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1 General introduction

　

1 General introduction

1.1 Problems in strongly correlated materials

In the strongly correlated electron systems (SCES), there remains considerable unsolved problems.
We review some of them as an introduction to our present study. Until now, various interesting quantum
phenomena have been observed in SCES. For instance, phase transition with nontrivial order parameters
and transport phenomena have been studied intensively. However, it is left as a long-standing problem
to understand these phenomena microscopically, since it requires to solve ”many body problem” among
a number of electrons N ∼ 1023. Therefore, development of microscopic many-body theories is one of the
important issues in SCES. In this study, we aim to understand these phenomena in the same framework.
Especially, we focus on microscopic origin of ”unconventional superconductivity” and ”hidden order”
motivated by recent progress in this field.

First, we review a brief history of theoretical studies on microscopic origin of superconductivity. In
1957, Bardeen, Cooper and Schrieffer discovered that phonon mediated retarded attraction works as a
glue for Cooper pairs. Now, it is well known as BCS theory and succeeded in explaining the characteristic
features of weakly correlated superconductor mainly composed of s- and p-orbital electrons.

On the other hand, the first discovery of superconductor in SCES was reported in heavy fermion (HF)
system CeCu2Si2 in 1979. After that, various transition metals such as cuprates, ruthenate and iron based
compounds were also recorded. However, the microscopic origin of these superconductor could not be
understood within BCS theory since various kinds of particle-hole (p-h) instabilities due to the strong
Coulomb repulsion can overwhelm BCS-like electron-phonon (el-ph) interaction. In this case, non-BCS
superconducting (SC) states may appear. In facts, various p-h ordered phases such as magnetic, charge,
and orbital ordered phase appear near SC phase in SCES. Thus, theory of SC paring mechanism beyond
BCS formalism is required for SCES.

To solve the problem, simple approximation based on Random Phase Approximation + Migdal-
Eliashberg theorem (RPA+ME) has been used for years. It succeeded in explaining unconventional SC
phase near antiferro magnetic (AFM) phase in SCES, such as cuprates superconductors. To sum up,
essence of RPA+ME theory is listed as follows;

(i) Elemental p-h excitation is given by simple 1-loop process as shown in Fig.1(b).

(ii) p-h fluctuations are given by p-h ladder and p-h bubble processes.

(iii) p-p instability in forming Cooper pairs is given by p-p ladder process.

(iv) Coupling constant between electron and p-h fluctuations in gap equation is bare Coulomb U .

Here, (i) and (ii) correspond to RPA theory and (iii)-(iv) represent ME theory. Especially, (iv) is often
called Migdal approximation. Based on (i)∼(ii), development of AFM fluctuations is explained, and
AFM fluctuations work as repulsion for Cooper pairs according to (iii)∼(iv). Therefore, one of the main

AFM

anisotropic SC phase

typical phase diagram in SCES

strong p-h fluctuation

Parameter (pressure, doping etc..) 
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Figure 1: (a) Typical phase diagram often seen in SCES, such as cuprates, Fe-based and HF compounds.
(b) p-h excitation due to 1 loop process.
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1.1 Problems in strongly correlated materials 1 General introduction

conclusion from RPA+ME theory is that nodal pairing state emerges to gain condensation energy. It is
well known that a lot of superconductors in SCES show similar phase diagram, which means that AFM
phase is close to SC phase as shown in Fig.1(a). Therefore, it is was widely believed that typical SC
phase diagram in SCES had already been well understood at this stage.

However, recent improved experiments revealed isotropic s-wave SC states emerge even near AFM
phase in SCES, such as Fe-compounds, organic system and HF system CeCu2Si2. In particular, discov-
ery of s-wave SC state in CeCu2Si2 in 2017 surprised researchers since it had been believed as d-wave
superconductor for a long time after 1979. These discoveries revealed that RPA+ME theory fails in many
systems and unreliable. Therefore, we have to go beyond conventional RPA+ME theory.

Now, we are at the starting point for constructing a new microscopic theory of SC paring in SCES.
Hereafter, we move into our present study. To go beyond RPA+ME theory, we focus on higher-order
many body effects. Through our study in multi-orbital SCES, we found that violation of (i) and (iv)
occurs and they are replaced with

(i)’ Many body effects beyond 1-loop process are important for p-h fluctuations.

(iv)’ Coupling constant changes from bare Coulomb U to dressed one due to many-body effect.

These findings are our main results in the present paper. Thus, we show more detailed explanation on
this point in Sec.1.2. Based on the results, we reconsider following questions;
Q1: In particular, what type of scattering process is significant in multi-orbital SCES ?

Q2: Is it true that AFM fluctuations and el-ph coupling always compete in SC paring mechanism
as derived in RPA+ME theory?

Q3: How can we understand s-wave SC state in CeCu2Si2 ?

In addition, we notice that our findings is also helpful to understand long-standing issues in normal
states as well as SC states. For instance, microscopic origin of hidden ordered phase in HF system
remains significants problem. Therefore, we study on CeB6 as one of the typical hidden ordered system.
Then, we add the following question;

Q4: How can we understand hidden ordered phase in CeB6 ?

To answer these fundamental questions, we study SC paring and hidden ordering mechanism in SCES
based on the common ”many-body effects mechanism”.

①＋②　　　

①＋②+④

①multi-orbital 

④spin-orbit coupling②

③el-ph interaction

①＋②+③
①＋②+③+④

Sec.2
Sec.3
Sec.4
Sec.5

many body effects
higher-order

Figure 2: Map of the present study. We propose a microscopic origin of SC paring and hidden ordering
considering higher-order many body effects, el-ph interaction, SOI and multi-orbital nature.

To understand the questions Q3 and Q4, strong spin-orbit interaction (SOI) has to be taken into
account. In this case, f -electrons are characterized by total angular momentum J in stead of spin
and orbital angular momentum S,L. Therefore, p-h fluctuations are defined in J-space, which we call
multipole fluctuation. Concept of multipole fluctuation is introduced in Sec.1.3. Development of higher-
ranks multipole fluctuations is characteristic property of f -electron systems and brings various interesting
phenomena. For this reason, the 5th question is

Q5: How do multipole fluctuations work in HF system in the presence of many body effects ?

In this paper, we discuss above-mentioned questions in the following 4 sections (Sec.2∼5). In Sec.2, we
study d-orbital Hubbard model based on functional-renormalized-group+constrained RPA (fRG+cRPA)
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1.2 Roles of many body effects 1 General introduction

method to discover fundamental properties of many body effect beyond RPA+ME, corresponding to Q1.
In Sec.3, we study Hubbard-Holstein model with phonon-mediated interaction to answer the Q2. After
that, in Sec.4, we move into HF superconductor CeCu2Si2 with strong SOI to answer Q3 and Q5. In
Sec.5, we propose a microscopic origin of hidden ordered phase in CeB6 related to Q4 and Q5. We
summarized our present study in the map of Fig.2.

After all, we obtain the following results, which answer the questions Q1∼Q5;
Result 1: Mode coupling effect between orbital and spin degrees of freedom plays essential roles

for SC paring in multi-orbital SCES system.

Result 2: AFM fluctuations and phonon-mediated interaction can work cooperatively and
enhance the Tc of isotropic SC paring.

Result 3: Mode coupling effect is more significant in f -electron systems due to the strong SOI.
Interference between electric and magnetic multipole fluctuations stabilize s-wavs SC.

Result 4: Interference among different ranks multipole fluctuations causes the hidden ordered phase.

1.2 Roles of many body effects

In this section, we explain significant roles of many body effects beyond conventional theory. Before
that, we review conventional RPA+ME theory in more detail by using Feynman diagram. In Fig.3, we
show the Feynman diagram of p-h fluctuations by RPA. Solid lines represent 1-particle propagator (Green
function) and dotted line corresponds to el-el interaction, such as Coulomb interaction U . Filled region
shows reducible 3-point vertex function. We consider simple 1-loop p-h excitation corresponding to the
1st term of right-hand-side (rhs) of the figure within RPA. Then, the Coulomb interaction U is considered
by bubble and ladder process as shown in the 2nd and 3rd terms of rhs in Fig.3, respectively.

=
~

~

~ ++ ・・+

p-h bubble p-h ladderRPA

Figure 3: p-h fluctuations due to p-h bubble and ladder process. Solid and dotted line correspond to
electron propagator and Coulomb repulsion, respectively.

After that, p-p instability is obtained by p-p ladder process as shown in Fig.4. The red (black)
colored rectangular shows reducible (irreducible) 4-point vertex function of p-p channel. p-p channel
4-point vertex is composed of p-h fluctuations. In ME approximation, coupling constant between Green
function and p-h fluctuations are given by the bare Coulomb interaction U represented as the right digram
in Fig.4.

=

~

+

k

-k

k’

-k’ ~p-p ladder

= U

Figure 4: SC paring instability due to p-p ladder process. Red (black) filled area shows reducible
(irreducible) 4-point vertex function, respectively. Wavy line corresponds to p-h fluctuations.

On the other hand, in the present study, we consider many body effects beyond RPA+ME theory. In
this case, irreducible p-h fluctuations are dressed by 3-point vertex correction (VC) as shown in Fig.5.
The red colored region represents the 3-point VC due to the many body effects beyond RPA. Here, 3-point
VC is reducible with respect to U. The 1st term of the rhs of the figure shows 1 loop process included
in RPA. In contrast, the 2nd and 3rd term are VC neglected in RPA. Through our study, we found
that these VC play significant roles for SC paring as well as hidden ordering. Thus, we call them χ-VC,
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1.3 Multipole degrees of freedom 1 General introduction

collectively. The 2nd term shows VC due to the single p-h fluctuation, which is called Maki-Thompson
(MT) term. The 3rd term corresponds to 2nd order of p-h fluctuation, which is called Aslamazov-Larkin
(AL) term.

= + ・・+

Maki-Thompson3-point VC1-loop 1-loop Aslamasov Larkin
 type  type

RPA beyond RPA

Figure 5: p-h fluctuations beyond RPA+ME theory. The red colored region shows 3-point VC.

Fig.6 represents the irreducible 4-point vertex in p-p ladder beyond ME theory. The blue colored
triangle gives 3-point VC neglected in ME theory. We call the VC for p-p ladder U -VC. The U -VC also
include AL and MT terms. In the present study, we revealed that U -VC as well as χ-VC play significant
roles to understand the SC paring mechanism in SCES.

Ueff + ・・

Maki-Thompson Aslamasov Larkin

+ + ・・=

 type  type

beyond ME        ME

Figure 6: Blue colored triangle shows 3-point VC beyond ME. The VC due to the 1st (2nd) order of p-h
fluctuations corresponds to MT (AL) term.

In general, it is difficult to understand what kind of scattering process is essentially important in
SCES, since it is required to consider all of the possible processes including higher order terms than
above-mentioned processes. To over come this difficulty, we study fRG+constrained RPA (cRPA) in
the present study. In this method, parquet type scatterings are automatically generated only by solving
differential equation. Therefore, obtained results are unbiased and quite reliable. However, it is still hard
to identify the essential process solely by fRG+cRPA, since a number of minor processes are automatically
included. Thus, it is important to analyze by using more than 2 different method, such as diagrammatic
calculation in addition to fRG+cRPA. For this reason, in the present study, we compare the obtained
result by both method and revealed that the significant contribution comes from the interference between
different types of p-h fluctuations. In particular, it is due to AL-type U -VC and χ-VC.

1.3 Multipole degrees of freedom

In this section, we introduce ”multipole” to classify the p-h order parameters in f -electron system
with strong SOI. Here, we show the definition of the multipole order parameter based on d-electron model,
since it is easier than f -electron system. First, we consider dzx- and dyz-orbital wave function given by

ψzx(r⃗) = Rn,2(r)
1√
2
{Y2,1(θ, ϕ) + Y2,−1(θ, ϕ)}, (1.1)

ψyz(r⃗) = Rn,2(r)
i√
2
{Y2,1(θ, ϕ)− Y2,−1(θ, ϕ)}, (1.2)

where Rn,l(r) and Yl,m(θ, ϕ) are radial distribution function and spherical harmonics, respectively. The
index (n, l,m) denotes (principal, azimuth, magnetic) quantum number. By using the wave function, the
possible p-h order parameter (OP) is expressed as

OP =
∑

a,a′=dzx,dyz

∫
dr⃗iψ

∗
a(r⃗i)faa′(r⃗i)ψa′(r⃗i) (1.3)

6



1.3 Multipole degrees of freedom 1 General introduction

where i denotes the site index. The function faa′(r⃗i) represents the anisotropy of electrons charge distri-
bution and defines the symmetry of the local order parameter. Here, the order parameter function f is
also written by using Rn,l(r) and Yl,m(θ, ϕ). Therefore, the OP is expressed as

OP ∝
∫
dϕY ∗

l,m1Yl′,m′Yl,m2 = δ(m1−m′ −m2) (faa′(r⃗i) ∝ Yl′,m′) . (1.4)

In this case, possible combination for (l′m′) in Yl′,m′(θ, ϕ) are 9 patterns given by

faa′(r⃗i) ∝ Y0,0, Y1,0, Y1,±1, Y2,0, Y2,±1, Y2,±2, (1.5)

These 9 possible order parameters are classified into multipole channel by m′. faa′(r⃗i) for m
′ = (0, 1, 2)

corresponds to (monopole, dipole, quadrupole), which belongs to rank (0,1,2). In more general, when the
wave functions of the ground states are written by Yl,m=a∼b, the possible faa′(r⃗i) is given by

faa′(r⃗i) ∝ Yl′,0, Yl′,±1 ∼ Yl′,±(b−a) (0 ≤ l′ ≤ l), (1.6)

Therefore, if we consider all of the t2g + eg-orbital, which means that the wave function is written by
Y2,0Y2,±1, Y2,±2, we obtain 25-type possible orders up to the hexadecapole (rank 4).

On the other hand, the ’active’ multipole orders are only 4 type (9-type) in the case of dzx- and
dyz-orbital (t2g + eg-orbital) system since the independent degrees of freedom are given by square of the
orbital number. For instance, in the monopole case (faa′(r⃗i) ∝ 1), the OP is rewritten as

OP (mono) =
∑

a,a′=dzx,dyz

∫
dr⃗iψ

∗
a(r⃗i)

√
x2 + y2 + z2ψa′(r⃗i)

=

∫
dr⃗i
√
x2 + y2 + z2(ψ∗

dzx(r⃗i)ψdzx(r⃗i) + ψ∗
dyz(r⃗i)ψdyz(r⃗i)) ∝ nzx + nyz. (1.7)

To derive the final expression in Eq.(1.7), we use the fact that
∫
dr⃗i
√
x2 + y2 + z2ψ∗

dzx(r⃗i)ψdyz(r⃗i) = 0
since integrands are odd function for x or y. Therefore, the order parameter corresponds to nzx + nyz.

More over, we obtain the following matrix representation focusing on the orbital dependence of f̂(r⃗i) for
monopole.

OP (mono) =

(ψzx ψyz

ψ∗
zx 1 0

ψ∗
yz 0 1

)
∝ Î . (1.8)

In the same way, we also obtain the x2 − y2-type quadrupole OP given by

OP (quad : x2 − y2) =
∑

a,a′=dxz,dyz

∫
dr⃗iψ

∗
a(r⃗i)(x

2 − y2)ψa′(r⃗i)

=

∫
dr⃗i(x

2 − y2)(ψ∗
dzx(r⃗i)ψdzx(r⃗i)− ψ∗

dyz(r⃗i)ψdyz(r⃗i)) (1.9)

In this case, the order parameter is given by
⟨
ψ∗
dzx(r⃗i)ψdzx(r⃗i)− ψ∗

dyz(r⃗i)ψdyz(r⃗i)
⟩
and

OP (quad : x2 − y2) =

(ψzx ψyz

ψ∗
zx 1 0

ψ∗
yz 0 −1

)
∝ L̂2

x − L̂2
y. (1.10)

In addition, xy-type quadrupole OP is also independent OP to above mentioned 2-type OP.

OP (quad : xy) =

∫
dr⃗ixy(ψ

∗
dzx(r⃗i)ψdyz(r⃗i) + ψ∗

dyz(r⃗i)ψdzx(r⃗i)), (1.11)

where the order parameter corresponds to
⟨
ψ∗
dzx(r⃗i)ψdyz(r⃗i) + ψ∗

dyz(r⃗i)ψdzx(r⃗i)
⟩

OP (quad : xy) =

(ψzx ψyz

ψ∗
zx 0 1

ψ∗
yz 1 0

)
∝ L̂xL̂y. (1.12)
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1.3 Multipole degrees of freedom 1 General introduction

We note that xz or yz type quadrupole OP goes to zero due to the symmetry of the wave function. The
3z2 − r2 type quadrupole OP is not independent OP since we obtain the following equation;

OP (quad : 3z2 − r2) =
∑

a,a′=dxz,dyz

∫
dr⃗iψ

∗
a(r⃗i)(3z

2 − r2)ψa′(r⃗i)

=

∫
dr⃗i(3z

2 − r2)(ψ∗
dzx(r⃗i)ψdzx(r⃗i) + ψ∗

dyz(r⃗i)ψdyz(r⃗i)), (1.13)

where the order parameter corresponds to nzx + nyz, which is the same as that of monopole. Now, we
have already obtained 3-multipole OP including 1-monopole and 2-quadrupole OP. The final one is dipole
one, which is given by

OP (dipole) =

(ψzx ψyz

ψ∗
zx 0 i

ψ∗
yz −i 0

)
∝ L̂z. (1.14)

In the dipole ordered phase, TRS is broken even in the orbital space. For instance, local circular current
emerges in the dipole phase. As we show in this section, the OP matrix is written by using the orbital
angular momentum operator L̂. On the contrary, with the strong SOI, the L̂ changes to Ĵ = L̂ + Ŝ.
Therefore, it is naturally expected that the rank of OP with SOI tends to be higher than that without
the SOI. Here, the active OP in multipole basis are summarize as follows.

dzx, dyz t2g + eg Sec.4 (Γ7) Sec.5 (Γ8)

number of the active OP 4 25 16 16
the highest rank quadrupole hexadecapole dotriacontapole octupole

8



2 Functional Renormalization Group (fRG) study

2 Functional Renormalization Group (fRG) study

Introduction

In Sec.2, we investigate SC mechanism based on functional renormalization group (fRG) study to
understand fundamental properties of many-body effects beyond RPA+ME theory [1].

Recently, SC phase associated with multi orbital nature in SCES has been studied intensively. In
the multi orbital systems, such as heavy Fermion and Fe-based superconductors, SC phase emerges near
the orbital ordered phase. Therefore, it is naturally expected that SC paring glue is derived from strong
orbital fluctuations. However, in the theoretical way, it is difficult to explain the emergence of orbital
ordering/fluctuations within the realistic condition. In fact, only p-h fluctuations related to the spin
degrees of freedom become dominant over that of orbital channel within the conventional mean-field
scheme, such as RPA and fluctuation exchange (FLEX) approximation [2].

Thus, it is required to go beyond mean-field-level approximations to reveal the low temperature physics
in multi orbital systems. Especially, we focus on the many body effects beyond conventional theory, which
is called vertex corrections (VC) in terms of quantum statistical mechanics [3]-[5]. For this purpose, we
study fRG theory [6, 7] as a reliable and unbiased method to consider VC in multi orbital system, since it
enables us to calculate parquet type VC automatically only by solving the differential equation, which is
called RG equation. Thus, VC for p-p and p-h channels fluctuations are generated equivalently without
the violation of Pauli exclusion principle.

Once the orbital fluctuations develop, it is naturally expected that orbital-fluctuations-mediated SC
phase appears. In particular, spin triplet SC (TSC) paring can be induced by orbital fluctuations as well
as ordinal spin singlet SC. Within ME scheme, SC pairing interaction consists of orbital (spin) channel
fluctuations χc(s) and bare Coulomb interaction U c(s) summarized as

spin channel charge channel

spin singlet SC repulsive 3UsχsUs attractive U cχcU c

spin triplet SC attractive UsχsUs attractive U cχcU c

Accordingly, spin fluctuations driven spin singlet SC phase easily appears even if χc ≃ χs due to the
coefficient ’3’ for spin singlet SC given in the table compared with triplet SC. In spite of that, the bare
U can be enhanced or suppressed by considering the VC, which is confirmed in the present fRG study.
Alto, the same VC causes (i) enhancement (suppression) of the p-h susceptibilities and (ii) that of the
effective SC pairing interaction. Note that (i) and (ii) can be realized simultaneously.

In this section, we study 2-orbital Hubbard model for describing Sr2RuO4 [8]-[17] by using the fRG
theory to reveal an origin of unconventional SC paring, which comes from orbital degrees of freedom
as well as many body effects beyond RPA+ME theory. For this purpose, we analyze linearized SC gap
equation with the VC. As a result, we reveal that the bare coupling constant Us(c) changes into effective

coupling constant U
s(c)
eff . Especially, charge ch coupling constant is drastically enhanced by moderate

spin fluctuations due to the VC at low temperature, while spin ch interaction is suppressed. Therefore,
unconventional SC phase driven by orbital fluctuations can appear in multiorbital SCES, such as Fe (Ru)-
based and organic superconductors. Also, phonon mediated SC pairing interaction can be enhanced by
factor U c

eff/U
c, which we will discuss in the Sec.3.

Model

2.1 Multiorbital Hubbard model

Here, we introduce 2-orbitals Hubbard model on 2D square lattice for describing dxz, dyz-orbitals in
Sr2RuO4. The Hamiltonian for the kinetic part is written by

Ĥ0 =
∑
kσlm

ξlmk d†klσdkmσ, (2.1)

9



2.1 Multiorbital Hubbard model 2 Functional Renormalization Group (fRG) study

where l,m takes 1 or 2, which corresponds to dxz or dyz-orbital, respectively. The energy dispersion

is defined as ξ11k = −2t cos kx − 2t
′′
cos ky, ξ

22
k = −2t cos ky − 2t

′′
cos kx, ξ

12
k = ξ2,1k = −4t

′
sin kx sin ky.

Energy scale is measured from Fermi energy and the energy unit is t = 1. The hopping parameters are
fixed at (t, t

′
, t

′′
) = (1, 0.1, 0.1). The electron’s number is fixed at n = nxz+nyz = 4×(2/3) = 2.67, where

t2g ground states are filled up with 4 electrons. The band dispersion and Fermi surfaces are plotted in
Figs.8(a) and (b). Quasi 1D Fermi surfaces (α and β) are obtained. The nesting vector Q = (2/3π, 2/3π)
is consistent with observed results by neutron scattering experiment [18].

Here, we introduce the interaction terms given by the on-site Coulomb interaction, which includes
intra- (inter-) orbital U(U ′), pair hopping J ′ and Hund’s coupling J . The definition of U,U ′, J, J ′ are
given in Fig.7. The Hamiltonian for the interaction part is given by

ĤU =
1

4

∑
i

∑
ll′mm′

∑
σσ′ρρ′

Uσσ′ρρ′

ll′mm′d
†
ilσdil′σ′dimρd

†
im′ρ′ , (2.2)

Ûσσ′ρρ′
=

1

2
Ûsσ⃗σσ′ · σ⃗ρ′ρ +

1

2
Û cδσσ′δρ′ρ, (2.3)

where σ⃗ is Pauli matrix vector and Û is the bare 4-point vertex function given by 4× 4 tensor, which is
anti-symmetrized as U1234

5678 = −U3412
7856 based on anti-commutation relation for Fermion. All elements in

Ûs(c) are listed as follows,
Ûs = U (l = l′ = m = m′)

Ûs = U ′ (l = m ̸= l′ = m′)

Ûs = J (l = l′ ̸= m = m′)

Ûs = J ′ (l = m′ ̸= l′ = m),


Û c = −U (l = l′ = m = m′)

Û c = U ′ − 2J (l = m ̸= l′ = m′)

Û c = −2U ′ + J (l = l′ ̸= m = m′)

Û c = −J ′ (l = m′ ̸= l′ = m).

(2.4)

Other elements not listed in Eq.(2.4) go to zero. To simplify the model, we assume the relation J =

Figure 7: Definition of U,U ′, J, J ′ under the condition of l ̸= m.

J ′ = (U − U ′)/2 in the numerical calculation. Therefore, there are only two independent parameters,
such as U and J . Note that SU(2) symmetry is satisfied in the present system since spin-orbit coupling
is neglected.

M

En
er

gy

Wave vector

(b)(a)
MMMMMM (c)

Figure 8: (a) Obtained band dispersion and (b) Fermi surfaces mainly formed by dxz (green) and dyz
(red) orbital. (c) The region of each patches on the Fermi surface. Black arrows show major nesting
vector at Q = (2/3π, 2/3π).

In the fRG+constrained RPAmethod, d-electrons energy scale is divided into higher energy (|ξk| > Λ0)
and lower energy part (|ξk| < Λ0). We perform RPA for the higher-energy part and adopt RG method

10



2.2 4-point vertex by fRG+cRPA 2 Functional Renormalization Group (fRG) study

for the lower-energy part. In addition, k-space in the lower-energy par is divided into several grained
region, which we call ’patch’. In the present numerical study, we use 32 patches for each Fermi surfaces.
Figure 8(c) shows the contours for |ξk| = Λ0 = 1 and the center of patches pα(pβ), which takes 1 ∼ 32
(33 ∼ 64).

Finally, we define d-electrons Green function as

Ĝ(k) =
1

iϵn − Ĥ0

, (2.5)

where k = (k, ϵn) = (k, (2n+ 1)πT ). Ĝ(k) does not have spin index since Ĥ0 is independent of the spin.
Therefore, Ĝ(k) is represented by 2× 2 matrix in the orbital space.

● key facts� �
* 1 We use 2-orbital (dxz, dyz) Hubbard model with on-site Coulomb interaction.
* 2 The bare 4-point vertex U has SU(2) symmetry and parametrized by U and J .
* 3 We perform RPA for high energy region |ξ| > Λ0 and fRG for lower region |ξ| < Λ0.
* 4 We divide k-space into 32 patches for low energy region |ξ| < Λ0.� �

Method & Result

2.2 4-point vertex by fRG+cRPA

Here, we calculate fully renormalized 4-point vertex function based on the fRG+constrained RPA
(cRPA) method [19]. In this combined method, high energy scatterings are calculated by RPA while
lower energy ones are obtained by fRG method. The initial values for the 4-point vertex are composed
of Û c and Ûs in Eq.(2.2)∼(2.4). Note that the initial vertex does not have k-dependence as shown in
Eq.(2.4).

Then, the 4-point vertex Û c,s comes to have k-dependence by considering high energy scatterings
(|ξk| > Λ0) within the cRPA method as

Γ̂
s(c)
cRPA(k + q, k; k′ + q, k′) = Ûs(c) + Ûs(c)χ̂

s(c)
cRPA(k − k′)Ûs(c) − {A.C.} , (2.6)

χ̂
s(c)
cRPA(q) =

χ̂0
cRPA(q)

1̂− Ûs(c)χ̂0
cRPA(q)

, (2.7)

χ̂0
cRPA(q) = −T

∑
k

Ĝ(k + q)θ(|ξk+q| − Λ0)Ĝ(k)θ(|ξk| − Λ0), (2.8)

where q = (q, ωm) = (q, 2πTm) and ’A.C.’ denotes anti-commutation of the 2nd term in the rhs of
Eq.(2.6) for orbital, spin and k index. The detailed definition of Γ(k+q, k; k′+q, k′) is given as a Feynman
diagram in Fig.9. θ is Heaviside step function defined as θ(k) = 1(0) for k > 0(k < 0). Therefore, we
only consider d-electrons with high energy than Λ0 in Eq.(2.8) within cRPA. This assumption is justified
when many body effects beyond RPA remain small in the high energy region, while it becomes larger in
low energy region.

Figure 9: Definition of 4-point vertex function in the present study.

Then, we perform the fRG method to obtain fully renormalized 4-point vertex function Γ̂RG including

low energy scatterings. We use the Γ̂
s(c)
cRPA as a initial value for fRG. In the fRG formalism, Γ̂RG is

11



2.2 4-point vertex by fRG+cRPA 2 Functional Renormalization Group (fRG) study

automatically obtained by solving the differential equation. The RG equation in the band basis within
1-loop approximation is given by

d

dΛ
ΓRG(k1, k2; k3, k4) =−T

∑
k,k′

[
d

dΛ
G̃(k) G̃(k′)

] [
ΓRG(k1, k2; k, k

′) ΓRG(k, k
′; k3, k4)

−ΓRG(k1, k3; k, k
′) ΓRG(k, k

′; k2, k4)−
1

2
ΓRG(k1, k; k

′, k4) ΓRG(k, k2; k3, k
′)
]
,(2.9)

where the compact notation k denotes k = (k, ϵn, u, σ), where u is band index. The 1st and 2nd contri-
butions in the rhs of Eq.(2.9) come from p-h scattering and the 3rd one corresponds to p-p scatterings.
To perform the RG method, the Green function G̃(k) in the band basis is defined as

G̃(k) ≡ G(k)θ(|ξuk | − Λ). (2.10)

Then, Eq.(2.9) is rewritten by on-shell Green function (Λ − dΛ ≤ |ξk| < Λ) and high energy one (Λ ≤
|ξk| < Λ0). In particular, the 1st term of the rhs of Eq.(2.9) is given by

1st term=

∫
|ξk|=Λ

dk

vk
ΓRG(k1, k2; k, k−k1+k2)

f(ξk−k1+k2)−f(ξk)
ξk−k1+k2

− ξk
θ(|ξk−k1+k2

|−Λ)ΓRG(k, k − k1+k2, k3, k4)

+

∫
|ξk′ |=Λ

dk′

vk′
ΓRG(k1, k2; k1−k2+k′, k′)

f(ξk′)−f(ξk1−k2+k′)

ξk′ − ξk1−k2+k′
θ(|ξk1−k2+k′ |−Λ)ΓRG(k1−k2+k′, k′; k3, k4).

The diagrammatic expression for the RG equation is shown in Fig.10. By solving the RG equation,
parquet type scatterings are automatically included as shown in Fig.11. The present RG formulation is
almost equivalent to Ward-Takahashi identity, which brings the relation between N and N+2 point vertex
functions while we neglect the higher point vertex functions than 6-point vertex and 2-loop diagram, which
gives self energy term [20]-[22].

Here, we comment that p-p channel scattering is negligibly small in the higher energy region. There-
fore, we neglect the p-p channel scattering in the cRPA, while it gives significant contribution in lower
energy region. For instance, perfect cancellation occurs between p-h and p-p loop in 1D system. Thus,
we consider p-p channel in the RG equation. In contrast to the present fRG method, lower energy Green
function (|ξk| < Λ) is considered as well as on-shell one in the Wilson’s RG method. The essence behind
both RG method is the same.

= + +

Figure 10: 1-loop RG differential equation about 4-point vertex. The crossed red line represents electron
propagator G with energy cutoff Λ, while the slashed line denotes on shell one.

++ + + ・・・

Figure 11: Parquet type diagrams included in the present fRG method.

Finally, we obtain renormalized 4-point vertex ΓRG(k1, k2; k3, k4) by solving the RG equation, numer-
ically. The RG flow starts from Λ = Λ0 to the low energy cutoff ωc ≪ T . Here, we set Λ0 = 1.0 (< band
width) as shown in Fig.8 (a) and use logarithmic energy scaling parameter:

Λl = Λ0e
−l (l ≥ 0). (2.11)

12



2.3 3-point vertex and p-p (p-h) fluctuations 2 Functional Renormalization Group (fRG) study

It is verified that our main results do not change even in the case of Λ0 ∼Wband/2.
Here, we discuss SU(2) symmetry and spin index of 4-point vertex function. In principle, to obtain

physical quantity, it is enough to calculate only Γ↑↑↑↑ due to the following reason. In general, the present
Hamiltonian in the band basis can be written by

H =
∑
kiσ

Γ̃σσσσ
k1k2k3k4

d†k1σ
dk2σdk3σd

†
k4σ

+
∑
kiσσ′

Γ̃σσ̄σσ̄
k1k2k3k4

d†k1σ
dk2σ̄dk3σd

†
k4σ̄

. (2.12)

Then, the rotation of the spin space is given by the unitary transformation,(
α −β
β∗ α∗

)(
d↑
d↓

)
=

(
d↑
d↓

)
(|α2|+ |β2| = 1). (2.13)

Here, the Hamiltonian does not change under the rotation. Then, we obtain

Γ̃σσσσ
1234 − Γ̃σσσσ

1324 = Γ̃σσ̄σσ̄
1234 − Γ̃σσ̄σσ̄

1324 . (2.14)

Therefore, Γ↑↓↑↓
RG is calculated from Γ↑↑↑↑

RG . In addition, in the orbital basis, Γ̂RG is uniquely decomposed
into spin and charge channels,

Γ̂RG(k + q, k; k′ + q, k′) =
1

2
Γs
RG(k + q, k; k′ + q, k′)σ⃗σσ′ · σ⃗ρ′ρ +

1

2
Γc
RG(k + q, k; k′ + q, k′)δσσ′δρ′ρ.(2.15)

Note that Γ̂RG in the orbital basis is obtained from that in the band basis by using unitary transformation
ulu(k) = ⟨l,k|u,k⟩.

In some previous fRG study, Λ0 is set larger than bandwidth Wband. In these cases, bare Coulomb
interaction is used as the initial value. On the other hannd, in our present fRG+cRPA study, Λ0 < Wband,
and the initial value is calculated by cRPA, which includes high energy processes without over counting
[23]. In addition, there are difference on the condition of momentum conservation k1 + k4 ≃ k2 + k3 for
the 4-point vertex explained in Appendix A. The present fRG+cRPA method has some merits listed as
follows;

(i) High energy scatterings are accurately considered within RPA by using fine k-meshes
(kx × ky = 128× 128). This is justified when VC is not so large at high energy.
On the other hand, conventional RG method cause numerical errors from the violation of
k-conservation at low energy region.

(ii) Van-Vleck scattering, which is important in multi orbital SCES, is taken into account.
Especially, these process contribute to the development of orbital fluctuations.

● key facts� �
* 1 4-point vertex function is calculated by fRG+cRPA method.
* 2 In the fRG method, parquet type 4-point vertex is automatically generated.
* 3 High energy scattering is considered by cRPA, which gives initial value for RG equation.
* 4 fRG+cRPA method brings great merit compared with previous fRG without cRPA.� �

2.3 3-point vertex and p-p (p-h) fluctuations

Here, we formulate the d-electrons susceptibility within the fRG+cRPA method. The definition of
charge (spin) channel (ch) susceptibility due to p-h excitation is given by

χ
c(s)
ll′mm′(q) =

∫ β

0

dτ
1

2

⟨
A

c(s)
ll′ (q, τ)A

c(s)
m′m(−q, 0)

⟩
eiωlτ , (2.16)

A
c(s)
l l′ (q) ≡

∑
k

(d†kl′↑dk+ql↑ + (−)d†kl′↓dk+ql↓) (2.17)

In the framework of fRG theory, the p-h susceptibility is calculated by solving the differential equation;

d

dΛ
χ
c(s)
RG (q) = T

∑
k

[
d

dΛ
G̃(k)G̃(k + q)

]
Rc(s)(q; k, k + q)Rc(s)(−q; k + q, k) (2.18)
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2.3 3-point vertex and p-p (p-h) fluctuations 2 Functional Renormalization Group (fRG) study

d

dΛ
Rc(s)(q; k, k′) = −T

∑
k′′

[
d

dΛ
G̃(k′′)G̃(k′′ + q)

]
Rc(s)(q; k′′, k′′ + q)Γ

c(s)
RG (k, k′′ + q, k′, k′′), (2.19)

where Rc(s) is the 3-point vertex diagrammatically expressed in Fig.12. We simply put the initial value

= =
(a) (b)

Figure 12: (a) RG equation for p-h susceptibility in the fRG theory. The shaded triangles show 3-point
vertex function. (b) RG equation for 3-point vertex function.

for 3-point vertex; R̂ = 1̂. Then, obtained p-h susceptibility in the orbital basis with fully considered VC
is given by

χ̂
c(s)
RG (q) = Φ̂c(s)(q)[1̂− Û c(s)Φ̂c(s)(q)]−1 (2.20)

Φ̂c(s)(q) = −T
∑
n

Ĝ(k + q)Ĝ(k)Λ̂c(s)(k + q, k), (2.21)

where Λ is VC for irreducible susceptibility due to many body effects beyond RPA, which we call χ-VC.
In the present fRG study, χ-VC is automatically calculated by solving the renormalization equation.

To study SC phase, we introduce the SC susceptibilities by p-p excitation in the band basis, which is
defined as

χSC
t(s) =

1

2

∫ β

0

dτ
⟨
B†

t(s)(τ)Bt(s)(0)
⟩
,

(
Bt(s) ≡

∑
k

∆t(s)(k)dk↑d−k↑(↓)

)
(2.22)

where spin triplet (singlet) gap: ∆t(s)(k) is uniquely determined so as to maximize the SC susceptibilities.
Here, we show numerical results at T = 5 × 10−4 and low energy cutoff Λ = 0.01T (i.e., l =

ln(Λ0/0.01T )). The strength of correlation parameters are set at (U, J/U) = (3.10, 0.08) in Figs.13(a)
and (b), referring to the black circle in ’U vs J/U phase diagram’ given by Fig.13 (c). We obtain large
quadrupole susceptibility as shown in Fig.13(a), which is given by

χc
x2−y2(q) =

∑
l,m

(−1)l+mχc
llmm(q). (2.23)

The quadrupole susceptibility diverge when orbital polarization nxz−nyz emerges. In Fig.13(b), obtained
total spin susceptibility is plotted, which is defined as

χs(q) =
∑
l,m

χs
llmm(q). (2.24)

Both χs(q) and χc
x2−y2(q) has the maximum value around the major nesting at Q = (2π/3, 2π/3), There

are simple relation χs(Q) ≈ χc
x2−y2(Q). However, orbital fluctuations are quite week χc(Q) ≪ χs(Q)

within RPA. Therefore, we conclude that the orbital fluctuations are strongly enhanced by many body
effects due to the χ-VC considered in the fRG method. From the obtained phase diagram given in
Fig.13(c), spin triplet and singlet SC paring states are realized below orbital and magnetic ordered phase
for wide range parameter region, respectively. Here, the boundary of the orbital and magnetic ordered
phase correspond to the broken lines, while the solid lines represents spin triplet and singlet SC phase.
The relation χs(Q) = χc

x2−y2(Q) holds on the purple colored dotted line.

Obtained TSC gap ∆t(k) belongs to the Eu representation and it is written as ∆t,x(k),∆t,y(k) ∝
sin 3kx, sin 3ky. Spin singlet SC gap ∆s(k) is in the A1g, B1g symmetry. We found that the strong orbital
fluctuations develop at J/U ≲ 0.1. This value is almost equal to J/U = 9.5× 10−2 obtained in FeSe by
the first principles study.
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Figure 13: (a) Momentum dependence of total spin susceptibility χs(q) and (b) that of quadrupole
susceptibility χc

x2−y2(q), which show strong peak around q ≈ (2π/3, 2π/3). (c) Low temperature phase
diagram calculated by fRG+cRPA study.

● key facts� �
* 1 Both p-h and p-p susceptibilities are obtained by solving fRG equation for 3-point vertex.
* 2 Quadrupole orbital fluctuations are enhanced by χ-VC in fRG method.
* 3 Triplet SC state emerges near the boundary of orbital and spin ordered phases.� �

2.4 Superconductivity by fRG+cRPA

Here, we analyze the origin of the SC state based on the linearized gap equation with pairing inter-
action by the fRG+cRPA method [24]. The band basis gap equation on the Fermi surface is written
by

λt(s)∆t(s)(k) = −
∫
dk′

vk′
V ωc

t(s)(k,k
′)∆t(s)(k

′) ln
1.13ωc

T
, (2.25)

Here, the momenta k,k′ is on the Fermi surface. vk(= dξk/dk) is Fermi velocity. Here, we only consider
the gap function with even frequency. Then, triplet (singlet) SC gap has odd (even) parity. λt(s) gives
eigenvalue for triplet (singlet) SC. V ωc

t(s) is effective SC pairing interaction by fRG+cRPA with low energy

cutoff; Λl = ωc (l = ln(Λ0/ωc)). We set the low cutoff ωc so as to satisfy ωc > T . Then, p-h susceptibilities
χ̂s,c(q) saturate and only p-p fluctuations drastically develop when Λl < ωc. In the derivation of Eq.(2.25),
we used the general relation ∫ ωc

−ωc

dϵk′
1

2ϵk′
th(ϵk′/2T ) = ln(1.13ωc/T ). (2.26)

The SC pairing interaction is directly calculated from 4-point vertex ΓRG till the lower-energy cutoff
Λl = ωc written as

Vt,RG(k,k
′) = −1

4
Γs
RG(k,k

′;−k′,−k)− 1

4
Γc
RG(k,k

′;−k′,−k), (2.27)

Vs,RG(k,k
′) =

3

4
Γs
RG(k,k

′;−k′,−k)− 1

4
Γc
RG(k,k

′;−k′,−k). (2.28)

Here, we set ωc = 12T = 6 × 10−3. Obtained pairing interactionVt(s),RG automatically include various

scattering processes as listed in Fig.14(a). For instance, the single- and crossing-fluctuation-exchange
terms are written by type-A and B, respectively, while p-p ladder term is shown as Type-C, which is
expected to be small when ωc ≫ Tc. The black triangle shows the vertex correction for SC paring neglected
in Migdal-Eliashberg (ME) scheme, which we call U -VC. Typical example of U -VC is represented in Fig.
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Figure 14: (a) Effective SC paring interaction given by fRG method. Type-A(B) shows single (crossing)-
fluctuation-exchange term. Type-C is the p-p ladder term. The black triangle shows U -VC beyond
ME-scheme. (b) Typical diagrams for the U -VC. Double counting is carefully avoided.

14(b). To study general properties of VC, fRG is useful since both χ- and U -VC are taken into account
in the equal footings within the parquet type scattering. This is one of the big merits in fRG method.

Hereafter, we set U = 3.10, J/U = 0.08 and show some numerical results. We solve SC gap equation
in Eq.(2.25) by using the pairing interaction V̂t(s),RG with U -VC given as Eqs.(2.27)-(2.28). Figures 15(a)
and (b) are obtained gap functions of spin triplet SC ∆t(θ) and singlet SC ∆s(θ), where θ is angle of Fermi
surfaces. Eigenvalues are λt = 0.47 and λs = 0.26. We get triplet (singlet) gap function in E1u (A1g)
representation, which is consistent with the SC fluctuations given by Eq.(2.22) based on the fRG+cRPA.
Therefore, present gap equation is essentially equivalent to fRG method. In addition, averaged SC pairing
interaction is derived by using the obtained solution of the gap equation;

λ̄t(s) =

∫
dk

vk

∫
dk′

vk′
V ωc

t(s)(k,k
′)∆t(s)(k

′)∆t(s)(k)∫
dk

vk
∆t(s)(k)∆t(s)(k)

, (2.29)

where the transition temperature Tc is written as Tc,t(s) ≃ 1.13ωc exp(−1/λ̄t(s)). In Fig.15(c), obtained
gap function λ̄t(s) as a functions of Λl. Here, the gap structures are fixed to that in Figs.15(a), (b).
We find that scaling curve of λ̄t(s) almost saturates when the scaling energy Λl is lower than T . The
vertical dotted line corresponds to T in Fig.15(c) and (d). The relation λ̄t ∼ 3λ̄s holds, irrespective of
χs(Q) ∼ χc

x2−y2(Q).
In order to study the essential properties of U -VC, effective SC interaction within ME scheme is also

calculated. In this case, U -VC is dropped. For this purpose, χ̂
c(s)
RG with cutoff Λl = ωc is used to form

the SC interaction. By using the χ̂
c(s)
RG , the paring interaction is defined as,

V̂s(t),χ(k,k
′) ≡ 3

4
Γ̂s
χ(k,k

′)

(
−1

4
Γ̂s
χ(k,k

′)

)
− 1

4
Γ̂c
χ(k,k

′)−
(
1

2
Ûs

)
(2.30)

Γs
χ,ll′mm′(k,k′)=

(
Ûs+ Ûsχ̂s

RG(k−k′)Ûs
)
ll′mm′

−
(
1

2
Û cχ̂c

RG(k + k′)Û c− 1

2
Ûsχ̂s

RG(k + k′)Ûs

)
lml′m′

,(2.31)

Γc
χ,ll′mm′(k,k′)=

(
Û c+ Û cχ̂c

RG(k−k′)Û c
)
ll′mm′

−
(
1

2
Û cχ̂c

RG(k + k′)Û c+
3

2
Ûsχ̂s

RG(k + k′)Ûs

)
lml′m′

.(2.32)

In this case, U -VC is neglected in the SC paring interaction, while χ-VC is included. By using Vs(t),χ,
we solve linearized gap equation. Effective interaction is plotted in Fig.15(d). Here, ∆t(s)(k) is fixed as
well as Fig.15(c). Note that similar solution is obtained even if Vt(s),χ is used for SC paring interaction.
From the present result, 3λ̄t ∼ λ̄s holds. Therefore, we conclude that λ̄t ≫ λ̄s emerges thanks to U -VC,
Thus, triplet SC is mediated by the important role of U -VC.
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(a) (b)

(c) (d)with U-VC without U-VC

triplet singlet

for for

Figure 15: (a) E1u-type triplet SC gap function and (b) A1g-type singlet SC gap function on the Fermi
surface. Averaged SC paring interaction for (c) Vt(s),RG and (d) Vt(s),χ as a functions of Λl.

● key facts� �
* 1 We compare 2-types of SC paring interaction. One of that is fully renormalized

4-point vertex. The another one is given by χRG without U -VC.
* 2 Triplet SC state is stabilized by the significant roles of U -VC.� �

Discussion

2.5 Analysis of the U-VC

In more detail, to understand the origin of U -VC, we focus on the momentum dependence of many
body effects. Figures 16(a)-(d) show the obtained inter-band paring interactions, which means that both
k and k′ are on the same Fermi surface. Note that intra-band interaction is much smaller than inter-
band one. Here, iα and iβ are patch index on Fermi surface α and β, respectively. Solid ellipses n
Fig.8(c) corresponds to the major nesting vector (iα, iβ) = (6, 37), (8, 38), (10, 39), depicted by the arrows

at k − k′ ≈ Q ≡ (2π/3, 2π/3). We find that Γ
s(c)
χ (k,k′) has positive value at k − k′ ≈ Q as shown

in Figs.16(a) and (b). These peaks corresponds to that of χs(q) and χc
x2−y2(q). However, the relation

Γs
χ(k,k

′) ≫ Γc
χ(k,k

′) holds. Therefore, the repulsive interaction due to Γs
χ is much larger than attractive

interaction due to Γc
χ for spin singlet SC paring. For this reason, the relation λ̄s ≫ λ̄t holds if we neglect

the U -VC.
On the other hand, above mentioned situation will drastically change by considering U -VC. Figures

16(c) and (d) show Γs
RG(k,k

′) and Γc
RG(k,k

′) in the presence of U -VC. Both spin and charge channel
interaction form large positive values at k − k′ ≈ Q. Moreover, Γc

RG(k,k
′) is larger than Γs

RG(k,k
′).

Therefore, the spin (charge) channel paring interaction is suppressed (enhanced) by introducing the U -
VC. As a result, λ̄t ≃ λ̄s is satisfied by considering U -VC correctly as seen in Fig.15(c). We comment
that large negative value at (iα, iβ) = (6 + 16, 37), (8 + 16, 38), (10 + 16, 39) comes from χ̂c(k + k′) at
k + k′ ≈ Q given by 3rd terms of the rhs in Eq.(2.31) and (2.32).

Figure 16(e) shows the ratio of Γc
χ(k,k

′)/Γs
χ(k,k

′) and Γc
RG(k,k

′)/Γs
RG(k,k

′) at k − k′ ≈ Q as a

functions of U . In weakly correlated region around U ≈ 0, the ratio reaches −1, which means Ûs(c) ≈
+(−)U derived from Eq.(2.4). Therefore, the bare Coulomb interaction is dominant over p-h fluctuations
in weak coupling region. In contrast, the ratio becomes large positive value at U ≳ 2 for ΓRG whereas
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(a) (b)

(c) (d)
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Figure 16: Inter-band SC pairing interactions for (a) spin and (b) charge channel without U -VC. That
for (c) spin and (d) charge channel with U -VC. (iα, iβ) denotes patch index on Fermi surface α and β.
(e) The ratio Γc

χ/Γ
s
χ and Γc

RG/Γ
s
RG as a functions of U . They are averaged over the ellipsoidal area.

that for Γχ remains small. Thus, Γ
c(s)
RG is enhanced (suppressed) thanks to the U -VC in the strongly

correlated region.
In conclusion, the spin (charge) channel of SC paring interaction is drastically suppressed (enlarged)

by the U -VC. We comment that the momentum dependence of ΓRG(k,k
′) and Γχ(k,k

′) are very similar.
It reveal that single-fluctuation-exchange term of Type-A is quite important, since multi-fluctuation-
exchange process of type-B give different momentum dependence. In the present study, we consider χ-VC
and U -VC on the same footing. As a result, we revel that the χ-VC enhance the orbital fluctuation, while
U -VC enhance the SC paring interaction induced by orbital fluctuation.

● key facts� �
* 1 Single-fluctuation-exchange process brings dominant contribution to SC paring interaction.
* 2 Charge (spin) channel of SC paring interaction is enhanced (suppressed) by U -VC.� �

2.6 Diagrammatic method vs fRG analysis

In this section, we perform diagrammatic analysis to understand the microscopic origin of the SC
phase diagram obtained in Fig.13. In particular, we consider the U -VC given by MT and AL terms in
Fig.14(b), which give the 1st and 2nd order of the fluctuation, respectively. The schematic expression of
charge (spin) channel U -VC is given by

U c,MT(q) ∝
{
χc(q) + 3χs(q)

}
Us,MT(q) ∝

{
χc(q)− χs(q)

}
(2.33)

U c,AL(q) ∝
∑
p

{
χc(q + p)χc(q) + 3χs(q + p)χs(q)

}
Us,AL(q) ∝

∑
p

{
2χs(q + p)χc(q)

}
(2.34)

The detailed expression is given in Appendix A. Effective enhancement factor caused by U -VC for the
paring interaction is defined by

rc(s) ≡
(
U c(s)(k,k′) + U c(s),AL(k,k′) + U c(s),MT(k,k′)

U c(s)(k,k′)

)2

(2.35)
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2.6 Diagrammatic method vs fRG analysis 2 Functional Renormalization Group (fRG) study

Figure 17(a) shows obtained rc(s) at k − k′ ≈ Q as a function of the spin Stoner factor αS . Note that
αS is defined as the largest eigenvalue of Ûsχ̂0(q) and χs(Q) ∝ (1 − αS)

−1. Thus, αS reaches unity at
the magnetic transition temperature. As shown in Fig.17(a), rc gradually increases around the magnetic
QCP (αS ≈ 1). For this reason, we conclude that the strong enhancement comes from orbital channel of
AL-type VC. AL term is approximately given by

∑
q χ

s(q+Q)χs(q) ∼ (1−αS)
−1 as given in Eq.(2.34).

In spite of that, Us,AL is negligibly small since it is proportional to
∑

q χ
s(q)χc(q+Q). rs is suppressed

by U -VC where rs ≪ 1. Then, we verified that the suppression mainly comes from the O(U3)-term as
shown in Fig.17(c). Moreover, this O(U3)-term is significant in multi orbital SCES since it is scaled as
∼ (2Norb − 1). Norb is the number of orbitals. Note that double counting due to the O(U3)-terms is
carefully eliminated.

U U
m s

l ↑l ↑

l↑l↑

diagrammatic method RG+cRPA

charge

spin

ch
arg

e

spin

(a) (c)(b)

Figure 17: Enhancement factor for SC paring interaction by (a) diagrammatic method and (b)
fRG+cRPA. (c) O(U3)-term scaled as ∼ (2Norb − 1). U = U ′, J = 0 is assumed for simplicity.

Figure 17(b) shows enhancement factor for SC paring interaction directly obtained by fRG+cRPA,
which is defined as

r
c(s)
RG ≡

Γ
c(s)
RG (k,k′)

Γ
c(s)
χ (k,k′)

(2.36)

r
c(s)
RG comes to be the square of U -VC at U ≳ 2.5 where single-fluctuation-exchange term dominate
over the others. The obtained relations rcRG ≫ 1, rsRG ≪ 1 are consistent with the results based on the
diagrammatic method. Note that rcRG diverges at U ≈ 1.5 since Γc

χ changes its sign as shown in Eq.(2.32).

● key facts� �
* 1 We compare the U -VC obtained by fRG+cRPA with that by diagrammatic calculation.
* 2 Charge channel paring interaction is strongly enhanced by AL-type U -VC.
* 3 Spin channel paring interaction is suppressed by O(U3)-term.� �

Conclusion

In the Sec.2, we studied two-orbital Hubbard model by performing the fRG+cRPA method to under-
stand fundamental properties of many body effects beyond RPA+ME theory. As a result, we found that
orbital-fluctuation-mediated SC phase emerges due to the significant roles of χ-VC and U -VC based on
the fRG+cRPA and diagrammatic analysis.

Especially, χ-VC enlarges the orbital fluctuations and orbital ordered phase appears in the realistic
parameter region, while only spin ordered phase emerges within RPA study. Thus, we conclude that
χ-VC beyond RPA is important in multiorbital SCES. In addition, to go beyond ME scheme, we analyze
SC gap equation by considering VC in SC paring interaction, which is called U -VC. Thanks to the U -VC,
orbital-fluctuation-mediated SC interaction is magnified in the strong coupling regime. In particular,
AL-type U -VC brings major contribution to the enhancement, which is verified by comparing the result

19



2.6 Diagrammatic method vs fRG analysis 2 Functional Renormalization Group (fRG) study

of fRG with that of diagrammatic method. On the other hand, spin-fluctuation-mediated SC interaction
is significantly suppressed by O(U3)-term. This suppression does not contradict development of spin
fluctuations in multi orbital SCES since U -VC comes to be important only in low energy region, while
p-h fluctuations are calculated by performing summation along wide energy range. Therefore, χs(q)
develop from high energy process in renormalization, whereas U -VC is enlarged at low energy region.

We also revealed that the significant contribution in forming the Cooper pairs comes from the single-
fluctuation-exchange term, since obtained momentum dependence was explained consistently for both

Γ
s(c)
RG (k,k′) and Γ

s(c)
χ (k,k′). On the other hand, absolute values of them were quite different. Therefore,

significance of U -VC is clearly verified. As a result, SC phase induced by orbital fluctuations will appear
in various multiorbital SCES, such as in Fe-, Ru-based and organic superconductor.

Also, our study predict that attractive pairing interaction mediated by electron-phonon coupling will
be enhanced by charge channel U -VC. For instance, Tc of single layer FeSe can be increased.

The main results of the present study are summarized as follows;

(i) Based on the fRG+cRPA study, we revealed that many body effects beyond RPA+ME play
important roles to understand the orbital ordered phase and SC phase in multiorbital SCES.

(ii) Orbital-fluctuation-mediated TSC phase appear in the presence of moderate orbital
and spin fluctuations (χs ≈ χc).

(iii) Orbital fluctuations develop due to the enhancement factor given by χ-VC beyond RPA study.

(iv) Single-fluctuation-exchange term with AL-type U -VC mainly contribute to the orbital
fluctuation mediated SC paring.
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3 Cooperation of el-ph and AFM fluctuations for SC state

Introduction

In this section, we study the microscopic origin of fully gapped s-wave SC phase near the magnetic
QCP based on the beyond RPA+ME theory.

In general, it was believed that the spin fluctuations work as a repulsion for Cooper pairs in spin singlet
SC and harmful for conventional BCS-like s-wave SC. On the other hand, recent improved experiments
discovered that fully gapped s-wave SC phase without sign reversal can appear in some SCES near
magnetic instability. Especially, high Tc s-wave state was observed in heavily electron-doped FeSe with
Tc ∼ 100K [1, 2], and A3C60 (A =K, Rb, Cs) with Tc ∼ 30K [3]. In these materials, el-ph interaction is
expected to work as a glue of Cooper pairs as discussed in some previous researches in Refs. [4]-[10]. Even
so, there remains important question; what brings high-Tc s-wave state against large spin fluctuations
or why s-wave Cooper pairs survive against strong on-site Coulomb interaction. Another fundamental
properties of these s-wave system is that they have orbital degrees of freedom. Therefore, it is naturally
expected that SC pairing interaction of s-wave phase can be induced owning to orbital fluctuations as
well as el-ph interaction.

AFM

Fully gapped s-wave SC

recently discoverd phase diagram in SCES

isotropic

Parameter (pressure, doping etc..) 

Te
m

pe
rat

ur
e pair wave fluctuation

Figure 18: Recently discovered SC phase diagram in some multiorbital SCES.

To reveal the counter intuitive phenomena, we analyze multi orbital Hubbard-Holstein (HH) models by
considering the VC and small el-ph coupling in the presence of strong magnetic fluctuations. As a result,
we discover that phonon-mediated orbital fluctuations are enlarged due to χ-VC. In addition, charge-
channel attractive interaction is magnified by U -VC, where it becomes significant when the interaction
has crucial momentum dependence (non-local nature). Thanks to both χ- and U -VC, isotropic SC phase
is mediated by small el-ph attraction near AFM-QCP against strong Coulomb repulsive interaction. In
both VC, significant contribution comes from the AL-type scattering process, which comes from orbital-
spin interference. Also, direct on-site Coulomb repulsion between intra-orbital Cooper pairs is drastically
suppressed by “multi-orbital screening effect”. Our proposed paring mechanism can explain characteristic
SC phase diagram in typical s-wave compounds, such as Fe-based, A3C60 as well as heavy fermion system
CeCu2Si2, which will be discussed in Sec.3.

Model

3.1 Hubbard-Holstein model (B1g phonon)

Here, we start from two-orbital HH model on 2D square lattice;

Ĥ = Ĥel + Ĥph,

Ĥel =
∑
kσ

∑
lm

ξlmk d†klσdkmσ +
1

4

∑
i

∑
ll′mm′

∑
σσ′ρρ′

Uσσ′ρρ′

ll′mm′d
†
ilσdil′σ′dimρd

†
im′ρ′ (3.1)

where Ĥel is composed of the kinetic and on-site Coulomb interaction term. i denotes index for lattice
site, d†klσ (dklσ) is the creation (annihilation) operator for dxz or dyz-electrons with wave number k,
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3.1 Hubbard-Holstein model (B1g phonon)3 Cooperation of el-ph and AFM fluctuations for SC state

orbital l, spin σ. l,m = 1 (2) corresponds to orbital index for dxz(dyz). We comment that our present
results originates from multi-orbital nature of the electrons system. Therefore, the result slightly changes
if we use 1-orbital HH model as shown in Appendix B. ξlmk is defined as ξ11k = −2t cos kx − 2t

′′
cos ky,

ξ22k = −2t cos ky − 2t
′′
cos kx, ξ

12
k = ξ21k = −4t

′
sin kx sin ky. After that, the hopping parameters are fixed

at (t, t
′
, t

′′
) = (1, 0.1, 0.1). Energy unit is t = 1, and the filling of d-electron takes nd = 2.30. Obtained

Fermi surfaces so called Fermi surface α and β, are given in Fig.22(a). θ is angle parameter for k on
each Fermi surfaces. Multi orbital on-site Coulomb interaction Û includes intra-orbital U , inter-orbital
U ′, Hund’s coupling J , and pair hopping J ′ [10]. Spin- dependent bare 4-point vertex Ûσσ′ρρ′

is uniquely
decomposed into spin- and charge-channel as Ûσσ′ρρ′

= 1
2 Û

sσ⃗σσ′ · σ⃗ρ′ρ+
1
2 Û

cδσ,σ′δρ′,ρ. Û
s(c) denotes spin

(charge) channel of 4-point vertex function. The detailed explanation for the Coulomb interaction was
explained in Sec.2.

In the present study, we consider the effective el-ph interaction in B1g symmetry, which is given by

Ĥph = ωD

∑
i

b†i bi + η
∑
i

(b†i + bi)(n̂
xz
i − n̂yzi ), (3.2)

where n̂li is quantum operator for electrons number with orbital l. Phonon creation (annihilation) operator

is written by b†i (bi). Coefficient η denotes coupling constant between d-electrons and B1g-phonon. ωD is
Debye frequency of phonon. Then, retarded interaction via el-ph coupling is given by

V = −g(ωj)
∑
i

(n̂xzi − n̂yzi )(n̂xzi − n̂yzi )

(
g(ωj) = g

ω2
D

ω2
D + ω2

j

)
(3.3)

where g ≡ 2η2

ωD
(> 0) and ωj = 2jπT is the Boson Matsubara frequency. We show schematic expression

of possible B1g phonon in Fig.19(b). Note that nxz ̸= nyz holds if the B1g-orbital order occur.

 phononM
(a) (b)

Figure 19: (a) Obtained Fermi surfaces for nd = 2.3. It is quite similar to that in Sec.2 (b) The B1g-type
electron-phonon coupling caused by in-plane distortion.

Next, we derive the matrix elements of 4-point vertex due to the B1g phonon included in the p-h
excitation. Figure 20 shows the first-order correction for p-h excitation process at ω = 0. In Figs.21(a)
and (b), diagrammatic definition of the phonon-mediated interaction Ĉσσρρ

g with spin-dependency, which
is given by

Cs
g,ll′mm′ =


g (l = l′ = m = m′)

−g (l = m ̸= l′ = m′)

0 (otherwise),

(3.4) Cc
g,llmm′ =


+g (l = l′ = m = m′)

−2g (l = l′ ̸= m = m′)

+g (l = m ̸= l′ = m′)

0 (otherwise),

(3.5)

where Ĉ
c(s)
g ≡ Ĉ↑↑↑↑

g +(−)Ĉ↑↑↓↓
g . This spin dependence originates from the Pauli exclusion principle and

Eq.(3.3). Here, we assume the relation ωD ≫Wband. Therefore, g(ωj) is replaced with the constant value
g. In this case, both bubble and ladder diagrams contribute to p-h fluctuations. If opposite situation
(ωD ≪Wband) occurs, ladder-type scattering process should be small. Especially, p-h excitation due to
ladder term is proportional to −T

∑
kGlm(k+ q)Gm′l′(k)θ(ωD − |ϵ|). This contribution must be smaller

than that without energy cutoff reduced by θ(ωD−|ϵ|). Therefore, phonon-mediated 4-point vertex under
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=
ladderbubble

・・・

4-point vertex

Figure 20: The diagrammatic expression for the first order correction included in p-h fluctuations.

(a)

(b)

Figure 21: (a), (b) The diagrammatic expression for the bare 4-point vertex function due to the B1g-type
el-ph coupling. Here, we put l ̸= m.

the condition of ωD ≪Wband is rewritten

Cs
g,ll′mm′ = 0 (all element), (3.6) Cc

g,ll′mm′ =


+2g (l = l′ = m = m′)

−2g (l = l′ ̸= m = m′)

0 (otherwise).

(3.7)

Then, Ĉc
g in Eq.(3.7) is given by

Cc
g,ll′mm′ = −2g(2δl,m − 1)δl,l′δm,m′ (3.8)

Totally, 4-point vertex Cs(c) for spin (charge) channel due to the el-ph end Coulomb interaction is given
by

Ĉs ≡ Ûs Ĉc ≡ Û c − Ĉg. (3.9)

As a result, spin channel 4-point vertex is independent of the g for ωD ≪Wband.

● key facts� �
* 1 We introduce 4-point vertex Ĉg induced by B1g phonon mediated interaction.

* 2 Under the condition of ωD ≪Wband, Ĉg works as a charge channel 4-point vertex.� �
Method & Result

3.2 B1g-orbital fluctuations

In this section, we derive spin and charge susceptibilities considering χ-VC by performing self-
consistent VC (SC-VC) method. In the following numerical analysis, the parameters are fixed at
J/U = 0.08, T = 5 × 10−2, 32 × 32 k-meshes and 256 Matsubara frequencies. Within SC-VC scheme,
spin (charge) susceptibilities are given by

χ̂s(c)(q) = Φ̂s(c)(q)(1̂− Ĉs(c)Φ̂s(c)(q))−1,
(
Φ̂s(c)(q) = χ̂0(q) + X̂s(c)(q)

)
(3.10)
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The irreducible susceptibility χ̂0 is calculated by

χ0
ll′mm′(q) = −T

∑
k

Glm(k + q)Gm′l′(k), (3.11)

where Green function Glm(k) is in the orbital basis without self energy effects Σ. X̂s(c)(q) denotes χ-VC
induced by the AL process introduced in Eq.(2.34) in the previous section (Sec.2), which contains the
3-point vertex function Λ̂s(c). In the present SC-VC study, we obtain X̂c(q) self-consistently, while X̂s(q)
is neglected since it is not so important as discussed in Sec.2. Here, spin (charge) Stoner factor αS(C) is
defined as the largest eigenvalue obtained from the following equation{

Ĉs(c)Φ̂s(c)(q)
}
v⃗ = λv⃗. (3.12)

Figures 22 (a) and (b) show obtained spin and charge susceptibility calculated by SC-VC method.
Here, total spin susceptibility is defined as χs(q) =

∑
lm χs

llmm(q), while B1g-orbital susceptibility is given
by χc

x2−y2(q) =
∑

lm(−1)l+mχc
llmm(q), witch has operator of B1g-type order parameter (n̂xz − n̂yz). In

these results, we fix the parameters at (U, g) = (2.1, 0.15) and (αS , αC) = (0.92, 0.93). We find that B1g

orbital susceptibility has large value almost equivalent to spin susceptibility. Then, χs ≈ χc realize even
in the presence of quite small g. For instance, αC ≲ 1 is satisfied when g ≈ 0.15 (≲ 0.1U) in the case of
αS ≳ 0.9. This fact can be understood by following approximate equation

χc
x2−y2(Q) ∼ Φc(Q)[1− (2U ′ − U + 4g)Φc(Q)]−1, (αC ≲ 1) (3.13)

where Φc(Q) corresponds to irreducible susceptibility with intra-orbital channel. Thanks to the existence
of U ′, charge channel Stoner factor; αC = (2U ′ − U + 4g)Φc(Q) reaches unity in the presence of small
B1g-phonon. Moreover, minimal value of g to realize αC = 1 decrease when Φc(Q) ≫ χ0(Q) holds due
to the AL-type χ-VC. In this case, strong orbital fluctuations develop thanks to he cooperation between
small B1g-phonon and many body effects due to χ-VC. Especially, B1g-phonon can cooperate with anti-
ferro spin susceptibilities via χ-VC. In contrast, we need large g ≪ U to obtain χc without χ-VC based on
RPA method. We comment that charge-channel of χ-VC at q = 0 is written as T

∑
p{3χs(p)2 + χc(p)2}

in SC-VC method. Thus, the contribution of χs(q) overwhelms that of χc(q) even at αS ∼ αC . Therefore,
we safely put g = 0 in χ-VC.

(a) (b)

Figure 22: (a) Total spin susceptibility χs(q). (b) Orbital susceptibility χc
x2−y2(q) belonging to B1g-

symmetry at (αS , αC) = (0.92, 0.93) and (U, g) = (2.1, 0.15).

● key facts� �
* 1 Strong orbital fluctuations χc are induced by the small B1g phonon g ≲ U/10.
* 2 Microscopic origin of strong χc is cooperation between B1g phonon and spin

susceptibility. The mechanism comes from the significant roles of χ-VC.� �
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3.3 Superconductivity

Now, we analyze SC state beyond Migdal-Eliashberg (ME) scheme. Linearized gap equation is given
by

λ∆a(θ, ϵn) = − πT

(2π)2

∑
a′ϵm

∫ 2π

0

dθ′

va′θ′

∣∣∣∣∂ka′θ′

∂θ′

∣∣∣∣ ∆a′
(θ′, ϵm)

|ϵm|
V aa′

(θϵn, θ
′ϵm), (3.14)

where ∆a(θ, ϵn) is spin singlet SC gap function on the Fermi surface α, β, λ is eigenvalue of the gap
equation, and V aa′

(θϵn, θ
′ϵm) is SC interaction in the band basis. kaθ is the Fermi momentum on Fermi

surface a, and vaθ is the Fermi velocity.
The SC paring interaction is calculated by χ̂s(c)(q) in SC-VC method,

V̂ (k, k′) =
3

2
V̂ s(k, k′)− 1

2
V̂ c(k, k′)− Ĉs, (3.15)

which is transformed into V aa′
(θϵn, θ

′ϵm) by multiplying unitary matrix of ula(k). Here,

V̂ s(c)(k, k′) = Λ̂s(c)(k, k′)
{
Ĉs(c)χ̂s(c)(k − k′)Ĉs(c) + Ĉs(c)

}
Λ̂s(c)∗(−k,−k′) (3.16)

Λ̂s(c) is the AL-type 3-point vertex function for SC paring interaction, which we call U -VC. The relation

Λ
s(c)∗
ll′mm′ ≡ Λ

s(c)
m′ml′l holds. We set g = 0 for the calculation of Λ̂, since U -VC from χs dominates over that

from χc even in the case of αS ∼ αC in the same way of χ-VC.
Here, we show numerical result of U -VC. In Figs.23(a) and (b), charge- and spin-channel enhancement

factors are plotted, which is defined as∣∣∣Λs(c)
aa′ (θ, θ

′)
∣∣∣2 ≡

∣∣∣∑
ll′m

Λ
s(c)
ll′mm(k, k′)u∗la(θ)ul′a′(θ′)

∣∣∣2. (3.17)

Here, we put U = 2.1 (αS = 0.92) and ϵn = ϵn′ = πT . We find |Λc|2 ≫ 1 when θ ≈ θ′ or θ ≈ θ′±π, which
meant that orbital character of θ and θ′ is the same. In contrast, |Λs|2 ≪ 1 holds. αS-dependent of them
is plotted in Fig.23(c). The obtained relation |Λc|2 ≫ 1 is understood by charge-channel AL-type U -VC,
which is given by ΛAL,c(q) ∝

∑
p χ

s(p)χs(p+ q). The diagrammatic explanation is shown in Fig.23 (d).

(a) (b) (c)

charge:

spin:

charge: spin: (d)

Figure 23: (a)(b) U -VC for charge channel and spin channel at the lowest frequency. Fermi point is
represented by angular θ (θ′) on the Fermi surface α (β). (c) Obtained U -VC as a function of αS at
θ = θ′ = 0. (d) Feynman diagram of AL-term in charge channel.

Now, we discuss our numerical results by solving the gap equation (4.47). Note that el-ph interaction
works as static attraction since we set g(ωj) = g as we discussed in the previous section. Therefore,
retardation effect is neglected, which cause underestimation of Tc for the s-wave SC paring. Moreover,
we only consider lowest energy term as U -VC and χ-VC and crossing pairing interaction is excluded since
it was not important shown in Sec.2. Our main conclusion does not change by these simplification.

In Fig.24(a), we show SC phase diagram from the linearized gap equation. 3 types of s-wave states are
plotted in Figs. 24(b)-(d) Note that dx2−y2-wave phase appears with small αs (αs ≤ 0.85). As a result,
fully gapped s++ state without any sign reversal is realized for a wide region around αC ∼ αS ≥ 0.8,
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(a)

Full s++
Nodal s++

Nodal s+-

Nodal s++

Nodal s+-

with    -VC

(b) (c) (d)Full s++ Nodal s++ Nodal s+－

U U(e) without    -VC

Figure 24: (a) Obtained SC phase diagram given by maximum eigenvalue of the gap equation in the
presence of U -VC. Obtained gap structures on each Fermi surfaces for the (b) fully gapped s++ state, (c)
nodal s++ state, and (d) nodal s+− state. The antiferromagnetic (orbital) ordered phase occurs when
αS(C) ≥ 1. (e) Obtained phase diagram in the absence of U -VC. (f) αS dependence of λ at g = 0.2.

which comes from enlarged (suppressed)-attraction (repulsion) due to |Λc(s)|2. In contrast, as we show in
Fig.24(e), the full-gap s++ state disappears in the absence of U -VC. For this reason, significant roles of U -
VC for s-wave paring mechanism is clearly confirmed, which means that Migdal Eliashberg (ME) theorem
fails. The violation of ME theorem occurs due to the strong q-dependence of SC pairing interaction
irrespective of its small energy scale. The eigenvalue for fully gapped s++ state drastically increases as
αS get larger, while λ for s++ and s+− states remains very small. Therefore, Tc for nodal s-wave states
should be very low. As a result, s++ wave state is stabilized by charge-channel SC interaction;

V c ≃ 1

2

{
U − 4g + (2U ′ − U + 4g)2χc

x2−y2(Q)
}
|Λc|2. (3.18)

Here, large negative (attractive) paring interaction comes from |Λc|2 ≫ 1 around αC ≲ 1 owning to
AL-type χ-VC.

1-orbital multi-orbital

0   ’

(a) (ｂ)

+ +
(c) I Ⅱ Ⅲ (　) (　)(　)

Figure 25: Depairing processes to intra-orbital Cooper pairs caused by on-site Coulomb interaction in
the case of (a) 1-orbital or (b) 2-orbital systems. In multi-orbital system, energy loss in forming intra-
orbital Cooper pairs is drastically reduced from U to ∼ (U − U ′) thanks to the “multi-orbital screening
effect”. (c) SC pairing interaction up to the 2nd order terms of U . The process (II) appear only in the
multi-orbital systems.
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Finally, we comment on “multi-orbital screening effect” in the multi-orbital SCES. We find that effect
of on-site Coulomb repulsion for isotropic Cooper pair is strongly reduced by multi orbital nature of the
system. In Figs.25(a) and (b), schematic depairing processes for intra-orbital Cooper pairs are plotted
in the case of 1- and 2-orbital system, respectively. To simplify the discussion, Hund’s coupling J is
omitted. The energy loss to form intra-orbital Copper pairs is U in 1-orbital system. On the other hand,
it is reduced to ∼ (U − U ′) if we consider multi-orbital system. This reduction comes from screening
among d-electrons with different orbitals as shown in Fig.25(b). Therefore, multiorbital screening effects
play important roles for forming s-wave or on-site SC Cooper pairs. Figure 25(c) shows the 2nd order
term of U in SC interaction for intra-orbital Cooper pair. Approximately, we obtain

V ↑↓↑↓
llll (k, k′) ∝

∑
m

U − U
′2χ0

mmmm(k − k′) + U2χ0
llll(k + k′) (l ̸= m), (3.19)

where we assume Glm = Glδl,m for simplicity. Scattering process (II) exists only in the multiorbital
systems. Due to (II), direct Coulomb depairing term (I) is reduced. The screening effect becomes
prominent when U ′χ0

m ∼ O(1) for l ̸= m. In addition, depairing effect is further reduced by retardation
effect due to the ω-dependence of el-ph interaction.

● key facts� �
* 1 Fully gapped s++-wave SC phase appears near magnetic QCP due to U -VC and χ-VC.
* 2 Origin of s++-wave state is cooperation between B1g phonon and antiferro spin fluctuation.� �

Discussion

3.4 Local approximation for U-VC

Now, we explain that the k-dependence of U -VC is important to obtain s++-wave SC state. To begin
with, figure 26 (a) represents SC phase diagram in αS-αC space. In this case, we consider momentum
dependence correctively. Thus, it is almost equivalent to that in αS-g space in Fig.24(a). On the other
hand, we abtain U -VC by using the local approximation, which is given by the averaged over in k-space
on Fermi surfaces,

Λ̂
s(c)
loc (ϵn, ϵn′) = ⟨Λ̂s(c)(k, k′)⟩k,k′ . (3.20)

Figure 26(b) is obtained by considering Λ̂x
loc(ϵn, ϵn′). Fully gapped s++-wave region disappears in this

case. In particular, obtained phase diagram is quite similar to that when U -VC is neglected as shown
in Fig.24(e). Therefore, we conclude that the momentum dependence of U -VC is significant in terms of
s-wave SC paring mechanism.

Nodal s++

Nodal s+-

(a)

Full s++

Nodal s++
Nodal 
  s+-

(b)

Figure 26: (a) SC phase diagram plotted in αS-αC space. This is almost equal to that in αS-g space as
shown in Fig.24(a). (b) Phase diagram calculated by considering local approximation type of U -VC.
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● key facts� �
* 1 s++-wave SC state does not appear if we treat U -VC by using local approximation.
* 2 k-dependence of U -VC is important to understand the SC paring mechanism.� �

3.5 Filling dependence

In the previous section, we analyze the SC phase diagram at fixed filling nd. In this section, we discuss
filling dependence of SC phase diagram. Figure 27 shows obtaind SC phase diagram including both spin
singlet and triplet SC region as a function of chemical potential µ as well as el-ph interaction g. Here,
nd = 2.3 is equivalent to µ = 0.5. On the each point, U is set for satisfying the condition of αS = 0.94.
Charge Stoner factor αC increase by g(< 0.98).

In Fig.27(a), SC phase diagram is plotted where U -VC is correctly considered. Present 2-orbital
model brings rich SC states. Fully gapped s++-wave phase appears for a wide range of filling parameter.
It is noteworthy that TSC phase emerges around µ ≃ 1, which is equivalent to the previous work by
fRG+cRPA study (in Sec.2). On the other hand, s++-wave SC phase disappears if U -VC is dropped
given in Fig.27(b). Therefore, U -VC plays important roles for realizing the fully gaped s++ wave pairs
for wide parameter region.

p wave

Full s++ wave
Nodal s++ wave
Nodal s+ - wave

Nodal s+ - wave
present study

Sr2RuO4

with    -VC without    -VC(b)(a) U U

Figure 27: Phase diagram of spin singlet and triplet SC phase (a) considering or (b) neglecting U -VC
in µ-g space. At each point, U is set to satisfy αS = 0.94. Filling parameter used in Sec.2 (nd = 2.67)
corresponds to µ = 1, here. White colored region represents αC > 0.98.

● key facts� �
* 1 U -VC brings rich variety of SC state, including TSC phase.
* 2 Fully gapped s-wave SC state appears in wide parameter region.� �

3.6 Retardation & impurity effects

In the previous section, we neglect the retardation effect, which means that the relation g(ω) =constant
is assumed. However, the present simplification brings underestimation of the fully gaped s++ wave
phase. In this section, we consider retardation effect given by ωD ≪ T , that is, g(ωj) = gδj,0. In this
case, retardation effects get prominent. In fact, obtained SC phase is given in Fig.28. s-wave SC region
is drastically expanded due to the retardation effect compared with Fig.26(a). Therefore, the retardation
effects is important to obtain s-wave SC state.

Next, we analyze the SC phase in the presence of dilute non magnetic impurities based on T -matrix
approximation, since it is generally known that impurities sensitively affect to SC state. Linearized gap
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Full s++

Nodal s++
Nodal 
  s+-

Figure 28: SC phase diagram by considering strong retardation effect. s++-wave region is drastically
expanded thanks to retardation effect.

equation in the band basis in the presence of impurities is given by

λ∆a(k, ϵn)=
−T
(2π)2

∑
a′ϵmk′

|Ga′(k′, ϵm)|2∆a′
(k′, ϵm)

[
V aa′

(k, ϵn,k
′, ϵm)− nimp

T
|Taa′(k,k′, ϵm)|2δn,m

]
(3.21)

which is diagrammatically shown in Fig.29(a). nimp denotes concentration of the impurity. Taa′(k,k′, ϵm)
is T -matrix due to the impurity as shown in Fig.29(b). Double line corresponds to the Green function
Ga(k, ϵn) including the impurity-induced self-energy Σa(k) = nimpTaa(k,k, ϵn), shown in Fig. 29(c).

+ +=
・・・

+=

= ×

(a)

(b) (c)

Nodal s++

Nodal s+-

Full s++

(d)
×

× × × ×
・・

Figure 29: (a) Linearized gap equation with impurities. (b) Diagrammatic expression of T -matrix due to
the single impurity. (c) Self-energy included in the Green function mediated by impurity. (d) SC phase
diagram at nimp = 0.1% in αS-αC space. s++-wave region is expanded by doping the impurities.

Figure 29(d) shows the superconducting phase diagram in the αS-αC space. We find that the area of
the full-gap s++ wave state is drastically expanded by the impurity effect even for nimp = 0.1%.

● key facts� �
* 1 Retardation effect due to the B1g phonon stabilizes fully gapped s-wave SC state.
* 2 Impurity effect enhances the region of s-wave SC phase even at nimp = 0.1%.� �

Conclusion

In summary, we proposed possible microscopic origin of the fully gapped s-wave phase in SCES when
weak e-ph interaction inB1g-symmetry exist. We demonstrate that orbital fluctuations drastically develop
thanks to the cooperation between χ-VC and B1g-type el-ph interaction. Then, orbital-fluctuation-
mediated attractive force is enlarged by charge channel type U -VC. On the other hand, repulsion for
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Cooper pairs due to spin fluctuations are reduced by spin channel U -VC. Moreover, energy loss caused
by on-site Coulomb repulsion between intra-orbital Cooper pairs is reduced by ”multi orbital screening
effect”. In the obtained phase diagram, plain s-wave state with large eigenvalue emerges near the magnetic
criticality.

We also explained that momentum dependence of U -VC is important to obtain s-wave SC phase. Note
that charge-channel U -VC is also enhanced by AL-type VC even in the case of 1-orbital system as shown
in Appendix B. Therefore, Kohn anomaly observed in High-Tc cuprate superconductor can be explained
by using our proposed theory. For instance, quantum Monte Carlo (QMC) study was performed based
on the 1-orbital Hubbard model on 2D square lattice [11]. We comment that s-wave SC phase is also
discussed by using DMFT and VCA method [12]-[13].

The main findings of the present study are listed as follows;

(i) Based on the 2D HH model, it was uncovered that fully gapped s-wave SC state appears
near AFM-QCP against strong Coulomb repulsion.

(ii) Microscopic origin of s-wave SC state comes from cooperation between spin fluctuations and
B1g el-ph interaction due to the important roles of χ-VC.

(iii) Energy loss due to the on-site Coulomb repulsion is suppressed by multi-orbital screening
effect in the case of multiorbital system.

(iv) Momentum-dependence of U -VC is prominent in forming isotropic Cooper pairs.

(v) U -VC brings rich variety of SC phase diagram including both spin singlet and triplet SC state.

(vi) Retardation and impurity effects drastically stabilize s-wave SC phase.

In the following section (Sec.4), we apply our present theory with χ-VC and U -VC for multi-orbital heavy
fermion system.
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4 S-wave superconductivity in CeCu2Si2

Introduction

In heavy fermion systems, exotic electronic phenomena are induced by strong Coulomb repulsion and
spin-orbit coupling (SOI) in f -electron system. Especially in Ce-based metals, 4f1 configuration appears
on Ce3+ ion. In the presence of strong SOI, total angular momentum J(= L + S) comes to be good
quantum number. Energy level of J = 5/2 state is ∼0.3eV, which is lower than that of J = 7/2 state.
Therefore, J = 7/2 state can be neglected at low temperature regime within theoretical study. In the
presence of tetragonal CEF, 6-folded states with J = 5/2 are divided into 3 Kramers doublets. In general,
energy scale of CEF splitting is of order 1 ∼10 meV.

Moreover, higher-ranks of multipole degrees of freedom become active due to the strong SOI in f -
electrons. As a result, various multipole phase and quantum fluctuations appear by strong Coulomb
interaction [2]-[8]. For instance, orbital degrees of freedom in CeB6 cause quadrupole (rank 2) and
octupole (rank 3) phase transition induced by magnetic field [8, 18]. In addition, hexadecapole (rank 4)
and dotriacontapole (rank 5) ordering have been studied in PrRu4P12 [10] and URu2Si2 [11, 12, 13].

In terms of SC paring mechanism, multipole fluctuations cause unconventional SC states. For example,
d-wave SC state appears near the the magnetic criticality in CeM In5 (M=Rh,Co,Ir) [14]. On the other
hand, SC phase emerges next to the quadrupole order in PrT2Zn20 (T = Rh and Ir) [15] and PrT2Al20
(T=V,Ti) [16]. These facts indicate that exotic SC states originates from higher-rank (≥ 2) multipole
fluctuations in f -electron systems.

In this section, we focus on CeCu2Si2 well known as the first discovered heavy-fermion superconductor[17,
18, 19]. At P = 0, SC transition appears at Tc ≈ 0.6K near the magnetic QCP [20]. Under the finite
pressure (P ̸= 0), Tc reaches 1.5K around Pc ≈ 4.5GPa. Historically, it was believed that CeCu2Si2 is a
typical d-wave superconductor induced by magnetic fluctuations. However, s-wave SC state was reported
by some experiments in CeCu2Si2[21, 22]. After that, fully gapped SC state was confirmed by specific
heat, thermal conductivity and penetration depth measurements [23, 24]. Also, Tc was robust against
randomness. Therefore, s-wave SC state without sign-reversal is realized in CeCu2Si2 [23].

One of the significant challenge for theorists is to reveal the microscopic origin of s-wave phase in
heavy fermion (HF) systems, even if large Coulomb repulsion exists. In general, even-rank multipole
fluctuations, such as charge (rank 0), quadrupole (rank 2) and hexadecapole (rank 4) operators, induce
attractive SC pairing interaction. However, it is quite difficult to explain emergence of even-rank fluctua-
tions as shown in Sec.2 and 3 in terms of orbital fluctuations. To obtain even-rank multipole fluctuations,
more than 2 Kramers doublets are required to be degenerate since charge (rank 0) is drastically suppressed
by Coulomb repulsion. In fact, 2 Kramers doublets exhibit Kondo resonance below 10K by performing
LDA+DMFT study in CeCu2Si2 at P = 0 [25]. We comment that P can change multiorbital nature
and it may become one of the key facts in studying interesting P -T phase diagram observed in CeCu2Si2
[25, 26, 27].

Based on RPA study, even-rank multipole fluctuations are quite suppressed compared with odd-
rank ones. Thus, gap structure is expected to have sign reversal within the ME scheme as discussed
in the previous study in Ref.[28]. Through our present study, we reveal that this discrepancy comes
from important roles of higher order many body effects due to VC, which is neglected in ME scheme.
The violation of ME theorem [34] is induced by MT and AL-VC corresponding to the 1st and 2nd-order
corrections with fluctuations [33, 5, 28, 35]. In general, it was naturally expected that moderate even-rank
fluctuations bring strong attractive SC pairing interaction owning to AL-type U -VC [35, 36]. However, it
is difficult to study the roles of U - or χ-VC by considering all of the multipole degrees of freedom in the
presence of strong SOI. Therefore, it has been required to construct a theoretical method to analyze the
roles of VC in HF system. We comment that DMFT [11, 25],[37]-[41] has been studied while momentum
dependence of VC near AFM-QCP is not fully considered.

In this section (Sec.4), we propose a microscopic paring mechanism of s-wave SC phase in multipole
HF systems CeCu2Si2 considering χ-VC and U -VC. First, we reveal that various types of multipole
fluctuations develop simultaneously near the AFM-QCP. It comes from the cooperation of strong SOI and
on-site Coulomb repulsion. Secondly, we show that the enhanced multipole fluctuations give prominent
VC in HF systems. In particular, VC enhance attractive pairing interaction due to even-rank multipole
fluctuations. As a result, s-wave SC appears even in the HF system, when moderate (phonon-induced)
quadrupole or hexadecapole fluctuations exist. Therefore, present results can be responsible for the
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s-wave SC state observed in CeCu2Si2.
Compared with 3d-electron systems, the violation of SU(2) symmetry in the spin-space affect the low

temperature physics in 5d or f -electron systems, significantly. Thus, the same footing cannot be applied
to the present model in HF system. To overcome this difficulty, we introduce a natural 2-orbital periodic
Anderson model (PAM), in which the pseudo-spin has axial rotational symmetry. This fact enable us to
calculate VC accurately even in the presence of multipole degrees of freedom. Therefore, we study χ-VC
and U -VC in the present model with 16 type multiple operators (rank 0∼5).

Model

4.1 Γ
(1)
7 -Γ

(2)
7 Periodic Anderson Model

We consider 4f1 (L = 3, S = 1/2) electrons on Ce-ion in CeCu2Si2. In the presence of strong SOI,
4f orbitals (14 degeneracy) are split into J = 3/2 (8 degeneracy) and J = 5/2 (6 degeneracy) where
J is total angular momentum. When we consider 4f1 (less than half) state, J = 5/2 becomes ground
states. Furthermore, J = 5/2 states split into 3 Kramers doublets as shown in Fig.30(a).According to
the LDA+DMFT study for CeCu2Si2[25], the following two Kramers doublets give dominant DoS around
the Fermi energy at ambient pressure. They are expressed in the Jz basis as,

|f1 ⇓⟩ = a|+ 5

2
⟩+ b| − 3

2
⟩,

|f1 ⇑⟩ = a| − 5

2
⟩+ b|+ 3

2
⟩,

|f2 ⇑⟩ = −a|+ 3

2
⟩+ b| − 5

2
⟩,

|f2 ⇓⟩ = −a| − 3

2
⟩+ b|+ 5

2
⟩, (4.1)

where ⇓ (⇑) represents pseudo spin up (down). a and b =
√
1− a2 are coefficient parameter determined

by CEF. We drop the third Kramers doublet |f3⟩ = |Jz = ± 1
2 ⟩ , since it gives negligibly small weight

near the Fermi level.
We use Periodic Anderson Model (PAM) for describing 4f1electrons in CeCu2Si2. The kinetic term

is given by

Ĥ0 =
∑
kΣ

ϵkc
†
kΣckΣ +

∑
klσ

Elkf
†
klσfklσ +

∑
klΣσ

(
V ∗
klΣσf

†
klσckΣ + VklΣσc

†
kΣfklσ

)
(4.2)

where c†kΣ (ckΣ) is a creation (annihilation) operator for conductive electron with momentum k, spin Σ

and energy ϵk. f
†
klσ (fklσ) is a creation (annihilation) operator for f -electron with k, orbital l = 1, 2,

pseudo-spin σ, and energy Elk. We set ϵk = 2tss(cos kx+cos ky)+ϵ0, tss = −1.0, VklΣσ is the hybridization
term between f -electron and s-electron. In this study, we consider 2D square lattice model as shown in
Fig.30(b). Both f - and s-orbital are on Ce-ion. VklΣσ is calculated by using Slater-Koster table [46];

Vkf1↑⇑ = −
√

3

14
tsf (a

√
5 + b)(sin ky − i sin kx),

Vkf1↓⇓ =

√
3

14
tsf (a

√
5 + b)(sin ky + i sin kx),

Vkf2↑⇑ =

√
3

14
tsf (a−

√
5b)(sin ky − i sin kx),

Vkf2↓⇓ = −
√

3

14
tsf (a−

√
5b)(sin ky + i sin kx). (4.3)

Hereafter, to simplify the analysis, we put a = 1, b = 0. Then, we obtain simple expression;

VklΣσ = σ(−1)ltlsf (sin ky − iσ sin kx)δσ,Σ, (4.4)
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(1)
7 -Γ

(2)
7 Periodic Anderson Model 4 S-wave superconductivity in CeCu2Si2

where δσ,Σ is Kronecker delta function. Note that pseudo spin is conserved (V↑⇓ ̸= 0) since the present
system is 2D and has space inversion symmetry. The detailed derivation of Eq.(4.4) is explained in
Appendix C. The imaginary terms come from strong SOI considered in the ground states in Eq.(4.1).
We put µ = −5.52× 10−3, temperature T = 0.02 and the hopping parameter tsf = 0.7. Then, f -electron

number is nf = 0.9 and s-electron number is ns = 0.3. In this case, (tf1sf , t
f2
sf ) = (0.724, 0.324), which

means that the 2-orbitals have different itinerancy.
We show the obtained band structure, Fermi surface and density of states (DoS) in Fig.31(a), (b)

and (c), respectively. The chemical potential corresponds to ϵ = 0. In addition, we set E1k = 0.2 and
E2k = 0.1 by considering CEF splitting. (Detailed discussion is written in Sec.) |tss| is of order 1eV since
WD ∼ 10eV in CeCu2Si2 [28]. The width of quasi-particle band (=the lowest band) is W qp

D ∼ 1. Large
Fermi surface is obtained and the relation Df1(0) ≃ Df2(0) is satisfied.

(a) (b)

: s-electron

: 4f-orbitals

SOI

Figure 30: (a) The nearest neighbor hopping integrals given by s-s and s-f hoppings. We use σ = 1(−1)
for pseudo-spin up (down) and tl ≡ (−1)l−1tlsf .
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Figure 31: (a) Band dispersion along high-symmetry line. (b) Obtained Fermi surface at nf = 0.9. (c)
Partial DoS of fl-electrons. The red (green) line corresponds to f1(f2)-orbital.

In addition, we introduce on-site Coulomb interaction among f -electrons:

ĤU = r · 1
4

∑
i

∑
ll′mm′

∑
σσ′ρρ′

Uσσ′;ρρ′

ll′;mm′f
†
ilσfil′σ′fimρf

†
im′ρ′ (4.5)

where i is site index. Û is the interaction matrix normalized as U⇑⇓;⇑⇓
11;11 = 1. Note that Û in Eq.(4.5)

is antisymmetrized; Uσσ′;ρρ′

ll′;mm′ = (−1)Uρρ′;σσ′

mm′;ll′ . We obtain the value of Û by performing the unitary

transformation from lz-basis Coulomb interaction: Ū , which is given by

Ūlzl′z,l
′′
z l

′′′
z

=
e2

4πϵ0

∫
dr⃗

∫
dr⃗′

u∗lz (r⃗)u
∗
l′′′z

(r⃗′)ul′z (r⃗
′)ul′′z (r⃗)

|r⃗ − r⃗′|
=

∑
p

aplzl′zl′′z l′′′z
F p, (4.6)

where ulz (r⃗)(=R(r)Θlz (θ)e
ilzϕ) is the wave function of f -electron witch has eigenvalue of orbital angular

momentum lz. F
p is Slater integral introduced in Ref.[46], which is defined as

F p=
e2

4πϵ0

∫
dr

∫
dr′R2(r)R2(r′)rpminr

−(p+1)
max r2r′2, (4.7)
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4.2 Multipole symmetry 4 S-wave superconductivity in CeCu2Si2

where rmin = min{r, r′} and rmax = max{r, r′}. We put (F 0, F 2, F 4, F 6) = (5.3, 9.09, 6.927, 4.756) in
unit eV by referring Ref.[47]. The derivation of ap is written in Appendix D. Pseudo spin is conserved in
Eq.(4.5) while SU(2) is broken with SOI. In this case, Û is uniquely decomposed into in-plane (s), out-of
plane (s⊥) spin and charge (c) channel, which is defined as

Ûσσ′;λλ′
=

1

2
Ûs(σx

σσ′σx
λ′λ + σy

σσ′σ
y
λ′λ) +

1

2
Ûs⊥σz

σσ′σz
λ′λ +

1

2
Û cσ0

σσ′σ0
λ′λ, (4.8)

where σ⃗ = (σx, σy, σz) is Pauli matrix vector in the pseudo-spin space, and σ0 is identity matrix. Ûs,s⊥,c

is defined as 
Ûs = Û↑↑;↑↑ − Û↑↑;↓↓

Ûs⊥ = Û↑↓;↑↓

Û c = Û↑↑;↑↑ + Û↑↑;↓↓.

(4.9)

The matrix elements of Ûs,s⊥,c are summarizedi in TABLE 1. They are related to general Hubbard model
and composed of {U1(2)U ′JJ⊥J ′Jx1(2)} in Eq.(32).

s type value

U0;s
11;11 U1 1.0

U0;s
22;22 U2 0.90

U0;s
lm;lm U ′ − J + J⊥ 0.80

U0;s
ll;mm J − Jx1 −0.12

U0;s
lm;ml J ′ − Jx2 0.20

s⊥ type value

U0;s⊥
11;11 U1 1.0

U0;s⊥
22;22 U2 0.90

U0;s⊥
lm;lm U ′ − Jx1 0.68

U0;s⊥
ll;mm J⊥ 0.0

U0;s⊥
lm;ml J ′ − Jx2 0.20

c type value

U0;c
11;11 −U1 −1.0

U0;c
22;22 −U2 −0.90

U0;c
lm;lm U ′ − J − J⊥ 0.80

U0;c
ll;mm J − 2U ′ + Jx1 −1.5

U0;c
lm;ml −J ′ + Jx2 −0.20

Table 1: Matrix elements of Coulomb interaction for s (left), s⊥ (middle), and c-channel (right) for l ̸= m.
J = J ′, J⊥ = 0 and Jx1 = −Jx2 are satisfied.

Figure 32: Definition of multi-orbital Coulomb interaction in the pseudo-spin representation;
U1, U2, U ′, J, J⊥, J ′, Jx1, and Jx2.

● key facts� �
* 1 We consider 2-orbital PAM.
* 2 s-f mixing has imaginary part due to SOI.
* 3 Pseudo spin is conserved in 2D model with NN hopping.
* 4 Coulomb interaction is expressed by s, s⊥ and c -channel.� �

4.2 Multipole symmetry

In the present model in Eq.(4.1), there are 16-type active order parameters Q(= 1 ∼ 16) in the multi-
pole basis. They are expressed as monopole (rank 0), dipole (rank 1), quadrupole (rank 2), octupole (rank
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4.2 Multipole symmetry 4 S-wave superconductivity in CeCu2Si2

3), hexadecapole (rank 4) and dotriacontapole (rank 5) and classified into each irreducible representation
(IR); (Γ = A+

1 , A
+
2 , E

+, A−
1 , A

−
2 , E

−) as shown in 1st, 2nd, 3rd-columns in TABLE 4 [13]. Each multipole

operator ÔQ of rank k are composed of 4× 4 tensor J
(k)
q (q = −k ∼ k)[8, 48] which is defined as

[J±, J
(k)
q ] =

√
(k ∓ q)(k ± q + 1)J

(k)
q±1 (4.10)

J
(k)
k = (−1)k

√
(2k − 1)!!

(2k)!!
Jk
+. (4.11)

Detailed derivation of ÔQ from J
(k)
q is given in Appendix E. The matrix representations of each ÔQ is

summarized in 4th-column in TABLE 4. σ̂µ, τ̂µ(µ = x, y, z) are Pauli matrix in the pseudo spin and
orbital basis (f1, f2), respectively. σ̂

0, τ̂0 are identity matrix. They are classified into TRS even or odd
as follows,

{σ0}, {τ0, τz, τx} = TRS even / {σz, σx, σy}, {τy},= TRS odd (4.12)

Note that the present 2-orbital system has space inversion symmetry. Then, even (odd)-rank operators
correspond to electric (magnetic) channel since they are time reversal even (odd). The 5th column in
TABLE 4 shows corresponding pseudo spin channel of ÔQ, which is defined by Eq.(4.9).

IR(Γ) rank(k) multipole(Q) matrix(ÔQ) ch

0 1̂ σ̂0τ̂0

A+
1 2 Ô20 σ̂0(2.00τ̂0 + 3.00τ̂z) c

4 Ĥ0 σ̂0(−5.73τ̂0 + 11.5τ̂z − 12.8τ̂x)

A+
2 4 Ĥz −19.8σ̂z τ̂y s

E+ 2 Ôyz(zx) −(+)3.87σ̂x(y)τ̂y s⊥

A−
1 5 D̂4 29.8iσ̂0τ̂y c

1 Ĵz σ̂z(0.50τ̂0 + 2.00τ̂z)

A−
2 3 T̂z σ̂z(9.00τ̂0 − 1.50τ̂z) s

5 D̂z −29.8σ̂z τ̂x

1 Ĵx(y) −1.12σ̂x(y)τ̂x

E− 3 T̂x(y) σ̂x(y)(3.75τ̂0 − 3.75τ̂z + 5.03τ̂x) s⊥
5 D̂x(y) σ̂x(y)(23.0τ̂0 − 6.56τ̂z − 3.14τ̂x)

Table 2: Irreducible representation and 16-type active multipoles in the present 2-orbital model. Operator
with rank k corresponds to 2k-pole. Each operator is classified into s, s⊥ and c-ch.

Now, on-site Coulomb interaction in Eq.(4.5) is rewritten by using multipole;

UQQ′
= (O⃗Q)†Û O⃗Q′

. (4.13)

O⃗Q is 16 × 1 vector, where (O⃗Q)4(L−1)+M corresponds to (ÔQ)L,M . In TABLE 3, obtained value for
UQQ is shown. The magnetic ch of the Coulomb interaction UQQ(Q = J, T,D) is larger than electric
ones (Q = C,O,H). For this reason, RPA can’t explain electric phase, while higher-order many body
effects bring various electric phase observed in transition metals, such as Fe-based compounds.

Q C O20 H0 Hz Oyz(zx)

UQ
0 -1.3 -0.18 0.17 0.34 0.27

Q Jz Tz Dz(4) Jx(y) Tx(y) Dx(y)

UQ
0 0.56 0.44 0.55 0.49 0.49 0.50

Table 3: Normalized Coulomb interaction UQ(≡ UQQ) for multipole channel Q.
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4.3 Green function 4 S-wave superconductivity in CeCu2Si2

● key facts� �
* 1 There are 16 type active (independent) multipole orders Q.
* 2 Even (odd)-rank of Q are classified into electric (magneetic) ch

in aspect of TRS even (odd).
* 3 Magnetic ch of Coulomb interaction is larger than electric ones.
* 4 Higher rank of magnetic ch Coulomb interactions are large as well as dipole ones.� �

Method & Result

4.3 Green function

Here, we introduce 1-particle Green functions defined by Hamiltonian of Eq.(4.2). free c- and f-
electron’s Green functions without s-f mixing are given as

G0c(k) =
1

iϵn − ϵk + µ
(4.14)

G0f
l (k) =

1

iϵn − Elk + µ
(4.15)

By solving Dyson equation (Diagrammatic expression is in Fig.33), we obtain the Green functions

+

+

Figure 33: Dyson equation of the present model.

including s-f mixing;

Gc
σ(k) = G0c(k) +G0c(k)

∑
lm

(V ∗
klσσG

f
lmσ(k)Vkmσσ)G

0c(k) (4.16)

Gf
lmσ(k) = G0f

l (k)δlm +G0f
l (k)VklσσG

c
σ(k)V

∗
kmσσG

0f
m (k) (4.17)

Gcf
lσ (k) = Gc

σ(k)V
∗
klσσG

0f
l (k) (4.18)

where (l,m) takes 1 or 2, k = (k, ϵn) = (k, (2n + 1)πT ) and µ is the chemical potential. In the present
2-orbital model, we neglect the self energy due to the strong Coulomb interaction among f -electrons. It
works as renormalization factor for the energy scale of the electrons system. In this case, we need small
Coulomb interaction compared with the present study. V ∗

klσσVkmσσ in Eq.(4.16) and (4.17) are given by

V ∗
klσσVkmσσ = tlsf t

m
sf (−1)l+m(sin2 ky + sin2 kx). (4.19)

Then, we obtain

V ∗
kl↑↑Vkm↑↑ = V ∗

kl↓↓Vkm↓↓. (4.20)

38



4.4 Multipole susceptibility 4 S-wave superconductivity in CeCu2Si2

For this reason, the Green functions Gc and Gf become independent of spin index:

Gf
lm(k) ≡ Gf

lm↑(k) = Gf
lm↓(k),

Gc(k) ≡ Gc
↑(k) = Gc

↓(k). (4.21)

We comment that Ĝf (k) is written by using σ̂ and τ̂ , which is described as

Ĝf ∝ σ̂0(τ̂0 − cτ̂x), (4.22)

where c denotes the coefficient parameter. Therefore, Ĝf (k) is classified into electric ch based on Eq.(4.13).

● key facts� �
* 1 Green functions with s-f mixing (Ĝf , Ĝc, Ĝcf ) are obtained by Dyson equation.
* 2 Ĝf and Ĝc are independent of spin index.
* 3 Ĝf is proportion to σ̂0(τ̂0 − cτ̂x).� �

4.4 Multipole susceptibility

In this section, we calculate f-electrons susceptibility in various way. First, the irreducible suscepti-
bility (1-loop p-h excitation) is defined as

χ0
ll′mm′(q) =

∫ β

0

dτ
⟨
Tτ f

†
kl′σ(τ)fk+qlσ(τ)f

†
k+qmσ(0)fkm′σ(0)

⟩
Ĥ0

(4.23)

where ωj = 2jπT is the Boson Matsubara frequency. Tτ is T -product for imaginary time τ , where
TτAτ1Aτ2 = Aτ1Aτ2(τ1 > τ2),−Aτ2Aτ1(τ1 < τ2). By using the Green function, it is rewritten as

χ0
ll′mm′(q) = −T

∑
k

Gf
lm(k + q)Gf

m′l′(k), (4.24)

where q = (q, ωj) = (q, 2jπT ). Note that χ̂0(q) is independent of spin index due to the Eq.(4.15).
Next, we define total f -electrons susceptibility considering the Coulomb interaction in TABLE 1.

χσσ′γγ′

ll′mm′(q) =

∫ β

0

dτ
⟨
Tτ f

†
kl′σ(τ)fk+qlσ(τ)f

†
k+qmσ(0)fkm′σ(0)

⟩
Ĥ0+ĤU

(4.25)

If we use RPA, the total susceptibilities in the basis of pseudo spin channel (s, s⊥, c) are given by

χ̂ch(q) = χ̂0(q)(1̂− uÛ chχ̂0(q))−1, (4.26)

where ch = s, s⊥, c. χ̂0(q), χ̂ch(q) and Û ch are 4× 4 matrices. The definition of Û ch is given in Eq.(4.9).
Here, we define the pseudo-spin Stoner factor αch

S as the largest eigenvalue of uÛ chχ̂0(q), which is defined
as

λich,qx⃗
i
ch,q = uÛ chχ̂0(q)x⃗ich,q, (4.27)

αS ≡ max
ch

{αch} ≡ max
q,i

{
λich,q

}
, (4.28)

where λi(x⃗i) denotes the i-th eigenvalue (eigenvector) of Eq.(4.27) In the present model, each matrix
element of Ûs and that of Ûs⊥ in TABLE 1 are the same except for (lmlm) and (llmm) elements. For
this reason, χ̂s ≈ χ̂s⊥ and αs

S ≈ αs⊥
S are satisfied.

● key facts� �
* 1 Susceptibility χ̂ch and Stoner factor αch

S are defined for s, s⊥, c-channel.� �
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4.4 Multipole susceptibility 4 S-wave superconductivity in CeCu2Si2

Now, we define the multipole susceptibility for Q;

χQ,Q′
(q) ≡

∑
kll′mm′

σσ′γγ′

∫ β

0

dτ
⟨
Tτ f

†
kl′σ′(τ)O

Q
lσ;l′σ′fk+qlσ(τ) f

†
k+qmγ(0)O

Q′

m′γ′;mγfkm′γ′(0)
⟩
eiωjτ , (4.29)

where σ, σ′γ, γ′ are indexes of pseudo spin. In the present 2D model,

χQ,Q′
(q) = 0 if Γ ̸= Γ′ (Q ∈ Γ, Q′ ∈ Γ′) (4.30)

is satisfied. This fact is a great merit in analysis. On the other hand, in 3D models, χQ,Q′
(q) ̸= 0 even

if Γ ̸= Γ′. In aspect of TRS, χQ,Q′
is classified into magnetic (TRS odd) or electric (TRS even) channel,

which is expressed as

Magnetic ch: χQ,Q′
(q) for Q,Q′ ∈ A+

1 , A
+
2 , E

+,

Electric ch; χQ,Q′
(q) for Q,Q′ ∈ A−

1 , A
−
2 , E

−, (4.31)

Note that the the absolute value of χQ,Q′
(q) becomes larger as rank of Q get higher. To compare among

different rank of multipole susceptibilities, we define normalized multipole operator as

Θ̂Q ≡ ÔQ/

√
Tr(ÔQÔQ∗). (4.32)

Then, the normalized susceptibility is given as

χQ,Q′

Θ (q) ≡ χQ,Q′
(q) (ÔQ, ÔQ′

in Eq.(4.29) → Θ̂Q, Θ̂Q′
) (4.33)

In addition, we define 16× 16 multipole susceptibility χ̂Q,Q′
(q) with orbital and pseudo spin indexes,

χQ,Q′σσ′γγ′

ll′mm′ (q) ≡ aQ,Q′
(q) OQ

lσ;l′σ′O
Q′

m′γ;mγ′ ,

⇔ χ̂Q,Q′
(q) ≡ aQ,Q′

(q) O⃗Q O⃗Q′†, (4.34)

where aQ,Q′
(q) is calculated as follows. First, we solve the following characteristic equation;

χ̂(q)v⃗i(q) = λi(q)v⃗i(q), (4.35)

where λi(q) is i-th real eigen value (i = 1 ∼ 16). v̂i(q) is 16-dimensional eigen vector normalized as
|v⃗i| = 1. In the present model, v⃗i(q) is uniquely characterized by IR. Then, v⃗i(q) for i ∈ Γ is expanded
in the basis of the multipole matrices as follows;

v⃗i(q) =
∑
Q∈Γ

bi,Q(q)O⃗Q i ∈ Γ, (4.36)

where the coefficient bi,Q(q) is uniquely determined. Note that {O⃗Q} forms complete basis but not
orthogonal basis within the same Γ. Then, aQ,Q′

is given by

aQ,Q′
(q) =

∑
i∈Γ

bi,Q(q)λi(q)bi,Q
′∗(q). (4.37)

As a result, χ̂Q,Q′
(q) in Eq.(4.34) is obtained. χ̂(q) is reproduced as

χ̂(q) =
∑
Q,Q′

χ̂Q,Q′
(q) (4.38)

We note that χ̂Q,Q′
(q) is independent of normalized condition of the multipole operator ÔQ since it

reproduce 16× 16 matrix form of χ̂(q). It is a great merit in analysis.
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4.4 Multipole susceptibility 4 S-wave superconductivity in CeCu2Si2

multipole susceptibilities χQ,Q′
(q) χQ,Q′

Θ (q) χ̂Q,Q′
(q)

Indexes q,Q,Q′ q,Q,Q′, l, σ
Rank dependence depend in-depend

Normalized condition dependence depend in-depend

● key facts� �
* 1 3-types of multipole susceptibilities χQ,Q′

, χQ,Q′

Θ and χ̂Q,Q′
are obtained.

* 2 In the case of Γ ̸= Γ′, χQ,Q′
, χQ,Q′

Θ , χ̂Q,Q′
go to zero for Q ∈ Γ, Q′ ∈ Γ′.

* 3 It is convenient to use χQ,Q′

Θ for comparing among different rank multipole susceptibilities.

* 4 χ̂Q,Q′
is uniquely determined independently of normalized condition of ÔQ.� �

Here, we perform RPA based on multi orbital PAM introduced in Sec.4. In this calculation, we use
32× 32 k-meshes and 128 Matsubara frequencies.

In Fig.34(a), we show q-dependence of χQ,Q′
(q, 0) at u = 0.31 (αS = 0.90) for the magnetic dipole

ch as Q,Q′; χJz,Jz (q, 0) ∈ A−
2 and χJx,Jx(q, 0) ∈ E−. We find that χJz,Jz (q, 0) is much larger than

χJx,Jx(q, 0) at q = (0, 0) while they are almost the same around the peak at q ≃ (π/2, π/2). Thus, the
uniform magnetic susceptibility shows strong Ising anisotropy, which is actually observed in CeCu2Si2.
We verified that the peak at q ≃ (π/2, π/2) originates from nesting vector on the large Fermi surface
as shown in Fig.31. In this result, αS is given by magnetic (=odd-rank) susceptibility χQ,Q′

(q, 0) for
Q,Q′ ∈ A−

2 , that is, αS = αA−
2
. The relation 1 ≳ αA−

2
≳ αE− is satisfied.

Next, we calculate χQ,Q′

Θ (q) to compare among the different ranks of multipole susceptibility. In
Fig.34(b), we show αS dependences of the maximum value of magnetic multipole susceptibilities χQ

max ≡
maxq{χQ,Q

Θ (q, 0)}. αS linearly increases in proportion to u. The most divergent χQ
max is that for Q = Tx.

This fact is consistent with RPA result based on the first-principles model in Ref[28]. Secondly, χQ
max for

Q = Dz, Jx, Tz, D4 is also strongly enlarged. Therefore, various magnetic multipole (including higher-
rank) susceptibilities are simultaneously enlarged in RPA. This is a characteristic feature of f -electron
systems with strong SOI [13]. We find that the inter-rank magnetic multipole susceptibilities, such as

χJz,Tz

Θ , are also enlarged.
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Figure 34: (a) q dependence of the magnetic dipole susceptibility. χJz,Jz (q, 0) ≫ χJx,Jx(q, 0) is satisfied
at q = (0, 0). (b) αS dependence of magnetic multipole susceptibility. Higher-rank magnetic multipole
susceptibilities are strongly enlarged as well as dipole ones.
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4.5 Phonon mediated interaction 4 S-wave superconductivity in CeCu2Si2

● key facts� �
* 1 We obtain Ising-like dipole susceptibility χJz,Jz (q, 0) ≫ χJx,Jx(q, 0) at q = (0, 0),

while they are almost the same around the peak at q ≃ (π/2, π/2).
* 2 Higher-ranks magnetic multipole fluctuations develop due to the strong SOI.� �

4.5 Phonon mediated interaction

In this section, we introduce A+
1 (= identical representation) phonon mediated interaction. The

effective interaction is introduced by

V̂ ph = 2g(ωj)C⃗A+
1
C⃗†

A+
1

, (4.39)

g(ωj) ≡ g̃
ω2
D

ω2
D + ω2

j

, (4.40)

where V̂ ph is 16× 16 matrix and g̃ = 2η2

ωD
(> 0). ωD is the phonon frequency. η is the coupling constant

between electrons and phonon. ĈA+
1
is the 16×1 tensor where (C⃗A+

1
)4(L−1)+M ≡ (ĈA+

1
)L,M for L = (l, σ).

ĈA+
1
is given by a linear combination of multipole operators belong to A+

1 in TABLE 4. It is expressed
as

ĈA+
1 ≡ σ̂0(ατ̂0 + βτ̂z + γτ̂x), (4.41)

which includes monopole 1̂, quadrupole Ô20 and hexadecapole Ĥ0. For instance, the A
+
1 interaction can

be induced by oscillation of c-axis length [49]. The schematic picture of the A+
1 oscillation is shown

in Fig.35. In the present study, we drop ωj-dependence of g(ωj) for simplicity, that is, we neglect the
retardation effect. This fact leads to underestimation of the attractive superconducting paring interaction
or Tc of s-wave SC phase as discussed in Sec.3. Note that Tc of s-wave SC will increase, if the retardation
effect is considered. In this case, the bare Coulomb interaction Û is replaced with Ûeff ;

uÛ → uÛ + 2g(0)C⃗A+
1
C⃗†

A+
1

. (4.42)

This replacement enhance electric (=even-rank) multipole fluctuations since the A+
1 interaction is clas-

sified into even-rank multipole interaction. On the other hand, the magnetic (=odd-rank) multipole
susceptibilities are independent of the phonon mediated interaction.

Hereafter, we mainly show the numerical result of (α, β, γ) = (0, 1,−1). We verified that the main
results are qualitatively same as those of (α, β, γ) = (0, 1, 1).

c-axis

Figure 35: (a) Schematic picture of A+
1 phonon mediated interaction.

● key facts� �
* 1 We consider A+

1 phonon mediated interaction.

* 2 A+
1 interaction induces electric (1̂, Ô20, Ĥ0) multipole fluctuations.

* 3 We neglect retardation effect.
* 4 Attractive paring interaction will be enhanced if retardation effect is considered.� �
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4.6 SC gap equation

In this section, we introduce SC gap equation in Migdal-Eliashberg approximation. First, we define
SC paring interaction V̂ ch in s, s⊥, c basis, which is given as

V̂ ch(q) ≡ u2Û chχ̂ch(q)Û ch + uÛ ch. (4.43)

Then, pseudo spin-singlet paring interaction V̂ sing is given by

V̂ sing(q) = V̂ s⊥(q) +
1

2
V̂ s(q)− 1

2
V̂ c(q)− uÛs⊥. (4.44)

The 4th terms is needed to avoid double counting. Therefore, the linearized gap equation in the orbital
basis is given by

λ∆ll′(k) = −T
∑

k′,mm′nn′

Gf
mn(k

′)Gf
m′n′(−k′)∆nn′(k′)V sing

lmm′l′(k − k′), (4.45)

where ∆ll′(k) is the gap function and λ is the eigenvalue. Note that λ = 1 at T = Tc. The diagrammatic
expression of the gap equation is shown in Fig.36. In Eq.(4.45), V s and V s⊥ bring sigh change between
∆(k) and ∆(k′), while uniform (S-wave) gap function is favorable for V c.

Next, we derive the gap equation in the band basis, which is given by

λ∆a(k) = −T
∑
k′,b

Gb(k
′)Gb(−k′)∆b(k

′)V sing
ab (k, k′), (4.46)

where a, b is band index. After the integration along energy-axis, we obtain

λ∆(k, ϵn) = − πT

(2π)2

∑
ϵm

∮
dk′

vk′

∆(k′, ϵm)

|ϵm|
V sing(k, k′), (4.47)

where ∆(k, ϵn) is the gap function on Fermi surface and vk is Fermi velocity. Here, the band index
is omitted since we consider 1-band system as shown in Fig.31. The band basis paring interaction in
Eq.(4.47) is obtained as follows,

V sing(k, k′) ≡ V ↑↓↑↓(k, k′)− V ↑↑↓↓(k, k′) (4.48)

where ↑ or ↓ denote pseudo-spin of the Kramers doublet in the Bloch function. V ↑↓↑↓(↑↑↓↓) is obtained
by performing the unitary transformation of the paring interaction in the orbital basis;

V ↑↓↑↓(↑↑↓↓)(k, k′) =
∑

ll′mm′

∑
σσ′γγ′

V σσ′γγ′

ll′mm′ (k, k
′)u↑∗lσ (k)u

↓∗
m′λ′(−k)u

↑(↓)
mλ (−k′)u

↓(↑)
l′σ′ (k

′), (4.49)

where u
↑(↓)
lσ (k) is the unitary matrix connecting between f†klσ and the quasi-particle creation operator

f†k↑(↓). In the presence of the time reversal symmetry, following relation is satisfied [50];

u↑lσ(−k) = (2δ↑σ − 1)u↓lσ̄(k)
∗. (4.50)

To understand the result of Eq.(4.48) intuitively, we consider a simple system without SOI. In this case,

u
↑(↓)
lσ (k) = δ↑(↓),σūl(k). Then, we replace Eq.(4.48) with

V sing(k, k′) =

{
V̂ s⊥(k, k′) +

V̂ s(k, k′)

2
− V̂ c(k, k′)

2

}
ū∗l (k)ūm′(k)ū∗m(k′)ūl′(k

′) ; witout SOI.

Here, we obtain similar expression as Eq.(4.44), if we neglect the effect of SOI in the unitary transforma-
tion matrix u. In conclusion, s and s⊥-channel interaction work as repulsive interaction, while c-channel
one works as attraction.

Finally, we define the multipole-decomposed SC paring interaction in the same way as χ̂Q,Q′
in

Eq.(4.34). It is expressed as

V̂ ch,QQ′
(q) ≡ dch,Q,Q′

(q) O⃗Q O⃗Q′†
(
V̂ QQ′

(q) ≡ d′Q,Q′
(q), O⃗Q O⃗Q′†

)
, (4.51)
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where dQ,Q′
(q), d′Q,Q′

(q) is obtained by solving the characteristic equation;

V̂ ch(q)v⃗i,ch(q) = λi,ch(q)v⃗i,ch(q),
(
V̂ (q)v⃗i(q) = λi(q)v⃗i(q)

)
(4.52)

Note that V̂ ch,QQ′
= 0 for ch /∈ Γ in the case of Q,Q′ ∈ Γ.

+

Figure 36: The linearized gap equation within Migdal-Eliashberg approximation. Blue rectangles show
bare Coulomb interaction U .

● key facts� �
* 1 We define linearized gap equation in Migdal-Eliashberg approximation.
* 2 s, s⊥-ch (c-ch) interaction works as repulsive (attractive) paring interaction.
* 3 SC paring interaction is decomposed into multipole ch.� �

4.7 U-VC

In this section, we consider higher order many body effects beyond Migdal Eliashberg approximation.
They are expressed as the 3-point vertex correction for bare Coulomb interaction U . Therefore, we call
the vertex corrections U -VC. In the present model, U -VC satisfy the pseudo-spin conservation. Thus,
the paring interaction for s, s⊥, c-channel in Eq.(4.44) is replaced with

V̂ ch
U−V C(k, k

′) = Λ̂ch
k,k′ V̂ ch(k − k′)Λ̂ch†

−k,−k′ , (4.53)

(Λ̂ch†
k,k′)ll′mm′ ≡ (Λ̂ch

k,k′)m′ml′l. (4.54)

Here, V̂ ch(q) is given in Eq.(4.43). Λ̂ch
k,k′ is the enhancement factor due to AL-type U -VC given by L̂ch

k,k′ ,
whose diagrammatic expression is shown in Fig.37. In the present study, MT-type U -VC is negligible
compared to AL-type one. For this reason, we calculate only AL-type U -VC.

(Λ̂ch
k,k′)ll′mm′ = δlmδl′m′ + (L̂ch

k,k′)ll′mm′ . (4.55)

The 2nd term is neglected within Migdal-Eliashberg approximation. Analytic expression of L̂ch
k,k′ is given

as

(L̂ch
k,k′)ll′mm′ ≡ T

2

∑
p,abcdef

∑
ch1,ch2

Bmm′

abcdef (k − k′, p)achch1,ch2V
ch1
lacd(k − k′ + p)V ch2

bl′ef (−p), (4.56)

⇔ L̂ch
k,k′ =

T

2

∑
p,ch1,ch2

achch1,ch2B̂(k − k′, p)V̂ ch1(k − k′ + p)V̂ ch2(−p). (4.57)

where 
Bmm′

abcdef (q, p) =
1
4G

f
ab(k

′ − p)
{
Cmm′

cdef (q, p) + Cmm′

efcd (q, q + p)
}
,

Cab
cdef (q, p) = −T

∑
k′ Gf

ca(k
′ + q)Gf

bf (k
′)Gf

ed(k
′ − p).

(4.58)

Here, a ∼ f are orbital indices while p denotes wave number. achch1,ch2 is coefficient parameter where

(acs,s, a
c
s⊥,s⊥, a

c
c,c) = (1, 2, 1) (4.59)
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Then, we obtain

L̂c ∝ V̂ sV̂ s + 2V̂ s⊥V̂ s⊥ + V̂ cV̂ c. (4.60)

We comment that V̂ sV̂ s + 2V̂ s⊥V̂ s⊥ becomes large near magnetic QCP due to the development of spin
fluctuations. In conclusion, charge-ch of U -VC is enlarged by the square of spin fluctuations O({χs(s⊥)}2)
near magnetic QCP. We call this nontrivial effect ”mode-coupling” between spin and charge channel,
which is originate from many body effects beyond Migdal-Eliashberg approximation.

(b)

(a)

+

+

Figure 37: (a) Linearized gap equation in the present study. The black triangle shows 3-point vertex
correction (U -VC). (b) U -VC due to the AL process.

Next we define multipole-decomposed U -VC, which is expressed

(Λ̂ch,QQ′

k,k′ )ll′mm′ = δlmδl′m′ + (L̂ch,QQ′

k,k′ )ll′mm′ (4.61)

By replacing V̂ ch in Eq.(7.7) with V̂ ch,Q, we obtain

L̂ch,QQ′

k,k′ ≡ T

2

∑
ch1,ch2

achch1,ch2B̂(k − k′, p)
{
V̂ ch1,Q(k − k′ + p)V̂ ch2,Q′

(−p) + Q→Q′,
Q′→Q

}
. (4.62)

The diagrammatic expression of Eq.(4.63) is given in Fig.38(a). Note that

L̂ch
k,k′ ≈

∑
{Q,Q′}

L̂ch,QQ′

k,k′ . (4.63)

Figure 38: Multipole-decomposed U -VC for Q,Q′.

● key facts� �
* 1 We consider AL-type U -VC beyond Migdal Eliashberg approximation.
* 2 Charge-ch of U -VC is enlarged by spin fluctuations ∝ (χs)2 near magnetic QCP.
* 3 U -VC can be expressed in multipole basis as well as spin basis.� �

Here, we show numerical results of U -VC. In this calculation, we use 16 × 16 k-meshes and 128
Matsubara frequencies. In Figs.39 (a) and (b), we show the αS dependence of maximum value of the
enhancement factor on the Fermi surface,

Λ̂ch,max ≡ max
k,k′

|Λ̂ch
k,k′ | (ϵn = ϵn′ = πT ), (4.64)
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Note that Λch,max
ll′mm′ = Λch,max

l′lm′m is satisfied. We plot only charge-ch U -VC (Λ̂c) since it is much larger

than spin-ch one near the magnetic QCP. In the present numerical study, we put g = 0 in Λ̂ch, since
the contribution from χc is negligibly smaller than that from χs and χs⊥ [35]. Obtained results show
that U -VC work as large enhancement factors for the charge-ch coupling constant (|Λ̂c| ≫ 1) near the
magnetic QCP (αS ≲ 1). This behavior originates from the relation

Λ̂c
k,k′ ∝

∑
p

χ̂s(k − k′ + p)χ̂s(p) + 2χ̂s⊥(k − k′ + p)χ̂s⊥(p).

This is qualitatively similar to d-electron systems without SOI as shown in Sec.3. In conclusion, U -VC
in f -electron systems give significant contribution as well as in d-electron systems.

On the other hand, there are some significant differences from d-electron systems. In fact, in the
present f -electron system, (i) various orbital components of U -VC are equally enlarged, and (ii) the
magnitude of U -VC are even larger than in d-electron systems at the same αS . These results originate
from higher-rank magnetic multipole fluctuations as shown bellow.

(a) (b)
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Figure 39: (a) (b) αS dependence of charge-channel U -VC. Various orbital components are enlarged near
the magnetic QCP (αS ≲ 1).

Next we show the obtained result in Figs.40(a)-(d), we show the maximum of multipole-decomposed
U -VC defined as

Λ̂ch,QQ′
≡ max

k,k′
|(Λ̂ch,QQ′

k,k′ )| (ϵn = ϵn′ = πT ) (4.65)

We consider only magnetic(=odd rank) multipole ch for Q,Q′ since the contributions from electric mul-
tipole ch are negligibly small within RPA. Note that Λ̂c,QQ′

= 0 if Γ ̸= Γ′ for Q(Q) ∈ Γ(Γ′) in the

present model. Figures 40(a) and (b) show the orbital-diagonal component of U -VC given by Λc,QQ′

2222 .
It has peak at (Q,Q′) = (Tx, Tx). Subsequently, (Q,Q′) = (Jz, Tz), (Tz, Tz), (Dz, Dz) are also enlarged.

In Figs.40(c) and (d), we show orbital-off-diagonal component given by Λc,QQ′

1211 . It takes large value for
(Q,Q′) = (Tx, Dx), (Tz, Dz), (Dz, Dz), (Tx, Tx), (Jz, Dz). Therefore, higher-ranks of multipole fluctua-
tions lead to the strong enhancement of U -VC.

To summarize the obtained result, both orbital-diagonal and off-diagonal components of charge-
channel U -VC are enlarged. In addition, higher-ranks of multipole fluctuations contribute to the en-
hancement of U -VC. These facts lead to above-mentioned differences (i) and (ii) unlike 3d-electron sys-
tem. Thus, we conclude that the U -VC in f -electron system plays more significant roles due to the strong
SOI compared with d-electron systems.

● key facts� �
* 1 Charge channel paring interaction is enhanced by U -VC.
* 2 Various orbital components of U -VC are equally enlarged.
* 3 Higher-ranks of multipole fluctuations contribute to the enhancement of U -VC.� �
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Figure 40: (a)(c) Obtained U -VC for Q = Q′ and (b)(d) Q ̸= Q′, higher-ranks of multipole fluctuations
contribute to the enhancement of U -VC.

4.8 SC phase diagram

Now, we show obtained superconducting phase diagram by solving the gap equation in Eq.(4.47). We
solve the gap equation in the presence of both u and g, by the following replacement,

uÛ → uÛ + 2g(0)C⃗A+
1
C⃗†

A+
1

(4.66)

in V̂ (k − k′) in Eq.(4.53). Figures 41(a)-(b) are obtained phase diagrams, which is given by the largest
eigenvalue and symmetry of eigenvector. In the presence of U -VC, fully gapped s-wave state without any
sign reversal emerges when αS ≲ 1 and αC ≲ 1 as shown in Fig.41(a). The region of s-wave phase gets
wider as the magnetic fluctuations develop. These results originate from the fact that the charge-channel
attractive interaction is strongly enhanced by the charge-channel U -VC, which is enlarged due to the
magnetic (odd-rank) multipole fluctuations when αS ≲ 1. In fact, charge-channel attractive interaction
is expressed as

−1

2
V̂ c
U−V C ∝ −1

2
|Λ̂c|2{Û cχ̂cÛ c + Û c}, (4.67)

which takes large negative (=attractive) value when αC ≲ 1 [35]. In addition, we find that quite small
g(0) is enough for realizing the s-wave superconductivity. For instance, s-wave state emerges even at
g(0) = 0.025. This is much smaller than Coulomb interaction u = 0.31 at αS = 0.9. Obtained gap
functions of s-wave states is almost isotropic as shown in Fig.41(b).

In contrast, the s-wave region in Fig.41(a) is drastically reduced if we neglect U -VC as shown in
Fig.41(c). In this case, dx2−y2-wave state appears in wide parameter region. Obtained gap functions of
dx2−y2-wave state is expressed in Fig.41 (d). It has accidental nodes in addition to the symmetry nodes.
Furthermore, the eigenvalue λ for dx2−y2 -wave state in Fig.41(c) is much smaller than that for s-wave state
in Fig.41(a), so Tc of dx2−y2-wave state should be low. We comment that the obtained large eigenvalues
λ in Fig.41 (a),(c) are overestimated since the self-energy effects (such as the mass-renormalization and
the quasi particle damping) are dropped in the gap equation. Then, realistic Tc should be lower than
obtained result.

In conclusion, once the small electron-phonon interaction exist, fully gapped s-wave superconducting
state appears in f -electron system near the magnetic QCP. This counter-intuitive result is given by the
large U -VC caused by multiple (higher-rank) multipole fluctuations.
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Figure 41: (a) Phase diagram in the presence of U -VC. The s-wave state emerges due to the significant
contribution from U -VC. The white region corresponds to αC > 1. (b) The gap function on Fermi surface
for s-wave state. (c) Phase diagram in the absence of U -VC. Anisotropic dx2−y2 -wave state appears in
wide parameter region. (d) The gap function for dx2−y2-wave.

● key facts� �
* 1 Fully gapped s-wave SC phase appears near magnetic QCP due to U -VC.
* 2 Small el-ph coupling is enough to realize s-wave SC state (g(0) ≫ u).� �

Discussion

4.9 CEF splitting and f-f hopping

Here, we discuss CEF splitting ∆E between f1 and f2-orbitals, which is given by

∆E ≡ E1 − E2 (4.68)

as shown in Fig.42(a). Furthermore, we recall that |f1⟩ and |f2⟩ have different itinerancy. |f1⟩ is relatively
itinerant while |f2⟩ is relatively localized. Therefore, obtained DoS at the Fermi level: Dfl(0) behaves
as shown in Fig.42(b). The ratio Df1(0)/Df2(0) is much larger than unity at ∆E = 0. Then, the ratio
decreases with ∆E. At ∆E ≃ 0.12, the ratio reaches unity.

In Fig.42(c) and (d), we show obtained phase diagram at ∆E = 0.06 and ∆E = 0.12, respectively.
The region of s-wave state at ∆E = 0.12 is much wider than that at ∆E = 0.06, which means that
s-wave state is favored as ∆E increases. As a result, the condition Df1(0) ≈ Df2(0) is significant for
realizing the s-wave superconducting state. In other words, the multi-orbital nature on Fermi surface is
important for realizing s-wave states. Therefore, the s-wave state emerges in the presence of finite CEF
splitting of f -levels when the s-f hybridization has orbital dependence. This situation is expected to be
realized in CeCu2Si2 at P = 0[25].

Next, we discuss the effects of f -f hopping. In the previous sections, we neglected f -f hopping. Here,
we introduce the orbital-dependent f -f hopping. In this case, f -electron energy El have k-dependence.
As a result, the fl-orbital weight comes to have θ-dependence on the Fermi surface. The f -f hopping is
expressed as

Ĥff =
∑
klσ

Elkf
†
klσfklσ.

(
Elk = El − (−1)lδEk

)
. (4.69)
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Figure 42: (a) The energy level of the f -orbital states in the present model. (b) ∆E dependence of the
ratio of the DoS Df1(0)/Df2(0). The ratio goes to unity at ∆E ≃ 0.12. Obtained phase diagram at (c)
∆E = 0.06 and (d) ∆E = 0.12.

Here, δEk is given by small f -f hopping integrals. (|δEk| < 0.12|tss|) Here, we set E1k ≡ E1 + δEk

and E2k ≡ E2 − δEk, where the k-dependence of δEk is shown in Fig.43(a). Technically, to realize the
δEk, we introduce the intra-orbital f -f hopping up to fifth nearest neighbor hopping integrals according
to Ref.[36]. In Fig.43(b), we show the obtained fl-orbital weight on Fermi surface. It shows strong
k-dependence irrespective of the fact that |δEk|(∼ 0.2) is much smaller than tsf (= 0.7).

One may suspect that higher rank multipole susceptibilities may be suppressed when the f -orbital
weight is k-dependent, since the orbital off-diagonal components of χs may be suppressed. To answer
this question, we perform RPA analysis by using PAM model with f -f hopping introduced in Eq.(4.69).
Figure 43(c) shows the obtained magnetic multipole susceptibilities. We find that multiple higher-rank
magnetic multipole susceptibilities develop, which is quite similar to our result without f -f hopping in
Fig.34(b). This unexpected results originate from the fact that many body effects away from Fermi
energy also contribute to the multipole susceptibility. This result strongly indicates that U -VC is still
important even in the presence of small f -f hopping.

● key facts� �
* 1 S-wave SC phase emerges in the presence of CEF splitting ∆E.
* 2 Multi-orbital nature of Fermi surface is important to realize S-wave SC state. (Df1(0) ≈

Df2(0))
* 3 Various magnetic multipole fluctuations develop even for finite f -f hopping.� �

4.10 Important roles of χ-VC

In the previous section, we neglect many-body effects to f -electron susceptibilities, which is naturally
expected in strongly correlated system. This term is given by 3-vertex corrections beyond RPA, which we
call χ-VC. Here, we consider the AL term for χ-VC, whose diagrammatic expression is shown in Fig.44.
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Figure 43: (a) Obtained Fermi surface with f -f hopping. Each number at k shows intra-orbital energy
shift δEk. (b) fl-orbital weight on Fermi surface. The red (green) line corresponds to f1(f2)-orbital. (c)
αS dependence of magnetic multipole susceptibilities, which are almost equal to those in Fig.34(b).

Then, the f -electron susceptibility is given as

χ̂AL(q) = ϕ̂(q)(1̂− uÛϕ̂(q))−1, (4.70)

ϕ̂(q) ≡ χ̂0(q) + X̂AL(q) (4.71)

Since χ-VC is important only for electric (even-rank) multipole susceptibilities, we project out the mag-
netic channel contribution of χ-VC. We also drop the MT-type VC since its contribution is small.
Schematic expression of AL-type χ-VC is given by

X̂AL
QQ′ ∝

∑
Q1∼Q4

V̂ Q1,Q2 V̂ Q3,Q4(Ĝf )6O⃗QO⃗Q′†, (4.72)

where we drop the k-dependence of the matrices. The detailed expression is written in Appendix A.
From the symmetry of Green function Ĝf ∝ σ̂0 in Eq.(4.22), finite contribution comes from

X̂AL
QQ′ ∝ Tr{OQ ·OQ1 ·OQ4} · Tr{OQ′

·OQ2 ·OQ3}. (4.73)

In the following numerical study, we set E1 = E2 = 0.1 and t1sf = t2sf = 0.62 to make the analysis
simple. Then, the relation D1(ϵ) = D2(ϵ) holds. We adopt T = 0.045, µ = −0.143, nf = 0.9 and
ns = 0.3. In addition, we neglect el-ph coupling g(ωj) = 0. Here, we calculate f -electron susceptibilities
in IR Γ(= A+

1 , A
+
2 , E

+, A−
1 , A

−
2 , E

−) by solving the following equation;

χ̂AL(q, 0)w⃗
Γ
q = λΓq w⃗

Γ
q

w⃗Γ
q =

∑
Q∈Γ

bQ(q)Q⃗

 (4.74)

where w⃗Γ
q (λ

Γ
q) is the eigenvector (eigenvalue) and bQ(q) is real coefficient. Then, the largest eigenvalue

gives the multipole susceptibility for Γ.

= ++
1 2

Figure 44: (a) Diagram of irreducible susceptibility with AL-VC.

In Fig.45 (a), we show obtained susceptibilities for each Γ. With increasing u, all the electric fluctua-
tions strongly develop thanks to the AL-type χ-VC. Thus, large electric susceptibilities originate from the
interference of magnetic fluctuations. For the electric susceptibilities, the maximum position for Γ = A+

1
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is q ≈ (π, π), whereas A+
2 , E

+ has peak at q ≈ (0, 0). For the magnetic susceptibilities, the maximum
position for A−

2 , E
− is q ≈ (π/2, π/2).

Next, we solve the linearized gap equation. In this calculation, we consider both χ-VC and U -VC.
On the other hand, we neglect el-ph coupling to simplify the discussion. As explained in the previous
section, U -VC for the electric channel is enhanced by various ranks of magnetic multipole fluctuations.
Therefore, the pairing interaction due to electric fluctuations is strongly enlarged by U -VC. As shown
in Fig.45 (b), dx2−y2-wave state is replaced with the s-wave at u = 0.55, since S-wavs state is mediated
by the strong electric fluctuations in Fig.45 (a). The obtained s-wave state is fully gapped without sign
reversal, consistently with experiments in CeCu2Si2.
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Figure 45: (a) Obtained susceptibility for each IR. Electric susceptibilities (Γ = E+, A+
2 , A

+
1 ) develop

due to the AL-VC.(b) Obtained eigenvalue as the function of Coulomb interaction u. The dx2−y2-wave
state is replaced with the fully gapped s-wave state for u > 0.55.

● key facts� �
* 1 Electric fluctuations in Γ = E+, A+

2 , A
+
1 are enhanced by considering χ-VC.

* 2 S-wave SC phase emerges near AFM phase even in the absence of el-ph coupling.� �
4.11 Microscopic origin of S-wave SC

Now, we discuss the origin of the s-wave superconductivity. First, we introduce the Q,Q′-fluctuation-

induced paring interaction in the band basis V χ,QQ′

sing (k, k′), which is given by the unitary formation of

V̂ χ,QQ′

sing (k, k′) ≡
{
u2Λ̂ch

k,k′Û chχ̂ch,Q,Q′

AL (k − k′)Û chΛ̂ch†
−k,−k′

}
↑↑↓↓

− { }↑↓↑↓ (4.75)

Then, SC paring interaction due to the electric multipole fluctuations is given as,

V χ,ele =
∑

QQ′∈even
V χ,QQ′

(
V χ,QQ′

≡
∫
dkdpV χ,QQ′

sing (k, k′)

/∫
dkdp

)
(4.76)

Here, we introduce 2-types of model for futher discussion;

δEk ̸= 0 → Fig.43 (model A) δEk = 0 (model I). (4.77)

In model I, the orbital weight is perfectly isotropic, whereas the shape of Fermi surface is almost model-
independent. In Fig.46 (a), we show obtained SC paring interaction in the model A. The contribution
from the hexadecapole (H0) fluctuations in the A+

1 representation is the largest, while other electric
fluctuations are also important. In this case, S-wave SC appears with strong Coulomb interaction. For
comparison, Fig.46 (b) show the reseult in the orbital isotropic model in the model I. Surprisingly,
multipole fluctuations other than H0 do not contribute to the s-wave pairing, irrespective that all electric
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multipole susceptibilities (E+, A+
2 , A

+
1 ) develop similarly to Fig.45 (a). In this caes, S-wave SC doesn’t

appear. Then, obtained fact is summarized as;

model A → S-wave SC emerges. model I → Only D-wave SC emerges.

The reason of these non-trivial facts is explained in the next paragraph. The Fermi surface and its orbital
character of each model are shown in Figs.46 (c) and (d).

In addition, we define the paring interaction due to both electric and magnetic fluctuations (Coulomb
repulsion) as

V̂ χ
sing(k, k

′) ≡
{
u2Λ̂k,k′Û χ̂AL(k − k′)Û Λ̂†

−k,−k′

}
↑↑↓↓

− { }↑↓↑↓ ,

V̂ U
sing(k, k

′) ≡
{
u2Λ̂k,k′Û Λ̂†

−k,−k′

}
↑↑↓↓

− { }↑↓↑↓ . (4.78)

Figure 47 shows the obtained interactions with lowest frequency (ϵn = ϵm = πT ) averaged over the Fermi

surface. Absolute value of V
χ(U)
sing increases with u due to U -VC for the electric channel. However, in

model I, the total pairing interaction V χ
sing + V U

sing is always negative (=repulsive), so the d-wave state
appears. In contrast, in model A, the total pairing interaction becomes positive with u since not only
H0 fluctuations, but also other electric fluctuations contribute to the attractive pairing when δEk ̸= 0.
Therefore, fully-gapped s-wave state is realized in model A for u > 0.55, as shown in Fig.45(b). For
u ∼ 0.55, the total paring interaction is negative at ϵn = ϵm = πT as shown in Fig.47(e). Nonetheless,
the s-wave state is realized because of the retardation effect due to the strong frequency dependence of
V sing, as we explain in the Sec.4.12.
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Figure 46: Obtained V χ,QQ and V χ,EM due to the EM fluctuations in (a) model A and (b) model I.
(c),(d) Orbital character on the Fermi surface.

Finally, we discuss why all the electric fluctuations contribute to the S-wave state in model A, while
only D-wave state appears in model I. In both model, electric and magnetic fluctuations are similar since
D1(ϵ) ≈ D2(ϵ) holds even if δEk ̸= 0. In this situation, one may expect that any electric fluctuations
brings attractive pairing interaction. However, some elements of the electric susceptibility χ̂QQ′

(q, 0)
can be negative except for monopole, so the cancellation of pairing interaction sometimes occur. (For

example, χs⊥QQ
1212 (q) < 0 for Q = Oyz,zx.) Therefore, difference between model A and I is that the “inter-

orbital pairing” ⟨fk1↑f−k2↓⟩ is suppressed in model A due to the k-dependence of the orbital character
on the Fermi surface.

Now, we discuss origin of difference between model A and I. The pairing interaction is simplified as

V̂ µν = gO⃗µν(O⃗µν)
†, (4.79)

where g > 0 and Ôµν ≡ σ̂µτ̂ν (µ, ν = 0, x, y, z). All the even rank operators are given by linear combi-

nation of Ôµν with (µν) = (00), (0x), (0z), (xy), (yy), (zy). The gap equation in the orbital basis is given
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Figure 47: Obtained paring interactions V χ and V U . For model I, the horizontal axis is shifted by +0.073.

by

λ∆̂ ≈ T
∑
k

g tÔµνĜ
f (k)∆̂Ĝf (−k)Ôµνθ(ωc − |ϵn|), (4.80)

where ωc is BCS type cut-off. As we mentioned before, Ĝf is expressed as

Gf
lm(k) = G0f

l (k)δlm + (−1)l+mt2sf (sin
2 ky + sin2 kx)G

0f
l (k)G0f

m (k)Gc
↑(k). (4.81)

We neglect the first term in Eq. (4.81) since it does not give −lnT term in gap equation. In this case,
we obtain

Ĝ ∝ σ̂0(τ̂0 − aτ̂x) (4.82)

In addition, G0f
1 (k) = G0f

2 (k) holds in model I, while G0f
1 (k)G0f

2 (k) = 0 due to |δEk| (≫ t2sf ) in model
A. Therefore, the symmetry of the Green function is approximately given as

a = 1 (model A), a = 0 (model I). (4.83)

Here, the general gap function is written by

∆̂ ∝ iσ̂y(∆0τ̂0 +∆xτ̂x). (4.84)

By sing the Eq.(4.82) and Eq.(4.84), we obtain

Ĝ∆̂Ĝ ∝ ((1 + a2)∆0 − 2a∆x)iσ̂y τ̂0 + ((1 + a2)∆x − 2a∆0)iσ̂y τ̂x. (4.85)

Therefore, the eigenvalue of the gap equation is given by

λ = g′(1 + a)2 for (µν) = (00), (0x), (4.86)

λ = g′(1− a)2 for (µν) = (0z), (xy), (yy), (zy), (4.87)

where g′ = gD1(0)ln(ωc/T ).
In Fig.48, we summarize the eigenvalue λ for each electric pairing interaction, in the case of a = 0

(intra orbital Cooper pair) and a = 1 (intra+inter orbital Cooper pair). We note that Ô0z ∝ Ô20 − 2Ĉ
and Ô0x ∝ −3Ĥ0 + 2Ô20 + Ĉ. In case of a = 0, all electric fluctuations contribute to the pairing. In
case of a = 1, however, only Ô0x and C channels contribute to the pairing. In the present PAM, charge
(monopole) fluctuations are small, so they do not contribute to the pairing. Since Ô0x is included only
in H0 hexadecapole, the H0 fluctuations give dominant s-wave pairing interaction. To summarize, the
pairing interaction increases if the inter orbital Cooper pairs are killed by finite |δEk|, so the numerical
results in Fig.47 are well understood.

We also analyzed more realistic PAM with Ef
1 > Ef

2 and t1sf > t1sf . Even in this case, we obtain H0

hexadecapole fluctuation mediated fully-gapped s-wave state. Thus, our result discussed in this section
will be robust.
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Figure 48: Eigenvalue λ due to Ôµν electric interaction for a = 0 (intra orbital Cooper pair) and a = 1

(intra+inter orbital pair). Except for Ô0x and Ĉ = Ô00, the electric fluctuations give repulsive interaction
for inter-orbital Cooper pair.

● key facts� �
* 1 S-wave SC state appears in model A, while only D-wave state appears in model I.
* 2 Dominant attraction comes from the hexadecapole Ĥ0 fluctuation.
* 3 Important fact for S-wave SC is that all electric fluctuations contribute to the pairing.� �

4.12 Retardation effect

Here, we discuss important roles of retardation effects. In Fig.49(a), we show the obtained paring
interaction on the Fermi surface defined as

V sing
max (ωj) ≡ max

k,k′

{
V sing(k, πT,k′, πT + ωj)

}
. (4.88)

The paring interaction is attractive (positive) at ωj = 0, whereas it becomes to repulsion for ωj > 0. For
this reason, the gap function defined as ∆(ϵn) ≡ maxk{∆(k, ϵn)} shows the sign-change as the function
of ϵn, as shown in the inset of Fig.49. This is a hallmark of the retardation effects due to the strong
ωj-dependence of the electric (even-rank) fluctuation. The smiler result should be obtained when we
consider the cut off energy given by el-ph interaction.

Due to the retardation effect, the direct Coulomb depairing potential is reduced from U to

U∗ ∼ U

1 + UD(0)ln(EF /ω0)
, (4.89)

where ω0 is the energy scale of the electric fluctuations. Since ω0 ≪ EF , the fully-gapped s-wave
superconductivity can be stabilized in HF systems.

To clarify the importance of the retardation effect, we calculate the gap equation for the following
pairing interaction only at |ϵn| = |ϵm| = πT :

Ṽ sing(k,k′) ≡ V sing(k, πT,k′, πT ). (4.90)

Then, the reduction of the depairing potential (U → U∗) is not taken into account.
Figure 49(b) shows the eigenvalue for the s-wave state “without retardation effect”, derived from

Eq.(4.90). For comparison, we also plot the eigenvalues derived from the frequency-dependent V sing(k, k′).
The eigenvalue for the s-wave state derived from Ṽ sing(k,k′) is smaller than that derived from V sing(k, k′).
Thus, the eigenvalue for the s-wave state is significantly enlarged by the reiteration effect (U → U∗).

● key facts� �
* 1 Retardation effect is important to explain S-wave SC phase.
* 2 This effect comes from the energy dependence of electric fluctuations (or el-ph).� �
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max (ωj) and gap function ∆(ϵj) (inset) as the function of

Matsubara frequency. Strong retardation effect is recognized. (b) Obtained eigenvalue as the function of
u. The eigenvalue of the s-wave state is significantly enlarged by the retardation effect.

Conclusion

In this section, we proposed a microscopic origin of fully gapped s-wave superconductivity in multi-

orbital HF systems based on beyond ME formalism. In the present Γ
(1)
7 -Γ

(2)
7 quartet PAM, various

magnetic multipole fluctuations develop, due to the cooperation between strong SOI and Coulomb in-
teraction as shown in Fig.34. These fluctuations give significant U -VC in SC paring interaction. Also,
we verified that our present result does not change qualitatively compared with those for ∆E = 0 ∼ 0.2.
In particular, attractive paring interaction of electric ch is prominently enhanced by U -VC as plotted in
Figs.39 and 40. As a result, even-rank multipole fluctuations bring attractive interaction when the system
approaches to AFM-QCP. Tc of s-wave SC state is strongly enhanced near AFM-QCP in multi-orbital HF
systems. In addition, it becomes easier to obtain s-wave SC phase when the moderate phonon-induced
multipole fluctuations exist as shown in Fig.41. The present mechanism may be responsible for the fully
gapped s-wave superconducting state realized in CeCu2Si2.

Here, we comment that el-ph coupling is expected in HF systems. In fact, large Gruneisen parameter
(η ≡ −dlogTK/dlogΩ ∼ 30− 80) was observed, which means el-ph interaction is significant [51]. Idea of
phonon-mediated s-wave superconductivity in HF systems has been discussed in Refs.[51, 52, 53]. Now,
this scenario becomes more realistic by considering U -VC founded in the Sec.4.

Another possible origin of electric fluctuations is many body effects due to AL-type χ-VC. By con-
sidering χ-VC, electric fluctuations drastically develop. After that, attractiv SC paring interaction is
enhanced by large U -VC. Based on the present model, H0 hexadecapole fluctuations dominate over other
even-rank fluctuations as a attraction for SC Cooper pairs. Thus, s-wave state is caused by the hexade-
capole (rank 4) fluctuations. Also, s-wave SC phase is stabilized by other electric fluctuations including
quadrupole and monopole, when we introducing small δEkl, In this case, the inter-orbital Cooper pairs
are killed. Therefore, we revealed that all of χ-VC, U -VC and e-ph interaction enhance Tc of s-wave SC,
cooperatively. The present pairing mechanism is expected to be important to understand various HF
materials.

The main results of the present study are summarized as follows;

(i) Near the magnetic QCP, several (higher-rank) multipole fluctuations strongly develop
simultaneously, whereas dipole susceptibility solely develop in d-electron systems.

(ii) Moderate electric multipole fluctuasion develop due to cooperation of the el-ph
coupling and many body effects beyond RPA (χ-VC)

(iii) Development of magnetic multiple multipole fluctuations gives prominent U -VC,
which leads to the violation of ME scheme.

(iV) Owning to U -VC, electric-multipole fluctuations induced s-wave SC phase
is stabilized when Df1(0) ≈ Df2(0). This is a necessary condition in realizing
moderate quadrupole or hexadecapole susceptibility.
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There remain unsolved future issues. For instance, renormalization of self-energy, which brings strong
mass enhancement, is one of the important issue. Also, pressure-induced 2nd SC dome in CeCu2Si2 is
uncovered problem [27]. In addition, we expect that the present mechanism may be applicable for TSC
phase in UPt3.
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5 Multipole phase

5 Multipole phase

Introduction

In HF systems, there are very interesting phenomena originating from exotic electronic states with
strong Coulomb interaction and SOI in f -electrons. In particular, it is well known that AFM fluctu-
ations cause interesting quantum transition and SC phase [1]-[8]. In the case of HF system, various
multipole order and fluctuations appear, which is absent in transition metal oxides. One of the typical
multipole ordered system is CeB6. It shows AF-quadrupole order with q = (π, π, π) around TQ = 3.2K.
Then, magnetic dipole order appears at TN = 2.4K [9]-[12]. Moreover, AF-octupole order is induced
in small magnetic field [13]-[16]. Therefore, it is expected that various multipole fluctuations appear
simultaneously in the H − T phase diagram of CeB6.

Until now, CeB6 has been studied intensively based on localized f -electron picture [13]-[19]. However,
recent ARPES and neutron inelastic scattering for CeB6, as well as dHvA for CexLa1−xB6, uncovered
the itinerant nature of the f -electron system above T ∼ TQ[20]-[25]. These findings mean that itinerant
property becomes a reasonable starting point to study the multipole physics of CeB6. In this section, we
approach to the long standing problem by considering χ-VC.

If we perform RPA study on the PAM, quadrupole order will not be obtained. In particular, odd-rank
(=magnetic) multipole fluctuations emerge, while even-rank (=electric) ones remain small within RPA
[24, 26, 27]. This fact originates from the importance of VC, due to the many body effects omitted in
RPA. For a long time, Fermi Liquid approach has been succeeded in HF materials, such as CeB6 [24],
URu2Si2 [26], and CeCu2Si2 [27]. In this case, large Coulomb interaction is renormalized into zU . In
many HF systems, z ≪ 1 is satisfied. Therefore, Fermi liquid theory is applicable even if Coulomb
repulsion is quite large.

In the previous study, the lowest-ordered VC with respect to fluctuations, called MT-terms has been
studied. Due to the MT-term, rank-5 multipole ordered state is stabilized in URu2Si2 [26]. On the other
hand, the MT-VC did not affect even-rank multipole fluctuations. Thus, microscopic origin of quadrupole
order observed in various compounds remains important issue. For this purpose, CeB6 is a suitable to
reveal a theoretical origin of multipole order in HF systems.

Recently, it has been revealed that AL-VC becomes more important than MT-VC, AL-VC works a
trigger for realizing nematic order in Fe-based superconductors [28, 29, 30]. Analytically, AL-VC is related
to the magnetic correlation length ξ as ξ4−d in d-dimension systems. Thus, AL-VC plays significant roles
near the AFM-QCP, which is verified by fRG study in Sec.2 with higher-order VC in an unbiased way.
[31]-[37]. In the previous section (Sec4), we revealed the imposrtant role of VC in f -electron system
[38, 27]. This fact indicates significance of AL-VC in multipole HF systems, which has not been studied
so far.

In this section (Sec.5), we study the microscopic origin of quadrupole order in CeB6 by using the
itinerant f -electron PAM. Here, we introduce effective model composed of Γ8 quartet f -electrons. Both
uniform and AF-octupole fluctuations appear originating from the p-h nesting. It is consistent with
neutron experiments. Therefore, AF-quadrupole (Oxy) order is stabilized by the interference among
different types of magnetic multipole fluctuations. The present proposed theory with AL-VC is expected
to be applicable for various HF compounds.

Model

5.1 Γ8 PAM & multipole symmetry

Here, we introduce 2D PAM for describing CeB6. For f -electron states, we consider the Γ8 quartet
in J = 5/2 space due to the strong SOI [13]:

|f1 ⇓ (⇑)⟩ =

√
5

6
|+ (−)

5

2
⟩+

√
1

6
| − (+)

3

2
⟩,

|f2 ⇓ (⇑)⟩ = |+ (−)
1

2
⟩, (5.1)
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5.1 Γ8 PAM & multipole symmetry 5 Multipole phase

where ⇓ (⇑) is the pseudo-spin up (down). The kinetic term is given by

Ĥ0 =
∑
kΣ

ϵkc
†
kΣckΣ +

∑
klσ

Ef†klσfklσ +
∑
klσΣ

(
V ∗
klΣσf

†
klσckΣ + h.c

)
, (5.2)

where c†kσ is a creation operator for s-electron with momentum k and spin σ on Ce ion. ϵk is the

conduction band dispersion, which we explain in the Appendix F. f†klΣ is a creation operator for f -
electron with k, orbital l, pseudo-spin σ and energy E. VklΣσ is the s-f hybridization term between the
nearest Ce cites. Using the Slate-Koster method [40], VklΣσ is given as

VklΣσ = −σtlsf (sin ky + (−1)lσi sin kx)δσ,Σ, (5.3)

where the pseudo-spin is conserved (σ = Σ) in the present 2D model. Detailed explanation of VklΣσ

is written in Appendix F. Hereafter, we set 2|t1ss| = 1 as energy unit, and put tlsf =
√
18/14 × (0.78),

E = −2.0, T = 0.01, and µ = −2.45. Then, f(s)-electron number is nf = 0.58 (ns = 0.69). We comment
that nf increases if we put the level of El lower under the condition nf + nc =const. By this procedure,
our main results will not change since the shape of the Fermi surface is essentially unchanged.

(a) (b)

e
n

e
rg

y

-8

8

0

wave vector

Figure 50: (a) Band dispersion and (b) Fermi surfaces of the present model. Black vector represents
major nesting vectors.

Figure 50(a) shows the band structure of the present PAM. The lowest band crosses the Fermi level
(ϵ = 0). Since WD ∼ 5eV in CeB6 [20, 21, 41, 42], 2|t1ss|(= 1) corresponds to ∼ 0.5eV. The bandwidth of
itinerant f -electron is W qp

D ∼ |VklΣσ| ∼ 1. The Fermi surfaces shown in Fig.30(b) are composed of large
ellipsoid electron pockets around X,Y points, consistently with recent ARPES studies [20, 21]. We also
consider the Coulomb interaction introduced in Eq.(4.5) in Sec.4. The maximum element of Û is set to
unity.

In Γ8 quartet model, there are 16-type active multipole operators up to rank 3; monopole, dipole
(rank 1), quadrupole (rank 2), octupole (rank 3) momenta. The table of irreducible representation (IR)
in the D4h point group is shown in TABLE 4. Even rank (odd rank) operators correspond to electric
(magnetic) multipole operators.

Here, we define the Coulomb interaction in the multipole basis, which is given by

UQ,Q′
= (Q⃗)†ÛQ⃗′. (5.4)

Here, Q⃗ is 16 × 1 vector TABLE 5 shows the diagonal component UQ ≡ UQ,Q. Electric channels of
the Coulomb interaction are much smaller than that for the magnetic channels. Therefore, quadrupole
phase can’t be explained by the symmetry of Coulomb interaction. The inner product (Q⃗)†Q⃗′ is unity
for Q = Q′. It is zero when Q and Q′ belong to different IR, whereas it is not always zero when Q ̸= Q′

belong to the same IR [27, 39].
The Green function Ĝc, Ĝf , Ĝcf is defined in the same way as Eq.(4.17)∼(4.18) in Sec.4. In the

present model, V ∗
klσσVkmσσ in the f -electron Green function Ĝf is given by,

V ∗
klσσVkmσσ = tlsf t

m
sf (sin

2 ky + (−1)l+m sin2 kx + 2(l −m)σi sin kx), (5.5)

Therefore, the symmetry of the Green function is given by

Ĝf ∝ σ̂0(τ̂0 + aτ̂x) + bσ̂z τ̂y (5.6)
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IR(Γ) rank(k) multipole(Q̂) matrix(ÔQ) IR in Hz

Γ+
1 0 1̂ σ̂0τ̂0 Γ1

2 Ô20 4σ̂0τ̂z

Γ+
3 2 Ô22 4σ̂0τ̂x Γ3

Γ+
4 2 Ôxy −σ̂z τ̂y Γ4

Γ+
5 2 Ôyz(zx) −σ̂x(y)τ̂y Γ5

Γ−
2 1 Ĵz σ̂z(−1.2τ̂0 − 0.67τ̂z Γ1

3 T̂zα σ̂z(−τ̂0 − 7τ̂z)

Γ−
3 3 T̂xyz −10σ̂0τ̂y Γ4

Γ−
4 3 T̂zβ −6.7σ̂z τ̂x Γ3

Γ−
5 1 Ĵx(y) σ̂x(y)(1.2τ̂0 − 0.34τ̂z + (−)0.58τ̂x) Γ5

3 T̂xα(yα) σ̂x(y)(τ̂0 − (+)3.5τ̂z + 6.1τ̂x)

3 T̂xβ(yβ) σ̂x(y)(−5.8τ̂z − (+)3.4τ̂x)

Table 4: IRs and 16-type active multipole operators ofD4h point group. Operator with rank k corresponds
to 2k-pole.

Q 1 O20(22) Oxy(yz,zx) Txyz Jz(x,y) Tα
z(x,y) T β

z(x,y)

UQ -2.4 0.50 0.63 0.81 1.03 0.94 0.94

Table 5: Normalized Coulomb interaction UQ. The relation UQ,Q′
= 0 holds for Q ̸= Q′ except for

UJµ,T
α
µ = 0.58 where µ = x, y, z.

The f -electron Green function has spin dependence,

Gf
ll(k) ≡ Gf

ll↑(k) = Gf
l↓(k) (Gf

lm↑(k) ̸= Gf
lm↓(k)),

Gc(k) ≡ Gc
↑(k) = Gc

↓(k), (5.7)

which means that the spin index can’t be excluded unlike

● key facts� �
* 1 We consider 2D Γ8 quartet PAM in the presence of strong SOI.
* 2 We can not obtain Oxy quadrupole phase by RPA since electric ch of bare Coulomb

interaction is much smaller than magnetic ch ones.
* 3 f -electron Green function has spin dependence; Ĝf ∝ σ̂0(τ̂0 + aτ̂x) + bσ̂z τ̂y.� �

Method & Result

5.2 Magnetic multipole susceptibility

Γ7 model in Sec.4. The bare irreducible susceptibility is given by

χ0
α,β(q) = −T

∑
k

Gf
LM (k + q)Gf

M ′L′(k), (5.8)

where L ≡ (l, σ) and α ≡ (L,L′). α, β takes 1 ∼ 16, and Ĝf Here we use the Green function without
self-energy. Then, f -electron susceptibility within RPA is given as

χ̂(q) = χ̂0(q)(1̂− uÛχ̂0(q))−1, (5.9)

Here, we consider the following eigen equation

uÛχ̂0(q, 0)w⃗Γ(q) = αΓ(q)w⃗Γ(q), (w⃗Γ(q) =
∑
Q∈Γ

ZQ(q)Q⃗) (5.10)
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5.3 Electric multipole susceptibility 5 Multipole phase

where ZQ(q) is a real coefficient. The maximum of the eigenvalue αΓ(q) gives the Stoner factor for IR Γ,

αΓ = max
q

{αΓ(q)}, / αmag(el) = max
n

{αΓ−(+)
n }, (n = 1, 3, 5) (5.11)

where αmag(el) is the magnetic (electric) Stoner factor. The Γ-channel multipole order appears when

αΓ ≥ 1. Using Q⃗, the multipole susceptibility is given by

χQ,Q′
(q) = (Q⃗)†χ̂(q)Q⃗′. (5.12)

First, we show the numerical results by RPA. Figure 51 shows obtained susceptibilities χQ(q, 0) ≡
χQ,Q(q, 0) at u = 1.08 (αmag = 0.9). In RPA, χJz is the most largest. Secondly, χTβ

ν , χTα
ν (ν = x, y) and

χTxyz are also enlarged. χJz (q, 0) has peak value at q ≈ 0 and q ≈ Q ≡ (π, π), which is consistent with
the inelastic neutron-scattering that reports strong ferromagnetic and antiferromagnetic fluctuations at
q = (π, π, π), (π, π, 0) above TN [23, 43]. Therefore, the present two-dimensional PAM is reliable.On the
other hand, RPA quadrupole susceptibility remains small.

6

0

3

Figure 51: Obtained multipole susceptibilities by RPA. The peak positions correspond to the nesting
vectors in Fig. 50 (b).

● key facts� �
* 1 Various magnetic fluctuations develop within RPA.
* 2 Obtained magnetic susceptibilities has peak at q ≈ 0 and q ≈ Q ≡ (π, π).� �

5.3 Electric multipole susceptibility

From now on, we introduce the VC due to AL and MT terms.

χ̂(q) = ϕ̂(q)(1̂− uÛϕ̂(q))−1, (ϕ̂(q) ≡ χ̂0(q) + X̂AL+MT(q)) (5.13)

where ϕ̂(q) is irreducible susceptibility including the VC in the 16× 16 matrix form. Diagrams of these
VC are shown in Fig.52. For example, the expression for the MT term is

XMT
LL′MM ′(q) = T 2

∑
p,k,A∼D

GLA(k + q − p)GBL′(k − p)GDM (k + q)GM ′C(k)VDACB(p). (5.14)

where p ≡ (p, ωm), and V̂ (q) ≡ u2Û χ̂(q)Û + uÛ is the dressed interaction given by RPA.
Figures 53 (a) and (b) show the obtained quadrupole susceptibility including MT- and AL-VC. In

contrast to RPA result, the obtained χOxy (q, 0) is strongly enhanced at q = Q and q = 0, and becomes
the largest of all χQ. This enhancement originates from the AL terms, whereas the MT term is very

small as we show in 54. We find that χ
Oxy

AL (q, 0) strongly increases with u. In contrast, χ
Oxy

MT (q, 0) remains
small and comparable to RPA result in Fig. 3 (c). Therefore, it is verified that the enhancement of Oxy

quadrupole fluctuations originates from the AL-VC, whereas the MT-VC is very small.
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= ++ +
1 2

Figure 52: Diagrams of the irreducible susceptibility ϕ̂ with MT- and AL-VC.
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(b)
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by RPA
8

0.74 0.78 0.82

0

8

16

0.86 0.9

Figure 53: (a) q-dependence of χOxy (q, 0) at αΓ+
4 = 0.94 with AL-VC+MT-VC. (b) u-dependence of

χOxy (q, 0) at q = Q and q = 0.

The obtained χOxy (q, 0) has the highest peak at q = Q, consistently with the antiferro-Oxy order in
CeB6. Moreover, the second highest peak of χOxy (q, 0) at q = 0 explains the softening of shear modulus
C44 in CeB6 [10].

In Fig.54, we show all quadrupole susceptibilities including Oxy, Ozx, Oyz, O20, O22. In the present 2D
model, only Oxy-fluctuation strongly develops. The reason is that (Tx, Ty) fluctuations are much larger
than Tz fluctuations in RPA due to the violation of cubic symmetry. Since Oµν quadrupole susceptibility
is magnified by (Tµ, Tν) fluctuations (µ, ν = x, y, z) due to the AL-VC, χOxy (q, 0) is larger than that
for Ozx, Oyz in the present 2D model. In contrast, in the cubic model, χQ(q, 0) with Q = Oxy, Ozx, Oyz

should equally develop.
In addition, as we show in TABLE 5, the Coulomb interaction UQ for Q = Oxy/yz/zx is much larger

than that for Q = O20/22. For this reason, it is difficult to expect that Q = O20/22 quadrupole sus-
ceptibility becomes larger than Q = Oxy one, even if the AL-VC are considered. Thus, the relation
χOxy (q, 0) > χO20/22(q, 0) should hold even in cubic systems. To summarize, the obtained strong en-
hancements of χOxy (q, 0) and χJz (q, 0) at both q = Q and q = 0 reproduce the key experimental results

14

0

10

4

with MT VC

with AL+MT VCs
with AL+MT VCs

with MT VC

0

8

0.74 0.78 0.82 0.86 0.9

(a) (b)

Figure 54: (a) Obtained χ
Oxy

AL (q, 0) with AL1+AL2 terms and χ
Oxy

MT (q, 0) with MT term at q = Q,0 as
function of u. (b) Obtained quadrupole susceptibilities χQ(q, 0) for Q = Oxy, Ozx/yz, and O20/22.
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5.4 Microscopic origin of quadrupole phase 5 Multipole phase

of CeB6.

● key facts� �
* 1 χOxy (q, 0) develops by considering AL- and MT-terms at both q = Q and q = 0
* 2 AL-term brings dominant contribution to the enhancement of χOxy

* 3 χOyz(zx) should equally develop if we consider 3D nature of CeB6.� �
Discussion

5.4 Microscopic origin of quadrupole phase

Next, we explain that the Oxy quadrupole order is derived from the interference between magnetic
multipole fluctuations. For this purpose, we analyze the total AL term for Oxy-channel defined as

XAL
Oxy

(q) ≡ (O⃗xy)
†X̂AL(q)O⃗xy, (5.15)

The Stoner factor for χOxy channel is proportional to uUOxyϕOxy (q), where ϕOxy (q) ≡ (O⃗xy)
†ϕ̂(q)O⃗xy.

Therefore, XAL
Oxy

(q) (> 0) works as enhancement factor of Oxy susceptibility. For instance, the AL1 term

due to (Q,Q′)-channel fluctuations is defined as

XAL1,QQ′

Oxy
(q) ≡ T

2

∑
p

V Q(p)V Q′
(p− q)ΛOxyQQ′

q,p (Λ
OxyQ

′Q
q̄,p̄ )∗, (5.16)

where V Q(q) and Λ
OxyQQ′

q,p are defined as

V̂ (q) =
∑
Q

V Q(q)Q⃗(Q⃗)†, (5.17)

ΛOxyQQ′

q,p ≡
∑
α

(O⃗xy)
∗
α(Q⃗

′)†Λ̂α(q, p)Q⃗. (5.18)

The diagrammatic expression of Eq.(5.16) is shown in Fig.55(a). Figure 55(b) shows the q-dependence

of XQQ′

Oxy
(q, 0) at u = 0.91. We find that the (Q,Q′) = (Tα

x , T
α
y ), (Jz, Txyz), (T

β
x , T

β
y ) channels give the

dominant contributions. Other terms not shown in Fig.55(b) give negligible contribution. There fore, we
conclude that Oxy quadrupole fluctuation is enhanced by various types of magnetic fluctuations.

Next, we discuss the q-dependence of the AL-VC, which is given as

X
AL,TxTy

Oxy
(q) ∝

∑
p

χTx(p)χTy (q − p). (5.19)

It becomes large at q = Q and q = 0 since χTµ(p) has large peaks at p ∼ Q,0 shown in Fig.51. Thus,
antiferro-quadrupole order in CeB6 originates from the interference between ferro- and antiferro-magnetic
multipole fluctuations.

Figure 55(c) presents the quantum process of Ôxy quadrupole order driven by the interference between
(Tx, Ty) fluctuations, which corresponds to ΛOzxTxTy in Fig.55(a). This process is realized when

ΛOzxQQ′
∝ Tr{Ôxy · Q̂ · Q̂′} ̸= 0. (5.20)

In contrast, since ΛQTxTy ∝ Tr{Q̂ · T̂x · T̂y} = 0 for odd-rank Q, the AL-VC is negligible for Q = J, T .

● key facts� �
* 1 Microscopic origin of χOxy is interference between 2-types of magnetic fluctuations,

mainly from Tx and Ty fluctuations.
* 3 The peak structure of χOxy (q) originates from large χTx,Ty (p) at p ∼ Q,0.� �
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Figure 55: (a) AL-term XAL1,QQ′

Oxy
given by (Q,Q′)-channel fluctuations. (b) Obtained XQQ′

Oxy
(q, 0) along

high-symmetry line. (c) Quantum process of Oxy fluctuations driven by the interference between (Tx, Ty)
fluctuations, which corresponds to the shaded area in (a). Note that χOxy ̸= χOxz(yz) in the present 2D
model

5.5 Magnetic field

Finally, we discuss the field-induced octupole order, which has been studied intensively as a main
issue of CeB6 [13, 14, 15, 16]. The Zeeman term under the magnetic field along z-axis is given as

ĤZ = hz
∑
L,M

(Ĵz)L,Mf
†
kLfkM . (5.21)

In the presence of magnetic field hz ̸= 0, electric and magnetic multipole belongs to the same IR as shown
in the 5th column in TABLE4.[13] In this case, both Oxy and Txyz belong to the same IR Γ4 Therefore,
inter-multipole susceptibility χOxy,Txyz (q, 0) is induced in proportion to hz, since

Tr{Ôxy · Ĵz · ˆTxyz} ̸= 0. (5.22)

In Fig,56(a), we show the diagrammatic expression of quadrupole-octupole susceptibility in the presence
of magnetic field. To verify this, we solve the eigen equation (5.10) for the IR Γ4 under hz, at the fixed
magnetic Stoner factor in RPA at αmag = 0.8 [44, 45].

Figures 56(b) shows the obtained coefficient of eigenvector w⃗Γ4 , which is defined as

w⃗Γ4(q) = ZOxy (q)O⃗xy + ZTxyz (q)T⃗xyz (|w⃗Γ4 |2 = 1). (5.23)

ZTxyz increases linearly in hz, due to the interference process under hz shown in the Fig. 56(a). ZTxyz

becomes comparable to ZOxy under small magnetic field hz ≲ 0.03 ≪W qp
D /10.

Figures 56(c) shows the largest stoner factor αΓ4 at q = Q as functions of hz. The increment of αΓ4

under hz is consistent with the field-enhancement of TQ in CeB6. (In contrast, TN will be suppressed
by large Oxz moment.) Since the ratio of the ordered momenta at TQ is MTxyz/MOxy = ZTxyz/ZOxy ,
field-induced antiferro Txyz order is naturally explained. In Fig.56(d) we show the proposed mechanism
of field-induced Oxy + Txyz ∈ Γ4 order.

● key facts� �
* 1 Antiferro Txyz phase is induced by magnetic field along z-axis since χOxy,Txyz ̸= 0.
* 2 Txyz order is strongly magnified by large χOxy,Txyz , which comes from AL-type χ-VC.
* 3 Origin of Txyz phase is interference of multipole fluctuations.� �

Conclusion

In summary, we proposed multipole fluctuation mechanism to explain the quardupole ordering in
CeB6 by considering AL-VC in HF systems. As a result, both ferro- and antiferro-magnetic multipole
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Figure 56: (a) Form factor (ZOxy , ZTxyz ) of the eigenvector for Γ4 = {Oxy, Txyz} at q = Q under hz.
Inset: hz-linear term of the three-point vertex ΛTxyzTxTy that gives large χOxyTxyz (q, 0). (b) Stoner factor
αΓ4 as function of hz.

fluctuations are induced around nesting vector of the Fermi surface. It is consistentl with recent neutron
experiments. In particular, we showed that AF-Oxy order at TQ (> TN ) originates from the interference
among the different types of magnetic multipole fluctuations, which are enlarged within RPA as shown
in Fig.55(c). Also, we verified that magnetic field occur octupole ordered phase identified in CeB6. The
inter-multipole coupling mechanism will be important even in other HF systems [46, 47] as well as 4d, 5d
transition metal system [48]. Therefore, it important future problem to analyze AL-VC in 3D system.

At the starting point of the present study, we showed that on-site quadrupole (Oxy) interaction is
about 60% of dipole (Jµ) one as listed in TABLE 5. For this reason, quadrupole ordered phase cannot
appear within RPA scheme. In contrast, by using RKKY model, quadrupole interaction get as large as
the dipole one. [13, 16, 49]. Therefore, the difference between itinerant and localized scheme may enable
us to notice some important facts.

Finally, the main results of the present study are summarized as follows;

(i) Near the AFM-QCP, several multipole fluctuations strongly develop, simultaneously
including higher-rank (octupole T ) fluctuations.

(ii) Development of magnetic multiple multipole fluctuations gives large χ-VC for electric ch
fluctuations, which cause violation of RPA.

(iii) Owning to χ-VC, AF-quadrupole fluctuation χOxy (q) at q = (π, π) develop due to the
interference between magnetic octupole fluctuations given by Tx and Ty at p ∼ Q,0.

(iV) Antiferro Txyz phase is induced by small magnetic field along z-axis due to the χ-VC and
inter-multipole fluctuation χOxy,Txyz .
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In the present paper, we studied microscopic origin of SC and multipole phase in SCES in a unified
way considering many body effects beyond RPA+ME theory. Until recently, it was widely believed that
the basic properties of SC states in SCES is qualitatively well understood within conventional RPA+ME
theory. However, recent experiments revealed that RPA+ME theory fails in several SCES, such as Fe-
based and HF superconductor. Thus, new microscopic theory is required to solve the problem. Here, we
focused on significant roles of VC due to many body effects. It was revealed that violation of RPA+ME
theory occur especially in multiorbital and multipole systems. As we have shown in this paper, VC is
classified into χ-VC and U -VC;

・VC for p-h irreducible susceptibility (χ-VC), which is absent in RPA.

・VC for SC paring interaction (U -VC), which is neglected in the ME.

We conclude that VC is necessary to understand fundamental properties of various phenomena observed
in SCES. Our main findings based on the beyond RPA+ME theory are listed as follows;
Summary 1: Both U -VC and χ-VC work as a mode coupling between different type of

p-h fluctuations, as we verified by using the fRG and perturbation theory.

Summary 2: Mode coupling effects drastically change the ground state. For instance, orbital ordered
state is induced by interference between different magnetic fluctuations near AFM QCP.

Summary 3: U -VC strongly enhances the attractive SC paring interaction due to the electric or
orbital channel fluctuations.

Summary 4: AFM fluctuations and el-ph interaction can work cooperatively on s-wave SC paring
mechanism against common knowledge. This result originates from the fact that
phonon-mediated attraction is enhanced by U -VC near AFM QCP.

Summary 5: Mode coupling becomes more significant in f -electrons system than d-electrons due to
large number of multipole degrees of freedom. Higher-rank electric ch multipole fluctuations
stabilize s-wave SC in CeCu2Si2.

Summary 6: Interference between 2-types of octupole fluctuations induce quadrupole phase in CeB6.

We believe that our findings are meaningful step for revealing essential roles of many body effects behind
various long standing problems in SCES. Also, a lot of interesting issues are left in the field of SCES. One
of that is non trivial transport phenomena, such as non-Fremi-liquid behavior, are reported near the SC
and multipole phase. In addition, external field induced phases were also discovered. Therefore, we need
to continue our work to solve these issues in the future. Hereafter, we review each section (Sec.2∼5) in
more detail.

Functional Renormalization Group (fRG) study

In Sec.2, we studied 2-orbital (dxz, dyz) Hubbard model without SOI based on fRG+cRPA theory.
The fRG study has great merit for understanding fundamental properties of many body effect since
parquet type higher-order processes are automatically generated in unbiased way. In fRG+cRPA study,
we consider 3 energy region with lower cut off energy ωc and boundary of fRG and cRPA Λ0. Hereafter,
we set Λ0 ≪ ϵF . In the highest energy region (Λ0 < ξk), p-h instability within RPA process is the most
dominant. In this case, only spin fluctuations develop while orbital ones remain small. On the other
hand, in the lower energy region (ωc < ξk < Λ0), AL-type VC for p-h fluctuation becomes significant
and orbital fluctuations develop due to the χ-VC. In the lowest energy region (ξk < ωc), p-p instability
dominates over p-h one. Then, U -VC for SC paring interaction plays significant roles in forming Cooper
pairs. As a result, we revealed that TSC phase appears near the boundary of orbital and magnetic
ordered phase. Therefore, microscopic origin of TSC phase comes from cooperation between spin and
orbital fluctuations due to the VC beyond RPA+ME theory. In addition, we compared the result of fRG
study with that of diagrammatic calculation. Then, we conclude that the dominant contribution comes
from AL-type U -VC, which brings mode coupling between spin and orbital degrees of freedom.
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Cooperation of el-ph and AFM fluctuations for SC state

In Sec.3, we studied 2-orbital Hubbard Holstein model in the presence of B1g el-ph interaction. We
revealed that small el-ph coupling g strongly enhances the quadrupole orbital fluctuations due to the
significant roles of AL-type χ-VC. In addition, fully gapped s-wave SC phase emerges near magnetic
QCP even in the presence of the small g. The required value of g get smaller as the system approaches
to AFM-QCP. Large attractive paring interaction appeared due to the orbital fluctuation U -VC For
this reason, we conclude that microscopic origin of s-wave SC state is the cooperation between AFM
fluctuation and el-ph interaction, which is neglected in conventional RPA+ME theory. We stress that
U -VC is enlarged only neat the Fermi surface. Therefore,local approximation fails to explain large U -
VC. We note that retardation effects due to the cut off energy of el-ph interaction is also important to
understand the obtained phase diagram.

S-wave superconductivity in CeCu2Si2

In Sec.4, we studied 2-orbital PAM motivated by recent progress in experimental study on CeCu2Si2,
which revealed that s-wave SC phase appears irrespective of the fact that the system is near AFM phase.
To understand the experimental fact, we focus on many body effects due to χ-VC and U -VC as well as
strong SOI in f -electron system. In the presence of strong SOI, various higher-rank order parameters get
to be active. Therefore, higher-rank multipole fluctuations induce nontrivial phase transition. Considering
mulipole fluctuations, we study SC paring mechanism. First, we showed that various magnetic channel
fluctuations develop within RPA theory. And also, electric fluctuations are induced by the magnetic
fluctuations due to the χ-VC or A1g el-ph interaction. As a result, s-wave SC phase appears near
AFM-QCP. The microscopic origin of s-wave SC state is the large attractive paring interaction due to
the electric channel multipole fluctuations. We found that the attraction is drastically enhanced by
magnetic channel fluctuations through the U -VC. In addition, we found that multi-orbital nature of
Fermi surface plays important roles in the proposed mechanism. Especially, Df1(0) ≈ Df2(0) is needed.
We also showed that various type of electric multipole fluctuation including quardupole and hexadecapole
fluctuations works as a attraction for SC paring. In summary, we proposed SC paring mechanism in HF
CeCu2Si2 considering many body effects beyond conventional RPA+ME theory. Essentially, violation
of conventional ME theory brought us a new SC pairing mechanism, which is ”interference among the
different rank of multipole fluctuations”.

Multipole phase

In Sec.5, we studied 2D Γ8 quartet PAM to understand the origin of hidden ordered phase in CeB6.
First, we performed RPA, and showed that various magnetic multipole fluctuations develop. However,
magnetic multipole fluctuations cannot explain the experimental facts which revealed that the elastic
constant jumps at transition temperature of hidden ordered phase. Therefore, we go beyond RPA by
considering χ-VC for multipole susceptibilities. As a result, we reveled that electric quadrupole Oxy

fluctuations is induced by the interference between 2-types of magnetic octupole Tx, Ty fluctuations. In
particular, AF-octupole and ferro octupole fluctuaions induced AF quadrupole phase. Then, we proposed
octupole fluctuation mediated quadrupole (Oxy) phase in CeB6. Finally, we introduced magnetic field
along z-axis and showed that octupole Txyz order is induced by the magnetic field.
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Appendix A: fRG theory and expression for VC

Here, we discuss on momentum conservation in fRG study. In the Sec.1, 4-point vertex function
Γk1k2k3k4 is analyzed by using fRG+cRPA. In the present patch method, we consider patch (p) conser-
vation given by

p1 + p4 ≃ p2 + p3 (7.1)

Compared with previous fRG method, we adopt wider condition for the momentum conservation. For
instance, if we put p1 and p2 on the red arrow as shown in Fig.57, p3 and p4 were set in the yellow colored
area in the previous method. Thus, only inter-band scatterings are considered. On the other hand, we
include p3 and p4 in the pink colored area on the black dotted allows, This improvement enable us to
consider low energy scattering more accurately in solving RG equation.

Figure 57: In the present fRG method, both pink and yellow colored area are taken into account as the
position of patch p3 and p4.

Here, we explain analytical expression for the AL- and MT-terms in U -VC. First, 4-point vertex
function in the orbital basis due to RPA susceptibility is define as

Îc(s)(q) = Û c(s)(χ̂
c(s)
RPA(q) + {Û c(s)}−1)Û c(s). (7.2)

By using the 4-point vertex, dressed Coulomb interaction due to the MT-type VC is given by

U c,MT
ll′mm′(k, k

′) =
T

2

∑
q,a∼d

U c
lmbc

{
Icamdm′(q) + 3Isamdm′(q)

}
Gab(k + q)Gcd(k

′ + q), (7.3)

Us,MT
ll′mm′(k, k

′) =
T

2

∑
q,a∼d

Us
lmbc

{
Icamdm′(q)− Isamdm′(q)

}
Gab(k + q)Gcd(k

′ + q), (7.4)

where a ∼ h and l, l′,m,m′ are orbital indices. The diagrammatic expression for the MT term is shown
in the 2nd term of the rhs in Fig.14(b). Also, the AL-type VC is defined by

U c,AL
ll′mm′(k, k

′)=
T

2

∑
q,a∼h

U c
lmaf

{
Λabcdef (k

′′, q) + Λfcbeda(k
′′,−q − k′′)

}
×
{
Icbcmg(q + k′′)Icm′hed(q) + 3Isbcmg(q + k′′)Ism′hed(q)

}
Ggh(k

′ − q),

Us,AL
ll′mm′(k, k

′)=
T

2

∑
q,a∼h

Us
lmaf

{
Λabcdef (k

′′, q) + Λfcbeda(k
′′,−q − k′′)

}
×
{
Isbcmg(q + k′′)Icm′hed(q) + Icbcmg(q + k′′))Ism′hed(q)

}
Ggh(k

′ − q) + δUs,AL
ll′mm′(k, k

′),

δUs,AL
ll′mm′(k, k

′)=
T

2

∑
q,a∼h

Us
ll′mm′

{
Λabcdef (k

′′, q)− Λfcbeda(k
′′,−q − k′′)

}
×
{
2Isbcng(q + k′′)Ism′hed(q)

}
Ggh(k

′ − q), (7.5)
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Λabcdef (q, q
′) = −T

∑
p

Gab(p+ q)Gcd(p− q′)Gef (p). (7.6)

k′′ ≡ k − k′.
Also, we introduce the analytic expressions for dressed 4-point vertex in χ-VC without using spin and

charge channel to study f -electron system with strong SOI. First, the expression for the AL1 term is
given as

UAL1
αβ (q) =

T

2

∑
α′α′′β′β′′p

Cα
α′β′′(q, p)Iα′β′(p− q)Iα′′β′′(p)Cβ∗

β′α′′(q̄, p̄), (7.7)

where p ≡ (p, ωj), p̄ ≡ (p,−ωj). The 3-point function in Eq. (7.7) is given as

CEF
ABCD(q, p) ≡ −T

∑
k

Gf
AF (k − q)Gf

EC(k)G
f
DB(k − p), (7.8)

where Ĝf is the f -electron Green function. Also, the expression for the AL2 term in χ-VC is given as

UAL2
αβ (q) =

T

2

∑
α′β′α′′β′′p

C
′α
α′β′′(q, p)Iβ′′β′(p− q)Iα′′α′(p)C̃

′β
α′′β′(q, p), (7.9)

where

C
′EF
ABCD(q, p) ≡ −T

∑
k

Gf
BF (k − q)Gf

ED(k)Gf
CA(k − q + p),

C̃
′EF
ABCD(q, p) ≡ −T

∑
k

Gf
AE(k + q)Gf

FC(k)G
f
DB(k + q − p).

The total χ-VC is given by ÛAL = ÛAL1 + ÛAL2 by eliminating the double counting due to the 2n order
term ∝ u2.

Then, U -VC in f -electron system is also given by

(Ûkk′)LL′MM ′ =
T

2

∑
p,ABCDEF

BMM ′

ABCDEF (k − k′, p, k′)ILACD(k − k′ + p)IBL′EF (−p), (7.10)

where

BMM ′

ABCDEF (q, p, k
′) = Gf

AB(k
′ − p)

{
C

′′MM ′

CDEF (q, p) + C
′′MM ′

EFCD(q, q + p)
}
, (7.11)

C
′′AB
CDEF (q, p)≡−T

∑
k′

Gf
CA(k

′ + q)Gf
BF (k

′)Gf
ED(k′ − p).

(7.12)

In addition, the expression for the AL2 term in U -VC is given as

UAL2
αβ (q) =

T

2

∑
α′β′α′′β′′

Λα
α′β′′(q, p)Iβ′′β′(p− q)Iα′′α′(p)Λ̃β

α′′β′(q, p), (7.13)

where

ΛEF
ABCD(q, p) ≡ −T

∑
k

Gf
BF (k − q)Gf

ED(k)Gf
CA(k − q + p),

Λ̃EF
ABCD(q, p) ≡ −T

∑
k

Gf
AE(k + q)Gf

FC(k)G
f
DB(k + q − p).

The expression for the MT term is written as

UMT
LL′MM ′(q) = T 2

∑
p,k,A∼D

GLA(k + q − p)GBL′(k − p)GDM (k + q)GM ′C(k)IDACB(p). (7.14)

The total U -VC is given by ÛAL+MT = ÛAL1 + ÛAL2 + X̂MT , by subtracting the double counting in the
same way of χ-VC.
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Appendix B: Analysis of U-VC in 1-orbital system

In the main text, we explain s-wave SC due to important roles of χ-VC and U -VC based on 2-orbital
Hubbard model. In contrast, these VC can be important even in 1-orbital systems , such as Cuprate
superconductor. Here, we show numerical results based on 1-orbital model. In the present model, the
energy dispersion of d-electrons is defined by ξk = 2t(cos kx + cos ky) + 4t′ cos kx cos ky + 2t′′(cos 2kx +
cos 2ky) where (t, t′, t′′) = (−1, 1/6,−1/5). The chemical potential is set at µ = −0.8 in the following
numerical study. In Fig.59, we show obtained band dispersion and Fermi surface.

e
n

e
rg

y

wave vector

(b)(a)

Figure 58: (a) Obtained band dispersion and (b) Fermi surface based on 1-orbital tight-binding model.

First, we perform RPA to obtain p-h susceptibility. Charge- and spin-channel susceptibility is plotted
in Fig.60 (a) and (b), respectively. Here we put αS = 0.9 and el-ph coupling g = 0. Within RPA scheme,
spin-channel susceptibility is much larger than charge-channel one.

(a) (b)
3

0
0.11

0.16

Figure 59: Obtained susceptibility of (a) charge- and (b) spin-channel.

After then, we consider el-ph interaction in A1g-symmetry. In this case, g is added to SC paring
interaction in linearized gap equation. In the present study, we consider only single-fluctuation term due
to type-A in Fig.14. The present SC paring interaction is summarized as

bare 4-point bare 4-point single-flctuation

spin-channel 0 U U2χs
RPA

charge-channel g −U U2χc
RPA

Here, the charge-channel susceptibility χc
RPA includes g, which is written by

χc
RPA =

χ0

1 + (U − g)χ0
. (7.15)

In the present study, we fix charge channel Stoner factor at αC = 0.7
In addition, we consider AL-type VC for SC paring interaction. The effects of g in AL-VC is neglected

as discussed in Sec.3. In Fig.60 (a) and (b), obtained gap function for s- and d-wave symmetry are plotted.
s-wave gap is quite isotropic while d-wave has angular-dependence belonging to dx2−y2-symmetry. In
Fig.60 (c), effective SC paring interaction for each gap function is plotted. d-wave SC state is realized
when the spin Stoner factor αS is small while that for both s- and d-wave reaches the same value with
large αS due to AFM-QCP. Thus, we conclude that attractive SC paring interaction for isotropic s-wave
state is strongly enlarged by AL-VC even in 1-orbital system as well as 2-orbital one.

74



7 Appendix

3.2

-0.4

0

0.6 0.8 0.9

(a) (b) (c)

d-wave

s-wave

Figure 60: Gap function on the Fermi surface with (a) s-wave and (b) dx2−y2 -wave symmetry. (c)
Obtained effective SC paring interaction. Red-dotted (blue-solid) line corresponds to s- (d-) wave SC
state.

In Fig.61(a) and (b), we show obtained (U -VC)2 due to AL-term for charge- and spin-channel. Charge-
channel U -VC is about ∼ 3 while the maximum value of spin channel is only about ∼ 0.8. Therefore,
we conclude that charge-channel AL-term strongly enhances the attractive paring interaction due to
charge-channel fluctuations (factor 3). In contrast, we naturally expect that only repulsive interaction is
enhanced if we neglect U -VC. To identify this fact, we plot the effective SC interaction without U -VC in
Fig.61(c). Only d-wave state is stabilized near AFM-QCP. As a result, we reveal the importance of U -VC
in 1-orbital model with small el-ph interaction. Finally, we plot the effective interaction for isotropic
gap function based on local approximation in 61(d). In this calculation, the k-dependence of U -VC is
averaged over Fermi surface. The s-wave SC interaction is much larger than that in local approximation
(about factor ∼ 3). This is understood by the fact that U -VC in local approximation is proportional to
(
∑

q χ
s(q))2 ∝ ξ0 while original one shows

∑
q(χ

s(q))2 ∝ ξ2 where ξ is correlation length. Therefore,
it is verified that momentum dependence of U -VC is important in 1-orbital system as well as 2-orbital
system.

(a)

(b)

(c) (d)

d-wave

s-wave

local approx. 

original 

Figure 61: (a) Charge channel and (b) spin channel enhancement factor given by (U -VC)2 (c) Effective
paring interaction λ̄ in the absence of U -VC. (d) λ̄ based on the local approximation (red line) and
original one (blue line).

Here, we explain detailed explanation of the B1g-phonon introduced in Sec.3 based on 2-orbital HH
model. In the present model has SU(2) symmetry and the bare 4-point vertex is written by spin and
charge channel. In addition, Pauli exclusion principle is considered for the on-site Coulomb interaction.
Then, each elements of the 4-point vertex function is given in Fig.62 and 63. The cross mark denots
prohibition by Pauli principle.

Appendix C: J = 5/2 PAM for CeCu2Si2

Here, we explain about the ground states of J = 5/2 PAM and derivation of complex hopping
parameters given by Eq.(4.3) based on Slater-Koster table. The ground states in the present model in
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Figure 62: Definition of the charge-channel bare 4-point vertex due to B1g-phonon in 2-orbital (dxz, dyz)-
model.
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Figure 63: Definition of the spin-channel bare 4-point vertex.

lz-basis are written as

|f1 ⇓⟩ = a

{√
1

7
|2, ↑⟩ −

√
6

7
|3, ↓⟩

}
+ b

{√
5

7
| − 2, ↑⟩ −

√
2

7
| − 1, ↓⟩

}
, (7.16)

|f1 ⇑⟩ = a

{√
6

7
| − 3, ↑⟩ −

√
1

7
| − 2, ↓⟩

}
+ b

{√
2

7
|1, ↑⟩ −

√
5

7
|2, ↓⟩

}
, (7.17)

|f2 ⇑⟩ = −a

{√
2

7
|1, ↑⟩ −

√
5

7
|2, ↓⟩

}
+ b

{√
6

7
| − 3, ↑⟩ −

√
1

7
| − 2, ↓⟩

}
, (7.18)

|f2 ⇓⟩ = −a

{√
5

7
| − 2, ↑⟩ −

√
2

7
| − 1, ↓⟩

}
+ b

{√
1

7
|2, ↑⟩ −

√
6

7
|3, ↓⟩

}
, (7.19)

where ⇑ (⇓) is pseudo spin and ↑ (↓) denotes the real spin. Note that the wave functions for lz = ±2 are
proportional to z,

⟨r⃗ | ± 2, σ⟩ ∝ z.
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Therefore, in 2D system, the hopping integrals between s-orbital and lz = 2 electrons should be zero.
Thus, ⟨s, σ, R⃗i| ± 2, σ, R⃗j⟩ = 0 is satisfied. Finally, we obtain

⟨s ↑ |f1 ⇑⟩ =
√

6

7
⟨s ↑ | − 3, ↑⟩, ⟨s ↓ |f1 ⇓⟩ = −

√
6

7
⟨s ↓ |3, ↓⟩, (7.20)

⟨s ↑ |f2 ⇑⟩ = −
√

2

7
⟨s ↑ |1, ↑⟩, ⟨s ↓ |f2 ⇓⟩ =

√
2

7
⟨s ↓ | − 1, ↓⟩, (7.21)

where a = 1, b = 0 is adopted. Here, each wave functions | ± 3, σ⟩, | ± 1, σ⟩ are written in (x, y, z)-basis.

| ± 3, σ⟩ = −
√

5

16

{
±x(5x2 − 3r2)− iy(5y2 − 3r2)

}
−
√

3

16

{
∓x(y2 − z2)− iy(z2 − x2)

}
,(7.22)

| ± 1, σ⟩ = −
√

3

16

{
∓x(5x2 − 3r2)− iy(5y2 − 3r2)

}
−
√

5

16

{
±x(y2 − z2)− iy(z2 − x2)

}
.(7.23)

Therefore, we obtain the hopping parameters;

⟨s| ± 3, σ⟩ = −
√

5

16

{
±⟨s|x(5x2 − 3r2)⟩⟨s|y(5y2 − 3r2)⟩

}
−
√

3

16

{
∓⟨s|x(y2 − z2)⟩ − i⟨s|y(z2 − x2)⟩

}
,

= −
√

5

16

{
± l

2
(5l2 − 3)− i

m

2
(5m2 − 3)

}
−
√

3

16

{
∓
√
15

2
l(m2 − n2)− i

√
15

2
m(n2 − l2)

}
tsf .

⟨s| ± 1, σ⟩ = −
√

3

16

{
∓⟨s|x(5x2 − 3r2)⟩ − i⟨s|y(5y2 − 3r2)⟩

}
−
√

5

16

{
±⟨s|x(y2 − z2)⟩ − i⟨s|y(z2 − x2)⟩

}
,

= −
√

3

16

{
∓ l

2
(5l2 − 3)− i

m

2
(5m2 − 3)

}
−
√

5

16

{
±
√
15

2
l(m2 − n2)− i

√
15

2
m(n2 − l2)

}
tsf ,

where l = cosϕ sin θ,m = sinϕ sin θ, n = cos θ. Here, tsf = (sfσ). Then, we consider the nearest
neighbor hopping on 2D square lattice, that is, Ce-ions at (l,m, n) = (0, 1, 0), (−1, 0, 0), (0,−1, 0), (1, 0, 0).
Therefore, we obtain

⟨s| ± 3, σ⟩NN =

√
5

16

{
ieikya ± e−ikxa − ie−ikya ∓ eikxa

}
tsf =

√
5

16
(−2 sin ky ∓ 2i sin kx)tsf , (7.24)

⟨s| ± 1, σ⟩NN =

√
3

16

{
ieikya ∓ e−ikxa − ie−ikya ± eikxa

}
tsf =

√
3

16
(−2 sin ky ± 2i sin kx)tsf . (7.25)

Then, the s-f hopping term is given by

⟨s ↑ |f1 ⇑⟩ = −
√

15

14
tsf (sin ky − i sin kx), ⟨s ↓ |f1 ⇓⟩ =

√
15

14
tsf (sin ky + i sin kx), (7.26)

⟨s ↑ |f2 ⇑⟩ =
√

3

14
tsf (sin ky − i sin kx), ⟨s ↓ |f2 ⇓⟩ = −

√
3

14
tsf (sin ky + i sin kx). (7.27)

Appendix D: Coulomb interaction based on multipole basis

Now, we explain how to obtain Coulomb interaction 4-point vertex based on multipole basis. In the
present study, we calculate the Coulomb interaction by using Slater-Condon parameter (F p,p = 0, 2, 4, 6).
To begin with, we start from

Ūlzl′z,l
′′
z l

′′′
z

=
e2

4πϵ0

∫
dr⃗

∫
dr⃗′

ul∗lz (r⃗)u
l∗
l′′′z

(r⃗′)ull′z (r⃗
′)ull′′z (r⃗)

|r⃗ − r⃗′|
(7.28)
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where um(r⃗) is written by ulm(r⃗) = Rl(r)Θ
l
mΦm(ϕ) and Φm(ϕ) = 1/

√
2πeimϕ. Here, |r⃗ − r⃗′| is expanded

as

1

|r⃗ − r⃗′|
=
∑
k,n

(k − |n|)!
(k + |n|)!

rk(a)

rk+1(b)
P

|n|
k (cos θ)P

|n|
k (cos θ′)ein(ϕ−ϕ′), (7.29)

where r(a) = r′, r(b) = r when r > r′, r(a) = r, r(b) = r′ when r < r′. P is Legendre function. In this
case,

Ūlzl′z,l
′′
z l

′′′
z

=
e2

4πϵ0

∫
dr⃗

∫
dr⃗′R2

l (r)R
2
l (r

′)
∑
k,n

rk(a)

rk+1(b)
r2r′2

∫
dθ sin θ

∫
dθ′ sin θ′

×Θl∗
lz (θ)Θ

l∗
l′′′z

(θ′)Θl
l′z
(θ′)Θl

l′′z
(θ)P

|n|
k (cos θ)P

|n|
k (cos θ′)

(k − |n|)!
(k + |n|)!

×
∫
dϕ

∫
dϕ′Φ∗

lz (ϕ)Φ
∗
l′′′z

(ϕ′)Φl′z
(ϕ′)Φl′′z

(ϕ)ein(ϕ−ϕ′). (7.30)

Note that

Φ∗
lz (ϕ)Φ

∗
l′′′z

(ϕ′)Φl′z
(ϕ′)Φl′′z

(ϕ)ein(ϕ−ϕ′) = δ−n,lz−l′′z
δn,l′′′z −l′z

(7.31)

Therefore, the Coulomb interaction is written by

Ūlzl′z,l
′′
z l

′′′
z

=
∑
k

F kaklzl′zl′′z l′′′z
(7.32)

F k ≡ e2

4πϵ0

∫
dr⃗

∫
dr⃗′R2

l (r)R
2
l (r

′)
∑
k,n

rk(a)

rk+1(b)
r2r′2

aklzl′zl′′z l′′′z
≡ 2

∫
dθ sin θ

∫
dθ′ sin θ′Θl∗

lz (θ)Θ
l∗
l′′′z

(θ′)Θl
l′z
(θ′)Θl

l′′z
(θ)

× P
|lz−l′′z |
k (cos θ)P

|lz−l′′z |
k (cos θ′)

(k − |lz − l′′z |)!
(k + |lz − l′′z |)!

. (7.33)

where

Θl
lz (θ) =

√
(2l + 1)(l − |lz|)!

(l + |lz|)!
P

|lz|
l (cos θ)

P
|lz|
l =

1

2ll!
sin(θ)|lz|

∂l+|lz|

∂(cos θ)l+|lz|

{
−1l(1− cos2 θ)l

}
(7.34)

In the present study, we set (F 0, F 2, F 4, F 6) = (5.3, 9.09, 6.927, 4.756). aklzl′zl′′z l′′′z
is related to the angular

dependence of the on-site Coulomb interaction, which is easily calculated by using Mathematica.

Appendix E: Multipole operator

In this section, we explain the derivation of multipole operators. In the present J = 5/2 model, we
can define multipole operators up to rank 5(= 5−(−5)). In the space inversion symmetry, the odd (even)
rank operator contributes to the magnetic (electric) or TRS odd (even) symmetry. As shown in the main
text, the multipole operator of rank k is written by angular momentum operator Ĵ based on equivalent
operator method, which is verified by using Wigner-Eckart theorem. The operator of rank k is defined as

[J±, J
(k)
q ] =

√
(k ∓ q)(k ± q + 1)J

(k)
q±1 (7.35)

J
(k)
k = (−1)k

√
(2k − 1)!!

(2k)!!
Jk
+. (7.36)
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To change the general matrix J
(k)
q into unitary matrix, we define J̃

(k)
q as

J̃
(k)
[2p−1]+

≡ i√
2
(J

(k)
2p−1 + J

(k)
−(2p−1)), J̃

(k)
[2p−1]−

≡ 1√
2
(−J (k)

2p + J
(k)
−(2p−1))

J̃
(k)
[2p]+

≡ 1√
2
(J

(k)
2p + J

(k)
−2p), J̃

(k)
[2p]−

≡ i√
2
(−J (k)

2p + J
(k)
−2p) (7.37)

In 2D (D4h-symmetry) system, the characteristic table for each multipole operators was obtained in
Ref.[13] in Sec.4 as follows;

A+
1 : O20 = J

(2)
0 , H0 =

1√
12

(
√
7J

(4)
0 +

√
5J̃

(4)
[4]+

), H4 =
1√
12

(
√
5J

(4)
0 −

√
7J̃

(4)
[4]+

)

A+
2 : Hza = J̃

(4)
[4]−

B+
1 : O22 = J̃

(2)
[2]+

, H2 = J̃
(4)
[2]+

B+
2 : Oxy = J̃

(2)
[2]−

, Hzb = J̃
(4)
[2]−

E+ : Oyz(zx) = J̃
(2)
[1]+(−)

, Hxa(ya) =
1√
8
(+(−)J̃

(4)
[3]+(−)

+
√
7J̃

(4)
[1]+(−)

),

Hxb(yb) =
1√
8
(+(−)

√
7J̃

(4)
[3]+(−)

− J̃
(4)
[1]+(−)

),

A−
1 : D4 = J̃

(5)
[4]−

A−
2 : Jz = J

(1)
0 , Tza = J

(3)
0 , Dza1 = J

(5)
0 , Dza2 = J̃

(5)
[4]+

B−
1 : Txyz = J̃

(3)
[2]−

, D2 = −J̃ (5)
[2]−

B−
2 : Tzb = J̃

(3)
[2]+

, Dzb = J̃
(5)
[2]+

E− : Jx(y) = J̃
(1)
[2]−(+)

, Txa(ya) =
1√
8
(+(−)

√
5J̃

(3)
[3]−(+)

−
√
3J̃

(3)
[1]−(+)

)

Txb(yb) =
1√
8
(−

√
3J̃

(3)
[3]−(+)

− (+)
√
5J̃

(3)
[1]−(+)

),

Dxa1(ya1) =
1

16
(3
√
14J̃

(5)
[5]−(+)

− (+)
√
70J̃

(5)
[3]−(+)

+ 2
√
15J̃

(5)
[1]−(+)

)

Dxa2(ya2) =
1

16
(
√
10J̃

(5)
[5]−(+)

+ (−)9
√
2J̃

(5)
[3]−(+)

+ 2
√
21J̃

(5)
[1]−(+)

)

Dxb(yb) =
1

8
(
√
30J̃

(5)
[5]−(+)

+ (−)
√
6J̃

(5)
[3]−(+)

− 2
√
7J̃

(5)
[1]−(+)

) (7.38)

In the 4-orbital model, the number of independent operators decreased and it should be 16(= 4 × 4),
which means that 20 terms in Eq.(7.38) get to be degenerate. In particular, the matrix elements in

B
+(−)
1 , B

+(−)
2 symmetry go to zero. As a result, we obtain

A+
1 : O20 = J

(2)
0 , H0 =

1√
12

(
√
7J

(4)
0 +

√
5J̃

(4)
[4]+

),

A+
2 : Hza = J̃

(4)
[4]−

E+ : Oyz(zx) = J̃
(2)
[1]+(−)

,

A−
1 : D4 = J̃

(5)
[4]−

A−
2 : Jz = J

(1)
0 , Tza = J

(3)
0 , Dza2 = J̃

(5)
[4]+

E− : Jx(y) = J̃
(1)
[2]−(+)

, Txa(ya) =
1√
8
(+(−)

√
5J̃

(3)
[3]−(+)

−
√
3J̃

(3)
[1]−(+)

)

Dxa1(ya1) =
1

16
(3
√
14J̃

(5)
[5]−(+)

− (+)
√
70J̃

(5)
[3]−(+)

+ 2
√
15J̃

(5)
[1]−(+)

) (7.39)
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Appendix F: J = 5/2 PAM for CeB6

Here, we explain the model Hamiltonian for CeB6. The conduction band is 5d electrons on Ce-ions,
In the present study, to simplify the model, we introduce conduction band composed of s electrons. The
effective tight-binding parameters of CeB6 is given in Ref. [21] in Sec.5. We use slightly modified model
and put kz = 0, in order to reproduce the experimental Fermi surfaces of CeB6 on the kx-ky plane after
s-f hybridization, which is given by

ϵk = t1ss (cos kx + cos ky) + t2ss {cos(kx + ky) + cos(kx − ky)}+ t3ss (cos 2kx + cos 2ky)

+ t4ss {cos(2kx + ky) + cos(2kx − ky) + cos(2ky + kx) + cos(2ky − kx)}
+ t5ss {cos(2kx + 2ky) + cos(2kx − 2ky)}+ E0, (7.40)

where tiss is the i-th nearest s-s hopping integral. We set (t1ss, t
2
ss, t

3
ss, t

4
ss, t

5
ss) = (−0.5,−0.889, 0.292,−0.229, 0.687),

and E0 = 1.33.
Next, we explain the hybridization term. Based on the Slater-Koster tight-binding method, the s-f

hybridization between the nearest Ce-sites is

Vkf1↑ = −A1tsf (sin ky − i sin kx),

Vkf2↑ = −A2tsf (sin ky + i sin kx), (7.41)

and Vkfl↓ = −V ∗
kfl↑. and A1 =

√
18/14 and A2 =

√
3/7. Since A1 > A2, the relation Df1(0) > Df2(0)

holds in the present two-dimensional PAM, where Dfl(0) is the fl-electron density-of-states at Fermi
level. However, Df1(0) = Df2(0) holds in the cubic model, since the s-f hybridization along z-axis is

larger for f2-electron. To escape from the artifact of two-dimensionality, we put A1 = A2 =
√
18/14 in

the present study. In the present Γ8 model, the relation Vkf1σ ∝ V ∗
kf2σ

holds. In contrast, in the Γ
(1)
7 -Γ

(2)
7

model for CeCu2Si2 used in Appendix C, the relation Vkf1σ ∝ Vkf2σ holds.
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