ; 2) a directed edge

(w′, w) ∈ Σ × Σ exists iff T contains a substring ww′ at least once. The edge set is

denoted by ET . In the following, we call a substring of length two a bigram.

In other words, an edge exists if and only if a direct transition between w′ and w exists

in T . An ET-graph constructed from a trajectory string of real data is expected to be

a sparse graph because it has a similar topology to the original road network.

Remark 7 (Sparse Graph) Out-degree of a vertex v of a directed graph is the number

of edges e ∈ E that have v as their tail node, i.e., tail(e) = v. The average out-degree

is an average over all vertices. In general, the maximum out-degree of a vertex can be

|V | − 1. We use the term ‘sparse graph’ as a graph whose average out-degree is much

smaller than |V |− 1. Similarly, the term ‘maximum out-degree’ is used as the maximum

value of out-degrees over all vertices.

84

9.1. Relative Movement Labeling

Example 9.1 Figure 9.1 (a) illustrates the ET-graph of the trajectory string

T = FEBACBACBDA#.

As a bigram ww′ = BA appears in T , we have an edge from w′ = A to w = B. Another

bigram ww′ = BD never appears in T ; hence there is no edge from w′ = D to w = B.

For convenience, we add an edge from the first symbol w′ = F to the last symbol w = #.

Note that ET-graphs include the special symbols $ and #.

Remark 8 Rigorously, the ET-graph of a trajectory string would have a large out-

degree at the vertex corresponding to the special symbol ‘$’, because any symbol w ∈ E
is possible before ‘$’; in other words, trajectory can start from any road segments. As

we see later, this is usually not a problem because the ratio of ‘$’ in T is relatively low.

Definition of RML RML is defined as an integer assigned on each edge of the ET-graph

(see Figure 9.1 (a)). For example, the transition A → B is labeled 1. We denote such

labeling as φ(B|A) = 1. The transition A→ D must have a different label, otherwise we

cannot distinguish them.

In general, for transition w′ → w, we denote such a labeling function by φ(w|w′).
To make the labeling distinct given the previous symbol w′, the RML function φ must

satisfy the following requirement:

• Given a symbol w′ ∈ Σ, the RML function φ(·|w′) must be a one-to-one map.

Now, we discuss how to construct the RML function φ that satisfies the requirement

above. Let us consider the out-vertex set of w′, defined as Nout(w
′) = {w|(w′, w) ∈ ET},

that determines the set of vertices directly accessible from w′. Based on the ET-graph

and out-vertex set, we define φ(·|w′) as follows. Given w′, assign a different small integer

cww′ to each w ∈ Nout(w
′) and define φ(w|w′) := cww′ , where cww′ is an integer between

1 and k = |Nout(w
′)|. It is clear that φ(·|w′) is a one-to-one map. If w /∈ Nout(w

′), we

cannot define φ(w|w′); however, this is not a problem because w /∈ Nout(w
′) indicates

that the string ww′ is not found in T , which tells us the result of pattern matching is

null. This point is important for our search algorithm.

Finding Optimal RML (Step 3) The RML function φ described above does not define

a unique labeling function because we have not yet specified a concrete way to assign the

small integer cww′ (i.e., there are degrees of freedom for permutation). Here, we propose

a strategy based on a bigram count nww′ (i.e., the frequency of the bigram ww′ in T).

The elements in Nout(w
′) are sorted in descending order of bigrams nww′ . The vertex w

85

9. Compressing FM-index for Trajectories

with the largest bigram count is given the smallest label, 1. The second-most frequent

vertex is labeled 2, the third-most frequent vertex is labeled 3, and so on.

Example 9.2 The labels in Figure 9.1 (a) are actually determined in this way. Consider

the same trajectory string T = FEBACBACBDA#. Bigrams BA and DA appear twice

and once, respectively; hence we have nBA>nDA. Therefore, the edge from A to B has

the smallest label 1 (i.e., φ(B|A) = 1); the edge from A to D has the second smallest label,

2 (i.e., φ(D|A) = 2).

In the next section, we show how to convert Tbwt using this bigram-based RML function

φ. One might wonder whether there exists a better labeling strategy; however, we prove

the optimality of the labeling that leads to strong conclusions in Section 9.4.1: our RML

achieves the smallest size and the fastest search among all possible (and valid) labeling

functions.

9.2. Data Structure

In this section, we describe how to convert the plain BWT Tbwt into the labeled BWT

φ(Tbwt); then, we explain the concrete data structure. These respectively correspond to

the steps 4 and 5 mentioned at the beginning of this chapter.

Labeling BWT (Step 4) Based on the RML function φ obtained in the previous

section, the BWT Tbwt is converted to φ(Tbwt) as follows. For each w′ ∈ Σ, we consider

the suffix range of w′, i.e., [C[w′], C[w′ + 1]), where C is the C-array of T . Then, each

symbol w = T [i] in this range (i.e., ∀w ∈ T [C[w′], C[w′ + 1])) is converted into φ(w|w′).
Note that φ(w|w′) is guaranteed to be defined for this pair (w,w′) because this ww′ is a

bigram that appears in T by definition of BWT.

Applying the conversion above for each suffix range of w′ ∈ Σ, we obtain the labeled

BWT φ(Tbwt). This labeled BWT is expected to be a low entropy string because each

symbol T [i] is converted to a small integer. As noted in Remark 8, symbols within

[C[$], C[$ + 1)) would not be small integers; however, the impact of these symbols on

the entropy is expected to be small because the ratio of such symbols in Tbwt is low.

Example 9.3 Let us focus on the third block of Tbwt, DBB, in Figure 9.1 (b). This block

corresponds to the context of A, which indicates that the previous symbol of these DBB is

A. Hence, DBB is labeled as 211 because φ(B|A) = 1 and φ(D|A) = 2 in Figure 9.1 (a).

All the other blocks also can be labeled in the same manner. This labeling strategy gener-

ates a low-entropy sequence φ(Tbwt) as shown in Figure 9.1 (b), because the distribution

of the resulting symbols is biased toward smaller integers (i.e., 1 is the largest fraction).

For this example, we have H0(Tbwt) ' 2.8 and H0(φ(Tbwt)) ' 0.7 (unit: bits/symbol).

86

9.3. Query Processing

C A

0

0

0

0 0

0

0

1

1

1

1

1

11

B

E F D#

$

Bit Repr.

#: 0110

$: 10

A: 111

B: 00

C: 110

D: 0111

E: 0100

F: 0101

(a) Tbwt

0 1

1 2

Bit Repr.

1: 0

2: 1

(b) φ(Tbwt): CiNCT

Figure 9.2.: Comparison of the Huffman trees of Tbwt and φ(Tbwt): each leaf corresponds
to a symbol. The tree generated by CiNCT (b) is much simpler than that
from the standard Huffman tree (a).

Storing to a Compressed Wavelet Tree (Step 5) Finally, we store the labeled BWT

φ(Tbwt) to an HWT. For bit vectors in an HWT, we adopt a practical version of the

compressed bit vector called RRR [39]. Figure 9.2 depicts the comparison of Huffman

trees of Tbwt and φ(Tbwt) for the example in Figure9.1 (b). The Huffman tree of φ(Tbwt)

is obviously simpler than that of Tbwt. Because these tree shapes are the same as those of

HWTs, this simplification explains intuitively why CiNCT is small and fast. We provide

detailed theoretical analysis in Section 9.4.

An RRR bit vector has one parameter b, that controls the size of the internal blocks.

For larger b, we obtain better compression but slower search (rank calculation) in gen-

eral, and vice versa. This b is the only parameter in CiNCT. However, in Chapter 10,

we show that this parameter has only a small influence on the index size and the search

time; we also show that our method consistently better than baseline methods whatever

parameter values for b are chosen.

Storing ET-graph We use an adjacency list to represent the ET-graph GT . The value

φ(w|w′) is assigned to the edge (w′, w) ∈ ET . Thus φ(w|w′) is obtained in O(δ) time by

a linear search over Nout(w
′). We also assign C[w] to each vertex w in GT . Correction

terms Zw′w, introduced in Section 9.3.1, are also attached to each edge. Since GT is

sparse, the space needed to store GT is negligible when |T | gets large. Note that ET-

graphs can be implemented using succinct graphs (e.g., [40]); however, we do not use

them because their impact on the data size was small in our preliminary experiments.

9.3. Query Processing

In the previous section, we introduced the labeled BWT, which is a string by converting

the original BWT string. This requires us to develop a new algorithm for the pattern

matching and substring extraction queries. In the following, we describe another key

87

9. Compressing FM-index for Trajectories

concept of our method, PseudoRank, then show algorithms for the pattern matching and

substring extraction queries.

9.3.1. PseudoRank

Fast computation of rankw(Tbwt, j) is needed for the pattern matching and substring

extraction queries (Algorithm 1 and Algorithm 2 in Section 2.3). The original FM-index

stores Tbwt in a wavelet tree to calculate ranks quickly. In our case, however, we do not

have the original Tbwt but only have the labeled φ(Tbwt). Can we obtain the rank values

for the original BWT by using only the labeled BWT? Seemingly, this is difficult because

different symbols are mapped to the same label (e.g., both A and C are converted to 1

as illustrated in Figure 9.1 (b)).

The key idea is to simulate the rank operation over Tbwt. To begin with, we explain

the idea with Figure 9.3 and the following example.

Example 9.4 Let us consider the suffix range of A, i.e., R(A) = [C[A], C[B]), and

j ∈ R(A). Remembering the substring Tbwt[C[A], C[B]) = DBB is labeled as 211 by using

the one-to-one map φ(·|A) as described in Figure 9.1 (b), the following two counts are

equivalent for ∀j ∈ R(A):

• the number of occurrences of D within the range R′ := [C[A], j) in Tbwt (the shaded

region in Figure 9.3), and

• the number of occurrences of 2 within R′ in φ(Tbwt).

This equivalence holds in general. Let us consider a context w′. For all j such that

C[w′] ≤ j ≤ C[w′+ 1], let us consider a range R′ := [C[w′], j) (the shaded region in

Figure 9.3). For a symbol w ∈ Nout(w
′), the number of occurrences w within R′ in Tbwt

and that of the label η := φ(w|w′) within R′ in φ(Tbwt) are the same because of the

one-to-one requirement for φ(·|w′). This leads to the following balancing equation:

rankw(Tbwt, j)− rankw(Tbwt, C[w′]) = rankη(φ(Tbwt), j)− rankη(φ(Tbwt), C[w′]). (9.1)

(The LHS is the number of occurrences of w in R′ and the RHS is that of the label η of

w in R′.) Rearranging this equation, we have the following theorem, which allows us to

simulate the rank operation.

Theorem 9.1 (Pseudo-rank) Suppose w ∈ Nout(w
′) and C[w′] ≤ j ≤ C[w′+ 1]. Let

η := φ(w|w′), then we have

rankw(Tbwt, j) = rankη(φ(Tbwt), j)− Zw′w, (9.2)

where Zw′w := rankη(φ(Tbwt), C[w′])− rankw(Tbwt, C[w′]). (9.3)

88

9.3. Query Processing

$ AAAB DBB CCE $$ $ F #

1 1112 211 112 11 1 1 1

One to one correspondence

in (shaded area)

Figure 9.3.: Basis of the balancing equation (Eq. (9.1)) for PseudoRank

We emphasize that the correction term Zw′w does not depend on j, implying that the

number of correction terms needed is equal to |ET |. Importantly, this property allows us

to precompute and store the correction terms (as noted in Section 9.2, they are attached

to each edge (w′, w) ∈ ET).

Theorem 9.1 provides Algorithm 13, which computes the rank values using only

φ(Tbwt). We also emphasize that PseudoRank does not allow us to compute rank values

for all pairs of (w, j). However, this limitation is not a problem for our search algorithm,

as shown in the next subsection.

Algorithm 13: Emulating rankw(Tbwt, j) by using only φ(Tbwt) (Pseudo-
Rank(φ(Tbwt), j, w, w

′, Zw′w))

Input: Labeled BWT string φ(Tbwt),
Location of rank j,
Correction term Zw′w,
Target symbol w,
Previous symbol w′

Output: The value of rankw(Tbwt, j)
1 if w ∈ Nout(w

′) and C[w′] ≤ j ≤ C[w′+ 1] then
2 η ← φ(w|w′) // RML

3 return rankη(φ(Tbwt), j)− Zw′w
4 return NotFound

9.3.2. Suffix Range Query with CiNCT

With the PseudoRank, we can simulate rankw(Tbwt, j) using only the wavelet tree of

φ(Tbwt) and the correction term Zw′w (Eq. (9.3)). Replacing the rank operations in

Algorithm 1 with PseudoRank, we obtain our search algorithm (Algorithm 14), whose

correctness is shown below.

89

9. Compressing FM-index for Trajectories

Algorithm 14: Finding the suffix range [sp, ep) for a given query P of length m based

on φ(Tbwt) (LabeledSearchFM)

Input: Labeled BWT string of length n: φ(Tbwt),
Query of length m: P [0,m),
Correction terms: {Zw′w}

Output: Range of Tbwt that matches to P
1 w ← P [m− 1]; sp← C[w]; ep← C[w + 1]
2 for i← 2 to m do
3 w′ ← w // Save the previous symbol

4 w ← P [m− i]
5 if w /∈ Nout(w

′) then
6 return NotFound

7 sp←C[w]+PseudoRank(φ(Tbwt), sp, w, w
′, Zw′w)

8 ep←C[w]+PseudoRank(φ(Tbwt), ep, w, w
′, Zw′w)

9 if sp ≥ ep then
10 return NotFound

11 return [sp, ep)

Correctness of the Algorithm To guarantee that Algorithm 14 is equivalent to Algo-

rithm 1, we have to check the following two conditions on PseudoRank (Theorem 9.1)

are satisfied immediately before Line 7: (c1) w ∈ Nout(w
′); (c2) C[w′] ≤ sp ≤ C[w′+ 1]

and C[w′] ≤ ep ≤ C[w′+ 1].

As noted previously, no substring ww′ appears in T if w /∈ Nout(w
′); hence, NotFound

is returned if w /∈ Nout(w
′) at Line 6. Therefore, (c1) w ∈ Nout(w

′) holds immediately

before Line 7. For (c2), before Line 7, sp satisfies

sp = C[w′] + rankw′(Tbwt, sp
′), (9.4)

where sp′ is the previous value. By the rank definition, 0 ≤ rankw′(Tbwt, j) ≤ C[w′+ 1]−
C[w′](0 ≤ ∀j < |T |) holds, where C[w′+ 1]−C[w′] means the number of occurrences of

w′ in T . Combining this inequality with Eq. (9.4), we obtain C[w′] ≤ sp ≤ C[w′+ 1].

We can prove the condition for ep in a similar manner.

9.3.3. Extracting a Substring with CiNCT

By replacing the rank computation in the substring extraction queries (Algorithm 2 with

PseudoRank, we obtain Algorithm 15. Line 1 performs a binary search to find the last

character T [i] = w′ such that C[w′] ≤ j < C[w′+1]. At Lines 4–6, we first access the j-th

character of φ(Tbwt) (i.e., the labeled Tbwt[j]), then decodes the Tbwt[j] = T [i−k−1] = w

using the ET-graph. At Line 7, we move to the next position using PseudoRank version

90

9.4. Theoretical Analysis

Algorithm 15: Extracting a sub-path T [i− l, i) for given j = ISA[i] and l > 0

Input: Labeled BWT: φ(Tbwt), Position on Tbwt: j,
Extraction length: l, Correction terms: {Zw′w}
Output: A substring S := T [i− l, i)

1 w′ ← BinarySearch(j, {C[w′]})
2 S ← empty string
3 for k ← 1 to l do
4 η ← access(φ(Tbwt), j) // φ(Tbwt)[j]
5 w ← decode(η|w′)
6 S ← wS
7 j ← C[w] + PseudoRank(φ(Tbwt), j, w, w

′, Zw′w)
8 w′ ← w // Save previous symbol

9 return S

of LF-mapping.

9.4. Theoretical Analysis

Here, we explain theoretically why CiNCT is compact and fast. We first show the

optimality of RML, that is, the labeled BWT φ(Tbwt) achieves the smallest entropy.

Then, we explain that such a small entropy contributes high compressibility and fast

query processing. We also show that RML is better than other labeling method called

MEL, recently proposed in [18].

9.4.1. Optimality of RML

The 0th order entropy H0 given in Eq. (8.3) plays important roles in our analysis. First,

we show the labeling strategy based on bigram counts nww′ proposed in Section 9.1

achieves the minimum value of H0 among all possible labelings (we provide the proof at

the end of this section).

Theorem 9.2 (Optimality) Let φ∗ be the RML based on the bigram ordering strat-

egy and φ be any possible RML that satisfies the one-to-one mapping requirement in

Section 9.1. Then, we have

H0(φ∗(Tbwt)) ≤ H0(φ(Tbwt)). (9.5)

As a special case of this theorem, we obtain an unlabeled case result, i.e., H0(φ∗(Tbwt)) ≤
H0(Tbwt), by putting as φ = id (identity labeling). Importantly, we see that the entropy

91

9. Compressing FM-index for Trajectories

of the labeled BWT is much smaller than that of the original BWT, i.e.,

H0(φ∗(Tbwt))� H0(Tbwt) (9.6)

holds for real NCT datasets in our experiments (Table 10.2).

9.4.2. Space Complexity

Evaluating Space Overheads The data structure of CiNCT consists of two parts: the

labeled BWT φ(Tbwt) and the ET-graph GT . As noted in Section 9.2, the size of GT

is negligible when |T | is large. Here, we compare the sizes of Tbwt and φ(Tbwt) stored

in HWTs with RRR. Note that these corresponds ICB-Huff and CiNCT, respectively.

The main advantage of CiNCT comes from the lower space overhead due to RRR, as

explained below. For a given bit vector B, it is known that the practical RRR with the

parameter b (see Section 9.2) uses at most

|B|H0(B) + |B| · h(b) (9.7)

bits where h(b) = lg(b+1)
b

[39]. We call the second term the RRR-overhead. For b = 63,

we have an overhead of h(b) = (lg 64)/63 ' 0.095 bits per bit.

For a given string S, it is known that the average code length with Huffman coding

is at most (1 + H0(S)) bits [38]. Hence, the total length of bit vectors in the HWT is∑
v |Bv| ' |S|(1 +H0(S)). Summing the RRR-overheads over all internal nodes v in the

HWT, we obtain total bits of the overhead:∑
v

|Bv| · h(b) ' |S|(1 +H0(S)) · h(b). (9.8)

The right-hand side implies that the RRR-overhead of a sequence S is small if its entropy

H0(S) is small. Therefore, Eq. (9.6) indicates that the space overhead for CiNCT is much

smaller than that for ICB-Huff.

High-order Compression Here, we analyze the remaining first (and dominant) term

in Eq. (9.7). Summing this term over all internal nodes v in the HWT, we find that the

total bits needed for this term achieves the k-th order entropy Eq. (8.4) for all k > 0, as

shown in the following Theorem 9.3. This theorem implies that our method guarantees

high compressibility in an information theoretic sense. Note that this kind of entropic

bound has not been guaranteed by the existing shortest-path based NCT compressors.

Theorem 9.3 For all k > 0, the total bits required to store φ(Tbwt) in an HWT with

92

9.4. Theoretical Analysis

RRR, apart from the overhead Eq.(9.8), are |T |Hk(T) + O(lσb), where l ≤ σk is the

number of distinct contexts W ∈Σk in T .

Proof See Section 9.5.

9.4.3. Time Complexity

To evaluate whether Algorithm 14 is faster than Algorithm 1, we focus on the time

complexity of the rank operation. As stated in Theorem 8.1, rankw(S, j) runs in O(1 +

H0(S)) time.1 Hence, the relationship H0(φ(Tbwt))� H0(Tbwt) (Eq. (9.6)) again explains

why CiNCT is faster than ICB-Huff. Of course, Algorithm 14 incurs an additional cost

in calculating φ(w|w′), but this is not serious for a sparse GT .

Moreover, we have the following theorem implying that the search time does not

depend on the road network size σ but depends only on the maximum out-degree δ of

the road network (which is usually less than four).

Theorem 9.4 (σ-independence) Let P ∈ E∗ be any query path ($ is not included).

Algorithm 14 runs in O(|P | · δb) time.

Proof For any w,w′ ∈ E, we have η := φ(w|w′) ≤ δ+ 2. By the construction of RML,

η is at least the δ + 2-th most frequent symbol in φ(Tbwt). Thus η is at most located at

the δ + 2 level of the Huffman tree. Hence, rankη(φ(Tbwt), j) in Eq. (9.2) runs in O(δb)

time (remember the bit-wise rank operation in practical RRR [39] requires O(b) time).

Since PseudoRank is calculated at most 2|P | − 2 times in Algorithm 14, this leads to

the conclusion.

Other FM-indexes do not satisfy this property. Note that this time complexity also

does not depend on the data size |T |.

9.4.4. Comparison of RML with MEL

Minimum entropy labeling (MEL) is a labeling scheme for NCTs proposed in [18], which

works as a preprocessor for general compressors, such as the Huffman coding or the

LZ coding (i.e., pattern matching was not considered). Similar to RML, MEL con-

verts a sequence of road edges to a low entropy sequence of small integers as follows:

w1w2 · · ·wn → ψ(w1)ψ(w2) · · ·ψ(wn) where ψ : E → N is the MEL function. Different

labels are assigned to road segments that shares a head node v (Fig. 9.4(b)). In contrast,

1To be exact, this complexity is proportional to b because practical RRR [39] runs the bit-wise rank
operation in O(b) time.

93

9. Compressing FM-index for Trajectories

X

Y
A

B

A

B

v

(a) (b)nXA

nYA

nXBnYB
nB=nXB+nYB

nA=nXA+nYA

Figure 9.4.: Comparing two NCT labeling methods: (a) RML; and (b) MEL [18]

our RML conversion is as follows: w1w2 · · ·wn → φ(w1|$)φ(w2|w1) · · ·φ(wn|wn−1). Un-

like RML, the MEL function ψ does not consider the previous symbol. Specifically, As

in Figure 9.4(b), MEL labels based on the unigram frequencies, nA and nB. Conversely,

our RML, shown in Fig. 9.4(a), is based on the bigram frequencies, nXA, nXB, nYA, and

nYB.

Given these differences, the advantage of RML can be intuitively explained as follows.

Real trajectories tend to go straight rather than turn left or right, as shown in Figure 9.4

(a). Because RML considers the previous road segment, it can take account the direction

of the movement, whereas such information is lost in MEL. This implies that RML

can capture a higher-order correlation compared to MEL. Although MEL also has the

optimality of entropy, it cannot be better than RML. The experimental comparison is

shown in Section 10.2.3. Mathematically, we have the following theorem.

Theorem 9.5 For any trajectory string T , RML achieves a smaller 0th order empirical

entropy than MEL does.

Proof Considering the size of the feasible labeling space, we find that our labeling

space {φ(w|w′)} is a superset of that of MEL, {ψ(w)}. In other words, MEL can be

emulated by an RML φ̄ that might not be the optimal φ∗. Therefore, the optimality of

RML (Theorem 9.2) leads to the conclusion.

9.5. Proofs

9.5.1. Proof of Theorem 9.2

To begin with, let us introduce some mathematical notations. Let us denote a set of

integers as [σ] := {1, · · · , σ}. Consider σ discrete probability distributions p1, · · · , pσ on

[σ] defined by

pw′(w) =
nww′

n·w′
, (9.9)

94

9.5. Proofs

where nww′ is the number of bigrams ww′ in T and n·w′ =
∑

w nww′ . First, we define a

permutation of a distribution.

Definition 9.2 Let p be a discrete distribution on [σ]. A permutated distribution pπ is

a distribution where pπ(k) = p(π(k)). Here π is a permutation on [σ].

In addition, we introduce the concept of a decreasing distribution:

Definition 9.3 A discrete distribution p is decreasing iff p(w) ≥ p(w+1) for ∀w ∈ [σ].

Let F be a set of decreasing distributions and F c be a set of non-decreasing distributions.

Note that we can always find a permutation π that makes any distribution p decreasing,

that is, ∃π such that pπ ∈ F .

Let us relate the above definitions to our problem. Since any possible RML corre-

sponds to an assignment of distinct integers cww′ ∈ [σ], we can regard it as an array of

permutations Π = [π1, · · · , πσ]. We denote such a labeling function as φΠ. Our strategy,

sorting by bigram nww′ , corresponds to an array of permutations Π such that each πi
makes the distribution pi decreasing. Note that, if w /∈ Nout(w

′), we can treat such cases

as pw′(w) = 0.

Our problem is to find a labeling function φΠ that achieves the minimum H0(φΠ(Tbwt)).

Consider a mixture distribution

pΠ =
∑
i∈[σ]

αip
πi
i (9.10)

where αi = n·i/
∑

j n·j. Since the entropy of a discrete distribution is defined as

H(p) = −
∑
k∈[σ]

p(k) lg p(k), (9.11)

the following equality holds:

H(pΠ) = H0(φΠ(Tbwt)). (9.12)

Therefore, we can reformulate our optimization problem as follows.

Π∗ = argminΠ H(pΠ). (9.13)

Consider an optimal Π∗ and any permutation π. Permutating elements in Π∗ by π

also yields another optimal solution by definition: H(pΠ∗) = H(pπ◦Π
∗
) where π ◦ Π∗ =

{π ◦π1, · · · , π ◦πn}. Here g ◦f indicates a composite function. We can therefore assume

pΠ∗ is a decreasing distribution without loss of generality.

95

9. Compressing FM-index for Trajectories

We now prove the following theorem that directly leads to Theorem 9.2.

Theorem 9.6 The optimal solution Π∗ consists of permutations such that each πi ∈ Π∗

makes the distribution pi decreasing: pπii ∈ F for ∀i ∈ [σ].

We first consider the following Lemma which implies that a more concentrated distri-

bution has smaller entropy.

Lemma 9.1 If a > b ≥ 0 and ε > 0, we have

−a lg a− (b+ ε) lg(b+ ε) + (a+ ε) lg(a+ ε) + b lg b > 0. (9.14)

Proof Since g(x) = (x + ε) lg(x + ε)− x lg x is a strictly increasing function, we have

g(a)− g(b) > 0, which is equivalent to Eq. 9.14.

Now we are ready to prove Theorem 9.6.

Proof (Proof of Theorem 9.6) We prove optimality by contradiction. Let Π+ be

a set of permutations that minimizes H. As discussed above, we can assume pΠ+ ∈ F
without loss of generality. Let us assume that there exists at least one πi ∈ Π+ such

that pπii ∈ F c. Let us define q := pπii .

Since q ∈ F c, there exists k ∈ [σ] such that q(k) < q(k + 1). Based on Eq. 9.10, pΠ+

can be decomposed as

pΠ+

= (1− αi)p̂+ αiq (9.15)

where p̂ := 1
1−αi

∑
j 6=i αjp

πj
j . If p̂(k) ≤ p̂(k + 1), we have pΠ+

(k) < pΠ+
(k + 1), which

contradicts the assumption pΠ+ ∈ F . Therefore, we have p̂(k) > p̂(k + 1).

Consider a permutation sk that swaps only k and k + 1, and the corresponding per-

mutated distribution qsk . Let us define α := αi and β := 1 − αi. We can calculate

the difference of entropy functions between the optimal solution pΠ+
= βp̂+αq and the

swapped distribution βp̂+ αqsk :

H(pΠ+

)−H(βp̂+ αqsk) =− {βp̂(k) + αq(k)} lg{βp̂(k) + αq(k)}
− {βp̂(k + 1) + αq(k + 1)} lg{βp̂(k + 1) + αq(k + 1)}
+ {βp̂(k) + αq(k + 1)} lg{βp̂(k) + αq(k + 1)}
+ {βp̂(k + 1) + αq(k)} lg{βp̂(k + 1) + αq(k)}. (9.16)

96

9.6. Proof of Theorem 9.3

Using the notation a = βp̂(k)+αq(k), b = βp̂(k+1)+αq(k), and ε = αq(k+1)−αq(k),

we have a > b ≥ 0 and ε > 0. Now Eq. 9.16 can be rewritten as

H(pΠ+

)−H(βp̂+ αqsk) = −a lg a− (b+ ε) lg(b+ ε) + (a+ ε) lg(a+ ε) + b lg b > 0

where the last inequality holds from Lemma 9.1. This inequality indicates thatH(pΠ+
) >

H(βp̂+ αqsk). Therefore,

[π1, · · · , πi−1, sk ◦ πi, πi+1, · · · , πσ]

is better than Π+. However, this contradicts the optimality of Π+.

9.6. Proof of Theorem 9.3

We can prove Theorem 9.3 in a similar way to [32], which proves the theorem for ICB

with a balanced wavelet tree.

Proof To begin with, we introduce some facts about RRR [39]. Let us consider a

bit vector B of length n. The RRR divides B into small blocks of length b: B =

B(1)B(2) · · ·B(n/b). Each B(j) is represented by its class cj and offset oj. Here the class

is the number of 1’s in B(j), and the offset is an index to distinguish the positions of

1’s in B(j). In fact, the total space needed for the classes becomes the second term of

Eq. (9.7) (see [39]). Since this term is already considered in Eq.(9.8), what we have to

evaluate is the offsets. Each offset requires lg
(
b
cj

)
bits because there are

(
b
cj

)
possible

layouts of 1’s for the class cj.

Let us consider the partition of contexts of length k: φ(Tbwt) = L1L2 · · ·Ll (l ≤ σk).

Since a bit vector in a node v of a wavelet tree keeps the ordering, the bit vector Bv can

be divided into l blocks: Bv = Bv
1B

v
2 · · ·Bv

l . Here each Bv
i corresponds to Li.

Now, we can consider small blocks of RRR which is fully included in Bv
i . Let us denote

such blocks as B(1)B(2) · · ·B(t). The offsets for these blocks require

t∑
j=1

lg

(
b

cj

)
≤ |Bv

i |H0(Bv
i) (9.17)

bits. There are at most two blocks at the boundary of Bv
i not considered above. Their

offset requires O(b) bits; therefore, the offsets for Bv
i need |Bv

i |H0(Bv
i) + O(b) bits in

total.

Let us consider the space needed for Li. Since there are at most σ − 1 inner nodes in

97

9. Compressing FM-index for Trajectories

a wavelet tree, summing the required spaces over v, we obtain∑
v

|Bv
i |H0(Bv

i) +O(σb) = |Li|H0(Li) +O(σb) (9.18)

bits; the RHS can be obtained by the recursive calculation technique discussed in [1].

Summing the above equation over i, we have

l∑
i=1

|Li|H0(Li) +O(lσb). (9.19)

Although Li is a labeled string, the elements have a one-to-one correspondence with

the non-encoded string because of the definition of the RML. Hence, H0(Li) is equal to

H0(TW), where W is the corresponding context and TW is defined in Eq.(8.4).

98

10. Experiments

10.1. Experimental setup

Implementation All methods were implemented in C++ and compiled with g++ (ver-

sion 4.8.4) with the -O3 option. We used the sdsl-lite library (version 2.0.1) for

(in-memory) wavelet trees (http://github.com/simongog/sdsl-lite/). The BWT was

calculated using sais.hxx (http://sites.google.com/site/yuta256/sais/). Experi-

ments were conducted on a workstation with the following specifications: Intel Core

i7-K5930 3.5GHz CPU (64-bit, 12 cores, L1 64kB×12, L2 256kB×12, L3 15MB), DDR4

32GB RAM, Ubuntu Linux 14.04.

Competitors Table 10.1 lists the competitors used in the experiment. We used five

FM-index variants: uncompressed (UFMI, FM-GMR) and compressed (ICB-WM, ICB-

Huff, FM-AP-HYB). The block-size parameter b had to be specified for CiNCT, ICB-Huff,

and ICB-WM. Unless otherwise noted, we use b = 63. FM-GMR [15] and FM-AP-HYB [2]

are FM-index variants that are tailored for huge σ and that support O(log log σ) rank

operation (faster than the O(log σ) of UFMI); they are available in the sdsl-lite library.

These were the fastest (FM-GMR) and the smallest (FM-AP-HYB) methods for huge σ

in a recent benchmark [14].

There are many possibilities for compressing NCTs by combining simple techniques

such as run-length encoding. However, we do not consider such techniques in this study

because pattern matching is not supported in sublinear time. In our prior evaluation,

the Boyer-Moore method (linear time search) was at least four orders of magnitude

slower than CiNCT. In this study, we thus only consider RePair [29], a standard bench-

mark in stringology which showed the best compression ratio in the initial evaluation,

and PRESS [55], a shortest-path-based NCT compressor, and MEL [18], state-of-the-art

labeling-based NCT compressor.

Measurement The search time was averaged over 500 suffix range queries of length 20

randomly sampled from data unless otherwise noted. For evaluation of the data size of

the proposed method, the ET-graph was included.

99

http://github.com/simongog/sdsl-lite/
http://sites.google.com/site/yuta256/sais/

10. Experiments

Table 10.1.: Our proposed method and its competitors∗

Method Data Description C?† Q?‡

CiNCT φ(Tbwt) HWT with RRR X X
UFMI Tbwt WM� [7] with uncompressed bitmap [20] X
ICB-WM Tbwt WM with RRR [7] X X
ICB-Huff Tbwt HWT with RRR [32] X X
FM-GMR Tbwt FM-index for huge σ with O(log log σ) rank [15] X
FM-AP-HYB Tbwt FM-index for huge σ with O(log log σ) rank [2] X X
PRESS T The state-of-the-art trajectory compressor [55] X
MEL T Min. entropy labeling [18] X
Re-Pair†† T A string compressor [29] X
∗

For the first four methods, the type of WT is described / � WM: wavelet matrix
† Uncompressed or compressed / ‡Supports suffix range query or not
†† We used an implementation at https://www.dcc.uchile.cl/˜gnavarro/software/

Datasets The datasets used in this study are as follows:

• Singapore: NCTs of taxi cabs used in [55]. This dataset contains many transitions

without physical connection.

• Singapore-2: Preprocessed Singapore dataset such that transitions between two

road segments without a physical connection are interpolated with the shortest

path.

• Roma: GPS trajectories of taxi cabs in Rome. NCT representations were obtained

by HMM map-matching [41] (http://crawdad.org/roma/taxi/).

• MO-gen: NCTs generated by the moving object generator (http://iapg.jade-hs.

de/personen/brinkhoff/generator/).

• Chess: All chess game records (Blitz, 2006–2015, 1.87M games, http://www.

ficsgames.org). First 10 moves are converted into hash values of Forsyth-Edwards

notation.

Although Chess is not a vehicular dataset, it is included to show the possibility that

CiNCT is applicable to targets other than NCTs. Table 10.2 lists the statistics of the

datasets.

10.2. Results

10.2.1. Comparison with Various FM-indexes

Evaluation results for data size and processing time of suffix range queries are shown in

Figure. 10.1. We observe that CiNCT requires less than 2 bits per symbol to store NCTs,

100

http://crawdad.org/roma/taxi/
http://iapg.jade-hs.de/personen/brinkhoff/generator/
http://iapg.jade-hs.de/personen/brinkhoff/generator/
http://www.ficsgames.org
http://www.ficsgames.org

10.2. Results

Table 10.2.: Statistics of each dataset
Dataset |T | lg σ H0(T) H0(φ)† H1(T) d̄ ‡

Singapore 53M 15.5 13.8 1.8 1.5 26.8
Singapore-2 75M 15.5 14.0 1.3 1.1 4.0
Roma 12M 15.5 13.0 0.9 0.7 2.4
MO-Gen 193M 17.4 13.0 2.8 2.5 8.8
Chess 20M 18.8 10.3 2.0 1.4 1.6
† H0(φ) means H0(φ(Tbwt))
‡ d̄ is the average out-degree of the ET-graph GT .

Space (bits/symbol)

1 2 4 8 16 32 64

4
1

6
6

4
2

5
6

Space (bits/symbol)

1 2 4 8 16 32 64

4
1

6
6

4
2

5
6

b=63
b=31

b=15

Space (bits/symbol)

0.5 1 2 4 8 16 32

4
1

6
6

4
2

5
6

Space (bits/symbol)

1 2 4 8 16 32 64

1
6

6
4

2
5

6

Space (bits/symbol)

1 2 4 8 16 32 64

1
4

1
6

6
4b=63

b=31

b=15
b=15

b=31
b=63 b=63 b=63

b=31 b=31

b=15
b=15

CiNCT CiNCT (w/o ET-graph) UFMI ICB-Huff ICB-WM FM-GMR FM-AP-HYB

(a) Singapore (b) Singapore-2 (c) Roma (d) MO-gen (e) Chess

S
e

a
rc

h
 t

im
e

 (
µ

s)

Figure 10.1.: Data size/search time (suffix range query): the proposed method shows
the best performance. CiNCT (w/o ET-graph) is used to show the data size
without the ET-graph (i.e., wavelet tree only). The block size used in the
RRR bit vectors is parameterized as b ∈ {15, 31, 63}. Results for the other
methods in Table 10.1 were omitted because their linear-time search was
too slow.

and pattern matching of length 20 is processed in a few tens of microseconds. We also

observe that CiNCT outperforms the competitors in terms of both data size and query

processing time. We explain these results in detail below.

Data Size Compared with ICB-Huff and ICB-WM, CiNCT reduces the data size by up

to 78% and 57%, respectively. As explained in Section 9.4, the space overhead decreases

if H0(S) decreases. From Table 10.2 we can confirm that H0(φ(Tbwt))� H0(Tbwt) holds

for all datasets (note that H0(T) = H0(Tbwt)). This explains why CiNCT shows this

significant improvement. CiNCT even shows better compression than the smallest variant

FM-AP-HYB, which was designed for huge σ. The improvement in Singapore-2 is larger

than that of Singapore. As “gapped” transitions are interpolated in Singapore-2, the ET-

graph gets sparser (d̄ =26.8→4 in Table 10.2). This reduces the overhead regarding the

ET-graph (this is confirmed through the difference of CiNCT and CiNCT (w/o ET-graph);

w/o stands for without).

101

10. Experiments

0 5 10 15 20

0
5

0
1

0
0

1
5

0
2

0
0

Query length: |P|

Se
ar

ch
 t

im
e

 (
µ

s)

CiNCT
UFMI
ICB−Huff
ICB−WM
FM−GMR
FM−AP−HYB

Figure 10.2.: |P | vs. search time:
(Singapore dataset)

Alphabet size: σ

In
d

e
x

si
ze

 (
b

it
s

/
sy

m
b

o
l)

2
14

2
15

2
16

2
17

2
18

2
−

2
2

−
1

2
0

2
1

2
2

CiNCT (w/o)

CiNCT

UFMI

ICB−Hu"
ICB−WM

FM−GMR

FM−AP−HYB

Alphabet size: σ

S
e

a
rc

h
 t

im
e

 (
µ

s)

2
14

2
15

2
16

2
17

2
18

UFMI

FM−GMR

CiNCT

FM−AP−HYB

ICB−WM

ICB−Hu"

2
4

2
5

2
6

2
7

2
8

Figure 10.3.: CiNCT shows the best σ-
dependence (Left: index size,
right: search time / RandWalk
dataset)

Processing Time of Pattern Matching Queries CiNCT is always much faster than

ICB-Huff and ICB-WM; the speedups are up to 7 and 25 times, respectively. Surprisingly,

CiNCT is even faster than those of the uncompressed indexes (UFMI and FM-GMR).

Again, this speedup can be explained by the shallowness of the HWT of CiNCT. This

decreases the number of bit-wise rank operations in the HWT (Section 9.4.3).

Effect of Block Size b As mentioned in Section 9.2, when b becomes larger, the

results show better compression but slower search. However, as shown in Figure 10.1,

the sensitivity to the block size parameter b is very small for CiNCT. This indicates that

the proposed method is nearly parameter-free.

Effect of |P | Figure 10.2 shows the processing time of suffix range queries against the

query length |P |. For every method, the processing time grows linearly, because the

numbers of iterations in Algorithms 1 and 14 are O(|P |). We see that CiNCT shows the

slowest growth among all methods.

10.2.2. Comparison with Several Compression Methods

Table 10.3 compares the compression ratio, defined as the uncompressed size (binary

file of 32-bit integers) divided by the compressed size. We observe that CiNCT shows

better compression than the existing methods. In particular, our method is better than

MEL, which showed the best compressibility in recent benchmark [18]. This is explained

as follows. First, as shown in Theorem 9.5 (and Table 10.4 in the next section), RML

102

10.2. Results

Avg out−degree d

In
d

e
x

si
ze

 (
b

it
s

/
sy

m
b

o
l)

2
2

2
3

2
4

2
5

2
6

2
−

2
2

−
1

2
0

2
1

2
2

CiNCT (w/o ET-graph)

CiNCT

UFMI

ICB−Hu!

ICB−WM

FM−GMR

FM−AP−HYB

Avg out−degree d

S
e

a
rc

h
 t

im
e

 (
µ

s)

2
2

2
3

2
4

2
5

2
6

2
3

2
4

2
5

2
6

2
7

2
8

CiNCT

UFMI

ICB−Hu!

ICB−WM

FM−GMR

FM−AP−HYB

Figure 10.4.: Dependence on out-degree (Left: index size, right: search time / RandWalk
dataset)

Table 10.3.: Compression ratio (larger is better)

Singapore Singapore-2 Roma Mo-Gen Chess
CiNCT 10.5 27.0 25.2 25.6 10.3
MEL† n/a 15.8 21.2 n/a n/a
Re-Pair 8.4 11.4 20.6 20.6 11.0
ICB-WM 8.8 9.4 11.3 12.0 10.5
bzip2 5.3 5.6 13.6 5.3 7.1
PRESS‡ 4.6 n/a n/a n/a n/a
zip 2.5 2.5 5.0 2.6 3.9
† Huffman coding was used after labeling, as in [18]. We evaluated only

for ungapped datasets because MEL assumes no gap (see Singapore-2
explanation in Section10.1).

‡ Only the result for the Singapore dataset [55] is shown because no
available implementation was found.

achieves smaller 0th order entropy than MEL (indicating a smaller average code length).

Second, CiNCT is a higher order compressor (Theorem 9.3) whereas MEL is not. Note

that the road network storage is not included in MEL evaluations whereas it is considered

for CiNCT (as ET-graph).

10.2.3. Effect of Labeling Strategy

Comparison with MEL According to our analysis in Section 9.4.4, RML achieves lower

entropy than MEL does. In Table 10.4, we show a comparison of the entropy achieved

by RML and MEL for two “ungapped” NCT datasets, i.e., Singapore2 and Roma. We

observe that our RML obtained approximately 30% smaller entropy than that of MEL.

103

10. Experiments

Table 10.4.: Comparison of entropy (RML and MEL)

Dataset RML (Proposed) MEL [18]
Singapore2 1.26 1.93
Roma 0.76 0.99

Optimality In Section 9.1, we proposed a labeling strategy that assigns small inte-

gers cww′ sorted by the bigram counts nww′ . The data size and search time under this

strategy are expected to be better than those of any other possible labeling strategy,

because we showed the optimality of our strategy (Theorem 9.2). Here, we compare our

strategy with the random sorting strategy, which assigns randomly shuffled small inte-

gers cww′ ∈ {1, · · · , |Nout(w
′)|}. Figure 10.5 shows the comparison for the five datasets

(b ∈ {15, 31, 63}). We observe that the index size and the search time of the bigram

sorting strategy are always better than those of random sorting strategy. Compared to

the random strategy, it reduces the data size by up to 32%, and the search time by up

to 57%. These results indicate the importance of the bigram sorting strategy.

10.2.4. Effect of ET-graph size/shape

Effect of Alphabet Size σ In Theorem 9.4, we showed that the search time of CiNCT does

not depend on the size σ of the road map. Here, we investigate the effect of σ using

synthetic RandWalk dataset: random walks on a directed random graph. The average

out-degree d̄ of the graphs is fixed at four, and |T | is set to 800σ. In Figure 10.3,

CiNCT shows good scalability against σ, whereas the index sizes and the search times of

the existing methods both increase. The search time of CiNCT is almost constant, as

predicted by Theorem 9.4. The other methods do not show this property. For example,

both the index size and the search time of UFMI at σ = 218 are 30% larger compared to

the σ = 214 case.

Effect of Sparsity Here, we investigate the effect of the average out-degree d̄. Fig-

ure 10.4 shows the results for the RandWalk dataset used in Section 10.2.4. For compar-

ison, we fixed σ = 216 and |T | = 100M, and changed d̄ between 22 and 27. We observe

that the sparsity of the ET-graph is the key factor for CiNCT. Although the compression

performance of CiNCT is the best, the data size grows quickly. This is due to two fac-

tors: the increase of ET-graph size and the increase of the depth of HWT. However, this

result shows that our method works for larger d̄ than in the road network case, d̄ ' 22.

This result opens the door to applications to datasets not mentioned in this thesis (e.g.,

symbol-valued time series).

104

10.2. Results

Space (bits/symbol)

S
e

a
rc

h
 t

im
e

 (
µ

s)

2
0

2
1

2
2

2
3

2
0

2
1

2
2

2
3

2
4

2
5

2
6

b=15
b=31

b=63

b=15
b=31

b=15

b=31
b=63

MO−gen

Roma

Singapore

ChessBigram sorting (Proposed)
Random sorting

b=63
Singapore-2

Figure 10.5.: Comparison of labeling strategies

10.2.5. Sub-path Extraction Time

Here, we evaluate extract queries described in Section 9.3.3. We evaluated the extraction

time for obtaining the entire T , that is, l = |T | and j = 0. Figure 10.6 compares

the extraction times for the four datasets. We observe that CiNCT shows the fastest

extraction among the competitors (twice as fast as UFMI). Again, this can be explained

by the fast rank calculation in CiNCT (PseudoRank), as discussed above. Note that we

omitted the results for FM-AP-HYB because random access to Tbwt was not supported

in the sdsl-lite library.

10.2.6. Index Construction Time

Figure 10.7 compares the index construction times of FM-indexes. The construction

time of CiNCT is comparable to that of ICB-Huff, and shorter than those of the other

methods. ET-graph-build in Figure 10.7 includes all operations that are not needed for

the other methods. Here, we can see the overhead for the construction of the ET-graph

is not a serious problem. Note that all additional operations, including the construction

of GT from T , obtaining RML function φ, labeling Tbwt, and calculation of Zw′w, can be

executed in linear time O(|T |), which implies the scalability of construction.

105

10. Experiments

S
in

g
a
p
o
re

R
o
m

a

M
O

−
g
e
n

C
h
e
s
s

CiNCT
UFMI
FM−GMR

ICB−Huff
ICB−WM

E
x
tr

a
c
ti
o
n
 t
im

e
 (

µ
s
/s

y
m

b
o
l)

0
4

8
1
2

Figure 10.6.: Extraction time

C
iN

C
T

IC
B

−
H

u
ff

IC
B

−
W

M

U
F

M
I

F
M

−
G

M
R

F
M

−
A

P
−

H
Y

B

ET−graph−build

Wavelet−tree−build

SA+BWT

In
d
e
x
 c

o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

s
)

0
2
0

4
0

6
0

8
0

Figure 10.7.: Index construction time
(Singapore dataset)

106

11. Related Work

11.1. Trajectory Compression

As noted in Section 8.1, shortest-path compression has been used to compress spatial

paths in several papers [18, 24, 26, 55]. Although an NCT dataset is expected to have

a small k-th order entropy (Eq. (8.4)), none of such shortest-path-based compressors

have provided an information-theoretic evaluation of the compressed size. As an NCT

compressor, our method first focuses on high-order entropy and gives an information-

theoretic bound (Theorem 9.3). One of the methods proposed in [18], MEL, is a different

type of spatial path compressor that achieves better compression than shortest-path-

based methods. As shown in Section 9.4.4, the RML theoretically achieves a smaller

entropy than MEL does. In [52], graph partitioning was used to reduce the size of spatial

paths.

Imagine the following extreme case: trajectories always travel the shortest path be-

tween their origin and destination. In this case, shortest-path compressors can achieve

high compression ratio (i.e., we need to record only the origin and destination), which

might be better than any entropic compressor; however, as shown in our experiment

(and also shown in [18]), entropy-based compression methods usually achieve better

compression than shortest-path-based compressors. This fact implies that the assump-

tion of shortest-path compressors (i.e., trajectories prefer the shortest path) is not very

effective for real data.

To compress timestamps in NCTs, lossy compression methods are used in [18, 26]

and [52], whereas lossless compression was used in [4]. Timestamp compression was

not considered in this thesis because we assumed that timestamps are stored in disk as

SNT-index does. However, existing trajectory compression methods (e.g., [4, 26]) usually

store spatial/temporal information independently. This implies that our compression

technique can be combined with temporal compression techniques proposed in those

methods.

107

11. Related Work

11.2. FM-index

FM-index, a compressed representation of suffix arrays [33], was proposed by Ferragina

and Manzini [11]. We have already described FM-index and the related topics in Chap-

ter 2, as well as in Section 8.2. Although there are a number of FM-index variants (e.g.,

[2, 15, 22, 32]), these are essentially designed for general strings. In Chapter 10, we com-

pared our method also with FM-indexes designed for a large alphabet [2, 15]. For large

σ, these methods can process suffix range queries in O(|P | log log σ) time, which is much

faster than typical O(|P | log σ) time. Importantly, we employed the domain-specific

knowledge of the target data (i.e., sparse transition in road networks) to enhance the

compression and query processing. This point is the largest difference from the FM-index

family designed for general strings.

Recently, the Wheeler graph was defined to provide a unified view on BWT-related

methods [13]. Similar to the ET-graph, this is also an edge-labeled graph. The differences

are; 1) In the Wheeler graph, all edges entering a given node must have the same label,

while it is not necessary in the ET-graph. 2) In the ET-graph, the edges leaving a given

node must have different labels. It is not necessary in the Wheeler graph.

108

12. Summary

In Part III, we proposed CiNCT, a novel compressed data structure for NCTs. We in-

corporated the sparsity of road networks into the FM-index by using our proposed RML

and PseudoRank techniques. The resulting data structure supports pattern matching

(i.e., suffix range queries) and sub-path extraction from an arbitrary position while still

achieving high compressibility.

The data size of our method is much smaller than the existing methods that are not

tailored to trajectories. This means that, if we use CiNCT in SNT-index, we can signif-

icantly reduce the memory footprint. Our results also indicated that processing times

of pattern matching queries and substring extraction queries are also much faster than

the existing methods. As discussed in the experiment section in Part II (Chapter 5),

the ratio of processing time of FM-index-related queries is not significant in SNT-index.

Hence, the combination CiNCT + SNT-index will not improve the query processing time

very much compared with the vanilla SNT-index (i.e., SNT-index with the standard FM-

index). However, the proposed compression technique can be independently applied to

other existing in-memory index methods, such as [4, 26]. We expect that such combina-

tions will improve the query processing for applications beyond those considered in this

thesis.

109

Part IV.

Conclusion

111

13. Conclusion and Future Work

In this thesis, we studied indexing and querying schemes for trajectories in road net-

works. We focused on data structures and algorithms in string processing and adopted

them to spatio-temporal domain. In particular, we employed FM-index, which is a com-

pact in-memory data structure for document retrieval.

In Part II, we presented how to integrate spatial information stored in FM-index with

temporal information. To this end, we proposed to employ inverse suffix arrays. Based

on the proposed indexing methods, we showed several path-based queries can be an-

swered efficiently.

In Part III, we proposed a new compression method for FM-index storing trajectories.

Our finding was based on the fact that possible edge-edge transitions are restricted due

to the physical structure of road network. We proposed relative movement labeling to

incorporate this idea into FM-index. Our theoretical and experimental analysis showed

that our method outperforms existing FM-index and trajectory compression methods.

As a conclusion, we discuss possible future directions. First, supporting more types of

queries is an important future work. An important extension is similarity search, which

essentially allows the erroneous data in the database. We mainly treated exact pattern

matching in this thesis; however, trajectory data (i.e., sequences of road segments) would

include error due to map-matching algorithms. Similarity search would extend the utility

of the trajectory database.

Another interesting direction is development of dynamic SNT-index, which allows us

not only to append but also to delete trajectories. To this end, we need to seek for

the possibility of data string data structures and algorithms other than FM-indexes. We

believe that there are unknown links between string algorithms and trajectory processing.

Finally, we believe that application fields of the methods developed in this thesis is

not limited to trajectory processing. As an example, we presented the results for Chess

dataset in Chapter 10. The idea of linking the sequence data and other types of data

(i.e., corresponding to road segments and timestamps in the trajectory case), or the idea

of relative movement labeling for compression, would be widely applicable to other types

113

13. Conclusion and Future Work

of data. Seeking for new applications of the proposed methods is also an important and

interesting research direction.

114

Bibliography

[1] Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive

sorting. Theoretical Computer Science, 513:109–123, 2013. ISSN 0304-3975. doi:

10.1016/j.tcs.2013.10.019.

[2] Jérémy Barbay, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. Alphabet

Partitioning for Compressed Rank/Select and Applications. In Proceedings of 21st

International Symposium on Algorithms and Computation, ISAAC’10, pages 315–

326, 2010. doi: 10.1007/978-3-642-17514-5 27.

[3] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici,

and Antonello Rabuffi. CRAWDAD dataset roma/taxi (v. 2014-07-17). Downloaded

from https://crawdad.org/roma/taxi/20140717, July 2014.

[4] Nieves R. Brisaboa, Antonio Fariña, Daniil Galaktionov, and M. Andrea Rodŕıguez.

Compact Trip Representation over Networks. In Proceedings of the 23rd Interna-

tional Symposium on String Processing and Information Retrieval, SPIRE’16, pages

240–253, 2016. doi: 10.1007/978-3-319-46049-9 23.

[5] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression

algorithm. In Technical Report 124. Digital Equipment Corporation, 1994.

[6] Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. Discovering Popular Routes

from Trajectories. In Proceedings of the 27th International Conference on Data

Engineering, ICDE ’11, pages 900–911, 2011. ISBN 978-1-4244-8959-6. doi: 10.

1109/ICDE.2011.5767890.

[7] Francisco Claude and Gonzalo Navarro. The wavelet matrix. In Proceedings of

the 19th International Symposium on String Processing and Information Retrieval,

SPIRE’12, pages 167–179, 2012. doi: 10.1007/978-3-642-34109-0 18.

[8] Jian Dai, Bin Yang, and Christian S Jensen. Path Cost Distribution Estimation

Using Trajectory Data. Proc. VLDB Endow., 10(3):85–96, November 2016. ISSN

21508097. doi: 10.14778/3021924.3021926.

115

https://crawdad.org/roma/taxi/20140717

Bibliography

[9] Victor Teixeira de Almeida and Ralf H. Güting. Indexing the Trajectories of Moving

Objects in Networks. Geoinformatica, 9(1):33–60, 2005. ISSN 1384-6175. doi:

10.1007/s10707-004-5621-7.

[10] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineer-

ing route planning algorithms. In Jürgen Lerner, Dorothea Wagner, and Katha-

rina A. Zweig, editors, Algorithmics of Large and Complex Networks, pages 117–139.

Springer, 2009. ISBN 978-3-642-02093-3. doi: 10.1007/978-3-642-02094-0 7.

[11] Paolo Ferragina and Giovanni Manzini. Opportunistic Data Structures with Ap-

plications. In Proceedings of the 41st Annual Symposium on Foundations of

Computer Science, FOCS’00, pages 390–398, 2000. ISBN 0-7695-0850-2. doi:

10.1109/SFCS.2000.892127.

[12] Elias Frentzos. Indexing Objects Moving on Fixed Networks. In Proceedings of the

8th International Symposium on Spatial and Temporal Databases, SSTD’03, pages

289–305, 2003. doi: 10.1007/978-3-540-45072-6 17.

[13] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler Graphs: A Framework

for BWT-based Data Structures. Theoretical Computer Science, 698:67–78, 2017.

ISSN 03043975. doi: 10.1016/j.tcs.2017.06.016.

[14] Simon Gog, Alistair Moffat, and Matthias Petri. CSA++: Fast Pattern Search for

Large Alphabets. In Proceedings of the 19th Workshop on Algorithm Engineering

and Experiments, ALENEX’17, pages 73–82, 2017. doi: 10.1137/1.9781611974768.6.

[15] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/Select Operations

on Large Alphabets: A Tool for Text Indexing. In Proceedings of the 17th ACM-

SIAM Symposium on Discrete Algorithm, SODA’06, pages 368–373, 2006. ISBN

0-89871-605-5. doi: 10.1145/1109557.1109599.

[16] Roberto Grossi, Ankur Gupta, and Jeffrey S. Vitter. High-order Entropy-

compressed Text Indexes. In Proceedings of the 14th ACM-SIAM Symposium on

Discrete Algorithms, SODA’03, pages 841–850, 2003. ISBN 0-89871-538-5.

[17] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial Searching.

In Proceedings of the ACM SIGMOD International Conference on Management of

Data, SIGMOD ’84, pages 47–57, 1984. ISBN 0-89791-128-8. doi: 10.1145/602259.

602266.

[18] Yunheng Han, Weiwei Sun, and Baihua Zheng. COMPRESS: A Comprehensive

Framework of Trajectory Compression in Road Networks. ACM Trans. Database

Syst., 42(2):11:1–11:49, May 2017. ISSN 0362-5915. doi: 10.1145/3015457.

116

Bibliography

[19] Abdeltawab M. Hendawi, Jie Bao, Mohamed F. Mokbel, and Mohamed Ali. Pre-

dictive Tree: An Efficient Index for Predictive Queries on Road Networks. In

Proceedings of the 31st International Conference on Data Engineering, ICDE ’15,

pages 1215–1226, 2015. ISBN 9781479979639. doi: 10.1109/ICDE.2015.7113369.

[20] Guy Jacobson. Space-efficient Static Trees and Graphs. In Proceedings of the 30th

Annual Symposium on Foundations of Computer Science, SFCS ’89, pages 549–

554, 1989. ISBN 0-8186-1982-1. doi: 10.1109/SFCS.1989.63533. URL https:

//doi.org/10.1109/SFCS.1989.63533.

[21] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, and Christian S. Jensen. Path

Prediction and Predictive Range Querying in Road Network Databases. VLDB

Journal, 19(4):585–602, 2010. ISSN 10668888. doi: 10.1007/s00778-010-0181-y.

[22] Juha Kärkkäinen and Simon J. Puglisi. Fixed Block Compression Boosting in FM-

Indexes. In Proceedings of the 18th International Symposium on String Processing

and Information Retrieval, SPIRE’11, pages 174–184, 2011. ISBN 978-3-642-24583-

1. doi: 10.1007/978-3-642-24583-1 18.

[23] Richard M. Karp and Michael O. Rabin. Efficient Randomized Pattern-matching

Algorithms. IBM J. Res. Dev., 31(2):249–260, March 1987. ISSN 0018-8646. doi:

10.1147/rd.312.0249.

[24] G. Kellaris, N. Pelekis, and Y. Theodoridis. Map-matched Trajectory Compression.

J. Syst. Softw., 86(6):1566–1579, 2013. ISSN 0164-1212. doi: 10.1016/j.jss.2013.01.

071.

[25] Benjamin Krogh, Nikos Pelekis, Yannis Theodoridis, and Kristian Torp. Path-

based Queries on Trajectory Data. In Proceedings of the 22nd ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, GIS’14,

pages 341–350, 2014. ISBN 978-1-4503-3131-9. doi: 10.1145/2666310.2666413.

[26] Benjamin Krogh, Christian S. Jensen, and Kristian Torp. Efficient In-memory

Indexing of Network-constrained Trajectories. In Proceedings of the 24th ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems, GIS ’16, 2016. ISBN 978-1-4503-4589-7. doi: 10.1145/2996913.2996972.

[27] John Krumm. A Markov Model for Driver Turn Prediction. In Society of Automotive

Engineers (SAE) 2008 World Congress, 2008.

117

https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1989.63533

Bibliography

[28] John Krumm and Eric Horvitz. Predestination: Inferring Destinations from Par-

tial Trajectories. In Proceedings of the 8th International Conference on Ubiq-

uitous Computing, UbiComp’06, pages 243–260, 2006. ISBN 978-3-540-39634-5.

doi: 10.1007/11853565 15. URL http://link.springer.com/chapter/10.1007/

11853565{_}15.

[29] N. Jesper. Larsson and Alistair Moffat. Offline Dictionary-based Compression. In

Proceedings of Data Compression Conference, DCC’99, pages 296–305, 1999. doi:

10.1109/DCC.1999.755679.

[30] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang.

Map-matching for Low-sampling-rate GPS Trajectories. In Proceedings of the 17th

ACM SIGSPATIAL International Conference on Advances in Geographic Infor-

mation Systems, GIS ’09, pages 352–361, 2009. ISBN 978-1-60558-649-6. doi:

10.1145/1653771.1653820.

[31] Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M. Ni. Finding Time Period-based

Most Frequent Path in Big Trajectory Data. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data, SIGMOD’13, pages

713–724, 2013. doi: 10.1145/2463676.2465287.

[32] Veli Mäkinen and Gonzalo Navarro. Implicit Compression Boosting with Appli-

cations to Self-indexing. In Proceedings of the 14th International Symposium on

String Processing and Information Retrieval, SPIRE’07, pages 229–241, 2007. doi:

10.1007/978-3-540-75530-2 21.

[33] Udi Manber and Gene Myers. Suffix Arrays: A New Method for On-line String

Searches. In Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms,

SODA ’90, pages 319–327, 1990. doi: 10.1137/0222058.

[34] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction

to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

ISBN 9780521865715. doi: 10.1017/CBO9780511809071.

[35] Giovanni Manzini. An Analysis of the Burrows-Wheeler Transform. J. ACM, 48

(3):407–430, 2001. doi: 10.1145/382780.382782.

[36] Mohamed F. Mokbel, Thanaa M Ghanem, and Walid G Aref. Spatio-Temporal

Access Methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.

[37] Miko laj Morzy. Mining Frequent Trajectories of Moving Objects for Location Pre-

diction. In Proceedings of the 5th International Conference on Machine Learning

118

http://link.springer.com/chapter/10.1007/11853565{_}15
http://link.springer.com/chapter/10.1007/11853565{_}15

Bibliography

and Data Mining in Pattern Recognition, MLDM ’07, pages 667–680, 2007. ISBN

978-3-540-73498-7. doi: 10.1007/978-3-540-73499-4 50.

[38] Gonzalo Navarro. Wavelet Trees for All. In Proceedings of the Annual Symposium

on Combinatorial Pattern Matching, CPM’12, pages 2–26, 2012. doi: 10.1007/

978-3-642-31265-6 2.

[39] Gonzalo Navarro and Eliana Providel. Fast, small, simple rank / select on bitmaps.

In Proc. SEA’12, pages 295–306, 2012. doi: 10.1007/978-3-642-30850-5 26.

[40] Gonzaro Navarro. Compact Data Structures: A Practical Approach. Cambridge

University Press, 2016. ISBN 1107152380.

[41] Paul Newson and John Krumm. Hidden Markov Map Matching Through Noise and

Sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, GIS ’09, pages 336–343, 2009.

ISBN 978-1-60558-649-6. doi: 10.1145/1653771.1653818.

[42] Long-Van Nguyen-Dinh, Walid G. Aref, and Mohamed F. Mokbel. Spatio-Temporal

Access Methods : Part 2 (2003 – 2010). IEEE Data Eng. Bull., 33(2):46–55, 2010.

[43] Ge Nong, Sen Zhang, and Wai Hong Chan. Two Efficient Algorithms for Linear

Time Suffix Array Construction. IEEE Trans. Comput., 60(10):1471–1484, 2011.

doi: 10.1109/TC.2010.188.

[44] Salvatore Orland, Renzo Orsini, Alessandra Raffaetà, Alessandro Roncato, and

Claudio Silvestri. Trajectory Data Warehouses: Design and Implementation Issues.

Journal of computing science and engineering, 1(2):211–232, 2007.

[45] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-

war Dayal, and Meichun Hsu. PrefixSpan: Mining Sequential Patterns by

Prefix-Projected Growth. In Proceedings of the 17th International Conference on

Data Engineering, ICDE ’01, pages 215–224, 2001. ISBN 0-7695-1001-9. doi:

10.1109/ICDE.2001.914830.

[46] Dieter Pfoser and Christian S. Jensen. Indexing of network constrained moving

objects. In Proceedings of the 11th ACM International Symposium on Advances in

Geographic Information Systems, GIS ’03, pages 25–32, 2003. ISBN 1581137303.

doi: 10.1145/956676.956680.

[47] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel Approaches

in Query Processing for Moving Object Trajectories. In Proceedings of the 26th

119

Bibliography

International Conference on Very Large Data Bases, VLDB ’00, pages 395–406,

2000. ISBN 1-55860-715-3.

[48] Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, Dominique Barth, and Sandrine

Vial. PARINET : A Tunable Access Method for In-Network Trajectories. In Pro-

ceedings of the 26th International Conference on Data Engineering, ICDE’10, pages

177–188, 2010. ISBN 9781424454440. doi: 10.1109/ICDE.2010.5447885.

[49] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct Indexable Dictio-

naries with Applications to Encoding K-ary Trees and Multisets. In Proceedings of

the 13th ACM-SIAM Symposium on Discrete Algorithms, SODA’02, pages 233–242,

2002. ISBN 0-89871-513-X.

[50] Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A. Lopez.

Indexing the Positions of Continuously Moving Objects. Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 331–342, 2000.

ISSN 01635808. doi: 10.1145/342009.335427.

[51] Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, Dominique Barth, and Sandrine

Vial. Indexing In-network Trajectory Flows. The VLDB Journal, 20(5):643–669,

October 2011. ISSN 1066-8888. doi: 10.1007/s00778-011-0236-8.

[52] Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, and Ahmed Kharrat. Spatio-

Temporal Compression of Trajectories in Road Networks. GeoInformatica, 19(1):

117–145, 2014. ISSN 13846175. doi: 10.1007/s10707-014-0208-4.

[53] Yasin N. Silva, Xiaopeng Xiong, and Walid G. Aref. The RUM-tree: Supporting

frequent updates in R-trees using memos. The VLDB Journal, 18(3):719–738, 2009.

ISSN 10668888. doi: 10.1007/s00778-008-0120-3.

[54] Reid Simmons, Brett Browning, Yilu Zhang Yilu Zhang, and Varsha Sadekar.

Learning to Predict Driver Route and Destination Intent. In Proceedings of In-

telligent Transportation Systems Conference, ITSC’06, pages 127–132, 2006. ISBN

1-4244-0093-7. doi: 10.1109/ITSC.2006.1706730.

[55] Renchu Song, Weiwei Sun, Baihua Zheng, and Yu Zheng. PRESS: A Novel Frame-

work of Trajectory Compression in Road Networks. Proc. VLDB Endow., 7(9):

661–672, 2014.

[56] S. Taguchi, S. Koide, and T. Yoshimura. Online Map Matching with Route Pre-

diction. IEEE Transactions on Intelligent Transportation Systems, 20(1):338–347,

Jan 2019. ISSN 1558-0016. doi: 10.1109/TITS.2018.2812147.

120

Bibliography

[57] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The TPR*-Tree : An Optimized

Spatio-Temporal Access Method for Predictive Queries. In Proceedings of the 29th

International Conference on Very Large Data Bases, VLDB’03, pages 790–801,

2003. ISBN 0127224424.

[58] Dai Hai Ton That, Iulian Sandu Popa, and Karine Zeitouni. TRIFL: A Generic

Trajectory Index for Flash Storage. ACM Trans. Spatial Algorithms Syst., 1(2):

6:1–6:44, 2015. ISSN 2374-0353. doi: 10.1145/2786758.

[59] Marcos R. Vieira, Enrique Fŕıas-Mart́ınez, Petko Bakalov, Vanessa Fŕıas-Mart́ınez,

and Vassilis J. Tsotras. Querying Spatio-temporal Patterns in Mobile Phone-Call

Databases. In Proceedings of the 11th International Conference on Mobile Data

Management, MDM’10, pages 239–248, 2010. doi: 10.1109/MDM.2010.24.

[60] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Zizhe Xie, Qizhi Liu, and Xiaolin

Qin. Torch: A Search Engine for Trajectory Data. In SIGIR, pages 535–544. ACM,

2018. ISBN 978-1-4503-5657-2. doi: 10.1145/3209978.3209989.

[61] Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, and Zhenghua

Xu. Destination Prediction by Sub-trajectory Synthesis and Privacy Protection

Against Such Prediction. In Proceedings of the 29th International Conference on

Data Engineering, ICDE’13, pages 254–265, 2013. ISBN 978-1-4673-4909-3. doi:

10.1109/ICDE.2013.6544830.

[62] H. Yuan and G. Li. Distributed In-memory Trajectory Similarity Search and Join

on Road Network. In Proceedings of the 35th International Conference on Data

Engineering, ICDE’19, pages 1262–1273, 2019. doi: 10.1109/ICDE.2019.00115.

[63] Yu Zheng and Xiaofang Zhou. Computing with Spatial Trajectories. Springer

Publishing Company, Incorporated, 1st edition, 2011. ISBN 1461416280,

9781461416289.

[64] Brian D. Ziebart, Andrew L. Maas, Anind K. Dey, and J. Andrew Bagnell. Navigate

Like a Cabbie: Probabilistic Reasoning from Observed Context-aware Behavior. In

Proceedings of the 10th International Conference on Ubiquitous Computing, Ubi-

Comp’08, 2008. ISBN 9781605581361. doi: 10.1145/1409635.1409678.

121

List of Publications

Journal Papers

• Satoshi Koide, Yukihiro Tadokoro, Takayoshi Yoshimura, Chuan Xiao, Yoshiharu

Ishikawa, Enhanced Indexing and Querying of Trajectories in Road Networks via

String Algorithms, ACM Transactions on Spatial Algorithms and Systems (TSAS),

2018, DOI: 10.1145/3200200

• 小出 智士, 肖 川, 石川 佳治, 道路ネットワーク上の軌跡データに対する圧縮索

引 (Compressed Indexing for Trajectories constrained in Road Networks), 電子情

報通信学会論文誌 D, 2020 (in Japanese)

International Conferences (Refereed)

• Satoshi Koide, Yukihiro Tadokoro, Takayoshi Yoshimura, SNT-index: Spatio-

temporal index for vehicular trajectories on a road network based on substring

matching, Proceedings of the First ACM SIGSPATIAL Workshop on Smart Cities

and Urban Analytics (UrbanGIS), 2015, DOI: 10.1145/2835022.2835023

• Satoshi Koide, Yukihiro Tadokoro, Chuan Xiao, Yoshiharu Ishikawa, CiNCT: Com-

pression and Retrieval for Massive Vehicular Trajectories via Relative Movement

Labeling, IEEE International Conference on Data Engineering (ICDE), 2018, DOI:

10.1109/ICDE.2018.00102

Conferences (Non-refereed)

Presentations at non-refereed domestic/international workshops (only presentations be-

ing closely related are shown.)

• 小出 智士，田所 幸浩，吉村 貴克，文字列索引によるネットワーク制約下
の車両軌跡の索引化, データ工学と情報マネジメントに関するフォーラム

(DEIM’16), 2016

123

Bibliography

• Satoshi Koide., An Application of Full-text Search to Spatio-temporal Trajectory

Mining, Workshop on Compression, Text, and Algorithms, held conjunction with

SPIRE’16, 2016

• 小出 智士，吉村 貴克，肖 川，石川 佳治，ネットワーク上の軌跡データに対
する時間制約付き二点間経路の列挙, データ工学と情報マネジメントに関する

フォーラム (DEIM’18), 2018 (最優秀論文賞)

• 小出 智士，肖 川，石川 佳治，道路ネットワークのスパース性に着目した
車両軌跡の圧縮索引, データ工学と情報マネジメントに関するフォーラム

(DEIM’19), 2019 (優秀論文賞)

Other Publications

The following publications are refereed papers by the author that are not closely related

to the present thesis (only papers as the first author are shown).

• Satoshi Koide, Daisuke Furihata, Nonlinear and linear conservative finite difference

schemes for regularized long wave equation, Japan journal of industrial and applied

mathematics 26 (1), 15, 2009, DOI: 10.1007/BF03167544

• Satoshi Koide, Keisuke Kawano, Takuro Kutsuna, Neural Edit Operations for

Biological Sequences, Proceedings of Neural Information Processing Systems, 2018

124

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Introduction
	Background
	Research Objective and Contribution
	Thesis Organization

	String Processing and Spatial Trajectories: Preliminaries
	Trajectory as a String
	Strings and Related Data Structures
	Strings
	Suffix Arrays
	Burrows-Wheeler Transform

	FM-index
	Pattern Matching Query
	Substring Extraction Query
	Wavelet Trees

	Summary

	Trajectory Indexing
	Research Issues and Problem Definition
	Research Issues
	Problem Definition and Path-based Queries
	Data Model
	SPQ: Strict Path Query
	TEQ: Trajectory Extraction Query
	TAPEQ: Time-period-based All Path Enumeration Query
	Summary

	Indexing and Querying Methods
	SNT-index
	Overview
	Spatial FM-index
	Temporal B+-trees
	Index Construction and Implementation
	Summary

	Algorithm for SPQs
	Proposed SPQ algorithm
	Existing SPQ Algorithms
	Summary

	Algorithm for TEQs
	Baseline Method: Adding TB-tree-like Pointers to NETTRA
	Proposed TEQ Algorithm
	Summary

	Algorithm for TAPEQs
	Baseline Method: PrefixSpan for TAPEQs
	Proposed TAPEQ algorithm
	Summary

	Appending New Data to SNT-index
	Partitioning the FM-index for Appending New Data
	Spatial Partitioning of the FM-index

	Experiments
	Setup and Implementation Details
	SPQ Results
	TEQ Results
	TAPEQ Results
	Index Size and Index Construction Time
	Effect of Buffer Caches
	Summary
	Discussion

	Related Work
	Trajectory Indexing
	Related Queries

	Summary

	Trajectory Compression
	Research Issues and Preliminaries
	Research Issue
	Preliminaries
	Huffman-shaped Wavelet Tree
	Compressed Variants of FM-index

	Compressing FM-index for Trajectories
	Relative Movement Labeling
	Data Structure
	Query Processing
	PseudoRank
	Suffix Range Query with CiNCT
	Extracting a Substring with CiNCT

	Theoretical Analysis
	Optimality of RML
	Space Complexity
	Time Complexity
	Comparison of RML with MEL

	Proofs
	Proof of Theorem 9.2

	Proof of Theorem 9.3

	Experiments
	Experimental setup
	Results
	Comparison with Various FM-indexes
	Comparison with Several Compression Methods
	Effect of Labeling Strategy
	Effect of ET-graph size/shape
	Sub-path Extraction Time
	Index Construction Time

	Related Work
	Trajectory Compression
	FM-index

	Summary

	Conclusion
	Conclusion and Future Work
	Bibliography
	Publications by the Author

