
 

 

 

A Study on Dependability Assurance in 

System Modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qiang Zhi 

 

 



 



i 

 

 

Abstract 

Models and architectures in software engineering are simplified representations that 

focus on certain properties of design objects. The description, visualization, and 

documentation for information systems can be simplified by modeling. Through 

modeling, abstraction degree of the system design will be increased, and verification at 

an early stage of system development becomes possible.  

In this paper, we analyze and study the problem of dependability assurance in system 

modeling. We analyze the deficiencies of existing methods, and propose new methods to 

improve these deficiencies. In existing methods, the architecture diagram describing 

target system is different from assurance diagram, this complicates development and 

management. We propose an Intra Model Security Assurance method that integrates 

system architecture diagram and assurance case diagram to improve the efficiency of 

development and management. Besides, we propose a visualized assurance approach for 

Enterprise Architecture, which includes Technology Layer assurance, Application Layer 

assurance, and Business Layer assurance. 

Another problem in existing methods is that the automaticity of dependability evidence 

for complex systems is inefficient. In a system with complex process interactions, the 

dependability of interactions among the system processes is often difficult to describe in 

existing methods, because this would increase the complexity of the description. We 

propose a composite safety assurance method, and use model checking to assure the 

dependability of interactions. Moreover, we provide a formalized procedure for 

dependability assurance, which boosts the confidence of system dependability. 

  



ii 

 

Contents 

Abstract.................................................................................................................................... i 

1 Introduction .......................................................................................................................... 1 

2 Background ........................................................................................................................... 4 

3 IMSA - Intra Model Security Assurance ............................................................................... 7 

3.1 IMSA .............................................................................................................................. 7 

3.1.1 Meta model of Architecture and Security case ........................................................ 7 

3.1.2 Using ArchiMate for Security Case ......................................................................... 8 

3.2 Case Study ...................................................................................................................... 9 

3.2.1 Target System .......................................................................................................... 9 

3.2.2 Target System in IMSA ......................................................................................... 10 

3.2.3 Target System in D-case ....................................................................................... 12 

3.2.4 Comparison ........................................................................................................... 15 

3.3 Experiment ................................................................................................................... 15 

3.4 Discussion .................................................................................................................... 17 

3.4.1 Comparison of the previous and proposed approaches ......................................... 17 

3.4.2 Effectiveness .......................................................................................................... 18 

3.4.3 Limitation .............................................................................................................. 18 

4 Visualized Assurance Approach for Enterprise Architecture ............................................. 19 

4.1 Visualized Assurance Approach ................................................................................... 19 

4.1.1 Model of the Relationship for the Business Layer and Assurance Case ................ 20 

4.1.2 Using ArchiMate to Define the Mapping Relationship between the Assurance Case 

and Actor ........................................................................................................................ 21 

4.1.3 Definition of the Mapping between the Business Actor and Composite 

Dependability Goals ....................................................................................................... 22 

4.1.4 Combination of Depend-on Relationship and Assurance Case............................. 22 

4.2. CASE STUDY ............................................................................................................. 23 

4.2.1 Digital Signature Process ...................................................................................... 23 

4.2.2 Depend-on Relationship in a Digital Signature Process ....................................... 24 

4.2.3 Assurance Case in the Application and Technology Layers .................................. 25 

4.3. Discussion ................................................................................................................... 26 

4.3.1 Comparison of ArchiMate and d*framework......................................................... 27 

4.3.2 Effectiveness .......................................................................................................... 30 

4.3.3 Limitations ............................................................................................................ 31 

5 Composite Safety Assurance for Healthcare Devices ......................................................... 32 



iii 

 

5.1 Composite safety assurance ......................................................................................... 33 

5.2 Composite safety assurance method ............................................................................ 35 

[STEP1] Describe system architecture with ArchiMate ................................................ 35 

[STEP2] Identify composite safety goals between components .................................... 36 

[STEP3] Safety goals elicitation .................................................................................... 36 

[STEP4] Requirements elicitation for safety goals ........................................................ 36 

[STEP5] Safety goals assurance using composite requirements .................................... 36 

5.3 Case study of the proposed method ............................................................................. 36 

[STEP1] Describe insulin pump system architecture with ArchiMate .......................... 37 

[STEP2] Identify composite safety goals between insulin pump system components .. 38 

[STEP3] Safety goals elicitation in insulin pump architecture ...................................... 39 

[STEP4] Requirements elicitation for insulin pump safety goals .................................. 40 

[STEP5] Insulin pump safety goals assurance using composite requirements .............. 41 

5.4 Discussion .................................................................................................................... 42 

5.5 Effectiveness ................................................................................................................ 44 

5.6 Limitations ................................................................................................................... 44 

6 Composite Safety Assurance Using Model Checking ......................................................... 45 

6.1 Definition of the 4-Steps of Composite Safety Assurance ........................................... 45 

6.1.1 Visualization of the Component Interaction ......................................................... 45 

6.1.2 Processes Model Checking .................................................................................... 46 

6.1.3 Dependability Case Creation................................................................................. 48 

6.1.4 Composite Safety Assurance ................................................................................. 49 

6.2. Application of the Proposed Method ...................................................................... 50 

6.2.1 Visualization of Interactions between Driver and ADS......................................... 51 

6.2.2 Model Checking for the Processes between Driver and ADS ............................... 52 

6.2.3 Dependability Case Creation for ADS .................................................................. 53 

6.2.4 Composite Safety Assurance for ADS ................................................................... 54 

6.3 Discussion .................................................................................................................... 55 

6.3.1 Effectiveness .......................................................................................................... 55 

6.3.2 Limitations ............................................................................................................ 56 

7 Conclusion .......................................................................................................................... 57 

Acknowledgment ................................................................................................................... 60 

Reference ............................................................................................................................... 61 

Paper List .............................................................................................................................. 66 

Ⅰ．Journal ........................................................................................................................ 66 

Ⅱ．International Conference ............................................................................................ 66 



iv 

 

 

Figures 

FIGURE １ META MODEL OF ARCHITECTURE AND SECURITY CASE ........................... 8 

FIGURE ２ SECURITY CASE CONFIGURATION IN ARCHIMATE MOTIVATION 

ELEMENTS ........................................................................................................................... 9 

FIGURE ３ SECURE RETRIEVAL ON CLOUD STORAGE .................................................. 10 

FIGURE ４ SECURE RETRIEVAL ON CLOUD STORAGE ARCHITECTURE IN 

ARCHIMATE ...................................................................................................................... 11 

FIGURE ５ INTRA SECURITY CASE EXAMPLE FOR SECURE RETRIEVAL ON CLOUD 

STORAGE ........................................................................................................................... 13 

FIGURE ６ SECURITY CASE USING D-CASE ...................................................................... 14 

FIGURE ７ COMPARISON OF AVERAGE TIME TO ANSWER QUESTIONS ................... 17 

FIGURE ８ COMPARISON OF AVERAGE CORRECT RATIO OF QUESTIONS ............... 17 

FIGURE ９ GENERAL STRUCTURE OF VISUALIZATION FOR ENTERPRISE 

ARCHITECTURE ............................................................................................................... 20 

FIGURE １０ MODEL OF RELATIONSHIP FOR BUSINESS LAYER AND ASSURANCE 

CASE.................................................................................................................................... 21 

FIGURE １１ MODEL OF RELATIONSHIP FOR BUSINESS LAYER AND ASSURANCE 

CASE IN ARCHIMATE ...................................................................................................... 22 

FIGURE １２ EXAMPLE OF A DEPEND-ON RELATIONSHIP ........................................... 22 

FIGURE １３ USING ARCHIMATE TO DESCRIBE THE DEPENDENCY RELATIONSHIP

 ............................................................................................................................................. 23 

FIGURE １４ DIGITAL SIGNATURE PROCESS IN ARCHIMATE. ..................................... 24 

FIGURE １５ DEPEND-ON RELATIONSHIPS OF THE DIGITAL SIGNATURE PROCESS 

IN ARCHIMATE ................................................................................................................. 25 

FIGURE １６ AN ASSURANCE CASE FOR THE DIGITAL SIGNATURE PROCESS IN 

ARCHIMATE ...................................................................................................................... 26 

FIGURE １７ DEPEND-ON RELATIONSHIPS BETWEEN BUSINESS ACTORS .............. 26 

FIGURE １８ ASSURANCE CASE OF A HEALTHCARE SYSTEM IN ARCHIMATE ......... 28 

FIGURE １９ OUTLINE OF D*FRAMEWORK ...................................................................... 29 

FIGURE ２０ ASSURANCE CASE OF A HEALTHCARE SYSTEM IN THE 

D*FRAMEWORK ................................................................................................................ 30 

FIGURE ２１ METAMODEL OF COMPOSITE GOAL ......................................................... 33 

FIGURE ２２ EXAMPLE OF SAFETY CASE IN ARCHIMATE ............................................. 34 

FIGURE ２３ EXAMPLE OF COMPOSITE SAFETY RELATIONSHIP ............................... 35 

file:///C:/Users/yd/Desktop/paper/博士審査/博士論文/A%20Study%20on%20Dependability%20Assurance%20in%20System%20Modeling.docx%23_Toc31040035


v 

 

FIGURE ２４ USING ARCHIMATE TO DESCRIBE COMPOSITE SAFETY BETWEEN 

PATIENT AND INSULIN PUMP ...................................................................................... 35 

FIGURE ２５ INSULIN PUMP SYSTEM IN ARCHIMATE ................................................... 38 

FIGURE ２６ DEPEND-ON RELATIONSHIP ON THE INSULIN PUMP SYSTEM IN 

ARCHIMATE ...................................................................................................................... 40 

FIGURE ２７ COMPOSITE SAFETY ON THE INSULIN PUMP SYSTEM IN ARCHIMATE

 ............................................................................................................................................. 42 

FIGURE ２８ THE METAMODEL OF COMPOSITE SAFETY ASSURANCE ..................... 45 

FIGURE ２９ THE RELATIONSHIPS IN ADS ....................................................................... 46 

FIGURE ３０ CONDITIONAL STATE TRANSITION IN ARCHIMATE ............................. 48 

FIGURE ３１ D-CASE CREATION ......................................................................................... 49 

FIGURE ３２ GENERAL EXAMPLE OF COMPOSITE SAFETY ASSURANCE ................... 50 

FIGURE ３３ AUTOMATIC DRIVING PROCESSES IN ARCHIMATE ............................... 51 

FIGURE ３４ CSP MODEL DESCRIBING ADS PROCESS IN LEVEL 3 DRIVING 

AUTOMATION .................................................................................................................. 53 

FIGURE ３５ VERIFICATION RESULT OF ADS PROCESS ................................................ 53 

FIGURE ３６ D-CASE FOR THE ADS PROCESS .................................................................. 54 

FIGURE ３７ COMPOSITE SAFETY ASSURANCE FOR ADS IN ARCHIMATE ................ 55 



vi 

 

Tables 

TABLE 1 META MODEL, SECURITY CASE AND MOTIVATION ELEMENTS OF 

ARCHIMATE ........................................................................................................................ 8 

TABLE 2 NUMBER OF NODES OF MODELS AND SECURITY CASES .............................. 15 

TABLE 3 NUMBER OF RELATIONSHIP OF MODELS AND SECURITY CASES................ 15 

TABLE 4 NUMBER OF NODES OF MODELS AND SECURITY CASES .............................. 16 

TABLE 5 QUESTIONS OF EXPERIMENTS............................................................................. 16 

TABLE 6 COMBINATION OF THE EXPERIMENT ................................................................ 16 

TABLE 7 COMPARISON OF APPROACHES .......................................................................... 18 

TABLE 8 MAPPING BETWEEN THE META-MODEL AND ARCHIMATE ELEMENTS .... 21 

TABLE 9 COMPARISON BETWEEN ARCHIMATE AND D*FRAMEWORK ....................... 27 

TABLE 10 NUMBER OF NODES AND RELATIONSHIPS IN ARCHIMATE AND 

D*FRAMEWORK ................................................................................................................ 30 

TABLE 11 THE MAPPING BETWEEN COMPOSITE GOAL METAMODEL AND 

ARCHIMATE ELEMENTS ................................................................................................. 33 

TABLE 12 COMPARISON OF PROPOSED METHOD AND D*FRAMEWORK .................. 43 

TABLE 13 COMPARISON OF D*FRAMEWORK AND THE PROPOSED METHOD .......... 56 



1 

 

1 Introduction 

In software engineering, models and architectures are simplified representations that 

focus on certain properties of design objects. The description, visualization, and 

documentation for information systems can be simplified by modeling. Through 

modeling, abstraction degree of the system design will be increased, and verification at 

an early stage of system development becomes possible. Besides, system modeling at the 

early-stage of software development is meaningful to prevent rework caused by design 

mistakes. However, only modeling is not enough to ensure complete dependability. 

In this paper, we conducted a study on dependability assurance in system modeling. 

We first analyze the previous methods to find out the shortcomings, and then propose new 

methods to improve these shortcomings. The concept that has to be mentioned here is 

assurance case. Assurance case is widely recognized as the fundamental document to 

certify safety-critical systems. The purpose of developing assurance cases is to ensure the 

safety of a system. This research will focus on how to ingeniously combine modeling and 

assurance case to ensure system dependability as the main work. Here is another concept 

that we have to mention is “dependability”. In this paper, we used safety, security, and 

dependability to represent reliability of a system. Safety is a system attribute that reflects 

the system's ability to operate without threatening people or the environment, for example, 

insulin pump, which is a medical equipment that will be introduced later. Security is a 

system attribute that reflects the system's ability to protect itself from external attack, for 

example, cloud storage, which will be introduced as a case study in this paper. 

Dependability is a measure of a system's availability, reliability, and its maintainability, 

and maintenance support performance, and, in some cases, other characteristics such as 

durability, safety and security. 

This research is basically based on ArchiMate. ArchiMate is a visual modeling 

language for describing Enterprise Architecture. It is an open and independent modeling 

language to support the description, analysis and visualization of architecture within and 

across business domains in an unambiguous way. In this paper, the composite safety 

assurance approach is modeled by using ArchiMate, system components, processes, 

relationships, and architectures can be well treated. 

In Chapter 3 – Chapter 5, we introduced the integration method of system architecture 

and assurance case, the dependability assurance method of the three-layer enterprise 

architecture, and the safety assurance method in the design of medical equipment. In 

Chapter 6, we propose a 4-steps assurance approach for complex systems with 

interactions between processes. 



2 

 

Assurance cases for architecture diagrams are developed independently by using 

previous approaches. In Chapter 3, we propose a new method, to develop both assurance 

cases and architectures in the same diagram. It enables to efficiently assure security by 

reducing the cognition and operation gaps caused by manipulating different diagrams 

such as security assurance cases and architecture diagrams. The effectiveness of the 

proposed method is also showed by experimental evaluation. According to the 

experimental results, proposed approach is superior to the previous approach for assuring 

security. 

Besides, to ensure reliability between systems, describing both system architecture and 

assurance arguments among system elements is considered necessary. There are proposals 

for system architecture assurance, but using these previous methods often requires 

developing different diagrams with different editors. Because the visual sense of the 

previous methods is inadequate, errors readily occur when manipulating different 

diagrams. Therefore, it is essential that the assurance of dependability between 

components and systems is visualized and easy to understand. In Chapter 4, an integrated 

approach to describe the relationship between system actors and system architecture is 

proposed, and this assurance method is suitable for three-layer enterprise architecture. A 

case study is carried out and the comparison to the previous approach d* framework is 

also explained. The comparison results show that the proposed approach is more suitable 

for ensuring dependability of system architecture. 

The content of this work can be applied to many aspects. For example, the safety of 

medical devices is critical, and safety assurance is necessary for the production and 

development of medical devices. For this, in Chapter 5, we propose a method to describe 

safety assurance between healthcare system components. A case study on the insulin 

pump system, which is a medical device, is carried out to explain the method. Moreover, 

a comparison with d* framework, which is a dependability assurance approach, is 

explained to show the effectiveness of the method. The comparison results show that the 

proposed approach is more suitable for ensuring safety in safety-critical healthcare system 

architecture. 

Moreover, a problem for previous system assurance methods, is that the relationships 

between system architectures and assurance arguments are ambiguous. Also, there is no 

reasonable verification on whether there are problems with the state transition of the 

system process. In Chapter 6, we proposed a new approach for system assurance, and a 

formal process is provided to illustrate this approach. This approach consists of four steps: 

visualization of the interactions between components, processes model checking, 

dependability case creation, and composite safety assurance. Also, a case study on an 



3 

 

automatic driving system is carried out to confirm the effectiveness of this approach. 

In Chapter 3, the proposed method Intra Model Security Assurance (IMSA) was 

applied to Technology Layer and Application Layer in the system architecture. In Chapter 

4, we simplified the IMSA method to apply to the Business Layer in the system 

architecture. Then, we defined a composite assurance method for the safety-critical 

systems in Chapter 5. At last, we provide a formalized procedure for safety assurance, 

which boosts the confidence of system safety. The following table shows the 

correspondence between issues and achievements. 

 

  

Issues Methods Chapter 

System architecture diagram is 

different from assurance case 

diagram 

IMSA 3 

There is no dependability 

assurance method for 

hierarchically structured systems 

Visualized Assurance Approach 

for Enterprise Architecture 
4 

Dependability assurance for 

complex systems 
Composite Safety Assurance 5 

The manual documentation for the 

dependability evidence of 

complex systems is inefficient 

Composite Safety Assurance 

using Model Checking 
6 



4 

 

2 Background 

System modeling is indispensable in software development [1]. Unified Modeling 

Language (UML) [2] is a modeling language for object-oriented analysis and design, and 

Systems Modeling Language (SysML) [3] encompasses the entire system, including 

software and hardware. However, these traditional modeling languages do not directly 

implement dependability assurance between components and systems.  

As system assurance is the discipline that identifies and mitigates or removes 

exploitable vulnerabilities, it is increasingly important for both commercial and 

governmental activities. In the process of system development, dependability analysis for 

system components and functions is generally considered to be indispensable [1]. As for 

system assurance, conventionally, the certifier determines the safety of a system through 

checklist items, there were few explicit discussions about why the system was safe if the 

checklist items were met. Therefore, it is important to discuss not only the procedures and 

tests, but also why those procedures and tests maintain safety. Assurance case [4] is a 

document for discussing the safety of a system based on the test results and verification 

results as evidence. An assurance case is a structured argument, supported by evidence, 

used to demonstrate that a system exhibits some complex properties such as safety, 

security or reliability in a given environment. Assurance cases focused on safety are 

usually called “safety cases”. 

Assurance cases had been developed separately to assure safety, security, and 

dependability for architectural artifacts. We have proposed security and dependability 

case development methods so far. These methods assumed assurance cases are different 

artifacts from those of architectural diagrams. Using different diagrams for describing 

assurance cases leads to some problems. For example, linking architectural elements and 

the corresponding claims in assurance cases is necessary, understanding and memorizing 

different diagram structures is necessary. Besides, manipulating different diagrams 

simultaneously is also necessary. 

We know that the development of assurance case is often based on system architecture 

or system model, it is necessary to mention the model checking regarding the safety of 

system model. In computer science, model checking [5] is exhaustively and automatically 

checking whether a given model meets a given specification. NATO AEP-67, defines 

system assurance as confidence to systems [6]. So far, system diagrams used to represent 

system components, processes, relationships, and architectures have been developed 

independently, the visualization of arguments between system architecture and assurance 

cases is insufficient, and the relationships between system architecture and assurance case 

are often ambiguous. Model checking is a method for algorithmic verification of formal 



5 

 

systems, and it is often applied to hardware design. As software is undecidable, 

algorithmic approaches alone may not be perfect and may not prove or disprove. But for 

systems with explicit state transitions, model checking is also applicable.  

It must be mentioned here that the object of assurance case is not only the system 

architecture, but also the interaction between system elements, called interdependency. 

Interdependency management is important for developing contemporary systems that 

comprise acquired components and communications. To assure the dependability of a 

system A, assuring the internal dependability of A, interdependency of A, and internal 

dependability of all the systems with which A is interdependent will be necessary. 

Although Yu [7] showed that the network of intentions among the actors could be 

represented using the i*framework, the problem of how to treat the dependability of 

systems has not been solved. Some other methods can be combined with system models 

to achieve dependability assurance. When a system architecture contains assurance cases, 

d*framework [8] can be used to assure system dependability. An assurance case is a goal 

tree that shows a top claim based on decomposition into sub-claims, with evidence to 

show the validity of the bottom claims. The general form of an assurance case is a goal 

tree including a Top Claim, Sub Claims, and Bottom Claims. The validity of the bottom 

claims should be proven by evidence. 

Next, I would like to introduce some important concepts and research progress on 

dependability assurance of system architecture. 

The Goal Structuring Notation (GSN) was proposed [9] and widely used to develop 

assurance and safety cases. The Open Group (TOG) Real Time & Embedded Systems 

Forum focuses on standardizing for high assurance, secure, and dependable open systems . 

The purpose of the O-DA (Open Dependability through Assuredness) [10] standard is 

providing the concept of modeling dependability, building assurance cases, and achieving 

agreement on accountability on the event of actual or potential failures. Dependability 

Case (D-case) [11] [12], a derivative of GSN, is a technology and a tool used to describe 

dependability. In addition, when there is a need to describe the relationship between 

models, safety case construction [13] can be used. The argument patterns [14] have been 

proposed to help engineers develop assurance cases. A security argument pattern and 

security case based on common criteria [15] have been proposed for assuring security. 

Mobile security assurance approaches based on attributed GSN [16] had been proposed. 

Attributed GSN can manage values assigned to claim nodes to represent goal achievement 

ratio. These attributes are useful to compare solutions. 

The more generic approach to generate assurance cases based on the elements and 

relationships of the architecture described in ArchiMate [17] [18] had been proposed. 



6 

 

ArchiMate is a visual modeling language for describing Enterprise Architecture. UML 

(Unified Modeling Language) focuses only on modeling software. SysML (Systems 

Modeling language) focuses on systems modeling. ArchiMate can be used to model 

business, application, and technology architectures as well as motivation aspects. The 

motivation aspects include business drivers, principles, assessments, goals, requirements, 

and constraints. The motivation elements can be used to represent claim goals and 

evidence. A non-functional requirements (NFR) framework [19] can also be modeled as 

the function of motivation elements in ArchiMate. The elements in the business and 

technology layers cannot be represented by UML or SysML. SysML has the capability of 

requirements diagram description, but different types of elements are indistinguishable in 

SysML. However, the elements in the business layer, application layer, and technology 

layer can be related by the motivation elements in ArchiMate. 

There are many studies on ArchiMate. Grandy and others [20] proposed an integrated 

approach on EA and security risk management. Their approach was limited by the 

capability of ArchiMate 2.0 that is a former version of the current Archi-Mate 3.0. For 

example, their approach did not use the influence relationship between requirements and 

countermeasure concepts. Feltus and others described a meta-model for SCADA 

(Supervisory Control and Data Acquisition) systems and then by using ArchiMate they 

described components behavior for mitigating cyber-crime actions. The approach did not 

clarify the influence impacts on assurance between particular crime mitigation 

components and risk management policies. Korman and others [21] compared ArchiMate 

2.0 concepts with various risk assessment methods. They clarified the concept coverage 

of ArchiMate. Although they concluded that ArchiMate models might be a source of 

guidance for risk assessments, they did not clarify the detailed security assurance method 

using ArchiMate. Band [22] published a White Paper to provide guidelines to ArchiMate 

users on modeling enterprise risk and security. The contribution of this White Paper has 

been called a “Risk and Security Overlay” (RSO) of the ArchiMate language. Abbass and 

others [23] described an Information System Security Risk Management (ISSRM) model 

by the constructs of ArchiMate. Mayer and Feltus evaluated the risk and security model 

of ArchiMate using ISSRM [24]. The completeness of the RSO visual expressions has 

been evaluated with regard to ISSRM and cognitive effectiveness by using the nine 

principles of Moody [25].  



7 

 

3 IMSA - Intra Model Security Assurance 

3.1 IMSA 

Although we developed a method [26] to generate assurance cases exhaustively based 

on architecture diagrams, the method has not been widely accepted by field engineers in 

Japan. Our investigations on Japanese engineers showed that they did not want exhaustive 

assurance cases, but wanted more focused local assurance cases. For the local assurance 

cases, it is troublesome to manage different two diagrams such as architectural and 

assurance case diagrams.  

In this section, we describe assurance claims and evidence in a united architectural 

diagram, the local assurance of architecture will be realized by only using a united 

architectural diagram consolidating architecture and security case descriptions. In our 

opinion, assurance case elements could be represented in the architectural diagrams, so it 

could be easy to assure architectures because there is no need to change different diagrams 

to check elements among diagrams. Here we propose an Intra Model Security Assurance 

(IMSA) approach for developing security cases by relating elements of security case with 

those of architecture in architecture diagrams. Using the approach will reduce the gap 

between exchanging architecture and security case diagrams. The approach will also have 

the possibility of efficiently assuring security of architectures. To clarify the superiority 

of the proposed method against to the previous approach, a case study and an experiment 

are conducted. In the case study, diagrams for architecture and security case for both 

methods were developed and compared for a secure retrieval of cloud storage service. In 

the experiment, diagrams for architecture and security case for both methods were also 

developed and compared for Healthcare device and Smart house systems. For comparison, 

two groups of subjects are assigned to answer questions on both approaches. The time 

and correctness of questions are evaluated to compare both methods. 

3.1.1 Meta model of Architecture and Security case 

It is necessary to represent architecture and security case in the same diagrams. Figure 

1 integrates meta-models of architecture and security case. The meta-model of 

architecture consists of the target of assurance, elements and relationships. The target of 

assurance represents the system as a whole. The meta-model of security case consists of 

target of assurance, property, risk, countermeasure, and evidence. The evidence will be 

realized by elements of the target system. 



8 

 

 

Figure １ Meta model of architecture and security case 

3.1.2 Using ArchiMate for Security Case 

As ArchiMate provides elements to describe motivations of architectures. The 

motivation elements are driver, assessment, goal, and requirement. Table 1 shows an 

interrelationship among the metamodel, security case and motivation elements. 

Table 1 Meta model, Security case and Motivation elements of ArchiMate 

Meta model Security case Motivation elements 

Property Top Claim Driver 

Risk Context Assessment 

Countermeasure Sub claim Goal 

Evidence Evidence Requirement 

In security case, property, risk, countermeasure, and evidence of meta-model are 

described by top claim, context, sub claim, and evidence, respectively. In ArchiMate, 

property, risk, countermeasure, and evidence of meta-model are described by driver, 

assessment, goal, and requirement, respectively. Figure 2 shows a generic example of 

security case configuration in ArchiMate. Although the figure only shows one risk for 

property, many numbers of risks can be allocated to the property. In the same way, other 

numbers of countermeasure and evidence can also be added for risk and countermeasure, 

respectively. 



9 

 

 

Figure ２ Security case configuration in ArchiMate motivation elements 

3.2 Case Study 

This section gives an example of secure retrieval on cloud storage, and explains in 

ArchiMate. 

3.2.1 Target System 

The target system is composed of a search server, a cloud storage server, and a user 

who wants to search files. All data stored on cloud storage server is encrypted, including 

the file that stores search information. The cloud storage server can’t decrypt any data 

because it does not have decryption keys. The search server can only get the search 

information file from the cloud storage server and only has the decryption keys of search 

index. The search server decrypts the corresponding index file based on user’s attributes 

so that the user only can search in the corresponding scope by his own attribute. The 

encryption algorithm in this target system is Ciphertext-Policy Attribute-Based 

Encryption, CP-ABE, which is a new Public-Key cryptography and it is suitable for data 

sharing. This target system is shown in Figure 3. 



10 

 

 

3.2.2 Target System in IMSA 

The target architecture described in ArchiMate is shown in Figure 4. Figure 4 shows 

application and technology architecture. In the technology layer, Cloud Storage Server 

stores Encrypted Index and Encrypted file data. The CP-ABE tool on Search Server has 

Encrypting and Decrypting functions. Network realizes Communication Protection. 

In the application layer, Search Processing is composed of Attribute Checking, 

Decoding and Searching. Attribute Checking function checks the Attribute from the user, 

Decoding function decrypts Encrypted Index, then Searching function performs a 

retrieval. Attribute Checking, Decoding and Searching realize Checking Service, 

Decoding Service and Searching Service respectively. Checking Service, Decoding 

Service and Searching Service serve Secure Search. User Device, Search Server and 

Cloud Storage Server are connected by Network. Communication Protection which 

realized by Network encrypts communication. System software on server realizes Login 

Check and Identity Check. 

Figure ３ Secure Retrieval on Cloud Storage 



11 

 

 

Figure ４ Secure Retrieval on Cloud Storage Architecture in ArchiMate 

The security of the target system architecture is analyzed from the point of 

confidentiality includes data confidentiality, communication confidentiality and retrieval 



12 

 

confidentiality. The security case for the confidentiality on the target system architecture 

is shown in Figure 5. Figure 5 integrates the target system architecture and the 

corresponding security case in the same ArchiMate diagram. 

Security issues include Storage Server Data Leakage, Index Data Tampering, 

exceeding authority, Search Server Data Leakage, Attribute Forgery, Keyword Disclosure 

and Keyword Tampering. Detect Illegal Users will be effective countermeasure for Server 

Data Leakage. The countermeasures for Index Data Tampering, Keyword Disclosure, 

Keyword Tampering and exceeding authority are to increase the difficulty of 

implementing these actions. The evidence for the countermeasures of Server Data 

Leakage is Login Authentication and User 

Authentication, The evidence for the countermeasure of Index Data Tampering is 

Pairing, The evidence for the countermeasure of exceeding authority is Search Scope 

Judgement, the evidence for the countermeasure of Attribute Forgery is Digital Signature, 

the evidence for the countermeasures of Keyword Disclosure and Keyword Tampering 

are Communication Encryption and Hash Check, respectively. These requirements are 

realized by Identity Check function, Login Check function, Pairing function, Secure 

Search process, Attribute Checking function, Encoding function and Hush function, 

respectively. 

3.2.3 Target System in D-case 

The security case for the target system is also described by using D-case as follows. D-

Case is a tool to describe GSN, which had been developed in the course of DEOS project. 

Figure 6 shows the security case of target system. 

 



13 

 

 

Figure ５ Intra Security Case Example for Secure Retrieval on Cloud Storage 



14 

 

 

Figure ６ Security Case Using D-case 



15 

 

3.2.4 Comparison 

Table 2 shows the number of nodes of the system. The number of architecture nodes 

for the target system is 30. The number of security case nodes for D-Case in the target 

system is 48. The number of security case nodes for ArchiMate in the target system is 27. 

The number of nodes for ArchiMate is smaller than those of D-Case and the reduction is 

about 44%. The reason is there is no need to describe context and decomposition nodes 

in ArchiMate. In D-Case, 12 context nodes are used to correspond with architecture 

elements and claims. Moreover, ten decomposition nodes are necessary to decompose 

claim nodes into sub claim nodes in D-Case. 

Table 2 Number of Nodes of models and security cases 

Meta model Number of Nodes 

Model in ArchiMate 30 

Security case in D-Case 48 

Security case in 

ArchiMate 
27 

Table 3 shows the number of relationships of the system. The number of relationships 

for the target system is 30. The number of relationships for D-case in the target system is 

44. The number of security case relationships in ArchiMate for the target system is 28. 

The number of relationships for ArchiMate are smaller than those of D-Case and the 

reduction is about 36%. The reduction of relationships is smaller than the reduction of 

nodes and the reason is that there are 7 relationships between security case and system 

model. 

Table 3 Number of Relationship of models and security cases 

Meta Model Number of Relationship 

Model in ArchiMate 30 

Security case in D-Case 44 

Security case in ArchiMate 28 

Between security case and model 7 

3.3 Experiment 

In order to evaluate the proposed method, we compare the method with the previous 

approach. We conducted experiments on two systems to improve the accuracy of the 

experimental results, and selected Healthcare device system and smart house system as 



16 

 

the experiment object. Table 4 shows the number of nodes of the systems. The number of 

architecture nodes for the Healthcare device and Smart house systems are 28 and 36, 

respectively. The numbers of security case nodes for D-Case in the Healthcare device and 

Smart house systems are 103 and 150, respectively. The number of security case nodes 

for ArchiMate in the Healthcare device and Smart house systems are 55 and 72, 

respectively. Six subjects are decomposed into two groups A and B. Each group contains 

three subjects. Subjects are all students who know D-case and ArchiMate. In the 

comparative experiment, six subjects are ordered to answer the four questions defined for 

each system in Table 5. 

Table 4 Number of Nodes of models and security cases 

Method 
Healthcare device 

system 
Smart house system 

Model in ArchiMate 28 36 

Security case in D-Case 103 150 

Security case in 

ArchiMate 
55 72 

Table 5 Questions of experiments 

Questions Healthcare device system Smart house system 

What is the Threat for the 

asset? 
Healthcare data Operation information 

What is the evidence for 

the 

countermeasure of the 

threat? 

Threat for the pairing key 
Threat for the smart device 

states 

What element realizes the 

evidence? 

Elements to realize above 

evidence 

Elements to realize above 

evidence 

What is the function does 

not realize the evidence? 

Missing functions for the 

above evidence 

Missing functions for the 

above evidence 

Table 6 shows the combination of subject groups and target systems. Each group 

consists of three members. 

Table 6 Combination of the experiment 

Group Healthcare device system Smart house system 

A Previous Proposed(IMSA) 



17 

 

B Proposed(IMSA) Previous 

In the experiment, the average time to answer questions and the average ration of 

correct answers are collected. The results of the experiment are shown in Figure 7 and 

Figure 8. Figure 7 shows the comparison of average time to answer questions. The figure  

shows the average time to answer for the proposed approach is less than those of previous 

approach for two groups. 

 

Figure ７ Comparison of average time to answer questions 

Figure 8 shows the comparison of average correct ratios of questions. The figure shows 

the average correct answer ratio for the proposed approach is greater than those of 

previous approach for two groups. 

 

Figure ８ Comparison of average correct ratio of questions 

3.4 Discussion 

3.4.1 Comparison of the previous and proposed approaches 

Table 7 summarizes the comparison between proposed and previous approaches to 

assure security of the architectures. The proposed approach can easily correspond with 



18 

 

security cases and architecture elements. Previous approach can not directly relate 

elements of assurance cases and architectures. In case of the previous approach, it is 

necessary to use specific security case editor other than architecture editors for developing 

and exploring security cases. The mapping rules between security case and architecture 

diagrams are necessary to develop security cases for the previous approach. The mapping 

rules of the previous approach should be collected as security case patterns for different 

architecture domains. Different from the previous approach, the proposed approach only 

needs to define the usage rule of motivation elements for security case as shown in Table 

7. 

Table 7 Comparison of approaches 

Items Previous approach Proposed Approach 

Artifacts 
Architecture diagram and 

GSN 
ArchiMate 

Relations among elements By using names indirectly By relating nodes directly 

Editing operations By using 2 diagram editors By using ArchiMate editor 

Rules of diagramming 
Mapping rules between 2 

diagrams 

Description rules of 

security case in ArchiMate 

3.4.2 Effectiveness 

The case study in Section 3.2 showed that the proposed approach could reduce the 

number of nodes and relationships by approximately 40%. The correctness ratio of the 

proposed method was higher than those of the previous method. The time to answer 

questions of the proposed method was also less than those of the previous method. These 

results showed the effectiveness of the proposed method. This result positively verified 

our hypothesis that using one diagram is superior to using two different diagrams for 

assuring security. 

3.4.3 Limitation 

The number of subjects in the experiment was small. The experiments using more 

number of subjects are necessary to generalize the result of the paper. The productivity 

and quality of the proposed method were not evaluated. It is also necessary to evaluate 

these fundamental properties for the proposed approach. 

  



19 

 

4 Visualized Assurance Approach for Enterprise Architecture 

In d*framework, an actor node is used to relate the assurance case, the interaction 

parameters in system architecture can be represented by D (X, Y) in the d*framework. In 

detail, X and Y are related systems and D (X, Y) is the inter-dependability condition to 

assure that Y meets the dependability requirements of X. Such a relationship is termed an 

“open depend-on relationship.” If an actor is undefined, the undefined actor is described 

by “*.” The relationships in system architecture can be graphically represented in the 

d*framework, but the visual sense of the d*framework is inadequate. The premise of 

development using the d*framework is the existence of a collaboration diagram; therefore, 

the scope of the d*framework is limited when assuring dependability between software 

components. Moreover, in terms of visualization, the performance of previous methods 

is not outstanding. A newly unified and visualized method that describes not only the 

system architecture but also assurance cases is necessary.  

This section proposed a composite dependability assurance approach to describe 

dependability arguments among actors including business actors, application actors, and 

technology actors. This is completed using ArchiMate, which is a modeling language for 

development of enterprise architecture models. ArchiMate provides a clear method for 

visualizing construction and business processes: operation, organizational structure, 

information flow, application service, and technology infrastructure.  

4.1 Visualized Assurance Approach 

In this section, a general structure of visualization for enterprise architecture is 

described in Figure 9, and Figure 10 shows a model that can integrate system architecture 

and security cases. The mapping between system architecture and actors in the business 

layer is also clarified in Figure 10 This model enables improvement of the efficiency of 

dependability assurance and of the visual sense. This is because the cognition and 

operation gaps caused by manipulating different diagrams, such as assurance case and 

system architecture diagrams, are reduced by using an integrated diagram and a unified 

modeling language. Compared to previous methods, this approach can also provide visual 

convenience for people in different fields. In the following, an example is provided to 

describe the internal behavioral relationship between actor and assurance case. 

In this section, the meta-model for assurance case and business layer actors of the 

system architecture is proposed. In previous research [27] [28], the security assurance 

methods for the application and technology layers were only clarified; no proposal was 

made for the relationship between the actors of the business layer. For visualization of the 

dependability in the business layer, herein is presented an interdependence relation 



20 

 

method that is explained in next section using ArchiMate. Regarding the assurance cases 

in the application and technical layers, the previous research methods remain applicable. 

 

Figure ９ General structure of visualization for enterprise architecture 

4.1.1 Model of the Relationship for the Business Layer and Assurance Case 

Figure 10 shows the meta-model that integrates the system architecture and assurance 

case. The business layer of the system architecture is represented by orange in the diagram. 

In this meta-model, the business layer consists of two actors, which show an 

interdependency relationship. In the assurance case, there are four elements: property, risk, 

countermeasure, and evidence. The evidence will be realized by actor Y in the business 

layer; then, the countermeasure will be proved by the evidence. Next, the risk that 

threatens the property will be resolved by the countermeasure. Lastly, the property 

satisfies actor X in the business layer. A case study is used in Section 4.2 to analyze this 

model. 



21 

 

 

Figure １０ Model of relationship for business layer and assurance case 

4.1.2 Using ArchiMate to Define the Mapping Relationship between the Assurance 

Case and Actor 

Table 8 shows the mapping relationships for the model in Figure 10. 

Table 8 Mapping between the meta-model and ArchiMate elements 

Meta model ArchiMate 

Property Driver 

Risk Assessment 

Countermeasure Goal 

Evidence Requirements 

Actor Business Actor 

In the previous study [24], the internal relationship of assurance case in ArchiMate was  

proposed, this section proposed a method for combining the assurance case with the actors 

in business layer as shown in Figure 11. In this model, the interrelationship between 

business actor and assurance case is described by the influence, association and 

realization relationship. Actor Y realizes the requirement and influence the 

countermeasure, the property associates Actor X. 



22 

 

 

Figure １１ Model of relationship for business layer and assurance case in ArchiMate 

4.1.3 Definition of the Mapping between the Business Actor and Composite 

Dependability Goals 

To describe the dependability goals in the d*framework, a method for mapping the 

depend-on relationship between actors is proposed. For a goal, actor X depends on 

another actor, Y. The goal realized by actor Y will influence Actor X. In this study, the 

depend-on relationship is expressed by the association and realization relationships in 

ArchiMate. Figure 12 shows an example of the depend-on relationship. In this figure, a 

student is associated with the goal expressed as “The lecture is interesting,” and the 

teacher realizes this goal. 

 

Figure １２ Example of a depend-on relationship 

4.1.4 Combination of Depend-on Relationship and Assurance Case 

To clarify the depend-on relationship between actors, the composite dependability goal 

will be decomposed into an assurance case such as that shown in Figure 11. In the case 

presented here, a student wants to have a dependable cram school (college preparation 

school) but is worried that the teaching level of the teacher is not sufficiently high. He 

needs a qualified teacher. In this case, that the cram school is dependable will be the 



23 

 

property; the risk is insufficient teaching level; the countermeasure is verifying the 

teacher's teaching level; and lastly, an adequate teacher qualification will be the evidence. 

According to Table 1, property, risk, countermeasure, and evidence will be represented 

by the drivers, assessment, goal, and requirements in ArchiMate. Figure 13 shows this 

case in ArchiMate. 

 

Figure １３ Using ArchiMate to describe the dependency relationship 

4.2. CASE STUDY 

4.2.1 Digital Signature Process 

To explain this proposal, a case study is highlighted in the following. The target system 

is the digital signature process and the dependability among the sender, receiver, and key 

generator is analyzed. Although this process is typically more complicated, the system 

structure is simplified here to explain the approach of this section accurately. Figure 14 

shows the architecture of the digital signature process using ArchiMate.  

In this diagram, there are 3 actors, 6 business processes, 2 application elements, and 4 

technology elements. Actors include sender, receiver, and key generator. These business 

processes include requests for key generation, signature generation, key pair generation, 

decryption signature, hash calculation, and comparison. In the application layer, there is 

a sender interface and a receiver interface. In the technology layer, there is a sender device, 

receiver device, and key generator device. 

The digital signature process works as follows: 

1. Sender requests key generation from key generator. 

2. Key generator generates and sends key pair to sender. 



24 

 

3. Sender sends public key to receiver. 

4. Sender encrypts hash value of data; sends to receiver. 

5. Receiver decrypts encrypted data with public key; makes comparison. 

 

Figure １４ Digital signature process in ArchiMate. 

4.2.2 Depend-on Relationship in a Digital Signature Process 

For this digital signature process, all of the depend-on relationships among the actors 

are explained as follows: 

1. The sender depends on “Generated key is reliable” for the key generator. 

2. The receiver depends on “The signature is dependable” for the sender. 

In Section 4.1, the model of a relationship for the business layer and assurance case in 

ArchiMate is introduced. Figure 15 describes the composite dependability by using the 

proposed approach based on Figure 14. Because the depend-on relationship between 

actors in the business layer is only highlighted, Figure 15 does not show the elements of 

Risk, Countermeasure, and Evidence for each assurance case. When the details of an 

assurance case are required, all elements should be treated similar to the example in 

Figure 15. This is done by using the method proposed in Section 4.1, and the elements in 

the application and technology layers are used as evidence because of the previous 

proposal [24]. 



25 

 

 

Figure １５ Depend-on relationships of the digital signature process in ArchiMate 

4.2.3 Assurance Case in the Application and Technology Layers 

Figure 15 only defines the depend-on relationships; if the corresponding evidence for 

dependability is necessary, according to the model in Section 4.1, the evidence for these 

depend-on relationships can be treated as follows. In Figure 16, taking “Signature is 

dependable” as an example, the realization relationship between Evidence and Goal is 

clarified. 

In the receiver interface, there are 3 functions: signature decryption, hash calculation 

and hash comparison. If the result of the hash comparison is consistent, the goal of 

“Signature is dependable” can be achieved. 



26 

 

 

Figure １６ An assurance case for the digital signature process in ArchiMate 

In a complex system architecture, there may be many actors. To rapidly clarify 

dependencies among complex relationships, it is necessary to highlight the depend-on 

relationships among actors in an acceptable manner. Figure 17 shows the depend-on 

relationships between business actors based on Figure 17. For the assurance case in Figure 

16, the evidence for the assurance case is the hash comparison function, but the 

relationship between the hash comparison function and the receiver actor in the business 

layer is a serving relation; therefore, it can be said that the dependability of a signature is 

realized by the receiver actor, as shown in Figure 17. 

 

Figure １７ Depend-on relationships between business actors 

4.3. Discussion 

The method for description of the interdependency relationship between business 



27 

 

actors was previously illustrated. The d*framework can also be used to assure an 

interdependency relationship. In the following section, the d*framework and the proposed 

approach are compared in detail, and the effectiveness and limitations of the new proposal 

are discussed. 

4.3.1 Comparison of ArchiMate and d*framework 

In Table 9, the comparisons between the proposed method and the d*framework 

include actor, dependability claim, relationship, and system configuration. For the actor, 

only the module node can be used in the d*framework, but in ArchiMate, all of the 

following (Business Actor, Component, Interface, Device, and Artifact), can be used as 

an actor. For example, the hash comparison function is regarded as an actor in Figure 16 

and the business actor is regarded as an actor in Figure 17. 

Table 9 Comparison between ArchiMate and d*framework 

Objects ArchiMate d*framework 

Actor 

Business Actor, 

Component, Interface, 

Device, Artifact 

Module 

Dependability Claim 
Requirement, Goal, 

Assessment, Driver 
Goal 

Relationship 
Realize, Association, 

Influence, Serving 
Depend on 

System Configuration Enterprise Architecture Collaboration diagram 

For the dependability claim, the goal represents the dependability claim in 

d*framework. However, in ArchiMate, the dependability claim can be represented as a 

requirement, goal, assessment, or driver, as shown in Figure 11. 

For the relationship, d*framework can only use the depend-on relationship to represent 

the relationship between actors. However, in ArchiMate, the relationships of Realize, 

Association, Influence, and Serving can be used to represent relationships between actors 

in a more delicate way. 

For the system configuration (because the d*framework does not have the capability 

to describe system architecture), collaboration diagrams are indispensable. However, 

because ArchiMate can be used for modeling system architecture, system architecture and 

dependability relationships can be well visualized. 

Here, an additional example of a medical system is provided for comparing the number 

of architecture nodes and the number of relationships, and then explained in the 



28 

 

ArchiMate and d*framework, respectively. 

Figure 18 shows the assurance case and the corresponding system architecture in the 

proposed approach. This a healthcare system for blood pressure measurement. The user 

can measure blood pressure by using this device and the measured data can be sent to a 

cloud server via mobile phone. The data are received and stored by the cloud server. Here, 

only data confidentiality is considered for the assurance case of the target system 

architecture. 

 

Figure １８ Assurance case of a healthcare system in ArchiMate 

In Figure. 18, the upper part is system architecture, and the lower part (purple) is the 



29 

 

assurance case for the system architecture. It shows that the proposed approach can 

directly assure the system architecture.  

Figure 19 shows the framework, in which the definition of the d*framework is as 

follows. 

・Actor is the node type for a system. Actor can have goals, strategies, evidence, and 

contexts. 

・Goal is achieved by Actor. It is represented by node type, and it can be decomposed 

into sub-goals or sub-strategies. 

・A strategy clarifies how to achieve Goal. A strategy can also be decomposed into sub-

goals and sub-strategies. 

・Evidence is the node type supporting Goal, such as test reports, specifications, and 

procedure manuals. 

・Context is the external information regarding Goals and Strategies. 

 

Figure １９ Outline of d*framework 

Figure 20 shows an example of an assurance case in the d*framework. D-Case Editor 

[29] was developed as a tool for creating D-Case in the DEOS project, and the example 

shown below was created by the D-Case Editor. 



30 

 

 

Figure ２０ Assurance case of a healthcare system in the d*framework 

The results are summarized in Table 3. For this case, the assurance case nodes number 

in the proposed method is 16 and the number of nodes in the d*framework is 21. The 

number of assurance case relationships in the proposed method is 17, while it is 20 in 

d*framework. 

In summary, for the description in Actor, Dependability Claim, Relationship, and 

System Configuration, ArchiMate is superior to d*framework, and ArchiMate is more 

suitable in terms of assuring composite dependability. However, the number of 

relationships and nodes in ArchiMate is less than that of the D-case according to the 

example in the appendix. This result shows that, to some extent, the proposed method is 

more concise than the d*framework. 

Table 10 Number of nodes and relationships in ArchiMate and d*framework 

 Number of Nodes 
Number of 

relationships 

ArchiMate 16 17 

d*framework 21 20 

4.3.2 Effectiveness 

As previously mentioned, the ArchiMate diagram is effective for dependability 

assurance. The effectiveness is summarized as follows. 

In Section 4.1, assurance case methods based on system architecture diagrams were 



31 

 

clarified. When compared to the d*framework, ArchiMate is more effective for element 

diversification. The assurance case can be concretized by relating the elements in the 

application or technology layer. The assurance case can also be simply abstracted to 

represent the relationship between the actors in the business layer. 

Because actors can be directly defined with system architecture in ArchiMate, the 

relationships between actors and the relationships between actors and system components 

are further clarified. In addition, the arguments of the assurance case can be easily defined 

using the motivational elements and the relations in ArchiMate. 

Finally, from the visualization perspective, using ArchiMate to describe dependability 

relationships has advantages over the previous methods. 

4.3.3 Limitations 

Although the digital signature process was well evaluated in this study, it is necessary 

to evaluate some other systems to confirm the effectiveness of this proposal. Moreover, 

because the dependability assurance in the business layer is a depend-on relationship and 

is different from the description of the application or technology layers, it may be 

necessary to separately evaluate the method for the business layer. 

  



32 

 

5 Composite Safety Assurance for Healthcare Devices 

Some classes of system are critical systems where system failure may result in injury 

to people, damage to the environment, or extensive economic losses. Examples of critical 

systems include embedded systems in medical devices, such as an insulin pump. As 

system failure may lead to user injury, the development of medical device often requires 

safety assurance. 

Interdependency should be clarified for managing healthcare devices. It is necessary to 

describe interdependence of system actors for clarifying the safety assurance. That is to 

say, the interdependency of the system components, and the internal dependability of the 

system components should be proved to assure the dependability of a system. Although 

Yu [7] showed that the network of intentions among the actors could be represented using 

the i* framework, the problem of how to treat the dependability of systems has not been 

solved. 

Some other methods were proposed to achieve dependability assurance. The purpose 

of developing safety case is to ensure the safety of a system. As previously mentioned, 

the Goal Structuring Notation (GSN) was proposed and widely used to develop assurance 

and safety cases. The argument patterns had been proposed to help engineers develop 

assurance cases. Besides, a security argument pattern and security case based on common 

criteria [15] has been proposed for assuring security. In the absence of any clearly 

organized guidelines concerning the approach to be taken in decomposing claims using 

strategies and the decomposition sequence, engineers often do not know how to develop 

their arguments. For this, assurance cases were summarized and prospected by 

Bloomfield and Bishop [30]. Besides, d* framework, which is a derivative of GSN, is 

used to assure system dependability. In d*framework, an actor node is used to relate the 

assurance case. The premise of development using the d*framework is the existence of a 

collaboration diagram. Therefore, the scope of the d*framework is limited when assuring 

dependability between system components. Moreover, in terms of visualization, the 

performance of d* framework is not outstanding.  

Goal-oriented approaches [31] are applied to analyze healthcare processes [32] [33]. 

Enterprise Architecture (EA) [17] can be used to model medical systems. For example, 

Eldein [34] discussed EA for the cloud service of mobile healthcare. Ahsan [35] designed 

and provided the insight of an EA approach to process architecture for healthcare 

management. Yamamoto proposed an ArchiMate pattern to analyze e-health business 

model [36]. Zhi proposed a method to assure the dependability between business actors 

[37], but the assurance between system components is not clarified. 



33 

 

5.1 Composite safety assurance 

In this section, the metamodel for composite dependability is proposed. We have 

proposed an intra model security assurance (IMSA) [27] method to describe security 

assurance, but the dependability relationships between system components cannot be 

treated, for the interdependence between system components, we propose the metamodel 

as shown in Figure 21, which shows the metamodel of the composite goal concept. The 

depender component depends on the composite goal. The dependee component achieves 

the composite requirements that realize the composite goal and countermeasure through 

composite requirements. 

 

Figure ２１ Metamodel of composite goal 

Next, we use ArchiMate to describe the composite goal metamodel. Table 11 shows the 

mapping relationships between the metamodel and ArchiMate elements. 

Table 11 The mapping between composite goal metamodel and ArchiMate elements 

Composite goal meta model ArchiMate elements 

Stakeholder,  

System, Component 

Actor,  

Application component, Node 

Composite Goal  Driver 

Depender
Component

Composite goal
depend-on

realize

Dependee
Component

System 

Composite goal
risk

Composite 
countermeasure

Composite 
requirements

threat

resolve

realize

realize



34 

 

Composite goal risk Assessment 

Composite countermeasure Goal 

Composite requirements  Requirements 

Figure 22 shows the definition of safety case in ArchiMate. The interrelationship 

between elements is described by the influence and realization relationship in ArchiMate. 

The realization relationship is used between countermeasures and requirements. The 

influence relationship between safety goal, risk, and countermeasure is negative. 

 

Figure ２２ Example of Safety Case in ArchiMate 

To describe the dependability goals in d*framework, a method for mapping the depend-

on relationship between actors has been proposed. Suppose that an actor X depends on 

another actor Y for the safety goal. The safety goal which realized by the actor Y will 

support the safety of the Actor X. In this section, the depend-on relationship is defined by 

the association and realization relationships in ArchiMate. Figure. 23 shows an example 

of the depend-on relationship using ArchiMate. In this figure, a patient is associated with 

the safety goal expressed as “Blood sugar is balanced,” and the insulin pump realizes this 

goal. 



35 

 

 

Figure ２３ Example of composite safety relationship 

According to the above approach, the composite safety between patient and insulin 

pump is defined in ArchiMate as follows in Figure 24. 

 

Figure ２４ Using ArchiMate to describe Composite safety between Patient and Insulin 

pump 

5.2 Composite safety assurance method 

We introduce the steps of the composite safety assurance method in this section. 

[STEP1] Describe system architecture with ArchiMate 

System architecture is a generic discipline to handle systems, and it is the study of early 



36 

 

decision making in complex systems [38]. Systems modeling language (SysML) and 

Unified Modeling Language (UML) are applied to model system architecture. However, 

these modeling languages only focus on modeling software and system architecture. In 

order to achieve composite safety assurance, we use ArchiMate to describe system 

architecture and assurance case. 

[STEP2] Identify composite safety goals between components 

Complexity theory implies that system components are interdependent to the extent 

where changes in one component may affect another, or result in failure of interconnected 

systems [39]. Identifying, understanding, and analyzing critical architecture 

interdependencies are essential [40]. Thus, it is necessary to identify the interdependency 

between system components. But what safety goals should be set between system 

components is not within the scope of this section. We have introduced how to use 

ArchiMate to define the composite safety assurance relationships, and will further clarify 

this method based on a case study of insulin pump in the next section. 

[STEP3] Safety goals elicitation 

In order to ensure the safety of a critical system, safety goals should be extracted after 

confirming the relationships between system components. For goals elicitation, the risks 

of a system should be grasped. Safety goals can be derived from the corresponding risks. 

Figure 4-3 showed an example of safety goal, which is “Blood sugar balance”. 

[STEP4] Requirements elicitation for safety goals 

In safety assurance, the requirements are necessary for the realization of a goal. Here, 

the requirement intended to finally support an elaborated goal, such as the verification 

results of tests or techniques. Namely, the requirements should be met by a software 

system in order for that system safe and stable [41]. In Figure 4-4, the requirement for the 

safety goal is “Blood sugar is managed”. 

[STEP5] Safety goals assurance using composite requirements 

A safety goal should be realized by requirements. In general, each requirement should 

have corresponding evidence. In Figure 4, the corresponding evidence for the requirement 

is “Insulin pump”, which is a system actor in the system architecture. 

5.3 Case study of the proposed method 

In this section, to illustrate the proposed approach, we use the 5-steps method described 



37 

 

in the previous section to analyze an insulin pump, which is a medical device. The insulin 

pump in this case study is for personal use. In recent years, insulin pump is gradually 

accepted, and its safety has also widely received attention [42] [43]. Zhang analyzed the 

hazards for the insulin pump [44]. 

[STEP1] Describe insulin pump system architecture with ArchiMate 

We modeled the insulin pump system architecture using ArchiMate as shown in Figure 

25. It is an ArchiMate model to illustrate how the insulin pump software transforms an 

input blood sugar level to a sequence of commands that drive the insulin pump. This is 

an embedded system, which collects the information from a sensor and controls a pump 

that delivers a controlled dose of insulin to a patient. In this section, we discussed only 

the software related safety issues. The safety issues related to hardware and environment, 

such as battery and extreme environment will not be discussed. 

In the figure, the patient interacts with the insulin pump through the user interface. The 

patient can receive the information from the output device and input commands through 

the input device using the user interface. 

The insulin is administered to the patient by the insulin pump via a delivery path, which 

composed of the insulin reservoir, the insulin delivery mechanism, and the blood sensor. 

The insulin reservoir and the insulin delivery mechanism are monitored and administered 

by the insulin pump actuator and controller. The pump delivery mechanism can make 

insulin delivered from the pump to the patient at a prescribed time or rate. The insulin 

pump control component includes blood calculation function, insulin dose computation 

function, compute pump command function and exception handling function. For the 

exception handling, if the software fails, the safe dose of insulin will be set and insulin 

pump will alerts. 

 



38 

 

 

Figure ２５ Insulin pump system in ArchiMate 

A software-controlled insulin delivery system might work by using a microsensor 

embedded in the patient to measure some blood parameter that is proportional to the sugar 

level. Then the blood parameter will be sent to the pump controller. This controller 

computes the sugar level and the amount of insulin that is needed. At last, it sends signals 

to a miniaturized pump to deliver the insulin via a permanently attached needle. 

[STEP2] Identify composite safety goals between insulin pump system components 

Next, we would like to explain the safety issues about the insulin pump. Obviously, the 

insulin pump system is a safety-critical system. Safety assurance is necessary for the 

development process. If the pump fails to operate or does not operate correctly, then the 

patient’s health may be damaged or they may fall into a coma because their blood sugar 

levels are too high or too low. Therefore, the system must meet two essential requirements 

as follows. 

1. The system should provide insulin when insulin is required. 

2. The system should perform reliably and deliver the correct amount of insulin to 

offset current blood glucose levels. 



39 

 

Here, we analyze the insulin pump working process as follows.  

1. “Blood sensor” measures blood sugar level. 

2. “Blood calculation function” analyzes the result of blood sugar level. 

3. “Insulin dose computation function” calculates the insulin dose. 

4. “Compute pump command function” conducts based on calculation results. 

5. “Insulin delivery mechanism” delivers insulin through infusion set according to the 

command. 

[STEP3] Safety goals elicitation in insulin pump architecture 

For this architecture, we analyze the 5 depend-on relationships among these actors as 

follows. 

1. “Blood sensor” depends on “The sensor is dependable” for “Blood calculation 

function”. 

2. “Blood calculation function” depends on “The blood calculation is dependable” 

for “Insulin dose computation function”. 

3. “Insulin dose computation function” depends on “The insulin computation is 

dependable” for “Compute pump command function”. 

4. “Compute pump command function” depends on “The pump command is 

dependable” for “Insulin pump actuator”. 

5. “Insulin delivery mechanism” depends on “The insulin delivery is dependable” 

for “Patient”. 

We add these depend-on relationships as safety goals into the system architecture by 

using the method previously mentioned. Figure 26 shows the depend-on relationship on 

the insulin pump system in ArchiMate. 



40 

 

 

Figure ２６ Depend-on relationship on the insulin pump system in ArchiMate 

 [STEP4] Requirements elicitation for insulin pump safety goals 

As previously mentioned, the corresponding requirements are required for safety 

goals. For this, there should be requirements correspond to the depend-on relationships 

mentioned above. We analyze these requirements as follows. 

1. For “Blood sensor”, the value range of blood sugar should be defined. If the 

measured blood sugar level is outside this range, it should stop working or deliver safe 

insulin dose, and alerts at the same time. 

2. For “Blood calculation function”, the analysis algorithm should be defined. If 

the data is abnormal, it should stop working or deliver safe insulin dose, and alerts at the 

same time. 

3. For “Insulin dose computation function”, the method of calculating insulin 

dose based on the blood sugar level should be defined, if the computation result is 

abnormal, it should stop working or deliver safe insulin dose, and alerts at the same 

time. 

4. For “Compute pump command function”, the pump command and exception 

handling should be defined. 

5. For “Insulin pump delivery mechanism”, the control of insulin dose should be 



41 

 

defined. If the insulin dose is abnormal, it should stop working or deliver safe insulin 

dose, and alerts at the same time. 

[STEP5] Insulin pump safety goals assurance using composite requirements 

We implement the requirements into the insulin pump system architecture as shown 

in Figure 27.  

1. For safety goal “The sensor is dependable”, the corresponding requirements are 

“Exception handling” , “Alert” and “Measurement rule is defined”. The evidences that 

support the requirements are “Exception handling function”, “Alarm device” and 

“Blood sensor”. 

2. For safety goal “The blood calculation is dependable”, the corresponding 

requirements are “Exception handling”, “ Alert” and “The calculation rule is defined”. 

The evidences that support the requirements are “Exception handling function”, “Alarm 

device” and “Blood calculation function”. 

3. For safety goal “Insulin computation is dependable”, the corresponding 

requirements are “Exception handling”, “Alert” and “Computation rule is defined”. The 

evidences that support the requirements are “Exception handling function”, “Alarm 

device” and “Insulin dose computation function”. 

4. For safety goal “Pump command is dependable”, the corresponding 

requirements are “Exception handling”, “Alert” and “Pump command is defined”. The 

evidences that support the requirements are “Exception handling function”, “Alarm 

device” and “Compute pump commands function”. 

5. For safety goal “Insulin delivery is dependable”, the corresponding 

requirements are “Exception handling”, “Alert” and “Insulin dose is defined”. The 

evidences that support the requirements are “Exception handling function”, “Alarm” 

and “Insulin delivery mechanism”. 



42 

 

 

Figure ２７ Composite safety on the insulin pump system in ArchiMate 

According to the above steps, we have achieved safety assurance for the insulin pump 

system architecture. 

5.4 Discussion 

In previous sections, we proposed an approach to develop composite safety assurance 

through ArchiMate. Moreover, a case study of insulin pump safety was carried out to 

illustrate this approach. To verify the effectiveness of the proposed approach, we compare 

it with d*framework, which is a method to assure the composite dependability.  

Table 12 compares the proposed method to the d*framework at system components, 

safety claim, and relationship. For the system components, d*framework only uses the 

module node or actor. In the proposed method, system components were represented by 

the nodes of business architecture layer, application architecture layer and technology 

architecture layer in ArchiMate as shown in Figure 4-4, Figure 4-5, Figure 4-6 and Figure 

4-7, such as Component Business actor, Interface, Function, Device, and System software. 



43 

 

System components can be more vividly described in ArchiMate. Besides, in the proposed 

method, we defined the safety assurance rules by using the nodes of Driver, Assessment, 

Goal, and Requirement in ArchiMate. In d* framework, safety claim consists of Context, 

Strategy and Evidence [45]. Moreover, in the proposed method, we defined components 

relationships by using Realize, Association, Influence, and Serving relationships in 

ArchiMate. However, the relationship between components in d* framework is the 

depend-on relationship. The proposed method can more clearly describe the relationship 

between system components. 

Table 12 Comparison of Proposed method and d*framework 

Items ArchiMate d*framework 

System components 

Component 

Business actor 

Interface 

Function 

Device 

System software 

Module Node 

Actor 

- 

- 

- 

- 

Composite Safety Claim 

Driver 

Assessment 

Goal 

Requirement 

Goal 

Context 

Strategy 

Evidence 

Relationship 

Realize 

Association 

Influence 

Serving 

- 

- 

Depend-on 

- 

In summary, the proposed method is superior to the d* framework in describing the 

system components and the relationships. For the safety assurance of healthcare systems 

of medical devices, the proposed approach is effectively applicable. 



44 

 

5.5 Effectiveness 

As previously mentioned, the ArchiMate diagram is effective in safety assurance for 

safety-critical systems. The effectiveness is summarized as follows. 

Because system components can be directly defined with system architecture in 

ArchiMate, the relationships between system components are further clarified. In addition, 

the arguments of the assurance case can be easily defined using the motivational elements 

and the relations in ArchiMate as previously mentioned. Besides, from the visualization 

perspective, using ArchiMate to describe dependability relationships has advantages over 

the previous method. 

5.6 Limitations 

In this section, only one case study of the insulin pump was carried out, and only partial 

safety issues of software were analyzed. Besides, we did not consider the quantitative 

comparison with the previous approach. The comparative experiment to quantitatively 

evaluate the productivity and quality should be carried out to verify the effectiveness. 

  



45 

 

6 Composite Safety Assurance Using Model Checking 

6.1 Definition of the 4-Steps of Composite Safety Assurance 

To improve confidence in system assurance, a composite safety assurance approach is 

proposed in this chapter based on the 4-steps as follows. 

1. Interaction visualization. 

2. Processes model checking. 

3. Dependability-case creation. 

4. Composite safety assurance. 

This section will define each step in detail. 

6.1.1 Visualization of the Component Interaction 

Traditional system architectures with state transitions are typically developed in UML, 

and a limited state transition process can be described. When safety assurance is required 

for the system architecture, it is often necessary to develop an additional assurance case 

diagram, such as GSN diagram. However, it cannot intuitively express the inter-

dependency relationships between system components, and the management of system 

diagrams and assurance case diagrams becomes complicated. Intra-model security 

assurance (IMSA) [27] approach has been proposed for integrating system architecture 

and assurance case, this method is based on ArchiMate, because ArchiMate can clearly 

describe the interactions and state transitions between system processes. However, this 

method does not take into account the rationality of the interaction and state transfer 

between system processes. Figure 28 shows the metamodel of composite safety assurance. 

 

Figure ２８ The metamodel of composite safety assurance 

Here, an example of automatic driving system (ADS) is carried out to illustrate the 

relationships among actor, process, and safety goal as shown in Figure 29. 



46 

 

 

Figure ２９ The relationships in ADS 

This figure is developed with ArchiMate, it consists of process, actor, and safety goal. 

The ADS process and the Driver Process are composite process, there should be complex 

interactions both inside of the ADS Process and the Driver Process. Besides, there are 

also complex interactions between ADS Process and Driver Process. We aim to assure the 

dependability of the composite process in this paper. The relationship between processes 

is trigger relation or flow relation. It is noteworthy that in this paper, the flow relation 

defined as the corresponding channel in CSP model, and the trigger relation defined as 

the status transition in CSP model. The relationship between the safety goal and the 

process is association relation. The relationship between the process and the actor is 

serving relation or flow relation. 

6.1.2 Processes Model Checking 

Model checking is a method for algorithmic verification of formal systems. It is used 

to verify that models derived from hardware and software designs meet formal 

specifications as specifications are often described in the form of logical expressions of 

temporal logic. There are types of model checking tools, and their functionalities are 

different from each other. In this section, PAT [50] is used for processes model checking 

to check the processes for deadlocks. PAT is a self-contained framework for composing, 

simulating and reasoning of concurrent, real-time systems and other possible domains. 

The modeling language is Communicating Sequential Processes (CSP) [51]. In this 

chapter, the purpose of process model checking is to detect if there are logical errors 

between system processes, then the result of model checking is regarded as the evidence 

in step 3 

Here, the purpose of process model checking is to detect if there are logical errors 

between system processes. The CSP syntax defines a “legitimate” way of combining 



47 

 

processes and events. Let e be an event and X be a set of events. Then the basic syntax of 

CSP in PAT is defined as follows. 

Definition: 

P :: = Stop 

|Skip 

|e{prog}→P 

|P1;P2 

|P1 [] P2 

|P1|||P2 

|P1‖P2 

|[b]P 

|atomic{P} 

|P1 △ P2 

|ch!exp→P 

|ch?xP 

|case{b1:P1;b2:P2;···;default:P} 

|e ::= name(.exp)∗ 

Here, P1 and P2 are process, e is the name of an event with an optional sequential 

program prog. b, b1, and b2 are boolean expressions. Stop represents the deadlock process, 

and Skip represents the normal termination of the process. e → P represents a process that 

behaves as process P after event e occurs. If e has a sequential program, it behaves as 

process P after executing the program. P1; P2 represents a process that behaves as process 

P1 and then behaves as P2. P1 [] P2 represents a process with non-deterministic choice, 

and its behavior is determined by the event as either process P1 or P2. P1|| P2 is a parallel 

synthesis process that synchronizes with events that appear in both processes. P1 ||| P2 

represents the interleaving synthesis of concurrent processes. [b] P represents a guarded 

process and behaves as P when the Boolean expression b holds. P1 △ P2 is a process 

that represents an interrupt. It behaves as P1 until the first event of P2 occurs, and after 

that event, it behaves as P2. 

Figure 30 shows a general example, the state transition between processes is triggered 

by e. 



48 

 

 

Figure ３０ Conditional state transition in ArchiMate 

6.1.3 Dependability Case Creation 

In contemporary society, objective and reasonable evidence and explanations are 

necessary for the safety of a product. Dependability Case (D-Case) is a method for 

showing the dependability of the systems, to make third parties understand the 

dependability of a system. In this section, the results of model checking are proposed as 

evidence for the D-Case. 

A formal example of D-Case is shown in Figure 31. The top goal G1, the system is safe, 

is decomposed into G2, G3, and G4 by strategy S1. Similarly, G2 is decomposed into G5 

and G8 by S2, G3 is decomposed into G6 and G7 by S3. Finally, G1 is considered to be 

decomposed into G4, G5, G6, G7, and G8. These sub-goals are supported by evidence 

E5, E2, E3, E4, and E1. The evidence should be supported by the result of the model 

checking in step 2. 



49 

 

 

Figure ３１ D-Case Creation 

6.1.4 Composite Safety Assurance 

In Figure 31, the top goal is decomposed into 5 sub-goals. Apply these safety goals to 

Figure 30, suppose that the safety goal for P2 is G4, and G4 is supported by P1; The safety 

goal for P3 is G5, and G5 is supported P2; The safety goals for P4 is G6, and G6 is 

supported by P5; The safety goals for P5 is G7, and G7 is supported by P3; The safety 

goals for P1 is G8, and G8 is supported by P4. In this part, the associate relationship is 

represented by “Association Relation” in ArchiMate, the support relationship is 

represented by “Realize Relation” in ArchiMate. A general example of composite safety 

assurance can be shown in Figure 31. 



50 

 

 

Figure ３２ General example of composite safety assurance 

6.2. Application of the Proposed Method 

In this section, for the application of the proposed method, an automatic driving system 

is carried out. 

Recently, the research of automatic driving is in great demand. Automatic driving 

system is a complex combination of components. It can be defined as a system of vehicle 

perception, decision, and operation through electronic equipment and machinery, rather 

than human drivers, as well as a system that automatically introduces road traffic. Since 

the automatic driving system can help people to correct driving errors or replace people 

with driving responsibilities, traffic accidents caused by driving are expected to be 

reduced [46]. 

SAE International and NHTSA (National Highway Traffic Safety Administration) 

define automation level [47], "driving mode" means "a type of driving scenario with 

characteristic dynamic driving task requirements [48]. In this part, the application for the 

proposed method will be conducted based on level 3 driving automation, which is “The 

driver can safely turn their attention away from the driving tasks, for example, the driver 

can text or watch a movie. The vehicle will handle situations that call for an immediate 

response, like emergency braking. The driver must still be prepared to intervene within 

some limited time, specified by the manufacturer, when called upon by the vehicle to do 

so”. Kinoshita proposed a CSP model for the level 3 driving automation [49]. 

Next, the discussion will focus on the safety assurance for the interaction between 

driver and automatic driving system (ADS) in level 3 automatic driving. As the previously 



51 

 

mentioned approach, the safety assurance could be implemented as follows. 

6.2.1 Visualization of Interactions between Driver and ADS 

For the interactions between driver and ADS, ADS provides driving information to 

drivers, or the driver sets the ADS, and then the ADS issues an operation command to the 

vehicle based on the setting. In order to model the behavior of a driver in the autonomous 

vehicle, it should be considered from the basic driving operations, which are recognition, 

judgment, and operation. Parasuraman [50] proposed a model for a driver in automatic 

driving, which includes Sensory, Perception, Decision Making, and Response Selection. 

This part follows this model, but it must also consider whether ADS can hand over the 

driving authority to the driver, because the driver may not be able to enter the driving 

state immediately for various reasons. If the driver is unable to enter the driving state 

immediately, the transfer of driving authority will fail. Besides, the driver's status is not 

static, if the ADS gives the driver a warning, the driver may return to the state where he 

can immediately enter the driving. Of course, the real situation may be more complicated, 

but it is beyond the scope of this chapter. Figure 33 shows the model of interactions 

between driver and ADS in automatic driving. 

 

Figure ３３ Automatic driving processes in ArchiMate 

In this figure, there are Driving System, Driver Processes, and ADS processes. For the 



52 

 

ADS processes, in the state of automatic driving, ADS will constantly confirm whether 

the driver's state can participate in driving. If the driver fails to respond, or fails to perform 

proper operations within the necessary time, Minimum Risk State (MRS) process will be 

conducted to avoid serious safety problems. The arrows in the figure represent the process 

of possible state migration. To confirm the interactions between ADS and driver, this 

model will be checked to ensure that the interactions do not result in deadlock. 

6.2.2 Model Checking for the Processes between Driver and ADS 

In Figure 34, the solid lines denote the transfer of states and dotted lines denote the 

channels. For example, ADS and Driver perceive system information through channel 

“DS to ADS” and “DS to Driver”, then, the states of Driver Perceive Information and 

ADS Perceive Information vary according to channel information. 

It is worth noting that in order to meet the safety requirements of automatic driving, 

reasonable ADS and Driver state variables should be set up. For example, for the driver 

state, a normal state means that the driver can drive immediately, an abnormal state means 

that the driver cannot drive immediately, the driver may be drowsy or inattentive. For the 

ADS state, there should be an automatic driving state and a limited state. Limited state 

means that it is difficult to automate in the current environment. In Figure 5-6, ADS first 

perceives environmental information through the ADS Perceive Information process, 

then determines the next behavior through the ADS Decision process. The Driver Check 

process detects whether the driver is in a normal state, if the driver is not in a normal state, 

the ADS will try to restore the driver state through the Driver Awake process. Also, the 

Minimum Risk State process will be conducted if necessary. For the safety, the transfer 

of driving authority between driver and ADS is very important in the level 3 driving 

automation, therefore, the transfer of driving rights should not be only determined by thee 

process ADS Control, but also by the Delegate Authority Awake process in this chapter. 

On the other hand, manual driving is conducted through the Driver Driving process when 

the driver judges that manual driving is necessary, the driver's intention is indicated to 

ADS through the Driver Decision process. The Driver Recover process responses the 

driver state to ADS. Figure 34 shows the CSP model of ADS processes. The CSP model 

of the driver is omitted in this research. 



53 

 

 

Figure ３４ CSP model describing ADS process in level 3 driving automation 

The deadlocks in CSP model can be verified by defining "assert" function. For the ADS 

process in level 3 driving automation, the verification result is shown in Figure 35. The 

verification result can be used as evidence of D-Case in the next step. 

 

Figure ３５ Verification result of ADS process 

6.2.3 Dependability Case Creation for ADS 

The interactions between driver and ADS have been discussed, and the CSP model 

describing ADS processes also has been proposed in the previous section. According to 

the CSP model of ADS, the dependability case for the ADS is discussed as shown in 

Figure 36. It is worth noting that only the dependability case of ADS is discussed here 

based on the CSP model of the ADS, the other dependability cases such as driver or 



54 

 

driving environment will be omitted in this research.  

In Figure 35, the top goal is that ADS can work with a driver to achieve safe driving. 

The top goal can be decomposed into sub-goals based on the actions of ADS. For the sub-

goal G_2 “ADS can identify the driving environment”, is supported by the Evidence E_1, 

which is “ADS Perceive Information process is deadlock-free”. For the sub-goal G_5 

“When the driver is in an abnormal state, correct measures should be taken to reduce risk”, 

is supported by the Evidence E_4, which is “Minimum Risk State is deadlock-free”. 

Likewise, so are other sub-goals. In this case study, each of the evidence corresponds to 

the process in step 1 and step 2. Step 1 visualized the interactions between these processes, 

and step 2 made model checking for these processes. 

 

Figure ３６ D-Case for the ADS process 

6.2.4 Composite Safety Assurance for ADS 

For the level 3 driving automation system, the interactions between a driver and ADS 

have been clarified as previously discussed. The content of Goal 2 is that the decision of 

ADS is correct, it is realized by ADS Perceive Information, which is verified in step 3, 

and associated with ADS Decision. The content of Goal 3 is that ADS can awake driver. 

Goal 3 is realized by Driver Awake, which is verified in step 3, and associated with Driver 

Recover. The content of Goal 4 is that ADS can transfer driving right to driver. Goal 4 is 

realized by Delegate Authority, which is verified in step 3, and associated with Driver 

Awake. The content of Goal 5 is that MRS could be conducted at the right time. Goal 5 

is realized by Minimum Risk State, which is verified in step 3, and associated with ADS 

Decision. For Goal 6, ADS behaves appropriately when driving, is realized by ADS 

Control, which is verified in step 3, and associated with Driving System. The safety 



55 

 

requirements of ADS were also explained in Figure 36. The composite safety assurance 

for the target system is shown in Figure 37 as follows. Although not all dependability 

cases are considered, the methods of safety assurance are introduced in detail. 

 

Figure ３７ Composite safety assurance for ADS in ArchiMate 

6.3 Discussion 

6.3.1 Effectiveness 

In the previous part, the proposed safety assurance approach was applied to a case study 

of automatic driving, this part makes a discussion on the case study. 

Firstly, the interactions between a driver and ADS in autonomous driving were 

analyzed, and these relationships were visualized through ArchiMate. In the ArchiMate 

diagram, triggering relation is used to represent process direction, flow relation is used to 

represent messages passing between processes. Then model checking based on the 

ArchiMate diagram is carried out to verify whether there are logical errors or deadlocks 

in the processes. For the level 3 driving automation system, all the relation names and 

process names in the ArchiMate diagram are highly consistent with the CSP model. Also, 

D-Case is created based on the safety requirements of the driving automation system. It 

is noted that in this section, only the ADS was discussed through D-Case. The evidence 

for the safety goals in the D-Case could be supported by the result of the model checking. 

Table 13 makes a comparison between the previous method d* framework and the 



56 

 

proposed method for system safety assurance. For d* framework, it can describe the 

safety goals between system components, but the visualization of the interactions for 

systems is insufficient. Besides, in d*framework, no consideration was given to the 

correctness of the process transition. For the proposed method, in the first step, the 

interactions between system actors are visualized through ArchiMate, state transition 

between processes is clarified. The second step conducts a model checking for the 

interactions based on the diagram in the first step to make sure if there are logical errors 

or deadlocks. Then step 3 discusses the safety requirements for the target system by using 

D-Case, the evidence for the D-Case could be supported by the result of step 1 and step 

2, and the evidence is more clear and credible. At the last step, actors, processes, safety 

goals, and interactions are integrated by using the composite safety assurance method. 

In summary, the proposed composite safety assurance method is superior to the 

previous method. It is more reliable and logically traceable. For the safety assurance of 

level 3 driving automation system, the proposed approach is effectively applicable. 

Table 13 Comparison of d*framework and the proposed method 

Comparison items d* framework Proposed method 

Interaction visualization Collaboration Diagram ArchiMate 

Logical check of 

interaction 
- Model Checking 

Explicit argument based 

on evidence 
Assurance Case Assurance Case 

6.3.2 Limitations 

This method is suitable for systems with complex state transitions and interactions. In 

this section, although a case study of level 3 driving automation system was carried out, 

only partial safety issues of the target system were analyzed. Besides, the quantitative 

comparison with the previous approach is not considered. The comparative experiment 

to quantitatively evaluate the productivity and quality should be carried out to verify the 

effectiveness. 

  



57 

 

7 Conclusion 

In this paper, we conducted a study on dependability assurance in system modeling. 

We analyzed the previous methods to find out the shortcomings, and proposed new 

methods to improve these shortcomings. For the previous method, the system architecture 

and assurance case need to be developed separately. We proposed a method named Intra 

Model Security Assurance to integrate system architecture and assurance case. So far 

assurance case is described by using a specific goal oriented diagram notation. The goal 

oriented diagram is different from the architectural diagrams, therefore engineers have 

the problem to manage two different diagrams for developing architecture and assuring 

security. The contribution of this method is that it clarified the security assurance method 

with only one EA modeling language. To integrate different diagrams, we clarified the 

relationship and notation method for system architecture and assurance case. Then we 

developed a mapping from the metamodel to EA modeling language, ArchiMate. To 

clarify the effectiveness of the proposed approach, we compared it with D-Case which is 

a derivative of GSN. The comparison consists of a case study and a quantitative 

experiment. The case study for a secure retrieval on cloud storage service showed that the 

proposed approach reduced the number of diagram nodes and relationships for those of 

the previous approach. The reduction percentages for nodes and relationships were about 

44% and 36%, respectively. The experiment on Healthcare device and Smart house 

systems showed that the proposed approach improved the effort and correctness of 

investigation works on assuring security for those of the previous approach. 

In Chapter 4, an approach was proposed to assure dependability in Enterprise 

Architecture which includes business layer, application layer, and technology layer. In 

this chapter, firstly, a model of the relationship for the business layer and assurance case 

was proposed; then the mapping relationships between the assurance case and actor were 

defined using ArchiMate based on this model. The presentation of the dependability 

between actors was also clarified. A case study of a digital signature process was carried 

out to explain this approach, and the study showed that the composite dependability for 

the business, application, and technology layers could be well treated using ArchiMate. 

Finally, a comparison between ArchiMate and d*framework was conducted, and the 

effectiveness and superiority of the proposed method were proven by analyzing the actors, 

dependability claim, relationship, and system configuration. Moreover, a comparison 

between the proposed method and d*framework regarding the number of nodes and 

relationships was conducted from a data perspective. The proposed method is more 

concise; and easier to understand than d*framework. The significance of the proposed 

method in terms of the enterprise architecture, is that it can directly assure the system 



58 

 

architecture. However, because d*framework uses UML, it cannot directly assure models 

of enterprise architecture.  

For the modeling of safety-critical medical equipment, we proposed a composite safety 

assurance method, and gave a detailed description in Chapter 5. This method consists of 

five steps: Describe system architecture with ArchiMate, identify composite safety goals 

between components, safety goals elicitation, requirements elicitation for safety goals, 

safety goals assurance using composite requirements. In this section, a composite safety 

assurance method was proposed for safety-critical system architecture. First, the safety 

assurance model between system components was explained, then the mapping 

relationships were defined using ArchiMate based on this model. A case study with the 

insulin pump system was carried out to explain this approach, and the study showed that 

the composite safety assurance between system components could be well treated using 

ArchiMate. Finally, a comparison between ArchiMate and d*framework was conducted. 

The effectiveness and superiority of the proposed method were also proved by analyzing 

the system components, composite safety claim, and relationship.  

In Chapter 6, for generalization, we have reduced this method to 4 steps, and added 

model checking. The purpose of model checking is to verify whether there is a logical 

error in the interaction between the process in the system architecture. This chapter 

proposed a composite safety assurance approach, and applied to level 3 driving 

automation system. The proposed approach consists of 4 steps: Interaction visualization, 

model checking, D-Case creation, and composite safety assurance. Compare with the 

previous method, the proposed method realizes interaction visualization and logical 

verification for process state transitions, which can make dependability assurance more 

reliable. For example, “Driver Awake” process in the case study try to wake up the driver 

and determine if the driver is in a state where he can drive, if not, “Minimum Risk State” 

process will be executed. Here, the logic of state transition needs to be checked. 

Especially for safety-critical systems, there is an urgent need for a more reliable way of 

safety assurance, because the argument of safety assurance would be insufficient or 

unconvincing in the absence of interaction visualization and process logical checking. In 

the proposed method, all steps are mutually linked. The proposed method is no longer a 

linguistic discussion, it is supported by verified logical evidence. The significance of this 

method is that it provides a formalized procedure for safety assurance, which boosts the 

confidence of system safety. 

Throughout this paper, this work gives a new way to assure the dependability of system 

architecture. Compared with the previous methods, the proposed method has a 

comparative advantage in terms of visualization and operability. However, the 



59 

 

effectiveness of this method needs to be verified through practical applications.



60 

 

Acknowledgment 

I would like to express my gratitude to all those who helped me during my Ph.D. study 

at Nagoya University. 

I gratefully acknowledge the help of my supervisor, Prof. Shuichiro Yamamoto, who 

has offered me valuable suggestions in the academic studies and whose useful suggestions 

incisive comments and constructive criticism have contributed greatly to the completion 

of this thesis. In the preparation of the thesis, his willingness to give me his time so 

generously has been much appreciated. His tremendous assistance in analyzing the 

proposed method and in having gone through the draft versions of this thesis several times 

as well as his great care in life deserve more thanks than I can find words to express. Truly, 

without his painstaking efforts in revising and polishing my drafts, the completion of the 

present thesis would not have been possible. I do appreciate his patience, encouragement, 

and professional instructions during my whole study and making suggestions for further 

revisions. 

My sincere thanks are extended to Prof. Mutsunori Banbara and Prof. Shuji Morisaki. 

I greatly appreciate their feedback, suggestions and insightful perspective on my study. I 

am also greatly indebted to all my teachers in the graduate school of informatics of 

Nagoya University who have helped me directly and indirectly in my studies, from whose 

devoted teaching and enlightening lectures I have benefited a lot and academically 

prepared for the thesis. Any progress that I have made is the result of their profound 

concern and selfless devotion. 

Thanks also go to our team members in Yamamoto Lab, especially: Zhengshu Zhou, 

Chengchen Xia, Koyo Kanamori, and Takashi Kaneko, who have given me the warm help 

and precious time to work out my problems. 

Last but not least, my gratitude also extends to my family who has been assisting, 

supporting and caring for me all of my life.  

  



61 

 

Reference 

 

[1]  I. Sommerville, Software Engineering (10th Edition), Pearson, 2015.  

[2]  J. Jacobson, I. Booch and G. Rumbaugh, Unified Modeling Language Reference 

Manual, Addison-Wesley Professional, 2004.  

[3]  S. Friedenthal, A. Moore and R. Stenier, A Practical Guide to SysML: The Systems 

Modeling Language, Morgan Kaufmann, 2014.  

[4]  International Organization for Standardization 15026-1:2019, Systems and software 

engineering -- Systems and software assurance, 2019.  

[5]  E. M. Clarke Jr, O. Grumberg and D. Peleg, Model Checking, The MIT Press, 1999.  

[6]  NATO, AEP-67:2017 Engineering For System Assurance In Nato Programmes, NATO 

Standardization Agreemens, 2010.  

[7]  E. Yu, Social modeling for requirements engineering, The MIT Press, 2011.  

[8]  S. Yamamoto and Y. Matsuno, "d* framework: Inter-Dependency Model for 

Dependability," in International Conference on Dependable Systems and Networks, 

Boston, USA, 2012.  

[9]  K. Tim and R. Weaver, "The Goal Structuring Notation – A Safety Argument Notation," 

in Proceedings of the Dependable Systems and Networks 2004 Workshop on Assurance 

Cases, 2004.  

[10]  The Open Group, Dependability through Assuredness™ (O-DA) Framework, 2013.  

[11]  Y. Matsuno, J. Nakazawa, M. Takeyama, M. Sugaya and Y. Ishikawa, "Toward a 

Language for Communication among Stakeholders," in IEEE Pacific Rim International 

Symposium on Dependable Computing, Tokyo, Japan, 2010.  

[12]  T. Saruwatari, T. Hishino and S. Yamamoto, "Method to Share Responsibility 

Knowledge of Dependability Cases," in International Conference on Knowledge-Based 

and Intelligent Information & Engineering Systems, Kitakyushu, Japan, 2013.  

[13]  T. Kelly, Concepts and Principles of Compositional Safety Case Construction., 

COMSA, 2001.  

[14]  S. Yamamoto and M. Yutaka, "An Evaluation of Argument Patterns to Reduce Pitfalls 

of Applying Assurance Case," in Proceedings of ASSURE, San Francisco, USA, 2013.  

[15]  S. Yamamoto, T. Kaneko and H. Tanaka, "A Proposal on Security Case Based on 

Common Criteria," in Information and Communicatiaon Technology - International 

Conference, Yogyakarta, Indonesia, 2013.  



62 

 

[16]  S. Yamamoto, "Assuring Security through Attribute GSN," in International Conference 

on IT Convergence and Security, Kuala Lumpur, Malaysia, 2015.  

[17]  M. Lankhorst, Enterprise Architecture at Work, Springer-Verlag Berlin Heidelberg, 

2013.  

[18]  The Open Group, ArchiMate 3.0 Specification, Van Haren Publishing, 2016.  

[19]  L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements In 

Software Engineering, Kluwer Academic Publishers, 2000.  

[20]  E. Grandry , C. Feltus and E. Dubois, "Conceptual Integration of Enterprise 

Architecture Management and Security Risk Management," in 17th IEEE International 

Enterprise Distributed Object Computing Conference Workshops, Vancouver, British 

Columbia, Canada, 2013.  

[21]  M. Korman, T. Sommestad , J. Hallberg, J. Bengtsson and M. Ekstedt, "Overview of 

Enterprise Information Needs in Information Security Risk Assessment," in IEEE 18th 

International Enterprise Distributed Object Computing Conference, Ulm, Germany, 

2014.  

[22]  I. Band, Modeling enterprise risk management and security with the ArchiMate 

language, A White Paper Published by The Open Group, 2015.  

[23]  W. Abbass, A. Baina and M. Bellafkih, "Improvement of information system security 

risk management," in 4th IEEE International Colloquium on Information Science and 

Technology, Tangier, Morocco., 2016.  

[24]  N. Mayer and C. Feltus, "Evaluation of the risk and security overlay of ArchiMate to 

model information system security risks," in IEEE 21st International Enterprise 

Distributed Object Computing Conference, Quebec City, Canada, 2017.  

[25]  D. Moody, "The “Physics” of Notations: Toward a Scientific Basis for Constructing 

Visual Notations in Software Engineering," IEEE Transactions on Software 

Engineering, vol. 35, no. 6, pp. 756-779, 2009.  

[26]  S. Yamamoto, "An approach to assure Dependability through ArchiMate," in 

International Conference on Computer Safety, Reliability, and Security, Trondheim, 

Norway, 2015.  

[27]  Q. Zhi, S. Yamamoto and S. Morisaki, "IMSA - Intra Model Security Assurance," Journal 

of Internet Services and Information Security, vol. 8, no. 2, pp. 18-32, 2018.  

[28]  S. Yamamoto, Q. Zhi and S. Morisaki, "A Composite Dependability for Enterprise 

Architecture," in International Conference on Knowledge-Based and Intelligent 

Information & Engineering Systems, Belgrade, Serbia, 2018.  



63 

 

[29]  DEOS, "D-CASE PROCESS," DEOS, [Online]. Available: 

http://deos.or.jp/technology/dcase-j.html. 

[30]  P. Bishop and R. Bloomfield, "A Methodology for Safety Case Development," Industrial 

Perspectives of Safety-critical Systems, pp. 194-203, 1998.  

[31]  A. V. Lamsweerde, "Goal-oriented requirements engineering: a guided tour," in 

Proceedings Fifth IEEE International Symposium on Requirements Engineering, 

Toronto, Canada, 2001.  

[32]  M. Hagglund, "A new approach for goal-oriented analysis of healthcare processes," 

Studies in Health Technology and Informatics, pp. 1251-1255, 2010.  

[33]  Y. An, P. W. Dalrymple, M. Rogers, P. Gerrity and E. Yu, "Collaborative social modeling 

for designing a patient wellness tracking system in a nurse-managed health care center," 

in Proceedings of the 4th International Conference on Design Science Research in 

Information Systems and Technology, Philadelphia, Pennsylvania, 2009.  

[34]  A. Eldein, H. Ammar and D. Dzielski, "Enterprise architecture of mobile healthcare for 

large crowd events," in International Conference on Information and Communication 

Technology and Accessibility, Muscat, Oman, 2017.  

[35]  K. Ahsan, H. Shah and P. Kingston, "Healthcare Modelling through Enterprise 

Architecture: A Hospital Case," in Seventh International Conference on Information 

Technology: New Generations, Las Vegas, NV, USA, 2010.  

[36]  S. Yamamoto, I. O. Nada and S. Morisaki, "Using ArchiMate to Design e-Health 

Business Models," ACTA SCIENTIFIC MEDICAL SCIENCES, vol. 2, no. 7, 2018.  

[37]  Q. Zhi, Z. Zhou and S. Yamamoto, "Visualized Assurance Approach for Enterprise 

Architecture," Journal of Information and Communication Convergence Engineering, 

vol. 17, no. 2, pp. 117-128, 2019.  

[38]  B. Cameron, E. Crawley and D. Selva, System Architecture, Pearson Education 

Limited, 2015.  

[39]  R. F. Stapelberg, "Infrastructure Systems Interdependencies and Risk Informed 

Decision Making (RIDM): Impact Scenario Analysis of Infrastructure Risks Induced by 

Natural, Technological and Intentional Hazards," SYSTEMICS, CYBERNETICS AND 

INFORMATICS, vol. 6, no. 5, 2008.  

[40]  S. M. Rinaldi, J. P. Peerenboom and T. K. Kelly, "Identifying, understanding, and 

analyzing critical infrastructure interdependencies," IEEE Control Systems Magazine, 

vol. 21, no. 6, pp. 11-25, 2001.  

[41]  A. V. Lamsweerde, Requirements Engineering: From System Goals to UML Models to 



64 

 

Software Specifications, Wiley, 2009.  

[42]  L. P. Plotnick, L. M. Clark, F. L. Brancati and T. Erlinger, "Safety and Effectiveness of 

Insulin Pump Therapy in Children and Adolescents With Type 1 Diabetes," Diabetes 

Care, vol. 26, no. 4, pp. 1142-1146, 2003.  

[43]  L. Henimann, A. Fleming, J. R. Petrie, R. Holl, R. M. Bergenstal and A. L. Peters, 

"Insulin Pump Risks and Benefits: A Clinical Appraisal of Pump Safety Standards, 

Adverse Event Reporting, and Research Needs A Joint Statement of the European 

Association for the Study of Diabetes and the American Diabetes Association Diabetes 

Technology W," Diabetologia, vol. 38, no. 4, pp. 716-722, 2015.  

[44]  Y. Zhang, P. L. Jones and R. Jetley, "A Hazard Analysis for a Generic Insulin Infusion 

Pump," Journal of Diabetes Science and Technology, vol. 4, no. 2, pp. 263-283, 2010.  

[45]  Y. Matsuno, H. Takamura and Y. Ishikawa, "A Dependability Case Editor with Pattern 

Library," in International Symposium on High Assurance Systems Engineering, San 

Jose, CA, USA, 2010.  

[46]  U.S. Departement of Tranportation, "Federal Automated Vehicles Policy-Accelerating 

the Next Revolution In Roadway Safety," 2016. 

[47]  SAE International, "Taxonomy and Definitions for Terms Related to Driving 

Automation Systems for On-Road Motor Vehicles," 2016. 

[48]  SAE International, "Automated Driving-Levels Of Driving Automation," 2017. 

[49]  S. Kinoshita, S. Yun, N. Kitamura and H. Nishimura, "Analysis of a Driver and 

Automated Driving System Interaction Using a Communicating Sequential Process," 

in IEEE International Sysmposium of Systems Engineering, 2015.  

[50]  R. Parasuraman, T. B. Sheridan and C. D. Wickens, "A Model for Types and Levels of 

Human Interaction with Automation," IEEE TRANSACTIONS ON SYSTEMS, vol. 30, 

no. 3, pp. 286-297, 2000.  

[51]  T. Saruwatari and S. Yamamoto, "Definition and application of an assurance case 

development method (d*)," SpringerPlus, vol. 2, no. 224, 2013.  

[52]  S. Yamamoto, "An Approach for Evaluating Softgoals Using Weight," in Information & 

Communication Technology-Eurasia Conference, Daejeon, Korea, 2015.  

[53]  G. Wierda , A Serious Introduction to the Archimate(r) Enterprise Architecture 

Modeling Language, R&a, 2014.  

[54]  S. Yamamoto and N. Kobayashi, "Mobile Security Assurance through ArchiMate," in 

International Symposium on Mobile Internet Security, Taichung, Taiwan, 2016.  

[55]  Y. Liu, J. Sun and J. Dong, "PAT 3: An Extensible Architecture for Building Multi-



65 

 

domain Model Checkers," in IEEE 22nd International Symposium on Software 

Reliability Engineering, Hiroshima, Japan, 2011.  

[56]  C. A. R. Hoare, "Communicating sequential processes," Communications of the ACM, 

vol. 21, no. 8, pp. 666-677, 1978.  

 

 

  



66 

 

Paper List 

Ⅰ．Journal 

Qiang Zhi, Shuichiro Yamamoto, Shuji Morisaki, "IMSA -Intra Model Security 

Assurance," Journal of Internet Services and Information Security, vol. 8, no. 2, pp. 18-

32, 2018. 

 

Qiang Zhi, Zhengshu Zhou, Shuichiro Yamamoto, "Composite Safety Assurance for 

Healthcare Devices“, ACTA SCIENTIFIC MEDICAL SCIENCES, Vol 3, Issue 9, pp. 14-

22, 2019 

 

Qiang Zhi, Zhengshu Zhou, Shuichiro Yamamoto, “Visualized Assurance Approach for 

Enterprise Architecture”, Journal of Information and Communication Convergence 

Engineering, vol.17, no.2, pp. 117-127, 2019. 

 

Zhengshu Zhou, Qiang Zhi, Shuji Morisaki, Shuichiro Yamamoto, “IMAF: A Visual 

Innovation Methodology Based on ArchiMate Framework”, International Journal of 

Enterprise Information Systems, Vol 16, pp. 31-52, 2020. 

 

Ⅱ．International Conference 

Qiang Zhi, Yamamoto Shuichiro, Shuji Morisaki, “Quantitative Evaluation in Security 

Assurance”, IEEE International Conference on Computer and Communications,Chengdu, 

pp. 2477-2483, China, 2018. 

 

Qiang Zhi, Zhengshu Zhou, Shuji Morisaki, Shuichiro Yamamoto,"An Approach for 

Requirements Elicitation using Goal, Question, and Answer", in International Congress 

on Advanced Applied Informatics, pp. 847-852, Toyama, Japan, 2019 

 

Zhengshu Zhou, Qiang Zhi, Shuichiro Yamamoto, “A Proposal for Developing EA 

Models toward Innovation”, International Congress on Advanced Applied Informatics, 

pp. 853-858, Toyama, Japan, 2019. 

 

Xia Chengchen, Qiang Zhi, Zhengshu Zhou, Shuichiro Yamamoto, “An Approach to 



67 

 

Transform Enterprise Architecture Models from Systemigrams”, International 

Conference on Software Engineering and Service Science, pp. 571-574, Beijing, China, 

2019. 

 

Zhengshu Zhou, Qiang Zhi, Shuichiro Yamamoto, Zilong Liang, “Automated Reasoning 

towards Quantitative Security Assurance”, International Conference on Software 

Engineering and Service Science, pp. 394-399, Beijing, China, 2019. 

 

Shuichiro Yamamoto, Qiang Zhi, Shuji Morisaki, “A Composite Dependability for 

Enterprise Architecture”, International Conference on Knowledge-Based and Intelligent 

Information & Engineering Systems, pp. 1130-1137, Belgrade, Serbia. 2019. 

 

Shuichiro Yamamoto, Qiang Zhi, “ArchiMate Business Model Patterns to e-Healthcare”, 

Innovation in Medicine and Healthcare Systems, and Multimedia, vol 145, pp. 11-20, 

Singapore. 

 

Shuichiro Yamamoto, Qiang Zhi, Zhengshu Zhou, “Aspect Analysis towards ArchiMate 

Diagrams”, Procedia Computer Science, vol. 159, pp. 973-980, 2019. 


