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Abstract

General relativity and quantum field theory have been successfully established by ex-
periments and observations in the widespread scale from elementary particle phenomena
to cosmological dynamics. However, there are unsolved problems in cosmological phe-
nomena and various attempts have been made to solve them. One of the problems is the
so-called cosmological constant problem which is a kind of hierarchy problem in physics,
that is, if we apply the renormalization prescription in quantum field theory to the cos-
mological constant, fine-tuning of the parameters in gravity theory is required to match
the experimental value of the cosmological constant. One of the approaches to solve this
problem is called unimodular gravity.
Unimodular gravity was originally proposed by Einstein and it is obtained by imposing

a constraint on general relativity. Although this constraint breaks diffeomorphism invari-
ance in general relativity except the volume preserving diffeomorphism, the equation of
motion in the unimodular gravity is not changed from that in the general relativity with
the cosmological constant. The cosmological constant in unimodular gravity, however,
appears as a constant of integration and therefore the cosmological constant is no longer a
parameter in the theory but determined by an initial condition. Thus, there is a possibility
to solve the cosmological constant problem by using the unimodular gravity.

We consider one of the extensions of the unimodular gravity, which can be regarded as
a kind of topological field theory. In this model, we find that the cosmological constant
and the gravitational coupling constant are not constants but behave as dynamical scalar
fields. We also find that there is a solution where the scalar fields become constant and
the values of the constants are determined by the initial conditions. In this way, the
cosmological constant problem in quantum field theory is replaced by the problem of the
initial condition in classical theory, and thus we may expect that the fine-tuning could be
relaxed.

We first focus on the fact that the values of the scalar fields corresponding to the coupling
constants in the gravity including the cosmological constant depend on the energy scale
of the universe. When the coupling constants have the scale dependence, we may consider
the analogue of the renormalization group equation (RGE) which determines the response
with respect to the scale transformation of physical quantities. We propose a new model
by deforming the above model of the topological field theory to have two fixed points at
low energy scale and high energy scale by regarding the equation in the new model as
RGE. When we consider the fixed point at high energy, we choose the parameters in the
model so that the fixed point generates the inflation in the early universe. On the other
hand, when we consider the fixed point at low energy, we choose the parameters so that
the model reproduces the late-time acceleration of the current universe.
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Furthermore, we find the potential where these fixed points are connected by the scale
transformation and we also specify the region of the realistic parameters which realize the
observational results. This is expected to be a clue for building a model which solves the
cosmological constant problem while reproducing the inflation in the early universe and
the current accelerating expansion by using topological field theory.
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要旨

一般相対性理論と場の量子論は素粒子のように非常に小さなスケールの現象から宇宙のよう
な広大なスケールでのダイナミクスに渡る様々な実験及び観測により、高い精度で検証され、
成功を収めてきた。一方で宇宙論等には未解決の問題も依然として存在し、それを解決するた
めの様々な試みも行われている。この問題の 1 つが階層性問題の類である宇宙項問題と呼ばれ
る問題である。すなわち、量子論における繰り込みの手法を宇宙項に用いた時、観測された値
と合わせようとすると、理論のパラメータに不自然な微調整が必要となってしまう。この宇宙
項問題に対するアプローチの 1 つとしてユニモジュラー重力と呼ばれる理論が知られている。
ユニモジュラー重力はもともとアインシュタインが提案した理論で、一般相対性理論に対し

て新たな拘束条件を課したものである。一般相対性理論は一般の座標変換の下での共変性を持
つが、この拘束条件は体積要素の大きさを一定に保つものを除いてこの共変性を破る。それに
も拘らず、この理論で得られる方程式は一般相対性理論のものと同等になる。ただし、この理
論では宇宙項に含まれる宇宙定数が方程式を導出する際に積分定数として現れるため、宇宙定
数は初期条件等によって決まるもので理論を特徴づけるパラメータではなくなる。この性質に
よりこの理論では宇宙項問題が解決される可能性がある。
申請者はこのユニモジュラー重力の拡張として提案された模型の一つで、位相的場の理論

とみなせるものについて研究を行った。この模型では宇宙定数及び重力結合定数は定数ではな
く、動的なスカラー場となる。この理論には、このスカラー場が低エネルギーで定数となる安
定な解が存在し、これにより現在の宇宙の加速膨張解を再現することが出来るが、この定数は
初期条件等により決まる。このようにこの理論では量子論としての宇宙項の問題が古典論とし
ての初期条件の問題に置き換わるため、微調整の問題が緩和されることが期待される。
申請者は、この模型では宇宙定数を含む重力理論に現れる結合定数に対応するスカラー場

が宇宙のエネルギースケールに依存していることに着目した。このような結合定数のスケール
依存性は、スケール変換への応答を見るくりこみ群方程式と類似性がある。そこで申請者はこ
の模型を変形し、模型に現れる方程式を繰り込み群方程式に見立て、低エネルギーと高エネル
ギーの両方で固定点を持つような模型を構築した。この模型では、高エネルギーでの固定点
が、宇宙初期のインフレーションを実現する一方で、低エネルギーの固定点が現在の宇宙の加
速膨張を再現する。更に申請者はこの模型で、適切なポテンシャル項を仮定し、インフレー
ションと現在の宇宙の加速膨張を再現する固定点が現れる条件を求め、なおかつ、2つの固定
点を繋ぐような解が存在するパラメータ領域を特定した。このことは、位相的場の理論を使
い、宇宙初期のインフレーションと現在の宇宙の加速膨張を再現するとともに宇宙項問題を解
く模型を構築するための足掛かりとなると期待される。
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Chapter 1

The cosmological constant problem

In the 20th century, Einstein’s general relativity was established [1–3]. In general relativ-
ity, the dynamics of the space-time is described by the so-called Einstein field equation.
When we apply the Einstein field equation to the universe, we use the approximation
of the cosmological principle since it is very difficult to solve the equation without any
approximation. The discovery that the Universe in the large-scale structure (≃ 100 Mpc)
is isotropic means that it has no centre - there is no specified point in space. ‘In a large
scale, the space of the universe is a homogeneous and isotropic space’. This is the content
of the so-called Cosmological Principle which is fundamental premise of cosmology [9].
Owing to this simple principle, we may assume a simple form of metric which is called
Friedman-Lemaitre-Robertson-Walker (FLRW) metric. Assuming the FLRW metric, we
can solve the Einstein field equation easily. This equation is called Friedmann equation
which describes the dynamics of the universe. Based on these simple assumptions, we ob-
tain so-called the ΛCDM model. The ΛCDM model can describe observational universe
very accurately. The letter Λ is based on the existence of the cosmological constant, which
is the simplest and strong candidate of the source of dark energy.

However, there are several problems about the cosmological constant which is called
the cosmological constant problem. In this chapter, details of the cosmological constant
problem [46–63] are reviewed. The history of the cosmological constant problem is not
only long but also highly suggestive for the new physics.

In this chapter, the basics of the cosmological constant problem are given. In section 1,
we briefly review the history of the cosmological constant. In section 2 the observational
results of the cosmological constant are reviewed. In section 3, we explain the important
issue of this thesis, that is, the fine-tuning of the cosmological constant and we provide
additional explanation of this problem in sections 4, 5, 6 and 7.
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1.1 The historical implication of the cosmological constant
In this section, a brief history of the cosmological constant is reviewed. The cosmological
constant is originally introduced to counterbalance the effects of attractive force of the
gravity and realize a static universe by Einstein [10]. After the discovery of the expansion
of the universe by Hubble, Einstein abandoned to adopt the cosmological constant [11–13,
53]. However, from the recent observation, we find that the universe expands acceleratedly
[17–33]. These imply that the existence of cosmological constant with positive value.

1.1.1 The Einstein equation and cosmology

In general relativity, the fundamental equation is given by the Einstein-Hilbert action
[1] [4]. By virtue of Newtonian limit of the gravitational field, the general coordinate
covariance and the Bianchi identities, the Einstein-Hilbert action is defined by,

SEH ≡
∫ √

−gd4xLEH =
1

16πG

∫ √
−gd4xR ≡ 1

2κ2

∫ √
−gd4xR , (1.1.1)

where g is the determinant of the metric, and
√
−gd4x is the invariant volume element

which follows from general coordinate covariance. G is the gravitational coupling constant
which is determined by weak gravitational limit to recover the Newtonian gravity. Then,
we may derive the gravitational field equation by varying the Einstein-Hilbert action and
matter action Smatter with respect to gµν ,

Gµν ≡ Rµν −
1

2
gµνR = κ2Tµν . (1.1.2)

Here, Gµν is the Einstein tensor which satisfies the contracted Bianchi identity∇µGµν = 0
where ∇µ is the covariant derivative. Tµν is the energy-momentum tensor defined by,

Tµν ≡ − 2√
−g

δSmatter

δgµν
. (1.1.3)

The general coordinate covariance indicates that the conservation of the energy-
momentum tensor ∇µTµν = 0 which does not contradict with the Bianchi identity.
This equation is known as the Einstein field equation which determines the relation of
geometry of space-time and distribution of matter field. The Einstein equation follows
the idea of Mach’s principle [6, 8] . Mach’s principle insists that the“local physical laws
should be determined by the large-scale structure of the universe” [7]. In other words,
the geometry of space-time tells how matters move, and conversely, the distribution of
matter tells how space-time curve at the same time and finally it realizes our universe.
When we apply this equation to the cosmology, there is no stable solution of the universe.
However, if we introduce the cosmological constant, we may keep our universe static.
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1.1.2 The original idea of the cosmological constant

The cosmological constant Λ was firstly introduced by Einstein in 1917 [10] as a repulsive
force to keep the Universe static. In modern cosmology, the cosmological constant is the
strongest candidate for so-called dark energy which causes accelerated expansion of the
universe.
Although the Einstein field equation in Eq. (1.1.2) seems to be the simplest form, there
remains the freedom of adding a constant term multiplied by metric, gµνΛ. This is called
“cosmological constant” which originally Einstein introduced in order to achieve a static
universe keeping the Bianchi identity and covariance of the energy-momentum tensor.
The Einstein field equation with the cosmological constant becomes,

Gµν + Λgµν = κ2Tµν . (1.1.4)

There are many unsolved issues in the cosmological constant. We see these problems in
this chapter.

1.2 The observational results of the existence of the

cosmological constant
In this section, we consider the observational consequence of the non-zero cosmological
constant. In cosmology, the homogeneous and isotropic metric is expressed as

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θϕ2

)]
, K = const . (1.2.1)

This metric is called the Friedman-Lemaitre-Robertson-Walker (FLRW) metric. There are
two important physical quantities in the FLRW metric. One is the scale factor a(t) which
describes the relative expansion of the universe. The other is the constant space curvature
K. We can always choose the coordinate so that K takes the values 0,±1, expressing flat,
positively (negatively) curved universe, respectively. In the FLRW universe, the energy is
described as the perfect fluid. For a comoving observer, the energy-momentum tensor is
expressed as

Tµν = diag(ρ, p, p, p) , (1.2.2)

where ρ is an energy density and p is a pressure of the perfect fluid. When we apply the
above assumptions to the Einstein equation with the cosmological constant, we obtain the
two Friedmann equations. The (0,0)-component reads(

ȧ

a

)2

+
K

a2
=

8πGρ

3
+

Λ

3
. (1.2.3)
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On the other hand, the spacial components reads

ä

a
= −1

2

{(
ȧ

a

)2

+
K

a2
− Λ

}
− 4πGp . (1.2.4)

Conservation of the energy-momentum tensor reads

ρ̇ = −3
ȧ

a
(p+ ρ) = −3

ȧ

a
(w + 1)ρ , (1.2.5)

where we introduced the EoS parameter w as,

w =
p

ρ
. (1.2.6)

From the above expressions, we can see the dynamics of the universe through the scale
factor related to the property of matters. In general, an equation of state of the universe
would be very complex since there co-exist several kinds of matters. However, it is possible
to classify the following three typical matters which yield simple EoS parameter.

1. dust/non-relativistic matter
The EoS parameter of an energy density for non-relativistic matter is expressed as
w = 0 in Eq. (1.2.6). This matter describes a fluid of cold or heavy particles. In
particular, this corresponds to so-called the cold dark matter (CDM) and baryons.
For these matters, we can ignore the pressure.

2. Ultra-relativistic matter (radiation)
This matter characterizes hot relativistic particles such as photons or all Standard
Model particles in the early Universe where the temperature is very high. Radiation
has an equation of state parameter with w = 1/3.

3. Cosmological constant
The cosmological constant corresponds to a fluid with negative pressure w = −1.
This pressure counteracts the attractive force of matters. Although the static solu-
tion of the universe is realized, it is unstable. This also leads to accelerated expan-
sion of the universe. In fact, when we neglect a matter, radiation, and curvature in
Eq. (1.2.3), we obtain the following equation

a ∝ exp

(√
Λ

3
t

)
, (1.2.7)

which indicates the accelerated expansion of the universe for positive Λ.
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Based on the FLRW universe, cosmological parameters are determined by the cosmic
microwave background radiation (CMB) observed by WMAP [15], the number density
of galaxy cluster, luminosity (cosmological) red-shift of supernova and so on. Therefore,
WMAP can measure the fundamental parameters of the FLRW model, including the
density and composition of the universe. WMAP also measures the ratio of the density
of baryonic and non-baryonic matter. Furthermore, some of the properties of the non-
baryonic matter can also be determined by WMAP. Planck satellite measurements play
also an important role in the measurement of the cosmological parameters [16]. From
these observations, we find the two important facts. One is that our current universe has
a very small curvature. The other is that the universe mainly consists of the following
three matters.

1. Baryon : About 5% of the total energy density in the universe. More than 95 % of
the universe has never been directly observed in the laboratory.

2. Cold dark matter : 26% of the total energy density in the universe.
Dark matter is likely to be composed of one or more species of sub-atomic parti-
cles that interact very weakly with baryons. Especially, cold dark matter is non-
relativistic matters, and the kinetic energy can be neglected from the total energy.
The cold dark matter is able to explain the galaxy or galaxy cluster formation. The
cold dark matter may be regarded as the main component of the dark matters.

3. Dark Energy : 69% of the total energy density in the universe. By the observations
of supernovae, it is found that the current universe is expanding. Combining Planck
data with Pantheon supernovae and BAO data, the equation of state of dark energy
is strictly constrained to w = −1.03 ± 0.03, which is highly consistent with the
cosmological constant.

This model of the universe is called ΛCDM model. However, there are some problems
with the ΛCDM model. As we saw in the above discussion, 95% of the total density of the
universe consists of the energy coming from the dark sector. There are many attempts
to explain the origin of the dark matter and the dark energy. For the dark matter, there
are many candidates, the massive compact halo objects (MACHOs) [34], the robust asso-
ciation of massive baryonic objects (RAMBOs) [35], the axion [36,37] weakly interacting
massive particles (WIMPs) [38] and so on. For the dark energy, there are also several
candidates, phantom energy [39] with the range of the EoS parameter w < −1, Chap-
lygin gas [40], quintessence [41–43], K-essence [44, 45] with the range of EoS parameter
−1 < w < − 1

3 and so on. The simplest candidate is cosmological constant which is ex-
pressed as w = −1. As we saw in the previous section, the value of w is consistent with the
cosmological constant. Furthermore, the cosmological constant emerges from the vacuum
energy in the quantum field theory. Therefore, the cosmological constant is not only the
simplest candidate, but also it seems that the strongest candidate for the dark energy.
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However, there still remain many problems of the cosmological constant. Although we
will discuss more details of the problems of the cosmological constant in the next section,
we roughly present two problems of the cosmological constant briefly.

1. Old cosmological constant problem : The “old” cosmological constant problem
emerges when we consider the general relativity and the quantum field theories.
This is also called fine-tuning problem. The vacuum energy from the quantum
field theory gravitates as the cosmological constant. However, the theoretical value
of the vacuum energy exceeds the observed value of the cosmological constant by
about 120 orders of magnitude. Therefore, we need tremendous fine-tuning of the
counter term.

2. New cosmological constant problem : The “new” cosmological constant problem
is called “coincidence” problem. This is the problem that there is no reason why
the dark energy density is comparable to the dark matter density in the current
universe.

1.3 Fine-tuning problem of the cosmological constant
As we discussed the previous section, the cosmological constant problem may be roughly
divided into two types. One is the old cosmological constant problem. We discuss this
problem more precisely in this section. This is a kind of the hierarchy problem which in-
volves the fine-tuning of the parameters. Naively, the old cosmological constant problem
is the question that “Why the value of the cosmological constant is extremely smaller than
the prediction of the well-established theories?”. Actually, the contribution to the cos-
mological constant from quantum filed theory is much larger than the currently observed

value |ρ(obs)Λ | ≲
(
10−12 GeV

)4
. To see the contributions from the field theory, we consider

classical and quantum field theories. Because the source of the cosmological constant is
divided into the classical contribution and quantum one respectively when we consider
the field theory, we separately discuss the cosmological constant from the perspectives of
the classical field theory and the quantum field theory.

1.3.1 The classical picture of the cosmological constant

The vacuum energy is interpreted as the cosmological constant in field theory. To see the
relation between the vacuum energy and the cosmological constant, we consider the scalar
field with potential which is minimally coupled to the Einstein gravity:

Sϕ =

∫
d4x

[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (1.3.1)
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By the variation with respect to gµν , we obtain the following energy-momentum tensor:

T (ϕ)
µν = ∂µϕ∂νϕ− gµν

(
1

2
gαβ∂α∂βϕ− V (ϕ)

)
. (1.3.2)

Since the vacuum state is the minimum energy state, i.e., ϕ = ϕ0 = constant and V (ϕ0)
is minimum of the energy, we obtain the energy-momentum tensor in the vacuum state as

⟨0|Tµν |0⟩ = −V (ϕ0)gµν . (1.3.3)

Since V (ϕ0) is a constant, it is the same form as the cosmological constant. However,
the standard model of the particle physics suggests that this value changes drastically
at least twice. The standard model predicts that there are electroweak and QCD phase
transition in the early universe [64–66]. For the electroweak phase transition, the difference

of the value of the vacuum energy is given by, ∆VEW ∼ (200 GeV)4 ∼ 1056
∣∣∣ρ(obs)Λ

∣∣∣. On

the other hand, for the QCD phase transition, this value is estimated by, ∆VQCD ∼
(0.3 GeV)4 ∼ 1044

∣∣∣ρ(obs)Λ

∣∣∣. Note that these values are much larger than the currently

observed value of the cosmological constant. This huge discrepancy is the classical picture
of the cosmological constant problem. To obtain the current value of the cosmological
constant, we have to initially prepare the cosmological constant Λini:

Λini − 1056
∣∣∣ρ(obs)Λ

∣∣∣− 1044
∣∣∣ρ(obs)Λ

∣∣∣ ∼ ∣∣∣ρ(obs)Λ

∣∣∣ . (1.3.4)

Therefore, we need the fine-tuning of the initial value of the cosmological constant.

1.3.2 The vacuum energy as the cosmological constant

Because of the locality in quantum field theory, the existence of the vacuum energy density
is suggested. To see this, we consider a simple model which produces the vacuum energy.
Let us consider the free field solution of the Klein-Gordon equation in the Minkowski
space:

(□−m2)ϕ(x) = 0 . (1.3.5)

The Fourier expansion of ϕ(x) reads

ϕ(x) =
1(√
2π
)3 ∫ d3k√

2ω

(
ake

i(k·x−ωt) + a†ke
−i(k·x−ωt)

)
, (1.3.6)

where ω =
√
k2 +m2. ak and a†k are annihilation and creation operators which satisfy

the following commutation relation:

[ak, a
†
q] = δ3(k − q) . (1.3.7)
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The (0,0) component of the energy-momentum tensor reads

T00 ≡ H =
1

2
ϕ̇2 +

1

2

3∑
i=1

(∇iϕ)
2 +

1

2
m2ϕ2 , (1.3.8)

where H is the Hamiltonian density, and

⟨0|T00|0⟩ =
1

2

∫
d3k

(2π)3
ω =

1

2

∫
d3k

(2π)3

√
k2 +m2 . (1.3.9)

In general, the above quantity diverges. Since this type of energy can be interpreted as
the ground-state energy, we may ignore this term within the scope of the conventional
quantum field theory.

We can only detect the difference of the energy when we do not consider the global grav-
itational sector in experiments [67, 70, 71]. Preparing the cutoff scale Mcutoff to evaluate
this divergence, the above integral can be written as

⟨0|T00|0⟩ =
1

2

∫ Mcutoff d3k

(2π)3

√
k2 +m2

=
1

4π2

∫ Mcutoff d3k

(2π)3

√
k2 +m2

=
M4

cutoff

16π2

[
1 +

(
m

Mcutoff

)2

− 1

4

m4

M4
cutoff

[
log

(
M2

cutoff

m2

)
+

1

8
− 1

2
log 2

]
+O

(
M−1

cutoff

)]
.

(1.3.10)

Since the leading term is ∼M4
cutoff , this divergence is quartic. We may see that this term

does not contribute in the quantum field theory under the Minkowski metric. Although
this term diverges, it is a constant term in the action.

Svacuum =

∫
d4x ⟨0|T00|0⟩ =

∫
d4xΛvacuum , (1.3.11)

where Λvacuum is a constant term. Apparently, this term does not contribute to any dy-
namics. Therefore, we can ignore this term. However, when we consider general relativity,
this term emerges as the cosmological constant. The equivalence principle states that all
energy affects the curvature of space-time. Therefore, the vacuum energy should also
gravitates. Furthermore, the general coordinate covariance imposes how to gravitates this
vacuum energy as

Svacuum =

∫
d4xΛvacuum →

∫
d4x

√
−gΛvacuum . (1.3.12)
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This term is exactly the cosmological constant. Therefore, the vacuum energy contributes
to the cosmological constant. However, when we regard Mcutoff as a Planck mass MPlanck

to the value of the vacuum energy is estimated as,

ρvac ≡ ⟨0|T00|0⟩ ∼ Λ4
cutoff =M4

pl ∼
(
1018 GeV

)4 ∼ 10121ρ
(obs)
Λ . (1.3.13)

This is much larger than the observed value. To remove the large vacuum energy and
to remain the extremely small value of the cosmological constant, we need tremendous
fine-tuning of the counter term and it is extremely unnatural. This is the old cosmological
constant (fine-tuning) problem from the perspective of the quantum field theory.

1.4 Radiative instability
In addition to the fine-tuning problem of the cosmological constant, another serious prob-
lem exists. The radiative instability [63] is one of the most serious problems of the cos-
mological constant. The important point is that the value of the cosmological constant
is extremely sensitive to UV theory. We may see this problem by using the dimensional
regularization [67–69] of the Eq. (1.3.9). Introducing the mass parameter µ, the vacuum
energy density can be rewritten as

⟨0|T00|0⟩ =
µϵ

2(2π)d−1

∫ Mcutoff

dd−1kkd−2ωdd−2Ωd , (1.4.1)

where we introduced the small parameter ϵ as ϵ = 4 − d and angular integration in d
dimension as, ∫

dΩd =
2π

d
2

Γ
(
d
2

) , (1.4.2)

where Γ(x) is the Gamma function. We obtain the expression of the vacuum energy in
dimensional regularization as

⟨0|T00|0⟩ ≃ − m4

(8π)2

[
2

ϵ
+ ln

(
4πµ2

m2

)
+ finite

]
. (1.4.3)

We renormalize the above quantity by MS scheme [67,72]. In this scheme, we choose the
counter term as

Vcounter ≃
m4

(8π)2

[
2

ϵ
+ ln

(
4πµ2

k2

)
+ finite

]
. (1.4.4)



10 Chapter 1 The cosmological constant problem

Then the renormalized quantity is given by

V (ren)
vac ≡ Λ(bare)

vac + ⟨0|T00|0⟩+ Vcounter ≃ Λ(bare)
vac +

m4

(8π)2

[
log

(
m2

k2

)]
. (1.4.5)

We observe the renormalized quantity at the scale of k. Note that the above quantity
explicitly depends on m4. In other words, the scalar field contribution to the cosmological
constant is scaled as ∼ m4. This is called additive renormalization. When we rescale the
scalar field mass as m→ m+ δm, the cosmological constant is extremely sensitive to this
change. The renormalized value of the cosmological constant is tremendously sensitive to
the masses of all other fields of the quantum field theory. This is the essential point of
the problem of the radiative instability. From the viewpoint of the effective field theory,
we may not obtain the effective picture of the cosmological constant since it changes as
we change the mass of the particle. This problem also emerges in the Higgs mass in the
standard model.

1.5 Naturalness
Compared with the electroweak scale, the electron mass is very small ∼ 1 [MeV]. However,
we do not face the problem of the radiative instability as we saw in case of the cosmological
constant in the electron mass. To see this, we consider the following Lagrangian:

L =
1

2
∂µϕ∂

µϕ+
1

2
m2ϕ2 + ψ̄ (iγµ∂

µ −me)ψ + gϕψ̄ψ , (1.5.1)

where ψ is the Dirac field and g is the coupling of the scalar field and Dirac field. In the
same way with the previous section, we obtain the correction to the electron mass as,

δme ∼ g2me ln

(
me

µ

)
. (1.5.2)

Note that δme is proportional to me. This is called multiplicable renormalization in
contrast to additive renormalization appeared in the cosmological constant. The smallness
of the electron mass is preserved by naturalness. The “naturalness” insists that “a quantity
in physics should be small only if the underlying theory enhances the new symmetry when
that quantity sets to zero” [74,75]. In case of the electron mass, when we take the massless
limit me → 0, all quantum correction to the mass vanishes. In this limit, the Chiral
symmetry,

ψ → γ5ψ, ϕ→ −ϕ , (1.5.3)

appears in the Lagrangian in Eq. (1.5.1). This is the example of naturalness. However,
there is no enhanced symmetry when we take the cosmological constant set to be zero.
Therefore, the smallness of the cosmological constant is “unnatural” in the context of the
naturalness.
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1.6 Weinberg’s no-go theorem
An adjustment mechanism of the cosmological constant has been proposed by Weinberg
[46]. This mechanics can be applied when we consider that the cosmological constant
may be “dynamically” relaxed to a small value or absorbing the huge vacuum energy by
additional scalar field. The result states that it is impossible to construct the potential
of the Lagrangian without fine-tuning or an unrealistic universe (scale invariant universe)
under the following five assumptions [59,83].

1. The theory has general covariance.
2. Four dimensional gravity is induced by massless spin-2 graviton.
3. A finite number of fields below the cut-off scale.
4. Theory has no ghost.
5. The fields are assumed to be space-time independent at late times.

We have to introduce additional scalar field or assume the energy-momentum tensor is
not covariantly constant to make the cosmological constant dynamical. To verify this, we
start from taking the covariant derivative for both sides of the Einstein equation,

∂µΛ = κ∇νTµν , (1.6.1)

where we used contracted Bianchi identity. Therefore, there are two choices to make
the cosmological constant dynamical quantity. One is to break general covariance of
the energy-momentum tensor. The other is to introduce a new dynamical field ϕ which
satisfies

□ϕ ∝ Tµµ ∝ R

R = Tµµ = 0 at ϕ = ϕ0 , (1.6.2)

where we assumed the scalar field ϕ evolves until its equilibrium value ϕ0. We will work on
this case to make the cosmological constant dynamical. In order to consider the general
case, we assume the multi scalar fields

ϕ→ ϕn (n = 1, · · · , N) . (1.6.3)

We consider four dimensional quantum field theory which describes multi degrees of free-
dom below a certain UV cutoff MUV. We further assume the Poincaré invariance of the
field theory which minimally couples to gravity via gµν . We would like to find an equilib-
rium solution of the field equation at gµν , ϕ =constant on shell. In the above condition,
this theory remains GL(4) symmetry, With all fields constant, the gravity and matter
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equation can be written as,

∂L
∂gµν

∣∣∣∣
g,ϕn=const

= 0,
∂L
∂ϕn

∣∣∣∣
g,ϕn=const

= 0 , (1.6.4)

on shell. When we apply the contracted Bianchi identity, we have N+6 equations. Under
the GL(4) symmetry, metric and scalar fields and the Lagrangian transform as

gµν → Jαµ J
β
ν gαβ ϕn → J (J)ϕn L → det(J)L (1.6.5)

where J (J) is a representation of GL(4). We can consider two distinct cases separately;

(i) The two relations in Eq. (1.6.4) hold independently.
(ii) They are not independent and related with each other.

First, we consider the case (i), from the matter equation and the GL(4) symmetry, the
form of the Lagrangian is uniquely determined as

L =
√
−gΛ (ϕn) ,

∂Λ (ϕn)

∂ϕi
= 0 . (1.6.6)

However, the gravitational field equation requires

Λ (ϕn) = 0 . (1.6.7)

This means that we have to set the cosmological constant zero “by hand” and it corre-
sponds to fine-tuning.
Next we consider the latter case (ii). We impose the following condition:

2gµν
∂L(gµν , ϕn)

∂gµν
=
∑
n

fn(ϕm)
∂L(gµν , ϕn)

∂ϕn
, (1.6.8)

where fn(ϕm) is a smooth function for ϕn. This requirement means that the trace of the
matter fields is proportional to the cosmological constant for the equilibrium values of
ϕn. The above equation implies that the Lagrangian L(gµν , ϕn) describing the theory is
invariant under a transformation generated by the following symmetry:

δgµν = 2ϵgµν , δϕn = −ϵfn (ϕm) . (1.6.9)

Note that when we consider a matter field solution for the equilibrium value of ϕ
(0)
n :

∂L
∂ϕn

= 0 at ϕn = ϕ(0)n , (1.6.10)
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the trace of gravitational field equation

∂L
∂gµν

= 0 , (1.6.11)

is automatically satisfied. Since fn (ϕ) is a smooth function, we may simplify the situation.
We can split N fields ϕn as

ϕn(n = 1, · · · , N) =

{
ψ
σa (a = 1, · · · , N − 1)

. (1.6.12)

Under the above condition, we can modify the scale transformation in (1.6.9) as,

δgµν = 2ϵgµν , δψ = −ϵ, δσa = 0 . (1.6.13)

The above modification can be performed by a theorem of differential geometry [77] and
the Poincaré symmetry. Firstly, we define the transverse surface S which satisfies T (ϕn) =
0. Here T (ϕn) must be chosen not to be vanished on Σn (∂T/∂ϕn) fn(ϕm). We then choose
σa as sets of (N − 1) dimensional surface.

Here, we defined ϕn(σa, ψ) as the solution of the differential equations δϕn

δψ = fn(ϕm)

under the condition where ϕn are at the point of S with smooth coordinates σ at ψ = 0.
The symmetry in Eq. (1.6.13) implies

L ∝ e2ψgµν . (1.6.14)

From the Poincaŕe-invariance of ground state, residual GL(4) symmetry, and field equation
for σa, the form of the Lagrangian is determined as

L = e4ψ
√
−gL0(σ),

∂L0(σ)

∂σa
= 0 . (1.6.15)

When we differentiate L with respect to ψ, we obtain

∂L
∂ψ

= Tµµ
√
−g, Tµν = gµνe4ψL0(σ) . (1.6.16)

Here, we used the relation (1.6.8). We can see that if ∂L/∂ψ = 0, the trace of the energy-
momentum tensor vanishes. Therefore, when we find the equilibrium point ψ = ψ0,
the trace of the field equation is automatically satisfied. However, at that point, the
Lagrangian is constrained as

L0(σ) = 0, or e2ψ → 0 . (1.6.17)

The former case corresponds to fine-tuning, again. On the other hand, the latter case
corresponds to a scale invariant solution. Under the scale invariant theory, not only the
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Fig. 1.1 Field splitting

cosmological constant vanishes, but also all the other dimensional parameters vanish. This
is not our universe, so we cannot solve the essential problem.

We often see the scale symmetry in Eq. (1.6.13) is violated by conformal anomaly term
which involves Θµµ [76]:

Leff =
√
−g
[
e4ϕL0(σ) + ϕΘµµ

]
. (1.6.18)

The field equation for ϕ becomes

∂Leff

∂ϕ
=

√
−g
(
Tµµ +Θµµ

)
, Tµν = gµνe4ϕL0(σ) . (1.6.19)

Equilibrium solution for ϕ = ϕ0 reads

4e4ϕ0L0 +Θµµ = 0 . (1.6.20)
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However, it does not corresponds the gravitational field equation for constant metric which
reads

0 =
∂Leff

∂gµν
∝ e4ϕL0 + ϕΘµµ . (1.6.21)

This is simply because the symmetry in Eq. (1.6.13) is broken by the anomalous factor
Θµµ.

1.7 Anthropic consideration
The anthropic consideration is based on the anthropic principle [78–82]. The terminology
of the anthropic principle is used in many kinds of the meanings. In this thesis, we
define the anthropic principle in the following way. The physical parameters only have
the physical meaning when the human observes them. The law of physics does not have
predictability only by itself. Only after we define the physical quantity, we obtain the
observational results. Therefore, what we observed is not directly included in the theory.
Since the observer is human, theory must have correlation function between human and
observational results. The anthropic principle means that we observe the physics through
that correlation function. In other words, the human can see the physical parameters only
from the stand point of human.
We apply the anthropic principle to the cosmological constant problem. When we

consider the negative cosmological constant whose absolute value is not so small, our
universe would suddenly collapse and no one observes our universe. On the other hand,
if the cosmological constant is positive and the absolute value is larger than the current
value to a certain degree, the universe expands infinitely before the formation of galaxies.
In either case, no one can observe our universe. After all, the universe where our galaxy
and we can exist must have the proper value of the cosmological constant and we observe
it. This is not only related to the old cosmological constant problem but also deeply
related to the new cosmological constant problem. It is the problem that we can exist in
the proper physical value and proper era of the universe. We are currently living in a very
special period of the history of the universe in which the ratio of the dark energy density
and matter density is comparable. We cannot exist before the galaxy formation and this
also means that we only observe the universe at the time we can exist.
However, even if we admit it, it seems that the question why the cosmological constant

is so tremendously small still remains and it is difficult to say that the anthropic principle
is a perfect solution of the cosmological constant problem. Therefore, it seems overhasty
that we stop the consideration about the cosmological constant problem. In the next
chapter, we discuss some attempts for the cosmological constant problem.
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Chapter 2

Some attempts for the cosmological

constant problem

2.1 Supersymmetry
Supersymmetry (SUSY) may be used for the cancellation of the vacuum energy density
[84]. The vacuum energy contribution from the scalar field is denoted in Eq. (1.3.10).
More precisely, the expression in Eq. (1.3.10) is generalized to an arbitrary spin field
j = 0, 1/2, 1, · · · :

⟨ρvac⟩ =
1

2
(−1)2j(2j + 1)

∫ Mcutoff

0

d3k

(2π)3

√
k2 +m2

=
(−1)2j(2j + 1)

16π2
M4

cutoff

×

(
1 +

(
m

Mcutoff

)2

− 1

4

m4

M4
cutoff

[
log

(
M2

cutoff

m2

)
+

1

8
− 1

2
log 2

]
+O

(
M−1

cutoff

))
(2.1.1)

Note that the fermion generates the negative energy density while the boson generates
positive energy density. This implies that we may obtain the vanishing vacuum energy
when SUSY is unbroken. To see this, we introduce supersymmetry generators to satisfy
the following algebra: {

Qα, Qβ̇

}
= (σµ)αβ̇ P

µ , (2.1.2)

where the indices (α, β, · · · , α̇, β̇, · · · ) express the two component of Weyl spinor, σi(i =
1, 2, 3) represents the Pauli matrices in addition to σ0 = I , and Pµ is a four momenta.
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When a theory is in a completely supersymmetric state, the vacuum state |0⟩ satisfies,

Qα |0⟩ = Qα̇ |0⟩ = 0 ∀ α, α̇ . (2.1.3)

Therefore, for such a vacuum expectation value, the Hamiltonian vanishes as

⟨0|H|0⟩ = ⟨0|P 0|0⟩ = 0 . (2.1.4)

This can be also applied to all the quantum correction since the SUSY enable us to cancel
the contribution of boson loops by its super partner (fermion) loops. The above result
can also be obtained in a different way. In the Wess-Zumino model which consists only of
spin-0 and spin 1/2 particles have a special and simple form of the potential as,

V (ϕ, ϕ∗) =
∑
i

∣∣∣∣∂W (ϕ)

∂ϕi

∣∣∣∣2 , (2.1.5)

where ϕ is complex scalar field and W is so-called superpotential. In a completely super-
symmetric condition, we impose

∂W (ϕ)

∂ϕi
= 0 . (2.1.6)

From the above condition, we obtain V (ϕ, ϕ∗) = 0, which implies the cancellation of the
vacuum energy. However, the SUSY is broken in our universe. If the SUSY is broken at
some energy scale, the vacuum energy is given by

⟨ρvac⟩ ∼
∫ Mcutoff

0

d3k

(2π)3

(√
k2 +m2

boson −
√

k2 +m2
fermion

)
∼ g2M2

cutoffΛ
2
SUSY . (2.1.7)

Here, we introduced SUSY breaking scale as g2Λ2
SUSY =

∣∣m2
boson −m2

fermion

∣∣, where g is
the coupling of SUSY breaking. We assumed that the SUSY breaking scale is much smaller
than the cutoff scale ΛSUSY ≪Mcutoff . Although the quartic divergence is cancelled, the
quadratic divergence remains in the above expression. From the fact that the absence of
SUSY is below the TeV scale [85], we may put g2Λ2

SUSY ≥ (TeV)
2
. Therefore, Eq. (2.1.7)

can be written as

⟨ρvac⟩ ∼ g2Λ2
SUSYM

2
cutoff ∼ g2Λ4

SUSY ∼ 1012(GeV)4 ∼ 1060ρ
(obs)
Λ , (2.1.8)

where we assumed Mcutoff ∼ ΛSUSY. This value is still much larger than the observed
value of the cosmological constant. Therefore, we conclude that SUSY is not enough to
solve the cosmological constant problem.
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2.2 Scale invariance
As we discussed in section 1.6, our universe is not scale invariant. However, our universe
is almost scale invariant except for the Higgs mass term and UV cutoff within the scope
of the standard model. Therefore, if the origin of the Higgs mass is the spontaneous
symmetry breaking of the scale invariance at the UV physics, one may allow the theory to
be scale invariant at the high energy scale. It is easy to show that why the scale invariance
may solve the cosmological constant problem. The scale invariance is the symmetry of
the following scale transformation,

gµν → Ω2gµν . (2.2.1)

The Einstein tensor Gµν is invariant under the above transformation while the cosmolog-
ical constant term is not invariant. Therefore, the cosmological constant does not allow
to affect the Einstein equation when the scale invariance is realized. It seems that the
mass terms in the energy-momentum tensor in the four dimensional space-time theory
which includes the standard model particles are also forbidden. However, we may obtain
non-zero massive particles when the scale invariance is spontaneously broken [86]. It is
obtained if a scalar field ψ transforms as ψ → ψ+f lnΩ, where f is a constant mass term.
This leaves kinetic term invariant. The energy-momentum tensor with potential term is
written by

V (ψ, ϕi)gµν = U(ϕi)e
−2ψ/fgµν , (2.2.2)

where ϕi are other scalar fields which do not have the scale invariance. The above term
can be surely scale invariant. When we take U(ϕi) = 1/2m2ϕ2i , scalar fields ϕi obtain
mass while ψ is massless. This is possible since the potential vanishes at this minima,
regardless of the value of ψ in the vacuum state, and it is consistent with the coexistence
of massive and massless fields. This is because that if we assume that the potential is
minimized at ϕi = 0 and ψ = ψ0, the potential is minimized for an arbitrary ψ0. To
minimize the potential, however, we have to continue to take ψ0 → ∞. In this limit, all
dimensional parameters involving mass term should vanish.

Finally, we obtain vacuum with one parameter minima V (ψ, ϕi) which does not cor-
respond to our universe. When we assume that the scale invariance is preserved except
for massive particles in the standard model during the two phase transition, we can keep
the term for the cosmological constant prohibited and break the scale invariance in the
standard model sector at the early time of the universe.

From the perspective of Weinberg’s no-go theorem, we may see how the initial scale
invariance affects the no-go result. When we consider the Lagrangian L (gµν , ψi, φn) with
the scale invariant sector ψi and other sectors ϕn, the relation in Eq. (1.6.9) is modified
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as

δgµν = 2ϵgµν , δϕn = −ϵfn (ϕm) , δψi = −ϵψi . (2.2.3)

We may construct the scale invariant metric ḡµν as

ḡµν =

∑
i,j

Mijψiψj

 gµν ≡ Ω2gµν , (2.2.4)

where we defined Ω as Ω2 ≡
∑
i,jMijψiψj with matrix Mij . Then, the scale invariant

Lagrangian with constant fields is written as

L(gµν , ψi, ϕn) = L(ḡµν , ϕn) . (2.2.5)

The relation in Eq. (1.6.8) becomes

2ḡµν
∂L(ḡµν , ϕn)

∂ḡµν
=
∑
n

fn(ϕm)
∂L(ḡµν , ϕn)

∂ϕn
, (2.2.6)

Similarly, from the GL(4) symmetry, the Lagrangian is written as

L =
√
−ḡL̄0(ϕn) =

√
−gΩ4L̄0 (ϕn) ≡

√
−gL0 (ψi, ϕn) . (2.2.7)

Here, we defined L0 (ψi, ϕn) ≡ Ω4L̄0 (ϕn). For simplicity, we assume a fully scale invariant
theory. Then, we may take φn = 0 and the Lagrangian reduces to

L =
√
−gL0 (ψi, ϕn = 0) ≡

√
−gL0 (ψi) . (2.2.8)

When a kinetic term is the second order derivative, the potential term satisfies the fol-
lowing relation in four dimensional space-time classicaly:∑

i

ψi
∂

∂ψi
V (ψ) = 4V (ψ) . (2.2.9)

Since at the late time, matter field equations satisfy

∂L0

∂ψi
=
∂V (ψ)

∂ψi
= 0 , (2.2.10)

where V (ψ) is the scale invariant potential. Therefore, the gravitational field equation
∂L0

∂gµν
= 0 requires

V (ψ) = 0 . (2.2.11)
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It seems to correspond to the fine-tuning as we have seen in the former case in Eq. (1.6.17).
However, from Eq. (2.2.10) the stationary condition of the potential implies vanishing
of the potential. Therefore, from the matter field equation, we obtain the condition
V (ψ) = 0 automatically. In other words, we do not need to impose the condition in
Eq. (2.2.11) by hand and the problem of the fine-tuning is solved when the theory is
scale invariant classically. However, this vanishing property of the potential is spoiled by
quantum corrections.

V (ψ0)|tree = 0,
∂V (ψ)

∂ψ

∣∣∣∣
ψ=ψ0

= 0

V (ψ0)|1−loop ̸= 0 (2.2.12)

2.3 Unimodular gravity
Unimodular gravity is firstly proposed by Einstein in 1919 [88] and it has been discussed
for a long time [89–97]. Unimodular gravity is obtained from a restricted variation of the
Einstein-Hilbert action, where the condition

√
−g = 1 is imposed in the action. Then,

the field equations correspond to the traceless Einstein equations, and it can easily be
shown to be equivalent to the gauged Einstein equations with a cosmological constant, Λ
appearing as an integration constant. Unimodular gravity is described as the restricted
Einstein gravity:

S =

∫
d4x

√
−g
(

1

2κ2
R+ Lmatter

)
, (2.3.1)

where the metric is restricted by the unimodular condition,

det gµν = −1 or
√
−g = 1 . (2.3.2)

Note that this condition breaks the diffeomorphism invariance. Generally, we may extend
the unimodular condition by using a fixed density function ϵ0 as

√
−g = ϵ0 . (2.3.3)

Then the action of unimodular gravity is written by

Sunimodular = ϵ0

∫
d4x

(
1

2κ2
R+ Lmatter

)
. (2.3.4)

When we divide the matter Lagrangian into vacuum energy coming from the matter and
the other part as

Lmatter = Λ+ L(0)
matter , (2.3.5)
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the vacuum energy does not affect the dynamics since it is just a constant term in the
action. Therefore, the vacuum energy does not gravitate as the cosmological constant in
the unimodular gravity. Neglecting the matter contribution, the variation of the action
with respect to gµν yields

gµνδRµν + δgµνRµν = 0 (2.3.6)

The first term corresponds to the total derivative term which we see in general relativity.
Therefore, the equation of motion is obtained from the second term. However, we cannot
put Rµν = 0 since δgµν is not fully independent. Because of the unimodular condition
Eq. (2.3.2) or (2.3.3), the trace of δgµν vanishes. It seems that unimodular gravity is
different from Einstein theory since the information of the trace part is lost. We will
see, however, the equations in the unimodular gravity are not changed from those of the
Einstein theory including the cosmological constant. We can only conclude that only
traceless part of Rµνδg

µν = 0 vanishes. Therefore, we obtain

Rµν −
1

4
gµνR = 0 , (2.3.7)

in four dimensional space-time. When we consider the matter sector, the energy-
momentum tensor is modified as

Tµν ≡ 1√
−g

δ (
√
−gLmatter)

δgµν
→ Tµν ≡ δLmatter

δgµν
(2.3.8)

Similarly, the traceless part of the energy-momentum tensor vanishes by the variation of
the metric under the unimodular condition. Thus, by variation of the action Eq. (2.3.4)
with respect to gµν , we obtain the equation of motion as,

Rµν −
1

4
gµνR = 2κ2

(
Tµν −

1

4
gµνT

)
. (2.3.9)

From the Bianchi identity and conservation law of the energy-momentum tensor, the
divergence of the above expression yields

∇ν

(
R+ 2κ2T

)
= 0 . (2.3.10)

The above equation allows us to introduce the integration constant C as

R+ 2κ2T = −4C . (2.3.11)

Finally, we have the equation of motion as follows:

Rµν −
1

2
gµνR− Cgµν = κ2Tµν . (2.3.12)
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The third term is identical with that coming from the cosmological constant term. Trace-
less Einstein equation generates the cosmological constant. The reason why this strange
correspondence occurs is that the Einstein gravity is originally gauge theory. Since the
Einstein gravity is originally redundant, all the equations of motion are not independent.
Note that the origin of the cosmological constant is completely different as we saw in
the previous chapter. Although the vacuum energy does not gravitate as the cosmologi-
cal constant in unimodular gravity, the integration constant appears as the cosmological
constant.
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Chapter 3

Generalization of unimodular gravity

towards the cosmological constant

problem

In this chapter, we discuss details of unimodular gravity and its first step of the appli-
cation to the cosmological constant problem. In the first section, we generalize classical
unimodular gravity to the fully diffeomorphism invariant theory. In the second section,
we discuss the quantum unimodular gravity.

3.1 Reformulation of classical unimodular gravity
We see the unimodular condition in Eq. (2.3.2). In order to understand the gauge sym-
metry of unimodular gravity, we compare the diffeomorphism transformation of general
relativity and unimodular gravity. In general relativity, theory is diffeomorphism invariant
under the infinitesimal transformation

δgµν(x) = ∇µξν +∇νξµ (3.1.1)

On the other hand, in umimodular gravity, unimodular condition
√
−g = ϵ0 yields

δ

δgµν

√
−g = 0 . (3.1.2)

Therefore, we obtain

1

2

√
−ggµνδgµν = ∇µξ

µ = 0 . (3.1.3)
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This is called transverse differomorphism or volume preserving diffeomorphism. At least
locally, we can easily see that the classical equivalence of the classical general relativity and
unimodular gravity since we can always choose the coordinate as unimodular in general
relativity locally. In global cases, when the coordinate is fixed at the boundary or there
are no boundary, global average

⟨
√
−g⟩ ≡

∫ √
−gd4x∫
d4x

(3.1.4)

is gauge invariant and it does not change ⟨
√
−g⟩. Thus, we may fix coordinate globally

as ⟨
√
−g⟩ = 1 or ϵ0 .

By introducing the Lagrange multiplier field λ(x), we may rewrite the action of uni-
modular gravity in Eq. (2.3.4) as [117]

S =

∫
d4x

[√
−g R

2κ2
− λ(x)

(√
−g − ϵ0

)
+

√
−gLm

]
. (3.1.5)

It is useful to formulate unimodular gravity by using the Lagrange multiplier field. By the
variation of the above action with respect to gµν and λ, we obtain the following equation
as

Rµν −
1

2
gµνR = κ2Tµν −

λ(x)

2
gµν

√
−g = ϵ0 , (3.1.6)

When we take the covariant derivative∇µ to the first equation, we obtain ∂µλ = 0 by using
the Bianchi identity and energy-momentum conservation. Therefore, we can conclude
that the Lagrange multiplier is constant λ(x) = λ0. We obtain Einstein equation with the
cosmological constant from unimodular gravity again. Note that the equation of motion

is unchanged by the shift of λ and matter Lagrangian λ → λ − Λ and Lm → L(0)
m − Λ.

After this transformation, the action becomes

S′ =

∫
d4x

[√
−g R

2κ2
− λ(x)

(√
−g − ϵ0

)
+
√
−gL(0)

m

]
− ϵ0Λ

∫
d4x . (3.1.7)

Since the last term including Λ remains just constant in the action, it does not affect to
the dynamics. This means that we may cancel the huge vacuum energy contribution from
matter by the redefinition of the Lagrange multiplier field. This is an important clue to
tackle with the cosmological constant problem.
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3.1.1 Fully difeomorphism invariant formulation of unimodular gravity

In this subsection, we discuss so-called Henneaux-Teitelboim formulation of unimodular
gravity [94]. In this theory, the action has fully unconstrained gauge symmetry keeping
fully diffeomorphism invariance and this is also equivalent to general relativity classically.
Firstly, we use the Stückelberg trick to restore the diffeomorphism invariance. To do
this, we introduce the Stückelberg fields ϕα(x) and performing coordinate transformation
xα → ϕα(x), the action in Eq. (3.1.5) except for the matter sector becomes

SStuck =

∫
d4x

[
1

2κ2
√
−gR− λ

(√
−g − ϵ0|Sαβ |

)]
, (3.1.8)

where Sαβ is Jacobian matrix defined by

Sαβ ≡ ∂ϕα(x)

∂xβ
. (3.1.9)

The determinant of Sαβ is given by |Sαβ | = 4!δ
[α
µ δβν δ

γ
ρ δ
δ]
σ SµαS

ν
βS

ρ
γS

σ
δ. This action is

invariant under the diffeomorphism transformation xµ → x′µ(xν) if the Stückelberg fields
ϕα(x) obey the law of scalar field transformation ϕα(x) → Φα(ϕ(x′)) . In fact, it is easy
to see that the determinant of the Jacobi matrix of that transformation is one:

detS ≡ det

(
∂Φα

∂ϕβ
∂Φα

∂x
∂x′α

∂ϕβ
∂x′α

∂xβ

)
= 1 , (3.1.10)

where we used det
(
∂Φα

∂ϕβ

)
= 1. Note that |Sαβ | can also be rewritten by

|Sαβ | = ∂α

[
4!δ[αµ δ

β
ν δ

γ
ρ δ
δ]
σ ϕ

µSνβS
ρ
γS

σ
δ

]
. (3.1.11)

When we chose 4!δ
[α
µ δβν δ

γ
ρ δ
δ]
σ ϕµSνβS

ρ
γS

σ
δ as a vector density τα, the above action corre-

sponds to the so-called Henneaux-Teitelboim action [94]:

SH−T =

∫
d4x

[√
−g R

2κ2
− λ

(√
−g − ∂µτ

µ
)]

. (3.1.12)

In other words, the action SStuck is the special case of SH−T. By variation of SH−T with
respect to gµν , and taking the divergence of both sides, we obtain the following equation
from Eq. (3.1.6):

∂µλ = 0 , (3.1.13)
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where we also used the Bianchi identity and energy-momentum conservation law. On the
other hand, the equation of motion from the variation of λ yields

√
−g = ∂µτ

µ . (3.1.14)

This is a fully diffeomorphism invariant expression of unimodular condition. Note that this
model can also absorb the vacuum energy contribution from matter by the redefinition of

the Lagrange multiplier field λ→ λ−Λ. Similarly, when we assume that Lm → L(0)
m −Λ,

the action in Eq. (3.1.12) with matter becomes,

S′
H−T =

∫
d4x

[√
−g R

2κ2
− λ

(√
−g − ∂µτ

µ
)
+

√
−gL(0)

m

]
− Λ

∫
d4x∂µτ

µ . (3.1.15)

In the above expression, the last term only includes Λ. However, the last term is total
derivative term and it does not affect the dynamics. Thus, we may cancel the vacuum
energy contribution from matter by the redefinition of λ again.
Furthermore, we may generalize the above action [97]:

SGH−T =

∫
d4x

√
−g
[
R

2κ2
− λf (ϕ)− g (ϕ) + Lm

]
, (3.1.16)

where we introduced ϕ as

ϕ ≡ ∂µτ
µ

√
−g

. (3.1.17)

Equations of motion become

Gµν = 8πG [Tµν + gµν (λF (ϕ) +G(ϕ))]

f(ϕ) = 0

∂α [λf
′(ϕ) + g′(ϕ)] = 0 , (3.1.18)

where F ≡ ϕf ′(ϕ)− f(ϕ) and G ≡ ϕg′(ϕ)− g(ϕ). The latter two equations represent con-
straint equations. These imply there are constant solution for λ and ϕ as, λ = λ0= con-
stant and ϕ = ϕ0= constant. Substituting these into the first equation, we find that there
is a term gµν (λF (ϕ) +G(ϕ)) ∼ gµν × constant which plays a role of the cosmological
constant as long as they do not be applied to the following properties.

1. f does not have real zeros.
2. f and f ′ have the same isolated zeros at the same time.
3. g is linear and f is identically zero.　
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Avoiding the first condition means that the second equation in Eq. (3.1.18) has a non-
trivial solution for ϕ. For the second condition, if it is not valid, we obtain non-zero
λF (ϕ). If we avoid the third condition, we obtain non-trivial constraint equation from
the third equation in Eq. (3.1.18). Therefore, avoiding the above condition enable us to
identify the action in Eq. (3.1.21) is equivalent to general relativity with the cosmological
constant. However, note that the equations of motion change if we split matter sector
and redefinition of the Lagrange multiplier in general:

Lm → L(0)
m − Λ, λ→ λ− Λ . (3.1.19)

Contrary to this, we may extend the action SH−T keeping the equation of motion un-
changed by the above transformation in a simple way. When we replace partial derivative
∂µ to covariant derivative ∇µ and vector density τµ to vector field valuable

√
−gV µ re-

spectively, the action becomes

SGUMG =

∫
d4x

√
−g
[
R

2κ2
− λ (1−∇µV

µ)

]
. (3.1.20)

The constraint equation is changed as

∂µτ
µ =

√
−g → ∇µV

µ = 1 . (3.1.21)

Similarly, when we include the matter sector, the action is unchanged by Eq. (3.1.19) up
to total derivative term. Therefore, the equation of motion is unchanged.

3.2 Quantum unimodular gravity
In this section, we discuss a possibility that classical unimodular gravity can be extended
to quantum theory keeping the equivalence to general relativity. To consider quantum
unimodular gravity in a method of path integral, we first consider the following generating
function:

Z[J ] =

∫
DgµνDλDV µ exp [iSGUMG + iSB + iSsource[g, J ]] , (3.2.1)

where Ssource[g, J ] denotes external source and SB is boundary term expressed as

SB =

∫
d3x

√
−γ
[
K

κ2
− λnµV

µ

]
. (3.2.2)

Here, γ is three dimensional induced metric on the boundary, nµ is an outgoing normal
vector orthogonal to the boundary and K is trace of the extrinsic curvature Kµν . We
consider an effective theory in quantum unimodular gravity. In the above generating
function, we impose the following three assumptions,
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1. We only consider low energy contribution. In this effective theory, we only take the
leading order contribution from the heavy particle modes to low energy where the
diffeomorphism invariance is established.

2. Only metric couples to external source. The other quantities e.g., V µ, λ do not
couple to external source.

3. We assume that the generating function includes boundary term in Eq. (3.2.2).

Since a partial integration of V µ yields the constraint δµλ = 0, the generating function
can be rewritten by

Z[J ] =

∫
DgµνDλδ[δµλ] exp [iS′

GUMG + iS′
B + iSsource[g, J ]] ,

S′
GUMG + S′

B =

∫
V

d4x
√
−g
[
R

2κ2
− λ(x)

]
+

1

κ2

∫
∂V

d3x
√
−γK . (3.2.3)

When we impose the boundary condition δµλ|∂V = 0, the integration of the generating
function with respect to λ can be performed as

Z[J ] =

∫
Dgµν exp [iSGR[J, λ] + iSB + iSsource[g, J ]] ,

SGR + SB =

∫
V

d4x
√
−g
[
R

2κ2
− λ0

]
+

1

κ2

∫
∂V

d3x
√
−γK . (3.2.4)

Here, we assume that λ0 is the fixed value of λ at the boundary. The above action
corresponds to general relativity with the cosmological constant and boundary term. In
the above analysis, we only consider the fixed boundary. Thus, we consider the case where
the λ is not fixed at the boundary from now on. Naively, if the boundary is not fixed, the
integration about the delta function cannot be performed as we did in Eq. (3.2.3) to Eq.
(3.2.4). Therefore, we alternatively choose that the λ is a constant λ = λ0 in space-time
integration. Then, the generating function becomes

Z[J ] =

∫
Dgµνdλ0M(λ0) exp [iSGR[J, λ] + iSB + iSsource[g, J ]] . (3.2.5)

Here, we introduced M(λ0) as a contribution to measure. This is related to that how to
impose the constraint of the unimodular gravity locally or globally in a classical analysis
as we saw in the previous section. Locally, unimodular gravity is equivalent to general
relativity with the cosmological constant. On the other hand, this cosmological constant
is global parameter yielding global constraint. This implies that whether it is possible or
not to impose the global gauge fixing in unimodular gravity in the previous section.

This equivalence is, however, break if we assume that the λ and V µ are couple to
the external source. We regard λ and V µ are auxiliary fields which do not affect to
the asymptotic states. Therefore, they only appear in internal lines in the Feynman
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diagrams. We assume that these fields can be integrated out in the path integral and
it realize general relativity when we impose an appropriate boundary condition. On the
other hand, if we allow them to couple with external source, they appear in the external
lines in the Feynman diagrams. The coupling of an external line with λ and V µ means,
however, that one break the equivalence in quantum theory by hand.
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Chapter 4

BRS structure of the simple model for

the cosmological constant problem

In this chapter, we discuss a possibility that one of the model related to unimodular
gravity may solve the cosmological constant problem. Inspired by unimodular gravity,
a simple model has been proposed for solving the cosmological constant problem [104].
This model can be regarded as a kind of topological field theory [107]. In topological field
theory, the Lagrangian is described as BRS exact and it has BRS symmetry. Especially,
the model in [104] has an infinite number of BRS symmetry. The BRS symmetry in
this model should be, however, broken spontaneously to obtain the non-zero cosmological
constant. We investigate the details of this BRS symmetry and show that there remain
one and only one BRS symmetry which survive keeping the cosmological constant non-
zero. The cosmological constant problem arises from the quantum theory. In this analysis,
the cosmological constant problem as a problem of a quantum theory is replaced to the
initial condition of a dynamical cosmological constant as a problem of classical theory.
We investigate the cosmological evolution based on this model and specify an appropriate
region of the initial condition which reproduce the cosmic history. Furthermore, we will
show that this model has a stable solution which describe the de-Sitter solution.

4.1 Construction of the model
As we see in the previous section, a redefinition of Lagrange multiplier in unimodular
gravity enables us to absorb the huge quantum correction. The action is given by [104]

S =

∫ √
−gd4x [Lgravity − λ (1−∇µJ

µ)] +

∫
d4x

√
−gLmatter , (4.1.1)
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where Jµ is a vector. Similarly, when we may split Lmatter into vacuum energy and other

parts as L(0)
matter → L(0)

matter − Λ. A redefinition of λ→ λ− Λ changes the action as

S =

∫
d4x

√
−g [Lgravity − λ (1−∇µJ

µ)] +

∫
d4x

√
−gL(0)

matter − Λ

∫
d4x

√
−g∇µJ

µ ,

(4.1.2)

where we assumed that the Lgravity does not include vacuum energy. The Λ are included
only in the total derivative term. Thus, the quantum correction does not affect the
dynamics and we can ignore it. We may choose the term ∇µJ

µ in a various quantities.
For example, we may choose this term as a topological invariant quantity like the Gauss-
Bonnet invariant:

G ≡ R2 − 4RµνR
µν +RµνρσR

µνρσ (4.1.3)

or Instanton density

I ≡ 1

2
trF ∗

µν F
µν , (4.1.4)

where∗Fµν = 1
2ϵ
µνρσ is the dual field strength, and ϵµνρσ is Levi-Civita tensor. In addition

to these topological invariant terms, we may choose that Jµ as a derivative of a scalar
field −∂µφ. For simplicity, we especially consider a real scalar field. Then, the Lagrangian
except for Lgravity and Lmatter is written as

L′ ≡ −λ (1 +∇µ∂
µφ) = ∂µλ∂

µφ− λ . (4.1.5)

Note that the first term includes indefinite metric. An indefinite metric generates prob-
lems both classical and quantum theory. Classically, when we consider the Hamiltonian
mechanics in this model, we see that the Hamiltonian is unbounded and the theory is un-
stable in general. On the other hand, when we consider quantum theory, this Lagrangian
includes negative norm and unitarity is broken. To see this, we decompose λ and φ by
using other real scalar fields ξ and η as

λ =
1√
2
(η + ξ), φ =

1√
2
(η − ξ) , (4.1.6)

the Lagrangian becomes

L′ = −1

2
∂µξ∂

µξ +
1

2
∂µη∂

µη − 1√
2
(η + ξ) . (4.1.7)

Note that the kinetic term is different. This implies that negative kinetic term appears in-
evitably. A negative kinetic term implies that the Hamiltonian includes the termH ∝ −p2.
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If we do not impose the upper bound of the momentum, the Hamiltonian is unbounded
and it is unstable. Moreover, the negative kinetic term generates negative norm in quan-
tum field theory. If a theory has a negative norm, the unitarity of S-matrix is broken [106].
We may remove this negative norm by introducing Faddeev-Popov (FP) ghost c and anti-
ghost b [98–102,105,106]. Then, we may rewrite the Lagrangian as

L′′ = −λ (1 +∇µ∂
µφ)− ∂µb∂

µc = ∂µλ∂
µφ− λ− ∂µb∂

µc . (4.1.8)

When we introduce a fermionic parameter ϵ, the above Lagrangian is invariant under the
following BRS transformation [102]

δBλ = δBc = 0, δBφ = ϵc, δBb = ϵλ . (4.1.9)

Note that the BRS transformation satisfy the nilpotent condition δ2B = 0. When we define
the physical states as the states BRS invariant state, the negative norm states could be
removed consistently by the following subsidiary condition [105,106]:

QB |phys⟩ = 0 . (4.1.10)

Here, |phys⟩ is physical subspace and QB is BRS charge expressed by

QB =

∫
d4x

√
−g
[
(∂0λ)c+ λ(∂0c)

]
, (4.1.11)

in this model. Furthermore, when we assign the ghost numbers as{
c = 1

b, ϵ = −1,

the ghost number is conserved and we find that λ, φ, b and c are belong to the Kugo-
Ojima’s BRS-quartet. Then, λ and φ are identified as scalar and longitudinal mode
respectively. Furthermore, this Lagrangian can be regarded as a kind of topological field
theory [107]. In a topological field theory, the Lagrangian is described as BRS exact so that
the Lagrangian is obtained by BRS transformation of a some quantity. Therefore, from
the condition of nilpotent of the BRS transformation δ2B = 0, BRS invariance is trivial in
a topological field theory. Moreover, since the Lagrangian is BRS exact, the Lagrangian
only consists of the BRS quartet so that the Lagrangian has only gauge degrees of freedom.
Then, we consider the Lagrangian is described as the (gauge) scalar field φ and it is trivial
Lφ = 0. In this case, we impose the following gauge fixing condition as

FGF ≡ 1 +∇µ∂
µφ = 0 . (4.1.12)
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When we perform the BRS transformation in Eq. (4.1.9) of the above quantity, we find
that it corresponds to the Lagrangian L′′ in Eq. (4.1.8) up to total derivative term:

δB (−bFgauge fix) = ϵ (λ (1 +∇µ∂
µφ)− b∇µ∂

µc)

= ϵ (L′′ +Total derivative term) . (4.1.13)

Therefore, this Lagrangian is surely BRS exact and it can be regarded as a topological field
theory. From the BRS transformation Eq. (4.1.9), we identify the λ as Nakanishi-Lautrup
field [131–133]. Note that the Nakanishi-Lautrup field is expressed by BRS exact so that
the vacuum expectation value is zero ⟨0|λ |0⟩ = 0. If ⟨0|λ |0⟩ ̸= 0, the BRS symmetry is
spontaneously broken and unitarity is not guaranteed. However, as we will see in details
later, the λ is able to play a role of the cosmological constant. Thus, we should consider an
alternative way to construct the BRS transformation. Instead of the BRS transformation
in Eq. (4.1.9), we may introduce the following BRS transformation:

δBλ = δBc = 0, δBφ = ϵc, δBb = ϵ (λ− λ0) . (4.1.14)

Here, the λ0 satisfies classical field equation of motion ∇µ∂
µλ = 0. The Lagrangian

L′′ is also invariant under the above BRS transformation. Even if we take λ0 to the
cosmological constant Λeff , λ−Λeff is BRS exact and it does not have non-zero expectation
value. Therefore, λ − Λeff does not affect the physical dynamics. If λ − λ0 has non-zero
expectation value, BRS symmetry is spontaneously broken and unitarity is not preserved.
Thus, in the real world, we only choose λ as

λ = λ0 . (4.1.15)

Moreover, we should note that it is possible to include the classical fluctuation of λ0 as
long as λ0 satisfies ∇µ∂

µλ = 0. On the other hand, the quantum fluctuation is prohibited
by the BRS symmetry.

We should also note that the gauge fixing condition in Eq. (4.1.12) has a residual gauge
symmetry. In fact the gauge fixing condition in Eq. (4.1.12) has the following gauge
symmetry

φ→ φ+ δφ , (4.1.16)

where δφ satisfies ∇µ∂µδφ = 0. By using this residual gauge symmetry, we may choose
the initial condition of φ as φ = constant.

4.2 Application to the cosmological evolution
In the previous section, we may remove the quantum correction Λ by the redefinition
of the scalar field λ removing a ghost and the quantum aspect of the problem of huge
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vacuum energy is solved. That is, however, seems not to be solved from the perspective of
the cosmological constant problem. We have no prediction about the value of the current
value of the cosmological constant from λ (or λ+Λ). Since the λ is dynamical in general,
that value can be determined by the initial conditions in classical theory. In other words,
the problem of the vacuum energy in quantum theory is replaced to the problem of the
identification of the initial condition in classical theory. In this section, we consider the
cosmological evolution of this model to investigate the appropriate initial condition which
reproduces the observed universe.

4.2.1 Assumptions for the application to the cosmological evolution

We consider the following three assumptions. Firstly, we assume that the gravitational
sector is described by the Einstein gravity Lgravity = 1

2κ2R. Secondly, we assume that the
universe is flat and homogeneous isotropic. Then the metric is given by the FRW:

ds2 = −dt2 + a(t)2
3∑
i=1

(
dx2i
)
. (4.2.1)

Here, a(t) is scale factor. Finally, we assume that the scalar fields only depend on time:

λ = λ(t), φ = φ(t) . (4.2.2)

In this analysis, we do not include the ghost c and anti-ghost b since they do not affect in
the classical field theory by the super selection rule or ghost number conservation. Then,
the action is given by

S =

∫
d4x

√
−g
[

1

2κ2
R+ Λ− λ+ ∂µλ∂

µφ

]
, (4.2.3)

By the variation of the above action with respect to λ, we obtain

0 = 1 +

(
d2φ

dt2
+ 3H

dφ

dt

)
, (4.2.4)

where we defined Hubble parameter H ≡ ȧ/a. The general solution for φ is given by

φ(t) = −
∫ t dt1

a(t1)3

∫ t1

dt2a(t2)
3 + φ1

∫ t dt1
a(t1)3

+ φ2 . (4.2.5)

Here, φ1 and φ2 are some constants. On the other hand, by the variation of φ yields

0 =
d2λ

dt2
+ 3H

dλ

dt
. (4.2.6)



38Chapter 4 BRS structure of the simple model for the cosmological constant problem

The general solution of the above equation is given by

λ = λ0 + λ1

∫ t dt1
a(t1)3

, (4.2.7)

where λ0 and λ1 are some constants. Furthermore, by the variation of the metric, we
obtain the first and the second FRW equations as

3

κ2
H2 = Λ+ λ− dλ

dt

dφ

dt
+ ρmat + ρrad

− 1

κ2

(
3H2 + 2

dH

dt

)
= −Λ− λ− dλ

dt

dφ

dt
, (4.2.8)

where ρmat and +ρrad are matter density and radiation density respectively. Deleting Λ
from the above two equations, we find

1

κ2
dH

dt
=
dλ

dt

dφ

dt
. (4.2.9)

Note that when λ = λ1, H become constant and thus, we have the de-Sitter space-time
solution. From Eq. (4.2.8), we obtain the relation between λ1 and H0 as

λ1 = −Λ +
3H2

0

κ2
. (4.2.10)

As we have mentioned, λ (or λ + Λ) can surely play a role of the cosmological constant
when λ is constant. In a special case, we have a solution for φ(t) from Eq. (4.2.4),

φ(t) =
t

3H0
, (4.2.11)

in the de-Sitter solution.

4.2.2 Stability analysis

In the previous subsection, we have seen the assumption to the application to the cos-
mology and equations of motion of the scalar fields which has de-Sitter solution. In this
subsection, we investigate the stability of the de-Sitter space-time at linear level. If this
model is stable, it surely reproduces the real universe. Furthermore, a stability of the
de-Sitter solution implies that the de-Sitter space-time is a kind of attractor. Therefore,
we may expect that it may relax the initial condition of the scalar field. We consider the
perturbation of the solution of the de-Sitter space-time

H = H0 + δH, λ = −Λ +
3H2

0

κ2
+ δλ, φ =

t

3H0
+ δφ . (4.2.12)
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Substituting these into Eqs. (4.2.4), (4.2.6), and the first equation in Eq. (4.2.8), we
obtain

0 =δφ̈+ 3H0δφ̇− 1

3H0
δH ,

0 =δλ̈+ 3H0δλ̇ ,

6

κ2
H0δH =δλ+

1

3H0
δλ̇ . (4.2.13)

When we delete δH form the last two equations, we have

0 = δφ̈+ 3H0δφ̇− κ2

18H2
0

(
δλ+

1

3H0
δη

)
, (4.2.14)

where we have introduced δη as

δη ≡ δλ̇ . (4.2.15)

Then, the second equation of (4.2.13) can be rewritten by

0 = δη̇ + 3H0δη . (4.2.16)

We express these equations in the following matrix form: δλ̇
δη̇
δφ̈

 = A

 δλ
δη
δφ̇


, where we have defined the matrix A as

A ≡

 0 1 0
0 α 0
β γ α

 α ≡ −3H0, β ≡ − κ2

18H2
0

, γ ≡ −1

3
β

Then, we investigate the evolution of this perturbation. If there is a glowing mode of the
perturbation, the system is unstable. We investigate the eigenvalue of the matrix A:

0 = det (A− aI) , (4.2.17)

where a is some constant. Then, we obtain

0 = det

 −a 1 0
0 α− a 0
β γ α− a


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⇐⇒ 0 = −a(α− a)2

∴ a = 0, α (4.2.18)

The condition of unstable and stable mode is given by

• Unstable mode : α > 0
• Stable mode: α < 0

respectively. Therefore, the condition of the stable mode is

α = −3H0 < 0 =⇒ 3H0 > 0 , (4.2.19)

which always holds in the current universe. Therefore, this model is stable under the
linear perturbation and consistent with our universe.

4.2.3 Cosmology in the model

We investigate the time evolution of the scalar fields. After the inflation era, the universe
has experienced the radiation-dominated era, matter-dominated era, and dark energy-
dominated era. In the first two eras, we impose that the contribution of the scalar fields is
neglected for simplicity. On the other hand, in the dark energy-dominated era, we ignore
the matter contribution and the universe goes to the de-Sitter space time asymptotically
at late time. At each era, the scale factor is expressed by

• Radiation-dominated era

a(t) = aradt
1/2 , (4.2.20)

• Matter-dominated era

a(t) = amatt
2/3 , (4.2.21)

• Dark energy-dominated era

a(t) = aΛe
Hc

√
ΩΛt , (4.2.22)

where arad, amat and aΛ are constants which depend on the energy density of radiation,
matter, and dark energy respectively. We express the current observed value of the Hubble
constant as H0 and dark energy density parameter as ΩΛ. The scalar fields λ and φ at
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the radiation, matter, and dark energy dominated era are given by

φrad(t) = φrad2 + φrad1t−
5

4
t2, λrad(t) = λrad 1 −

2λrad 2

a3rad
t−1/2

φmat(t) = φmat2 + φmat1t−
1

6
t2, λmat(t) = λmat 1 −

λmat 2

a3mat

t−1

φΛ(t) = φΛ2 +
φΛ1

3H0

√
ΩΛ

e−3H0

√
ΩΛt − 1

3H0

√
ΩΛ

t, λΛ(t) = λΛ1 −
λΛ2

3H0

√
ΩΛa3Λ

e−3H0

√
ΩΛt ,

(4.2.23)

respectively. Here, φrad1, φrad2, λrad1, λrad2, φmat1, φmat2, φΛ1, φΛ2, λmat1, λmat2, λΛ1, and
λΛ2 are all constants. We now consider the approximation that the transition of the
radiation-dominated universe to the matter-dominated universe occurs in a moment at
t = t1. Then, we connect the scalar fields as

λrad(t1) = λmat(t1), φrad(t1) = φmat(t1) . (4.2.24)

Moreover, we connect the time derivative of these scalar fields as

dφrad

dt

∣∣∣∣
t=t1

=
dφmat

dt

∣∣∣∣
t=t1

,
dλrad
dt

∣∣∣∣
t=t1

=
dλmat

dt

∣∣∣∣
t=t1

. (4.2.25)

The above two equations yield

φmat 1 =
a3mat

a3rad
φrad 1t

1/2
1 − 13

6
a3matt

3
1 , φmat 2 = φrad 2 −

φrad 1

a3rad
t
−1/2
1 +

13

4
t21 ,

λmat 2 =

(
amat

arad

)3

t
1/2
1 λrad 2 , λmat 1 = λrad 1 −

λrad 2

a3rad
t
−1/2
1 . (4.2.26)

Similarly, when we assume that the transition of the matter-dominated era to
the dark energy-dominated era occurs at t = t2, we impose φmat(t2) = φΛ(t2),

λmat(t2) = λΛ(t2),
dφmat

dt

∣∣∣
t=t2

= dφΛ

dt

∣∣∣
t=t2

dλmat

dt

∣∣
t=t2

= dλΛ

dt

∣∣
t=t2

. Then, we find

φmat 2 −
φmat 1

a3mat

t−1
2 − 1

6
t22 =φΛ2 −

φΛ1

3H0

√
ΩΛa3Λ

e−3H0

√
ΩΛt2 − t2

3H0

√
ΩΛ

,

λmat 1 −
λmat 2

a3mat

t−1
2 =λΛ1 −

λΛ2

3Hc

√
ΩΛa3Λ

e−3Hc

√
ΩΛt2

φmat 1

a3mat

t−2
2 − 1

3
t2 =

φΛ1

a3Λ
e−3H0

√
ΩΛt2 − 1

3H0

√
ΩΛ

,
λmat 2

a3mat

t−2
2 =

λΛ2

a3Λ
e−3Hc

√
ΩΛt2 ,

(4.2.27)
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and we have the following relations of constants:

φΛ1 =
a3Λ
a3mat

t−2
2 e3H0

√
ΩΛt2φmat 1 +

a3Λe
3H0

√
ΩΛt2

3H0

√
ΩΛ

− 1

3
t2a

3
Λe

3H0

√
ΩΛt2 ,

φΛ2 =φmat 2 −
(
1− 1

3H0t2
√
ΩΛ

)
φmat 1

t2a3mat

+
2t2

9H0

√
ΩΛ

− 1

6
t22 +

1

9H2
0ΩΛ

,

λΛ2 =

(
aΛ
amat

)3

t−2
2 e3H0

√
ΩΛt2λmat 2 , λΛ1 = λmat 1 −

(
1− 1

3H0t2
√
ΩΛ

)
λmat 2

t2a3mat

.

(4.2.28)

Combining these, we may delete λmat1, λmat2, φmat1, and φmat2 as

λ0 + Λ =
3H2

c

κ2
= Λ+ λΛ1 −

λΛ2

3H0

√
ΩΛa3Λ

e−3H0

√
ΩΛt2 ,

λΛ1 =λrad1 −
λrad2
a3rad

t
−1/2
1

[
1 + t1t

−1
2

(
1− t−1

2

3H0

√
ΩΛ

)]
,

λΛ2 =λrad 2

(
aΛ
arad

)3

e3H0

√
ΩΛt2t−2

2 t
1/2
1 ,

φΛ1 =φrad 1

(
aΛ
arad

)3

t−2
2 t

1/2
1 e3H0

√
ΩΛt2

− 13

6
a3Λt

3
1t

−2
2 e3H0

√
ΩΛt2 +

a3Λe
3H0

√
ΩΛt2

3H0

√
ΩΛ

− 1

3
t2a

3
Λe

3H0

√
ΩΛt2 ,

φΛ2 =φrad 2 −

{
t
−1/2
1

a3rad
+

(
1− 1

3H0t2
√
ΩΛ

)
t
1/2
1

t2a3rad

}
φrad 1 +

2t2

9H0

√
ΩΛ

+
1

9H2
0ΩΛ

+
13

6

(
1− 1

3H0t2
√
ΩΛ

)
t31
t2

+
13

4
t21 −

1

6
t22 . (4.2.29)

Then, we may express λmat(t), λΛ(t), φmat(t) and φΛ(t) by using the parameters at the
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radiation-dominated era as

λmat(t) = λrad1 −
λrad2
a3rad

(
t
−1/2
1 + t

1/2
1 t−1

)
λΛ(t) = λrad1 −

λrad2
a3rad

t
−1/2
1

[
1 + t1t

−1
2 − t1t

−2
2

3H0

√
ΩΛ

(
1− e−3H0

√
ΩΛ(t−t2)

)]
φmat(t) = φrad2 + φrad1t+

13

12
t21 −

13

6
t1t−

1

6
t2

φΛ(t) = φrad2 + φrad1

[
(t2 +

1

3H0

√
ΩΛ

(
1− e−3H0

√
ΩΛ(t−t2)

)]
+

13

12
t21 −

13

6
t1t2 −

1

6
t22

− 1

3H0

√
ΩΛ

(
13

6
t1 +

1

3
t2 −

1

3H0

√
ΩΛ

)(
1− e−3H0

√
ΩΛ(t−t2)

)
− 1

3H0

√
ΩΛ

(t− t2) .

(4.2.30)

We then investigate the constraint of these constant parameter in the following three ways.
The first constraint is obtained from the fact that Λ + λ should be constant at the dark
energy-dominated era. Then, we require

Λ0 ∼ Λ + λΛ1
≫
∣∣∣∣ λΛ2

3H0

√
ΩΛa3Λ

e−3H0

√
ΩΛt0

∣∣∣∣ , (4.2.31)

where Λ0 and t0 is the current observed value of the cosmological constant and cosmolog-
ical time respectively. The second (third) constraints require us that the scalar fields in
the matter (radiation)-dominated era are negligible compared with the matter (radiation)
in t1 ≪ t≪ t2(t≪ t1). From the first constraint, we have

Λ0 ∼ Λ + λΛ1 ≫
∣∣∣∣ λΛ2

3H0

√
ΩΛa3Λ

e−3H0

√
ΩΛt0

∣∣∣∣ (4.2.32)

By substituting Eq. (4.2.29), Λ0 ∼ Λ + λΛ1 becomes

Λ0 ∼ Λ + λrad1 −
λrad2
a3rad

t
−1/2
1

[
1 + t1t

−1
2

(
1− t−1

2

3H0

√
ΩΛ

)]
. (4.2.33)

On the other hand, Λ0 ≫
∣∣∣ λΛ 2

3H0

√
ΩΛa3Λ

e−3H0

√
ΩΛt0

∣∣∣ yields
Λ0 ≫

∣∣∣∣ λrad2

3H0

√
ΩΛa3rad

t−2
2 t

1/2
1 e−3H0

√
ΩΛ(t0−t2)

∣∣∣∣ . (4.2.34)
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From the second constraint, in the matter-dominated era t1 ≪ t≪ t2, we obtain

Λ + λrad 1 −
λrad 2

a3rad
t
−1/2
1

(
1 + t1t

−1
)

− λrad 2

a3rad
t
1/2
1

{(
t
1/2
1

a3rad
φrad 1 −

13

6
t31

)
t−4 − 1

3
t−1

}
≪ ρ = Ωmρ0a

−3
matt

−2 , (4.2.35)

where Ωm is the density parameter of the matter and ρ0 is the critical density denoted as

ρ0 =
3H2

0

8πG
G : Newton’s gravitational constant . (4.2.36)

Similarly, from the third constraint, in the radiation-dominated era t≪ t1 we obtain

Λ + λrad 1 −
λrad 2

a3rad

(
φrad 1

a3rad
t−3 − 5

2
t−1/2

)
≪ ρ = Ωrρ0a

−4
radt

−2 . (4.2.37)

Here, Ωm is the density parameter of the radiation. Although we cannot solve the con-
straint in Eq. (4.2.35) and (4.2.37) straightforwardly, we continue to investigate these
constraints in the following two assumptions. Firstly, when we consider the transition
of matter to dark energy-dominated era at t2, the right-hand side is almost equal to the
left-hand side. When t goes to t1, the term which is proportional to t−4 dominates. Thus,
the constraint Eq. (4.2.35) becomes∣∣∣∣λrad 2

(
φrad 1 −

13

6
a3radt

5/2
1

)∣∣∣∣≪ Ωmρ0
a6rad
a3mat

t1 . (4.2.38)

To consider the beginning of the radiation-dominated era, we define t3 as the beginning
of the radiation-dominated universe. Then, when we take t to t3 in Eq. (4.2.37), the term
including t−3 dominates and we obtain

|λrad 2φrad 1| ≪ Ωrρ0a
2
radt3 . (4.2.39)

We then investigate details of the constraint Eq. (4.2.33), (4.2.34), (4.2.38), and (4.2.39).
Therefore, we use the following values of the cosmological parameters in [108] to obtain
the constraints of λrad1, λrad2, φrad1 and λrad2.

• The scale factor and the cosmological time when the radiation density was equal to
the matter density :
arm = 2.8× 10−4, t1 = 4.7× 104 yr∼ 1.5× 1012 s= 2.3× 1027 [eV−1]

• The scale factor and the cosmological time when the radiation density was equal to
the matter density :
amΛ = 0.75, t2 = 9.8× 109 yr∼ 3.1× 1017 s= 4.7× 1032 [eV−1]
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• The scale factor and the cosmological time at the beginning of the radiation era:
t3 = 1.0× 10−38 s= 1.5× 10−20 [eV−1]

• The current value of the scale factor and the cosmological time :
a0 = 1, t0 = 13.5× 109 yr∼ 4.3× 1017 s= 6.5× 1032 [eV−1]

• The current value of the Hubble parameter :
H0 = 70 kms−1Mpc−1 ∼ 2.2× 10−18 s−1 = 1.5× 10−33 [eV]

• The density parameter of the radiation : Ωr = 8.4× 10−5

• The density parameter of the matter: Ωm = 0.3

• The density parameter of the dark energy : ΩΛ ∼ 0.7

• arad ∼
(
2H0

√
Ωr

)1/2
= 2.0× 10−10 s−1/2 = 5.4× 10−18 [eV1/2]

• amat ∼
(
2
3H0

√
Ωm

)2/3 ∼ 5.7× 10−13 s−2/3 = 6.7× 10−23 [eV2/3]

• aΛ ∼ 0.2 [0]

• The critical density : ρo =
3H2

0

8πG = 5× 10−24 kgm−3 = 4.2× 10−11 [eV4]

• Newton’s gravitational constant : G ∼ 6.6×10−11 m3kg−1s−2 = 6.7×10−57 [eV−2]

• The current value of the cosmological constant : Λ0 ∼ 10−11 [eV4]

Then, the constraints in Eqs. (4.2.33), (4.2.34), (4.2.38), and (4.2.39) can be rewritten as,
Λ + λrad1 − λrad2 ∼ 10−11 [eV4] ,

|λrad2| ≪ 10−47 [eV5] ,∣∣λrad 2

(
φrad 1 − 7.3× 1016

[
eV−1

])∣∣≪ 10−23
[
eV4

]
,

|λrad 2φrad 1| ≪ 10−62
[
eV4

]
.

The first constraint of the above expression tells us that we may need fine-tuning of the
initial condition of the scalar fields. We now investigate more about the initial condition
of the scalar field λ. When we choose t as the present time t = t0, we obtain

λ(t0) ∼ 10−11[eV4] ∼ λrad 1 −
λrad 2

6.4× 10−39[eV]
. (4.2.40)
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Then, we have

λrad 1 ∼
(
10−3 [eV]

)4
, λrad 2 ∼

(
10−10 [eV]

)5
. (4.2.41)

This seems that the obtained value is very small. Although it might not be natural,
we assume that λrad 1 = 0. We then find that the value of λ at the beginning of the
radiation-dominated era becomes

λ = λrad(t3) ∼ (0.1 [keV])
4
. (4.2.42)

This implies that even if the current value of λ(t0) is λ(t0) ∼ 10−11[eV4], at the beginning

of the radiation-dominated universe, it becomes, λrad(t3) ∼ (0.1 [keV])
4
. Note that the

converse is not possible since λrad 1 is not zero in general. If we once require λrad(t3) ∼
(0.1 [keV])

4
at t = t3, we may find λ ∼ (0.1 [keV])

4 ≫ 10−11[eV4].
In this analysis, we have used the approximation that the scalar fields change in a

moment at the transition of the each era. We now solve Eqs. (4.2.4), (4.2.6), and the
first equation of (4.2.8) numerically. In.Fig 4.1, the time evolution of λ is shown. The
λ at the beginning of the radiation-dominated universe is consistent with the analytical
approximation in (4.2.41). In Fig. 4.2, the time evolution of ϕ is shown. Here, the value of
ϕ is given by the scaling of φ as ϕ ≡M3

Plφ. The evolution of the energy density is shown in
Fig. 4.3. We choose λrad 1 and λrad 2 to realize the current value of the dark energy density
in our universe. Note that in the matter-dominated era or the radiation-dominated era,
we see that one can surely ignore the dark energy density.
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4.3 Remarks
Note that this model realizes the de-Sitter space-time solution keeping one of the scalar
fields φ to be dynamical. This implies that we may evade the Weinberg’s no-go theorem.
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Remember that the Weinberg’ no-go theorem assumes that all fields will be constant at
late time. As a result, they need fine-tuning of the flat potential of scalar fields. Contrary
to this, we have obtained the dynamical solution of the scalar field at late-time. Therefore,
we do not have to fine-tune the potential as we did in no-go results.
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Chapter 5

Construction of renormalization group

of the topological model

In the previous chapter, we discussed the topological model in order to solve the cosmo-
logical constant problem. A part of the Lagrangian is described by BRS exact so that it
can be regarded as a kind of topological field theory. In this chapter, we will see that the
coupling constants including the cosmological constant changes as the universe expands.
This behavior is analogous to the renormalization group equation (RGE) since the cou-
plings run in response to the change of energy scale of the universe. Motivated by these
models, we propose new model which has two fixed points. One is an infrared (IR) fixed
point may realize the late-time acceleration of the universe. The other is an ultraviolet
(UV) fixed point which realize the inflation in the early universe. Especially, we construct
a model which realize de-Sitter space-time solution at the UV and IR fixed points.

5.1 Generalization of the topological model
We have assumed that the vacuum energy gravitates only as the cosmological constant.
In general, the huge quantum corrections from matter fields appear not only as the cosmo-
logical constant but also as other coupling constants. Although if we include the quantum
corrections only from matter field, huge quantum corrections appear the following four
coupling constants as

Lqc = αR+ βR2 + γRµνR
µν + δRµνρσR

µνρσ , (5.1.1)

where α, β, γ and δ are coupling constants which diverge. Note that when we include the
quantum correction, infinite number of counter term appear. This is one of the reasons
that general relativity is not renormalizable theory. In [109], the generalized topological
model has been proposed. The Lagrangian is given by

L = −Λ + LG + Lqc + Lλ,φ + LFP , (5.1.2)
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where

LG ≡ −λ(Λ) + λ(α)R+ λ(β)R
2 + λ(γ)RµνR

µν + λ(δ)RµνρσR
µνρσ

Lλ,φ ≡ ∂µλ(Λ)∂
µφ(Λ) + ∂µλ(α)∂

µφ(α) + ∂µλ(β)∂
µφ(β) + ∂µλ(γ)∂

µφ(γ) + ∂µλ(δ)∂
µφ(δ)

LFP ≡ −∂µb(Λ)∂
µc(Λ) − ∂µb(α)∂

µc(α) − ∂µb(β)∂
µc(β) − ∂µb(γ)∂

µc(γ) − ∂µb(δ)∂
µc(δ) .

(5.1.3)

Here, i denotes (i = Λ, α, β, γ, δ), λi and φi are scalar fields, bi and ci are FP ghosts and
anti-ghosts respectively. Note that if we choose that i = Λ and λ(α) = 1

2κ2 = constant,
this Lagrangian corresponds to the Lagrangian in (4.1.8). When we redefine the λi as

λi → λi − i , (5.1.4)

the cosmological constant Λ and Lqc term vanish and we obtain

L = LG + Lλ,φ + LFP . (5.1.5)

We see that the quantum corrections do not affect to the dynamics by the shift of the
scalar field λ again. The Lagrangian is invariant under the following BRS transformations:

δBλ(i) = δBc(i) = 0, δBφ(i) = ϵc, δBb(i) = ϵ
(
λ(i) − λ(i)0

)
, (5.1.6)

where λ(i)0 satisfy the classical equations of motion:

0 = ∇µ∂µλ(i)0 . (5.1.7)

Furthermore, we may regard this Lagrangian as a kind of topological field theory including
gravity if λ(i)0 = 0. In fact, the Lagrangian is obtained by the BRS transformations (5.1.6)
as

δB (−biFGF) = ϵ (L+ total derivative)

FGF ≡
∑

i=Λ,α,β,γ,δ

(
O(i) +∇µ∂

µφ(i)

)
. (5.1.8)

Here, we introduced the possible gravitational operator O(i) as

O(1) = 1, O(α) = R, O(β) = R2, O(γ) = RµνR
µν , O(δ) = RµνρσR

µνρσ . (5.1.9)

We may further generalize the Lagrangian by introducing the possible gravitational oper-
ator O(i) as

L =
∑
i

(
λ(i)O(i) + ∂µλ(i)∂

µφ(i) − ∂µb(i)∂
µc(i)

)
. (5.1.10)

When we choose O(Λ) = 1 and O(α) = R, it corresponds to the Lagrangian (4.1.8). The
above model can be also regarded as a kind of topological field theory including gravity.



5.2 Model motivated by the RGE 53

5.2 Model motivated by the RGE
In this section, we construct a kind of renormalization group equation (RGE) by using
the special case of the Lagrangian in (5.1.10).
As well-known, higher derivative gravitational theory can be renormalizable but at the

same time there includes the ghosts and thus the higher derivative gravity model losts
unitary [110–113]. Since the divergences from the quantum correction can be removed,
our model can be renormalizable. However, the unitarity is not guaranteed since the
Lagrangian in (4.1.8) have the higher derivative in general. The predictability is an
important criterion whether the theory can be renormalizable or not. When we consider
the quantization of gravitational theory from general relativity, we need to introduce an
infinite number of the counterterms to cancel the divergences. However, because of an
infinite number of the counter terms, we have to abandon the predictability. The model In
(5.1.10) seems that this model do not have the problem of these divergence. It is, however,
we need an infinite number of initial condition alternatively since the scalar fields become
dynamical and thus predictability is losts. However, note that if the scalar fields have a
certain fixed point, we may recover the predictability. Thus, in this section, we try to
construct the model which have the fixed point to recover the predictablility.

In this analysis, we consider the flat FRW metric:

ds2 = −dt2 + a(t)2
3∑
i=1

(
dxi
)2
. (5.2.1)

Eq. (5.1.7) implies that the scalar fields λ(i) are characterized by the scale factor a(t).
Note that λ(i) are identified with the operators O(i). The a(t) dependence of these scalar
fields is analogous to the renormalized coupling constant. Based on the above insight,
we construct the model which has infrared (IR) fixed point regarded as the late-time
acceleration and ultraviolet (UV) fixed point regarded as the early time inflation.

Instead of (5.1.6), we use the following BRS transformation:

δBλ(i) = δBc(i) = 0, δBφ(i) = ϵc(i), δBb(i) = ϵλ(i) . (5.2.2)

We then consider the BRS transformation of the some quantity as

δB

 ∑
i=Λ,α

(
b(i)
(
Oi +∇µ∂

µφ(i) + fi
(
λ(j)

)
φ(i)

)) = ϵL+ (total derivative) , (5.2.3)
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where fi
(
λ(j)

)
is a function of λ(i). Then the Lagrangian in Eq. (5.2.3) is written as

L =
∑
i

(
λ(i)O(i) + ∂µλ(i)∂

µφ(i) + λ(i)fi
(
λ(j)

)
φ(i) − ∂µb(i)∂

µc(i) − fi
(
λ(j)

)
b(i)c(i)

)
.

(5.2.4)
From Eq. (5.2.3), the gauge fixing condition is given by

FGF =
∑
i=Λ,α

(
Oi +∇µ∂

µφ(i) + fi
(
λ(j)

)
φ(i)

)
. (5.2.5)

Note that this gauge fixing condition is different from Eq. (5.1.8). Varying L with respect
to φi, we obtain

□λ(i) = −λ(i)fi
(
λ(j)

)
. (5.2.6)

In the FRW background in Eq. (5.2.1), the above equations become

d2λ(i)

dt2
+ 3H

dλ(i)

dt
= λ(i)fi

(
λ(j)

)
, (5.2.7)

where H ≡ ȧ/a is the Hubble parameter. When we define the parameter τ as, τ ≡ ln a,
we then find

d

dt
= H

d

dτ
,
d2

dt2
= H2 d

2

dτ2
+ Ḣ

d

dτ
. (5.2.8)

From Eq. (5.2.8), we may rewrite the Eq. (5.2.7) as

H2

{
d2λ(i)

dτ2
+

(
3 +

Ḣ

H2

)
dλ(i)

dτ

}
= λ(i)fi

(
λ(j)

)
. (5.2.9)

Since the change of the scale factor a(t) can be regarded as the scale transformation, we
may consider the following RGE:

dλ(i)

dτ
= gi

(
λ(j)

)
. (5.2.10)

In the above expression, gi can be regarded as the beta function in RGE which determine
the response of the scale transformation. In cosmology, the Hubble parameter H is usually
treated as energy scale. On the other hand, in an analogy with the RGE in the quantum
field theory, suggest that we can alternatively use the scale factor a(t) as the energy scale.
Then we obtain

d2λ(i)

dτ2
=
∑
k

∂gi
(
λ(j)

)
∂λ(k)

gk
(
λ(j)

)
. (5.2.11)
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Therefore, by using gi, Eq. (5.2.9) can be rewritten by

fi
(
λ(j)

)
=
H2

λ(i)

{∑
k

∂gi
(
λ(j)

)
∂λ(k)

gk
(
λ(j)

)
+

(
3 +

Ḣ

H2

)
gi
(
λ(j)

)}
. (5.2.12)

Note that RGE in Eq. (5.2.7) requires fi
(
λ(j)

)
not to be time dependent. Thus, from the

above expression in Eq. (5.2.12), it seems that we can only have any physical meaning
when the Hubble parameter is a constant at least in the neighborhood of the fixed point.
In other words, the space-time have to be described by the de Sitter space-time solution at
least asymptotically. As we will see later, we construct the model with the renormalization
flow which connect the two fixed points corresponding to UV and IR fixed point. Since
the value of H is different between inflation and late-time acceleration, H have to change
during the cosmological evolution. However, as we will see later, we can impose the scale
dependence of H into fi

(
λ(j)

)
or gi

(
λ(j)

)
. In this analysis, we assume that there is a

UV or IR fixed point in the RGE in Eq. (5.2.10). In the early time or late time of the
universe, we suppose that the space-time asymptotically goes to the de Sitter solution.
When we properly choose fi

(
λ(j)

)
by Eq. (5.2.12), the early universe is identified with

the ultraviolet (UV) fixed point and the late time universe is identified with the IR fixed
point. Because the change of τ is identified with the change of the scale and therefore τ
is described by using the scale factor as a = eτ . We define the UV limit and IR limit by
using the relation of τ and a. For the UV limit, we take τ → −∞ and at the same time,
we obtain a → 0. On the other hand, for the IR limit, we take τ → ∞ and similarly we
have, a → ∞. Firstly, we consider the UV fixed point λ → λ∗UV and its neighborhood.
We assume the following condition in the neighborhood of the UV fixed point λ∗UV:

dg(i)
(
λ(j)

)
dλ(i)

> 0 . (5.2.13)

Then we obtain
g(i)

(
λ(j)

)
≈ r(i)UV

(
λ(j)

) (
λ(i) − λ(i)UV

)
, (5.2.14)

in the neighborhood of the UV fixed point. Here, we denote r(i)UV as a function of λ(j)
which satisfy r(i)UV

(
λ(j)

)
> 0. If r(i)UV

(
λ(j)

)
is possible to be approximately constant

when λ(i) ≈ λ∗UV, we obtain

r(i)UV

(
λ(j)

)
≈ r(i)UV

(
λ(j)UV

)
. (5.2.15)

Then, Eq. (5.2.10) can be solved by

λ(i) ≈ λ(i)UV + λ(i)UV0a(t)
r(i)UV(λ(j)UV) , (5.2.16)
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where λ(i)UV0 is an integration constant. Secondly, we consider the IR fixed point. In the
UV fixed point case, we assumed that the condition in Eq. (5.2.13). On the other hand,
in the IR fixed point case, we assume that

dg(i)
(
λ(j)

)
dλ(i)

< 0 , (5.2.17)

in the neighborhood of the IR fixed point. Therefore, the solution can be obtained from
the replacement of r(i)UV → −r(i)IR and λ(i)UV → λ(i)IR. Then we have

g(i)
(
λ(j)

)
≈ −r(i) IR

(
λ(j)

) (
λ(i) − λ(i)R

)
, (5.2.18)

λ(i) ≈ λ(i)IR + λ(i)IR0

(
1

a(t)

)r(i)IR((λ(j)IR))
, (5.2.19)

where λ(i)IR0 is also an integration constant. Note that if a(t) → 0 in Eq. (5.2.16) or
a(t) → ∞ in Eq. (5.2.19), they go to λ(i)UV and λ(i)UV respectively. Therefore, as long
as we require that Eqs. (5.2.16) and (5.2.19) in the neighborhood of the UV and IR
fixed point respectively, we may surely obtain the UV and IR fixed point respectively.
Therefore, in the neighborhood of the UV fixed point, fi

(
λ(j)

)
is written as

fi
(
λ(j)

)
=

H2

λ(i)UV

(
r(i)UV

(
λ(j)UV

)
+ 3
)
r(i)UV

(
λ(j)UV

) (
λ(i) − λ(i)UV

)
+O

((
λ(i) − λ(i)UV

)2)
.

(5.2.20)
Similarly, in the neighborhood of the IR fixed point, we obtain

fi
(
λ(j)

)
=

H2

λ(i)IR

(
r(i)IR

(
λ(j)IR

)
− 3
)
r(i)IR

(
λ(j)IR

) (
λ(i) − λ(i)IR

)
+O

((
λ(i) − λ(i) IR

)2)
.

(5.2.21)
When we only consider the Einstein gravity with cosmological constant, the action is given
as

S =

∫
d4x

√
−g

λ(α)R− λ(Λ) +
∑
i=Λ,α

(
∂µλ(i)∂

µφ(i) − ∂µb(i)∂
µc(i) + λ(i)f(i)

(
λ(j)

)
φ(i)

)
+ Smatter . (5.2.22)

By varying the above action with respect to metric gµν , we obtain

λ(α)Gµν +
1

2
λ(Λ)gµν

+
∑
i=Λ,α

[
1

2
gµν

(
∂ρλ(i)∂

ρφ(i) + λ(i)f(i)
(
λ(j)

)
φ(i)

)
+ ∂µλ(i)∂νφ(i)

]
= Tµν , (5.2.23)
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where we ignored the FP ghost terms since we only consider the classical dynamics. As
we did in the previous chapter, we assume that the scalar fields depend only on time:

λ(i) = λ(i)(t), φ(i) = φ(i)(t) (5.2.24)

Then, under the flat FRW background, Eq. (5.2.23) becomes,

H2 =
1

6λ(α)

λ(Λ) − 3Hλ̇(α) −
∑
i=Λ,α

(
λ̇(i)φ̇(i) − λ(i)fi (λj)φ(i)

) . (5.2.25)

When we consider the neighbourhood of the UV fixed point, the above equation becomes

H2 ≈ 1

6λ(α)

(
λ(Λ)UV + λ(Λ)UV0a(t)

r(Λ)UV(λ(j)UV) − 3Hλ̇(α)

+
∑
i=Λ,α

r(i)
(
λ(j)

)
Ha(t)r(i)(λ(j))λ(i)UV0φ̇(i)

)

+
H2

6λ(α)

∑
i=Λ,α

{∑
k

∂gi
(
λ(j)

)
∂λ(k)

gi
(
λ(j)

)
+

(
3 +

Ḣ

H2

)
gi
(
λ(j)

)}
φ(i) . (5.2.26)

When we take the UV limit:

a(t) → 0, g(i) → 0, λ(i) → λ(i)UV , (5.2.27)

we surely obtain the de-Sitter spacetime solution as

H = HUV =

√
λ(Λ)UV

6λ(α)UV
= const . (5.2.28)

Similarly, in the neighborhood of the IR fixed point, we obtain

H2 ≈ 1

6λ(α)

(
λ(Λ)IR + λ(Λ)IR0a(t)

−r(Λ)IR(λ(j)IR) − 3Hλ̇(α)

−
∑
i=Λ,α

r(i)
(
λ(j)

)
Ha(t)−r(i)(λ(j))λ(i) IR 0φ̇(i)

)

+
H2

6λ(α)

∑
i=Λ,α

{∑
k

∂gi
(
λ(j)

)
∂λ(k)

gi
(
λ(j)

)
+

(
3 +

Ḣ

H2

)
gi
(
λ(j)

)}
φ(i) . (5.2.29)
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When we take the IR limit,

a(t) → ∞, g(i) → 0, λ(i) → λ(i)IR , (5.2.30)

we have the de-Sitter solution again:

H = HIR =

√
λ(Λ)IR

6λ(α)IR
= const. (5.2.31)

We then try to construct the specific model motivated by RGE. We require that we connect
the UV fixed point and IR fixed point by using renormalization flow. We then consider
the following simple form:

f(i)
(
λ(j)

)
= A(i)

(
λ(j)

) (
λ(i) − λ(i)UV

) (
λ(i) − λ(i)IR

)
, (5.2.32)

where A(i)

(
λ(j)

)
is a positive function of λ. Comparing the above expression and (5.2.20),

we obtain

λ(Λ)UV

6λ(α)UVλ(i)UV

(
r(i)UV

(
λ(j)UV

)
+ 3
)
r(i)UV

(
λ(j)UV

)
= A(i)

(
λ(j)UV

) (
λ(i)UV − λ(i)IR

)
,

(5.2.33)
in the neighborhood of UV fixed point. We may solve this equation with respect to r(i)UV

as

r(i)UV = −3

2
+

1

2

√
9 +

24λ(α)UVλ(i)UVA(i)

(
λ(j)UV

)
λ(Λ)UV

(
λ(i)UV − λ(i)IR

)
. (5.2.34)

When we assume that λ(i)UV > λ(i)IR, the requirement of positive λ(i)UV is automatically
satisfied. On the other hand, when we consider in the neighborhood of the IR fixed point,
we obtain

λ(Λ)IR

6λ(α)IRλ(i)IR

(
r(i)IR

(
λ(j)IR

)
− 3
)
r(i)IR

(
λ(j)IR

)
−A(i)

(
λ(j)IR

) (
λ(i)UV − λ(i)IR

)
,

(5.2.35)
We may also solve this equation with respect to r(i)IR as

r(i)IR =
3

2
± 1

2

√
9−

24λ(α)IRλ(i)IRA(i)

(
λ(j)IR

)
λ(Λ)IR

(
λ(i)UV − λ(i)IR

)
. (5.2.36)

For a positive r(i)IR and , we impose that

9 ≥
24λ(α)IRλ(i)IRA(i)

(
λ(j)IR

)
λ(Λ)IR

(
λ(i)UV − λ(i)IR

)
, λ(i)UV > λ(i)IR . (5.2.37)

Thus, as long as A(i)

(
λ(j)IR

)
satisfies (5.2.37), we can surely connect the UV fixed point

and IR fixed point by the renormalization flow f(i)
(
λ(j)

)
in Eq. (5.2.32).
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5.3 Summary
In this chapter, we have constructed models of topological field theory which includes
gravity based on the model in [104], [103], and [109]. In these models, the coupling
constants are described by scalar fields λ(i)(x). This parameter runs as the scale of the
universe changes. Therefore, we can analogously identify λ(i)(x) as running coupling
constants in RGE. As an example, we have proposed a model which connects the inflation
in the early universe and the accelerating expansion of the present universe. The inflation
and the late the acceleration are generated by the de-Sitter space-time solution with UV
and IR fixed point, respectively. However, we note that several problems which ruin the
useful characteristic in the original models still remain.

1. Since the Lagrangian has the non-linear term of λ(i), we cannot absorb the huge
vacuum energy contribution as we did in [104], [103], and [109].

2. Although we need to have non-zero λ(i) in the real universe, there is no physical
degrees of freedom of λ(i) in the BRS transformation in Eq. (5.2.2). It implies that
this BRS transformation is spontaneously broken.

3. Although the original model in [103,104,109] has no physical parameters if λ(i)0 = 0,
the models proposed in this paper should have several parameters.

Therefore, it is interesting if we construct any model which solve some of the above
problems by keeping the structure similar to the RGE. In this chapter, we have constructed
models where the scalar fields λ(i)’s play the role of the running coupling constants as
in the RGE. We have treated the scalar fields as classical fields although the RGE in
quantum field theory, origins from the quantum effect. Therefore, the models proposed in
this chapter might be realized by the effective field theory which connect the low energy
region with the high energy regions. If these models are really given as a kind of effective
field theories, we do not have to impose that the models satisfy the unitarity and evading
the ghosts. We have succeeded to construct such models and we have shown that we can
construct the model with two fixed points with proper flow.

The models have, however, arbitrariness, which could be removed by the constraints
from the observations and/or the consistencies of the models.

We further mention that there is possibility to approach the cosmological constant
problem in this model. In chapter 3, we saw that in the model in Eq. (4.1.8), we need
the fine-tuning of the initial condition of the dynamical scalar field. This imply that the
dynamics of the scalar field which realize our current universe is sensitive to the change of
the initial condition and therefore it seems that we cannot solve the cosmological constant
problem consistently. On the other hand, in this chapter the model in Eq. (5.2.22) has
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the non-dynamical initial condition. Therefore, even the model in Eq. (5.2.22) in this
chapter does not have the full property in Eq. (4.1.8), there is a possibility that we can
replace the problem of the fine-tuning of the initial condition of the dynamical scalar field
with the choice of the two fixed points. Thus, we can approach the cosmological constant
problem in this manner.
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Chapter 6

Conclusions

6.1 Summary and discussion
In chapter 1, we discussed the cosmological constant problem in details. The cosmolog-
ical constant problem emerges from two well-established theory, general relativity and
quantum field theory. We do not consider the ground state vacuum energy in quantum
field theory because it does not affect the experiments. This effect is, however, appear
explicitly when we consider general relativity based on the equivalence principle and the
general coordinate covariance. Although the cosmological constant is regarded as the vac-
uum energy in this manner, the naturally expected value of the quantum field theory is
much too larger than the observed one. This implies that we need tremendous fine-tuning
of the counter term. In addition to this, a further complication appears when we con-
sider the phase transition. This involves change of the vacuum energy which is also much
larger than the observed cosmological constant. Then, we may consider screening of the
cosmological constant by the dynamical scalar fields. However, we again stress that if we
work on the cosmological constant problem by using additional scalar fields, we need to
overcome Weinberg’s no-go theorem.
In chapter 2, we therefore discussed some attempts which might work the solution of the

cosmological constant problem. There are many attempts to solve the fine-tuning of the
cosmological constant. We have proposed the three attempts for solving the cosmological
constant problem. They do not seem to work well to solve the cosmological constant
problem completely.
In chapter 3, we reviewed the unimodular gravity in details. We only consider the

original model of unimodular gravity in chapter 2. We generalized the original model and
discussed the quantum theory of unimodular gravity.
In chapter 4, we proposed the model for solving the cosmological constant problem

motivated by the extension of the unimodular gravity. In this model, one of the Lagrangian
is regarded as a kind of topological field theory since the Lagrangian is described as BRS
exact. The important point was that we mainly considered the cancellation of the huge
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vacuum energy by the redefinition of the dynamical scalar field. Therefore, the fine-
tuning problem in quantum theory is replaced by the problem of initial condition in
classical theory. This system is stable under the de-Sitter space-time which describes the
dynamics of the late time universe. Therefore, we may expect that the initial condition of
the scalar field will be relaxed. As a result, it seems that we need fine-tuning of one of the
parameters of the scalar fields. However, there is a possibility that this model may relax
the original degree of the fine-tuning. Since one of the scalar fields remains dynamical at
the late-time, this model evades Weinberg’s no-go theorem which assume that all fields
become constant at the late-time.

In chapter 5, we further generalized the model in chapter 4. We extended the vacuum
energy cancellation mechanism described by a kind of topological field theory to the
higher curvature gravitational theory. From the perspective of the renormalizability and
predictability, we considered a topological field theory including gravity motivated by
RGE. Since the scalar fields are dynamical, we need an infinite number of counter term
and we lose predictability. These scalar fields can be regarded as coupling constants
depending on the scale factor. Therefore, the scale factor is identified with the scale
transformation and then we may construct like RGE. We then assumed the existence of
the UV and IR fixed points which correspond to the inflation and late-time acceleration
respectively and connected them by RG flow. Then, we expected that the predictability
could be recovered since the fixed points are not dynamical. Finally, we proposed the
model with a simple form of the RG flow and investigated the region which connect the
IR and UV fixed point properly. Furthermore, we mentioned the possibility that this
model can approach the cosmological constant problem.

6.2 Future directions

6.2.1 Generalization of the no-go evading Lagrangian

We proposed the Lagrangian which evades Weinberg’s no-go theorem. It seems that we
may generalize this type of Lagrangian. The indefinite metric term plays an important
role for evading no-go result keeping the system has the de-sitter space-time solution.
The fields are assumed to be space-time “independent” at late times in the Weinberg’s
assumption. Weinberg assumed that all fields are Poincaré invariant. On the other hand,
we allowed it to be broken in the only scalar fields sector. In other words, we preserve
Poincaré invariance at the level of curvature, but not at the level of the scalar fields. We
have considered that there is no equilibrium solution for one of the scalar fields in the
chapter 3. In chapter 3, we considered only one scalar field. We may add extra scalar
fields to obtain a general Lagrangian which evades the no-go theorem. It seems, however,
that we need to introduce an indefinite metric to reproduce such a Lagrangian in general.
If we introduce an indefinite metric, a ghost problem reappears as we saw in chapter 3.
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To avoid ghosts, we may have two choices. One is to consider only an effective theory.
The indefinite metric generates negative norm and unitarity is not guaranteed. On the
other hand, we do not have to consider that unitarity when we consider only an effective
theory, . We may need to modify the problem of the divergence of the vacuum energy
since the vacuum energy depends on the cutoff scale. Furthermore, as we discussed in
chapter 2, the cosmological constant is extremely sensitive to UV physics. Therefore, it is
doubtful to consider the effective theory which involves the cosmological constant in this
manner. The other is that we may extend the BRS transformation to the multi-fields. In
chapter 3, we considered the BRS transformation which makes one of the scalar fields to
be a physical quantity. By introducing multi-scalar fields, and considering the generalized
BRS transformation, we may keep some of scalar fields to be physical and the other fields
to be gauge degrees of freedom avoiding the problem of ghosts.
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Appendix A

Other attempts for solving the

cosmological constant problem

In chapter 2, we reviewed representative attempts for approaching the cosmological con-
stant problem. There are, however, many other attempts still remain, In this Appendix,
other approaches to the cosmological constant problem are given.

A.1 Vacuum energy sequester
The global vacuum energy sequester model has ben proposed in [118,119]. In this model,
the vacuum energy coming from matter can be consistently removed by introducing the
global variables to general relativity. Furthermore, we can evadeWeinberg’s no-go theorem
and radiative instability. In addition to this, we can approach the coincidence problem in
this model.

A.1.1 The model

In the global vacuum energy sequester model, the action with the classical cosmological
constant is given by

S =

∫
d4x

√
−g
[
M2
Pl

2
R− Λ

]
−
∫
d4x
√
−g̃L (g̃µν ,Φ) + F

(
Λ

λ4µ4

)
, (A.1.1)

where µ expresses scale parameter and λ is chosen as the hierarchy between matter scales
mphys and Planck mass Mpl:

mphys

Mpl
∝ λ . (A.1.2)

We assume that the matter Φ minimally couples to the rescaled metric g̃µν = λ2gµν . The
important point of this model is that we regard the Λ and λ as dynamical valuables and
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we define F as a function of Λ, λ and µ. By the variation of the action in Eq. (A.1.1)
with respect to gµν , Λ and λ, we obtain the following equation of motion:

M2
plGµν = −Λgµν + λ4T̃µν , (A.1.3)

F ′

λ4µ4
=

∫
d4x

√
−g , (A.1.4)

4Λ
F ′

λ4µ4
=

∫
d4x

√
−gλ4T̃ , (A.1.5)

respectively. Here, we define F ′ = dF (x)
dx and T̃ is the trace of the energy-momentum

tensor T̃µν defined by

T̃µν =
2√
−g

δ

δg̃µν

∫
d4x
√

−g̃L (g̃µν ,Ψ) . (A.1.6)

We assume that the space-time volume of the universe is finite. To realize this, we need
to impose the following two properties to the universe.

1. The universe is closed, i.e., the curvature is positive K > 0.
2. The universe finally goes to Big crunch.

Then, we can consistently define the space-time average quantity as

⟨A⟩ =
∫
d4x

√
−gA∫

d4x
√
−g

, (A.1.7)

where A is an arbitrary quantity. A quantity ⟨A⟩ is well defined if the above two properties
are satisfied. Therefore, the Eqs. (A.1.4) and (A.1.5) become

Λ =
1

4
⟨T ⟩ , λ−4Tµν ≡ T̃µν . (A.1.8)

Then, Eq. (A.1.3) can be rewritten as

M2
PlGµν = Tµν −

1

4
gµν ⟨T ⟩ . (A.1.9)

Note that the vacuum energy contribution Λ to the equation is irrelevant. When we split

the Tµν into the vacuum energy contribution Vvac and other parts T
(0)
µν as

Tµν = gµνVvac + T (0)
µν , (A.1.10)

Eq. (A.1.9) becomes

M2
PlGµν = T (0)

µν − 1

4
gµν

⟨
T (0)

⟩
. (A.1.11)
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Therefore, the vacuum energy is consistently removed in the equation of motion in Eq.
(A.1.12) and we find that the effective cosmological constant in the sequester model Λseq

is expressed as

Λseq ≡
⟨
T (0)

⟩
. (A.1.12)

Note that this quantity only depends on the space-time average of the matter fields. In
other words, the effective cosmological constant is not sensitive to the radiative correction
and we can avoid radiative instability. We also note that we can evade Weinberg’s no-go
theorem in this manner. Finally, we mention about the relation of coincidence problem
between the sequester model. Since the effective cosmological constant is expressed by
the space-time average of the trace of energy-momentum tensor of matter, it can be the
clue of solving the coincidence problem. If we take the proper boundary of space-time,
the ratio of the cosmological constant and matter can be comparable.

A.1.2 Relation with naturalness

We review the sequester model in the perspective of naturalness. In this model, there are
two types of symmetries. One is the scale symmetry which is described as

Λ ⇒ A4Λ, λ⇒ Aλ, gµν = ηµν +
hµν
MPl

→ ηµν
A2

+
hµν
MPlA

. (A.1.13)

Then, the action becomes

S → S +O
(

1

MPl

)
. (A.1.14)

When we take MPl → ∞, the action is invariant under the scale transformation in Eq.
(A.1.13). The other is the shift symmetry written as

L ⇒ L+B, Λ ⇒ Λ +Bλ4 . (A.1.15)

Then the action is also invariant under the above transformation as long as µ→ ∞:

S → S +O
(

1

µ4

)
. (A.1.16)

Therefore, since the symmetries are enhanced if we take the inverse of the parameters set
to zero, the smallness of the effective cosmological constant Λseq/M

2
Pl is guaranteed by

naturalness.
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A.1.3 Phase transition is irrelevant

We show that the phase transitions of the universe are negligible for the effective cos-
mological constant. For simplicity, we assume that the potential are constant before and
after the phase transition Vb and Va. Then, the equations of motion before and after
phase transition become

M2
PlGµν = T (0)

µν − 1

4
gµν

⟨
T (0)

⟩
=

{
−gµν ⟨Vb − V ⟩ t < t∗
−gµν ⟨Va − V ⟩ t > t∗

, (A.1.17)

where t∗ is the time of the phase transition. If we define the ∆V as ∆V ≡ Vb − Va, for
an early phase transition, we obtain

⟨Va − V ⟩ = −∆V

∫ t∗
ti
dta3∫ tf

ti
dta3

≪ ∆V ,

⟨Vb − V ⟩ ∼ O(1)∆V , (A.1.18)

where a is scale factor, ti and tf is the starting and the ending time of the universe
respectively. Therefore, after the phase transition, the difference of the value of the
vacuum energy is irrelevant if the phase transitions occur early time. This model have good
properties to approach the cosmological constant problem. It seems, however, remains the
important problem. Remember that to define the space-time average in Eq. (A.1.7), the
space-time volume of the universe should be finite. It may cause the problem of causality.
We have to impose that our universe goes to Big crunch in advance and it may break the
causality.

A.2 Quantum cosmology
One of the approaches of quantizing the whole universe is called quantum cosmology.
Under the several assumptions, we can calculate the probability for Λ = 0 in the method
of quantum cosmology. The wave function can be calculated by the Wheeler-DeWitt
equation which derives from Dirac’s quantization [120] .

A.2.1 ADM decomposition

We use the Hamiltonian formulation for the canonical quantization. When we apply the
Hamiltonian formulation to the relativistic theory, we decompose the space-time into time
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and space, called Arnowitt, Deser, Misner (ADM) decomposition [121]. Then, the line
element ds2 = gµνdx

µdxν becomes

ds2 = N2dt2 + hab (N
adt+ dxa)

(
N bdt+ dxb

)
, (A.2.1)

where N is a lapse function, Na is a shift vector, and hab is a three-dimensional spa-
cial metric. We decompose the space-time into the time direction and three-dimensional
hypersurface Σt which is orthogonal to the time direction. We can express the four-
dimensional Ricci scalar (4)R by using N,Na, hab and three-dimensional Ricci scalar (3)R
as

(4)R =(3) R+KabK
ab −K2 − 2∇b(na∇anb − nb∇ana) , (A.2.2)

where na is a normal unit vector on Σt, Kab is an extrinsic curvature defined by

Kab ≡
1

2N

(
DaNb +DbNa −

∂hab
∂t

)
, Da : covariant derivative on Σt , (A.2.3)

and K is its trace. Then, the Einstein-Hilbert action SEH becomes

SEH =
1

2κ2

∫
V

d4x
√
−gR

=
1

2κ2

∫
V

(
(3)R+KabK

ab −K2
)
N
√
h− 1

κ2

∫
∂V

(na∇anb − nb∇ana)dΣ
b . (A.2.4)

When the boundary is fixed, we obtain

SEH =
1

2κ2

∫
V

N
(
(3)R+KabK

ab −K2
)√

hdtd3x ≡ 1

2κ2

∫
V

Ndtd3xLEH . (A.2.5)

The conjugate momenta for N and Ni is zero, and thus we obtain the primary constraints
as

pN ≡ ∂L
∂Ṅ

= 0, pa ≡ ∂L
∂Ṅa

= 0 . (A.2.6)

A.2.2 Minisuperspace

The is often used for the canonical quantization of gravity. We have to consider an infinite
number degrees of phase space in quantum gravity. In the minisuperspace approximation,
we treat space of all three-dimensional metric and matter in Riemanian manifold are on
the hypersurface Σt:

Riem(Σt) ≡ {hab(x),Φ(x)|x ∈ Σt} . (A.2.7)

Therefore, we impose an infinite degrees of freedom on the (hab(x),Φ(x)) with a finite
degrees of freedom in this approximation.
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A.2.3 Canonical quantization

The momentum conjugate to hab is given by

pab ≡
∂L
∂ḣab

=

√
h

2κ2
(
Kab −Khab

)
. (A.2.8)

We then have the canonical commutation relations:{
hab(k), p

cd(q)
}
= δ(ca δ

d)
b δ

3 ((k)− (q)) . (A.2.9)

We obtain the Hamiltonian

H =

∫
d3x

(
pN Ṅ + paṄa + pabḣab − LEH

)
=

∫
d3x (NHg +NaHa) , (A.2.10)

Here, Hg is

Hg ≡
√
h
(
(3)R+KabK

ab −K2
)

= 2κ2Gabcdp
abpcd −

√
h
(3)
R

2κ2
, (A.2.11)

where Gabcd is defied by

Gabcd ≡
√
h

2
(hachbd + hadhbc − habhcd) . (A.2.12)

From the Dirac quantization, we obtain the zero energy Schrödinger equation by using
Hamiltonian constraint:

Hg(hab, p
ab)Ψ(hab) = 0 . (A.2.13)

Here, Ψ(hab) is called “wave function of the universe”. Furthermore, in the canonical
quantization, we replace the pab as

pab → 1

i

δ

δhab
. (A.2.14)

Then, we obtain the so-called Wheeler-DeWitt equation:(
2κ2Gabcd

δ

δhab

δ

δhcd
+

√
h
(3)
R

2κ2

)
Ψ(hab) = 0 . (A.2.15)
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Hartle and Hawking have proposed no-boundary condition, which leads to

Ψ(hab) ∼
∫

Dgµν exp [−SE ] , (A.2.16)

where SE is the Euclidean action. This no-boundary condition require also the closed
universe and finite volume of the universe as we saw in the previous chapter.

A.2.4 Hawking’s approach

Inspired by eleven-dimensional supergravity, Hawking has introduced the three gauge field
into the action [122–126]. The action is given by

S = − 1

2κ2

∫
d4x

√
−g (R+ 2ΛB)−

1

48

∫
d4x

√
−gFµνρσFµνρσ , (A.2.17)

where Fµνρσ ≡ ∇[µAνρσ] is the field strength of the three form field Aµνρ which is included
in eleven-dimensional super gravity [127]. Then, in the four dimensional Euclidean space-
time, the trace of the Einstein equation of motion becomes

R ≡ −4Λeff = −4
(
Λ− κ2ω

)
, (A.2.18)

where ω is unknown parameter which is independent of the dimension of space-time.
Then, under the no-boundary condition, SE becomes

SE = −3π
MPl

Λeff
, (A.2.19)

and therefore we obtain

Ψ ∝ exp

[
3π
MPl

Λeff

]
. (A.2.20)

Note that this wave function of the universe has the peak at Λeff = 0.

A.2.5 Coleman’s approach

Coleman has proposed the model which has topological effect of wormholes [129]. This
model realize the similar solution in Eq. (A.2.20) without using the three-form gauge
fields. Alternatively, we introduce the following action,

SWH =
∑
i

(
ai + a†i

)∫
d4xOi(x) ≡

∑
i

Ai

∫
d4xOi(x) , (A.2.21)



72 Appendix A Other attempts for solving the cosmological constant problem

where ai and a
†
i are the annihilation and creation operator of the early universe, and Oi

is the local operator corresponding to i. The path integral over 4-manifold with a certain
boundary condition is given by∫

DgµνDΦe−S =

∫
∗
DgµνDΦ

⟨
E
∣∣∣e−(S+Swormhole)

∣∣∣E⟩ , (A.2.22)

where ∗ denotes that wormholes and early universe are excluded, and |E⟩ is a normal-
ized early universe which depends on the boundary condition. When we impose the
no-boundary condition, we obtain

ai |E⟩ = 0 . (A.2.23)

|E⟩ can be expanded by using the eigenstates of the Ai as

|E⟩ =
∫
fE(α)

∏
i

dαi|α⟩, |α⟩ : Eigenvalue of Ai (A.2.24)

Note that if the scale is sufficiently large, the manifolds are only connected by wormholes.
Thus, they can be integrated out over. For the no-boundary condition, the wave function
is expressed as

ΨNB
α (E,α) =

∑
all manifolds

e−ST(α) = e−α
2/2ψNB

α (E)Z(α) , (A.2.25)

where we denote ST(α) as ST(α) ≡ S + SWH(α). Then, we sum over the vacuum to
another vacuum which are closely connected each other and obtain

ΨNB
α ∝ exp

[ ∑
connected manifold

e−ST(α)

]
. (A.2.26)

The power of the above quantity can be expressed by using the background gravitational
effective action IBG as ∑

connected manifold

e−ST(α) =
∑
T

exp [−IBG] , (A.2.27)

where subscript T under the Σ means that we sum over the topologies. The leading
contribution from IBG for sufficiently large universe is

IBG ∼
∫
d4x

√
−gΛre(α) . (A.2.28)
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Here, Λre(α) denotes the renormalized cosmological constant. Substituting the above
expression into Eq. (A.2.26), we obtain

ΨNB
α ∝ exp

[
exp

(
3π
M2
P

Λre

)]
. (A.2.29)

Note that the above expression is very similar to Eq. (A.2.20). The limit Λre → 0 give the
highest probability of the universe. This approach is, however, violated by including the
additional term in Eq. (A.2.28) [130]. If we include the following term in Eq. (A.2.28)∫

d4x
√
−gO(1)η(8πGΛ)2 , (A.2.30)

Eq. (A.2.29) becomes

ΨNB
α ∝ exp

[
exp

(
3π
M2
P

Λre
+ ηO(1)

)]
. (A.2.31)

Note that we can also obtain |η| → ∞ for realizing the maximum of the probability.
However, it means that the unitarity is violated. This implies that the number of large
wormholes is large and an universe is covered by wormholes [130,134–136].
Furthermore, this approach and Hawking’s approach are used only in the method of

Euclidean path integral based on no-boundary condition. However, whether it can be
applied to quantum gravity or not is not clear in these models.

A.3 Modifying the evaluation of the global Hubble parameter
Recently, Q.Wang, Z. Zhu, and W. G. Unruh have proposed the new method of the
evaluation of the vacuum energy [137]. In this method, the vacuum energy does not
gravitate as the cosmological constant. This method is motivated by the Wheeler’s foam
of space-time [138,139]. It suggest that the structure of the vacuum is foamy and wee see
it as the cosmological constant. Conventionally, we treat the vacuum energy as a constant
all over the space-time, and therefore the Hubble parameter is evaluated as H ∝ Λ2. On
the other hand, when we include the fluctuation of the vacuum itself, the correlation of
the vacuum strongly changes at the very small region of the each space-time. Then, we
see that the global Hubble parameter becomes H ∝ Λe−αΛ. If we take Λ to very large,
the Hubble parameter goes to asymptotically, but do not exactly zero. Therefore, we can
expect that we obtain the very tiny Hubble parameter which we currently observed.
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A.3.1 The new evaluation of the fluctuation of the vacuum energy

For evaluating the fluctuation of the vacuum energy, we consider the following massless
scalar field:

ϕ(x) =

∫
d3k

(2π)3/2
1√
2ω

(
ake

−ikx + a†ke
ikx
)
, k2 = ω2 . (A.3.1)

Then, we define the vacuum state by

ak|0⟩ = 0 . (A.3.2)

We see that the total vacuum energy is constant all over the space-time:

H =

∫
d3xT00 =

∫
d3x

1

2

(
ϕ̇2 + (∇ϕ)2

)
∼
∫
d3x ⟨T00⟩ ∼

∫
d3xΛ4 . (A.3.3)

Here,

T00 ≡ 1

2

∫
d3kd3q

2(2π)3
(
k0q0 + k · q

) [
aka

†
qe

−i(k−q)x

+a†kaqe
i(k−q)x − akaqe

−i(k+q)x − a†ka
†
qe
i(k+q)x

]
.

(A.3.4)

Note that the magnitude of the fluctuation of the above quantity T00 also diverges in the
order of Λ4: √⟨

(T00 − ⟨T00⟩)2
⟩
∼
√

⟨T00⟩2 ∼ Λ4 . (A.3.5)

In other words, the correlation of the vacuum is extremely fluctuating in each space-time
and it is comparable to the magnitude of the total vacuum energy density.

A.3.2 Minimal extension of the FLRW metric

Since the vacuum energy is lo longer constant in space-time, we need to modify the
evaluation of that quantity. Therefore, we introduce the extension of the flat FLRW
metric by replacing the scale factor a(t) to a(t,x) as

ds2 = −dt2 + a2(t)
3∑
i=1

dxi → ds2 = −dt2 + a2(t,x)
3∑
i=1

dxi . (A.3.6)
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Then the Einstein equation can be written as

G00 = 3H2 +
∂ia∂

ia

a4
− 2∂2a

a3
= κ2T00,

Gij = −
(
2aä+ ȧ2

)
δij −

∂ia∂ja

a2
+ 2

∂ia

a

∂ja

a
− ∂i∂ja

a
= κ2Tij ,

G0i = −2∂iH = κ2T0i .

(A.3.7)

Here, i and j are spacial indices i, j = 1, 2, 3, and we define ∂2 ≡ ∂i∂
i and the local Hubble

parameter H(t,x) ≡ ȧ(t,x)/a(t,x). Note that if we take a(t,x) → a(t), we recover the
conventional Friedmann equations. If i ̸= j, the vacuum expectation value of Tij and T0i
are zero:

⟨Tij⟩ = ⟨T0i⟩ = 0, for i ̸= j (A.3.8)

On the other hand, the vacuum expectation value of its squared quantity is large:√⟨
T 2
ij

⟩
∼
√

⟨T0i⟩2 ∼
√

⟨T00⟩2 ∼
√
GΛ4 . (A.3.9)

As we have seen so far, the space-time fluctuate itself and therefore the quantum vacuum
is tremendously inhomogeneous. It implies that the local Hubble parameter is no longer
available. From Eq. (A.3.7), we note that the local Hubble parameter H

1. becomes a huge quantity,√
⟨H2(t,x)⟩ ∼

√
G
√
⟨T00⟩ ∼

√
GΛ2 (A.3.10)

2. changes drastically at each spatially different point

|H(t,x)−H(t,y)| ∼
√

⟨T0i⟩2 |x− y| ∼
√
GΛ4 |x− y| (A.3.11)

Furthermore, we can see that the local Hubble parameter periodically and strongly
changes. From Eq. (A.3.7), we obtain

G00 +
1

a2

∑
i

Gii = −6ä

a
(A.3.12)

This yields time-dependent harmonic oscillator:

ä+Π2(t,x)a = 0, Π2 =
κ2

6

(
T00 +

1

a2

3∑
i=1

Tii

)
=
κ2

3
ϕ̇2 . (A.3.13)

Note that the frequency is very large because⟨
Π2
⟩
∼

√
GΛ4 . (A.3.14)
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Therefore, the local Hubble parameter changes periodically and largely between positive
and negative value.

H(t,x) ∼ P (Πt), P (Πt) : periodic function. (A.3.15)

This period is very short because the frequency is very high T = 1/Π ∼ 1/Λ2. Thus, the
local Hubble parameter changes drastically at the spatially and temporary different point.
This implies huge global cancellation of the Hubble parameter in a certain large scale of
the universe and it may realize the slowly expansion of the current universe. The image
is shown in Fig A.1

Fig. A.1 Slow expansion in global universe

A.3.3 Global Hubble parameter

We then define the global Hubble parameter by

HG(t) ≡
Ḋ(t)

D(t)
, D(t) =

∫ x2

x1

√
a2(t,x′)dx′ . (A.3.16)

Here, D(t) express a physical distance which is expressed D(t) = a(t) |x2 − x1| when
a(t,x) = a(t). Although Π(t,x) is not exactly periodic, it is al least quasi periodic of the
order Λ−1. Then, Eq. (A.3.13) can be written as,

a(t,x) ∝ exp

[∫ t

h(t′,x)dt′
]
FQP(t,x), h(t,x) > 0 . (A.3.17)

Here, FQP(t,x) is quasi periodic function of order Λ−1. Substituting the above quantity
into Eq. (A.3.16), we obtain D(t) and the relation between the global Hubble parameter
HG and h(t,x) as

D(t) = D0e
HGt, D0 ≡

∫ x2

x1

√
F 2
QP(t, x)dx, HG =

1

t

∫ t

h(t′,x)dt′ . (A.3.18)
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We now investigate a solution for FQP. We assume that we can regard a(t,x) as classical
quantity as a kind of semiclassical approximation and only quantize the fields propagating
on a(t,x). It is difficult of fully solve the quasi periodic harmonic oscillator and obtain
the global Hubble parameter HG. It is, however, can be solved if the following slowly
varying condition is satisfied:

T
dΠ

dt
≪ Π . (A.3.19)

Actually the above condition is satisfied in this model when Λ → ∞. Because

√
⟨Π2⟩ ∼ G1/4Λ2, T ∼ 1

Π
∼ 1√

GΛ2
,

√√√√⟨(dΠ
dt

)2
⟩

∼
√
GΛ3 , (A.3.20)

we have

T
dΠ

dt
∼ Λ, Π ∼ Λ2 , (A.3.21)

and therefore, we surely have

T
dΠ

dt
≪ Π for Λ → ∞ . (A.3.22)

Then, we can solve the HG by using adiabatic approximation [140]:

HG ∼ Λe−α
√
GΛ, α : dimensionless parameter . (A.3.23)

Note that if we take Λ → ∞, the global Hubble parameter behave HG → 0 asymptotically.
Therefore, we can easily obtain the small but non-zero global Hubble parameter.

A.3.4 Back reaction is irrrelevant

For Λ → ∞, the back reaction can be ignored since the vacuum play a role of huge
energy pool. While the effect of the back reaction only occurs at the length ∼ Λ−1, the
fluctuating space-time occurs at the length of ∼ 1√

GΛ2
. Therefore, the back reaction effect

is much smaller than the fluctuating effect of space-time if we take Λ → ∞ as shown in
Fig A.2. This model is inspired by the foamy structure of the vacuum by Wheeler and the
resulting value of the global Hubble parameter is reasonable to reproduce our universe.
It has, however, a weak point when we take the cutoff scale. From Eq. (A.3.23), we need

to take Λ larger than the Planck mass to obtain a small value of HG since
√
G ∼ M−1

Pl .
When we consider the energy scale beyound the Planck scale, we have to take the effect
of quantum gravity into consideration and the approximation that we treat the a(t,x) as
a classical quantity could be violated.
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Fig. A.2 The scale of the fluctuating space-time and the back reaction

A.3.5 Other attempts

We reviewed the several attempts for the cosmological constant problem. There still re-
mains many approaches. Universe multiplication by Linde assume the mirror universe with
negative energy and the vacuum energy contributions are cancelled each other [141–143].
The super symmetric large extra dimension scenario [144–147] use the six-dimensional su-
pergravity [148,149]. In this scenario, the universe is described by one of two three-branes
which is not supersymmetric and four dimensional vacuum energy only curves the two
extra dimension. The idea of fat graviton has proposed by Sundrum [150]. This is a kind
of effective field theories with graviton length ∼ 1meV. As a result, the contribution of
tadpole diagram is suppressed and vacuum energy does not contribute to the cosmological
constant. We leave off other attempts in this chapter, but we emphasize that there still
exist several approaches to the cosmological constant problem.
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