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Abstract

We investigate the possibility to apply the cosmic voids properties to evaluate the cosmological

models. Cosmic voids are defined as low matter density regions, such that they seem to be

affected by the nature of the dark energy which accelerates the expansion of the universe. Even

though the ΛCDM model is regarded as a standard model in which dark energy is considered

to be a cosmological constant that is characterized by the equation of state parameter, w,

corresponding to −1, there would be some possibilities that dark energy is not the cosmological

constant. If w = −1, the energy density of dark energy varies as time passed, and could be

possible to have inhomogeneities. In order to probe the clustering nature of dark energy,

we parameterized its speed of sound and equation of state. Using the spherical model and

excursion set approach for the void abundance, we find that even though the clustering of dark

energy affects each void formation by sub percent level, the abundance of voids is modified

significantly when there is a dark energy clustering.

We also investigate the application of void shapes to distinguish the energy density or the

equation of state of dark energy. The Alcock-Paczynski test is an evolution model-free cosmo-

logical test and it demands only the isotropy of observed objects. The Alcock-Paczynski test

has been applied to averaged shapes of voids found in the galaxy surveys, but the constraint

on the cosmological parameters are not tight enough. The reason is the insufficient number

of void samples so that the shape noise is significant. In order to obtain a lot of voids, we

try to identify voids in the future HI intensity mapping surveys, in which we trace the large

scale matter distribution based on the emissions from the neutral hydrogen atoms. We also

expand our strategy to conduct the Alcock-Paczynski test with averaged shapes of voids into

the averaged shapes of intensity contour which surrounds void regions. We analyze the result

of the state of the art cosmological magnetohydrodynamic simulation, IllstrisTNG, in order to

simulate the 21cm signal map. We produce particle distributions based on the 21cm intensity

fields to find voids by using the VIDE code which estimates the density field based on the

Voronoi tessellation and identifies voids by the watershed method. The shape of the stacked

void in the 21cm field is flattened along the line of sight due to the peculiar velocities in

redshift-space although it is spherical without the effect of the peculiar velocities. The shape

distortion seems to be independent of the redshift and void sizes so that we estimate the

preferable cosmological parameters by the Markov chain Monte Carlo methods. We find that

the estimations of matter density parameter and equation of state parameter of dark energy

are biased by the effect of the peculiar velocities. However, we can estimate these parameters

with a few percent accuracies only by the test if we can remove the effect properly.



Chapter 1

Introduction

1.1 Large Scale Structure of the Universe

The large-scale matter distribution provides us much insight into the Universe. In 1926,

Hubble pointed out that the distribution of galaxies is close to being homogeneous (Hubble,

1926). The general relativity theory with the isotropic and uniform matter distribution has

a solution that the Universe would expand. The expansion of the Universe yields the galaxy

redshifts and that is confirmed by Lemâıtre in 1927 and Hubble in 1929 (Hubble, 1929)

independently. After that, people considered that the matter uniformly distributes in the

universe and this idea had not changed for some decades.

The turning point was in the 1960s. Zwicky, as well as Shane and Wirtanen, observed the

galaxy distribution on the sky and their catalogs showed the different forms of distribution

from the uniform one. One of which was mapped on the celestial sphere by Seldner et al. (1977)

and we show it in Figure 1.1. From this figure, one can see the evidence of the inhomogeneous

distribution of the galaxies.

Even though their galaxy catalogs had only 2-dimensional information on the sky, namely

only the angular positions, the two-point analysis of the catalog such as Totsuji & Kihara

(1969) or Groth & Peebles (1977) indicated the inhomogeneity in the galaxy distribution

because the two-point angular correlation function shows a power law which can never be seen

in the random distribution. In order to ensure the inhomogeneity of the matter distribution,

it is necessary to get the 3-dimensional distribution of galaxies. The location of galaxies along

the line of sight is determined by the cosmological redshift of their spectrum. For example,

the distance can be obtained by the Hubble-Lemâıtre law cz = H0r for relatively nearby

galaxies. For highly redshifted galaxies, the relation is different due to the expansion of the

Universe. Although it was needed to observe the galaxy distribution in the 3-dimensional

survey, it took a significant time to measure the spectrum of galaxies in those days.
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Figure 1.1: The map of the galaxy distribution of the Shane and Wirtanen’s galaxy catalogs made by
Seldner et al. (1977) Even though the position of the galaxies are only two dimensional,
we can see the inhomogeneity in the galaxy distribution.

Figure 1.2: The three dimensional galaxy distribution observed by the SDSS. The observer locates
at the center of the map and the radial coordinate corresponds to the distance to the
galaxies. Filaments, clusters of galaxies and voids are seen. This Figure is credited to
“www.sdss.org”.
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In the 1970s, the galaxy redshift survey was promoted by the appearance of the image in-

tensifier in the astronomical field. One of the early redshift surveys was conducted by Gregory

& Thompson (1978) and they found that there are large empty regions in the nearby Universe,

so-called “cosmic voids”. In the same period, Jõeveer et al. (1978) observed a different region

and reached the same finding. However, at that time, because of the immatureness in the

survey technology, it was ambiguous whether voids really exist or not.

Several years later, the redshift survey conducted at the Center for Astrophysics in the

U.S.A. revealed that such large empty regions are surely located in the Universe (de Lap-

parent et al., 1986; Geller et al., 1987). In the survey, the distribution of galaxies over 100

Mpc/h scales was illustrated and then, we have recognized that galaxies form filament or wall

structures and voids locate surrounded by these galaxies, which is called the “cosmic web”.

After the CfA survey and with a development of the observational instruments, larger-scale

surveys have been conducted (Colless, 1998; York et al., 2000; Dawson et al., 2013) and we

can see the rich structures of the Universe (see Figure 1.2).

1.2 Revealing accelerating expansion

While Hubble had revealed that the Universe is expanding, it was not unclear how the Universe

expands. While the deep surveys of the Universe have revealed the structure of the matter

distribution, they have also revealed the existence of a mysterious substance in the Universe

has come to light, so-called dark energy. In the 1990s, two groups initiated to open the

expansion history of the universe by observing the recession velocities of the distant type Ia

supernovae (Riess et al., 1998; Perlmutter et al., 1999). Both groups have reached the same

answer that our Universe acceleratingly expands (see Figure 1.3), which indicates that there

is a mechanism to vanish the gravity on large scales. Even now, the type Ia supernovae show

the evidence of the acceleration without combining other observations (Scolnic et al., 2018).

The accelerating expansion of the Universe can be satisfied by introducing a substance which

has a negative pressure into the right-hand side of the Einstein equation with the isotropic

and homogeneous universe. Historically, the cosmological constant is one of the candidates

for the unknown energy which was originally introduced to keep the dynamics of the universe

stable. As described in the next chapter, the candidates for causing the accelerating expansion

are not only the cosmological constant but also any energy fluid with the equation of state

parameter less than negative one-third. In general, such energy is called “dark energy”.
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Figure 1.3: The obsevational evidence of dark energy. It is seen that the universe including a cos-
mological constant explain the data points rather than matter dominant universe. This
figure is from Perlmutter et al. (1999).
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1.3 Observational probe of Dark Energy

Although we have known that there is a surely unknown substance which accelerates the

expansion of the Universe, we have not identified itself. It is difficult to find out dark energy

itself since it has not been directly observed and then, a significant number of dark energy

models have been proposed (Yoo & Watanabe, 2012). Then what we can do is to constrain the

nature of dark energy through observations. The nature of dark energy can be traced by the

geometry or the expansion history of the Universe since its energy budget and equation of state

affect the time evolution of the Universe. Otherwise, we can trace its nature by observing the

growth of large scale structures in the Universe since the accelerating expansion suppresses

the growth rate (see Capter 2.2.2). So far many observational probes have been proposed

(Weinberg et al., 2013). Here we would like to introduce some representative observational

targets.

Cosmic Microwave Background

The anisotropy in the Cosmic Microwave Background radiation (CMB) includes much cosmo-

logical information (Hu & Sugiyama, 1996; Bennett et al., 2003; Komatsu et al., 2011; Planck

Collaboration et al., 2018). The effect of the accelerated expansion appears at large scales

through the late-time Integrated Sachs-Wolfe (ISW) effect (Sachs & Wolfe, 1967). This effect

is caused by the time evolution of the gravitational potential at cosmological scales. In other

words, the CMB photons obtain more energy when they come into a gravitational potential

than they spend to it to escape the potential (this is the case that they come into high-density

region, but go through low-density region, they lose more energy after passing the regions)

because the accelerating expansion reduces the amplitude of the potential. Since this effect

is particular at very large scales such that the effect causes modification of the CMB angular

power spectrum at low l sides. However, at those scales, the cosmic variance is large, so that

using only the CMB power spectrum provides a weak constraint on the dark energy property.

Baryon Acoustic Oscilation

Until z ∼ 1100, the typical energy of the CMB photons are enough to ionize hydrogen atoms

and they exist as plasmas. The CMB photons interact electrons through inverse Compton

scattering and the electrons are connected with protons by the electromagnetic force. So,

those photons and baryonic particles were as a mixed fluid. After the matter and radiation

energy equality at z ∼ 3000, dark matter begins to cluster based on the density fluctuation.

The photons and baryonic matter fluid also attempt to get into the gravitational potential

of dark matter by the gravitational interaction between dark matter and baryons, but the
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Figure 1.4: The constraint on the nature of dark energy and matter density in the Universe. This
figure shows that a cosmological constant is a preferable model of dark energy. This
figure is from Suzuki et al. (2012)

clustering of the baryonic matter rebounds due to the radiation pressure of the photons.

Until the recombination, the fluctuation caused by the rebound propagates and recorded in

the matter density when the CMB photons and baryons were decoupled. This is called the

Baryon acoustic oscillation.

This fluctuation is observed in the CMB angular power spectrum (Hu & Sugiyama, 1996;

Eisenstein & Hu, 1998), and do not change its scale after the recombination, so that it can be

utilized as a standard ruler to measure the cosmological distance. In fact, the oscillation scale

is detected in the galaxy distribution (Eisenstein et al., 2005) and provide the cosmological

constraint (Suzuki et al., 2012) (see Figure 1.4).
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Cluster abundance

The abundance of astronomical objects with a specific mass range provides us with information

about the structure growth, which is related to the time evolution of density perturbations.

The abundance of the massive objects is called the mass function and beginning with the

Press-Schechter mass function (Press & Schechter, 1974), several mass functions have been

proposed (Sheth & Tormen, 2002; Tinker et al., 2008) and utilized to get the information of

the Universe. In general, however, it is quite difficult to model the evolution of the high-

density object, so that the estimation of our cosmology from the cluster abundance is very

model-dependent.

Cosmic voids

In recent years, the wide and deep redshift survey of galaxies enables us to distinguish the large

scale structures. Among them, the formation of cosmic voids is expected to reveal the nature

of dark energy because they contain fewer matter components inside the region (Gregory &

Thompson, 1978). They are expected to be a clean object to see the effect of dark energy

on the formation of them. For example, the dynamical evolution of their shapes are sensitive

to the nature of dark energy, especially the equation of state (Park & Lee, 2007; Lavaux &

Wandelt, 2010; Biswas et al., 2010; Bos et al., 2012). Also, the low-density might lead to the

fact that they are relatively easily modeled because of the amplitude of the density fluctuation,

their growth would be linear or semi-linear regime. For this property, some studies have tried

to obtain cosmological information from its dynamics (Hamaus et al., 2016).

Even though voids are expected to be the probe of the Universe, it still seems difficult to

fully utilize the void property to constrain the cosmological model because they are relatively

larger structures than the clusters, such that the statistical samples are less. However, such

a situation can be improved by more large scale surveys. Even now, the alternative way to

trace the matter distribution is under construction. Thus we are now in the era to investigate

the Universe through voids.

1.4 Purpose of this Thesis

To evaluate the cosmological model precisely, one needs it is important to examine the model

in terms of many aspects. In this thesis, we are going to investigate the possibility of the

application of cosmic voids to the model evaluation in cosmology, especially some nature of

dark energy such as its equation of state, energy budget, and spatial perturbation. To achieve

this purpose, we provide a basic formalism to describe the evolution of our Universe itself and

structure formations in the Universe in section chapter 2.
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In the next chapter, we are going to investigate the effect of dark energy perturbations on

the void formations. Some previous studies try to see the effect of dark energy perturbation of

the void formation, especially focusing on the void density profile. On the other hand, what

we will see is the effect on the void size. We provide the equation of density perturbation of

dark energy inside a spherical void and examine how much the perturbation of dark energy

enhances or suppresses the size evolution of individual voids. Then we focus on the effect

of the dark energy perturbation on the statistical property of the void size, namely the size

abundance. We use the void size function derived in the next chapter to see the effect.

In the latter part of this thesis, we are going to investigate the application of the void

shape to evaluate the cosmological parameters. The method is called the Alcock-Paczynski

(AP) test, which is an evolution free method to constrain the cosmological model demanding

only isotropic objects. The concept of the AP test with cosmic voids was proposed by Ryden

(1995) for the first time and sophisticated by Lavaux & Wandelt (2012). The application of

voids to the Alcock-Paczynski test has been conducted in the galaxy surveys (Sutter et al.,

2012a, 2014; Mao et al., 2017a). However, voids in the conventional galaxy surveys have a

large shape noise due to the insufficient number of void samples. Thus we need more void

samples in order to reduce the shape noise.

To obtain a huge number of void samples, we consider identifying cosmic voids in the

HI intensity mapping survey. An international radio telescope project, called the Square

Kilometre Array (SKA) has been ongoing, in which we survey the emission from the neutral

hydrogen (HI ) atom along with the large scale structures. By this survey, we will observe

much more volume of the Universe than the conventional galaxy surveys (Santos et al., 2015;

Square Kilometre Array Cosmology Science Working Group et al., 2018). From this point of

view, HI intensity mapping survey seems to have a huge potential to provide a lot of void

samples.

In chapter 4, we review the HI signal and introduce some aspects of the SKA experiments.

In chapter 5, we introduce our procedure to make a mock intensity map from the IllustrisTNG

simulation data (Nelson et al., 2019) and how we identify the void structure in the intensity

map. Then we conduct the AP test by using the average shape of the voids in the HI intensity

field and show how much precisely recover the fiducial cosmological parameters by our method

as results.
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Chapter 2

Standard Cosmological model

Observations such as Cosmic Microwave Background (CMB) or the galaxy distribution have

suggested that our Universe is statistically homogenous and isotropic at very large scales. This

is called the cosmological principle. On the other hand, for small scales, we can see a rich

structures of the Universe such as stars, galaxies, and the large scale structures. Such struc-

tures are thought to be formed from tiny density fluctuations. Even though the fluctuations

are very small, they have evolved by the gravitational instability. In order to quantitatively

describe the evolution of the Universe and the structure formations, we introduce some fun-

damental equations form them in this chapter. We begin with the evolution of the Universe

as a back ground at first, and then, we introduce the cosmological perturbation theory as a

first oder perturbation. We also show an analytic model to describe the non-linear structure

formations. At the end part of this chapter, we introduce some statistical values to evaluate

the our models.

2.1 Background cosmology

Expansion of the Universe

The line-element of the 4 dimensional homogeneous and isotropic spacetime is called Friedmann-

Lemâıtre-Robertson-Walker (FLRW) spacetime, which is described as

ds2 = −dt2 + a(t)2
(

dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (2.1.1)
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where a(t) is a scale factor and K is a constant curvature which can be 1,−1 and 0 that

corresponds to close, open and flat universe respectively. From the Einstein equation

Gµ
ν =

8πG

c4
Tµ

ν (2.1.2)

with the perfect fluid,

Tµ
ν = (ρ+ P )uµuν + Pδµν , (2.1.3)

we will obtain two independent equations,

(
ȧ

a

)2

=
8πG

3c2
ρ− c2K

a2
, (2.1.4)

ä

a
= −4πG

3c2
(ρ+ 3P ), (2.1.5)

where ρ is the total energy density of substances in the Universe including radiation, matter,

dark energy and so on, These are equations which describe the expansion of the universe and

we often write H(a) = ȧ/a on the left hand side of equation (2.1.4). Combining the above

equations, we obtain the equation of energy conservation,

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (2.1.6)

By defining the density parameters as

Ω =
8πGρ

3H2
, ΩK = − K

(aH)2
, (2.1.7)

we can write equation (2.1.4) as

Ω + ΩK = 1 (2.1.8)

The energy components ρ in the Universe are roughly divided into ”radiation”, ”matter”

and ”dark energy”,

ρ = ρr + ρm + ρde, (2.1.9)
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and we can define the density parameters for them like above respectively,

Ωr =
8πGρr
3H2

, Ωm =
8πGρm
3H2

, Ωde =
8πGρde
3H2

. (2.1.10)

The relation between energy density and pressure is described by the equation of state, here

we parameterized it as

P = wρ, (2.1.11)

Time evolution of the energy density is obtained by solving conservation equation (2.1.6) as

ρ(t) = ρ0 exp

[∫ a(t)

a0

(1 + w(a′))
da′

a′

]
. (2.1.12)

If w is constant, we can conduct the integration in the above equation and get

ρ(t) = ρ0a
−3(1+w). (2.1.13)

For radiation and matter, wr = 1/3 and wm ∼ 0 respecttively. By using these expressions,

we rewrite equation (2.1.4)

H2(a) = H2
0

(
Ωr

a4
+

Ωm

a3
+

ΩK

a2
+

Ωde

a−3(1+w)

)
. (2.1.14)

From the equation (2.1.5), we can also derive the condition for dark energy dandidates. Since

the expansion of the Universe is accelerating, the condition is satisfied if ρ + 3P < 0, which

can be read as

w < −1

3
. (2.1.15)

This is the condition for the energy source that cause accelerating expansion. In cosmology,

one of the goals is to constraint the w for dark energy. The current situation is consistent

with w = −1 which leads to a cosmological constant since the energy density does not change

along the time (see equation (2.1.13)).

The recent observations such as CMB anisotropy and the BAO and so on, indicate that

the Universe is quite flat, ΩK = 0.001 ± 0.002 and the cosmological constant is preferred
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as a dark energy w = −1.028 ± 0.031. When we stand on the ΛCDM model in which we

consider cosmological constant Λ as dark energy and dark matter as a dominant matter

component, the observations show that our Universe is dominated by the dark components

as Ωm = 0.315 ± 0.007 and ΩΛ = 0.689 ± 0.006 with H0 = 67.7 ± 0.4[km/s/Mpc] (Planck

Collaboration et al., 2018).

Cosmological redshift

Since the Universe is expanding, the wavelength of light also expands from it is emitted until

it reaches an observer. How much the wavelength is expanded is quantified as the redshift

and it is described as

z =
λo
λe

− 1 =
ao
ae

− 1, (2.1.16)

where subscription ”o” and ”e” mean the value at the time when it is observed and emitted

respectively and we set the present epoch as z = 0.

Cosmological distances

The distance between an observer and an object will be different between when the light

emitted from the object and when it reaches the observer because the Universe is expanding

while the light is propagating. It is convenient to define the distance which does not change

along with the time evolution. This is called the comoving distance, χ, and its infinitesimal

displacement is given by

dχ =
dr√

1−Kr2
(2.1.17)

The integration of this equation results in

r = SK(χ) =



sinh
(√

−Kχ
)

√
−K

(K < 0)

χ (K = 0)

sin
(√

Kχ
)

√
K

(K > 0)

(2.1.18)
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The light propagates to us satisfying dθ = dϕ = 0 so that its geodesic satisfies

dt

a(t)
= − dr√

1−Kr2
. (2.1.19)

Therefore, comoving distance can be obtained as a function of redshift,

χ =

∫ t0

t

cdt′

a(t′)
=

∫ z

0

cdz′

H(z′)
(2.1.20)

We also define the angular diameter distance dA and luminosity distance dL as

dA = (1 + z)−1r(z), (2.1.21)

dL = (1 + z)r(z). (2.1.22)

2.2 Theory of Structure Formation

While our Universe seems homogeneous and isotropic at very large scale, we can see a lot of

structures such as stars, galaxies, clusters of galaxies and voids. Such objects originate from

very tiny density fluctuations which were exited at an early epoch and carved on the cosmic

microwave background. In this section, we describe the evolution of the density fluctuation.

2.2.1 Cosmological perturbation theory

If the universe is perfectly homogeneous, there will be no structures in the future. However,

our Universe is full of rich structures such as stars, galaxies, and large scale structures. These

structures are regarded as results of the evolution of tiny matter density fluctuations at a very

early epoch, and such fluctuations have been confirmed the CMB observation (Bennett et al.,

2003).

Since the matter and space are connected through the Einstein equation (2.1.2), the evo-

lution of the perturbations are also written by the equation.

Now, we assume the flat universe (ignoring the curvatureK) and consider the perturbation

theory in the conformal Newtonian gauge. The metric can be written as

ds2 = −
(
1 +

2Φ

c

)
c2dt2 + a2

(
1 +

2Ψ

c

)
δijdx

idxj . (2.2.1)

The Φ and Ψ represents the fluctuation in the time and space respectively.
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We also consider the perturbation in a matter. We express the density and pressure with

perturbations, and physical velocity as

ρ = ρ̄(1 + δ), P = P̄ + δP, vi = ac
u1

u0
, (2.2.2)

respectively. The equations of the dynamics of the fluctuations are

3
ȧ

a

(
Ψ̇− ȧ

a
Φ

)
− c2

a2
∆Ψ = 4πGρ̄δ, (2.2.3)

(
Ψ̇− ȧ

a
Φ

)
,i

=
4πG

c2
(ρ̄+ P )avi, (2.2.4)

[(
2
ä

a
+

(
ȧ

a

)2
)
Φ− Ψ̈− 3

ȧ

a
Φ+

c2

2a2
∆(Φ +Ψ)

]
δij −

c2

2a2
(Φ + Ψ),ij = 4πGδPδij . (2.2.5)

The trace and the other component of The equation (2.2.5) can be decomposed into the trace

and the other components as

[(
2
ä

a
+

(
ȧ

a

)2
)
Φ− Ψ̈− 3

ȧ

a
Φ+

c2

3a2
∆(Φ +Ψ)

]
= 4πGδP, (2.2.6)

(Φ + Ψ),ij =
1

3
δij∆(Φ +Ψ) . (2.2.7)

For equation (2.2.7), (Φ + Ψ),ij equal zero when i ̸= j, which indicate Φ + Ψ = 0 because

the universe should be homogeneous at very large scale which suggests the integration of

14



(Φ + Ψ),ij in terms of space should be zero. Therefore we obtain,

c2

a2
∆Φ− 3

ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGρ̄δ, (2.2.8)

Φ̇ +
ȧ

a
Φ =

4πGa

c2ȧ

(
ρ̄+ P̄

)
ψ, (2.2.9)

Φ̈ + 4
ȧ

a
Φ̇ +

(
2
ä

a

ȧ2

a2

)
Φ = 4πGδP (2.2.10)

where we redefine the velocity in terms of a velocity potential as

v = −∇ψ
aH

. (2.2.11)

Combining equations (2.2.9) and (2.2.10) results in

∆Φ =
4πGa2

c
ρ̄

[
δ +

3

c2
(1 + w)ψ

]
. (2.2.12)

This is the usual Poisson equation if the second term is lost. The second term is appearing

when we consider a system in a relativistic context such as Hubble scale phenomenon. How-

ever, if we pay attention to the sub Hubble scale, the contribution from the velocity to the

potential will be small. We will see this reason later.

The dynamics of the fluid is written by the continuity and Euler equations, which are

obtained by the conservation law of the energy-momentum tensor,

Tµ
ν;µ = 0. (2.2.13)

The conservation law for the time and space components are then

−cTµ
0;µ = ρ̄δ̇ + 3

ȧ

a
(δP − P̄ δ) + (ρ̄+ P̄ )

(
1

a
∇ · v +

3

c2
Ψ̇

)
= 0 (2.2.14)

c2

a
Tµ

i;µ = (ρ̄+ P̄ )

[
v̇i +

ȧ

a

(
1− 3

cs2

c2

)
vi +

c2

a

∂δP

(ρ̄+ P̄ )

1

a
∂iΦ

]
= 0 (2.2.15)
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where we defined the speed of sound as

c2s ≡ c2
˙̄P
˙̄ρ
= c2

δP

ρ̄δ
. (2.2.16)

The second equation holds if the adiabatic condition is assumed. In this case, those equations

are written

δ̇ + 3
ȧ

a

(
c2s
c2

− w

)
δ + (1 + w)

(
1

a
∇ · v +

3

c2
Ψ̇

)
= 0, (2.2.17)

v̇ +
ȧ

a

(
1− 3

c2s
c2

)
v +

c2s
a

∇δ
(1 + w)

+
1

a
∇Φ = 0. (2.2.18)

These above equations are the basis to describe the dynamics of the space-time. In the next

part, we will see some aspects of the time evolution of these perturbations, especially for the

non-relativistic matter.

Density evolution of non-relativistic matter

For the structure formation of the Universe, the role of the non-relativistic matter is impor-

tant since if the velocities of the matter is close to the speed of light the matter is hardly

gravitationally bounded, so that a lot of objects cannot be formed. Now we consider such

non-relativistic matter evolution in the era in which the matter is a dominant component of

the universe. We note that in our Universe, Cold Dark Matter which does not have interaction

with the electromagnetic wave but has only the gravitational interaction and has a small ve-

locity dispersion is a dominant ingredient of matter component. So, what we are considering

is corresponding to the density evolution of the CDM. We assume the matter dominant era

and a single fluid system in the subhorizon scale. For the above assumption we take the limit

of Ψ̇ → 0, cs ≪ c, w = 0 in equations (2.2.17) and (2.2.18), and then obtain

δ̇ +
1

a
θ = 0, (2.2.19)

∂θ

∂t
+
ȧ

a
θ +

c2s
a
∆δ

1

a
∆Φ = 0, (2.2.20)
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where we define θ ≡ ∇ · v. By substituting θ of equation (2.2.19) into (2.2.20), we get the

equation of motion of δ as

δ̈ + 2
ȧ

a
δ̇ −

(
c2s
a2

∆δ +
1

a2
∆Φ

)
= 0 (2.2.21)

For the Newtonian limit, the potential satisfies the Poisson equation such that

∆Φ = 4πGa2ϱ̄δ. (2.2.22)

We note that this is a ψ → 0 limit of equation (2.2.12) and ϱ̄ = ρ̄/c2 is the background mass

density of matter.

Let us consider the qualitative discussion about the equation of motion of δ in Fourier-

space. The equation is expressed as

¨̃
δ + 2

ȧ

a
˙̃
δ −

(
4πGϱ− c2s

a2
k2
)
δ̃ = 0, (2.2.23)

where “tilde” denotes that the valuable is a function in Fourier-space. The last term of the

equation dominates the evolution of δ such that when 4πGϱ − c2s
a2
k2 > 0, δ̃ evolves while

when 4πGϱ − c2s
a2
k2 < 0 , δ̃ oscillationally decreases. In this condition, we derive the Jeans’

wavenumber, and equivalently, the Jeans’ length as

kJ =
2π

λJ
=
a
√
4πGϱ̄

cs
. (2.2.24)

We note that these scales are defined in comoving scale. Thus, the condition for the evolu-

tion of perturbation can be in terms of the Jeans scale in other words, if the wavelength of

the perturbation is larger than the Jeans length, such perturbation can evolve, while is the

perturbation scale is smaller than the Jeans’ length, such perturbation cannot grow.

Now we consider a further discussion of the growth of the density perturbation in the

linear regime. The perturbations well enough large scale (at least larger than the Jeans scale)

is written

¨̃
δ + 2

ȧ

a
˙̃
δ − 4πGϱδ̃ = 0, (2.2.25)
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Figure 2.1: The time evolution of the linear growth factor with different cosmological parameters.
Here we assume matter dominant universe, dark energy as a cosmological constant,
dynamical dark energy model with equation of state parameter w = −1.3 and −0.7.

The solution of the equation can be written as

δ̃ = (D+(a) +D−(a))δ̃ini (2.2.26)

D+(a) =
5ΩmH

2
0

2
H(a)

∫ a

0

1

a3H3
da (2.2.27)

D−(a) ∝ H (2.2.28)

where D+(a) and D−(a) are growing and diminishing solutions respectively. For the structure

formation, the growing solution is important and D+(a) is called the linear growth factor. In

Figure 2.1, we show the time evolution of the growth factor in different universe, which are

matter dominant (Ωde = 0,Ωm = 1), dark energy as a cosmological constant (Ωde = 0.7, w =

−1), dynamical dark energy model with w = −1.3 and w = −0.7. We see that the matter

dominant universe realizes the growth of the perturbation effectively. On the other hand, the

accelerating expansion of the universe suppresses the evolution of perturbation, so that the

growth factors deviate from the matter dominant universe. If w is less negative, the equality

time between matter and dark energy becomes earlier such that the growth factor begins to

be suppressed earlier.
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2.2.2 Non-linear theory

In a very high-density region, it is difficult to analytically calculate the evolution of density

fluctuation. However, based on using some assumptions, we can obtain some insights into the

evolution of the high-density regions. Here we introduce the spherical collapse model. Let us

consider a spherical mass shell with a physical radius of R. The dynamics of the mass shell is

determined by the gravity caused by the matter which is inside the mass shell. The equation

of motion of the radius of the mass shell is

d2R

dt2
= −GM

R2
, (2.2.29)

where M is the total mass within the mass shell, which is

M =
4π

3
R3ϱ. (2.2.30)

We assume that the amount of matter is conserved through the time evolution of the mass

shell. Thus we have a conservation law of the matter,

M =
4π

3
ϱR3 =

4π

3
ϱiniR

3
ini (2.2.31)

where the subscription “ ini” means the initial epoch. We decompose the mass density into

the average matter density and the perturbation as

ϱ = ϱ̄(1 + δ̄), (2.2.32)

where the matter fluctuation, δ̄, is the averaged fluctuation within the mass shell,

δ̄(R) =
3

4πR3

∫
|r|<R

dr3δ(r). (2.2.33)

The equation (2.2.29) can be integrated over time and we obtain

1

2

(
dR

dt

)2

− 1

2

(
dR

dt

)2

t=tini

=
GM

R
− GM

Ri
. (2.2.34)
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Then, we assume that the initial velocity of the mass shell is approximated to the Hubble

velocity such that

1

2

(
dR

dt

)2

t=tini

≈ 1

2
H2

iniR
2
ini =

4πG

3
ϱ̄iniR

2
ini. (2.2.35)

Thus the equation (2.2.34) is written as

(
dR

dt

)2

− 2GM

R
= 2E (2.2.36)

where 2E = 2Gϱ̄iniR
2
iniδini is a constant value which is determined by the initial condition of

the density fluctuation. The equation (2.2.36) can be solved by using a parameter Θ. When

we consider a high dense region such that δini > 0 or K > 0, the solutions of R and t are

R = A(1− cosΘ),

t = B(Θ− sinΘ).
(2.2.37)

On the other hand, if the spherical region is low dense at the initial epoch, δini < 0 or

K < 0,

R = A(coshΘ− 1),

t = B(sinhΘ−Θ).
(2.2.38)

The coefficients, A and B have a relation

A =
GM

C
, B =

GM

C3/2
, (2.2.39)

where we defined C = |2E|. In the matter dominant universe, the background density evolves

as ϱ = 1/6πGt2, so that the density contrast in the spherical region evolves as

δ(t) =
9(Θ− sinΘ)2

2(1− cosΘ)3
− 1 (2.2.40)
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for overdense region and

δ(t) =
9(sinhΘ−Θ)2

2(coshΘ− 1)3
− 1 (2.2.41)

For the linear regime, we can expand δ(t) with parameter θ and obtain

δL(t) = ± 3

20

(
C3/2

GM
6t

)2/3

, (2.2.42)

where positive or negative signs are determined by whether the region is overdense or under-

dense, respectively.

For the gravitationally bounded objects, the evolution of R shows a maximum value at

the turn around time t = tta and then the objects will collapse at t = tco. At those epoch,

tta = π
GM

C3/2
, tc = 2tta, (2.2.43)

so that

R(tta) =
GM

C
, δ(tta) ∼ 4.55, δL(tta) ∼ 1.06, (2.2.44)

R(tco) = 0, δ(tta) = ∞, δL(tta) ∼ 1.69. (2.2.45)

For the gravitationally unbounded object, the radius continues to expand. As is the case

of over-dense regions, we can define criteria for the structure formation of low dense regions in

a little bit complex way as well. By comparing equations (2.2.38) and (2.2.39), the solutions

can be expressed


R =

Ri

2ϵ
(coshΘ− 1),

t

ti
=

3

4ϵ3/2
(sinhΘ−Θ),

(2.2.46)

where ϵ = −δ̄i > 0. Let us consider a situation that the inner shell catches up the outer shell

separated δR since the inner regions are more empty so that the expansion of the inner shell

would be faster than the outer shell. The moment that the inner shell reaches the outer shell

can be considered as the epoch that the formation of the underdense region goes into the
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nonlinear stage, which can be considered as a formation of a void (Blumenthal et al., 1992).

According to the equation (2.2.46), the separation of the shells is expressed as

δR =
δRi

2ϵ
(coshΘ− 1)− Ri

2ϵ2
(coshΘ− 1)δϵ+

Ri

2ϵ
sinhΘδΘ, (2.2.47)

and δΘ can be obtained by setting δt = 0 in the second equation (2.2.46).

0 = −1

ϵ
(sinhΘ−Θ)δϵ+

3

2
(coshΘ− 1)δΘ. (2.2.48)

By substituting eqation (2.2.48) into (2.2.47), we obtain

δR =
δRi

2ϵ
(coshΘ− 1)

(
1− ∂ ln ϵ

∂ lnRi

[
1 +

3

2

sinhΘ · (sinhΘ−Θ)

(coshΘ− 1)2

])
. (2.2.49)

At the moment of the shell crossing, the separation δR will be zero. This condition will occur

when the parameter becomes Θ = Θsc ≈ 3.488. At this epoch, the linear and non-linear

density contrast inside the void is

δ(Θsc) = −0.8, δL(Θsc) = −2.71. (2.2.50)

Then, we may consider that the low density region with above density contrast has been

reached the stage of non-linear evolution.

We summarize the linear and non-linear density evolution of the spherical model for both

collapse and expansion cases in Figure 2.2

2.3 Statistics of density perturbation

In the previous section, we have derived how the density field in the universe evolves, but we

would not be able to obtain the cosmological information by observing the evolution at each

position. In order to obtain the information on the evolution of the cosmological structure

formations, we need to “statistically” analyze the density filed. The statistical properties of

the density field are represented by two-point correlations of the field which is usually called

the correlation function ξ(r) or the power spectrum P (k). Another way is to estimate how

many massive structures are formed, which is expressed mass function. In this section, we

provide a basic formula for such statistical properties.
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Figure 2.2: Density evolutions in the spherical model both for a collapsing (left) and expanding
(right) objects. For the left panel, the horizontal dashed line shows the amplitude of the
perturbation as δ = 1.69. When the linear density contrast reaches the value, the non-
linear density perturbation goes to ∞. For the right panel, the above horizontal dashed
line indicate the amplitude of the δ = −2.71. when the linear perturbation reaches this
value, the non-linear density contrast is about −0.8 which is indicated by the below
horizontal dashed line.

2.3.1 Correlation function and Power spectrum

The statistical inhomogeneity of the matter distribution is characterized by the relative po-

sition of density fields. Let us introduce the two-point correlation function. The two-point

correlation function is defined by taking the ensemble average of multiplication of density

fields at an fixed separation |x1 − x2|, which is expressed as

⟨ϱ(x1)ϱ(x2)⟩ = ϱ̄2[1 + ξ(|x1 − x2|)], (2.3.1)

ξ|x1 − x2| = ⟨δ(x1)δ(x2)⟩ . (2.3.2)

If the densities with a separation r are not correlate, the value of the correlation function is

zero, ξ(r) = 0.

The correlation of the density contrast in the Fourier space is the power spectrum. As

is the case of the two-point correlation function, taking the ensemble average of the density

contrast in Fourier space yields

⟨δ̃(k)δ̃(k′)⟩ = (2π)3δD(k + k′)P (k). (2.3.3)

The correlation function and the power spectrum connected each other by the Fourier
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transform,

P (k) =

∫
d3x e−ik·xξ(|x|) = 4π

∫
dxx2

sin(kx)

kx
ξ(x), (2.3.4)

ξ(x) =

∫
d3k

(2π)3
eik·xP (|k|) =

∫
dkk2

2π2
sin(kx)

kx
P (k). (2.3.5)

We also would like to define the variance of the density contrast because it is one of

the barometers to measure the property of the density fields. For example, let us consider

the matter density field with the smoothing scale R such that the variance of the density

overwhelms unity. If so, we consider the density field smoothed by the scale R is in the

non-linear stage.

Let us define the density contrast smoothed by the scale R as

δR(x) =

∫
d3x′WR(|x− x′|)δ(x′), (2.3.6)

where WR(x) is a window function. Here we consider a Top-Hat type window function which

is expressed as

WR(x) =
3

4πR3
Θ(R− x), (2.3.7)

Θ(x) =

1 (x ≥ 0)

0 (x < 0),
(2.3.8)

where Θ(x) is a step function.

Then we can obtain the variance with smoothing scale R from the power spectrum as

σ2(R) = ⟨δ2R(x)⟩ =
1

2π2

∫
dkk2W̃ 2(kR)P (k), (2.3.9)

where W̃ (kR) is the window function in the Fourier-space,

W̃ (kR) =
3

(kR)3
[sin(kR)− (kR) cos(kR)] (2.3.10)
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2.3.2 Mass Function

Counting the number of objects at a specific time is also the measurement of the structure

formation of the Universe. Press & Schechter (1974) proposed an analytic model to estimate

the number of an object with a mass M by assuming that the primordial mass density field

obeys the Gaussian probability distribution and if the density contrast smoothed with mass-

scale M reaches a threshold value the object with M has been formed. However, in the

Press-Schechter formalism, there is an unknown factor of 2 in order to fill a lack of matter

which should be contributed to the structure formation. In 1991, (Bond et al., 1991) suggested

another way to derive the mass function by considering a random walk of the linear density

fields according to the smoothing scale. In their way, the theory of Press-Schechter would be

explained naturally. Furthermore, this formalism can be applied to explain the abundance

of the cosmic voids (Sheth & van de Weygaert, 2004). Here we would like to introduce an

idea of the mass function which estimates the number of objects according to their mass by

combining linear theory and probabilistic property of the density fluctuation.

Excursion set theory

In this section, we would like to introduce the concept of the excursion set formalism. We

consider that the linear density contrast with the smoothing radius R distribute in a Gaussian

probability,

P (δR) =
1√
2πσ2R

exp

(
−
δ2R
2σ2R

)
, (2.3.11)

where σ2R is the variance of the density contrast (see equation (2.3.9)). With a very large

smoothing scale, the density contrast and its variance will be zero. Then let us consider the

trajectory of Π(δn, Sn = σ2n) which take a random walk starting from (S0, δ0) = (0, 0), which

also satisfy

Π(δn, Sn) =

∫
dδn−1P (δn, Sn|δn−1, Sn−1)Π(δn−1, Sn−1), (2.3.12)

where P (δn, Sn|δn−1, Sn−1) is a transition probability. This probability is assumed to have a

Gaussian form,

P (δn, Sn|δn−1, Sn−1) =
1√

2π∆S
exp

(
−∆δ2

2∆S

)
, (2.3.13)
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Figure 2.3: Mass functions with different cosmological parameters, but the same initial conditions.
The blue line shows the matter dominant universe, while yellow, green and red lines
show the universe including dark energy. The difference among dark energy models is
represented by the equation of state parameter, w. For yellow, green and red lines we
set w = −1,−0.7 and −1.3 respectively. The figure shows that in the matter dominant
universe there are more massive objects than the universe including dark energy.

where ∆δ = δn − δn−1 and ∆S = Sn − Sn−1. Taylor expansion of Π in terms of δ and S

results in the diffusion equation about Π

∂Π

∂S
=

1

2

∂2Π

∂δ2
. (2.3.14)

Then, the distribution of Π which satisfies the above equation can be regarded as the distri-

bution of the primordial density fluctuation.

Press-Sheheter Mass function

By solving as the first piercing one barrier problem of the random walk as described by the

diffusion equation, we will obtain the Press-Schechter mass function. As we have already

derived, we can consider that if the linear density contrast within a region smoothed by the

radius R reaches 1.69, mass fragment within the region will be absorbed in the objects with
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mass M = 4πϱ̄R3/3. The probability density that Π has never reached δc at scale S is

Π(δ, S) =
1√

2π(S − S0)

[
exp

(
− (δ − δ0)

2

2(S − S0)

)
− exp

(
− [2(δc − δ0)− (δ − δ0)]

2

2(S − S0)

)]
. (2.3.15)

Thus the probability that the trajectory is above the threshold at scale S is

F (S) = 1−
∫ δc

−∞
Π(δ′, S)dδ′. (2.3.16)

The probability that the trajectory first cross the threshold is obtained by subtracting F (S+

dS) from F (S),

f(S)dS =
dF

dS
dS = −

(∫ δc

−∞

∂Π

∂S

)
dS

= −1

2

[
∂Π

∂δ

]δc
−∞

dS

=
δc − δ0√

2π(S − S0)3/2
exp

(
(δc − δ0)

2

2(S − S0)

)
dS. (2.3.17)

The total mass of objects whose masses are between M and M + dM is written as

n(M)MdM = ϱ̄
dF

dM
dM, (2.3.18)

where n(M) is the number density of objects with mass M . Recalling that S = σ2(M), the

number density n(M) is then

n(M) =

√
2

π

ϱ̄

M2

∣∣∣∣ d lnσd lnM

∣∣∣∣ δc
σ(M)

exp

(
δ2c

2σ2(M)

)
. (2.3.19)

This is the Press-Sshechter mass function. In Figure 2.3 we show the example mass functions

at present epoch. In order to calculate the mass function, we obtain the variance of the matter

density fluctuation by calculating the matter power spectrum using the publicly available code

“CAMB” Lewis et al. (2000). We calculate the matter power spectrum with the same initial

condition but the different background cosmology such as a matter dominant universe and

dynamical dark energy universe. For the dynamical dark energy universe, we vary the equation

of state parameter of dark energy as wde = −1.3,−1 and −0.7. The w = −1 case corresponds
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Figure 2.4: The void size function at present epoch with different cosmological parameters. The
blue line shows the matter dominant universe, while yellow, green and red lines show the
universe including dark energy. The difference among dark energy models is represented
by the equation of state parameter, w. For yellow, green and red lines we set w = −1,−0.7
and −1.3 respectively. The figure shows that voids of the radius around 10 Mpc are more
abundant in the matter dominant universe than the universe in which dark energy exists.
However, for small scale, the voids are less exist.

to the ΛCDM model.

In Figure 2.3, we see that there are more massive objects in the matter dominant universe.

This is because in such a universe the density perturbation evolves without any retardation

such as decreasing the potential due to the accelerating expansion. Among dark energy

included universe, wde = −1.3 model is producing more massive objects. When the equation

of state parameter of dark energy is more negative, the equality epoch between matter and

dark energy becomes late, so that until the equality epoch the objects have been formed in

the same way as matter dominant universe, then there are more objects in such universe. On

the other hand, if wde is less negative, the opposite phenomenon would occur, so that objects

are less abundant.

Sheth-van de Weygaert Void size function

For cosmic void abundance, we may simply think to replace the threshold value δlinc with void

formation criteria δv. However, the void case is a little bit different from the case of halos.
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Let us consider a situation that the density contrast smoothed by scale R is below δv, but it

is above δc when the smoothing scale is larger than R. Such a region seems like a void but

at scale R but should become a halo with M = 4πϱ̄R′3/3 where R′ > R. Thus we should not

count such void. In terms of the random walk trajectory, the situation corresponds to that

the trajectory reaches δc before reaching δv. What we have to estimate is the distribution of

Π which has never reached both δc and δv until scale S. This was pointed by Sheth & van

de Weygaert (2004) and they suggested this process is solved by setting the random walk as

a two barrier problem.

The solution is

Π(δ, S) =
1

δc − δv

∞∑
n=1

[
cos

(
nπ

δc − δv
δ

)
− cos

(
nπ

δc − δv
(2δv − δ)

)]
× exp

(
− n2π2

2(δc − δv)
S

)
. (2.3.20)

The same as the halo case, the fraction of Π that is between δc and δv at a scale S is

F (S) = 1−
∫ δc

−δv

Π(δ′, S)dδ′, (2.3.21)

and the first crossing the thresholds at scale S is

f(S)dS = −1

2

[
∂Π

∂δ

]δc
δv

dS

= −1

2

[
∂Π

∂δ

∣∣∣∣
δ=δc

− ∂Π

∂δ

∣∣∣∣
δ=δv

]
dS. (2.3.22)

As an analogy to the halo case, the first term will produce the probability of the first crossing

of δc which is not our interest here. What we want is the first crossing of δv which is the

second term of the above equation. Then, the fraction that the trajectories first cross δv

without breaking δc before is

fv(S)dS =
1

2

∂Π

∂δ

∣∣∣∣
δ=δv

dS

=
∞∑
n=1

nπD
δ2v

sin(nπD) exp

(
n2π2D2

2

S

δ2v

)
dS. (2.3.23)
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Thus the number density of voids including mass M is

nv(M) =
ϱ̄

M2
νfv(ν)

d ln ν

d lnM
, (2.3.24)

where we exchange the valuable S to ν = |δv|/S1/2 and νfv(ν) is

νf(ν) =
∞∑
n=1

2nπD2

ν2
sin(nπD) exp

(
−n

2π2D2

2ν2

)
, (2.3.25)

where D = |δv|/(δc + |δv|). For voids, it is convenient to express its abundance in terms of

their size. This can be done by the mass conservation low,

M =
4π

3
ϱ̄R3

Lag = (1 + δ)
4π

3
ϱ̄R3

Eul, (2.3.26)

where Rlag is a radius in the Lagrangian coordinate which corresponds to the initial position

of the mass fragment and REul is the radius measured in the Eulerian coordinate by which

we measure the void size observationally. We can change the valuables as

3
dn(M)

d lnM
=
dn(RLag)

d lnRLag
=

dn

d lnREul
, (2.3.27)

with R3
Lag = (1 + δ)R3

Eul. This relations result in

dn

dREul
= (1 + δ)1/3

3

4πR3
Lag

f(ν, δv, δc)
dν

dRLag
. (2.3.28)

In Figure 2.4 we show an example void size distribution at the present epoch. Here we

again use the same power spectrum described in the Press-Schechter mass function. The

figure shows that in the matter-dominant universe voids of the radius around 10 Mpc are

more abundant if the initial conditions are the same. However, for small scales, the number

of voids is less compared to the universe including dark energy. The reason might be that for

the matter-dominant universe the expansion is decreasing so that the objects easily collapse

and the void-in-cloud process significantly affects the small scale voids. On the other hand, in

the dark energy dominant universe, the accelerating expansion retards the collapsing process,

so that the number of small voids is abundant compared to the matter dominant universe.

This effect might be significant for the large scales. Thus even though the number of voids
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about 10 Mpc seems to be less for dark energy included model, larger voids should be more

abundant. We can see this at the large radius tails in the Figure, such that the number of

voids in the matter dominant universe lastly decreases at the large scales more than 20 Mpc.

Although we have shown the dependence of the void size function on the budget and

equation of state of dark energy, there is another possibility that affects the size function due

to the nature of dark energy. That is the spacial perturbation of dark energy. In the next

chapter, we will investigate the effect of dark energy perturbation on the void formations.
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Chapter 3

Cosmology with cosmic void

The cosmology with cosmic voids has been paid more attention because of the development of

the theoretical study and numerical way to identify cosmic voids from the cosmic web, as well

as the wider observation of the large scale structures. There seem to be some merits to study

voids in a cosmological context since they are considered to be one of “clean” objects to trace

the nature of dark energy. By definition of them, they are matter less so that dark might be

the dominant component if its clustering is not strong. In this chapter, we would like to show

some topics of voids related to dark energy, especially the void abundance and void shape.

For the void abundance, we first review some previous works and then, we investigate the

impact of the dark energy clustering on the void formation in a numerical way. After that,

we introduce the topic of the void shape, particularly the Alcock-Paczynski test.

3.1 Void abundance

In Section 3.1, we have introduced one of the theoretical ways to estimate the abundance of

voids. Even though the theoretical model is not enough to estimate the actual abundance of

the void in matter density fields because of the assumption of the spherical void formulation

and sharp k filtering (Bond et al., 1991). This abundance model has been applied to constrain

cosmology in some studies (Clampitt et al., 2013; Pisani et al., 2015; Zivick & Sutter, 2016;

Endo et al., 2018; Verza et al., 2019).

The cosmological dependence comes through σ2(R), δc and δv, which are the variance of the

mass fluctuation, the linear density contrast for the collapsed objects and voids, respectively.

About the void abundance, the cosmological application is focused on the equation of state of

the dark energy (Pisani et al., 2015; Verza et al., 2019) because it affects the growth mode of

the density perturbation (see Section 2.2.1). However, the clustering property of dark energy

also affects the evolution of structure formation. This effect on the high-density objects has
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been investigated by several authors (Chiba et al., 1998; Abramo et al., 2007; Basse et al.,

2011), but not so much on the formation of cosmic voids (Novosyadlyj et al., 2016). Inside the

cosmic voids, the matter is not the dominant component, so that the nature of dark energy

would easily appear in the void formation. In order to investigate the effect, we first consider

a simple model such as the evolution of a spherically expanding object and evolution of dark

energy perturbation inside the void following the formalism of Basse et al. (2011).

Void evolution with dark energy perturbation

We describe the evolution of a void in the presence of dark energy perturbation by coupling

the spherical expansion model and linear perturbation theory.

The evolution of the void radius is

Ẍv

Xv
+HẊv

Xv
= −4πG

3
a2[ρ̄mδ

TH
m + ρ̄deδ

TH
de + 3δPTH

de ]. (3.1.1)

where X denotes the void radius in comoving coordinate, H is a conformal Hubble parameter

H = aH, ρ̄m and ρ̄de are background energy density of matter and dark energy, respectively.

The dot means a derivative in terms of conformal time dτ = adt. δTH
m , δTH

de and δPTH
de are

density perturbation of dark matter, dark energy and pressure perturbation of dark energy

respectively, where we assume a top-hat profile for them. For matter density contrast we use

a mass conservation such that

δTH
m (τ) = (1 + δTH

m,i)

[
Xv,i

Xv(τ)

]3
− 1. (3.1.2)

On the other hand, we solve continuity and Euler equations. In order to introduce the dark

energy pressure into those equations, we adopt a pseudo-Newtonian approach (Lima et al.,

1997). The equation of evolution of dark energy perturbation in Fourier space is then,

˙̃
δlinde + 3(c2s − w)Hδ̃linde + (1 + w)θ̃linde = 0, (3.1.3)

˙̃
θlinde + (1− 3c2s)Hθ̃linde − k2c2s

1 + w
δ̃linde − k2ϕ̃ = 0. (3.1.4)

where θde is a divergence of the velocity of dark energy, cs is the speed of sound of dark energy

and ϕ̃ is the gravitational potential which satisfies the poisson equation,

−k2ϕ̃ = 4πGa2[ρ̄mδ̃m + ρ̄deδ̃de + 3δP̃de]. (3.1.5)
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Figure 3.1: Relative evolution of a isolated void with a top hat density profile. We set w = −0.9 for
the left panel while w = −1.3 for the right panel. In both the left and right panels, we
show the deviation from the homogeneous dark energy model such that c2s = 1. We find
that in the case of small speed of sound the void evolution is enhanced when w = −0.9
while it is suppressed when w = −1.3. The deviations are expressed by percent, so that
for both cases the deviations are less than 0.01.

Those equations are combined into

d2δ̃linde
ds2

+D(s)
dδ̃linde
ds

+

[
k2c2s
H2

χ(s)− κ(s)

]
δ̃linde =

3

2
(1 + w)Ωm(s)δ̃m, (3.1.6)

where

s = ln a, (3.1.7)

D(s) ≡ 1 +
1

H
dH
ds

− 3w, (3.1.8)

κ(s) ≡ 3w

(
1 +

1

H
dH
ds

)
+

3

2
(1 + w)Ωde(s), (3.1.9)

χ(s) ≡ 1 + 3
H2

k2

[
1 +

1

H
dH
ds

− 3(c2s − w)− 3

2
(1 + w)Ωde(s)

]
. (3.1.10)

We solve the equation numerically with the initial conditions described in Endo et al. (2018).

In Figure 3.1, we show the relative evolution for the void of the radius 18 Mpc at the initial

epoch with different speed of sound of dark energy, c2s = 10−1, c2s = 10−4, c2s = 10−6, c2s = 0.

Here we set the equation of state parameter of dark energy w = −0.9 for the left panel while

w = −1.3 for the right panel in Figure. The horizontal axis shows the scale factor and we

have normalized it as 1 at present. We find that in the case of small speed, the evolution of

void is enhanced when w = −0.9 (left), while it is suppressed for w = −1.3 (right). Whether
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Figure 3.2: Time evolution of the Jeans wavenumber for different speed of sound. We set w = −0.9,
and speed of sound of dark energy as c2s = 10−1, 10−4 and 10−6, which are represented
by the red solid, blue dashed and magenta dotted-dashed lines respectively. The black
lines indicate wavenumbers corresponding to the void radius with the initial size of 0.83
(dotted), 18 (dashed) and 83 (solid) Mpc. The correction of the wavenumber of Jeans
length and void radius means the point that the Jeans length and void radius are equal.

the perturbation of dark energy enhances or suppresses the void evolution is determined by

the sign of 1 − w. In equation (3.1.6), we can see that if w > −1 the density contrast

of dark energy will evolve with the same sign as matter perturbation, which leads to the

enhancement of gravitational potential inside the void as (3.1.1), so that the evolution of the

void is promoted. On the other hand, when w < −1, we see the opposite phenomenon in the

evolution of matter and dark energy, which results in the reduction of the potential inside the

void.

In addition to the above trends, we can find that there seems to be no difference between

c2s = 10−6 and c2s = 0. This is understood in terms of the Jeans instability as mentioned in

Section 3.1 According to the idea of the Jeans instability, the fluctuation with wavelength k

will collapse if k is smaller than kJ , where kJ is the Jeans wavenumber. In Figure 3.2, we

show the time evolution of the Jeans wavenumbers with a different speed of sound of dark

energy. We set w = −0.9 and also show the wavenumbers which correspond to the void radius.

According to Figure 3.2, for c2s = 10−1 the Jeans length is larger than any void radius, which
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means that dark energy perturbation hardly evolves inside those voids in this case.

On the other hand, kJ with c2s crosses the wavenumber corresponding to the scales of

about 1 and 20 Mpc very early epoch while it reaches about 80 Mpc later. For this case,

the perturbation of dark energy could grow at the early epoch inside those voids, but the

growth has stopped once the Jeans length overwhelm the void radius. The Jeans length for

c2s = 10−6, the length has never become larger than the voids with the initial radius of 20

Mpc. In this case, the perturbation can grow until a = 1 inside the voids larger than 20 Mpc.

We can see those differences in dark energy perturbation with the different speeds of sound

in the different evolution of the void radius in figure 3.1. The perturbation of dark energy

inside the void can grow until the late time if c2s is smaller than 10
6
, and if c2s is smaller than

the value, the perturbation has not been suppressed such that there is no difference in the

evolution of the void among those cases.

We can see the different time evolution of dark energy perturbation inside void according

to the different speed of sound of dark energy more explicitly in Figure 3.3. In Figure 3.3

we show three wavenumber modes of dark energy density perturbation in Fourier space. For

k = 0.01 mode, the Jeans length reaches very early at this length when c2s = 0.1 so that

the perturbation does not grow. For this mode, the Jeans wavenumber of c2s = 10−4 reaches

k = 0.01 while that of c2s = 10−4 has not reached the value, so that perturbation of this mode

stop to grow at the epoch the Jeans length cross the scale of the mode when c2s = 10−4 while

it continues to evolve when c2s = 10−6. For other wavenumber modes, we can understand

their evolution in the same manner.

Void size distribution with dark energy perturbation

So far we have investigated the effect of dark energy perturbation on the evolution of each

void. However, even though we observe the evolution of each void precisely, we do not obtain

the information of dark energy perturbation because the difference between the growth of

each void is more affected by their uniqueness. To draw the nature of dark energy from voids,

we need to consider the statistical property of them, one of which is the void size function.

In Section 2.3.2 we have derived the size function of voids using the excursion set formalism.

Recent studies have argued that the original Sheth-van de Weygaert void size function does

not fit the void distribution found in the n-body simulation, so some studies extend the model

by setting δv as a free parameter and so on.

In this work we adopt the original void size function derived in Section 3.1 to see the

effect of dark energy perturbation on the void size distribution. As shown in the previous

section, the dark energy perturbation affects the matter density perturbation. In terms of

the size function, this effect comes through the variance of mass density fluctuation, namely
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Figure 3.3: Evolutions of density perturbation of dark energy in Fourier space. The evolution for
k = 0.01, 0.1 and 1.0Mpc−1 are shown in the top, middle and bottom panels, respectively.
Each density contrast begins to oscillate when the Jeans length for each value of the speed
of sound crosses the wavelength.
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σ2(M) which is expressed by the integral of the matter power spectrum combined with the

window function (see equation (2.3.9)). In order to calculate the matter power spectrum in

the presence of dark energy perturbation, we utilize the publicly available code “CAMB”

(Lewis et al., 2000). In Figure 3.4 we show the deviations of σ2(R) from the monogynous

dark energy model. We set the same initial condition but the different speed of sound. For

the left panel, we set w = −0.9 and as we have seen that the fluctuation of dark energy

enhances the matter density perturbation, the variance deviates more when c2s is small. Also,

the enhancement affects negatively when w < −1.0.

We show the resulting void size distribution as a deviation from the uniform dark energy

model in Figure 3.5. In the left panel of Figure 3.5, for w = −0.9, the relative abundance

is clear at the void radius of R ∼ 5 Mpc when c2s ≤ 10−6, while for c2s = 10−4 the deviation

appear at the scale of R ∼ 10 Mpc and for c2s = 10−1 the deviation can not be seen in

the radius range. This is also because of the Jeans instability. For small speed of sound

small scale but larger than the corresponding Jeans length, the fluctuation in dark energy

can evolve and affect matter density fluctuation. Although we could not see the deviation

from the uniform dark energy model when c2s = 10−1 in the range, we would confirm the

deviation if we observe larger voids. According to the previous discussion of Jeans length,

such deviation could appear at R ≥ 103 Mpc. As we mentioned, the effect of dark energy

perturbation on the void abundance is different between w > −1 and w < −1. When w > −1,

the effect appears as an enhancement of the abundance of large voids while when w < −1 the

effect appears as the opposite. Even though the deviations in σ2(R) are sub percent level,

the deviations in the abundance model are quite large. The reason might be due to the fact

that the model includes exponential terms, such that the model is sensitive to the even small

deviation in σ2(R).

Summary of effects of dark energy perturbation on the void formation

We have investigated the effects of dark energy perturbation on the formation of cosmic voids

in this section. We have treated the speed of sound and the equation of state of dark energy as

constant parameters in our model. We studied the dependence of the formation of an isolated

spherically symmetric void on these parameters and the initial size of the void. We found that

the effects of the different values of the speed of sound and initial sizes are much small. These

results are broadly consistent with those of Novosyadlyj et al. (2016), and may lead us to

the conclusion that the dark energy perturbation does not greatly affect void formation. We

also investigated the effects of the dark energy perturbation on the abundance of voids based

on the excursion set theory. We found that the differences between the homogeneous and

inhomogeneous dark energy models are significant when the speed of sound is much smaller
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Figure 3.4: Comparison of variance at present time. We set w = － 0.9 for the left panel and w = －
1.3 for the right panel. Both panels show the fractional difference from the homogeneous
dark energy mode.

Figure 3.5: Comparison of the abundance of voids at present time. We fix w = － 0.9 (left) and
w = － 1.3 (right), and the values of speed of sound as c2s = 0,10 － 6,10 － 4,10 －
1. The lower panels show the fractional difference from the homogeneous dark energy
model with the same equation of state parameter, where N′ = dN/dRv. For both w,
the deviation from the case for homogeneous dark energy is noticeable at larger radii:
more than 10 % for c2s = 0 for 30 Mpc voids.
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than that of light.

3.2 Void shape

The shape of cosmic voids is also one of the features of voids and can be applied to prove

the nature of dark energy. In this section, we are going to use its shape to investigate the

expansion history of the Universe. Due to the expansion of the Universe, we can not measure

the size of objects quite far from us directly. What we can observe is redshifts and angle as

the location of the object. To estimate the size of the object, we have to assume a kind of

cosmological model. In this section, we briefly introduce the Alcock-Paczynski cosmological

test which is an evolution model-free method to measure the expansion history of the Universe

and the relation between the test and cosmic voids.

3.2.1 Alcock Paczynski test

In 1979, Alcock & Paczynski (1979) proposed a unique way to probe an expansion history of

the Universe which does not depend on any evolution model of the structure formation, so-

called the Alcock-Paczynski test (AP test). Since the universe is expanding, the observational

shape of an object has a different dependence on the expansion. Let us consider observing a

spherical object which is located quite far from us. The observable about the object is the

redshift span ∆z and angular span ∆θ, where ∆z,∆θ ≪ 1. By definition of the relation

between the comoving scale and these observables,

∆x∥ =

∫ z+∆z

z

c

H(z′)
d(z′) ≃ c

H(z)
∆z,

∆x⊥ = ∆θχ(z)

(3.2.1)

where H(z) and χ(z) is the Hubble parameter at redshift z and the comoving distance to

the redshift, respectively. Since we have assumed that the object is spherical, such that

∆x∥ = ∆x⊥,

∆z

z∆θ
=
H(z)χ(z)

cz
. (3.2.2)

Again, what we observe is the combination of ∆z and ∆θ by observing a spherical object at z.

Thus the combination tells us the information included in the Hubble parameter such as Ω or

w. We note that when the AP test was proposed, it was assumed to observe an intrinsically

spherical object to conduct the test. However, one of the powerful points of the test is that it

40



can be applied to statistical isotropy. In the next section, we introduce an application of the

AP test to the cosmic void which is not spherical individually but statistically.

Alcock Paczynski test with voids

The application of the observed void shape to the AP test was first pointed out by Ryden

(1995). In their work, they assumed that each void is spherical and expands isotropically with

no peculiar velocities for simplicity. The peculiar velocities of objects are another source of

the shape distortion in the redshift survey. Also, the shapes of voids in the matter density

fields or the galaxy distribution are not spherical (Platen et al., 2008; van de Weygaert, 2016).

Thus, the practice of the AP test with cosmic voids seems to be difficult by the method with

Ryden (1995).

However Lavaux &Wandelt (2012) has improved the possibility of the AP test with cosmic

voids. They noticed the statistical isotropy of the void shape based on the cosmological

principle even though each void shape is not spherical. They show that the averaged shape of

voids will be spherical when they are stacked. However, they also showed that this sphericity

is broken in redshift-space because the peculiar velocities of astronomical objects cause a

Doppler shift, so that the constructed position from the redshifts is not exact. For clusters,

this effect appears in a different way depending on the scales. For a large scale cluster, the

objects tend to gather their center of the gravitational potential which causes the cluster seems

to be flattened along the line of sight, while for small scales in which clusters are Virialized,

the random motions of the objects cause an elongation along the line of sight.

In the case of voids, they found that the redshift-space distortion (RSD) on voids appears

as a flattening along the line of sight. They mentioned some possible origins of this effect. One

of which is that since the void ridge is usually high-dense region such as clusters of Virtualized

objects, so the boundaries of voids are elongated along the line of sight that causes void region

shortened along the line of sight.

One of the interesting features of RSD on cosmic voids is that Lavaux & Wandelt (2012)

found the flattening effect does not depend on redshift, which indicates that the shape dis-

tortion due to the peculiar velocity on the stacked voids can be removable by tracing the

redshift dependence of the signals or multiplying a constant correction factor. According to

their analysis after shape correction, joint analysis of the BAO and the AP test with stacked

voids has a potential of a tighter constraint on the cosmological parameters.

Motivated by the authors, there have been several attempts to constrain cosmological

models by the AP test. The first try was done by Sutter et al. (2012b). They analyzed their

void catalogs (Sutter et al., 2012c) which were obtained from the galaxy catalog of the Sloan

Digital Sky Survey Data Release 7 (SDSS DR7) (Blanton et al., 2005; Abazajian et al., 2009).
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Figure 3.6: One-dimensional normalized likelihood as a function of Ωm for our stacked void mea-
surements, after correcting for peculiar velocities. The left, middle and right panels are
adopted from Sutter et al. (2012b), Sutter et al. (2014) and Mao et al. (2017b) respec-
tively.

They identified voids with a modified void finding algorithm ZOBOV (Neyrinck, 2008) which

is described in the later section in this thesis. Their first attempt was, however, failed due to

the large shape noise which is caused by the insufficient number of sample voids.

They revisited the AP test but with later data set(Sutter et al., 2014), SDSS DR7 and

DR10 LOWZ and CMASS samples (Ahn et al., 2014). In this analysis, they found about

1500 void samples and measured the AP signal by correcting the shape distortion due to the

peculiar velocities by using the correction factor which appears in Lavaux & Wandelt (2012).

Although the final result of their analysis has a large uncertainty and the most preferable

value of the cosmological parameter is deviated from the standard model, their results surely

suggested that the energy fraction of matter density of the Universe is not unity.

Mao et al. (2017b) would be the latest practice of the Alcock-Paczynski test until now.

They used the galaxy catalog of the SDSS DR12 (Alam et al., 2015) to obtain the void

catalog (Mao et al., 2017c) in which they identify 1, 228 voids. As mentioned above, the effect

of redshift-space distortion on stacked voids appears in a similar way in any void radius and

redshift, they try to calibrate the effect using mock galaxy catalogs rather than using the

correction factor as mentioned by previous works. Since they stacked all voids by normalizing

the particle position from the center of voids, the shape measurement would be more precise

than the previous works in which those authors stacked voids within a radius bin. Comparing

the calibrated shape distortion and the observed data, they put a constraint on the matter

density which seems tighter than the previous works.

We summarize the previous results in Figure 3.6. The panels in Figure 3.6 is adopted

from those previous works (Sutter et al., 2012b, 2014; Mao et al., 2017b)
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Future prospects

As mentioned by the previous works, one of the essential factors of success in the AP test with

stacked voids is a large number of void samples to determine the shape with small uncertainty.

However, the conventional galaxy surveys need a significant cost to determine the position of

galaxies with large survey volume.

Recently, a quite powerful way to observe the matter distribution in the Universe has

been proposed. In that way, we observe the emission or absorption of the neutral hydrogen

(HI ). The resolution of the observation will not be enough to identify each galaxy, but we

can obtain the distribution of HI with a huge survey volume.

Therefore we are going to investigate the possibility of the AP test with stacked void

technique in order to prepare the cosmological application of the future large scale HI survey.

In the next chapter, we explain the mechanism of the HI emission or absorption and the

survey with the future Square Kilometre Array (SKA) HI intensity mapping survey.
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Chapter 4

21cm signal

So far large scale galaxy surveys have been used to trace the matter distribution of the

universe. In order to examine the cosmological models, we need far larger scales of the matter

distribution. However, galaxy surveys need a lot of time to identify the location of the galaxy,

so that tracing the larger scale of the matter distribution far from us is time expensive.

On the other hand, it has been expected to survey the large scale distribution of the

neutral hydrogen along with the large scale structure. The HI intensity mapping survey has

a huge potential to observe a quite huge volume of the Universe. Thus if we identify the

void structures from the HI distributions, we will obtain much more void samples so as to

determine the shape of voids. In this chapter, we introduce the mechanism of the emission

line from the HI and intensity mapping survey by the future SKA experiments.

4.1 Brightness temperature

In order to derive the emission of the neutral hydrogens (HI ) in the Universe, we would like

to consider the radiation-transfer mechanism of the HI clouds. The total difference of the

absorption and emission in a fragment of the HI cloud is

dIν(x) = −κν(x)Iν(x)dx+ ϵν(x)dx, (4.1.1)

where Iν is the radiation intensity with a frequency ν, κν is an absorption coefficient, ϵν is

an emission coefficient and x is a distance along the line of sight. Assuming those coefficients
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dose not depend on the location, we obtain

Iν(x) = Iν(0)e
−τν(x) + Sν(1− e−τν(x)), (4.1.2)

τν(x) =

∫ x

0
κνdx

′, (4.1.3)

Sν =
ϵν
κν

(4.1.4)

where τν is an optical depth which is an integral of the absorption coefficient and Sν is a

source function.

The emission and absorption coefficients are expressed by Einstein’s coefficients,

ϵν =
hν

4π
n1A10ϕ(ν), (4.1.5)

κν =
hν

4π
(n0B01 − n1B10)ϕ(ν), (4.1.6)

where h is the Planck constant, n1 and n2 is the number of neutral hydrogens which is in the

lower and higher energy state respectively, A10, B10 and B01 are the Einstein’s coefficients for

the spontaneous emission, absorption and stimulated emission respectively, and ϕ(ν) is a line

profile which satisfy
∫
ϕ(ν)dν = 1. There is a relation between these coefficients,

n1A10 + n2B10Īν = n0B01Īν (4.1.7)

where Īν is an angular averaged intensity Īν =
∫
IνdΩ/4π. From equation (4.1.7),

Īν =
n0A10

n0B12 − n1B10
=
A10

B10

1

n0

n1

B01

B10
− 1

. (4.1.8)

If the system is in the thermal equilibrium, the intensity can be written by the Planck’s law,

Īν =
2πhν3

c2

[
exp

(
hν

kBT

)
− 1

]−1

. (4.1.9)

where kB is the Boltzmann constant and T is the temperature of the HI cloud.
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The number of particles in each state obeys the Boltzmann distribution,

n1
n0

=
g1
g0

exp

(
− hν

kBT

)
, (4.1.10)

where g0 and g1 are statistical weights, here g0 = 1 and g1 = 3, T is called the excitation

temperature which determines the relative number of particles in each state.

By comparing the equations (4.1.8), (4.1.9) and (4.1.10), we get relations

A10

B10
=

2hν3

c2
,

g0
g1

B01

B10
= 1. (4.1.11)

Then we go back to the source function of the HI clouds, and it is written by those

relations as

Sν =
2hν3

c2

[
exp

(
hν

kTs

)
− 1

]−1

. (4.1.12)

For the case of 21cm line, ν = 1420.4057 MHz, so that we can take the Rayleigh-Jeans limit

and we can write the equation (4.1.2) in terms of the temperature

Tb = Ts(1− e−τ ), (4.1.13)

where Tb is called the brightness temperature. If there is no other source object behind the HI

could, the observed brightness temperature is given as a difference from the CMB radiation,

δTb = (Ts − TCMB)(1− e−τ ), (4.1.14)

where we call δTb differential brightness temperature. The optical depth is given by the

integral of κ which is written as (4.1.6), then referring the equations (4.1.8) and (4.1.11),

κν =
c2

8πν2
n0A10

g1
g0

(
1− exp

(
− hν

kBTs

))
. (4.1.15)

Here, we consider the total number of neutral hydrogen atoms nHI = n0 + n1 then,

nHI = n1 ×
(
1 +

g1
g0

exp

(
− hν

kBTs

))
. (4.1.16)
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In a lots of cace, we can assume hν/kBTs ≪ 1 for ν = 1420.4057 MHz, therefore

κν =
3hc2

32πν
A10nHI

1

kBTs
ϕ(ν). (4.1.17)

In the cosmological context, the differential brightness temperature affected by the expan-

sion of the Universe such that the amplitude of the δTb emitted from redshift z decrease in

proportion to (1 + z)−1,

δTb(z) =
Ts(z)− TCMB(z)

1 + z
(1− e−τ(z)). (4.1.18)

In general, the line profile has a shape broadening around ν = 1420 MHz due to the velocities

which HI clouds have. In the context, the most contribution to the 21cm signal comes

from the Inter-Galactic-Medium (IGM) which is assumed to expand with the Hubble flow.

Then the broadening of the line profile can be expressed by the Hubble velocity such that

ϕ(ν) ≈ 1/∆ν ≈ c/∆V ν with ∆V = (dvp,∥/dr+H(z))∆r where vp,∥ is a peculiar velocity along

the line of sight. Based on the above discussion, we will obtain the formula of the differential

brightness temperature as a cosmological signal,

δTb(z) =
3c3

32π

A10h

kBν2
nHI

(1 + z)(dV/dr)

(
1−

TCMB(z)

Ts(z)

)
. (4.1.19)

Because of the factor of (1 − TCMB/Ts), the differential brightness temperature is observed

as an emission or an absorption line whether the spin temperature is larger than the CMB

temperature. In the next section, we briefly review the behavior of the signal according to

the redshifts.

4.2 Evolution of the brightness temperature

So far there are plenty of studies of the global signal of δTb(z). Since there is a factor of

(1 − TCMB/Ts), the signal can be observed differently depending on the magnitude relation

between the spin temperature and CMB temperature. The spin temperature is determined

by interactions with the CMB photons, collision with baryonic particles, scattering of the

background high energy photons (UV background) (Field, 1958; Furlanetto et al., 2006).
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Assuming that the HI atoms are in the equilibrium of these interactions, we find the relation,

n1(C10 + P10 +A10 +B10TCMB) = n0(C01 + P01 +A01 +B01TCMB), (4.2.1)

where C01 and C10 are excitation and de-excitation rates of the collision, P10 and P01 are also

excitation and de-excitation rates but of the scattering of the UV background. The excitation

and de-excitation rates have a relation

C01

C10
=
g1
g0

exp

(
− T∗
TK

)
. (4.2.2)

where T∗ is the temperature corresponding to the energy gap in the fine structure, T∗ =

hν/kB = 0.068K and TK is the kinetic temperature of the gas particles. In the same manner,

we can treat the excitation and de-excitation rates due to the UV background scattering by

defining the color temperature of the UV radiation field, TC . Then,

P01

P10
=
g1
g0

exp

(
− T∗
TC

)
. (4.2.3)

Considering the Rayleigh-Jeans limit, the intensity of the CMB is in proportion to the tem-

perature TCMB,

ICMB =
2hν2

c2
kBTCMB. (4.2.4)

Using the relations between Einstein coefficients in equation (4.1.11), we obtain

exp

(
−T∗
Ts

)
=

C10 exp

(
−
T∗

TK

)
+ P10 exp

(
−
T∗

TC

)
+A10

Tγ

T∗

C10 + P10 +A10

(
1 +

Tγ

T∗

) . (4.2.5)

In most case it seems to be reasonable to assume T∗ << TK , TC and Tγ , we can expand the

exponential and defining the coupling coefficients as

yK =
C10

A10

T∗
Tγ
, yC =

P10

A10

T∗
Tγ
, (4.2.6)
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we finally get the formula of the spin temperature

T−1
s =

T−1
CMB + yKT

−1
K + yCT

−1
C

1 + yK + yC
, (4.2.7)

Those temperatures and the coupling coefficients evolve with time, so that the behavior of

the signal can be separated into some stages (Furlanetto et al., 2006; Mesinger et al., 2011).

We summarize the behavior of the global signal of the brightness temperature as below.

Collisional coupling; 100 ≤ z: TK = Ts ≤ TCMB

After the recombination of the CMB photons and electrons, the collisions of hydrogens each

other occurred most frequently. Then the spin temperature coupled with the gas temperature

which decreased in proportion to (1 + z)2 while the CMB temperature decreases as (1 + z).

Thus the differential brightness temperature would be observed as an absorption line.

Collisional decoupling; 35 ≤ z ≤ 100: TK < Ts < TCMB

Due to the expansion of the Universe, the number density of baryons in the IGMs declined.

Therefore, in this epoch, the collisions of hydrogens each other become less often and the spin

temperature coupled with the CMB photons and it would come up with the CMB temperature.

After collisional decoupling → Wouthuysen-Field Coupling; 25 ≤ z ≤ 35:

TK < Ts ≃ TCMB → TK ≃ Ts < TCMB

After decoupling hydrogens each other, the spin temperature decouples from the kinematic

temperature. Then the spin temperature and the CMB temperature almost the same until

the first stars appear. When the first stars come into existence, the emission of the Ly-α

photons from the first stars interact the HI gas and the spin temperature couples with the

kinetic temperature again, which is called Wouthuysen-Field effect (Wouthuysen, 1952; Field,

1958).

X-ray heating transition; 16 ≤ z ≤ 25: TK = Ts > TCMB

Since the spin temperature tightly couples with the kinetic temperature due to the WF effect,

it decreases as the Universe expands. However, x-rays from the stars heat the IGM gas and

the spin temperature starts to rise. At this epoch, the kinetic temperature of the IGM, as well

as the spin temperature become over the CMB temperature, so that δTb would be observed

as the emission line.
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Figure 4.1: An artistic image of the SKA1-MID dishes in South Africa.This picture is taken from
“https://www.skatelescope.org/the-ska-project/”

Reionization → Present; z ≤ 16: TK = Ts ≫ TCMB

Once the x-ray heat the IGM enough, the spin temperature is so larger than the CMB tem-

perature that the differential brightness temperature does not depend on this temperature.

Furthermore, when the deionization starts due to the high energy photon emitted from the

first generation stars or galaxies, the ionized regions begin to increase. Thus the amount of

the neutral hydrogen diminishes so that the amplitude of δTb becomes small.

4.3 HI intensity mapping survey in the SKA era

The large scale galaxy surveys have revealed the astonishing large scale structures in the

Universe (Seldner et al., 1977; Gregory & Thompson, 1978; Jõeveer et al., 1978; de Lapparent

et al., 1986; Geller et al., 1987; Colless, 1998; York et al., 2000; Dawson et al., 2013). On the

other hand, tracing the emission from the neutral hydrogen, namely the 21cm line, with a

significant survey volume is ongoing.

The HI intensity mapping survey is a technique to trace the line emission of HI following

the distribution of matter by not demanding to resolve the location of a point source of the

emission (Bharadwaj et al., 2001). Since we know the redshift dependence of the observed

HI signal, the time consumption to determine the redshift of the emission field is much less
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Figure 4.2: The expected survey volumes by the SKA1-MID intensity mapping survey and HI galaxy
survey as well as other galaxy surveys are shown. Each survey volume is calculated at
the redshift centers. We can see that the HI intensity mapping survey conducted by
the SKA has huge potential to trace the large scale matter distribution. This figure is
adopted from Santos et al. (2015)

compared to the determination in galaxy surveys. Because of the traceability of the redshifts,

we can construct 3D pixels of the intensity fields which will enable us to trace the fluctuation

in the intensity field as a biased matter density field.

The Square Kilometre Array (SKA) is an international collaboration to build a next-

generation radio observatory. The SKA will consist of two telescopes of a dish array (SKA-

MID) in South Africa and an array of dipole antennas (SKA-LOW) in Australia. The project

is separated into two phases as SKA1 and SKA2, the former is planned to begin its operation

in 2020, while the latter about in 2025.

For the SKA1-MID, according to Square Kilometre Array Cosmology Science Working

Group et al. (2018), the adopted design baseline is that it consists of 133 dish arrays with a

dish diameter of 15m, which will provide angular resolution of 0.3 arcmin at 1.4GHz. The

SKA1-MID is planned to use 5 different frequency bands among which the most cosmology

relevant are band 1 and band2, especially for band1 the target frequency and redshift are

0.35GHz < ν < 1.05GHz and 0.35 < z < 3 respectively. The wide band1 survey of the

SKA1-MID will cover 20,000deg2 of the sky and about 10,000hours will be planned.

One of the main targets for the HI intensity mapping survey is to detect the Baryon
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Acoustic Oscillation (BAO) with a very large scale survey. The measurement of the BAO

is, as mentioned, one of the probes of the nature of dark energy since the measurement of it

with different redshifts provide a strong constraint on the expansion history of the universe

through the angular diameter distance and the Hubble parameter, which is very affected by

the energy budget of dark energy and its equation of state.

For the conventional galaxy survey, it has been detected the peak scale of the BAO in the

galaxy distributions Eisenstein et al. (2005); Beutler et al. (2011); Cuesta et al. (2016). The

distribution of galaxies in the Universe is very distinct, such that we see that it would trace

the underlying matter distribution. However, the determination of the redshift of each galaxy

is much time expensive so that obtaining the large scale distribution of galaxy needs much

time. Also, the large scale distribution of galaxies has a limitation in the radial direction since

it can not be observed as long as they exist in principle.

On the other hand in terms of the survey volume for HI , it is expected to overwhelm

the galaxy surveys by not only the sly coverage but also redshift. In Figure 4.2, we show

the expected survey volume conducted by the SKA as well as future galaxy surveys such as

BOSS (Eisenstein, 2015), DESI (DESI Collaboration et al., 2016), Euclid (Racca et al., 2016),

WFIRST (Kruk, 2019), HETDEX(Adams et al., 2011). The Figure is adopted from Santos

et al. (2015).

As shown in Figure 4.2, the SKA intensity mapping survey will trace the huge distribution

of neutral hydrogen as a biased tracer of dark matter, which will provide not only the detection

of BAO but also the property of cosmic voids. As mentioned in the previous Chapter, It is

important to have much more void samples to succeed in the Alcock-Paczynski test with the

shape of cosmic voids. We consider that the future HI intensity mapping survey will open

the window of void statistics as well. In the next chapter, we will investigate the possibility

to apply voids in the intensity map to the Alcock-Paczynski test.
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Chapter 5

Alcock Paczynski test with stacked

voids in HI intensity mapping

In this chapter, we are going to investigate the possibility of the Alcock-Paczynski test with

stacked void in the HI intensity mapping survey. First, we would like to introduce how we

construct the mock HI intensity map and then we will explain the method to detect void

structure with a particle base void finding algorithm. We analyze the average shape pf voids

and practice the AP test and obtain the density parameter estimation. We finally discuss the

effect of peculiar velocities and observation resolution.

5.1 Mock HI map

In order to investigate the possibility of the AP test with void stacking technique to the future

HI intensity popping survey, we examine our procedure by using hydrodynamical simulation

data. In this work, we have adopted the IllustrisTNG simulation which is the state of the art

cosmological simulation of the matter dynamics (Pillepich et al., 2018; Naiman et al., 2018;

Springel et al., 2018; Nelson et al., 2018; Marinacci et al., 2018; Nelson et al., 2019). Since

the simulation data include physical valuables of the baryonic components, we can produce

the mock intensity map based on the simulation results. In this section, we will show our

procedure to make mock maps.

Spin temperature

In Section 4.2, we have explained that the spin temperature is determined by the coupling with

the CMB temperature, the kinetic temperature of the IGM gas and the color temperature of

the UV background photons as equation (4.2.7), where the coupling coefficient yK is described

53



interns of the number density of the baryonic particle,

yK =
T∗

A10Tγ
(κnHI + κpnp + κene) , (5.1.1)

where nH , np and ne are the number density of hydrogen atom, proton and electron, κH , κp

and κe are the de-excitation rates in collisions with hydrogen atoms, protons and electrons

respectively. These de-excitation has been calculated by previous works, and we follow the

same manner as Kuhlen et al. (2006). For the collision with hydrogen atoms, Allison &

Dalgarno (1969); Zygelman (2005) calculated the de-excitation rates which is fitted by

κHI

[cm3s−1]
= 3.1× 10−11T 0.357

K exp

(
−−32

TK

)
. (5.1.2)

For the collision with electrons Liszt (2001) provided a fitting formula,

κe
[cm3s−1]

=

10−9.607+0.5 log(TK) exp(−(log TK)4.5/1800) (TK ≤ 104),

κe(TK = 104[K]) (TK > 104).
(5.1.3)

For collision with protons, the rate is obtained by multiplying κH by 3.2 (Smith, 1966),

so that

κp
[cm3s−1]

= 3.2κHI . (5.1.4)

The coupling coefficient yC is determined by the process known as the Wouthuysen ‒

Field effect (Wouthuysen, 1952; Field, 1958). This process tells us the possible transition

that the hydrogen in the ground state (n=1) jumps to the next above energy level (n=2) by

absorbing the Ly-α photon and then emitting Ly-α photon

The coupling coefficient yC is written (Furlanetto et al., 2006)

yC = Sα
Jα
Jc
ν

, (5.1.5)

where Jα is the flux at Ly-α frequency, Jc
ν = 1.165× 10−10[(1+ z)/20)]cm−2s−1Hz−1sr−1 and
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Figure 5.1: Collisional rates as a function of the gas temperature. As expected, the collisional rates
become large when the gas temperature is high.

Sα is a correction factor which is approximated as

Sα ∼ exp

[
−0.803TK −−2/3

(
10−6

γ

)1/3
]
. (5.1.6)

γ is the inverse Gunn-Perterson optical depth, which is defined by

γ = τ−1
GP =

H(z)να
χαnHI c

. (5.1.7)

where χα = πe2

mec
fα, fα = 0.4162 is the oscillator strength of the Ly-α transition. Those

coupling coefficients include the number density of hydrogen gas, proton, and electron. In

order to calculate those values, we adopted the Cloud-in-Cell scheme to translate the particle-

based data into the grid-based data. The simulation box divided into 2563 grids.

In Figure 5.2 we show example maps of dark matter distribution and 21cm intensity fields.

In the left panels of Figure 5.2, we show the dark matter distribution in the IllustrisTNG

simulation, while in the right panels we illustrate the 21cm intensity fields by the procedure

described above. The top panels show the snapshot at z = 3, the bottoms are z = 0. We

can see rich structures and their evolutions in the dark matter distributions such as voids,

filaments, and halos. For the right panels, we can also see the similar structures found in the
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Figure 5.2: Dark matter density field (left panels) and the intensity map of the 21cm line(right
panels). The top panels are the snapshots at z = 3 while the bottom panels are z = 0.
In the dark matter distribution, we can see rich structures such as voids, filaments, and
halos. On the other hand, the intensity fields traces the dark matter structures.
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dark matter distributions, so as our expectation, the emission of the neutral hydrogen is a

good tracer of the large scale structures.

We note that what we would like to achieve is to identify voids from the intensity map

and conduct the AP test with stacked voids. However, it also should be noted that the AP

test demands statistical isotropic objects. From this point of view, we do not care about what

the structure exactly is. So we expand our aim that we would like to conduct the AP test

with intensity contour surface surrounding cosmic voids. Similar to voids in the galaxy survey

map, we can assume that voids in the 21cm intensity contour map are statistically spherical

according to the cosmic principle.

In Figure 5.3, we show the original intensity map and the contour maps by separating

regions whether the intensity is larger or not than the thresholds. In this figure, we vary the

threshold value from 0.01, 0.1, 1 and 10 times the averaged intensity for the middle left, middle

right, bottom left and bottom right panels respectively. We see that different contour levels

draw different pictures of the structures. For low contour levels, we can surely distinguish the

void structures while some possible void regions are painted out. On the other hand, for a

higher contour level, the structures seem faint, so that the shape of voids is ambiguous.

5.2 Void finding in the HI intensity map

As we have already mentioned our aim is to investigate the possibility of the AP test in

the future HI intensity mapping survey with the void stacking technique. We have adopted

publically available code “VIDE” (The Void IDentification and Examination toolkit) in order

to find void structure in the mock intensity maps produced from the IllustrisTNG simulation.

We first explain how VIDE finds voids. The core component of VIDE is ZOBOV (Neyrinck,

2008) which finds void structure based on the Voronoi tessellation (van de Weygaert & Schaap,

2009) and watershed algorithm (Platen et al., 2007). The example procedure is in Figure 5.4

which is adopted from Neyrinck (2008)

ZOBOV first does the Voronoi tessellation on the particle distribution to estimate the

density of each particle position which is illustrated on the top right panel in Figure 5.4. In

the panel, each Voronoi cell is colored according to its volume or density. In the panel, the

lower the density is the darker the color is. After the Voronoi tessellation of the space, ZOVOV

finds local minima density cell which is not adjacent to lower density cells than themselves.

Then, ZOBOV ties the local minimum cells with the next cells to them and repeat this process

until the density of the tied cells reaches the density edge. The locally maximum cells are

tied with the lowest density cells among their neighbors. This process is called zoning and

each grouped cells are called zones, the result of this process is shown in the lower-left panel
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Figure 5.3: The intensity map and its contour maps. The top panel indicate the original intensity
map while the middle and bottom panels are intensity contour maps made from the top
panel. In the contour maps, each region is distinguished by the colors such that if the
brightness temperature is larger than the contour threshold, it is painted as a bright
color while if the brightness temperature is below the threshold, it is colored as dark.
Therefore we can regard the dark regions as void regions. Here we very the contour levels
as 0.01, 0.1, 1 and 10 times average intensity for the middle left, middle right, bottom left
and bottom right panels respectively.
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Figure 5.4: An example of the Voronoi tessellation and watershed method to find void structures,
adopted from Neyrinck (2008). On the top left panel, the particle distribution is illus-
trated. The first step of void finding by ZOBOV is to conduct the Voronoi tessellation
on the particle distribution, which is illustrated on the top right panel. On the top
right panel, each Voronoi cell is colored according to their volume (density). By zoning
the Voronoi cells, ZOBOV finds primitive voids that are called zones as shown on the
bottom-left panel. The final step is to gather each zone if its boundary is not above a
threshold. After jointing zones, ZOBOV reports voids as the final groups of the Voronoi
cells, shown on the lower right panel.
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Figure 5.5: The example mock particle distribution (right) made from the left panel. We put a
particle if the intensity of the region is above the averaged value. The distribution of
particles reasonably trace the shape of voids.

in Figure 5.4.

The final step of ZOBOV is to joint the zones into voids. We note that each zone is a

primitively void, but if the density of their boundary cells is not high, those voids can be

regarded as one void. By default setup, VIDE reports every pattern of voids, in other words,

VIDE provide voids as resulting in joining zones as well as zones themselves if the size of

zones are larger than that of our demands since zones are in principle primitive voids.

As described above, VIDE identifies voids in particle distributions while what we are going

to do is to find contour surface surrounding voids in 21cm intensity fields. Hereafter we would

like to introduce our method to produce a particle distribution.

We assume that if δTb is large at a position the density of HI or just matter is also large.

Then we put a particle if δTb is above a threshold. The threshold can take any values in

principle, while we have adopted the averaged value for the threshold. Because of the rule

to make a particle distribution, the particle distribution does not reflect the real density field

since we put a particle both relatively low δTb and high δTb if both values are above the

threshold. Even though our mock particle distribution never reflects the matter density field,

it does not matter, since what we want is the shape of voids in the intensity fields. For only

this purpose, we consider that the process to make the particle distribution and void finding

will work.

We show the example particle distribution from the intensity map data in Figure 5.5. We
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Figure 5.6: The abundance of voids according to their radius. Different colors indicate different
redshifts. Our void catalogs show that voids of the radius between 5 Mpc/h and 10
Mpc/h are the most popular in the simulation box. Also The number of voids increases
until z = 2 because the large scale structure grows while it decrease after the redshift
since the marginalize process happens.

can see that the particle distribution reasonably trace the shape of voids surrounded by the

average intensity contour. Then we run VIDE to the mock particle distributions made from

the intensity maps for z = 0.5, 1.0, 2.0, 3.01 and 4.01 respectively. We have obtained voids

as shown in Figure 5.6 In the figure, we show the number of voids according to their radius

defined as equation (5.3.5) for each redshift. We note that we do not adopt any filtering on

voids that VIDE outputs. Therefore, in fact, some voids might be just Poisson noise due to

the discrete particle distribution. In the original ZOBOV paper (Neyrinck, 2008), the author

suggested a way to distinguish the fake voids by considering the ratio of the density at the

center to the density at the ridge of voids. For example, if the ratio r of some voids is more

than 1.57, we can regard those voids as true voids with a 2σ confidence level.

However, based on the concept of the AP test, we do not have to care about whether the

voids are really ”voids” or not. What is important for the test is to observe the isotropic

objects and this concept encourages us to use any voids which VIDE provides.

When we see Figure 5.6, we notice that our void populations have peaks at 5[Mpc/h <

R < 10Mpc/h. Also, we can see that the number of voids increases until z = 2.0 while it

decreases toward the present after the redshift. Since the large scale structure grows as time
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passes, the void structures also evolve and can be of served more as time flow. However, in

the recent epoch, the margin process among voids begins to occur such that the total number

of voids will decreases while the voids in the recent epoch recognized as sure voids.

5.3 Void shape in the HI intensity map

In the Alcock-Paczynski test, we measure the shape distortion due to cosmic expansion. What

we will observe about the size of a distant object in a survey is the angular and redshift span.

To reconstruct the original size of the object, we have to assume a cosmological model as

described in equation (3.2.1). If the shape of the object is spherical, we have the relation of

equation (3.2.2). Thus, in order to apply the shape of the cosmic voids in the HI intensity

mapping survey to the AP test, we need to confirm whether the shape of stacked voids in the

HI intensity fields is spherical or not at first. Then we are going to check the physical shape

of the staked voids.

Before doing that, we would like to introduce our void stacking process. The stacking is

done by setting the position of every void’s center at the origin, where the center of a void is

defined by the Voronoi cell volume-weighted center,

xc =

∑Np

i Vixi∑Np

j Vj
, (5.3.1)

where sc is the position vector of the center of the void, si and Vi is the position vector and

the volume of the Voronoi cell of the ith particle which is a member of the void and Np is the

number particle included in the void. Thus the position of the particle when the center of the

void is set at the origin (or the relative position of the particle from the center of the void) is

δxi = xi − xc. (5.3.2)

Then we define the size of stacked voids along each axis as the second moment of the particle

distribution,

∆x2∥ =
1

N

N∑
i

δx2i,3, (5.3.3)

∆x2⊥ =
1

N

N∑
i

(δx2i,1 + δx2i,2)

2
, (5.3.4)
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Figure 5.7: An example of 2 dimensional void stacking process. Here we stack voids of the radius
Reff = 10±5Mpc/h. Both axes show the relative position of the particles from the center
of voids. From left to right panels, the numbers of voids for the stacking are 10, 50 and
100 respectively. The red solid lines in each panel show the averaged radial positions of
the particles within an azimuthal bin. The black dashed lines are the reference circles
whose radii correspond to the averaged radial position of all particles. One can see that
the shape of stacked void seems to be more spherical when the number of voids for
stacking becomes large.

where N is the number of total particles which are stacked and we suppose the third axis of

the simulation data as the line of sight and the first and second axises as the angular direction.

We stack voids within the narrow radius bin like Reff ±0.5Mpc/h, where the effective void

radius is determined by the volume of it,

Reff ≡
(

3

4π
V

)1/3

. (5.3.5)

where V is the volume of the void.

In Figure 5.7, we show the shape convergence of the 2D stacked voids. The numbers

of voids to be stacked are 10, 50, and 100 from the left to the right panels, respectively.

The dots indicate relative positions of the void particles. Here, we have stacked voids of the

radius of 10 ± 0.5Mpc/h. The red solid lines show the averaged positions of the particles

within azimuthal bins, while the black dashed lines represent the reference circles. One can

see that the red line in the left panel is fluctuating along the black circle, which indicates

that if the number of voids for stacking is not enough, the shape of the stacked voids is

ambiguous. On the other hand, if the number of voids to be stacked is large, the red line

converges towards the black circle as in the right panel. Thus, our hypothesis that the shape

of stacked voids found in the intensity map is spherical is correct when we stack the enough

number of voids. In Figure 5.8, we show the ratio between ∆x∥ and ∆x⊥ for stacked voids
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Figure 5.8: Top: The normalized AP signal of stacked HI voids, where efid is calculated by adopting
fiducial cosmological parameters adopted in the IllustrisTNG simulation. The error bars
show the 1-σ confidence regions around the data points. One can see that the normalized
signals are consistent with unity which suggests that the shape of the stacked void is
spherical. It seems that this property does not depend on the redshift and the size of the
stacked void.
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of the radii with Reff = 5,10,and 15Mpc/h at z = 0.5, 1, 2, 3, and 4. Since we have only one

realization simulation data, we evaluate the variance of the shape measurement by means of

the bootstrap method. We reconstruct mock catalogs by sampling the same number of voids

in a radius bin from the original catalog has. In the sampling process, we allow overlapping

voids. By the above process, we produce 100 mock catalogs and calculate the size ratio of

stacked voids for each catalog, and evaluate the mean value and variance among the catalogs.

One can see that the ratios are consistent with unity, which also indicates that the shape of

stacked voids is spherical. We have confirmed that this trend does not depend on the void

size and redshift so that we can perform the AP test by using the stacked voids in the HI

intensity map.

We note that in the future intensity mapping survey conducted by SKA1-MID, we will

observe 20, 000deg2 of the sky. This corresponds to 20, 61, 149, 225 and 286 time as large as

the IllustrisTNG-3 simulation size for z = 0.5, 1.2, 3 and 4 respectively. Thus, if we obtain a

similar intensity map from the actual observation to our simulation, the error bars are reduced

by at least 1/
√
20 if noise-free situation. We note, however, for making the simulation map,

we do not include any contaminations such as the resolution effect, noise, foreground and

so on. Even though it is possible to obtain a different result from this study in the real

observation, one of our aims is to investigate the possibility of the application of the test to

the HI intensity mapping survey, we conduct the AP test with our signals.

5.4 Performing the AP test

In the previous section, we confirm that the averaged shape of voids in the HI intensity field

becomes spherical when we stack enough number of voids. Now we are going to consider

performing the AP test by using the shape of stacked voids. Here we adopt the Markov Chain

Monte Carlo (MCMC) method to estimate the cosmological parameters. In this method, we

calculate the probability distribution of the parameters based on the Bayes’s theorem,

P ′(p|e) =
P (p)L(e|p)∫
P (p′)L(e|p′)dp′, (5.4.1)

where p and e are a set of model parameters and observation data, L(e|p) is a probability to

obtain the data e when the parameters are p, which corresponds to the likelihood. P (p) and

P ′(p|e) are called prior distribution and posterior distribution respectively. The latter is the

probability distribution of the parameter set after getting the data, which is what we want

here.
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When we assume that the probability of the observation data follows the Gaussian distri-

bution, the likelihood of this measurement is given by

L(e|p) =
∏
i,j

1√
2πσ2i,j

exp

−
(
edatai,j − ei

)2
2σ2i

 , (5.4.2)

where edatai,j and σ2i,j are the observation data and the variance of the data, ei(p) is the

theoretical value determined by the model parameters. Here the observation data can be

produced by the relation of observable and the physical size in equation (3.2.1) as

ei,j ≡
∆z

z∆θ

∣∣∣∣
i,j

=
χH(zi,Ωfid, wfid)

czi
·
∆x∥

∆x⊥

∣∣∣∣
i,j

, (5.4.3)

where the subscript i and j are the index of redshift and the stacked void radius. The

theoretical value of the AP signal can be obtained by assuming ∆x∥ = ∆x⊥, namely

ei(p) ≡
∆z

z∆θ
=
χH(zi,Ω, w)

cz
. (5.4.4)

As described above equation, our model parameters here are matter density parameter and

the equation of state parameter of dark energy, which appear in the Friedmann equation

(2.1.4). For the prior distributions of them, we assume a step function such as

P (Ωm) =

1 (0 ≤ Ωm ≤ 1),

0 (otherwise).
, (5.4.5)

P (w) =

1 (w ≤ −1
3),

0 (otherwise).
(5.4.6)

In Figure 5.9, we show the parameter estimation result by the MCMC analysis. For MCMC

calculation, we utilize a python module called EMCEE (Foreman-Mackey et al., 2013). In the

figure, two circles in the contour map indicate 1σ and 2σ confidence region of the estimation.

On the other hand, the vertical lines in the one-dimensional estimation show the 1σ confidence

region. The blue solid lines show the fiducial values of the parameters, which are Ω = 0.3089

and w = −1.0. We can see that the estimation of the parameters is consistent with the

fiducial values by the 1σ confidence level. The result of the estimation of the two parameters

66



0
.

2
8
5

0
.

3
0
0

0
.

3
1
5

0
.

3
3
0

Ωm

−

1
.

2
0

−

1
.

1
2

−

1
.

0
4

−

0
.

9
6

−

0
.

8
8

w

−

1
.

2
0

−

1
.

1
2

−

1
.

0
4

−

0
.

9
6

−

0
.

8
8

w

Figure 5.9: Parameters estimation by MCMC sampling. The contour map shows 1σ and 2σ confi-
dence regions while dashed vertical lines in the one dimensional estimation indicate 1σ
confidence regions. The blue solid lines show the fiducial values of each parameter, for
which we assume the ΛCDM model as a fiducial model. The estimation is consistent
with the fiducial values by the 1σ confidence level. The results are Ω = 0.3030+0.0068

−0.0069

and w = −1.011+0.043
−0.044.
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are Ω = 0.3030+0.0068
−0.0069 and w = −1.011+0.043

−0.044. This result suggests that the AP test in the

intensity map with the stacked void method can be possible in principle.

5.5 Redshift space distortion effect

So far we have investigated the possibility of the AP test with stacked voids surrounded by the

HI intensity contour surface and we confirmed that the averaged shape of the voids is spherical

so that we can estimate the cosmological parameters by measuring the shape distortion of the

voids due to the expansion of the Universe as Figure 5.9. Even though the AP test can be

achieved by the procedure we have proposed in principle, there is a big problem in the test,

that is to say, the redshift-space-distortion (RSD). This distortion is caused by the peculiar

velocities of the objects along the line of sight. The observed redshift of the objects includes

the effect of cosmological expansion as well as the Doppler shift due to the motions along the

line of sight,

zobs = z̄ +
v∥ − v0,∥

ca
, (5.5.1)

where v∥ and v0, ∥ are the peculiar velocities of the objects and observers along the line of

sight, respectively. z̄ represents the redshift due to the expansion of the Universe. Then, the

comoving distance to the object is

s∥ =

∫ zobs

0

cdz

H(z)
= x∥(z̄) +

v∥ − v0,∥

aH
. (5.5.2)

Thus, the observed positions of the objects would be different by the effect of the peculiar

velocities. In the HI intensity mapping surveys, we observe the redshifted 21cm lines, which,

of course, include the effect of peculiar velocities, and then the estimated positions of the HI

gas are also distorted compared to the one with no peculiar velocities. This RSD effect causes

a systematic error in the AP test, and we should take care of these distortions in order to

take the true cosmological expansion history. In the previous studies, the effects of RSD on

the stacked void’s shape were reported (Lavaux & Wandelt, 2012; Sutter et al., 2014; Mao

et al., 2017c). Among those studies, the RSD effect has appeared as a flattening of the void

shape along the line of sight.

Here we also would like to investigate its effect on our procedure. In order to introduce
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Figure 5.10: A comparison of 2-dimensional stacked void in real-space (left) and redshift-space
(right). Here we stack voids of the radius Reff = 10 ± 5Mpc/h. Both axes show the
relative position of the particles from the center of voids. For both panels, we stacked
100 voids. The red solid lines and black dashed lines in each panel are the same ones
as in Figure 5.7. The yellow dotted line in the right panel indicates an ellipsoid fitted
to the void particle positions in redshift-space. One can see that the shape of stacked
void in redshift space seems to be squashed along the line of sight.

the effect of peculiar velocities, we shift the gas-cell positions when we make a grid field,

s∥ = x∥ +
(1 + z)v∥

H(z)
, (5.5.3)

where x∥ and v∥ are the position and velocity of a gas cell along the line of sight in the

simulation box, and therefore, s∥ is the position of the gas cell in the redshift-space. For

simplicity, we set the observer’s velocity equal to zero.

Then we make mock intensity maps in redshift-space and finds void structure in the same

manner as we have conducted in the real-space in which we do not include the effect of the

peculiar velocities. Here we again ignore the resolution and noise effects, so that we construct

2563 grid fields and calculate the brightness temperature.

Figure 5.10 shows the 2D stacked void in real-space (left panel) and redshift-space (right

panel). The left panel is the same one in the right panel in Figure 5.7. In the right panel,

we notice that the red solid line seems to come into the black dashed circle in the line of

sight direction, while the red line goes out the black circle along the horizontal direction. We

have fitted the particle positions in the right panel by an ellipsoid, which results in the yellow

dotted line in the panel. In this case, the ratio between the major axis and the minor axis
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was 0.9075. One can see that the yellow line reasonably traces the red line.

This result indicates that the void shapes in the HI intensity field in redshift-space are

squashed along the line on average. This is the same trend as reported in the previous studies

with the dark matter or mock galaxy distributions.

In Figure 5.11, we plot the ratio between ∆s∥/∆s⊥ for several stacked void radii and

redshift. Those ratios result in to be less than unity as expected in Figure 5.10. The ratios

are about 0.9, which is consistent with the previous works. In the figure, only R = 15Mpc/h

at z = 4 deviates from the trend, but we think this is due to the small samples in our catalogs.

So if we observe larger volumes and obtain more samples, the signal would be shifted as other

signals do.

We can understand this flattening effect in 2 ways. One of them is the elongation of the

void ridges along the line of sight, which is so-called the finger-of-god effect. This elongation

is caused by the random motions in the clusters. The other one is the Kaiser effect (Kaiser,

1987) which is the large scale coherent motion of clusters. In both cases, the void region is

squashed along the line of sight and due to the definition of the stacked void sizes is calculated

as the second moment of the mock particle positions around the center of voids in our analysis,

the size of the stacked void along the line of sight tends to be flattened in redshift-space. To

perform the AP test, we produce the AP signals in the same way described in the previous

section but exchanging the size ratio ∆x∥/∆x⊥ to ∆s∥/∆s⊥.

To estimate the cosmological parameters correctly, we must remove the effect of peculiar

velocities properly, otherwise, we fail to estimate the cosmological parameters. As already

mentioned, previous works try to remove the effect by calibrating how much the shape distor-

tion due to the RSD effect appears. For example, Lavaux & Wandelt (2012) proposed that

multiplying by 1.16 ± 0.04 is reasonable to restore the sphericity of the stacked void in the

dark matter distribution. According to their suggestion, we first try to remove the effect of

the peculiar velocity by multiplying a constant. Then, we calibrated the constant to recover

the sphericity in our simulation results and found that the stacked voids in the HI intensity

fields are squashed by the factor of 0.9071+0.0032
−0.0031 along the line-of-sight direction on average.

Thus, we can recover the sphericity of the stacked voids by multiplying the inverse of the

factor.

After we corrected the AP signals, we conducted the MCMC analysis to estimate the

cosmological parameters. In Figure 5.12, we show the result of the parameter estimation.

One can see that the estimated cosmological parameters are different from the fiducial values

even though the correction factor is optimized to restore the theoretical curve with Ω = 0.3089

and w = −1. We notice that the deviation in the estimated equation of state parameter from

the fiducial value seems larger than that of matter density. We would like to note that this
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Figure 5.11: The ratio between sizes along and perpendicular to the line of sight direction including
the effect of peculiar velocities of HI gas. The ratio of several radius of stacked voids
are plotted from z = 0.5 to 4. Even though the shape of the stacked void is spherical
without including the peculiar velocities, the RSD effect breaks the condition. The
RSD effect appears as flattening of void shape along the line of sight. It seems that the
flattening effect does not depend on the void radius but redshift. The blue dashed line
indicates the theoretical model prediction, which is fitted to the data points in advance.
The black dotted line is the result of the model fitting with the AP test at the same
time.
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Figure 5.12: The same as Figure 5.9, but using corrected AP signals in redshift-space. The estimation
of both the matter density and the equation of state parameter is inconsistent with the
fiducial values.

result may be ambiguous since the accelerated expansion is more effective in the late epoch

universe so that we need more samples at the late epoch to constrain w.

Although we have estimated the cosmological parameters after calculating the correction

factors so far, the estimation is very dependent on the correction factors. In order to see

the dependence on the estimation of the correction factors, we reanalyze the AP signals by

adopting the correction factor to be a free parameter. So we conducted the MCMC estimation

including the correction factor. In Figure 5.13, we show the results of the parameter estimation

including the free correction factor which is represented as “offset” in the figure.

Even after we correct the AP signals, the parameter estimation seems to fail. This result

indicates that the correction by the constant factor is not suitable for our analysis. We

consider that this is because of the time evolution of the peculiar velocities of tracers. In fact,
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Figure 5.13: The parameter estimation by the AP signals with binned stacked voids in redshift-
space. The dashed vertical lines indicate the 1σ confidence region while blue solid lines
indicate the fiducial values of the parameters. For offset, we set the optimized value as
the fiducial value. The difference between Figure 5.12 is that we estimate the correction
factor as a free parameter at the same time. We can see that the matter density and
correction factor are tightly degenerate each other.
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Figure 5.14: The parameter estimation with removing the RSD effect by the linear theory formula
as indicated as blue lines. The red lines indicate the results by the constant fit as shown
in Figure 5.12. We obtained Ωm = 0.3093+0.0076

−0.0077 and w = −1.008+0.042
−0.044 after recovering

the AP signals by the linear theory fit model.

the previous works analyze a narrow redshift range compared to our analysis so that the time

evolution could not be seen in their results. Here we are going to take the time evolution of

the peculiar velocity into account to remove the RSD effect properly.

The size ratio in redshift-space can be expressed as

∆s2∥

∆s2⊥
=

1

∆x2⊥

[
⟨δx2∥⟩+ 2

(1 + z) ⟨δx∥ · vp∥⟩
H(z)

+
(1 + z)2 ⟨v2p∥⟩

H(z)2

]
. (5.5.4)

If the gas velocity is approximated to the dark matter velocity, the peculiar velocity can be
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expressed by using the linear theory as

vp(x) =
H(z)f(z)D(z)

(1 + z)

∫
d3x′

x− x′

|x− x′|3
δ(x′), (5.5.5)

where D(z) is the growth factor defined in section 2.2.1, f(z) is the growth rate defined as

f(a) ≡ d lnD(a)

d ln a
=

Ḋ

HD
. (5.5.6)

In this case, the size ratio in redshift-space can be expressed as

∆s∥

∆s⊥
= αf(z)D(z) + β. (5.5.7)

Thus, if the dynamics of the void tracer particle can be written by the linear theory and

there is no velocity bias between the dark matter and the tracers, it is possible to forecast the

RSD effect so that we can estimate the coefficients α and β analytically.

However, this trial does not work when we try to estimate the RSD effect only in the

analytic way. This result indicates that even though the density fluctuation inside the void

region is mild, the void ridge which makes the shape is composed high-density objects. Thus,

there might be some non-linear effect in the void dynamics. And also, there should be velocity

bias between the dark matter and the HI gas, so that it is a quite hard problem to estimate

the RSD effect only by the theoretical way.

Then, we leave α and β as free parameters and we fitted them to describe the signals. As

a result, we have obtained α = 0.1329+0.1830
−0.1409 and β = 0.9016+0.0480

−0.0427. By using these values,

we can reasonably describe the AP signals including the RSD effect as shown in Figure 5.11.

Then, we correct the AP signals by using the equation (5.5.7) and conduct the MCMC

parameter estimation. We show the results in Figure 5.14. In the figure, we also show the

parameter estimation results with the constant fit, which is indicated by the red lines. On the

other hand, we show results with the linear theory fit by the blue lines. One can see that the

correction by the linear theory fit seems to be a success so that we can recover the fiducial

cosmological parameters as indicated by the solid vertical lines. In the linear fit case, we have

obtained the cosmological parameters as Ωm = 0.3093+0.0076
−0.0077 and w = −1.008+0.042

−0.044.

We note that as in the case of the constant fit, in the actual observation we do not know

the true parameters α and β. To see the relationship between those parameters and the

cosmological parameters, we have conducted the MCMC analysis including α and β at the
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Figure 5.15: Same as Figure 5.14 but all the parameters are jointly fitted at the same time. We find
that the RSD correction parameters and cosmological parameters are largely degener-
ate with each other. The estimated value for the cosmological parameters are biased;
however, it is still consistent within 2σ. The best-fitting values are Ωm = 0.1723+0.0734

−0.0560,

w = −1.692+0.385
−0.663, α = 0.1329+0.1830

−0.1409, and β = 0.9016+0.0480
−0.0427.
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same time. In Figure 5.15, we show the parameter estimation results. We can see that each

parameter largely degenerates and the preferable values are different from the fiducial values.

For parameters α and β, we set the fiducial values as the one which has been obtained in the

previous analysis. Even though the likely values are different from the fiducial values, the

estimation is consistent with the values within 2-σ level.
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Chapter 6

Conclusion

In this thesis, we have investigated the possibility of the application of the cosmic voids

properties to the constraints on cosmological models. In terms of the void formation, we

confirmed that void formation will be affected by the dark energy clustering if the void size

is larger than the Jeans length of dark energy clustering which is determined by the speed of

sound of dark energy fluid. To see the effect, we adopted the spherical void model and solving

the evolution of the dark energy perturbations inside the void region. Even though the effect

of dark energy clustering is sub percent level on each void formation, on a statistical property,

namely size abundance, the effect is significant in which we confirmed that there are more

than ten percent level deviations above the Jeans scale. The deviation can be found when the

void size is larger than the Jeans scale. From this point of view, void size abundance can be

one of the tools to distinguish the speed of sound of dark energy. However, the modification of

the size abundance degenerates to the difference in the equation of state. So, in order to solve

the degenerate, we need to determine the equation of state by the independent observations.

In addition to the possibility to distinguish the clustering nature of dark energy, we also

study an application of void shape to constraint the cosmological models. The method is

evolution model-free and it only demands either intrinsic or statistical isotropy of the observed

objects, which is called the Alcock-Paczynski test. There have been some candidates to be

proposed for the AP test. Among them, the averaged shape of voids has been paid attention

to the test, since our observation region in the Universe is getting larger so that we can treat

voids statistically. The averaged shape of voids is expected to be spherical even though each

void shape is far from the sphericity. Thus it can be applied to the AP test. For now, there

have been some studies that try to get the background energy budget of dark matter by

combining the AP test and the shape of stacked void in galaxy surveys, but due to the shape

noise, the constraints were weak.

In this study, we attempt to find voids in the HI distributions, which are also the biased
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matter tracer and can be detected by the redshifted signals of the 21cm line. In order to

trace the shape of voids in the intensity fields, we developed a method to identify the void

region from the intensity fields by particle void finder, VIDE. In the process, we expand the

concept of the void, in other words, we defined voids as low-intensity regions surrounded by the

averaged intensity contour regions. We also assume that the shape of voids in our definition

is expected to be spherical when they are averaged due to the cosmological principle.

We confirmed the sphericity of the stacked void surrounded by the intensity contour and

that can be applied to constrain cosmological parameters such as matter density and the

equation of state parameter of dark energy more precisely than the previous works with

galaxy surveys. However, as is the case of galaxy surveys, the peculiar velocities of the gas

along the line of sight distort the shape of voids systematically. So, if we do not remove the

RSD effect properly, we misestimate the cosmological parameters.

Even though the previous works try to remove the RSD effect by multiplying a constant

factor since the distortion does not seem to depend on the redshift, the procedure fails in

our analysis. One of the reasons for the failure is that we analyze a wider redshift range. To

introduce the time dependence of the RSD distortion, we adopt the idea of the cosmological

linear perturbation theory. The theoretical model reasonably traces the shape distortion due

to the peculiar velocities if the calibration of model parameters is conducted in advance.

We confirmed that the RSD effect degenerates with the cosmological parameters estimation

especially.

According to our study, we have shown that the void size property is very sensitive to

the clustering nature of dark energy and the averaged void shape can be used to constrain

the cosmological parameters such as Ω and w through the expansion history of the Universe.

These results suggest that the cosmic voids can become one of the important observation

targets although we have paid attention to bright or matter clustering regions. Thus, we

conclude that voids are essential observable in order to know our Universe more precisely.
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Appendix A

Derivation of the halo mass

function from a random walk model

Here we solve the diffusion equation appearing in Section 2.3.2

∂Π(δ, S)

∂S
=

1

2

∂Π(δ, S)

∂2δ
(A.0.1)

as the one barrier problem for the halo formation or the two barriers problem for void forma-

tion by the same manner of Zentner (2007) The diffusion equation often appears in a thermo

dynamics in which the coefficient in the right hand side is called heat conduction coefficient.

For the halo formation case we will use the Fourier transform method while for void formation

case we will use the valuable separation method.

A.1 Single barrier problem

Now we consider the random walk trajectory of δ at scale S. The condition of the trajectory

is that the trajectory has never reached a threshold value δc. This condition implies the

boundary condition Π(δc, S) = 0 and we set the initial condition as Π(δ, S0) = δD(δ − δ0).

The initial condition comes from the fact that the trajectory starts only the point (δ0, S0)

Now, we change valuable from δ to γ = δc − δ such that Π(γ = 0, S) = 0 for the boundary

condition and Π(γ, S0) = δD(γ − γ0) for the initial condition. The Fourier transform of the

Π(γ, S) is

Π(γ, S) =
1

π

∫ ∞

0
A(k, S) cos(kγ)dk +

1

π

∫ ∞

0
B(k, S) sin(kγ)dk (A.1.1)
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where the coefficients A(k, S) and B(k, S) are determined the inverse Fourier transform,

A(k, S) =

∫ ∞

−∞
Π(γ, S) cos(kγ)dγ, B(k, S) =

∫ ∞

−∞
Π(γ, S) sin(kγ)dγ. (A.1.2)

The boundary condition Π(0, S) = 0 demands

Π(0, S) =
1

π

∫ ∞

0
A(k, S)dk = 0, (A.1.3)

thus we know A(k, S) = 0. Then, the diffusion equation can be written

∂B(k, S)

∂S
= −k

2

2
B(k, S). (A.1.4)

The solution of the above equation is

B(k, S) = C(k) exp

(
−k

2

2
S

)
, (A.1.5)

so that we obtain

Π(γ, S) =
1

π

∫ ∞

0
C(k) sin(kγ) exp

(
−k

2

2
S

)
dk. (A.1.6)

Since the Fourier transform of Π is written by only sine functions, its inverse Fourier transform

should be,

C(k) exp

(
−k

2

2
S

)
= 2

∫ ∞

0
Π(γ, S) sin(kγ)dγ (A.1.7)

Now using the initial condition,

C(k) exp

(
−k

2

2
S0

)
= 2

∫ ∞

0
Π(γ, S0) sin(kγ)dγ

= 2

∫ ∞

0
δD(γ − γ0) sin(kγ)dγ

= 2 sin(kγ0) (A.1.8)
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Thus,

C(k) = 2 sin(kγ0) exp

(
S0
2
k2
)
, (A.1.9)

and

Π(γ, S) =
2

π

∫ ∞

0
sin(kγ0) sin(kγ) exp

(
−(S − S0)

2
k2
)
dk

=
1

π

∫ ∞

0
[cos(k(γ − γ0))− cos(k(γ + γ0))] exp

[
−(S − S0)

2
k2
]
dk. (A.1.10)

The integral in the right hand side finally results in

Π(δ, S) =
1√

2π(S − S0)

[
exp

(
− (δ − δ0)

2

2(S − S0)

)
− exp

(
− [2(δc − δ0)− (δ − δ0)]

2

2(S − S0)

)]
(A.1.11)

where we use a formula

∫ ∞

0
cos(ax)e−bx2

dx =
1

2

√
π

b
exp

(
−a

2

4b

)
, (b > 0). (A.1.12)

By setting the initial condition (δ0, S0) to (0, 0) we obtain

Π(δ, S) =
1√
2πS

[
exp

(
− δ2

2S

)
− exp

(
− [δ − 2δc]

2

2S

)]
(A.1.13)

This is the probability distribution of the trajectory which reaches (δ, S) without crossing δc

earlier.

A.2 Double barrier problem

The next one is the case for the formation of the low density regions. The required condition

for the trajectory is that it has never reached both δc and δv which is the criteria of the

void formation. It is analogous to the Press-Schechter case that the boundary conditions are

Π(δv, S) = Π(δc, S) = 0. We again change the valuable as γ = δ − δv, so that Π(γ = 0, S) =

Π(γc = δc − δv, S) = 0 and Π(γ, S0) = δD(γ − γ0). To solve the diffusion equation as a two

barriers problem, we adopt the valuable separation method this time.
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We assume Π(γ, S) = G(γ)P (S) and then the boundary conditions imply

G(0)P (S) = 0, G(γc)P (S) = 0. (A.2.1)

If P (S) = 0, it is nothing to do with the random walk model. Therefore the boundary

conditions indicate P (S) ̸= 0 and G(0) = G(γc) = 0.

The diffusion equation (A.0.1) is

1

P

dP

dS
=

1

2G

d2G

dγ2
= κ (A.2.2)

where κ is some constant. It is straightforward to derive P (S) ∝ exp(κS). Even though κ can

be any constant, because of our interests, κ should be κ < 0. For example, when κ = 0, the

general solution of G(γ) is G(Γ) = aγ+ b. For this solution, the boundary conditions demand

a, b = 0. The other case is when κ > 0. The general solution isG(γ) = A exp(kγ)+B exp(−kγ)
and the boundary conditions tell us A = B = 0 as well.

Hereafter we consider κ = −k2 < 0. The general solution is then,

G(γ) = A cos(
√
2kγ) +B sin(

√
2kγ). (A.2.3)

The boundary condition of G(0) = 0 indicates A = 0 Furthermore G(γ) satisfies G(γc) = 0,

so that
√
2k = nπ/γc, where n = 1, 2, 3, ... Therefore,the general solution of G(γ) is written

as

G(γ) =

∞∑
n=1

Cn sin

(
nπ

γc
γ

)
(A.2.4)

where Cn are some constants Then the general expression of Π(γ, S) is,

Π(γ, S) =
∞∑
n=1

Cn sin

(
nπ

γc
γ

)
exp

(
−n

2π2

2γ2c
S

)
(A.2.5)

The final step is to determine the coefficient Cn. Recalling the initial condition S0 = 0,

Π(γ, 0) =
∞∑
n=1

sin

(
nπ

γc
γ

)
= δD(γ − γ0). (A.2.6)
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By the orthogonal relationship,

∫ L

0
sin

(
nπ

L
x

)
sin

(
mπ

L
x

)
=


L

2
(n = m)

0 (n ̸= m)

(A.2.7)

we multiply (A.2.6) by sin(mπγ/γc) and integration of it from γ0 − γc/2 to γ0 + γc/2 results

in

Cn =
2

γc
sin

(
nπ

γc
γ0

)
. (A.2.8)

Thus the general solution of Π(γ, S) with two barriers is

Π(γ, S) =
∞∑
n=1

2

γc
sin

(
nπ

γc
γ0

)
sin

(
nπ

γc
γ

)
exp

(
−n

2π2

2γ2c
S

)
. (A.2.9)

Finally we recover γ to δ,

Π(δ, S) =

∞∑
n=1

2

(δc − δv)
sin

(
nπ

(δc − δv)
(δ0 − δv)

)
sin

(
nπ

(δc − δv)
(δ − δv)

)
exp

(
− n2π2

2(δc − δv)2
S

)
.

(A.2.10)
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Appendix B

Resolution effect

Even though we revealed that the AP test in the HI intensity contour with stacked void

technique has a huge potential to put a tight constraint on cosmological models in principle,

our simulation setup has been a very simplified and idealized one. Here, we are going to

evaluate the feasibility of the AP test by assuming future SKA observation detectabilities.

One of the biggest concerns is whether we can detect the fluctuation in the intensity field.

In the previous analysis, we detect void shape by setting a threshold that corresponds to the

spatially averaged brightness temperature. Our concern is that whether we can trace the void

shape by the threshold. In order to outline the void shape by the average threshold, we need to

detect intensities at least less than the average intensity otherwise the noise will overcome the

intensity field and we cannot trace the HI structures. Here we consider only the instrumental

noise. The noise amplitude can be determined by the angular and redshift resolution as well as

the observation time. Assuming the SKA observation, such noise amplitude can be estimated

as (Furlanetto et al., 2006; Horii et al., 2017)

δTnoise ≈ 264

(
1′

δθ

)2(MHz

∆ν

100h

tobs

)1/2(1 + z

1

)
µK. (B.0.1)

By assuming the observation time to be tobs = 1000h and the resolution in the previous

sections produce the noise amplitude as the left panel in Figure B.1. As shown in the panel,

our previous situation can be achievable only for z = 0.5. For higher redshifts, the averaged

signals are below the noise temperature. In order to solve this situation, we need to vary the

threshold value to trace the shape of voids or observe the intensity field with lower resolution

or take both procedures. The right panel in Figure B.1 shows the noise level when we fix the

angular resolution which corresponds to 2 arcmins as well as setting the frequency resolution

to correspond to the angular scale. In this case, the averaged signal can be detectable until

85



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

z

10
−4

10
−3

10
−2

δ
T
b

noise (256 grid)

averaged signal

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

z

10
−4

10
−3

10
−2

δ
T
b

noise (2 arcmin)

averaged signal

Figure B.1: Signal and noise of the brightness temperatures. For the fixed resolution of our idealized
analysis, the signals are beneath the noise amplitude at z > 1.0. If the observation is
conducted with a lower resolution, the signal can be detectable. For the right panel, we
assume the angular resolution to be 2 arcmins.

z = 2.0. For higher redshifts, we can trace the void shape by modifying the threshold into 10

times larger the averaged value. We then make intensity maps with the 2 arcmin resolution

and make mock particle distributions in both real-space and redshift-space by setting the the

threshold to be the averaged brightness temperature until z = 2.0 and for higher redshifts

than z = 2.0 setting the threshold to be ten times larger value. However, we cannot find

enough voids for stacking at z = 3 and 4 since the structures are too smoothed and the mock

particles are too discrete to trace the void structures of the scale we have focused on. Thus

we simulate the AP signals until z = 2.0 and add additional redshift data at z = 0.3 and 1.5

so that the number of data in terms of redshift is the same. We note that when we make

the intensity map at z ≤ 0.5 we fixed the number of grids as 2563 to reduce the calculation

time and the memory. This resolution is rougher than the even 2 arcmin resolution at the

redshifts. In this analysis, we have stacked all voids within the radius range by normalizing

the relative position of the particles from the center of voids.

In Figure B.2 we show the AP signals for this setup.

The figure shows that the AP signals in real-space keep unity which indicates that the

sphericity of voids is maintained in the relatively low resolution compared to the previous

analysis. On the other hand, we notice that the AP signals in redshift-space getting close to

unity at higher redshifts (1.0 ≤ z) while at low redshifts they show the systematic deviation

as we have already observed. The reason we consider is that for higher redshifts the position

shift of the gas sells along the line of sight in redshift-space could not be resolved due to

the low resolution at higher redshifts. In this setup, the resolution scales are 1.339, 1.767,

and 2.095 Mpc/h at z = 1.0, 1.5 and 2.0 respectively. We analyze the peculiar velocities of
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Figure B.2: The normalized AP signals by the fiducial values for 2 arcmin resolution in both real-
space and redshift-space. Here we have stacked all voids within the radius range we have
focused on. The AP signals in real-space seems to keep unity for the redshifts while the
signals in redshift-space are close to unity at 1.0 ≤ z and getting close to 0.9 at z = 0.5
and 0.3.

the gas cells in the simulation and obtain their velocity dispersions along the line of sight as

σv∥ = 242.7, 222.9 and 205.2 kms−1 for the redshifts, from which we expect the position shifts

are 2.730, 2.374 and 2.047 Mpc/h respectively. These shift scales are close to the resolution

scales so that the position shifts have not been resolved and we could not detect the systematic

distortions.

Since it seems to be difficult to remove the RSD effect with the low resolution set up, we

perform the AP test only for the real-space data set. In Figure B.3 we show the results of the

MCMC parameter estimation. One can notice that the estimations are very close to the 1σ

confidence region, especially for w the most preferable value is almost the fiducial value. This

is because we include the low redshift point (z = 0.3) in the analysis. So this result suggests

that it is important to observe the low redshift data to confirm the deviation in the equation

of state parameter of dark energy from −1. Also, this result suggests that even with the low

resolution, we can estimate the cosmological parameters by the stacked void shapes if we can

remove the effect of the peculiar velocities in principle. The estimations are Ω = 0.2957+0.0124
−0.0122

and w = −1.016+0.074
−0.076.
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Figure B.3: The parameter estimation with the stacked voids found in the intensity maps with
2 arcmin resolution. Here we stack all voids in the radius range. In this analysis,
we do not include the effect of the peculiar velocities. Even with the low resolution,
we can reasonably estimate the parameters. The results are Ω = 0.2957+0.0124

−0.0122 and

w = −1.016+0.074
−0.076
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