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Abstract

The universe has been evolving since it was born. One of the biggest goals of cosmology is to

understand the evolutionary history of the universe. Although electromagnetic observations in

a wide range of wavelengths have made great progress on revealing the evolutionary history, the

early epoch of the universe just after the birth cannot be observed directly by electromagnetic

waves. Fortunately, we recently have obtained the new observational tool, gravitational wave

(GW). The ground-based interferometer LIGO enabled us to observe GWs from black hole

binaries and neutron star binaries. Since, unlike the electromagnetic waves, GWs emitted in

the early universe propagates until the present, we can probe and constrain the theoretical

model of the early universe by observing the GWs. In this thesis, we focus on a cosmic string

and cosmic superstring, both of which are considered to be formed in the early universe and

emit GWs.

Various phase transitions are considered to occur in the early universe and they predict

the formation of cosmic strings. Recently, cosmic superstrings are proposed as a string like

an object produced at the end of inflation based on the superstring theory. Although these

strings have been searched by using the cosmic microwave background (CMB) temperature

anisotropies and the gravitational lensing effects, they have not been found yet.

Cosmic strings and cosmic superstrings move in the space and they form the complex net-

work by repeating intersections and reconnections. Y-junctions where two different strings

join and separate appears only in the cosmic superstring network. When these strings recon-

nect, the sharp structures called kinks are produced. When kinks propagate along the curved

strings or collide each other, they emit GWs, which form a GW background by overlapping

one another.

In the previous work, although the power spectrum of the GW background from kinks on

cosmic strings has been estimated, the time evolution of the number and the sharpness of

kinks (distribution function of kinks) on cosmic strings have not been taken into account. In

this thesis, first, we solve the time evolution equation of the distribution function of kinks

numerically. Second, we extend it for the case of the cosmic superstring considering the

two effects; low reconnection probability and Y-junctions. By solving the evolution equation

numerically, we find that the distribution function of kinks is determined by the balance of

the two effects; the number of kink production is enhanced by low reconnection probability

and kinks are blunted by Y-junctions.

Using the distribution of kinks, we estimate the power spectra of the GW background

from propagating kinks on cosmic strings and cosmic superstrings numerically. Then, we

suggest that we will be able to distinguish the GW background of cosmic string from one of

cosmic superstring by the observation because the shapes of these power spectra are different.

Moreover, we formulate the power spectra of the GW background from kink-kink collisions

on cosmic strings and cosmic superstrings and calculate it numerically. We obtain the result



that the amplitude of the GW background from kink-kink collisions on cosmic superstrings is

enhanced when the reconnection probability is p = 0.1, and propose that we may be able to

observe the GW background by using future GW experiments.
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4.2 Reconnection of strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Sharp structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Cusp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Kink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Y-junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Dynamics of cosmic superstring with Y-junction . . . . . . . . . . . . . . . . 29

4.4.2 Energy conservation of cosmic superstring with Y-junction . . . . . . . . . . 30

5 String network dynamics 32

5.1 Network of cosmic string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Network of cosmic superstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Case A: string network with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1 . . . . . . . . . 38

5.2.2 Case B: string network with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3 . . . . . . . . 38

5.2.3 Case C: string network with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3 . . . . . . . 39

6 Distribution of kinks 42

6.1 Evolution of sharpness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 On infinite cosmic strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 On infinite cosmic superstrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Case A: kink distribution with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1 . . . . . . . 52

6.3.2 Case B: kink distribution with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3 . . . . . . . 53

1



Contents Contents

6.3.3 Case C: kink distribution with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3 . . . . . . 53

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Gravitational wave background from propagating kinks 55

7.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Case of infinite cosmic string . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.2 Case of infinite cosmic superstring . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.3 Case A: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1 . . . . . . . 61

7.2.4 Case B: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3 . . . . . . . 62

7.2.5 Case C: GW background with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3 . . . . . . 62

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Gravitational wave background from kink-kink collisions 65

8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 GW emission effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3.1 Case of infinite cosmic string . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3.2 Case of infinite cosmic superstring . . . . . . . . . . . . . . . . . . . . . . . . 73

8.3.3 Case A: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1 . . . . . . . 73

8.3.4 Case B: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3 . . . . . . . 74

8.3.5 Case C: GW background with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3 . . . . . . 74

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Summary 78

Appendix 82

A Conservation of the kinks number 82

B Analytic solution of kinks distribution function 82

C Strain amplitude of GW from one kink 84

D Condition of sharpness mostly contributing to GW background of frequency f 85

E Energy momentum tensor Tµν of cusp and kink 90

E.1 Iµ for a discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

E.2 Iµ for a stationary point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2



1 INTRODUCTION

1 Introduction

At present, the standard big bang theory, which is considered as the most suitable cosmological

model, describes that the Universe was born with a high temperature and cools down as the

Universe itself expands It is the ultimate aim of cosmology to understand the evolutionary

history of the Universe from birth to the present. Using electromagnetic waves in a wide

range of wavelength, the history of the Universe is revealed step by step. However, we are

not able to observe the early Universe through electromagnetic waves. In the early Universe,

the interaction between photons and baryons were very strong. As a result, photons cannot

propagate freely in the Universe.

Gravitaional waves (GWs) from the black-hole or neutron-star binary mergers were de-

tected recently [1, 2, 3]. GWs are emitted not only from astrophysical phenomena but also

from cosmological ones in the early Universe, where we can not observe directly by using

electromagnetic waves. In the near future, various instruments will be operated, for example,

Advanced LIGO [4], Advanced Virgo [5] and KAGRA [6]. Thus, we can use GWs as a new

observational tool and it opens the new era not only in astrophysics but also in cosmology.

In this thesis, we focus on the one-dimension high energy region called ”cosmic string”

and ”cosmic superstring” as gravitational wave sources in the early Universe. Cosmic strings

are topological defects produced in spontaneous symmetry breaking. It is predicted that the

symmetry breaks spontaneously in some models of the early universe. Therefore, we can reveal

the high energy physics through probing cosmic strings.

It is proposed that the Universe has experienced various cosmological phase transitions. The

phase transitions relate to the spontaneous symmetry breaking in particle physics. Therefore,

during the phase transitions in the early universe, cosmic stings can be generated by the

spontaneous symmetry breaking of phase transition [7, 8]. In particular, one possible candidate

of the phase transitions produced the cosmic strings is the phase transition related to grand

unified theories (GUTs) which are theoretical models to unify the strong, and weak and

electromagnetic interactions into a single interaction. The energy scale of this phase transition

is called grand unified theory scale. Probing GWs of cosmic strings provides us important

information about this energy scale.

In addition, cosmic strings could be also produced at the end of inflation in the early uni-

verse. Inflation is a theoretical model in which the rapid expansion of the universe happens in

the early universe and some problems in the standard big bang theory can be solved. Although

Cosmological observations strongly support the existence of the inflationary expansion in the

early universe, we do not know the detailed nature of inflation. Currently, many inflation

models are suggested motivated by the particle physics theories. The hybrid inflation model is

proposed from supersymmetric grand unified theory [9, 10]. This model predicts that cosmic

strings are generated at the end of the inflation by the spontaneous symmetry breaking. Cos-

mic strings might be important relics related to inflation. If we can detect GWs from cosmic

strings, we can probe the energy scale associated inflation model.
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1 INTRODUCTION

On the other hand, cosmic superstrings are proposed in the framework of superstring theory,

which is known as a fundamental theory at present. Cosmic superstrings are classified into two

types; fundamental strings (F-strings) and 1-dimensional Dirichlet branes (D-strings) which

are produced at the end of brane inflation. It is predicted that these strings might be stretched

to cosmological scales and play a role similar to cosmic strings [11, 12, 13, 14]. Therefore, it is

expected that cosmic string observations could open new ways to access high energy physics

such as string theory and brane inflation models.

Cosmic strings and cosmic superstrings are known to provide huge impacts on the evolution

of the Universe. Using precise cosmological observations, we can constrain the nature of cosmic

strings and cosmic superstrings. For example, cosmic strings might be the seeds of the large

scale structure [15, 16, 17, 18]. However, CMB observation showed that cosmic strings can

contribute to the CMB temperature anisotropies no more than 7 %, which corresponds to the

bound on the tension of cosmic strings as Gµ < 1.8× 10−7 at 68 % confidence level, where µ,

called a tension, is the energy per unit length of the cosmic string and G is the gravitational

constant [19, 20, 21, 22]. When we assume that such cosmic strings are generated at the end

of inflation, we can obtain constraints on the parameters of the inflation model [23].

Furthermore, cosmic strings can induce gravitational lensing [24]. This lensing due to cos-

mic strings is extremely different from the lensing due to a point source; the two lensed images

caused by a cosmic string is aligned axisymmetrically with respect to the cosmic string. Al-

though there was a report that such lensed images of a galaxy have been observed, the following

analysis concludes that these images are just two very similar elliptical galaxies [25, 26]. We

have eagerly looked for observational signals of cosmic strings and cosmic superstrings, and

continue trying to constrain the tension of strings. Although the constraints keep getting

tighter, these strings have never been detected directly by observations with electromagnetic

waves.

Cosmic strings and cosmic superstrings emit GWs continuously since their formation. In

particular, burst-like GW emissions from these strings happens at the different epochs and the

different positions of the Universe. Then, these GW bursts overlap each other and, finally, form

a GW background over a broad frequency range. Since we can now use GWs as observational

tools of the Universe, we can test the existence of cosmic strings and cosmic superstring by

GW observations. Various experiments are available to probe the GW background at different

frequencies: pulsar timing experiments [27, 28] measure GWs at ∼ 10−8Hz; space missions

such as LISA [29, 30] and DECIGO [31, 32] can explore 10−3Hz and 0.1Hz, respectively;

ground-based experiments such as Advanced-LIGO [33], Advanced-Virgo [34] and KAGRA

[35] focus on ∼ 100Hz. Now it is the best time to explore the cosmic strings and cosmic

superstrings through GWs.

It is known that cosmic strings and cosmic superstrings form complex networks in the

Universe. These strings have two configurations called loops and infinite strings. The length of

infinite strings is larger than the Hubble horizon. Cosmic strings reconnect when they intersect

each other. The reconnection between infinite strings forms loops. After the formation, loops

shrink by emitting GWs and disappear in the end. In other words, cosmic strings can throw
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away their energy into GWs by producing loops. As a result, the number of infinite strings

in the horizon is always kept constant. This process is known as the scaling law. This scaling

law ensures that, once the energy density of strings is subdominant, they do not modify the

expansion history of the Universe. In the reconnections, sharp structures called kinks are also

produced. Kinks can propagate on strings with the speed of light. They can emit GWs during

the propagation [36, 37] as well as in their collisions [38]. On loops, singularity points, called

cusps, arise on loops. They can also emit strong GW bursts. These GWs overlap each other

and, then, form a GW background.

In addition to them, cosmic superstrings have unique features. First, as mentioned above,

the cosmic string network can be composed of different string types, D-strings and F-strings,

and they have different tensions. Their reconnection probability p could be much smaller

than unity, while p ∼ 1 is expected for cosmic strings [39]. The reconnection probability is

10−1 ≲ pD ≲ 1 for D-strings and 10−3 ≲ pF ≲ 1 for F-strings, respectively [40]. D-strings

and F-strings can form the bound state. As a result, the string network contains Y-junctions

where two different strings join and separate. Interestingly, the number of kinks increases

when they enter Y-junctions. Therefore, it is suggested that the existence of Y-junction could

enhance the amplitude of the GW background [41].

The GW background from cusps on cosmic string loops has been studied in many liter-

atures [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. For cosmic superstrings, [53] studied the

GW background from cusps on loops by taking into account the different tensions and re-

connection probabilities, while [54] investigated GWs from kinks on loops with including the

effect of Y-junctions which increase the number of kinks. Infinite strings can generate GWs

over a wide range of frequencies from the cosmological scales to the interferometric scales

However the amplitude of produced GWs could be much smaller than the one generated by

loops [55, 56, 57, 58, 59].

In this thesis, we investigate the GW background from kink propagations and kink-kink

collisions on infinite strings. In particular, we focus on the impact of the characteristic natures

of cosmic superstrings; two string types with different tensions, small reconnection probability

and Y-junctions. First these effects appear in the evolution of the correlation length of infinite

strings, which relates to the number of infinite strings in the horizon. In [61, 62], the authors

provided the evolutionary equations of the correlation length, including these effects. We

utilize and numerically solve these equations in the cosmological context in order to obtain

the evolution of the superstring network. Next, we develop the evolutionary equation for the

number distribution of kinks to include the effects on the kink evolution in cosmic superstrings.

In the case of cosmic strings, the equations of the kink evolution was obtained in [63]. In order

to modify this equation for cosmic superstrings, we incorporate the effect that a kink passing

through a Y-junction transforms into three kinks: a reflected kink and two transmitted kinks

[41]. By solving the equations numerically, we obtain the kink number density and calculate

the amplitude of the GW background.

In Ref. [60], we showed that kink-kink collisions generate a large GW background. Thus,

strings throw away their energy as GWs and modify the distribution of kinks. Therefore, it is
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1 INTRODUCTION

required to evaluate both the GW emissions and the kink distribution consistently. Otherwise,

the obtained GW amplitude results in over-estimated. In order to avoid over-estimation of

the GW amplitude, we improve the time evolution equations of the string energy density and

the kink distribution taking into account the two factors: the energy loss of the string network

through GW emissions and the GW backreaction on kinks. The former reduces the length

of infinite strings while the later smoothes out kink sharpness. Using the modified evolution

equations, we recalculate the kink distribution and the GW background amplitude.

In this thesis, we investigate the GW background from propagating kinks and kink-kink

collisions on the cosmic string and cosmic superstring. In Sec.2, we briefly review the basics of

cosmology. In Sec.3, we present the generation mechanisms and natures of cosmic strings and

cosmic superstrings. In Sec.4, we describe the dynamics of these strings and the production

of sharp structures on strings: kinks and cusps. In Sec.5, we discuss the dynamics of the

networks formed by cosmic strings and cosmic superstrings. In Sec.6, we derive the number

of kinks as a function of sharpness, called the distribution function of kinks. We also show

the kink distribution as the results of our numerical calculations. In Sec.7, we calculate the

power spectrum of the GW background from propagating kinks along these strings, using the

distribution function of kinks obtained in the previous section. In Sec.8, we present the power

spectrum of the GW background from kink-kink collisions. Finally, we summarize in Sec.9.
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2 BASICS OF COSMOLOGY

2 Basics of cosmology

We introduce the basics of cosmology briefly which is needed to describe the dynamics of cosmic

strings. In the big bang theory which is the standard idea of cosmology, the Universe started

with high temperature and high density and cooled down with expansion. The radiation at

the big bang remains as the cosmic microwave background (CMB) which was discovered by

Penzias and Wilson [64], and the temperature is 2.726± 0.010K [65]. The big bang theory is

supported by observations.

2.1 Friedmann-Lemâıtre-Robertson-Walker(FLRW) metric

Observing the recession velocity of galaxies at long distances, Hubble discovered the relation

between the recession velocity v and the distance r as

v = Hr. (2.1.1)

This is called Hubble’s law. H is the Hubble parameter and rewritten as

H = 100h [km/(s ·Mpc)], (2.1.2)

where h is dimensionless and h = 0.6781 ± 0.0092 [66]. Since the universe is expanding, we

use a convenient coordinate called comoving coordinate x. In the comoving coordinate, the

galaxies are fixed. The physical coordinate r(t) can be written using the comoving coordinate

and the scale factor a(t) which evolves with time as

r(t) = a(t)x. (2.1.3)

Since Hubble’s law is connected with the expansion of the universe, the Hubble parameter is

defined as

H ≡ ȧ

a
, (2.1.4)

where the dot means the time derivative.

With the expansion of the universe, the wavelength of the light from the far galaxy is

extended. It is called redshift. The redshift z is defined as

z ≡ λobs − λem
λem

, (2.1.5)

where λem is the wavelength of photons emitted from a long-distance galaxy and λobs is

observed wavelength. The ratio λobs

λem
is the same as the one of the scale factor. If t = t0,
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2.2 Friedmann equation 2 BASICS OF COSMOLOGY

a(tobs) = a(t0). Then, the redshift is

1 + z =
a(t0)

a(tem)
. (2.1.6)

Let us consider how the universe evolves. In the cosmological principle, the universe is

homogeneous and isotropic at a large scale and they are confirmed by the observation [67].

The metric of the homogeneous and isotropic universe is written as

ds2 = −dt2 + a(t)2(γijdx
idxj), (2.1.7)

where xi is comoving coordinate and a(t) depends only on the time. In this paper, we define

the speed of light c = 1. The discoverers of the specific metric formulation are Friedmann,

Lemâıtre, Robertson and Walker [68, 69, 70]. So, it is called Friedmann-Lemâıtre-Robertson-

Walker(FLRW) metric and written as

ds2 = −dt2 + a(t)2

{
dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ2)

}
(2.1.8)

using the polar coordinate. K is the curvature of the space. Depending on the sign of the

curvature, the configuration of the universe is different respectively in the following way:

• K > 0 is open universe,

• K = 0 is flat universe,

• K < 0 is closed universe.

2.2 Friedmann equation

*1 In order to understand the dynamics of the universe, we must clarify the evolution of the

scale factor. Therefore, let us derive the time evolution equation of the scale factor using the

FLRW metric and the Einstein equation which connects the spacetime with the energy

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν , (2.2.1)

where Rµν , gµν , R, Λ, G and Tµν are a Ricci tensor, a metric, a Ricci scalar, a cosmological

constant and an energy-momentum tensor, respectively. Considering the symmetries of the

metric, the energy-momentum tensor must be symmetry, too. We assume that the universe is

described as the perfect fluid

Tµν = diag(ρ,−p,−p,−p), (2.2.2)

*1 We write this subsection referring to [71].

8



2.3 Evolution of the homogeneous and isotropic universe 2 BASICS OF COSMOLOGY

where the other components are 0 and the energy density ρ and pressure p have a time

dependence. Using this energy-momentum tensor and the FLRW metric, Eq.(2.2.1) yields the

two independent equations as

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (2.2.3)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.2.4)

Eq.(2.2.3) is called the Friedmann equation and Eq.(2.2.4) is an acceleration equation. The

Friedmann equation expresses the time evolution of the scale factor. By solving the equation,

we get the evolution of the universe. Eq.(2.2.4) describes whether the velocity of the cosmic

expansion has acceleration depending on the components of ρ, p and Λ.

Imposing the energy conservation T ;ν
µν = 0 and using the µ = 0 component, we get the

fluid equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (2.2.5)

We assume that the equation of state is defined as

p = wρ (2.2.6)

where w is a constant. Substituting Eq.(2.2.6) into Eq.(2.2.5), the energy density becomes

ρ ∝ a−3(1+w). (2.2.7)

The value of w is determined by the component of the universe.

2.3 Evolution of the homogeneous and isotropic universe

In order to solve the Friedmann equation, first, we must give the energy density evolution

ρ(a) of each component (matter and radiation). In the case of the matter, the total number

of the matter should conserve. When we define the total number as Nm, tot ≡ 4π
3 a(t)

3nm(t),

where nm(t) is the number density, by considering the conservation of the total number, we

find nm(t) is proportional to a(t)−3. Assuming that the average mass of the matter is given

by m, the energy density is written as

ρm(t) ∼ mnm(t) ∝ a(t)−3. (2.3.1)

Comparing with Eq.(2.2.7), we find the parameter is w = 0 and p = 0. Let us consider the

energy density of the radiation. The number density of the radiation nr(t) is same as the

matter. In addition to the number density, we must take into account the redshift. Since the

radiation get redshift, the wavelength is proportional to a(t) and an energy of the redshift

photon q(t) has the dependence of a(t)−1. Then, the energy density of the radiation ρr(t) is
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2.3 Evolution of the homogeneous and isotropic universe 2 BASICS OF COSMOLOGY

described as

ρr(t) ∼ q(t)nr(t) ∝ a(t)−4. (2.3.2)

Using this result with Eq.(2.2.7), we obtain w = 1
3 and p = 1

3ρ. In the case of the cosmological

constant, the energy density is constant. Then, the parameter is w = −1.

We rewrite the Friedmann equation using the energy density at the present as

H2 =
8πG

3

(ρr, 0
a4

+
ρm, 0
a3

)
− K

a2
+

Λ

3
, (2.3.3)

where the suffix 0 denotes the present. Using the Hubble parameter today H0, we define the

critical energy density as

ρc, 0 ≡ 3H0

8πG
. (2.3.4)

We set the density parameters Ωr, 0 and Ωm, 0, curvature parameter ΩK, 0 and cosmological

constant parameter ΩΛ, 0 as

Ωr, 0 ≡ ρr, 0
ρc, 0

, Ωm, 0 ≡ ρm, 0
ρc, 0

, ΩK, 0 ≡ − 3K

8πGρc, 0
, ΩΛ, 0 ≡ Λ

8πGρc, 0
, (2.3.5)

These parameters are constrained by the observation [66] as

Ωr, 0h
2 = 4.31× 10−5, Ωm, 0 = 0.308, ΩK, 0 = −0.005, ΩΛ, 0 = 0.692. (2.3.6)

The Friedmann equation is rewritten as

H = H0

√
Ωr, 0

a4
+

Ωm, 0

a3
+

ΩK, 0

a2
+ΩΛ, 0. (2.3.7)

As the time passes, the scale factor varies from a = 0 to a = 1. Since the dependence on a of

each component is different, the dominant energy of the universe also changes. At the early

stage of the universe when a is extremely small, the radiation is dominant (the RD era). Next,

the matter dominates the universe (the MD era) and the cosmological constant is the main

component of the universe (the ΛD era) at the present day. Using the relation between the

Hubble parameter and the scale factor Eq.(2.1.4), we summarize the evolution of the universe

for each different era respectively as

• at the RD era

H ≃
√
H2

0

Ωr, 0

a4
⇒ a(t) ∝ t1/2, (2.3.8)

• at the MD era

H ≃
√
H2

0

Ωm, 0

a3
⇒ a(t) ∝ t2/3, (2.3.9)

10
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• at the curvature dominant era

H ≃
√
H2

0

ΩK, 0

a2
⇒ a(t) ∝ t, (2.3.10)

• at the ΛD era

H ≃
√
H2

0ΩΛ, 0 ⇒ a(t) ∝ e
√

Λ/3t. (2.3.11)
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3 ORIGIN OF COSMIC STRING AND COSMIC SUPERSTRING

3 Origin of cosmic string and cosmic superstring

It is suggested that the cosmic string and cosmic superstring in the early universe are gener-

ated. In this section, we describe how these strings are produced. First, we focus on cosmic

strings production.

3.1 Origin of cosmic string

It is proposed that there are two origins of cosmic strings; produced by the phase transition

in the early universe and at the end of the inflation.

3.1.1 From phase transition

The big bang takes place in the early Universe and the universe is cooled down with cosmic

expansion. It is suggested that the fundamental interactions (strong, electromagnetic, weak

and gravitational forces) are once unified at above the critical temperature where the sym-

metry is not broken yet. The unification of the electroweak interaction is succeeded by the

Glashow-Weinberg-Salam theory over 102GeV. At higher temperatures (1016GeV), the strong

and electroweak interactions and the theory describing it is called the grand unified theory

(GUT). The GUT model has not been confirmed yet.

In the early universe, the symmetry of the gauge theory restores [72], and the spontaneous

symmetry breaking which happens by obtaining the vacuum expectation value of the scalar

fields can play a role in making topological defects [73]. The configuration of the topological

defects depends on the vacuum manifold and the production of defects is inevitable in the

phase transition [7]. The temperature of the phase transition with the spontaneous symmetry

breaking, for example, the GUT scale, is related to the features of the topological defects.

Therefore, it is useful to probe the phase transition by considering topological defects. In the

following, we focus on the cosmic string and introduce the features using some equations.

Using real n-plet scalar fields ϕ ≡ (ϕ1, ϕ2, ..., ϕn), the Lagrangian in Goldstone model [74]

is written as

L =
1

2
(∂νϕ)(∂

νϕ)− λ

4
(ϕ2 − ι2)2, (3.1.1)

where λ and η are positive constants. This also holds for complex scalar fields. For instance,

the scalar field is ϕ = ϕ1 + iϕ2 in the case of U(1) gauge theory, which yields cosmic strings.

In the case of other topological defects such as domain wall, monopole, and texture, the type

and number of the scalar fields are a real scalar (n = 1), real triplet scalar (n = 3) and real

4-plet scalar or doublet complex scalar field (n = 4), respectively.

At extremely high temperatures, the symmetry is not broken, then, the scalar fields stay at

ϕ = 0. But the period of keeping the symmetry does not continue so long. As the universe gets

cold, the phase transition occurs, where the symmetry is broken spontaneously. The scalar

12
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fields change the value by moving to the potential minimum as

ϕ2 = (ϕ1)
2 + (ϕ2)

2 + · · ·+ (ϕn)
2 = ι2. (3.1.2)

The manifold M where the vacuum forms are different structure with the number of scalar

fields. In the case of cosmic strings (n = 2), the values of the scalar fields satisfy (ϕ1)
2+(ϕ2)

2 =

ι2. Then, the vacuum region draw the circle like the bottom of the bottle and the vacuum

manifold is a one-dimensional sphere S1. In another case, for example, when we consider

domain wall (n = 1), the minimum energy state is ϕ = ±ι. Therefore, the manifold is the

zero-dimensional sphere S0 = {−1, +1}. For monopole (n = 3), the scalar fields are trapped

in the sphere of (ϕ1)
2 + (ϕ2)

2 + (ϕ3)
2 = ι2, then, the manifold has the topology of the two-

dimensional sphere S2. Similarly, in the case of texture (n = 4), the vacuum manifold forms

S3.

Solving the equation of the scalar field, we get a nontrivial solution, and these topological

defects are the solitons. The configuration of these topological defects is determined by the

vacuum manifold. In particular, the cosmic string forms a one-dimensional object. The details

are the following.

Consider the cosmic string case (ϕ = ϕ1+ iϕ2), where the potential looks like a wine bottle.

When the spontaneous symmetry breaking happens, the vacuum manifold is written as

(ϕ1)
2 + (ϕ2)

2 = ι2. (3.1.3)

This forms a circle. In order to see the formation of the cosmic string, let us imagine two

regions A and B, which are not causally connected to each other. Let us assume that the

expectation values of the scalar fields in the region A are ϕ1,A > 0 and ϕ2,A > 0. Since there

are no communications between regions A and B, there is the possibility that the expectation

values in the region B are ϕ1,B < 0 and ϕ2,B < 0. Because the value of the scalar field must

be continuous in the space, there are areas satisfying ϕ1 = 0 somewhere between regions A

and B. Similarly in the case of ϕ2, ϕ2 becomes 0 in somewhere. When the areas of ϕ1 = 0 and

ϕ2 = 0 cross, there is a one-dimensional space satisfying ϕ1 = ϕ2 = 0 (Fig.3.1.1), where the

false vacuum stays. In this way, the one-dimensional object called cosmic string is formed.

Let us estimate the cosmic string energy per unit length, called tension µ. Here, we consider

the straight global string, in other words, we assume no gauge field. The tension can be

estimated by integrating (∂νϕ)(∂
νϕ) over the volume. Using the dimension conversion, ∂νϕ

can be approximated as ηr at a distance r from cosmic string core. Then, the tension is written

as

µ ∼
∫

d2x(∂νϕ)(∂
νϕ) ∼ ι2

∫
dr2πr

1

r2
. (3.1.4)

If we integrate the equation to r = ∞, the tension diverges logarithmically.

Next, we estimate the tension in the case of the local string with the local gauge invariance,

known as the abelian-Higgs model [75]. In this case, the gradient term ∂νϕ is displaced by

13
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Fig. 3.1.1 The formation of a cosmic string at the false vacuum of the potential.

Dνϕ = ∂νϕ+ ieAνϕ, where e is the gauge coupling and Aν is a gauge vector field. Using Dνϕ,
the Lagrangian of the scalar field is rewritten as

L =
1

2
(Dνϕ)(Dνϕ)† − λ

4
(ϕ2 − ι2)2 − 1

4
FµνF

µν , (3.1.5)

where Fµν = ∂µAν − ∂νAµ. When we apply the local gauge transformation

ϕ(x) → eiχ(x)ϕ(x), Aν(x) → Aν(x) +
1

e
∂νχ(x) (3.1.6)

to this model, the Lagrangian is invariant. We assume that ∂νϕ(x) damps faster than 1
r .

When the gauge vector field satisfies the relation

Aν(x) →
1

e
∂νχ(x), (3.1.7)

as r → ∞, this covariant derivative Dνϕ becomes 0 far from the core of the string. Therefore,

the tension does not diverge and has a finite value. In this case, there are a gauge vector field.

Let us calculate the magnetic flux ΦB which flows along the string. We get ΦB to integrate

the magnetic field B = ∇×A by the surface

ΦB =

∫
d2xB =

∮
dixAi =

2π

e
n, (3.1.8)

where n is integer. Namely, the flux of the magnetic flux is quantized in the gauged U(1)

theory.

A cosmic string has a thickness and lets us calculate it. The scalar and vector field in

the universe drop in vacuum value exponentially and have masses mϕ =
√
2λι and mA = eι

14
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respectively *2 after the spontaneous symmetry breaking. The thickness of the cosmic string

can be estimated using the Compton wavelengths δϕ ∼ m−1
ϕ and δA ∼ m−1

A . For mϕ > mA,

the relation of the wavelength is δϕ < δA, then the scalar and vector fields have the same

contributions on the tension;

µ(ϕ) ∼ λι4δ2ϕ ∼ ι2 (3.1.9)

µ(A) ∼ B2δ2A ∼ (eδ2A)
−2δ2A ∼ ι2 (3.1.10)

where λι4 is the potential at the cosmic string core (ϕ = 0). Then, at present, the string mass

in the horizon is

ι2t0 ∼ 1047
( ι

1016GeV

)2
[kg]. (3.1.11)

Because the critical density of the universe is 1052kg, for the present, the observational con-

flict does not happen no matter how the spontaneous symmetry breaks at the GUT scale

(1016GeV).

In this paper, we focus on cosmic strings with the local gauge invariance since the local

strings do not have any divergence.

3.1.2 From inflation

The big bang theory explaining the history of the universe has problems such as flatness,

horizon and monopole problems. In order to solve these problems, the inflation theory was

suggested by Guth, Sato and so on in the first of the 1980s [76, 77]. There are a lot of models

of inflation, and the slow-roll inflation which is one of the models and is driven by a scalar field

rolls down on the potential. There are many kinds of potentials proposed to realize inflation.

In these models, it is suggested that the hybrid inflation model, which has two scalar fields,

makes cosmic strings at the end of the inflation [9]. Let us focus on this hybrid inflation.

To compare the hybrid inflation with the slow-roll inflation model of the single scalar field,

first, we describe the later briefly. Single-field inflation continues while the scalar field, called

inflaton ϕ, rolls down on the potential, and inflation ends when the slow-roll ends or when

the phase transition occurred. In the case of hybrid inflation, the end of inflation is different.

The inflaton rolls down in the potential slowly and the second scalar field called the waterfall

field χ starts to roll down to the different direction of the potential rapidly, then, the inflation

finishes. The merit of the hybrid inflation is that the model does not need fine-tuning of

the parameters in the model. The hybrid inflation is described by the supersymmetry theory

(SUSY) and the supergravity theory (SUGRA), which are suggested as high energy theory.

First, we explain the process of the formation of cosmic strings considering the simple

potential. The potential of the two scalar fields inflaton ϕ and waterfall field χ is written as

*2 From the kinetic term of the Lagrangian, the term e2ϕ2AνAν appears. At the vacuum, the value of the
scalar field is ϕ2 = η2, then, we define mA as e2ι2AνAν ≡ m2

AAνAν . On the other hand, we focus on

the potential term of the Lagrangian and define mϕ as λι2ϕ2/2 ≡ m2
ϕϕ

2.
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Fig. 3.1.2 The potential of the hybrid inflation [78], where we change the axes labels.

[9]

V (χ, ϕ) =
1

4λ
(M2 − λχ2)2 +

m2

2
ϕ2 +

g2

2
ϕ2χ2, (3.1.12)

where λ, M, m, g are constant. We assume the effective mass of χ as

m2
χ ≡ d2V

dχ2
= −M2 + g2ϕ2. (3.1.13)

In the ϕ > ϕc = M/g, region, the scalar field rolls down the bottom of the potential valley,

where m2
χ > 0 at χ = 0. After the symmetry breaks spontaneously at ϕ = ϕc, because in the

ϕ < ϕc region, the mass of the scalar field at χ = 0 becomes negative m2
χ < 0, the scalar field

rolls down on the potential ridge. Then, it drops to the minimum of the potential at χ ̸= 0

and the inflation ends. At the end of the inflation, high energy regions of χ = 0 remain, and

the region becomes topological defects. Similarly to this case, when the scalar fields consist

of two real scalar or one complex scalar, the topological defect becomes one-dimensional and

cosmic strings.

Although there are numerous inflation models, we still do not know which model is appro-

priate as the real history of the universe. Constraining the inflation model is important in

order to understand the early universe. For this purpose, it is very interesting to use cosmic
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strings as a probe of the early universe.

3.2 Origin of cosmic superstring

In the first of the 2000s, cosmic superstrings are suggested as an early universe remnant having

similar features of the cosmic string in the universe [11, 12, 13, 14, 79]. Cosmic superstrings

originate from brane inflation based on the superstring theory. The superstring theory is one

of the candidates, which has a possibility to unify the four fundamental interactions (strong,

electromagnetic, weak and gravity) in the early universe. The string theory has been suggested

to describe the behavior of the hadrons by describing it not as a point object but a string

spreading object. The superstring theory is proposed [80, 81, 82] by adding supersymmetry

to this string theory in order to treat fermions as well as bosons.

Since the superstring theory is known as the fundamental theory of elementary particles

and high energy physics, we expect to be able to suggest inflation models independently of

the initial condition, in the other words, they do not need fine-tuning. One such inflation

model is called brane inflation and more generalized than the one from the common inflation

introduced in the previous subsection. The outline of the brane inflation is the following. The

superstring theory is the high dimensional theory. There are a three-dimensional membrane

where we live, called a brane, and anti-brane in the high dimension space called a bulk. These

branes are attracted by each other and the inflation occurs on the brane we are living as

the distance between the brane and anti-brane becomes shorter. Finally, the inflation ends

when the branes collide and annihilate. At the end of the inflation, the two type objects,

fundamental string (F-string) and D-string are generated. They are the cosmological size

and called cosmic superstring [83]. D-string is the one-dimensional remnant of the brane and

expressed by the linear combination of U(1) gauge symmetry which exists in the brane and

anti-brane. In the bulk, another linear combination of U(1) gauge symmetry is concentrated

like a flux by the fundamental closed strings and it is called F-string [84].

The superstring theory is described at the extremely high energy, called the Planck scale

(1019GeV), where the gravity interacts with the other three forces. Then, the tension is con-

sidered to be determined by the Planck scale corresponding to Gµ ∼ 1, however, this is a

serious conflict with today’s observation such as CMB and pulsar timing arrays. Namely,

cosmic superstrings which compose elementary particle should not exist. For one of the super-

string theory suggesting the brane inflation, the type IIB string theory, the conflict is broken.

In this model, the brane and anti-brane causing inflation exist at the bottom of the throat

in the high dimensional manifold. Then, the throat is affected by the gravitational redshift

expressed by the warp factor e2A(y) and the metric is written as [85]

ds2 = e2A(y)ηµνdx
µdxν + · · · , (3.2.1)

where y is the coordinate of the co-dimension. Considering a string at y = y0 and using this

metric, the action of the world sheet is rewritten by the warp factor. Therefore, the tension
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of the string is expressed as

µ = e2A(y0)µno warp. (3.2.2)

The warp factor e2A(y0) is smaller than 1 at the throat in this model, and the tension of

the cosmic superstring is reduced. Therefore, this tension does not cause conflict with the

observations.
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4 Dynamics of cosmic string and cosmic superstring

This section explains the characteristics of cosmic strings and cosmic superstrings such as

string dynamics, string reconnection, sharp structure on strings and the feature of the cosmic

superstring.

4.1 Dynamics of strings

In the three dimensional space, cosmic strings and cosmic superstrings are the one-dimensional

objects. These strings make a two-dimensional plane in the four dimensions, called ”world

sheet”. From the action of these strings, the dynamics of the strings in the four dimension

time-space can be derived using the parameter

xµ = xµ(ζa), (4.1.1)

where a = 0, 1 and ζ0, ζ1 is timelike and spacelike. The string action is required to follow

three feature;

• unchangeable with general coordinate transformation,

• invariant under converting ζa → ζ̃a(ζ),

• determined by xµ(ζa) and string tension µ.

Satisfying these characteristics, the action of strings is described by Nambu-Goto action [86,

87, 88] as

S[xµ] = −µ
∫

d2ζ
√
−det(γab). (4.1.2)

γab is the metric on the world sheet called induced metric and written as

γab =
∂xµ

∂ζa
∂xν

∂ζb
gµν . (4.1.3)

4.1.1 Dynamics of strings in Minkowski spacetime

In Minkowski spacetime, the metric is defined as

ds2 = −dt2 + dx2 + dy2 + dz2. (4.1.4)

det(γab) is given by

det(γab) = ẋ2x′
2 − (ẋ · x′)2, (4.1.5)

where the dot and the prime denote the derivative with respect to ζ0 and ζ1, a · b = aµbµ.
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In order to understand the observable dynamics of strings, let us take the parameter as

ζ0 = t, ζ1 = l, (4.1.6)

where t is the time and l is the length along the string. The action is rewrited as [87]

S[xµ] = −µ
∫

dt

∫
dl
√
1− v⊥2, (4.1.7)

where v⊥ is the transverse velocity defined as

v⊥ =
∂x

∂t
− ∂x

∂l

(
∂x

∂t
· ∂x
∂l

)
. (4.1.8)

It is easy to understand the meaning of the action Eq.(4.1.7) since we use only the transverse

motion along the string.

In general, the equation of motion of the string is [86, 88] given by

∂

∂ζa

(
∂L

∂xµ/∂ζa

)
− ∂L

∂xµ
= 0 (4.1.9)

where Lagrangian of the string is L = −µ
√

−det(γab). Writing down concretely,

∂

∂ζ0

{
(ẋ · x′)xµ′ − x′

2
ẋµ√

(ẋ · x′)2 − ẋ2x′2

}
+

∂

∂ζ1

{
(ẋ · x′)ẋµ − ẋ2xµ′√
(ẋ · x′)2 − ẋ2x′2

}
= 0 (4.1.10)

Since gµν is independent of xµ in Minkowski spacetime, the last term of Eq.(4.1.9) is 0. The

energy-momentum tensor is written as [89, 90]

Tµν(t, r) = µ

∫
dζ0

∫
dζ1(ẋµẋν − xµ′xν ′)δ3(r − x(ζ0, ζ1)) (4.1.11)

Simplifying the equation of motion, the parameters ζ0, ζ1 are chosen as

ζ0 = t, ζ1 = σ, (4.1.12)

where σ is the length along the string. The trajectory of the string is written as x(σ, t).

Imposing two guage conditions

ẋ · x′ = 0, (4.1.13)

ẋ2 + x′2 = 1, (4.1.14)

the equation of motion is described as

ẍ− x′′ = 0. (4.1.15)
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This is the wave equation. It is easy to understand the physical meaning of the gauge conditions

of Eqs. (4.1.13) and (4.1.14). From Eq.(4.1.13), we find ẋ is perpendicular to the string.

Namely, ẋ is same as v⊥ of Eq.(4.1.8) and it can be observe physically. Eq.(4.1.14) is related

to the energy of string. It is rewitten as dσ = (1− ẋ2)−
1
2 |dx| and this equation is integrated

as

µ

∫
dσ = µ

∫
(1− ẋ2)−

1
2 |dx| ≡ E, (4.1.16)

where E is the energy of the string. Eq.(4.1.15) mentions the relation between the acceleration

and the local curvature of the string. Using the local curvature of the string R ≡
∣∣∣d2x
dl2

∣∣∣−1

and

Eq.(4.1.15), the acceleration of the string element is described as

ẍ =
1

R
(4.1.17)

in the rest frame (ẋ = 0). The acceleration of string increases if the local curvature is small.

The direction of the acceleration is the same as straightening the curved string. Generally,

the solution of the wave equation (4.1.15) is given by

x(t, σ) =
1

2

{
a(σ − t) + b(σ + t)

}
, (4.1.18)

where the a, b is arbitrary function satisfying the guage condition Eqs.(4.1.13) and (4.1.14),

|a′|2 = |b′|2 = 1. (4.1.19)

This condition says that a′, b′ are the unit vector. However, the solution a, b is propagating

along the string at the speed of light, the velocity of string-self ẋ is 70% of light speed [91] .

a, b are called ”left-moving mode” and ”right-moving mode”.

4.1.2 Dynamics of strings in Friedmann-Lemâıtre-Robertson-Walker spacetime

This universe is expanding. In this sub-sub-section, we describe the dynamics of cosmic strings

and cosmic superstrings in FLRW spacetime [88] . Using the conformal time τ defined as

τ ≡
∫

t

a(t)
, (4.1.20)

FLRW metric is rewritten as

ds2 = a(τ)2

{
−dτ2 +

dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ2)

}
. (4.1.21)

First, a propagating mode on a string shows the gauge conditions are

ζ0 = τ, ζ1 = σ, (4.1.22)

ẋ · x′ = 0. (4.1.23)
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Varying the action Eq.(4.1.2) by xµ, the equation of motion of the string is [86] given by

ẍ+ 2
ȧ

a
ẋ(1− ẋ2) =

1

ϵ

(
x′

ϵ

)′

, (4.1.24)

where

ϵ ≡

√
x′2

1− ẋ2
. (4.1.25)

The solution of Eq.(4.1.24) can be written using in the same way as left- and right-moving

mode of Eq.(4.1.18). It is defined as p+(τ, σ), p−(τ, σ) where

p± ≡ ẋ∓ 1

ϵ
x′. (4.1.26)

p± is similar to the tilt of the strings. The gauge condition gives the fact that p± are the unit

vector

|p+|2 = |p−|2 = 1. (4.1.27)

Using p±, the equation of motion Eq.(4.1.24) is rewritten as

ṗ± ±
p′
±
ϵ

= − ȧ
a

{
p∓ − (p+ · p−)p±

}
. (4.1.28)

By converting the variables τ, σ to ϵσ + τ, ϵσ − τ , Eq.(4.1.28) becomes

∂p+

∂(ϵσ + τ)
∝ ȧ

a
,

∂p−

∂(ϵσ − τ)
∝ ȧ

a
. (4.1.29)

Since the universe is flat and constant size (ȧ = 0, ϵ = 1) in Minkowski spacetime, under the

condition, p± satisfies ∂p+

∂(σ+τ) = ∂p−
∂(σ−τ) = 0. Using σ + τ, σ − τ , the equation of motion in

Minkowski spacetime, Eq.(4.1.15), is rewritten as

∂

∂(σ + τ)

∂

∂(σ − τ)
x = 0. (4.1.30)

Since the solutions of this equation are just a and b, they have the relation ∂a′

∂(σ+τ) =
∂b′

∂(σ−τ) =

0. This relation is same as p±, then, we regard p± is the solution in FLRW spacetime

corresponding to a′ and b′ [92].

Using Eqs.(4.1.24), (4.1.22) and (4.1.23), the time evolution equation of coordinate energy

per unit length [93] is derived as

ϵ̇ = −2
ȧ

a
ϵẋ2. (4.1.31)
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The energy-momentum tensor Tµν in FLRW spacetime is [94]

Tµν(y) =
1√

−det(gµν)

∫
dτ

∫
dσ
√

−det(γab)(Uu
µuν − Tvµvν)δ4(y − x(τ, σ)), (4.1.32)

where U, T are the mass and the tension of string per unit length and uµ, vµ satisfy the

following equation

uµ =

√
ϵẋµ

(−det(γab))1/4
, vµ =

xµ′√
ϵ(−det(γab))1/4

. (4.1.33)

However, usually, U = T = µ is satisfied. If there are small ripples called wiggle on the strings,

U > T . In this thesis, we assume that there are no wiggles. Using U = T = µ, Tµν is given as

Tµν(τ, r) =
µ

a4

∫
dσ

(
ϵẋµẋν − xµ′xν ′

ϵ

)
δ3(r − x(τ, σ)). (4.1.34)

The total string energy E(τ) and momentum P are written as [92]

E(τ) ≡ µa(τ)

∫
dσϵ, (4.1.35)

P ≡ µa(τ)

∫
dσϵẋ. (4.1.36)

This total energy evolves with time. In the rest frame (ẋ = 0), ϵ becomes constant, so the

total energy grows with a(τ).

Second, dynamics of string-self is described as the following [88] . The gauge condition is

ζ0 = τ, ζ1 = x. (4.1.37)

If the string is assumed moving only in the (x− y) plane, the Lagrangian in FLRW spacetime

is described as

L = −µ
√

−det(γab) = −µa2(τ)
√

1 + y′2 − ẏ2. (4.1.38)

Substituting this Lagrangian into Euler-Lagrange equation, Eq.(4.1.9), the equation of motion

is obtained as(
∂

∂τ
+ 2

ȧ

a

){
ẏ(1 + y′

2 − ẏ2)−1/2
}
=

∂

∂x

{
y′(1 + y′

2 − ẏ2)−1/2
}
. (4.1.39)

If there is the straight string y = Const. in the universe, it is the solution of Eq.(4.1.39). The

straight string does not change the configuration with time. Now, let us assume that there are

small perturbations on the straight string. In the radiation-dominant era, the perturbation is

defined as

y′
2
, ẏ2 << 1, (4.1.40)
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then the equation of motion is

ÿ + 2
ẏ

τ
− y′′ = 0. (4.1.41)

The solution of this equation is represented by the plane wave solution y(τ)eikx [95] , where
2π
k is the conformal wavelength of string-self. The solution is written as

y(τ) = A1
sin(kτ)

τ
, (4.1.42)

y(τ) = A2
cos(kτ)

τ
, (4.1.43)

where A1, A2 are constant. λ ≡ 2πa(τ)
k is the physical wavelength and t

λ is the rough ratio

of the horizon size to the wavelength. Using the approximation kτ ∼ t
λ , the growth of the

string is shown by comparing between the wavelength and the horizon as below, categorized

into two cases:

(i) kτ ≪ 1, τ2 ≪ A (The wavelength and the amplitude are larger than the horizon.)

Because Eq.(4.1.40) is not satisfied in this case, the solution of the string’s dynamics is

just Eq.(4.1.42). When the limit is kτ → 0 (the wavelength is much greater than the

horizon), the solution Eq.(4.1.42) becomes constant. Namely, the string is fixed in the

comoving coordinates and stretched by the expansion of the universe. The configuration

of the string does not change and simply grows with a(τ).

(ii) kτ ≫ 1, τ2 ≫ A (The wavelength and the amplitude are shorter than the horizon.)

Although the physical wavelength of the string grows with a(τ), the string physical

amplitude a(τ)Aτ stays constant because the scale factor is given by a(τ) ∝ τ in the

RD era. The ratio of the string amplitude to the wavelength becomes smaller with the

time. Therefore, the amplitude is relatively smoothed out. It is also the same under

the power-law expansion a(τ) ∝ τν .

To summarize, when the string wavelength is bigger, the string grows conformally. On the

other hand, the small scale wave is smoothed out by the expansion of the universe [16, 95]

. The example of the string growth is shown as the following. When the loop initial size is

larger than the horizon R = R0 > t0 at t = t0, the loop grows like a(t) ∝ t
1
2 in the RD era

R(t) =

(
t

t0

) 1
2

R0, (4.1.44)

where R(t) is the loop size at t. The growth continues until the loop enters the horizon at

t = tenter. At that time, the loop size is approximately R(tenter) ∼ tenter and tenter ∼ R2
0

t0
. After

this, the loop growth stops and separates from the expansion of the universe. The emission of

GWs from loops through cusps is described later. The loop shrinks and vanishes by emitting

GWs.
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4.2 Reconnection of strings

Cosmic strings and cosmic superstrings intersect and reconnect each other in the universe [7].

Reconnection of strings plays an important role in the string network evolution. When the

strings reconnect, loops are made from infinite strings whose length is longer than the horizon.

The biggest difference between cosmic strings and cosmic superstrings in the formation of the

network arise because of the reconnection probability p. It is determined by the intersection

of the angle and velocity of the strings whether these strings reconnect. Usually, reconnection

”probability” averaging of the angle and velocity is used. It is suggested that the reconnection

probability of the cosmic string is close to 1 in the case of global string [39, 96, 97] and local

string [98, 99] by simulations .

The reconnection probability of cosmic superstrings is smaller than the one of cosmic strings.

There are two species in the cosmic superstrings; D-string, F-string [100, 11] . Because these

strings are a high dimensional object, D-strings and F-strings pass through at high dimen-

sion, even though they look like intersecting in the four dimension [101]. The reconnection

probability strongly depends on the models. Simulations [101, 40] show that the reconnection

probability for the D-D collisions is 10−1 < pD < 1 and for F-F collisions is 10−3 < pF < 1.

For F-D collisions, the reconnection probability has not been understood.

Since the reconnection probability of the cosmic string and cosmic superstring is different,

it affects various cosmological phenomena. Therefore, the investigation of the reconnection

probability through these phenomena helps us to probe what strings exist. The relation of

the reconnection probability and the string network is described in Sec.5.

4.3 Sharp structures

Sharp structures called ”cusp” and ”kink” form on the loops and infinite strings of both cosmic

strings and cosmic superstrings.

4.3.1 Cusp

Because the loops are smaller than the horizon, they are not affected by the expansion of

the universe. Then, their equation of motion and the solution are written in Minkowski

spacetime by Eqs.(4.1.15), (4.1.18) and (4.1.19) [88, 102, 103] . Loops is closed, then the

solution a(σ − t), b(σ + t) is periodic function

a(σ − t+ Ll) = a(σ − t), b(σ − t+ Ll) = b(σ − t), (4.3.1)

where Ll =
M
µ is the period of loops using the loop massM . The period of the loop is Tl =

Ll

2 .

We can confirm it to substitute t+ Ll

2 , σ + Ll

2 into t, σ of x(t, σ) as

x

(
t+

Ll
2
, σ +

Ll
2

)
= x(t, σ + Ll) = x(t, σ). (4.3.2)
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The loop has an interesting sharp structure moving at the speed of light. The velocity of

the loops is described as

ẋ2(t, σ) =
1

4

{
a′(σ − t)− b′(σ + t)

}2
, (4.3.3)

where ȧ(σ − t) = − ∂a
∂(σ−t) = −a′, ḃ(σ − t) = − ∂b

∂(σ−t) = b′. Because a′, b′ are the unit

vector (Eq.(4.1.19)) and periodic function (Eq.(4.3.1)), we can consider the vectors a′(σ −
t), −b′(σ + t) on the unit sphere for 0 ≦ σ ≦ L. When the vectors are integrated by one

period, the integration is∫ Ll

0

dσa′ = a(Ll)− a(0) = 0,

∫ Ll

0

dσb′ = b(Ll)− b(0) = 0. (4.3.4)

On the sphere, the vectors draw the closed curves respectively and the curves typically cross

two or more (Fig. 4.3.1). When we assume that the intersection is σ = σ0, namely a′(σ0−t) =

Fig. 4.3.1 The illustration of the unit sphere moving a′, b′. The red and green curve
lines represent the track and the coordinate of the intersection is σ0.

−b′(σ0 + t), the velocity of the loop at the intersection point is

ẋ2(nLl, σ0) = 1, (4.3.5)

where n is an integer. At the intersection of the unit sphere, the loop has the point whose

velocity is the speed of light. It is called a ”cusp”.

Next, we describe the configuration of the cusp. The background is set at t = 0 and σ = 0,

and the coordinate at the cusp is put on the origin. Introducing the perturbation σ, the modes

a, b are expanded by Taylor expansion around the cusp to third order in σ

a(σ) = a0
′σ + a0

′′σ
2

2
+ a0

′′′σ
3

6
, (4.3.6)

b(σ) = b0
′σ + b0

′′σ
2

2
+ b0

′′′σ
3

6
, (4.3.7)
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where the subscript 0 symbolizes the position of the cusp. At the position, the modes satisfy

a0
′ = −b0

′. (4.3.8)

Using this equation and ẋ = 1
2 (−a′ + b′), x′ = 1

2 (a
′ + b′), we obtain ẋ0 = b0

′, x0
′ = 0. x0 is

expanded in the similar way as a, b

x(σ) = x0
′′σ

2

2
+ x0

′′′σ
3

6
. (4.3.9)

Since |a′(σ)| = 1, |b′(σ)| = 1 must be satisfied, the following equations are required

a′′ · a′ = 0 (4.3.10)

a′′′ · a′ = −|a′′|2. (4.3.11)

These relations also apply to b. From these equations and a0
′ = −b0

′, the following equations

are satisfied

x0
′′ · ẋ0 = 0, (4.3.12)

x0
′′′ · ẋ0 =

1

2
(|a0

′′|2 − |b0′′|2). (4.3.13)

From Eq.(4.3.12), x0
′′ is perpendicular to ẋ0. With these information, we draw the cusp

configuration in Fig.4.3.2. As seen in the figure, the cusp is characterized by ẋ0, x0
′′, x0

′′′.

Fig. 4.3.2 The configuration of the cusp. The blue curve line is the cosmic string.

These vectors are described by the seven parameters; a0
′, b0

′, |a0
′′|, |b0′′|, the angle between

a0
′′ and b0

′′, a0
′′′ and b0

′′′.

Since a, b are periodic function, many cusps appear on loops, but not on infinite strings.

However, when there are ”Y-junctions”, described later, on the infinite strings made of the

cosmic superstrings, a, b becomes periodic function and infinite cosmic superstrings can have
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cusps.

4.3.2 Kink

As mentioned in Sec.4.2, cosmic strings, and cosmic superstrings reconnect respectively and

make a sharp structure called ”kink”. The kink is the discontinuity point of the left-moving

mode a or the right-moving mode b. Since there are both moving modes on strings, two kinks

move along the strings at the speed of light in the opposite direction after their formation by

reconnection (Fig.4.3.3). If the string has a discontinuity in the left-moving mode a, kink’s

Fig. 4.3.3 The illustration of the kinks production. The blue lines are the cosmic string.

”sharpness” is defined as [63, 104]

ψ ≡ 1

2
(1− a′

+ · a′
−), (4.3.14)

where a′
± satisfies the following equation

a′
±(σ∗ − t∗) ≡ lim

t→t∗±0
σ→σ∗±0

a′
±(σ − t). (4.3.15)

σ∗, t∗ denotes the point of the discontinuity. In the same way, when there is the discontinuity

at b, the sharpness is written as ψ ≡ 1
2 (1−b′+ ·b′−). Since a′, b′ is the unit vector, the sharpness

is 0 ≦ ψ ≦ 1. If a′
+ and a′

− are in the opposite direction (a′
+ = −a′

−), the sharpness becomes

maximum ψ = 1 and kink is the sharpest. On the other hand, if a′
+ and a′

− are same direction

(a′
+ = a′

−), the sharpness is minimum ψ = 0 (there is not kink on the string). Namely, when

the vectors a′
+ and a′

− are in the different direction, the sharpness becomes large.

There are kinks not only on infinite cosmic strings and cosmic superstrings but also on both

loops. In this thesis, we focus on the kinks on infinite cosmic strings and cosmic superstrings.

4.4 Y-junction

There are two types of cosmic superstrings; F-string and D-string in the Universe. p F-strings

and q D-string form a bound state [105, 106] as shown in Fig.4.4.1. The point where two

different strings join and separate is called a ”Y-junction”.
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Fig. 4.4.1 The illustration of the Y-junction.

Even if the F-string and D-string intersect, they are not able to intercommunicate and do

not reconnect. These string carry the charge and the charge is conserved at the Y-junction. By

taking the charge conservation into account and using the simplest model in the superstring

theory, the tension of the bound strings µ(p,q) is defined as [105, 106, 107]

µ(p,q) = µF

√
p2 +

q2

g2s
, (4.4.1)

where µF is the tension of the F-string and gs is the string coupling constant. It is easy to verify

that the bound state energy is lower than the unbound state using the relation µF = gsµD.

The tension binding 1 F-string and 1 D-string is defined as µ(1,1), then it satisfies the relation

µF + µD > µ(1, 1), (4.4.2)

assuming gs = 0.1 [107] . Therefore, strings prefer to stay in the bound state.

4.4.1 Dynamics of cosmic superstring with Y-junction

Similarly to Sec.4.1, the dynamics of cosmic superstrings with Y-junctions is derived from

the action to the equation of motion [108, 109] . In this section, we explain in Minkowski

spacetime for simplicity. Choosing the coordinate of the world sheet as x(t, σ), the gauge

conditions are

ẋ · x′ = 0, (4.4.3)

ẋ2 + x′2 = 1. (4.4.4)

The tensions of the strings connecting to a Y-junction is defined as µj (j = 1, 2, 3). Consider

that a Y-junction is located at σ = sj(t) on the world sheet and at X(t) = x(t, sj(t)) on the

spatial coordinate. Then the action of the cosmic superstring with Y-junction is given as

S[xµ] = −
∑
j

µj

∫
dt

∫
dσΘ(sj(t)− σ)

√
−det(γjab) +

∑
j

∫
dtfj(t) ·

{
xj(t, sj(t))−X(t)

}
,

(4.4.5)
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where Θ is the step function which imposes that there is no cosmic superstring outside of the

Y-junction, and fj(t) are Lagrange multipliers. Using the gauge conditions, we can write as√
−det(γjab) =

√
x′
j
2(1− ẋ2

j ). (4.4.6)

When we vary the action in terms of xj and use the gauge conditions, the equation of motion

is given by

ẍj − x′′
j = 0. (4.4.7)

This equation is same as Eq.(4.1.15), and the solution is

x(t, σ) =
1

2

{
aj(σ − t) + bj(σ + t)

}
. (4.4.8)

Using this solution, the gauge condition is rewritten as a′
j
2
= b′j

2
= 1. In the region where

σ < sj(0), the functions aj(σ) and bj(σ) are determined by the initial conditions of xj , ẋj

at t = 0. Since we assume that Y-junctions are separated by large enough distance, we can

consider the lower limit of σ as small enough.

4.4.2 Energy conservation of cosmic superstring with Y-junction

The energy conservation of cosmic superstrings with Y-junctions is derived as the followings

[108, 109] . Varying xj , the term proportional to δ(sj(t)− σ) is

µj(x
′
j + ṡjẋj) = fj . (4.4.9)

On the other hand, varying X, we obtain∑
j

fj = 0. (4.4.10)

Combining these two equations and using the equation of motion solutions aj and bj , the

Lagrange multipliers vanish as∑
j

µj
{
(1− ṡj)a

′
j + (1 + ṡj)b

′
j

}
= 0, (4.4.11)

where we apply ȧj = −a′
j , ḃj = b′j . aj is the injection wave and bj is an unknown outgoing

wave. It is reasonable to use aj in order to describe the energy conservation. The boundary

condition is
1

2

{
aj(sj(t)− t) + bj(sj(t) + t)

}
= X(t). (4.4.12)

The time derivative of this equation is described as

(1− ṡj)a
′
j − (1 + ṡj)b

′
j = −2Ẋ. (4.4.13)
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Using Eqs.(4.4.11) and (4.4.13), we remove b′j from these equations as

∑
j

µj(1− ṡj)a
′
j = −(µ1 + µ2 + µ3)Ẋ. (4.4.14)

Eliminating X from Eqs.(4.4.13) and (4.4.14), b′j can be written by a′
j , ṡj . Using |b′j |2 = 1,

ṡj is only related with a′
j . Changing the notation from a′

j to

cij = a′
i(si − t) · a′

j(sj − t) = cji, (4.4.15)

ṡj is rewritten as

µ1(1− ṡj)

µ1 + µ2 + µ3
=

M1(1− c23)

M1(1− c23) +M2(1− c31) +M3(1− c12)
, (4.4.16)

where M1 ≡ µ2
1 − (µ2 − µ3)

2 and M2, M3 is cyclic. Then, using the injection wave a through

the position of the Y-junction sj , the energy conservation can be expressed as

µ1ṡ1 + µ2ṡ2 + µ3ṡ3 = 0. (4.4.17)
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5 String network dynamics

Cosmic strings and cosmic superstrings are moving in the universe with the speed of the light.

Cosmic strings intersect and reconnect each other and cosmic superstrings also behave in the

same manner. As a consequence of reconnections, a string network contains circular connected

strings and strings as long as the horizon, called loops and infinite strings respectively. This

section describes the complex network made of cosmic strings and cosmic superstrings.

First, let us derive the time evolution of the string energy density intuitively. The strings

stretch and the interval extends with the cosmic expansion a(t). In other words, the strings

are fixed in the comoving frame. When one string energy and the physical volume are defined

as µa(t)a0
xcom,

(
a(t)
a0
xcom

)3
with the comoving coordinate xcom, the energy density of the string

ρs is written as

ρs =
µa(t)a0

r(
a(t)
a0
xcom

)3 =
µ(

a(t)
a0
xcom

)2 ∝ a−2. (5.0.1)

In the RD and MD era, the radiation and matter-energy densities are ρ ∝ a−4 and a−3,

respectively. Compared with these energies density, the string energy density decreases slower.

In this case, the universe would be dominated by the strings now [15] , but it is not the case

in reality. In order to solve this contradiction, we should consider the formation of loops from

infinite strings. Cosmic strings and cosmic superstrings make loops by cutting off themselves.

These loops shrink and vanish by emitting GWs. Because the string energy is thrown away

through loops, the universe is never dominated by the string energy.

5.1 Network of cosmic string

Using the total energy and the average velocity of cosmic strings, the time evolution of the

cosmic string energy density is described as the following [93] . The string average velocity v

is defined as

v2 ≡
∫
dσẋ2ϵ∫
dσϵ

, (5.1.1)

where the dot denotes the derivative with respect to the conformal time. Substituting

Eqs. (4.1.31) and (5.1.1) into the total string energy Eq.(4.1.35) differentiated by time, the

physical time (t) evolution equation of the cosmic string energy density ρ = E
a3 is represented

by
dρ

dt
+ 2H(1 + v2)ρ = 0, (5.1.2)

where H = da
dt /a. This equation includes the energy density of infinite strings and loops. We

focus on the infinite strings network, then, we assume that Eq.(5.1.2) is able to be expressed

by ”correlation length” L meaning the interval and the curvature radius of the infinite string.
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In [15, 16, 110] , cosmic string network is described by a straight segment with the length L

in the correlation volume L3 on average, then the network density of infinite strings ρinf is

written as

ρinf ≡
µ

L2
. (5.1.3)

Infinite strings make loops. Let us estimate the probability of the collisions between the

segment of the string L in L3 and the segment l which moves with the velocity vinf . In the

small-time δt, the collision probability is lvinfδtL
L3 . With the assumption that the collision

probability where loops are formed in the range of l ∼ l + dl is expressed using the scale-

invariant function W
(
l
L

)
, the string energy thrown away to loops is described as [110]

dρinf
dt

∣∣∣∣
loop

= ρinf
vinf
L

∫
W

(
l

L

)
l

L

dl

L
≡ cpnpv

ρinf
L
, (5.1.4)

where p is the reconnection probability. In the cosmic string case, we expect p = 1 and in the

cosmic superstring case, p < 1. np is the power, in general np = 1, 1
3 [111, 112] . c is the loop

chopping efficiency and c ≃ 0.23 from the simulation [113] . The first term of the left-hand

side Eq.(5.1.2) means the time evolution of the string energy, then it is rewritten by dρinf
dt and

dρinf

dt

∣∣∣
loop

like (
dρinf
dt

+
dρinf
dt

∣∣∣∣
loop

)
+ 2H(1 + v2)ρinf = 0. (5.1.5)

Substituting Eqs. (5.1.3) and (5.1.4), the time evolution equation of the correlation length is

given by
dL

dt
= HL(1 + v2) +

1

2
cpnpv. (5.1.6)

The first term stands for the effect of the cosmic expansion, and the second term represents

the effect that infinite strings throw away the energy into loops. Differentiating Eq.(5.1.1) by

time, the time evolution equation of the average velocity of cosmic strings is

dv

dt
= (1− v2)

(
k

L
− 2Hv

)
, (5.1.7)

where k is the effective curvature [94] and it depends on v as [93]

k(v) ≡ 1

v(1− v2)

∫
dσ(1− ẋ2)(ẋ · u)ϵ∫

dσϵ
≃ 2

√
2

π

1− 8v6

1 + 8v6
, (5.1.8)

where ẋ is the velocity of the small scale structure on the infinite strings and u is the unit

vector along the curvature radius defined as a(τ)
L u ≡ d2x

ds2 . Here s is the physical length of

the string written as ds = |x′|dσ =
√
1− ẋ2ϵdσ. When there are no small structures on

infinite strings, ẋ is parallel to u and k = 1. Then, the infinite strings accelerate. Namely, k

works as the acceleration unless there are some structures on the infinite strings at the small
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scale, while when there are small structures, we have k < 1 and the acceleration is suppressed.

When the infinite strings have a curvature L at the large scale, the strings accelerate by the

factor 1
L on the right-hand side of Eq.(5.1.7). In short, the numerator and denominator of k

L

in Eq.(5.1.7) effectively describes how the acceleration by the small and large scale structure

of the infinite strings. And the cosmic expansion term 2Hv gives the deceleration.

We define the coefficient of the correlation length as γ ≡ L
t . We numerically calculate

Eq.(5.1.6) and Eq.(5.1.7) with the evolution of the universe from the RD era to the MD era

to the ΛD era. Fig.5.1.1 shows the time evolution of the correlation length and the average

velocity of infinite strings. In the RD era, γ is constant, while we do not see it in the following
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Fig. 5.1.1 The time evolution of γ and v of the cosmic string solving Eq.(5.1.6) and
Eq.(5.1.7). The horizontal axis is time and the vatical axis is γ on the left panel and v
on the right one. Both panels are calculated as p = 1, so the results using np = 1 and
np = 1/3 are same. The constant region on the left side of each panel is in the RD, the
transition around 1012 < t < 1016 is the MD and the most right side corresponds to the
ΛD era.

eras since it takes time to reach the scaling regime. During the RD era, the correlation length

is proportional to t as

L ∝ t ∝ horizon. (5.1.9)

In other words, the number of infinite strings in the horizon is constant. This is called ”scaling

law”. In this case, the string network can be only parametrized L and v, so the model is called

as ”velocity-dependent one scale model (VOS model) ” [93, 110] .

We must confirm that the string energy in the horizon is less than the radiation and matter-

energy. Using L ∝ t and a ∝ t
1
2 , t

2
3 in the RD, MD era, the time evolution of the string energy

is

ρinf ∝
µ

t2
∝

µa−4 for the RD era,

µa−3 for the MD era.
(5.1.10)

From this relation, the string energy has never been more than the other energy.
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5.2 Network of cosmic superstring

Cosmic superstring also obeys the scaling law. One of the typical features of the cosmic

superstring network is that the reconnection probability p is smaller than the one of the

cosmic string. In addition, cosmic superstrings have Y-junctions [108] where three strings

connect at one point on the strings. Y-junction is made when string 1 and string 2 collide and

string 3 is formed by using their own length, called a zipper-type [61].

In order to formulate the time evolution equation of the correlation length with Y-junctions

called extended VOS model, first, let us derive the time evolution of the energy density of

cosmic superstring 1, 2 and 3. In general, these three strings can have different tension

µ1, µ2, µ3 and correlation length L1, L2, L3, respectively. In the zipper-type, the length of

cosmic superstring 1 and 2 converts to the length of cosmic superstring 3, then the time

evolution equations are written as

ρ̇inf,i = −2H(1 + v2i )ρinf,i −
cip

np

i viρinf,i
Li

− ρ̇1,2→3, (i = 1, 2) (5.2.1)

ρ̇inf,3 = −2H(1 + v23)ρinf,3 −
c3p

np

3 v3ρinf,3
L3

+ ρ̇1,2→3, (5.2.2)

where ρ̇1,2→3 is the energy made by binding cosmic superstring 1 and 2. By keeping the

generality, we can set L1 < L2. Let us consider the probability of cosmic superstring 1

intersecting with 2. On average, we find one cosmic superstring 2 in the correlation volume

L3
2. The probability that cosmic superstring 1 moving at the velocity v12 intersects with cosmic

superstring 2 in time δt is written as
v12δt

L2

L1

L2
. (5.2.3)

The numerator of the first fraction expresses the distance cosmic superstring 1 can move

in δt, and the second one means the amplification by the ratio L1 to L2. We assume that

the interval of Y-junctions has the distribution function and the peak is l(t). We define an

efficiency parameter d̃312 as integrating the distribution function in the same way as the loop

chopping efficiency ci. In the correlation volume L3
2, the number of cosmic superstring 1 is

given by ρ1
µ1L1

L3
2 =

L3
2

L3
1
Therefore, the energy density evolution is written as

ρ̇1,2→3 = d̃312
v12
L2

L1

L2

µ3l(t)

L3
2

L3
2

L3
1

= d̃312
v12µ3l(t)

L2
1L

2
2

(5.2.4)

When the cosmic superstring 1 and 2 collide and make cosmic superstring 3, in δt, the

energy density

δρinf = d̃312v12(µ1 + µ2 − µ3)
l(t)

L2
1L

2
2

δt (5.2.5)

remains because of µ1+µ2 ̸= µ3 generally. Since the total energy of cosmic superstrings should
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conserve, the remaining energy should be regarded as the kinetic energy of cosmic superstring

3. Then, let us add δρinf

δt into the velocity evolution equation through the acceleration term

ρ̇acceleration =
∂ρ

∂v

dv

dt
=

v

1− v2
ρ
dv

dt
. (5.2.6)

The acceleration term written by dv3
dt

∣∣
acceleration

is

dv3
dt

∣∣∣∣
acceleration

= (1− v3
2)d̃312

v12
v3

µ1 + µ2 − µ3

µ3

L2
3

L1L2(L1 + L2)
. (5.2.7)

In summary, the evolution equations of correlation length and velocity are given by [61, 62,

112]

dL1

dt
= HL1(1 + v1

2) +
1

2
c1p

np

1 v1 +
1

2

d̃312v12L1
2

L2(L1 + L2)
, (5.2.8)

dL2

dt
= HL2(1 + v2

2) +
1

2
c2p

np

2 v2 +
1

2

d̃312v12L2
2

L1(L1 + L2)
, (5.2.9)

dL3

dt
= HL3(1 + v3

2) +
1

2
c3p

np

3 v3 −
1

2

d̃312v12L3
3

L1L2(L1 + L2)
, (5.2.10)

dv1
dt

= (1− v1
2)

(
k(v1)

L1
− 2Hv1

)
, (5.2.11)

dv2
dt

= (1− v2
2)

(
k(v2)

L2
− 2Hv2

)
, (5.2.12)

dv3
dt

= (1− v3
2)

{
k(v3)

L3
− 2Hv3 + d̃312

v12
v3

µ1 + µ2 − µ3

µ3

L2
3

L1L2(L1 + L2)

}
, (5.2.13)

where v12 ≡
√
v21 + v22 . The first terms of the correlation lengths are the same as the cosmic

string case. In the second term, which describes the effect of loop production, we have an

additional factor of pnp . For a simple one-scale model [93] , one would expect np = 1.

However, numerical simulations indicate that small-scale structure on strings increases the

loop production efficiency and we can effectively include the effect by setting np = 1
3 [111] ,

while another simulation indicates np = 1
2 [114] . In this paper, we set c1 = c2 = c3 ≃ 0.23

and investigate the two cases: np = 1 and 1
3 .

The parameter d̃312 describes the efficiency of the process where strings of type 1 and 2

produce type 3 and is given by [40, 115, 116]

d̃312 = d̃(p,q),(p′,q′)P
±
(p,q),(p′,q′), (5.2.14)

where the probability of the Y-junction production which made by (p, q)-string and (p′, q′)-
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string is

P±
(p,q),(p′,q′) =

1

2

1∓ pp′g2s + qq′√
p2g2s + q2

√
p′2g2s + q′2

 . (5.2.15)

and gs is the string coupling. Typically, d̃(p,q),(p′,q′) ranges as 10−3 ≤ d̃(p,q),(p′,q′) ≤ 1 [62]

. Following [62] in order to implement the kinematic constraint, we replace d̃312 with the

suppression factor S3
12 as

d̃312 → d̃312 = S3
12d̃(p,q),(p′,q′)P

±
(p,q),(p′,q′). (5.2.16)

Using the velocity of collision string v and the angle αang, S
3
12 is written by

S3
12 =

2

π

∫ 1

0

dv

∫ π
2

0

dαangΘ(−f(v, αang))exp

(
−(v − v12)

2

σ2
v

)
< 1 (5.2.17)

where Θ is the Heaviside function imposing the kinematic constraints

f(v, αang) ≡ A1(1− v2)2 +A2(1− v2) +A3 < 0, (5.2.18)

where

A1 = µ̄2
+cos

2αang(µ̄
2
3 − µ̄2

+sin
2αang − µ̄2

−cos
2αang), (5.2.19)

A2 = 2µ̄2
+µ̄

2
−cos

2αang − µ̄4
3 − (2cos2αang − 1)µ̄2

+µ̄
2
3, (5.2.20)

A3 = µ̄4
3 − µ̄2

+µ̄
2
−, (5.2.21)

with µ̄± = µ1 ± µ2. The string of type 3 is bound states of p F-strings and q D-strings and

its tension µ̄3 is given by

µ̄3 ≡ µF

gs

√
p2g2s + q2. (5.2.22)

The tension of the type 3 string µ̄3 = µ3 would be roughly determined by heavier strings

among type 1 and 2. For the variance, we take σ2
v = 0.25.

Moreover, d̃312 should include the reconnection probability and be modified as [112]

d̃312 → d̃312 = S3
12d̃(p,q),(p′,q′)P

±
(p,q),(p′,q′)p

np

3 . (5.2.23)

In this thesis, we consider the simple case where one D-string (p, q) = (0, 1) and one F-string

(p′, q′) = (1, 0) make the bound state and form Y-junctions. Substituting (p, q), (p′, q′) =

(0, 1), (1, 0) into Eq.(5.2.15), we get P±
(p,q),(p′,q′) = 1

2 . Since we are interested in seeing the

maximum effect of Y-junctions, we set d̃(p,q),(p′,q′) = 1.

In Figures 5.2.1 and 5.2.2, we show the results of numerical calculations for the evolution

of the correlation lengths and average velocities, obtained by simultaneously solving Eqs.

(5.2.8) – (5.2.13). In the case of cosmic superstrings, there is a large variety of parameter
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choice and it is difficult to present results of all the possible parameter space. Thus, we

choose three example cases for string tensions and np, as a demonstration to obtain a rough

idea of parameter dependence, which is listed below. We set that all string types have same

reconnection probability p1 = p2 = p3 for simplicity. In Fig. 5.2.1, we show the results for

p1 = p2 = p3 = 1, and Fig. 5.2.2 shows the results for smaller reconnection probabilities. In

both figures, the dimensionless string tension is set to Gµ = 10−11, where G is the gravitational

constant.

5.2.1 Case A: string network with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1

First, we consider the strings of type 1, 2, and 3 all have the same tension µ with low loop

production efficiency np = 1. In Fig. 5.2.1, we find that γ1 and γ2 are larger than γ3, because

the third terms of Eqs. (5.2.8) and (5.2.9), which describes the formation of Y-junctions,

increases the correlation length, while the third term of Eq. (5.2.10) makes γ3 small. In

the right top panel, we find v1 and v2 are slower and v3 is faster than the case of ordinary

cosmic strings. This is because the acceleration term of Eqs. (5.2.11) – (5.2.12) (k(v1)/L1 and

k(v2)/L2) becomes smaller, while k(v3)/L3 becomes larger.

In Fig. 5.2.2, we find that γ becomes smaller for smaller p. This is because the string

network with small reconnection probability cannot produce loops efficiently and accumulate

more infinite strings until it can sufficiently eventually enhance the loop production and leads

to the scaling solution. From the figure, we find the relation between the correlation length γ

and the reconnection probability p at the RD era is

γ ∝ p0.975. (5.2.24)

In the case of ordinary cosmic strings, we do not have the third terms of Eqs. (5.2.8) – (5.2.10)

and Eq. (5.2.13), and we find the relation is γ ∝ p [49] .

5.2.2 Case B: string network with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3

Next, we consider the strings of type 1, 2, and 3 all have the same tension µ with high loop

production efficiency np = 1
3 . The results in Fig. 5.2.1 are the same as Case A, since when

p = 1, the result does not depends on the value of np since the loop production term is

multiplied by pnp .

On the other hand, in Fig. 5.2.2, we find the asymptotic values of the scaling solution is

different from Case A when reconnection probabilities are smaller than 1. This is because the

loop production efficiency, determined by np, is higher in Case B and the number of strings

inside the horizon is reduced compared to Case A, which gives the larger value of γ. We find

the relation between γ and p in the RD era is given by

γ ∝ p0.319. (5.2.25)
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5.2.3 Case C: string network with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3

Lastly, we investigate the case where the D- and F-strings have different tension and we

consider the case of µ1 : µ2 : µ3 = 1 : 10 : 10 with np = 1
3 . We do not find any remarkable

difference compared to Cases A and B in Fig. 5.2.1 because the effect of string tension arises

only in the terms of d̃312 and the difference is small.

In Fig. 5.2.2, we find the asymptotic values of the scaling solution is almost the same as

Case B and the dependence in the RD era is given by

γ ∝ p0.318. (5.2.26)
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Case A: µ1 : µ2 : µ3 = 1 : 1 : 1, np = 1, Gµ1 = Gµ2 = Gµ3 = 10−11
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Case B: µ1 : µ2 : µ3 = 1 : 1 : 1, np =
1
3 , Gµ1 = Gµ2 = Gµ3 = 10−11
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Case C: µ1 : µ2 : µ3 = 1 : 10 : 10, np =
1
3 , Gµ1 = 10−12, Gµ2 = Gµ3 = 10−11
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Fig. 5.2.1 The left and the right panels respectively show the evolution of the correlation
length and average velocity of cosmic superstrings for different string types. The solid
black line shows the case of ordinary cosmic strings presented in Sec. 5.1, and the red,
green and blue broken lines correspond to the type of cosmic superstrings labeled 1, 2,
and 3. The axes are the same as in Fig. 5.1.1. The top, middle, and bottom panels show
a different choice of np and tensions, which corresponds to Case A, B, and C in the text.
Here, the reconnection probability is fixed as p1 = p2 = p3 = 1. The tension is assumed
to be Gµ = 10−11 (Gµ2 = Gµ3 = 10−11 for Case C).
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Case A: µ1 : µ2 : µ3 = 1 : 1 : 1, np = 1, Gµ1 = Gµ2 = Gµ3 = 10−11
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1
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Case C: µ1 : µ2 : µ3 = 1 : 10 : 10, np =
1
3 , Gµ1 = 10−12, Gµ2 = Gµ3 = 10−11
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Fig. 5.2.2 The same plot as in Fig. 5.2.1 but for different reconnection probabilities
(and the type of string is fixed to be 1). The solid black line shows the case of ordinary
cosmic strings presented in Sec. 5.1, and the red, magenta, orange and green broken lines
represent the cases of p1 = p2 = p3 = 1, 10−1, 10−2, 10−3, respectively.
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6 Distribution of kinks

The sharp structures, cusps, and kinks, on cosmic strings and cosmic superstrings, emit GWs.

These GWs overlap and form a GW background. The GW background from cusps has been

investigated attentively because they are expected strong enough. On the other hand, the GW

background from kinks on infinite strings of cosmic strings and cosmic superstrings, called

”infinite cosmic strings” and ”infinite cosmic superstrings” hereafter, have not been studied

yet because it is considered that the amplitude is smaller than the one from cusps. However,

previous works have not considered the time evolution of the number and the sharpness of

kinks, described by the distribution function of kinks. There are kinks with various sharpness

and they contribute to the GW background at a wide range of the frequency, unlike the cusp

case. In order to calculate the power spectrum of the GW background from kinks, we should

first derive the distribution of kinks on infinite cosmic strings and infinite cosmic superstrings.

6.1 Evolution of sharpness

The sharpness of a kink changes with the cosmic expansion in FLRW spacetime. We will

derive the time evolution of the sharpness. In FLRW spacetime, the solution of the string

dynamics is p± where ± denote the left / right moving mode. When there is a kink of the

left moving mode, using the solution, the sharpness is defined as [63]

ψ ≡ 1

2
(1− p+, I · p+, II), (6.1.1)

where the subscripts I, II mean the left / right side solution at the kink (see Fig. 6.1.1). Using

Fig. 6.1.1 The definition of sharpness. The solid blue line is the infinite string around the kink.

p±, the string equation of motion Eq.(4.1.24) is rewritten as Eq.(4.1.28), where the dot and
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the prime denote the derivative with respect to t and σ in this section. Applying the relation
dt
dσ = 0, we get p′

± = dt
dσ

dp±
dt = 0. Then, the equation of motion with p±, Eq.(4.1.28) becomes

ṗ± = −H
{
p∓ − (p+ · p−)p±

}
. (6.1.2)

Substituting Eq.(6.1.1) into this equation, the time evolution equation of the sharpness is

described as

ψ̇ =
1

2
H
{
p− ·p+, II− (p− ·p+, I)(p+, I ·p+, II)+p+, I ·p−− (p+, I ·p+, II)(p+, II ·p−)

}
, (6.1.3)

where p− = p−(t∗, σ∗) is evaluated at the kink t = t∗, σ = σ∗. This equation expresses that

the sharpness changes with the Hubble time. We define the time average of p± as

< p+ · p− >≡ −κ = −(1− 2v2), (6.1.4)

and then the time evolution of the sharpness is rewritten as

ψ̇ = −2Hκψ. (6.1.5)

From the simulation [63] , the value of the coefficient is estimated as κr ≈ 0.18 and κm ≈ 0.3,

where the suffixes ”r” and ”m” stand for the RD and MD era. We define the evolution of the

scale factor as a ∝ tν (νr = 1
2 , νr = 2

3 ) and ζ ≡ κν. Integrating Eq.(6.1.5), we get the time

evolution of the sharpness as

ψ ∝ t−2ζ , (6.1.6)

where ζr ≈ 0.09 and ζm ≈ 0.2.

6.2 On infinite cosmic strings

As seen in the previous subsection, the sharpness changes with time. We define ”the distri-

bution function of kinks” N(ψ, t), the number of kinks as a function of sharpness [63, 117] .

We derive the time evolution equation of kink distribution function considering these three

factors;

• kink production by intersections of infinite strings,

• kinks blunted by the expansion of the universe,

• kinks are lost into loops by loop formation

First, we study the number of kink production. In order to count the number of infinite

strings intersecting in the volume V and per time dt, we consider the small areas A1, A2 in

the world sheet made of infinite string 1 and 2. The world sheet coordinate is transformed as

u ≡ σ − t, v ≡ σ + t. Using this coordinate, the small areas of string 1, 2 are rewritten as

u1 ∼ u1 + du1, v1 ∼ v1 + dv1 and u2 ∼ u2 + du2, v2 ∼ v2 + dv2. When A1 and A2 intersect,
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the infinite string 1, 2 also intersect. The probability of intersection between A1 and A2 is

given by
four-volume made of A1 and A2

four-volume at V and dt
≡ dΩ

V dt
, (6.2.1)

where four-volume dΩ is defined as

dΩ =

∣∣∣∣√−det(gµν)ϵλµνρ
∂xλ1
∂u

∂xµ1
∂v

∂xν2
∂u

∂xρ2
∂v

∣∣∣∣du1dv1du2dv2. (6.2.2)

Because of A1, A2 ≪ horizon and ∂t
∂u = ∂t

∂v = 1
2 , by imposing the gauge condition Eq.(4.1.13)

and Eq.(4.1.14) in Minkowski spacetime, dΩ is rewritten as

dΩ =
1

4
∆du1dv1du2dv2, (6.2.3)

where

∆ =
1

4

∣∣∣∣∣
∣∣∣∣∣ 1 1 1 1

p+,1 p−,1 p+,2 p−,2

∣∣∣∣∣
∣∣∣∣∣

=
1

4
|(p+, 1 × p+, 2) · (p−, 1 − p−, 2) + (p+, 1 − p+, 2) · (p−, 1 × p−, 2)|. (6.2.4)

The probability dp1 where the infinite string 1 intersects with the string 2 is described as the

following equation

dp1 =

∫
dΩ

V dt
=

∫
du2dv2

1
4∆du1dv1

V dt
. (6.2.5)

We define the total length Ltotal of infinite strings in the volume V , Ltotal ≡ V
L2 =

∫
dσ. Using

the relation dtdσ = 1
2dudv, the integration is∫

du2dv2 =

∫
dσ · 2dt = 2V

L2
dt. (6.2.6)

We consider the average of ∆ and define ∆̄ as the probability of intersecting string-selves as

∆ → ∆̄ =

∫
d2p+, 1

4π

d2p−, 1

4π

d2p+, 2

4π

d2p−, 2

4π
∆, (6.2.7)

and the probability is rewritten as

dp1 =
∆̄

2L2
du1dv1. (6.2.8)

Obtaining the number of string intersections (same as kink production) within the time interval

dt, we integrate dp1. Then, we get

dNintersect =
∆̄V dt

2L4
, (6.2.9)
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where, in order to avoid the double count, we multiply 1
2 by dp1.

Moreover, we take account of the initial sharpness distribution when kinks are produced.

For this purpose, we focus on ∆. Eq.(6.2.7) is integrated by each d2p over unit sphere, and

the value is [63, 117]

∆̄ =
2π

35
≈ 0.18. (6.2.10)

Let us add the effect of the small anti-correlation between p+ and p− verified by Eq.(6.1.4)

into ∆̄. We assume that the distribution function f(p+, p−) is expressed by the linear function

of p+ · p− in the isotropic universe. Considering the anti-correlation of p±, the distribution

function is assumed as

f(p+, p−) = 1− 3κp+ · p−, (6.2.11)

which satisfies the relation ∫
d2p+

4π

d2p−

4π
f(p+, p−) = 1. (6.2.12)

Inserting the distribution function into Eq.(6.2.7), ∆̄ increases as

∆̄ =
2π

35

(
1 +

2κ

3
− κ2

11

)
. (6.2.13)

Then, the asymptotic values in the RD and MD era are ∆̄r ≈ 0.20, ∆̄m ≈ 0.21 [63, 117] . Since

we calculate the average of ∆ with the effect of the anti-correlation of p±, we will define the

initial sharpness distribution g(ψ) without the anti-correlation as following. We assume that

p−, 1 and p−, 2 are placed on the unit sphere homogeneously and the small anti-correlation p+,

p− does not affect the initial distribution for simplification, thus < p+ ·p− >= 0. Integrating

the right-hand side of Eq.(6.2.7) with respect to all direction of p−, 1, p−, 2, we get the initial

sharpness distribution as

∆̄ =

∫
d2p+, 1

4π

d2p−, 1

4π

d2p+, 2

4π

d2p−, 2

4π
,

×1

4
|(p+, 1 × p+, 2) · (p−, 1 − p−, 2) + (p+, 1 − p+, 2) · (p−, 1 × p−, 2)|,

=

∫
d2p+, 1

4π

d2p+, 2

4π
∆(p+, 1, p+, 2),

≡ ∆̄

∫
dψg(ψ), (6.2.14)

g(ψ) =
35

256

√
ψ(15− 6ψ − ψ2). (6.2.15)

We set
∫ 1

0
dψg(ψ) = 1 and g(ψ) = 0 for ψ < 0 or 1 < ψ. The average of the produced

sharpness ψ̄ is

ψ̄ =

∫ 1

0

dψ ψg(ψ) =
5

9
. (6.2.16)
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We see that sharp kinks are produced more. From Eq.(6.2.4), when p+, 1 = p+, 2, ∆ = 0 and

the intersection probability becomes 0. On the other hand, the probability has finite value

with p+, 1 ̸= p+, 2. Therefore, g(ψ) is asymmetric function, whose average ψ̄ is bigger than 1
2 .

To summarize, the number of kinks produced by string intersections in ψ ∼ ψ + dψ per the

volume V and per unit time is

∂N

∂t
(ψ, t)

∣∣∣∣
production

dψ =
∆̄V

γ4t4
g(ψ)dψ, (6.2.17)

using L = γt.

Second, we consider the effect that kinks are blunted by the expansion of the universe [63]

. Although kink sharpness decreases, the total number of kinks conserves, so we have [59]

d

dt

{∫ ψ(t)

dψ′N(ψ′, t)

}
= 0. (6.2.18)

Using Eq.(6.1.6), this kink conservation is rewritten as

d

dt

{∫ ψ(t)

dψ′N(ψ′, t)

}
=

∫ ψ(t)

dψ′

{
∂N

∂ψ
(ψ′, t)− 2ζ

t

∂

∂ψ′ (ψ
′N(ψ′, t))

}
= 0 (6.2.19)

In order to have this equation always satisfied, the integrand should be 0 at all the time. Then,

we get the number of blunted kinks as

∂N

∂t
(ψ, t)

∣∣∣∣
blunted

=
∂

∂ψ
(ψN(ψ, t))

2ζ

t
. (6.2.20)

Of course, this equation can be derived by considering the conservation of kinks at 0 ≦ ψ ≦ 1

(see appendix A).

Finally, we derive the number of kinks on infinite strings lost into loops. Loops are produced

by string intersection and self-intersection. They shrink by emitting GWs and finally vanish.

Therefore, kinks moved into loops disappear before long. We consider the length of infinite

string d transformed from infinite strings to loops. The interval of infinite strings is the

correlation length L, then the average of the initial loop size are also L. The time evolution

of d is written as
dd

dt
= −η V

L3
, (6.2.21)

where η = 1
2cp

npv [63, 104, 117] and this is the same as the second term of Eq.(5.1.6). It is

rewritten as
ḋ

d

∣∣∣∣∣
loop

= − η

L
= − η

γt
. (6.2.22)

We assume that the fraction of kinks taken away to loops is proportional to the loss of the
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length ḋ
d ∝ Ṅ

N , then we get the term of kink lost by loops as

Ṅ

N

∣∣∣∣∣
loop

= − η

γt
. (6.2.23)

Combining these three terms Eqs.(6.2.17), (6.2.20) and (6.2.23), we get the time evolution

equation of the kink distribution function as

∂N

∂t
(ψ, t) =

∆̄V

γ4t4
g(ψ) +

2ζ

t

∂

∂ψ
(ψN(ψ, t))− η

γt
N(ψ, t). (6.2.24)

In order to solve this evolution equation, we need the initial condition. We assume that the

time of kink production is the same as strings are made. The time when the cosmic strings

are produced is defined as t∗ and the initial condition is

N(ψ, t∗) = 0. (6.2.25)

The time of string production has been discussed and several scenarios are proposed. Here

we describe two scenarios. First, cosmic strings are produced at the spontaneous symmetry

breaking in the RD era and they survive with the interaction between the particles in the

thermal bath and strings. The interaction works as friction. The second scenario is that the

cosmic strings or cosmic superstrings are formed at the end of the inflation, where the scalar

field oscillates and behaves as a matter. In the first case, we should consider the friction effect.

In the second scenario, we have to calculate the kink distribution since this matter dominant

era. Because the evolution of the universe at this time depends on the models, in this paper

for simplicity, we assume that the strings are produced in the RD era using the standard

cosmology (Sec.2).

When the parameters γ, ∆̄, η, ζ are constant, we can solve the distribution function of kinks

analytically. If we assume that the parameter is constant in the RD and the MD respectively.

Then, the analytic solution of kinks distribution is given by

N(ψ, t)

V (t)/(γt)2
∼


ψ−βm/2ζmt−1 for ψ >

(
teq
t

)2ζm
,(

t
teq

)−B/ζr
ψ−βr/2ζrt−1 for ψ <

(
teq
t

)2ζm
,

(6.2.26)

where

β ≡ 3− 3ν − η

γ
+ 2ζ, (6.2.27)

βr ≈ 1.1, βm ≈ 1.2, (6.2.28)

B ≡ βrζm − βmζr ≈ 0.11. (6.2.29)

and teq is the time of radiation-matter equality. The detailed derivation process is written
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in Appendix B. The left-hand side of the solution Eq.(6.2.26) corresponds to the number of

kinks per unit length.

In order to get the exact solution, simultaneously, we numerically solve the evolution equa-

tion Eq. (6.2.24) using the scaling law Eqs.(5.1.6) and (5.1.7) and the following equations

∆̄ =
2π

35

{
1 +

2

3
(1− 2v2)− 1

11
(1− 2v2)2

}
, (6.2.30)

ζ = (1− 2v2)

{
ln (a/aini)

ln (t/tini)

}
, (6.2.31)

η =
1

2
cpnpv, (6.2.32)

where p = 1, np =
1
3 and aini, tini are an initial scale factor and an initial time. Furthermore at

the same time, we solve the Hubble parameter Eq.(2.3.7) with Ωrh
2 = 4.31×10−5, h = 0.678,

Ωm = 0.308, ΩΛ = 0.692 [66] and ΩK = 0.

Fig.6.2.1 shows the distribution function of kinks on infinite strings at the present. Since

the sharpness of kinks decreases with time by the cosmic expansion and the initial sharpness

distribution g(ψ) tells that newly produced kinks are mostly sharp, the most blunted kinks are

made in the past. The number of old blunted kinks with small sharpness is larger than new

ones because O(1− 10) of kinks are produced per horizon and the number of newly produced

kinks per comoving length decreases as the horizon grows. Therefore, kinks at the left side of

Fig.6.2.1 (ψ < 7 × 10−2) are made during the RD era and at right side (ψ > 7 × 10−2) are

done during the MD and the ΛD era [59] . The kinks at ψ ∼ 7 × 10−2 are produced at the

matter-radiation equality.

6.3 On infinite cosmic superstrings

Cosmic superstrings have Y-junctions in the network, where F and D strings meet and form the

bound state. When a kink enters a Y-junction, two transmitted kinks and one reflected kink

appear and the sharpness of these kinks differs from the original incoming kink depending on

the tensions of cosmic superstrings and angles of three strings. Here, we define the transmission

coefficient

Cij =
ψ
(out)
j

ψ
(in)
i

, (6.3.1)

where i, j = 1, 2, 3 is the label of different strings connecting to the Y-junction, and (in) and

(out) denote incoming and outgoing kinks. For example, C12 describes how much sharpness

of the outgoing kink on string 2 is reduced or enhanced compared to the incoming kink

when a kink entered from string 1, while C11 gives the sharpness of the kink reflected to

string 1. Reference [41] has provided a detailed study on how the sharpness of the incoming

kink is transmitted to the three daughter kinks using numerical simulation. Although the

transmission coefficient was found to be distributed over a wide range of values depending on
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Fig. 6.2.1 The distribution function of kinks on infinite cosmic strings. The vertical axis
is the number of kinks per unit length and the horizontal axis is the sharpness of kinks.
We calculate it for Gµ = 10−11, however, this distribution function of kink independent
on the tension.

the configuration of three strings, we adopt the average value of the coefficient. For the choice

of tensions, we investigate the two cases: µ1 : µ2 : µ3 = 1 : 1 : 1 and µ1 : µ2 : µ3 = 1 : 10 : 10.

In the case of equal tensions, the sharpness of the reflected and transmitted kinks are 0.492

and 0.722 times smaller than the incoming kink in average, respectively (the value is taken

from Fig. 3 of [41] ). *3 The picture is given in Fig. 6.3.1. In summary, the transmission

coefficient is given by

Cij =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 =

 0.492 0.722 0.722

0.722 0.492 0.722

0.722 0.722 0.492

 . (6.3.2)

We also consider non-equal tensions with the ratio of µ1 : µ2 : µ3 = 1 : 10 : 10. When the

incoming kink comes from the light string, the sharpness of the kinks transmitted to the other

two heavy strings is 0.092 times smaller, while the reflected kink becomes 0.492 times. When

the incoming kink is from the heavy string, the sharpness changes depending on the tension of

the transmitted strings. The transmission coefficient is 0.722 for the light string and 0.992 for

*3 Note that the definition of the sharpness in [41] is | sin(θ/2)|, where θ is the kink angle, while our definition
of ψ, Eq. (6.1.1), is transformed to sin2(θ/2) [63]. Thus, the values of the transmission coefficient obtained
in [41] are squared in this paper.
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Fig. 6.3.1 The changes of sharpness for µ1 : µ2 : µ3 = 1 : 1 : 1.

the heavy string. The reflected kink becomes 0.092 times smaller. See Appendix A.1 and A.2

of [41] for the details. The values are summarized in Fig. 6.3.2. The transmission coefficient

is

Cij =

 0.492 0.092 0.092

0.722 0.092 0.992

0.722 0.992 0.092

 . (6.3.3)

Fig. 6.3.2 The changes of sharpness for µ1 : µ2 : µ3 = 1 : 10 : 10.

Then, we find the evolution equations of the distribution function of kinks for string types
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1, 2 and 3 are given as the following,

∂N1

∂t
(ψ, t) =

p1∆̄1V

γ41t
4
g(ψ) +

2ζ1
t

∂

∂ψ
(ψN1(ψ, t))−

η1
γ1t

N1(ψ, t)

+
α

t
N2

(
ψ

C21
, t

)
+
α

t
N3

(
ψ

C31
, t

)
+
α

t
N1

(
ψ

C11
, t

)
− α

t
N1(ψ, t),(6.3.4)

∂N2

∂t
(ψ, t) =

p2∆̄2V

γ42t
4
g(ψ) +

2ζ2
t

∂

∂ψ
(ψN2(ψ, t))−

η2
γ2t

N2(ψ, t)

+
α

t
N1

(
ψ

C12
, t

)
+
α

t
N3

(
ψ

C32
, t

)
+
α

t
N2

(
ψ

C22
, t

)
− α

t
N2(ψ, t),(6.3.5)

∂N3

∂t
(ψ, t) =

p3∆̄3V

γ43t
4
g(ψ) +

2ζ3
t

∂

∂ψ
(ψN3(ψ, t))−

η3
γ3t

N3(ψ, t)

+
α

t
N1

(
ψ

C13
, t

)
+
α

t
N2

(
ψ

C23
, t

)
+
α

t
N3

(
ψ

C33
, t

)
− α

t
N3(ψ, t).(6.3.6)

The parameters ∆̄i, ζi and ηi are given by the average velocity of each string vi as

∆̄i =
2π

35

{
1 +

2

3
(1− 2v2i )−

1

11
(1− 2v2i )

2
}

(6.3.7)

ζi = (1− 2v2i )

{
ln (a/aini)

ln (t/tini)

}
, (6.3.8)

ηi =
1

2
cip

np

i vi. (6.3.9)

Compared to the ordinary cosmic string case described in Eq. (6.2.24), we added two effects

associating with the characteristics of the superstring network. First, the kink production

term is multiplied by p as kinks are generated by the intersection of strings and the number

of intersections is reduced linearly by the reconnection probability. Second, the new terms

are added in order to include the effect of kinks entering Y-junction. The fourth and fifth

terms describe kinks coming from different types of strings by changing their sharpness. The

sixth term corresponds to reflected kinks. These terms describe that kinks, whose sharpness

was ψ
(in)
i = ψ

(out)
j /Cij , transmit to different or the same string with the rate of α times per

horizon time. The seventh term describes the disappearance of incoming kinks.

For the value of α, we use the following estimation. Since kinks move with the speed of

light, kinks move ∼ t in a Hubble time, while the average distance between Y-junction would

be roughly given by the correlation length of three strings as ∼ 1
3 (γ1 + γ2 + γ3)t. Thus, the

number of kinks encountering Y-junctions in a Hubble time is roughly given by

α =
3

γ1 + γ2 + γ3
. (6.3.10)

In Fig. 6.3.4, we show the distribution function of kinks obtained by numerically calculating

Eqs.(6.3.4) – (6.3.6) and Eq. (5.2.8) – Eq. (5.2.13). From the top to the bottom, we show
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Fig. 6.3.3 The cosmic superstring network with Y-junctions and the interval between
the Y-junctions.

Case A, B, and C. For the transmission coefficient, we use Eq.(6.3.2) for Cases A and B, and

Eq.(6.3.3) for Case C. The left panels show results for different string types 1, 2 and 3 with

p1 = p2 = p3 = 1. In the right panels, we show how different reconnection probabilities affect

the results. The lines represent the sum of the kink numbers of different string types for

p1 = p2 = p3 = 1, 10−1, 10−2 and 10−3. For comparison, we also plot the result of ordinary

cosmic strings (same as Fig. 6.2.1).

6.3.1 Case A: kink distribution with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1

In the left panels, the reconnection probabilities are all set to unity, so that we can simply see

the effects of Y-junctions by comparing with the ordinary cosmic string case, which should be

identical when we set p1 = p2 = p3 = 1 and remove the Y-junction terms. In all cases, we

find that the number of distribution is flatter when we include the effect of Y-junctions. This

is because, when a kink enters a Y-junction, three transmitted kinks typically have smaller

sharpness than the original one. Thus, the Y-junctions increase the number of kinks with

small sharpness, while they decrease the number of kinks with large sharpness, which flattens

the distribution and extends the cutoff to a much lower sharpness *4.

In the right panels, we find that smaller reconnection probability tends to flatten the distri-

bution more. This is the result of two combined effects. First, small p decreases the correlation

length and increases the number of strings inside the horizon. This enhances the kink pro-

duction term, as it is proportional to p/γ4 and γ ∝ p for Case A, and increase the overall

number of kinks. On the other hand, the small correlation length increases the number of

kinks encountering Y-junctions α and makes the effect of Y-junction terms stronger. In Case

A, we find that the latter effect is always stronger than the former, and we find that the

*4 Note that, although the figures may give the impression that the total number of kinks decreases when
we include the effect of Y-junctions, this is not true since there are a huge number of kinks at much
smaller sharpness beyond the plot range of the figure. In fact, Y-junctions increase the total number
of kinks. However, the increased kinks have very small sharpness and they do not increase the GW
background amplitude, as we will see in the next sections.
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distribution is more flattened for smaller p.

6.3.2 Case B: kink distribution with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3

In Case B, the kink distribution looks similar to Case A. The only difference arises in the

right panel, where we find a number of kinks are smaller than Case A when the reconnection

probability is small. This is because the loop production is more efficient in the case of

np =
1
3 , and the decrease of correlation length γ is milder for smaller reconnection probability

as shown in the right panels of Fig. 5.2.2 and found γ ∝ p0.32. Since γ has a larger value, the

kink production term ∝ p/γ4 is suppressed, which is the reason that we find less number of

kinks.

6.3.3 Case C: kink distribution with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3

In the left panel of Case C, we find the slope of the distribution function is more flattened

compared to the cosmic string case because of the existence of Y-junctions, but not as much

as Cases A and B. This is because kinks are smoothed out efficiently with the coefficient 0.492

and 0.722 in Cases A and B, while we have the coefficient of C32 = C23 = 0.992 in Case C,

which means that one of the three kinks stays with the original sharpness when a kink enters

from type 3 and 2, which is 2/3 of the collisions. Thus, the effect of Y-junctions to smooth

out kinks is weaker in Case C. We also find the number of kinks on string 1 is smaller than

types 2 and 3. This is because the kinks with the original sharpness (with the coefficient of

0.992) are transmitted to string 2 or 3, and the sharpness of kinks going to string 1 is always

multiplied by 0.492 or 0.722. Thus, kinks on string 1 tend to get flat more compared to the

ones for strings 2 and 3.

In the right panel, we find an interesting behavior that the kink number slightly increases for

p = 10−1, compared to the case of p = 1, because the effect of small reconnection probability

to enhance the kink production term with smaller γ dominates the effect of Y-junctions to

smooth out the sharpness of kinks. When the value of p decreases to 10−2 and 10−3, the latter

effect becomes stronger and the distribution gets flat.

6.4 Summary

The distribution function of kinks is determined by the balance of the effect of producing kinks

and blunting by Y-junctions. In the case 1 : 1 : 1, when the reconnection probability becomes

small, the kink distribution gets flat. In other words, kinks with small sharpness increase

because of the number of Y-junctions increases for smaller the reconnection probability. In

the case of 1 : 10 : 10, the kink number grows because the kink generation term affects the

distribution strongly.
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Case A: µ1 : µ2 : µ3 = 1 : 1 : 1, np = 1, Gµ1 = Gµ2 = Gµ3 = 10−11
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1
3 , Gµ1 = Gµ2 = Gµ3 = 10−11
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Case C: µ1 : µ2 : µ3 = 1 : 10 : 10, np =
1
3 , Gµ1 = 10−12, Gµ2 = Gµ3 = 10−11
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Fig. 6.3.4 The distribution function of kinks on infinite cosmic superstrings. The axes
are the same as in Fig. 6.2.1. In the left panels, we show results for different string
types 1, 2 and 3 (red, green and blue broken lines) for p1 = p2 = p3 = 1. The right
panels show results for different reconnection probabilities. The red, magenta, orange
and green broken lines corresponds to the cases of p1 = p2 = p3 = 1, 10−1, 10−2 and
10−3, respectively. The lines represent the total kink number of string types 1, 2 and 3.
In all panels, for comparison, we plot the case of ordinary cosmic strings with the black
solid line (Gµ = 10−11). 54
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7 Gravitational wave background from propagating kinks

In the previous work, it is expected that the GW background from loops is larger than the

one from kinks. Because of this, the estimation of the GW background from kinks has not

been intensively developed. However, we can hope that the GW background from kinks are

emitted at the low frequency because loops cannot emit GWs whose wavelength is longer than

the loop size. In our previous work [59], considering the evolution of the distribution function

of kinks, we estimated the power spectrum of the GW background from propagating kinks

on infinite strings. Then, it is compared with the one from loops. In this section, first, we

describe the strain amplitude and the rate of GWs from propagating kinks and formulate the

power spectrum of the GW background from propagating kinks. Then, using the distribution

function of kinks obtained in the previous section and the evolution equation of the string

network, we calculate the power spectrum of the GW background numerically.

7.1 Formulation

Because kinks move along the curved strings, in other words, they have the radial acceleration

of the strings, they emit GWs vertically to the moving direction of the kink In addition, kinks

move with the speed of light, then GWs are beamed in the direction of the movement of kinks.

Fig.7.1.1 shows the illustration of GW emission from a propagating kink. When the direction

of the GW emission is parallel to the line of sight to the kink, we can detect the GW. Then,

we observe the GW from the propagating kink as a burst event.

Fig. 7.1.1 The illustration of the GW direction from a propagating kink. The solid blue
line is the kink moving with the speed of light toward the right side. The broken red
waves toward us and to the opposite side mean the GW from the kink if the kink moves
at a slower speed than the speed of light, and the solid red wave is the beamed GW by
the relativistic motion.

The power spectrum of the GW background depends on the strain amplitude of each event

and the number of GWs. First, we describe the relationship between the energy-momentum
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tensor of the source Tµν(x
λ) and the GW strain amplitude h. We consider the GW strain

amplitude at the distance r from the source and assume that r is much larger than the GW

wavelength, while much smaller than the Hubble radius. Considering a perturbation of the

metric created by the source

gµν(x
λ) = ηµν + hµν(x

λ), (7.1.1)

and using the trace-reversed metric perturbation

h̄µν ≡ hµν −
1

2
ηµνh, h ≡ hρρ, (7.1.2)

where we impose the harmonic condition
∂h̄µν

∂xν
= 0, we get the linearized Einstein equations

□h̄µν(xλ) = −16πGTµν(x
λ). (7.1.3)

Let us replace ϕ → h̄µν(x
λ) and S → 4GTµν(x

λ) in the general formulas [37] described in

detail in appendix C. Focusing on the leading term, we get

h̄µν(x, t) ≃
4G

r

∑
ωm

e−iωm(t−r)Tµν(k, ω), (7.1.4)

Tµν(k, ω) =
1

Tl

∫ Tl

0

dt

∫
d3ei(ωt−k·x)Tµν(x, t), (7.1.5)

where ωm = ±mωl with m being a natural number. We have ωl ≡ 2π
Tl

and Tl =
Ll

2 = L
2 ,

where the period is written by the typical length of the infinite string; the curvature radius,

namely, the correlation length L = γt in the kink case. k is parallel to the line of sight to the

source. Because the sum in terms of ωm is up to m→ ∞, we can transform from the sum to

Fourier integration as
∑
ωm

=
∑
m ≃

∫
dm = γt

2

∫
dω
2π = γt

2

∫
df , thus we get

h̄µν(x, t) ≃
2Gγt

r

∫
dω

2π
e−iω(t−r)Tµν(k, ω). (7.1.6)

We introduce the logarithmic Fourier transformation as

F (f) ≡ |f |
∫

dt e2πiftF (t), (7.1.7)

where F (t) is a time-varying arbitrary continuous function. The advantage of this trans-

formation is that F (t) and F (f) are the same dimension. Using the transformation, the

trace-reversed metric perturbation is

h̄µν(n, f) ≃
2GγtfTµν(k, ω)

r
, (7.1.8)

where n = k
ω and f is the frequency of the GW from one kink. We should consider that the
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distance from the source is affected by the cosmic expansion and the GW is redshift in FLRW

spacetime gµν = ḡµν + hµν where ḡµν is FLRW metric. Thus, we get

h̄µν(f) =
2Gγt(1 + z)fTµν((1 + z)fn, (1 + z)f)

r(z)
, (7.1.9)

where f is the conformal frequency and ω ∼ (1 + z)f and

r(z) =

∫ z

0

dz′

H(z′)
. (7.1.10)

Then, the strain amplitude of the GW h(f) is

h̄(f) ≡
√
h̄µν(f)h̄µν(f) =

2Gγt(1 + z)f

r(z)

√
TµνTµν . (7.1.11)

Since the strain amplitude depends on Tµν , it is different between a propagating kink and a

kink-kink collision.

Second, we introduce the rate of the GW for lnψ ∼ lnψ + dψ, n(f, z) and define as

n(f, z) =
1

f
× (rate of GW bursts per kink)

×
(
# of kinks per unit volume: ψ

N(ψ, t)

V

)
× dV (z)

d lnz
, (7.1.12)

where
dV

dz
=

1

z

dV

d ln z
=

4πr2(z)

(1 + z)3H(z)
(7.1.13)

is the volume between z and z + dz. It depends on the case of the propagating kinks and

kink-kink collisions.

Let us formulate the GW background power spectrum. One kink emits GWs at various

frequencies. The GWs and the ones from other kinks overlap and interfere. When the interval

of the kinks is equal to the wavelength of the GW background (we define the frequency as

fGW backgorund), the GWs from one kink whose frequency is f = fGW backgorund do not just

cancel out (see Fig.7.1.2). Then, we can regard f in the strain amplitude as fGW backgorund

and the frequency f satisfies this relation [58]

{
ψ

N(ψ, t)

V (t)/(γt)2

}−1

∼ {2πf(1 + z)}−1, (7.1.14)

where the left-hand side is the interval of the kinks and the right one is the wavelength

of the GW background. The sharpness satisfying Eq.(7.1.14) contributes most to the GW

amplitude (see appendix D). We define this sharpness as ψ = ψmax. We explain ψmax using

the distribution function of the kinks. Because the inverse of the left-hand side of Eq.(7.1.14) is
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Fig. 7.1.2 The illustration of the GW from one kink, the interval of the kinks and the
wavelength of the GW background. The illustration of the wavelength of GWs from
one kink and interval of kinks. The GWs survive and propagate to us only when the
wavelength is equal to the interval.

same as the vertical axis of the kinks distribution, the intersection where the kink distribution

crosses with the line of 2πf(1 + z) parallel to the horizontal axis determines ψmax.

Since the GW background is formed by overlapped GWs from kinks, we define the total

energy of the GW integrating with respect to z as

h2tot(f) =

∫
dz

z
Θ(n(f, z)− 1)n(f, z)h2(f, z), (7.1.15)

where Θ is a step function introduced to remove rare bursts. We also define the energy density

of the GW per the logarithmic frequency as

dρGW

d ln f
≡ (2πfhtot(f))

2

16πG
=

π

4G
f2h2tot(f), (7.1.16)

then, the density parameter ΩGW is expressed as

ΩGW(f) ≡ 1

ρc

dρGW

d ln f
≡ 2π2f2

3H2
0

∫
dz

z
Θ(n(f, z)− 1)n(f, z)h2(f, z), (7.1.17)

h(f, z) and n(f, z) are different between propagating kinks and kink-kink collisions.
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Now, we introduce the power spectrum of the GW background from propagating kinks on

infinite cosmic strings and infinite cosmic superstrings. Because kinks are the small scale

structure, the energy-momentum tensor of the kinks can be expressed by a(u) and b(v) which

are the solution of the string dynamics in the Minkowski spacetime. If there are a discontinuity

or a stationary point on the phase of the energy-momentum tensor, represented as a′(u∗) and

b(vs) respectively, from Appendix E, the energy-momentum tensor is expressed as [37]

Tµν(ω, ωn) ≃ − µ

ω
5
3

(
aµ+

′

1 + n · a′
+

−
aµ−

′

1 + n · a′−

)

×b′′νs
(

12

|n · b′′′s |

)2/3 Γ
(
2
3

)
2
√
3
e

i
2ω(vs−u∗−n·a(u∗)−n·bs) + (µ↔ ν), (7.1.18)

where a′µ
± ≡ a′(u∗) whose suffix ± represents the left and right at the kink, bs ≡ b(vs), n = b′s

and
∫∞
−∞ dwwe−iw

3

= − i√
3
Γ
(
2
3

)
. Using Eq.(7.1.18), we derive the strain amplitude of GWs

from one propagating kink. We approximate the inner product of a′
± and b′s as [58]〈

1

(1 + b′s · a′
+)

2

〉
∼
〈

1

(1 + b′s · a′
−)

2

〉
∼
〈

1

(1 + b′s · a′
+)(1 + b′s · a′

−)

〉
∼ O(1) ∼ 1. (7.1.19)

Since a′, b′ is unit vectors, the vectors b′s, b
′′
s , b

′′′
s are assumed as

|b′′s | ∼ (γt)−1, |b′′′s | ∼ (γt)−2, |b′s · b′′′s | ∼ |b′s||b′′′s | ∼ (γt)−2, (7.1.20)

and a′ satisfies

|aµ+
′|2 ∼ |aµ−

′|2 ∼ 1, 1− a′
+ · a′

− = 2ψ. (7.1.21)

Then, by omitting numerical factors, the strain amplitude of GWs from one propagating kink

is

hk(f, z) ∼
Gµ

√
ψmaxγt

{(1 + z)fγt}2/3
1

r(z)
Θ(1− θm), (7.1.22)

where θm = {(1+z)fγt}−1/3 and we add the step function Θ to cutoff the low-frequency GWs

because kinks cannot emit GWs whose wavelength is longer than the curvature radius γt.

In order to obtain the rate of the GW n(f, z), let us consider the rate of the GW bursts per

kink. Since GWs emitted from a propagating kink is beamed towards the moving direction, the

emitted GWs has a cone shape. Therefore, the rate of GW bursts per kink can be estimated

by the solid angle made by the radiation cone of the GW per kink per unit time divided by all

solid angles. We assume that the moving kink on the curved infinite string γt can be regarded

as the moving kink on a loop with the circumference γt [45]. Because the angle of the radiation

cone is 2θm and the average length of the kink motion is π, the solid angle of the radiation

cone of the GW emitted from the kink is 2θm × π. Then, it is written as 2θmπ
γt per unit time.
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Adding the effect of redshifting, the rate of the GW bursts per kink per unit time is

2θmπ/γt(1 + z)

4π
=

1

2
θmγt

−1(1 + z)−1. (7.1.23)

Then, the rate of the GW is written as

Fig. 7.1.3 The radiation cone of the GW from a kink (black solid angle).

nk(f, z) =
1

f

θm
2

z

1 + z

1

γt

ψmaxN(ψmax, t)

V

dV (z)

dz
. (7.1.24)

Using Eqs.(7.1.22), (8.1.3) and (7.1.14), we can find ΩGW(f) has the dependence of ψmaxγ
−8/3.

Therefore, the power spectrum becomes stronger with shorter correlation length.

7.2 Result

7.2.1 Case of infinite cosmic string

Using the kinks distribution function, we numerically calculate the power spectrum of the GW

background from propagating kinks on infinite strings by solving Eqs.(7.1.17), (7.1.22), (8.1.3)

and (7.1.14) simultaneously. The result is in Fig.7.2.1. From Eq.(7.1.14) and the distribution

function of kinks, the numerous kinks with small sharpness contribute to the high-frequency

GW background, which are made during the RD era. The power spectrum is simply written

as ΩGW ∝
∫
dV ψmaxN(ψmax,t)

V/(γt)2 . In other words, if there are many kinks in the horizon, the

power spectrum is strong. Because there are a lot of kinks with small sharpness contributing

to the high-frequency GW background in the horizon, the power spectrum becomes strong at

the high frequency.

7.2.2 Case of infinite cosmic superstring

Next, we calculate the power spectrum of the GW background from propagating kinks on

infinite superstrings. The results are shown in Fig. 7.2.2. The left panels of Fig. 7.2.2 are

calculated assuming p1 = p2 = p3 = 1 for different string types 1, 2, and 3. The right panels

show the results for different reconnection probabilities. From the top to the bottom, we show

Case A, B, and C.
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Fig. 7.2.1 The power spectra of the GW background from propagating kinks on the
infinite cosmic string for Gµ = 10−11. The vertical axis is the spectral amplitude of the
GW background ΩGW and the horizontal axis is the frequency.

7.2.3 Case A: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1

Let us first see the left panel, which is helpful to see the pure effect of Y-junctions. We

see the power spectrum of ordinary cosmic strings, which is shown for comparison, increases

gradually towards high frequencies. The GW background is mainly formed by GWs emitted

from kinks existing today and today’s kink distribution determines the spectral shape. For

detailed explanations, see [59] . On the other hand, in Case A, we see the spectra of cosmic

superstrings are constant at high frequency and the amplitude is lower than the cosmic string

case. The differences arise because the dominant contribution to the GW amplitude comes

from GWs emitted from kinks in the old-time just after formation when they are ψ ∼ 1.

As we have seen in the previous section, sharp kinks are smoothed out rapidly because of

Y-junctions, and since the GW strain amplitude depends on ∝ ψ1/2, kinks today with very

small sharpness no longer contribute to the GW background.

Since kinks are formed by collisions of infinite strings, when a new kink with ψ ∼ 1 is

formed, the GWs emitted soon after the kink formation have a wavelength of ∼ γt and thus

we have the relation of (1 + z)fγt ∼ 1. From this, we see that higher frequency GWs are

produced by kinks in earlier times of the Universe. Since a number of infinite strings in the

Hubble horizon are always the same because of the scaling law, the number of newly formed

kinks inside the horizon is also the same. This means that, if we only consider GWs emitted

from new kinks, the energy ratio ρGW/ρc is constant in time, which is the reason for the flat
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shape of the spectrum.

The flat spectrum can be also explained by using equations. Let us describe the steepness

of kink distribution is given by the power-law as ∝ ψ−l. In [58] , it has been shown that the

kink number decreases as ∝ t−1 in the RD era. Thus we can write the number distribution in

the RD era as ψ N(ψ, t)
V (t)/(γt)2 ∝ ψ−lt−1. Substituting this into Eq. (7.1.14), we find ψmax can be

described as

ψmax ∝ [(1 + z)ft]−1/l. (7.2.1)

Considering that the GWmode contributing to the background amplitude satisfies (1+z)fγt ∼
1 and γ is constant because of the scaling law, we find ψmax is determined independently of

the frequency and time. Using Eq. (7.1.14) and ψmax = const., we find ΩGW ∝ f0. The flat

spectrum is produced by GWs from the RD era while the increase of GW amplitude at low

frequencies corresponds to GWs generated in the MD era.

The right panel of the figure shows the effect of reconnection probability. We find that the

power spectrum becomes smaller for smaller reconnection probability. This can be explained

by the balance between the correlation length and ψmax. As one can see from Eq. (7.2.1), when

the slope of the kink distribution is flattened and l is small, the value of ψmax becomes very

small. This means that kinks contributing to the GW background have very small sharpness,

and since ΩGW has the dependence of h2 ∝ ψmax, the amplitude of GWs drops. As shown in

Fig. 6.3.4, the slope of the distribution function get gentler for smaller reconnection probability

in Case A, which leads to smaller GW amplitude. At the same time, the power spectrum has

the dependence of γ−8/3 and smaller reconnection probability decreases the value of γ, but

the effect of ψmax dominates in Case A.

In the figure, we find that the low-frequency cutoff moves towards high frequency. This is

because of the cutoff Θ(1−θm), which prohibits the emission of GWs with a wavelength longer

than the curvature radius of strings. Small reconnection probability makes the correlation

length short and curvature of strings small so that we do not find GWs at low frequency.

7.2.4 Case B: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3

In Case B, the power spectrum looks similar to Case A and the reasons are the same as

explained for Case A. In the right panel, we find that the GW amplitude decreases more for

small reconnection probability compared to Case A. This is because, loop production is more

efficient in the case of np = 1
3 , and the decrease of correlation length γ is milder compared

to Case A as shown in the right panels of Fig. 5.2.2. Since the value of γ does not decrease,

a more prominent effect of ψmax is seen, which turns into a smaller amplitude of the GW

background.

7.2.5 Case C: GW background with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3

In the left panel of Case C, the shape of the power spectrum looks similar to the ordinary

cosmic strings. This because the effect of Y-junction to smooth out the sharpness is gentler

in Case C, and the dominant contribution to the GW power is made by kinks existing today.

62



7.3 Summary 7 GRAVITATIONAL WAVE BACKGROUND FROM PROPAGATING KINKS

We find that strings 2 and 3 generate the larger GW amplitude than string 1 since they have

larger string tension and the power spectrum has the dependence of ∝ (Gµ)2. We also find

string 3 has a slightly larger amplitude compared to string 2 because the correlation length of

string 3 is smaller than the others and the power spectrum has the dependence of ∝ γ−8/3.

In the right panel, we find the cases where the power spectrum is slightly larger than the

ordinary cosmic string case. This is because the slope of the kink distribution is not entirely

flattened compared to Cases A and B as shown in Fig. 6.3.4 and the value of ψmax is relatively

large. We find that the effect of small correlation length dominates the effect of small ψmax

in case of p = 10−1 and 10−2, while the kink distribution becomes too gentle when p = 10−3

and the latter effect dominates the former.

7.3 Summary

Using the kink distribution function, we investigate the power spectrum of the GW background

from propagating kinks on infinite cosmic strings and superstrings. The sharpness of kinks

contributing to the GW background mainly corresponds to the one frequency of the GW

background. When the distribution function of kinks is flatter, the sharpness contributing

to the GW background becomes smaller. Then, in the case of 1 : 1 : 1, the GW amplitude

becomes smaller with smaller reconnection probability. In the case of 1 : 10 : 10, when the

reconnection probability is relatively large, the kink distribution is steeper. In this case, the

GW amplitude from infinite cosmic superstrings is enhanced and is larger than the one from

infinite cosmic strings.
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Case A: µ1 : µ2 : µ3 = 1 : 1 : 1, np = 1, Gµ1 = Gµ2 = Gµ3 = 10−11
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Case B: µ1 : µ2 : µ3 = 1 : 1 : 1, np =
1
3 , Gµ1 = Gµ2 = Gµ3 = 10−11
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Case C: µ1 : µ2 : µ3 = 1 : 10 : 10, np =
1
3 , Gµ1 = 10−12, Gµ2 = Gµ3 = 10−11
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Fig. 7.2.2 The power spectrum of the GW background from propagating kinks on
infinite cosmic superstrings. The vertical axis is the spectral amplitude of the GW
background ΩGW and the horizontal axis is the frequency. Left panels show the case
of p1 = p2 = p3 = 1 for different string types. The red, green and blue broken lines
represent string types 1, 2, and 3, respectively. The right panels are the power spectrum
of the GW background for different reconnection probabilities. The red, magenta, orange
and green broken lines represent p = 1, 10−1, 10−2 and 10−3, respectively. In all panels,
for comparison, we plot the case of ordinary cosmic strings with the black solid line
(Gµ = 10−11). 64
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8 Gravitational wave background from kink-kink collisions

Although the power spectrum of the GW from kink-kink collisions is formulated and calculated

[41] in the previous work, the evolution of the kink distribution function is not considered.

Since the number and sharpness of kinks contributing to the GW background changes with

time, we should also consider the evolution of the distribution function of kinks in order to

estimate the power spectrum of the GW background from kink-kink collisions more precisely.

In this section, similar to the previous section, we formulate the power spectrum of the GW

background from kink-kink collisions and calculate numerically. Furthermore, we consider the

effect of the GW emission, which is energy loss by the strong GW emission, and estimate the

distribution function of the kinks and the power spectrum.

8.1 Formulation

Similar to the previous section, first, we describe the strain amplitude of GWs from kink-kink

collisions. In Ref.[118], if there are discontinuities on the phase of the energy-momentum

tensor, expressed as a′(u∗) and b′(v∗), the energy-momentum tensor is described as

Tµν(ω, ωn) ≃ − µ

ω2

(
aµ+

′

1 + n · a′
+

−
aµ−

′

1 + n · a′−

)

×
(

bν+
′

1− n · b′+
−

bν−
′

1− n · b′−

)
e

iω
2 {v∗−u∗−n·(a(u∗)+b(v∗))}

+(µ↔ ν), (8.1.1)

where aµ±
′ ≡ a′(u∗) and bµ±

′ ≡ b′(v∗) in the same way as the previous section. We assume

that the sharpness of two colliding kinks contributing to the GW background is the same,

namely we assume 1 − a′
+ · a′

− = 1 − b′+ · b′− = 2ψ. Using Eqs.(7.1.19) and (7.1.19) and

|bν+
′|2 ∼ |bν−

′|2 ∼ 1, we express the strain amplitude of a kink-kink collision as

hkk(f, z) =
ψmaxGµ

(1 + z)f

1

r(z)
Θ(1− θm). (8.1.2)

Comparing with Eq.(7.1.22), the strain amplitude of the GW, in this case, depends on ψmax

strongly.

Next, let us describe the rate of GW. For kink-kink collisions, the number of kinks coming

into one kink per time is given by ψmaxN(ψmax,t)
V/(γt)2 . By multiplying 1

2 to avoid double counting and

taking into account the redshift, the rate of GW bursts per kink is given by (γt)2

2(1+z)
ψmaxN(ψmax,t)

V .

Note that a kink-kink collision emits GWs in all directions so that we do not multiply a
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beaming angle. Then, the rate of the GW is represented as

nkk(, f, z) =
1

f

(γt)2

2(1 + z)

{ψmaxN(ψmax, t)

V

}2 dV (z)

d lnz
. (8.1.3)

Unlike the rate of GWs from propagating kinks, it depends on the square of the kinks number.

It is an important point to understand how the rate of GWs contributes to the GW background.

By substituting Eqs. (8.1.2) and (8.1.3) into Eq. (7.1.17), we obtain the GW background

spectrum for kink-kink collisions. Using (7.1.14), we can estimate that ΩGW(f) is proportional

to γ−2ψ2
max. Therefore, the power spectrum becomes stronger with shorter correlation length

and sharper kinks satisfy Eq.(7.1.14).

8.2 Result

We calculate the power spectrum of the GW background from kink-kink collisions on infi-

nite cosmic strings by solving the VOS equation Eqs.(5.1.6) and (5.1.7) and the condition of

sharpness most contributing the GW background Eq.(7.1.14) simultaneously. In Fig. 8.2.1, we

compare the power spectrum of the GW background from propagating kinks and kink-kink

collisions.
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Fig. 8.2.1 The power spectrum of the GW background from propagating kinks (red
solid) and kink-kink collisions (blue dashed) on the infinite cosmic strings. For both lines,
we assume Gµ = 10−11.

With the fact that ψ N(ψ, t)
V (t)/(γt)2 is a decreasing function of ψ, Eq. (7.1.14) indicates that the

high frequency GWs are produced by kinks with small sharpness, which has high event rate.
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The large amplitude difference at high-frequencies between the two cases arises because the

event rate of kink-kink collisions increases in proportion to the square of the kink number,

while the dependence is linear in the case of propagating kinks. From Fig. 8.2.1, the GW

spectrum from kink-kink collisions scales as ΩGW ∝ f0.77. This dependence is explained as

follows. Substituting Eqs. (8.1.2) and (8.1.3) into Eq. (7.1.17), replacing the number of kinks

with f using Eq. (7.1.14), and leaving only the frequency and the time dependence, we obtain

ΩGW ∝
∫

d(lnt)
ψ2
max

t(1 + z)3
f. (8.2.1)

In our numerical calculation without GW backreaction, we find that the contribution to the

integration of ΩGW gets larger as the time increases for all the frequencies. Thus, the shape

of the GW spectrum is determined by the kink distribution today. From Fig. 6.2.1 , we find

ψ N(ψ, t)
V (t)/(γt)2 ∝ ψ−8.8, and we get ψmax ∝ f−1/8.8 using Eq. (7.1.14). Substituting this into Eq.

(8.2.1), we get ΩGW ∝ f0.77. This frequency dependence continues until the frequency where

the oldest kinks, having the smallest sharpness, can generate GWs. Higher frequency GWs are

generated by kinks with smaller sharpness and the amplitude of the GW background starts to

decrease at the frequency corresponding to the smallest kinks. This frequency is determined

by the time of the cosmic string generation, which strongly depends on the generation model.

Thus, in this paper, we do not discuss the high-frequency behavior around the cutoff frequency.

One may find the overproduction of GWs at high frequencies violating the constraint by

the Big Bang nucleosynthesis or the cosmic microwave background, ΩGW ≲ 2 × 10−6 [119] .

However, this is not the final result and, in fact, it will be solved in the next subsection.

8.3 GW emission effect

As shown in the previous subsection, the power spectrum increases dramatically towards high

frequencies in the case of kink-kink collisions. One may be concerned that a large amount

of GW emissions could change the number of infinite strings since the energy of the string

network is transferred to GWs. In addition, the backreaction of GW emission could smooth

out the sharpness of kinks and reduce the power of GW emission. In this section, we take

into account these two effects by modifying the VOS equation, Eq. (5.1.6), and the evolution

equation of kink distribution, Eq. (6.2.24), and recalculate the GW power spectrum.

Let us first consider the effect of GW radiation on the VOS equation [117, 120] . The

energy of GW emission from one kink-kink collision is estimated as EGW ∼ 2π3ψ2Gµ2ω−1

[118] . Here, the factor 2π3 is put to make EGW consistent with the expression of ΩGW, in

other words, with the choice of the factor in front of hkk in Eq. (8.1.2). Considering the energy

conservation law for the string network density ρ∞ = µ
L2 [113] , the loss of energy density into
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GW radiation is given by

dρ∞
dt

= −
∫ 1

0

dψmaxEGW × (# of GWs per unit volume, time, dψmax),

= −
∫ 1

0

dψmax 2π
3ψ2

maxGµ
2ω−1ψmax

2

{
N(ψmax, t)

V/(γt)2

}2
1

(γt)2
.

(8.3.1)

Here, the integral in terms of dψmax corresponds to taking into account GWs of all the

frequencies. By rewriting ρ∞ in terms of L and adding it to Eq. (5.1.6), we get

dL

dt
= HL(1 + v2) +

1

2
cpv +

π3Gµ

2
γt

∫ 1

0

dψmax
N(ψmax, t)

V/(γt)2
ψ2
max, (8.3.2)

where we have used Eq. (7.1.14) to replace ω = 2πf(1 + z).

Next, we consider the GW backreaction on kinks and estimate the effect on the kink dis-

tribution. Before presenting the equations, let us compare the energy of one kink and GW

energy at one collision. When we treat a kink as a small perturbation δp± [121, 109] , the

energy of kink is estimated as Ekink = µ(δp±)
2∆ℓ ∼ µψ∆ℓ for a given length ∆ℓ, where we

have used Eq. (6.1.1) in the second step. From Eq. (7.1.14), we expect that kinks contributing

to the GW background distribute with the average interval of ω−1, so let us take ∆ℓ ∼ ω−1.

By taking the ratio EGW/Ekink = 2π3ψGµ, we find that the fraction of energy going to GW

emission is initially as small as ∼ Gµ for newly formed kinks ψ ∼ 1, and the fraction gets even

smaller when the kink sharpness becomes smaller by the expansion of the Universe. Thus,

when we consider the GW energy at one collision, the GW backreaction seems to be negligible.

However, the accumulation of small GW backreaction through a huge number of collisions

could change the kink distribution. This can be implemented as a modification of Eq. (6.2.24).

By considering the energy fraction going to GWs, the backreaction term can be written as

(# of kinks lost by GW emission per V, time, dψm)

∼ EGW × (# of GWs per V, time, dψm)

Ekink × (# of kinks per V)
× (# of kinks per V)

∼ (2π3ψGµ)

1
2ψ
{

N(ψ)
V/(γt)2

}2
V

(γt)2

N(ψ, t)
N(ψ, t). (8.3.3)

By adding this term, Eq. (6.2.24) becomes

∂N

∂t
(ψ, t) =

∆̄V

γ4t4
g(ψ) +

2ζ

t

∂

∂ψ
(ψN(ψ, t))− η

γt
N(ψ, t)− π3Gµψ2(γt)2

V
N2(ψ, t). (8.3.4)
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8.3.1 Case of infinite cosmic string

In Fig. 8.3.1 and 8.3.2, we show the time evolution of γ and the kink distribution, respectively,

calculated by simultaneously solving the VOS equations with GW radiation, Eqs. (8.3.2) and

(5.1.7), and the equation for kink distribution with GW backreaction, Eq. (8.3.4). From

Fig. 8.3.1, we see that the correlation length does not change at first, but starts to increase

when the GW radiation term becomes non-negligible compared to the Hubble term.

10-1

100

10-15 10-10 10-5 100 105 1010 1015

γ

t [s]

w/o GW radiation
w/ GW radiation

Fig. 8.3.1 The time evolution of γ calculated using Eqs. (8.3.2) and (8.3.4) for 10−11.
For comparison, we also show the line calculated without the GW radiation term.

In Fig. 8.3.2, we find that the number of kinks with small sharpness is suppressed, since the

backreaction term in Eq. (8.3.4) affects the distribution when N is large as it has the ∝ N2

dependence. We also see that the effect extends to larger sharpness when Gµ is larger. The

slope of the distribution function gets gentler for large Gµ because the value of γ is larger due

to the modification in Eq. (8.3.2).

Fig.8.3.3 shows the power spectra of the GW background from kink-kink collisions with

the effect of the GW emission. We see that high-frequency GWs get suppressed when we use

the kink distribution with the GW modification. This is mainly because the number of small

kinks is suppressed by the GW backreaction term in Eq. (8.3.4). We find that the suppression

takes place at late times and it comes earlier for smaller sharpness, which corresponds to

high-frequency GWs. As a result, GWs of the high-frequency plateau is dominantly produced

kink-kink collisions in the RD era, while ones in the small bump are produced in the MD

era and ones in the low-frequency slope are generated today without being affected by the
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Fig. 8.3.2 The distribution function of kinks on the infinite cosmic strings, calculated
using Eqs. (8.3.2) and (8.3.4) (colored broken lines). The number of kinks per unit length
per logarithmic sharpness is shown as a function of sharpness. Each line represents
different tension, from Gµ = 10−7 to 10−13. For comparison, we also show the line
calculated using Eqs. (5.1.6) and (6.2.24) (black solid line).

suppression.

Let us explain the flat spectrum in detail with some equations. The GW backreaction starts

to affect kinks with small sharpness first, and the effect gradually extends to larger sharpness.

Let us define the transition sharpness as ψmax,cut(t), below which kinks are affected by the

GW backreaction at time t. In the numerical calculation, we find that the contribution to

the integration of ΩGW peaks when the backreaction starts to affect, namely when ψmax(t) =

ψmax,cut(t). So let us evaluate Eq. (8.2.1) at the time tc which satisfies ψmax(tc) = ψmax,cut(tc).

Here we focus on the radiation-dominated era since tc is typically before the radiation-matter

equality for high-frequency GWs. Using t ∝ 1
(1+z)2 and taking out only the contribution at

tc, Eq. (8.2.1) becomes

ΩGW ∝
ψ2
max,cut(tc)

1 + zc
f. (8.3.5)

Here, zc is the redshift at t = tc, which depends on the frequency of interest f . Let us first see

the time dependence of ψm,cut. The GW backreaction starts to affect when the fourth term

becomes larger than the second and third terms in Eq. (8.3.4). Thus we have(
η

γ
− 2ζ

)
N

tc
= π3Gµψmax,cut

{
ψmax,cut

N

V/(γtc)2

}
N. (8.3.6)
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Fig. 8.3.3 The power spectra of the GW background from kink-kink collisions on the
infinite cosmic strings with the GW emission effect (green broken line). For comparison,
we also show the power spectrum without the effect. For both lines, we assume Gµ =
10−11.

At early times, the backreaction term is negligible and the kink number evolves as ψ N(ψ)
V/(γt)2 ∝

t−1, which is the analytic solution of Eq. (6.2.24) detailed in [63] . By substituting this,

we find that ψmax,cut does not depend on time in the radiation-dominated era. The relation

between zc and f can be obtained using Eq. (7.1.14) as 2πf = ψ N(ψ, t)
V (t)/(γt)2

1
1+z ∝ (1 + z).

Applying this relation to Eq. (8.3.5), we get ΩGW ∝ f0.

Next, let us see how the energy of the GW is balanced in the string network. We define the

energy density parameter of kinks as

Ωkink(t, ψmax) =
Ekink × (# of kinks per unit volume)

ρc

∼
µψmaxω

−1 · ψmax
N

V/(γt)2 /(γt)
2

3H2/(8πG)
(8.3.7)

∼ 8πGµ

3γ2t2H2
ψmax. (8.3.8)

In the second step, we have used the relation of Eq. (7.1.14). Note that this can be written as

Ωkink = ψmΩinfinite, where Ωinfinite ≡ ρ∞
ρc

. This indicates that the kink energy is always smaller

than the total energy density of infinite strings by the order of the sharpness ψmax. In Fig.

8.3.4, we plot the time evolution of the infinite string energy density, the kink energy density,

and the GW energy density produced at time t (integrand of Eq. (7.1.17) before redshifting).
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Two panels show different GW frequencies f = 10−2Hz and 102Hz, which correspond to

different values of ψmax. As one can see, the energy of GWs increases at the beginning, and

when it becomes comparable to the kink energy, both kink and GW energies start to decrease

and evolve along with each other. This behavior happens exactly because the GW energy is

balanced by the kink energy thanks to the GW terms added to the VOS equation, Eq. (8.3.2),

and to the evolution equation for kink number density, Eq. (8.3.4). In summary, one can find

that the kink and GW energies become the same order when the GW terms turn on, and they

always stay below the total energy of the scaling string network by the order of ψmax.
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Fig. 8.3.4 The time evolution of the infinite string energy density, the kink energy
density and the GW energy density produced at time t. The left panel is for kinks
contributing to GW frequency f = 10−2Hz and the right panel is for 102Hz.

In Fig. 8.3.5, we plot the power spectra of the GW background from kink-kink colli-

sions for different Gµ. We compare the spectra with sensitivity curves of various future

GW experiments, such as SKA, LISA, DECIGO, and Advanced-LIGO in Fig.8.3.5. We also

plot the current upper limit on the GW background amplitude by first observing run of

Advanced-LIGO, ΩGW < 1.7× 10−7 at 20− 86 Hz [122] , and 11-year dataset of NANOGrav,

ΩGWh
2 < 3.4 × 10−10 at 3.2 × 10−8 Hz [123] . We find that the current Advanced-LIGO

upper limit gives the constraint on the string tension as Gµ ≲ 10−5, and the NANOGrav

constraint gives Gµ ≲ 4 × 10−8. In the future, Advanced-LIGO with full design sensitivity

would provide Gµ ≲ 10−7, and pulsar timing with SKA would reach Gµ ∼ 10−11. With

satellite experiments, we would be able to reach Gµ ∼ 10−11 by LISA and Gµ ∼ 10−13 by

DECIGO. If cosmic strings are generated at the phase transition, the tension is expressed

µ ∼ M2
PT where MPT denotes the energy of the phase transition. Thus, Gµ ∼ M2

PT

M2
Pl

where

MPl means the Planck mass. Using the constraints Gµ ≲ 10−5 and Gµ ≲ 4× 10−8 from the

current observation, we getMPT ≲ 3.2×1016 GeV andMPT ≲ 2×1015 GeV. If cosmic strings

are formed at the end of the inflation, using its energy scale Minflation end, we can express the

tension µ ∼ M2
inflation end. From this, we can provide a constraint on the energy scale of the

inflation end.
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Fig. 8.3.5 The power spectra of the GW background from kink-kink collisions on infinite
cosmic strings for different string tension, from Gµ = 10−5 to10−14. We also show
the sensitivities of the future observational instruments: SKA, LISA, DECIGO, and
Advanced-LIGO. The red and blue circles represent the current upper limit on GW
amplitude by Advanced-LIGO and NANOGrav.

8.3.2 Case of infinite cosmic superstring

We numerically calculate the power spectrum using Eqs. (8.1.2) and (8.1.3) by taking account

of the backreaction effect of GW emission using Eqs. (8.3.2) and (8.3.4). In Fig. 8.3.6, we

show the kink distribution on the left panels. The settings are the same as the right panels

of Fig. 6.3.4 except here we include the backreaction effects of the GW emission by kink-kink

collisions. The right panels show the power spectrum of the GW background from kink-kink

collisions.

8.3.3 Case A: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np = 1

Let us first see the kink distribution function, shown in the left panel. Compared to Fig. 6.3.4,

we find that the number of kinks with small sharpness is suppressed only in the case of ordinary

cosmic string. The suppression occurs because kinks with small sharpness are numerous and a

large number of their collisions generate the GW backreaction effect through Eq. (8.3.4). The

correlation length also becomes large because of Eq. (8.3.2) and the slope of the distribution

function gets slightly gentler. On the other hand, the suppression by the GW backreaction is

not seen in the case of cosmic superstrings, since the number of kinks is reduced by Y-junctions

and the effect of GW emission is too small.
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In the right panel, in the case of cosmic strings, we find that the GW spectrum increases

towards high frequency and the spectrum becomes flat at around 10−7Hz. See [60], for details.

The flat behavior at a high frequency is because of the GW backreaction. In the case of cosmic

superstrings, we find the spectral amplitude is low and it has an almost flat-spectrum since

Y-junctions smooth out kink sharpness and the value of ψmax becomes very small. We also

find that the overall GW power decreases with smaller reconnection probability. The reason

is similar to the case of propagating kinks, explained in Sec. 7.2.3. In the case of kink-kink

collisions, the correlation length and ψmax affects the GW spectrum as ΩGW ∝ γ−2ψ2
max. In

Case A, the effect of ψmax dominates the one of γ for small reconnection probability.

8.3.4 Case B: GW background with µ1 : µ2 : µ3 = 1 : 1 : 1 and np =
1
3

The results of Case B are similar to Case A. The difference appears when reconnection prob-

ability is small, where we find the GW amplitude decreases more. As explained in Sec. 7.2.4,

this is because the decrease of correlation length γ is milder compared to Case A and a more

prominent effect of ψmax is seen.

8.3.5 Case C: GW background with µ1 : µ2 : µ3 = 1 : 10 : 10 and np =
1
3

In the same way as GWs from kink propagation in Sec. 7.2.5, we find that the power spectrum

is slightly enhanced compared to the ordinary cosmic string case when p = 10−1. This is again

because the slope of the kink distribution is not entirely flattened by Y-junctions compared to

Cases A and B and the value of ψmax is relatively large. The effect of small correlation length

dominates the effect of small ψmax in case of p = 10−1 and 10−2, while the kink distribution

becomes too gentle and the GW amplitude becomes very low when p = 10−3.

By comparing between Fig. 7.2.2 and 8.3.6, we find that the amplitude of the GW back-

ground from kink-kink collisions is larger than the one from kink propagations. If kink sharp-

ness is not smoothed out dramatically by Y-junctions, we may be able to detect GWs from

kink-kink collisions by future GW experiments. As an example, in Fig. 8.3.7, we show the

GW power spectrum for different tensions for Case C with p = 10−1, which is the interesting

case with a little enhancement of the GW power. The spectra are shown with sensitivity

curves of various future experiments; SKA is the future pulsar timing array project, LISA

and DECIGO are the future space-borne GW detectors, and Adv-LIGO describes the design

sensitivity of cross-correlation between four ground-based GW detectors (Advanced-LIGO,

Advanced-VIRGO, and KAGRA).

Fig. 8.3.8 shows the comparison between the gravitational wave background from kink-kink

collisions on infinite cosmic superstrings and the ones from loops. If the loop size is small,

the amplitude of the gravitational wave background from kink-kink collisions dominates the

one from loops. Because the loop size is the unsolved topic, we may be able to observe the

gravitational wave background from kink-kink collisions especially using the SKA and the

satellite of observation of CMB polarization (LiteBIRD).
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Case A: µ1 : µ2 : µ3 = 1 : 1 : 1, np = 1, Gµ1 = Gµ2 = Gµ3 = 10−11
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Case C: µ1 : µ2 : µ3 = 1 : 10 : 10, np =
1
3 , Gµ1 = 10−12, Gµ2 = Gµ3 = 10−11
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Fig. 8.3.6 Left: the distribution function of kinks on infinite cosmic superstrings calcu-
lated by taking into account the effects of GW emission. Right: the power spectrum of
the GW background from kink-kink collisions on infinite cosmic superstrings for different
reconnection probability. The red, magenta, orange and green broken lines represent
p = 1, 10−1, 10−2 and 10−3, respectively. In all panels, for comparison, we plot the case
of ordinary cosmic strings with the black solid line (Gµ = 10−11).
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Fig. 8.3.7 The power spectrum of the GW background from kink-kink collisions on the
infinite cosmic superstrings of Case C for different tensions. The reconnection probability
is set to be p = 10−1. The black solid and broken lines are the sensitivity curves of future
experiments.

8.4 Summary

We estimate the power spectrum of the GW background from kink-kink collisions on infinite

cosmic strings and superstrings by taking into account the GW emission effect, which reduces

the kink’s number at small sharpness. Because of this effect, the number of kinks contributing

to the high frequency decrease and the GW amplitude is suppressed at the high-frequency.

In the case of cosmic strings, the amplitude from kink-kink collisions is above the one from

kink propagations. In the case of cosmic superstrings, when the tension ratio is 1 : 1 :

1, the amplitude becomes smaller with smaller reconnection probability and is weaker than

the cosmic string one. On the other hand, in the case of 1 : 10 : 10, the GW amplitude

is comparable to the cosmic string one because of the steeper kink distribution and larger

sharpness contributing to the GW background.

Finally, let us comment on previous works. The GW spectrum from small structures on

infinite strings has been calculated analytically in Refs. [55, 56] and numerical simulations

for GWs from infinite strings are performed in Ref. [57]. They all predict a smaller GW

amplitude compared to our result. We believe that the reason is that those previous studies

considered only kinks with large sharpness ∼ 1 (for simplicity in the analytic study and because

of the resolution in the simulation study), while our method based on solving the evolution
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Fig. 8.3.8 The power spectrum of the GW background from kink-kink collisions on
infinite cosmic superstrings for Case C with p = 10−1 (broken magenta line) and the
ones from loops for different loop size (black and gray lines).

equation of kink distribution, established in Ref. [63], enables to take account of kinks with

much smaller sharpness. In fact, we have seen that the enhancement of GWs occurs at high

frequencies, which are mainly produced by kinks with small sharpness.

The GWs from kink-kink collisions on loops have been considered in Refs. [41, 124, 125].

Although their estimate has some uncertainty since the number of kinks on one loop is taken

as a free parameter in their calculation, it has been shown that a large GW background can

be expected by kink-kink collisions on loops. We would like to mention that our estimate of

the kink number distribution may help to know the exact number of loops and may provide

more concrete predictions.
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9 SUMMARY

9 Summary

We have investigated how the distribution function of kinks on infinite cosmic superstrings

are affected by a small reconnection probability and Y-junctions. Then we have studied the

power spectrum of the GW background created by propagating kinks and kink-kink collisions

on infinite cosmic strings and infinite cosmic superstrings, taking into account the GW emission

effect. We have also discussed the detectability of such a GW background by the current and

future GW observations.

In Sec.2, we have briefly reviewed the basics of cosmology. Beginning with the FRWL metric,

we have introduced the expansion history of the Universe. The expansion of the Universe can

provide a huge impact on the dynamics of cosmic strings and cosmic superstrings. In Sec.3,

we have introduced the generation mechanisms and the features of cosmic strings and cosmic

superstrings. It is proposed that cosmic strings are generated by spontaneous symmetric

breaking during a phase transition and at the end of inflation. On the other hand, cosmic

strings can be produced at the end of the brane inflation. In Sec.4, we have presented the

dynamics of both strings and the production of cusps and kinks. There are left-moving /

right-moving modes on these strings as the solution of the string dynamics. When infinite

strings intersect each other, they reconnect and make loops. Such loops have the transient

singularity point, a so-called cusp. When loops are formed, kinks are generated on infinite

strings. There exists another structure on infinite cosmic superstrings. Cosmic superstrings

are composed of D-strings and F-strings. These two types of string can make a bound state,

which is the third type of cosmic superstrings. The connection point of these three types of

cosmic superstrings is called a Y-junction.

In Sec.5, we have described the string network dynamics. It is known that the cosmic string

network obeys the scaling law in which the number of strings in the horizon stays constant.

We have shown that the scaling law is valid even for cosmic superstrings. On the other hand,

the smaller reconnection probability makes the loop production difficult in the case of cosmic

superstrings. As a result, the number of strings inside the horizon becomes large and the

correlation length decreases, compared with the case of cosmic strings.

In Sec.6, we have formulated the time evolution of the kink distribution function on cos-

mic superstrings. In the formulation, we introduce new terms that represent the effect of

Y-junctions on the kink evolution. When a kink propagates through a Y-junction, three

‘daughter’ kinks are produced and the sharpness of these kinks is smaller than the original

one. Including this effect on the kink evolution, we have numerically solved the evolutionary

equation for the kinks on the cosmic superstrings. We have shown that the kink sharpness is

reduced by Y-junctions and the distribution function of kinks becomes flattered with smaller

reconnection probability. We have found that the kink distribution function is determined

by the balance of the two effects; how much the number of kinks increases and how much

the number of the Y-junction which kinks pass-through increases with smaller reconnection

probability.
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In Sec.7, using the distribution function of kinks obtained in the previous section, we have

numerically calculated the power spectrum of the GW background from propagating kinks.

We have shown that the GW background amplitude for cosmic strings becomes stronger

towards the high frequency. In the case of comic superstrings, the power spectrum shape of

the GW background strongly depends on the ratio of the three string tensions connected at

a Y-junction. The GW amplitude is sensitive to the kink sharpness. As mentioned above,

the tension of strings at the Y-junction provides a strong impact on the evolution of the kink

sharpness. When the ratio of the three string tension is 1:1:1, the spectrum amplitude stays

constant in a wide range of the GW frequency. In the 1 : 1 : 1 case, we found that the

amplitude of the GW background is always suppressed by the existence of Y-junctions. We

have also shown that the GW amplitude becomes smaller for smaller reconnection probability

since the number of Y-junctions increases for small reconnection probability and the effect of

smoothing kink sharpness is enhanced. Although the number of strings in the horizon and kink

production is increased for small reconnection probability, the effect of Y-junction dominates

and always reduces the GW amplitude. On the other hand, in the case of 1 : 10 : 10, one of

the daughter kinks inherits the original sharpness and the kink distribution is not flattened

compared to the 1 : 1 : 1 case. The resultant GW amplitude is comparable to the one in the

case of cosmic strings.

In Sec.8, we have provided the formulation of the power spectrum of the GW background

from kink-kink collisions. We have found that the power spectrum depends on the kink

sharpness and kink number stronger than the propagating kinks case. We have calculated the

power spectrum numerically and found that the GW amplitude is much larger compared to

the one from propagating kinks on the cosmic strings. Moreover, we have investigated the

effect of the GW radiation and backreaction on the scaling behavior and the kink distribution.

We have found that these effects reduce the GW amplitude at high frequencies because the

kinks contributing to the high-frequency GW decrease and the sharpness becomes small by

the GW emission effect. We have compared the power spectrum including the GW emission

effect with the upper bound on the GW background amplitude by ongoing experiments. We

have obtained the constraints on the string tension Gµ ≲ 10−5 from Advanced-LIGO, and

Gµ ≲ 4× 10−8 from NANOGrav. These bounds on the cosmic string tension are not stronger

than the one obtained from the current pulsar timing constraint on the GW background.

When getting this constraint on the tension, one adopts the GW background produced from

loops. However, there exists the theoretical ambiguity on the loop distribution, which, in some

scenarios, could weaken the pulsar timing constraint from loops. Therefore, we would like to

emphasize that our constraint from GWs due to infinite cosmic strings does not have such

uncertainty in the model. Similarly, we have calculated the GW power spectrum due to cosmic

superstrings. We have found that, in the case of 1 : 10 : 10, the kink-kink collisions enhance

the GW amplitude to the one in the case of cosmic strings. Especially, when p = 10−1, we

found the case in which the effect of small reconnection probability to increase the kink number

dominates the one of Y-junction. Accordingly, the GW amplitude is slightly enhanced in this

case. Therefore, we might observe the GW background from kink-kink collisions on infinite

79



9 SUMMARY

cosmic superstrings by future GW experiments.

In general, when the reconnection probability is small, the loop production is not efficient

and, as a result, the number density of strings is large. Therefore we can naively expect that

cosmic superstrings can produce the GW background more than cosmic strings. However, this

work shows that, depending on the tension ratio of strings, Y-junctions can smooth out sharp

kinks efficiently. In this case, the resultant GW amplitude from infinite cosmic superstrings

becomes smaller than the one from infinite cosmic strings. This result tells that our naive

expectation that the constraint on the tension of cosmic superstrings is tighter than the one

of ordinary cosmic strings is not always true. Depending on the tension ratio, the theoretical

model predicting cosmic superstrings with a large tension could still survive. This may be also

applicable for the GW background from kinks on loops, which are expected to be larger than

the one from infinite strings at high frequencies. Previous works [124, 125] predicted a large

amplitude of the GW background from kink-kink collisions on loops. In particular [54] showed

that the amplitude could be enhanced with the existence of Y-junctions since it increases the

kink number. However, the estimation was made in the assumption of the constant sharpness

of kinks, ψ ∼ 1, and the blunting of kinks is not taken into account. The evolution of the kink

distribution, as performed in this work, would be necessary for a more accurate estimation

of the GW background from loops with Y-junctions and it may result in a smaller amplitude

than the expectation as in the case of infinite strings. We leave it for future work.

Finally, we found that the shape of the power spectra is quite different between the cases of

cosmic strings and cosmic superstrings. Thus, the spectral shape may be useful to distinguish

whether the origin is cosmic strings or cosmic superstrings. This could be possible by GW

searches in a wide range of frequencies by using CMB polarization measurements, pulsar

timing arrays, as well as the space-borne and ground-based direct detection experiments.

In this thesis, we focused on the cases where the string tensions have a ratio of 1 : 1 : 1 or

1 : 10 : 10 to demonstrate the characteristic effects of superstrings. If we can extend this work

to explore the large parameter space of cosmic superstrings, we may be able to find cases where

GW amplitude is enhanced more. With the beginning of the new era of multi-wavelength GW

observations, GWs help us to get insight into the physics of the very early universe.
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B ANALYTIC SOLUTION OF KINKS DISTRIBUTION FUNCTION

A Conservation of the kinks number

The kink sharpness ranges in 0 ≦ ψ ≦ 1, and in this range, the number of kinks conserves as

d

dt

{∫ 1

0

dψ(t)N(ψ, t)

}
= 0. (A.0.1)

Using Eq.(6.1.6), we can rewrite

d

dt

{∫ 1

0

dψ(t)N(ψ, t)

}
=

∫ 1

0

dψ(t)

(
∂N

∂t
(ψ, t) +

∂ψ

∂t

∂N

∂ψ
(ψ, t)

)
+

∫ 1

0

d

(
dψ

dt

)
N(ψ, t),

=

∫ 1

0

(
∂N

∂t
(ψ, t)− 2ζ

t
ψ
∂N

∂ψ

)
+

∫ 1

0

d

(
−2ζ

t
ψ

)
N(ψ, t),

=

∫ 1

0

dψ(t)

{
∂N

∂t
− 2ζ

t

(
ψ
∂N

∂ψ
(ψ, t) +N(ψ, t)

)}
,

=

∫ 1

0

dψ(t)

{
∂N

∂ψ
(ψ′, t)− 2ζ

t

∂

∂ψ′ (ψ
′N(ψ′, t))

}
= 0. (A.0.2)

Then, we get Eq.(6.2.20).

B Analytic solution of kinks distribution function

*5 In the RD era, Eq.(6.2.24) is expressed as

∂N

∂t
(ψ, t) =

∆̄rV

γ4r t
4
g(ψ) +

2ζr
t

∂

∂ψ
(ψN(ψ, t))− ηr

γrt
N(ψ, t). (B.0.1)

We define ψ = ψ∗ at t = t∗ and rewrite the sharpness with t as

ψ = ψ∗

(
t∗
t

)2ζr

. (B.0.2)

We convert ψ into ψ∗ in Eq.(B.0.1)

t
∂N

∂t
(ψ∗, t) +

(
ηr
γr

− 2ζr

)
N(ψ∗, t) =

∆̄rV

γ4r t
3
g

((
t∗
t

)2ζr

ψ∗

)
. (B.0.3)

*5 We write this subsection referring to [63].
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We impose g(ψ) = 0 for ψ > 1 as the boundary condition. Multiplying the both side and

t2−βr/V , we express it as

∂

∂t

(
t3−βr

N(ψ∗, t)

V (t)

)
=

∆̄r

γ4r
t−βr−1g

((
t∗
t

)2ζr

ψ∗

)
, (B.0.4)

where

β ≡ 3− 3ν − η

γ
+ 2ζ, (B.0.5)

βr ≃ 1.1, βm ≃ 1.2. (B.0.6)

We assume that ∆̄, γ, ζ, η are constant and integrate Eq.(B.0.4) and return from ψ∗ to ψ.

Then, we obtain

N(ψ∗, t)

V (t)
=

∆̄r

γ4r t
3−βr

∫ t

max{t∗, tk}

dt′

t′1+βr
g

((
t∗
t′

)2ζ

ψ∗

)
. (B.0.7)

Moreover, we integrate the equation with respect to time and get the distribution function of

kinks analytically. tk stands for the production time of kinks and we assume ψ = 1 at that

time, then,

ψ =

(
tk
t

)2ζr

. (B.0.8)

Therefore, the kink generation time is described as

tk = ψ1/2ζrt. (B.0.9)

The lower end of Eq.(B.0.7) is determined whether kinks are produced after the string forma-

tion or kinks and strings are generated at the same time. In the case of former, t∗ < tk =

ψ1/2ζrt and the lower end of the integration is tk. On the other hand, tk < t∗ and the lower

end is t∗ in the later. We assume that the kinks are generated in the RD era, using the sum

as

g(ψ) =
∑
k

gkψ
k

(
k =

1

2
,
3

2
,
5

2

)
, (B.0.10)

g1/2 =
525

256
, g3/2 = −105

128
, g5/2 = − 35

256
, (B.0.11)

in the RD era, the distribution function of kinks is written as

t3
N(ψ, t)

V (t)
=
∑
k

gk∆̄r

(βr + 2kζr)γ4r
(ψ−βr/2ζr − ψk). (B.0.12)
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C STRAIN AMPLITUDE OF GW FROM ONE KINK

In the MD era, we have

t3
N(ψ, t)

V (t)
=


∑
k

gk∆̄m

(βm+2kζm)γ4
m
(ψ−βm/2ζm − ψk) +

(
t
teq

)βm

t3eq
N

((
t

teq

)2ζm
ψ, teq

)
V (teq)

for ψ >
(
teq
t

)2ζm
,

∑
k

gk∆̄m

(βm+2kζm)γ4
m

{(
t
teq

)βm+2kζm
− 1

}
ψk +

(
t
teq

)βm

t3eq
N

((
t

teq

)2ζm
ψ, teq

)
V (teq)

for ψ <
(
teq
t

)2ζm
,

(B.0.13)

t3eqN
(
(t/teq)

2ζm ψ, teq

)
/V (teq) means the value of Eq.(B.0.12) at t = teq. Let us ignore the

O(1) coefficient and extract the leading term. Then, in the RD era,

N(ψ, t)

V (t)/(γt)2
∼ ψ−βr/2ζrt−1, (B.0.14)

and the MD era,

N(ψ, t)

V (t)/(γt)2
∼


ψ−βm/2ζmt−1 for ψ >

(
teq
t

)2ζm
,(

t
teq

)−B/ζr
ψ−βr/2ζrt−1 for ψ <

(
teq
t

)2ζm
.

(B.0.15)

C Strain amplitude of GW from one kink

We formularize the motion of the general scalar fields at the distance r from the source

S(x, t) called the local wave zone [37], where r satisfies (remarking GW wavelength) < r <

(Hubble radius).

In an asymptotic metric to Minkowski spacetime

gµν = ηµν + hµν , (C.0.1)

where |hµν | ≪ 1, we consider a general scalar wave equation

□ϕ(x, t) = −4πS(x, t), (C.0.2)

where S is the source. We now treat the case where the source can be decomposed as

S(x, t) =

∫
dω

2π
e−iωtS(x, ω) (C.0.3)

S(x, t) =
∑
n

e−iωntS(x, ωn) (C.0.4)

using Fourier integral or Fourier series. Focusing on one frequency ω or ωn, we decompose the

solution into ϕ(x, t) =
∑
ω e

−iωntϕ(x, ω). Then, we lead Eq. (C.0.2) to a Helmholtz equation

(∆ + ω2)ϕ(x, ω) = −4πS(x, ω), (C.0.5)
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where the formulation of the equation is the same as the equation using the retarded Green

function

(∆ + ω2)Gω(x,x
′) = −4πδ(x− x′). (C.0.6)

The retarded Green function

Gω(x,x
′) =

eiω|x−x′|

|x− x′|
(C.0.7)

is well known, therefore the general scalar is described as

ϕ(x, ω) =

∫
d3x′

eiω|x−x′|

|x− x′|
S(x′, ω). (C.0.8)

We simply assume that there is the source at the origin. Here, we set r ≡ |x| and n ≡ |x|
r . In

the local wave zone (ω|x| ≫ 1), we can replace |x− x′| in the phase factor by r − n · x′ and

in the denominator by r. Defining k ≡ ωn (when ϕ emits in the n direction quadratically,

kµ = (k, ω) is used as the four frequency), we can derive the space-time Fourier transform of

the source

S(kµ) = S(k, ω) ≡
∫

d3x′e−ik·x
′
S(x′, ω). (C.0.9)

Substituting this into ϕ(x, ω), we obtain the field ϕ as

ϕ(x, ω) ≃ eiωr

r
S(kµ), (C.0.10)

and integrating ω or summing over ωn, it is rewritten as

ϕ(x, t) ≃ 1

r

∫
dωe−iω(t−r)S(kµ), (C.0.11)

ϕ(x, t) ≃ 1

r

∑
ωn

e−iωn(t−r)S(kµ). (C.0.12)

Applying the perturbation of the metric and the energy-momentum tensor of cosmic strings

and superstrings to the formulation, we are able to obtain the strain amplitude of the GW

from cosmic strings and superstrings.

D Condition of sharpness mostly contributing to GW background of

frequency f

We introduced the condition of ψmax as Eq.(7.1.14) and provided a brief explanation using

Fig.7.1.2. Here, we describe in detail that the kinks whose interval is equal to the wavelength

of the GW background contribute to the GW amplitude [58]. Since the Tµν of propagating
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kinks and kink-kink collisions are expressed by using

Iµ(ω, ωn, v) ≡
∫ uB(v)

uA(v)

du a′
µ
(u)e−

i
2ω(u+n·a(u)), (D.0.1)

where we introduce later (see Sec.E), we prove that the kinks satisfying Eq.(7.1.14) mainly

contributes to Iµ.

A kink is described as a discontinuity in aµ′ and many sharp kinks and blunted kinks exist

on infinite strings. We focus on the kinks whose interval are larger than the wavelength of the

GW background
{
ψ N(ψ, t)
V (t)/(γt)2

}−1

≳ ω−1 called ”big kinks”. Then, the sharpness is ψ ≳ ψmax.

Around each big kink, the integration range of Iµ is divided into the wavelength ∼ ω−1 as

Iµ(ω, ωn) =
∑
l

Iµl (ω, ωn), (D.0.2)

where l is the label of the big kink and l-th big kink contributes to Iµ(ω, ωn). There are

many kinks with small sharpness around big kinks called ”small kinks” whose sharpness are

ψ ≲ ψmax. Namely, these small kinks satisfy
{
ψ N(ψ, t)
V (t)/(γt)2

}−1

≲ ω−1. We decompose aµ′ in

the l-th interval as

aµ′(u) = aµl
′
(u) + δaµl

′
(u), (D.0.3)

where aµl
′
(u) is smooth except for the big kink. And the contribution of small kinks to

aµ′(u) is expressed as δaµl
′
(u). When µ = 0, we have a′

0
= a0l

′
= −1 and δa0l

′
(u) = 0.

δaµl
′
(u) has discontinuities at each small kinks and using the sharpness definition (Eq.(6.1.1)),

the discontinuity changes by ∼
√
ψ *6. Since small kinks have different sharpness and they

randomly interact with the big kink, the average of the small kink contribution becomes 0

(⟨δaµl
′
(u)⟩ = 0). When we integrate Eq.(D.0.3),

aµ(u) = aµl (u) + δaµl (u). (D.0.4)

To be sure, aµl (u) and δa
µ
l (u) are not differentiable at big kinks and small kinks. And we have

a0 = a0l = −u and δa0l (u) = 0. Therefore, Iµl (ω, ωn) can be written as

Iµl (ω, ωn) =

∫
l

du aµl
′
(u)e−

i
2ω(u+n·al(u)+n·δal(u))

+

∫
l

du δaµl
′
(u)e−

i
2ω(u+n·al(u)+n·δal(u)), (D.0.5)

where the integration works for the l-th interval. In the l-th interval, we define the position

of the j-th small kink as u = ul;j . Let us rewrite the equation. In the range of [ul;j , ul;j+1],

we assume that the integrand of the first term of Eq.(D.0.5) can be approximated as constant

*6 Using the definition of the sharpness Eq.(6.1.1), the solution of the cosmic string and cosmic superstring
dynamics are written as a ∼

√
ψ.
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and ∆ul;j ≡ ul;j+1 − ul;j . In order to decompose δaµl
′
(u) in the second term, we introduce

δaµl
′
=
∑
k

F
(k)µ
l (u), (D.0.6)

where kinks with ψ ∼ ψk contribute to F
(k)µ
l (u) and they are placed with the interval of{

ψk
N(ψk, t)
V (t)/(γt)2

}−1

. Therefore, the value of F
(k)µ
l (u) jumps at each kink and the jump width

is ∼
√
ψk. When there is a kink at u = ukl,s, F

(k)µ
l (ukl,s) is the probability distribution whose

average is 0 and the dispersion is given by ψk. Using the decomposition, the first and the

second terms of Eq.(D.0.5) is given as

first term ≃
∑
j

aµl
′
(ul;j)e

− i
2ω(ul;j+n·al(ul;j))e−

i
2ωn·δal(ul;j)∆ul;j (D.0.7)

second term ≃
∑
k

∑
s

F
(k)µ
l (ukl, s)e

− i
2ω(u

k
l, s+n·al(u)+n·δal(u))(ukl,s+1 − ukl,s) (D.0.8)

Tµν is roughly expressed as ⟨|Iµ|2⟩. Although there are cross-terms such as ⟨|Iµl Iµm|⟩ (l ̸= m),

the GW from a local kink is not affected by other kinks, and we can approximate Tµν as ⟨|Iµl |2⟩.
Then, it is written as

⟨|Iµ|2⟩ =
∑
j, h

〈
aµl

′
(ul;j)a

µ
l
′
(ul;h)e

− i
2ω(ul;j+ul;h+n·al(ul;j)−n·al(ul;h))

〉
×
〈
e−

i
2ω(n·δal(ul;j)−n·δal(ul;h))

〉
∆ul;j∆ul;h

+

〈(∑
k

∑
s

F
(k)µ
l (ukl, s)e

− i
2ω(u

k
l, s+n·al(u)+n·δal(u))(ukl,s+1 − ukl,s)

)2〉
+
∑
j

〈
aµl

′
(ul;j)e

− i
2ω(ul;j+n·al(ul;j))e−

i
2ωn·δal(ul;j)

〉
∆ul;j

×
∑
k

∑
s

〈
F

(k)µ
l (ukl, s)e

− i
2ω(u

k
l, s+n·al(u

k
l, s)+n·δal(u

k
l, s))(ukl,s+1 − ukl,s)

〉
+c.c., (D.0.9)

where c.c. denotes the complex conjugate. First, we focus on the first term and evalu-

ate ⟨|δal(ul;j) − δal(ul;h)|2⟩. We assume that the interval of kinks is extremely narrow and

F
(k)µ
l (ukl, s) is constant between kinks. In addition, there is no correlation between kinks,
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namely,
〈
F

(k)µ
l (ukl, s)F

(k′)i
l (uk

′

l, s′)
〉
= 0 (k ̸= k′, s ̸= s′). Using eq.(D.0.6), we get

(⟨|δal(ul;j)− δal(ul;h)|2⟩)
1
2 ∼ (⟨|δal(ul;j)− δal(ul;h)|2⟩)

1
2

∼

{〈(∑
k

∑
s

F
(k)µ
l (ukl, s)(u

k
l, s+1 − ukl, s)

)2〉} 1
2

∼

{∑
k

∑
s

⟨(F (k)µ
l (ukl, s))

2⟩(ukl, s+1 − ukl, s)
2

} 1
2

. (D.0.10)

Substituting
√
ψk into F

(k)µ
l (ukl, s) and

{
ψk

N(ψk, t)
V (t)/(γt)2

}−1

into ukl, s+1 − ukl, s, thus

(⟨|δal(ul;j)− δal(ul;h)|2⟩)1/2 ∼

∑
k

ψk ×

{
ψk

N(ψk, t)

V (t)/(γt)2

}−2

×

|ul;a − ul;b|/

{
ψk

N(ψk, t)

V (t)/(γt)2

}−1
 1

2

∼

∑
k

{
N(ψk, t)

V (t)/(γt)2

}−1
 1

2

|ul;j − ul;h|
1
2 (D.0.11)

where ul;j , ul;h are kink positions and we convert the sum
∑
s to the kink number in |δal(ul;j)−

δal(ul;h)|, namely, |ul;j − ul;h|/
{
ψk

N(ψk, t)
V (t)/(γt)2

}−1

. Last, we convert the sum
∑
k to the

integral
∫
dlnψ =

∫
dψ ψ−1. From the definition of ψmax (Eq.(7.1.14)), |ul;j − ul;h| ≲{

ψmax
N(ψmax, t)
V (t)/(γt)2

}−1

∼ ω−1 because δa reflects the contribution from small kinks. Then,

(⟨|δal(ul;j)− δal(ul;h)|2⟩)
1
2 ∼

∫ ψmax

dψ ψ−1

{
N(ψ, t)

V (t)/(γt)2

}−1
 1

2

|ul;j − ul;h|
1
2

∼

{
N(ψmax, t)

V (t)/(γt)2

}− 1
2

|ul;j − ul;h|
1
2

∼

ψmax

{
ψmax

N(ψmax, t)

V (t)/(γt)2

}−1
 1

2

|ul;j − ul;h|
1
2

≲
{
ψmaxω

−1
} 1

2ω− 1
2

∼ ψ
1
2
maxω

−1 ≪ ω−1. (D.0.12)

Therefore, ωn · (δal(ul;j)− δal(ul;h)) ≪ 1 and we find e−
i
2ω(n·(δal(ul;j)−δal(ul;h))) ≃ 1. Then,
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we can approximate the first term of Eq.(D.0.9) as

the first term of Eq.(D.0.9) =

〈∣∣∣∣∫
l

du aµl
′
(u)e−

i
2ω(ul+n·al(u))

∣∣∣∣2
〉
. (D.0.13)

Since there is no effect of small kinks in this approximation, we can evaluate it using Eq.(E.1.2)

the first term of Eq.(D.0.9) =
∑
l

(
ψ

1
2

l

ω

)2

, (D.0.14)

where ψl means the l-th big kink sharpness.

Next, we evaluate the second term of Eq.(D.0.9) as before,

the second term of Eq.(D.0.9)

=

〈(∑
k

∑
s

F
(k)µ
l (ukl, s)e

− i
2ω(u

k
l, s+n·al(u)+n·δal(u))(ukl,s+1 − ukl,s)

)2〉

=
∑
k

∑
s

〈(
F

(k)µ
l (ukl, s)

)2〉
(ukl,s+1 − ukl,s)

2

∼
∑
k

ψk

{
ψk

N(ψk, t)

V (t)/(γt)2

}−2
|ul;j − ul;h|/

{
ψk

N(ψk, t)

V (t)/(γt)2

}−1


∼
∑
k

ψk

{
ψk

N(ψk, t)

V (t)/(γt)2

}−1

ω−1

∼
∫ ψmax

dψ ψ−1

{
N(ψ, t)

V (t)/(γt)2

}−1

ω−1

∼

{
N(ψmax, t)

V (t)/(γt)2

}−1

ω−1

∼ ψmaxω
−2. (D.0.15)

Because ψl describes the effect of big kinks in the first term of Eq.(D.0.9), ψmax < ψl and the

first term dominates the second term.

Last, we describe the third term of Eq.(D.0.9). Since the average of F
(k)µ
l (ukl,s) is 0, the

third term vanishes. Then, the first term of Eq.(D.0.9) is the leading term. That is to say,

the big kink only affects Iµl and we can neglect the small kink effect.
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To summarize, we obtain

⟨|Iµ|2⟩ ∼
∑
l

ψl
ω2

∼
∫ 1

ψmax

dψ

{
N(ψ, t)

V (t)/(γt)2

}−1

× ψω−2 × L

∼ ψmax
N(ψmax, t)

V (t)/(γt)2
ψmaxω

−2 × L, (D.0.16)

where L is the range of the integration of Iµ. This result suggests that kinks with the sharpness

ψmax mainly contribute to ⟨|Iµ|2⟩, namely, such kinks give the contribution to the GW whose

frequency is ω.

This is the case when ψmax satisfying Eq.(7.1.14) exists. If ψ N(ψ, t)
V (t)/(γt)2 ≪ ω, all kinks are

classified as big kinks. So, ⟨|Iµ|2⟩ can be approximated as Eq.(D.0.14) and we obtain

⟨|Iµ|2⟩ ∼
∫ 1

0

dψ

{
N(ψ, t)

V (t)/(γt)2

}−1

× ψω−2 × L

∼ ψpeak
N(ψpeak, t)

V (t)/(γt)2
ψpeakω

−2 × L, (D.0.17)

where ψpeak is the sharpness which is the peak of the distribution function of kink ψ N(ψ, t)
V (t)/(γt)2 .

Then, kinks with ψpeak dominantly contribute to ⟨|Iµ|2⟩.

E Energy momentum tensor T µν of cusp and kink

Here, we obtain the energy-momentum tensor Tµν of cusp and kink. Since these are small

scale structures, we will consider the energy-momentum tensor in Minkowski spacetime. In

the spacetime, the energy momentum tensor is written as Eq.(4.1.11). We obtain Fourier

transformation of Tµν(t, r) as [37, 118]

Tµν(kλ) = Tµν(ω,k) =

∫
d4x eik·rTµν(t, r)

= µ

∫
dt

∫
d3x eik·r

∫ sB(t)

sA(t)

dσ(ẋµẋν − xµ′xν ′)δ3(r − x(t, σ))

= µ

∫
dt eik·x

∫ sB(t)

sA(t)

dσ(ẋµẋν − xµ′xν ′), (E.0.1)

where k · r = ηµνk
νrµ = ωt−k · r, k ·x = ωt−k ·x(t, σ). Substituting xµ = 1

2 (a
µ(u)+ bµ(v))

into Tµν(kλ), we transform (t, σ) to (u, v), and then Tµν(kλ) is rewritten as

Tµν(kλ) = −µ
4

∫
du

∫
dve

i
2

{
ω(v−u)−k·(a(u)+b(v))

}
(aµ′bν ′ + aν ′bµ′) (E.0.2)
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using ẋµ = 1
2 (−a

µ′ + bµ′) and dtdσ = 1
2dudv. We assume k = ωn, then

Tµν(ω, ωn) = −µ
4

∫ ∞

−∞
dvbν ′e

i
2ω(v−n·b(v))

∫ uB(v)

uA(v)

duaµ′(u)e−
i
2ω(u+n·a(u))

−µ
4

∫ ∞

−∞
dvbµ′e

i
2ω(v−n·b(v))

∫ uB(v)

uA(v)

duaν ′(u)e−
i
2ω(u+n·a(u)) (E.0.3)

In order to integrate this energy momentum tensor, we introduce the integral

I(ω) ≡
∫ B

A

dtf(t)e−iωϕ(t). (E.0.4)

in the high frequency limit ω → ∞. When the integral satisfies these conditions

1. When an arbitrary m ≥ 0, f (m)(A) = f (m)(B), ϕ(m)(A) = ϕ(m)(B)

2. On [A, B], f, ϕ are smooth, namely f, ϕ is C∞

3. For an arbitrary t on [A, B], ϕ̇(t) ̸= 0

then, the integral becomes 0 faster than any power 1
ω . Namely, when the condition is violated,

I(ω) have a finite value. Using I(ω), the energy-momentum tensor is

Tµν(ω, ωn) = −µ
4

∫ ∞

−∞
dvbν ′e

i
2ω(v−n·b(v))Iµ(ω, ωn, v)

−µ
4

∫ ∞

−∞
dvbµ′e

i
2ω(v−n·b(v))Iν(ω, ωn, v), (E.0.5)

where

Iµ(ω, ωn, v) ≡
∫ uB(v)

uA(v)

du a′
µ
(u)e−

i
2ω(u+n·a(u)). (E.0.6)

The varying scale of a′ is the same as the correlation length L. Then, from |a′| = 1,

a′′ ∼ O(L−1),a′′′ ∼ O(L−2).
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E.1 Iµ for a discontinuity

First, when we assume that there is the discontinuity on a′ at u = u∗,

Iµ(ω, ωn, v) =

∫ u∗

uA(v)

duaµ′(u)e−
i
2ω(u+n·a(u)) +

∫ uB(v)

u∗

duaµ′(u)e
i
2ω(u−n·a(u)),

=

[
− 2

iω(1 + n · a′(u))
aµ′(u)e−

i
2ω(u+n·a(u))

]u∗

uA(v)

+

[
− 2

iω(1 + n · a′(u))
aµ′(u)e−

i
2ω(u+n·a(u))

]uB(v)

u∗

+O
(
aµ′′

ω

)
,

= − 2

iω

(
aµ+

′

1 + n · a′
+

−
aµ−

′

1 + n · a′
−

)
e−

i
2ω(u∗+n·a(u∗))

+(the valu of the integration end) +O
(
aµ′′

ω

)
. (E.1.1)

Considering O(a
µ′′

ω ) ∼ 0 and the periodic boundary condition, it is expressed as

Iµ(ω, ωn, v) ≃ − 2

iω

(
aµ+

′

1 + n · a′
+

−
aµ−

′

1 + n · a′
−

)
e−

i
2ω(u∗+n·a(u∗)). (E.1.2)

Since it does not depend on v, we can express it as Iµ(ω, ωn). When there is the discontinuity

in a, the energy-momentum tensor can be rewritten as

Tµν(ω, ωn) = −µ
4
(Iν−(ω, ωn)I

µ
+(ω, ωn) + Iµ−(ω, ωn)I

ν
+(ω, ωn)), (E.1.3)

where

Iµ+(ω, ωn) ≡
∫ uB(v)

uA(v)

du aµ′(u)e−
i
2ω(u+n·a(u)), Iν−(ω, ωn) ≡

∫ ∞

−∞
dv bν ′(v)e

i
2ω(v−n·b(v)).

(E.1.4)

E.2 Iµ for a stationary point

Second, if there is a stationary point of the phase u+n ·a(u) at us, using |a′| = 1, the relations

is satisfied
d

du
(u+ n · a(u))

∣∣∣∣
u=us

= 0 ⇒ a′(us) = −n. (E.2.1)

Using this equation, the second derivative is given by

d2

du2
(u+ n · a(u))

∣∣∣∣
u=us

= n · a′′(us) = a′(us) · a′′(us). (E.2.2)
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Differentiating |a′| = 1 with respect to σ, we obtain a′(u) · a′′(u) = 0, then, we find
d2

du2 (u+ n · a(u))
∣∣∣
u=us

= 0. Nearby the stationary point, we approximate the phase as

u+ n · a(u) ≃ us + n · a(us) +
1

3!

d3

du3
(u+ n · a(u))

∣∣∣∣
u=us

(u− us)
3, (E.2.3)

≃ us + n · a(us) +
ωn · a′′′(us)

6
(u− us)

3, (E.2.4)

and a′ as

aµ′(u) ≃ aµ′(us) + aµ′′(us)(u− us). (E.2.5)

In this case, there is the only contribution to the integration from the nearby of the stationary

point, then, the contribution from the interval of 2ε nearby stationary point is written as

Iµ+(ω, ωn) ≃ aµ′(us)e
− i

2ω(us+n·a(us))

∫ us+ε

us−ε
du exp

(
−iωn · a′′′(us)

12
(u− us)

3

)
,

+e−
i
2ω(u+n·a(u))

∫ us+ε

us−ε
du aµ′′(us)(u− us)exp

(
−iωn · a′′′(us)

12
(u− us)

3

)
.

(E.2.6)

We assume that there is the only stationary point at u = us, then, the integration becomes

0 as ω → ∞ except the nearby point. Assuming that the boundaries us ± ε are far from the

stationary point, we change the integration range from [us − ε, us + ε] to [−∞, ∞] in the

second term of Eq.(E.2.6), then

Second term of Eq.(E.2.6)

= e−
i
2ω(us+n·a(us))

∫ ∞

−∞
du aµ′′(us)(u− us)exp

(
−iωn · a′′′(us)

12
(u− us)

3

)
,

≃ e−
i
2ω(us+n·a(us))aµ′′(us)

(
12

ω|n · a′′′(us)|

)2/3 ∫ ∞

−∞
dwwe−iw

3

, (E.2.7)

where

w =

(
ω|n · a′′′(us)|

12

) 1
3

(u− us),

∫ ∞

−∞
dwwe−iw

3

= − i√
3
Γ

(
2

3

)
. (E.2.8)

Therefore, we can rewrite as

Second term of Eq.(E.2.6) ≃ − i√
3
Γ

(
2

3

)
1

ω2/3
aµ′′(us)

(
12

|n · a′′(us)|

)2/3

e−
i
2ω(us+n·a(us))

(E.2.9)

The first term of Eq.(E.2.6) is also the leading term. However, it is not physical because we
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can remove the first term by the coordinate transformation

Tµν(k) → Tµν(k) + kµξν + kνξµ. (E.2.10)

Then, we only focus on the second term and rewrite Eq.(E.2.6) as

Iµ+(ω, ωn) ≃ − 1

ω2/3
aµ′′(us)

(
12

|n · a′′′(us)|

)2/3
i√
3
Γ

(
2

3

)
e−

i
2ω(us+n·a(us)). (E.2.11)

Combining Eq.(E.1.2) and Eq.(E.2.11), we obtain the energy-momentum tensor for propa-

gating kinks and kink-kink collisions. In order to make the former, we need Eq.(E.1.2) and

Eq.(E.2.11). On the other hand, we use only Eq.(E.1.2) in order to make it later.
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