
Ph.D. Thesis
Framework for testing the

fundamental principles
in gravitation and cosmology

Í2⌦H3dAÅ.«`⇧⇥R]⇡Kâe?

Science department in Nagoya University
School of Physics and Astronomy in University of Edinburgh

461501013, s1885627

Shun Arai





2

Abstract

In this thesis, we consider how in practice fundamental principles can be constrained by

cosmological surveys, mainly by considering popular modifications of Einstein’s general

relativity. We specifically investigate (1) breaking the equivalence principle in the

generalised scalar-tensor gravity and its observational consequences, (2) the validity

of Lorentz invariance in the inflationary universe, and (3) practical observations for

testing gravity by CMB lensing data.

In the first part, we investigate the parameter distributions of viable generalised

scalar-tensor theories with conventional dust matter. We numerically construct the

models consistent with the observed Hubble parameter in the redshift range, 0 < z < 2.

We show the model parameter distributions in the degenerate higher-order scalar-tensor

(DHOST) theory, and its popular subclasses (e.g., Horndeski and GLPV theories).etc.

We specify the di↵erences and characteristics of the subclasses in the space of observable

quantities for forthcoming galaxy surveys and planned gravitational-wave observations,

arguing how to di↵erentiate the theories.

In the second part, we consider primordial perturbations with a single inflaton field

in the framework of 4d-Hořava-Lifshitz gravity. For the sake of Lorentz violation in

gravity, all the components obey Lifshitz scaling and one additional scalar degree of

freedom appears, which is called “Khronon”. The Khronon gravitationally couples to

the inflaton, but it has been less known how the Khronon behaves in the inflation-

ary universe. We show that the curvature perturbation is preserved at super-horizon

scales. We demonstrate that the scalar perturbations where Lorentz invariance is ex-

plicitly broken are still consistent with cosmological observations whereas the primor-

dial tensor perturbation undergoes a significant modification of the shape of its power

spectrum. As a result, we conclude that testing Lorentz symmetry of the gravity sector

at the inflationary energy scale is quite possible by a direct measurement of primordial

gravitational waves.

In the last part, we develop the methodology of testing gravity at high redshifts.

We consider the gravitational lensing of the CMB, so-called CMB lensing, by massive

radio galaxies, aiming to measure the growth history of the large scale structure at

z > 1. We construct all-sky data of radio surveys and develop the method of how we

properly assign the redshift distribution and bias of radio sources. We identify redshift

information as the main di�culty for the extraction of the growth history of large

scale structure from the existing data of galaxy and radio surveys, and CMB lensing,

discussing possible improvements in future radio and galaxy surveys.
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In conclusion, we discuss the levels of violation of fundamental principles in gravi-

tation and cosmology that might be detectable in future observations.
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Lay summary

The ultimate significance of physics is to provide an overview of the elements of all

things in the world based on universal principles. As a result of scientific develop-

ments throughout history, the principles that make up the laws of nature have been

narrowed down through numerous experiments and observations. The principles and

laws obtained so far are now considered to govern the birth and evolution of the Uni-

verse through the operation of Big Bang cosmology and the Standard Model of particle

physics. Between these, “cosmological physics” was established.

Cosmological physics is founded on general relativity, locality, Lorentz invariance,

equivalence principle, all of which are cornerstones of modern physics. Cosmologi-

cal physics can explore the details of physical phenomena at extremely high energy

(1016GeV) from data at extremely low energy (104eV) such as the current Hubble

scale, even though the high-energy processes cannot be reached experimentally. The

physics that can be explored in this way is unique, and cosmology is therefore a great

research area to gain new knowledge about the basic principles of physics.

The discovery of the accelerating expansion of the Universe in 1999 presented one

of the greatest challenges of modern physics, the cosmological constant problem. In

addition, as a result of precise astronomical observations such as the measurement

of cosmic microwave background radiation temperature and polarisation fluctuations,

it was reported that there was a discrepancy between independent measurements of

the space expansion coe�cient predicted by the standard cosmological model. Under

such circumstances, the fundamental principles that form the basis of cosmological

physics are beginning to be reviewed. While the accuracy of observations is expected

to improve, theories describing physics beyond basic principles are very rich and can

predict various phenomena. These predictions should eventually be verified through

experiments and observations.

In this doctoral thesis, conclusions have been reached through a series of researches

on both theory and observation in gravitational and cosmological physics. Most impor-

tantly, we conclude that the fundamental principles in the gravitation and cosmology

are able to be tested by forthcoming cosmological surveys, perhaps bringing us to a

new paradigm of cosmological physics.
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Chapter 1

Introduction

”I am just a child who has never grown up. I still keep asking these ‘how’ and ‘why’

questions. Occasionally, I find an answer.”

The Brief History of Time, Stephen Hawking

Curiosity of human-kind has been the main engine to discover a new item to look

through the world. Throughout the human history, curiosity has played an essential

role to develop the civilisations, changing the ways of living. When it comes to think

of the world itself, the history shows the human curiosity on the recognition of the

world has been deepened and detailed, resulting in abundant knowledge. On one hand,

the knowledge of the world has been developed in religions all over the world. An-

cient mythologies in di↵erent parts of the world synchronously describes the ”origin”

or ”fate” of the world. A famous example is told in The Bible as such the holy light

emerges from the vacant space, which is created by the God. One the other hand,

science has been established to pursue the ultimate description of the world. Since G.

Galilei claimed that the geo-centrism supported by Christian authorities was less fitting

with real observations of the moons of Jupiter than herio-centric explanation of circular

motion, experimental and observational results have been regarded as powerful tools

to understand the world. Science is thus a peculiar form of the curiosity such that it

is verified by producing experiments and observations, transforming our knowledge in

more conclusive ways. In modern perspective, science is the arena for human curiosity,

which is open for us.

Prof. Stephen Hawking (CH, CBE, FRS, and FRSA) is one of the established

12
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scientists with his extraordinary curiosity. Prof. Stephen Hawing may be the first

person how obtained some concrete grasp of the origin of the Universe without the help

of Gods/Goddesses, in the mean time other philosophers may have tried to answer the

same questions. On the basis of mathematics and physics, Prof. Hawking can describe

why the Universe exists and how it begins. What Prof. Hawking uses to describe the

origin of the Universe is Einstein’s general relativity and thermo-dynamical features of

matters. The laws of physics have been established by a number of experiments on

Earth. However, it is still hypothetical that the matters distributed in the Universe

really obeys the standard laws of physics. Therefore, it is essential to verify the laws of

physics throughout the history of the Universe. This is what we have to answer beyond

what Prof. Hawking has done.

Cosmological physics

Cosmological physics is a part of physics such that at a ”cosmological timescale”, being

constructed via fundamental mathematics and physics. The cosmological timescale

may be infinite amount of time, or some finite timescale. This may depend on some

conceptual questions; what is the Universe exactly? It was not clear until Albert

Einstein invented the general relativity in 1915. Interestingly, the general relativity

gives us a universe with finite lifetime e.g. the big crunch. By contrast, the universe

never stops expanding, reaching the state called ”big rip” where every elementary

particle is believed to be striped away with each other. Some intermediate phase of

the universe is called big bounce. The fate of the Universe highly depends on the

composition of matters. In the microscopic level, the lifetime of the vacua is not

infinite, i.e., the spontaneous symmetry-breaking. In fact, phase transitions of the

vacuum states occurs in the early universe, such as QCD and Electro-Weak scales.

In modern perspective, cosmological physics well describes the co-evolution of matters

and the Universe, summarising in Big Bang Theory.

Another aspect of cosmological physics is the falsifiability that hypothetical arguments

by astronomical observations. Starting from the successful measurement of the cosmic

expansion by E. Hubble in 1929 (Recently, it has been pointed out that G. Lemâıtre

theoretically discovered the cosmic expansion earlier than Hubble based on Einstein’s

general relativity.) The cosmic microwave background (CMB) was firstly discovered

by A. Penzias and R. Wilson in 1964, which is one of the direct evidence of Big Bang

theory. Observations of CMB anisotropy by using the well-resolved space satellites (e.g.,

WMAP, Planck) explicitly. The measurement of Baryon Acoustic Oscillation (BAO)

by CMB or the distribution of galaxies evidently show that the elemental particles
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and atoms are well described by electro-magnetic plasma with gravitational constraint

force. Mechanically speaking, the acoustic waves are generated by vibration of gravity

and relativistic pressure of baryons. This implies that standard physics of gravity and

electro-magnetism are in the early Universe. The ratios of the light elements such

as hydrogen and helium is well coincident with the theoretical prediction of Big Bang

Nucleosynthesis (BBN). The sky surveys have shown that galaxies are clustering as they

gather by gravitational interactions at density peaks. The peaks of density corresponds

to the slight inhomogeneous fluctuations at the beginning of the Universe, so-called the

primordial fluctuations. The origin of the primordial fluctuation is understood the

Heisenberg’s uncertainty relation of space-time itself. After all, Big Bang theory is

established in theory and observation.

Riddles in cosmology

The cosmological physics confronts against new findings as observations reach at more

precision. One of the biggest findings is that the discovery of late-time acceleration

of the Universe, the cosmic acceleration, by the observations of Type-Ia supernovae

in 1998. According to the measurements. The domination of matter should end at

present Universe, somehow making the cosmic expansion accelerated ”against” attrac-

tive nature of gravity. Although the smallness of vacuum energy, the cosmological

constant, has been believed to be accountable for the cosmic acceleration, the small-

ness of the cosmological constant would make the hierarchy problem in particle physics

much worse.

As commonly noted in cosmology, the initial conditions of the Universe looks ex-

tremely homogeneous and isotropic. We shall hypothesise as the cosmological principle.

The cosmological principle is satisfied with an inflationary initial condition of the Uni-

verse, i.e., the exponentially fast expansion of the Universe. Interestingly, the energy

scale of the inflationary Universe that is consistent with observational data is close to

the symmetry breaking scales of the standard model of particle physics. Moreover,

an additional scalar degree of freedom induced by symmetry breaking, i.e., Nambu-

Goldstone mode can be a good candidate of the dynamical degree of freedom that

dominates the inflationary Universe, i.e., inflaton. However, it is uncertain to deter-

mine the specific mechanism of symmetry breaking by experimental or observational

ways.

The question of the initial condition of the inflationary Universe is also not fully

understood. To deal with phenomenological arguments above the inflationary energy

scales, we should construct concrete description of quantum gravity since the quantum
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correction at Planck scale, 1019GeV, is no longer negligible. Except the string theory, it

has been little known how we compute the quantum gravity of gravity. More conceptual

issues related to the origin of space and time, e.g., cyclic, ekypilotic, initial conditions

are also possible way out from the di�culty of quantum gravity, the falsifiability of

such scenarios has not been established.

Cosmological playground

One might be suspicious whether or not the riddles can be solved at the end of the day.

In physics, the falsifiability of the physical principles we have believed in is an essential

key, or the only path, to get an answer of the true description of the Universe.

There is a playground in which one breaks the fundamental principles without con-

flicting with the existing experiments and observations. A popular way to do this is

to introduce an E↵ective Field Theory with a certain cuto↵ scales. The mathematical

extension of a theory is another possible way to find a new framework to describe. Note

that the string theory is one of the possible realisation that has been actively inves-

tigated in physics and mathematics. In the past decades, the modification of gravity

has been intensively researched as a new way of explaining the cosmic acceleration and

inflation. In wider perspective, it is able to construct a more general framework of

physics.

On top of theoretical frameworks to discuss new venue of physics, data and com-

putational resources give chances to go beyond the existing theories. Thanks to the

national and public funding, astronomical observation has been rapidly developed, be-

ing considered as the precision science. In fact, the precise measurement of CMB

anisotropy by Planck satellite has cosmology has been matured as the science in high

precision. In the next decades cosmology sees the most speculating and challenging

moment in human history. The computational resources are more enlarged in memory

storage and CPU operations. Hence, we have a variety of opportunities to start to

probe physics with unprecedented realisations of tests.

What this thesis answers

In this doctoral thesis, we develop the framework for testing the fundamental principles

lied behind the gravitational and cosmological physics. More specifically, we address

the following questions;

• Phenomenological behaviour of additional scalar degree of freedom that couples

with gravity and observational consequences
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• The local Lorentz invariance is really preserved at the early Universe? If it is not,

how can we test that?

• Whether or not structure formation really follows Einstein gravity? Can we

conclude that statement is true by existing observational data?

Each of these questions is discussed in Chapter 4, 5, and 6, respectively. At last, we

summarise our results with new answers and questions. In Chapter 4, we consider

the generalised scalar-tensor theories, arguing how the additional light scalar degree of

freedom behaves at late-time Universe. In Chapter 5, we consider the local Lorentz

invariance of the Universe in the initial state, i.e., inflationary Universe. Then we

argue how the primordial fluctuations carries the information of Lorentz invariance. In

Chapter 6, we try the data analysis to measure the gravitational lensing of CMB. We

use the data of galaxies measured in radio wavelength. We discuss how it is possible to

test Einstein gravity at high redshifts. Throughout this thesis, we take the conventional

cold dark matter. The chapters 4, 5, and 6 are based on the publication of the authour

shown in [1, 2, 3, 4] (my publication), or alternatively in the beginning of the thesis.

Note that the figures, tables, derivations, and analyses shown in 4, 5, and 6 are the

original works developed by the authour.



Chapter 2

Standard gravitation and

cosmology

The double pillars of gravitation and cosmology describe the physics for of the largest

distances. Since firstly Sir. I. Newton discovery the universal law of gravity for planet

motions as an augmentation of free falling law of gravity on the Earth, gravity has

become the fundamental force that organises phenomena out of the Earth. Cosmology

had been in in mythology and religion for dozens of centuries, until it became what

was scientifically treated after Einstein’s extension of gravity in space and time, that

is a virtual foundation of our recognition of the Universe. No sooner developments

for science for cosmology did happen if Einstein’s gravity theory was not constructed.

After the discovery of Einstein gravity theory, one one hand, Einstein’s general relativ-

ity has been mathematically deepened. On the other hand the bunch of astronomical

observations has caught the signals from outer space and mapped millions of galaxies

in the sky. By focusing on the latest two decades, scientific cosmology has seen the

swiftest developments as the technologies for astronomical surveys are upgraded and

computational sources of simulations achieved, where we are living a golden age for

cosmological science. Besides, the very recent discovery of gravitational waves and the

visualisations of black holes have opened up the new phase on gravitational science.

In this chapter, we review the established understanding of gravitation and cosmology

throughout history, finding scientifically robust and conclusive scenarios how the ob-

served Universe looks like in prior to jump into the frontier of gravitation and cosmology

in the forthcoming Chapter 3.

17
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2.1 Standard gravity

The theory of gravity stared with an analysis of hyperbolic trajectory of falling matters

in acient Greek,for which was available for developing weapons in wars. In the mean

time, Aristotle made a theory of elements so-called classical elements,i.e., earth, water,

air, fire. Classical elements tells that gravity di↵erently works on each elements in ac-

cordance with the closeness of its origin to the Earth. After the long domination of the

classical element, Galileo Galilei pointed out the law of inertia by falling-matter exper-

iments, showing indistinguishability of matters in gravity force. I.Newton invented the

law of dynamics, as well as finding the universal law of gravity for the orbital motions

of celestial bodies. At this time, the mass or inertia of gravitational interactions was

tacitly assumed to be exactly the same as the inertial mass. In other words, the oldest

law of gravity already contains the assumption of the equivalence between the true

mass of a matter and the strength of gravity, which is later introduced by Einstein in

the form of the equivalence principle.

2.1.1 Newtonian gravity

In a homogeneous gravitational field, such as on the Earth surface, the equation of

motion of free falling is written as

mI

d2x

dt2
= 0 , (2.1.1)

mI

d2y

dt2
= �mGg , (2.1.2)

where g denotes the gravitational acceleration g = 9.80665 m2 · s�1. We assume that

mG = mI , (2.1.3)

which is the primitive form of the equivalence principle. Newton extended the gravity

theory for the explanation of Kepler’s law;

1.

The Kepler’s law of planet motions are mathematically described by the Newton’s

equation of motion and the gravity force with inverse squared law,

FG =
GNmGM

r2
, (2.1.4)
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We show that gravity makes system bounded. Provided that an object whose mass

and velocity is m and v respectively falls by gravity. The total energy E is given by

E =
1

2
mv2 � GNM

r
, (2.1.5)

The systems are classified as Then the maximum radius where the object can be dragged

back by gravity is given as

resc =

r
2GNM

v2
, (2.1.6)

Although gravitational force are nothing to do with the property of a matter which

feels gravity, the strength of gravity fields around a matter is created by the distribution

of matters. Formally, the law of gravity is defined with Poisson equation in a given

density field is given as

r2� = 4⇡GN⇢ , (2.1.7)

The equation has the exact solution,

�(r) = �GN

Z
d3r0

⇢(r0)

|r� r0| , (2.1.8)

Then the equation of motion in gravitational potential is given as

d2r

dt2
= �r� , (2.1.9)

The dynamics of continuous fluid is described by Euler equations

@⇢

@t
+r · (⇢u) = 0 , (2.1.10)

@u

@t
+ u ·ru = �rP �r� , (2.1.11)

These equations give a number of applications in astrophysics to picture the gravita-

tionally bounded objects, such as planets, stars, and galaxies. Poisson equation is linear

in a density field and a gravitational field. Therefore it is reasonable that gravitational

fields from multiple sources of density are given by the superposition of the fields that

are solutions for each distinct sources.



CHAPTER 2. STANDARD GRAVITATION AND COSMOLOGY 20

2.1.2 Theoretical di�culty in Newton gravity

Newtonian gravity has plagued with the theoretical pathology and observational dis-

crepancies in the late 19th century. In theory, it is the fact that Newtonian gravity

at the largest scale with non vacuum state has no solution. Provided that the density

field is homogeneous in the whole space, i.e., ⇢ = ⇢̄ = const.. By inserting ⇢ = ⇢̄ into

Eq. (2.1.8), then � is constantly divergent. This means that the Newton potential with

the homogeneous medium does not exist. Another perspective of the illness of New-

tonian gravity is shown by applying Poisson equation in Eq. (2.1.8) and considering

Euler equation of a fluid in Eq. 2.1.11. In the static and homogeneous medium, the

velocity field v = 0 and the pressure P is constant. As a result, the second Euler equa-

tion reduces to r� = 0, which does not accommodate with the Poisson equation in

Eq. (2.1.7) except ⇢̄ = 0. The non-existence of the homogeneous solution with matters

eventually lead an inhomogeneous universe. Since the gravity force is attractive, the

inhomogeneous matters will collapse within a finite time. Then this lead to the revival

of the the thought that the Universe has its centre by means of the centre of the current

Universe we lived in. However, the break of Copernican principle seems not fit with a

majority of observational evidences, replaced by the cosmological principle.

Gravity at short distances, the self interaction of gravitational field at smaller scale

is divergent in distance,i.e., r ! 0 since the gravitational field � is given as � ⇠
�GNM(r)/r where M(r) denotes the mass within radius r, M(r) =

R
r dr04⇡r02⇢(r0).

The similar problem is happening in Coulomb potential, but it is removed in the pro-

cess of renormalisation of electric charge. In the gravitational field, in contrast, the

prescription does not work because of the non renormalisability of gravity.

The di�culty of Newtonian gravity in a strong field limit is also described from

another perspective. Since the Poisson approximation is a linear equation, in prior as-

suming that the gravitational field is small, i.e., gravity is weakly coupled with density

fields. The insights how the weak filed approximation would break down come along

with considering as follows. In 18th century by P.S.Laplace and (someone), the idea

of an object such that the light no longer comes out the object was firstly proposed.

The outer boundary of the object is given by the radius rs = 2GNM/c2 where M is the

mass of the object, namely that the escape velocity reaches at the speed of light. This

conceptual object is later identified as ”Black Hole” in the context of the Einstein’s

gravity theory. What is peculiar of this object is that it states the limit of visual recog-

nition. In other words, there are very few way to prove the existence of the objects

by experiments and observations. Experimentally, the object is hard to see because it

does not emit any light outside. Observationally, the object is extremely massive and
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compact, such as 1mm for the Earth mass or 3km for the solar mass. Thus there is

no physical evidence to believe that the Newtonian weak field limit of gravity for this

object is still available or not. In the current establishment of physics, hundreds of

black holes has been found and the Newtonian gravity is actually broken requiring the

sophistication of Einstein’s gravity. To see that weak field approximation breaks down,

the observational phenomena called perihelion motion of the mercury was discovered,

which did not fit in the Newtonian gravity at perturbative order, except assuming the

unknown planet ”Vulcan” as a source of gravity. All the problems of the Newtonian

gravity was smartly solved with the Einstein’s gravity. The Einstein’s gravity success-

fully explain the perihelion motion of the mercury, whereas the homogeneous solution

at the largest scale exists.

2.1.3 Einstein gravity

What makes the Einstein’s gravity characterised is the existence of geometrical cur-

vature on top of the normal Newtonian gravity and the principle of general relativity.

Although the equivalence principle holds in the Einstein’s gravity, the curvature plays

a novel role to predict the gravitational lensing, the propagation of the gravitational

waves, and the causal structure of the universe, i.e., light-cone e↵ect. The gravitational

lensing was measured in 1919 for the first time in the solar eclipse, and then we have

seen the lensing e↵ect even at cosmological scales nowadays. The gravitational waves,

on the contrary, has been unveiled in the next 100 years since its prediction, however

the detection of gravitational waves is realised by LIGO observatory in September in

2015. Therefore, there are no more doubt that the approximation what Einstein made

is true. What is left as a problem, however, reaches a new realm of physics; the cosmo-

logical constant problem, weakness of gravity in the perspective of grand unification of

physical theories, and the quantum feature of gravity.

A trajectory of a free fall particle is replaced by the geodesic equation

d2xµ

d⌧2
+ �µ

⌫�

dxµ

d⌧

dx⌫

d⌧
= 0 , (2.1.12)

where �µ
⌫�

is the Christo↵el symbols defined as

�µ
⌫�

⌘ 1

2
gµ⇢(@⌫g⇢� + @�g⌫⇢ � @⇢g⌫�) , (2.1.13)

The Riemann curvature tensor is given with the Chrisoto↵el symbols

Rµ

⌫⇢� = @⇢�
µ

⌫� � @��
µ

⇢⌫ + �
µ

⇢�
��⌫� � �µ

��
��⇢⌫ , (2.1.14)



CHAPTER 2. STANDARD GRAVITATION AND COSMOLOGY 22

In 4d space-time, it is useful to think the decomposition of Riemann tensor which

is given as

Rµ⌫⇢� =
R

12
(gµ⇢g⌫� � gµ�g⌫⇢) +

1

2
(gµ⇢S⌫� � gµ�S⌫⇢ � g⌫⇢Sµ� + g⌫�Sµ⇢) +Wµ⌫⇢� ,

(2.1.15)

where Sµ⌫ is the trace-less part of Ricci tensor given

Sµ⌫ = Rµ⌫ �
R

4
gµ⌫ , (2.1.16)

Rµ⌫ ⌘ R⇢

µ⇢⌫ , R ⌘ gµ⌫Rµ⌫ , (2.1.17)

W ⇢

µ⇢⌫ = 0 , (2.1.18)

The tidal gravitational interactions is given via the geodesic deviation equation

d2V µ

d⌧2
= �Rµ

⌫⇢�u
⌫u⇢V � , (2.1.19)

where uµ is the tangent vector for geodesic equation and V µ is the displacement vector

of geodesic equation.

The condition of matter is given by the conservation law of matters,i.e. Euler

equations,

rµT
µ

⌫ = 0 , (2.1.20)

meaning the energy and momentum conservation of matters. After specifying the

geometrical quantity that satisfies the Bianchi identity as the Einstein tensor, rµG
µ
⌫ =

0, then we obtain the Einstein equation,

Gµ⌫ =
8⇡GN

c4
Tµ⌫ , (2.1.21)

In terms of the action principle, the Einstein equation is obtained from

SG =
1

16⇡GN

Z
d4x

p
�gR , (2.1.22)

where R is the Ricci scalar.
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2.2 Principles and symmetries in Einstein’s gravity

The establishment of the Einstein gravity has impacted on the description of space

and time, replacing the old Newtonian gravity. Observationally, Einstein gravity has

confronted a number of tests and experiments, leaving as the well-supported theory of

gravity ever made. Theoretically, on the contrary, it has been revealed that Einstein

gravity is the simplest and unique realisation of geometrical gravity under the following

principles; the equivalence principle, the general covariance, Lorentz invariance, and

locality in the dimension four.

The question arises as how the fundamental principles of the Einstein gravity play

their roles in theory and phenomenology. For instance, how crucial is the dimension

of spacetime set to four?. Another one can be asked as what is expected when the

equivalence principle does not work? These questions make an interesting direction to

probe gravity. Theoretically, the UV incompleteness of the Einstein gravity is a thorny

issue, but there can be a way out to change some of the principles of the Einstein

gravity, being healthy in UV. Or, the change of the principles may create unwanted

plagues of theory in physics. Phenomenologically, the change of the principles may di↵er

the gravitational interactions from that of Einstein gravity, bringing an opportunity

for testing the fundamental principles of gravity. By these motivations, one can get

interested in the field of studies of what the gravitational physics can be more profound

than Einstein gravity.

2.2.1 Equivalence principle

The equivalence principle simply states the equivalence of the inertial mass and the

gravitational mass. Let us consider test particles that flow along a gradient of a gravita-

tional potential.As a result, all the test particles feel the exactly the same gravitational

force in space-time. The equivalence principle is satisfied in Newtonian gravity, mean-

ing that the principle is not the necessity condition for the Einstein gravity. Therefore,

it is necessary to test the equivalence principles by experiments and observations. In

accommodation with the general relativity, the equivalence principle is more extended

into the strong equivalence principle, meaning the gravitational energy is always equiv-

alent to the inertial mass energy that makes gravitational fields in any spacetime, such

as black holes and expanding universe. In this sense, a cosmological model in Einstein

gravity gives a significant test of the equivalence principle. Once the equivalence prin-

ciple is broken, it is not necessary that all the degree of freedoms follows the minimal

coupling of gravity.
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2.2.2 Lorentz invariance

Lorentz invariance was firstly suggested in the argument of electro-magnetism and its

extension to the dynamics; the special relativity. Lorentz invariance simply determines

that the speed of any massless particles universally the same to that of speed of light. In

the quantum field theory, Lorentz invariance, or Poincare invariance gives fundamental

representations of fields, and it is known that Lorentz invariance is stable at quantum

level without causing any pathology such as acausal interactions or anomalies. The

observational and experimental tests of Lorentz invariance have been made especially

in the particles of standard model of particle physics.

xµ ! x0µ = ⇤µ

⌫x
⌫ , (2.2.1)

Lorentz coordinate transformation unchanges the metric ⌘µ⌫ = diag(�,+,+,+),

⌘µ⌫ = ⇤⇢

µ⇤
�

⌫⌘⇢� , (2.2.2)

In four dimensional space, the spacetime metric with Lorentz invariance is uniquely

given as the Minkowski space. Lorentz invariance determines the causal structure of a

theory,

ds2 = ⌘µ⌫dx
µdx⌫ , (2.2.3)

• timelike : ds2 < 0 ,

• null : ds2 = 0 ,

• spacelike : ds2 > 0 ,

Except the non infinitesimal transformation such as the parity transformation or time

reversal transformation, Lorentz transformation does not mix the timelike/null/spacetime

structures with each other. Under the general covariance, Lorentz invariance is locally

satisfied irrespective to a local coordinate transformation. The Lorentz invariance with

the general covariance determines the causal structure of spacetime.

2.2.3 General covariance

General covariance fundamentally determines the geometrical structure of Einstein

gravity. General relativity is considered as the general extension of the Galilean in-

variance in the Newton mechanics. The mathematical expression of general relativity
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is given by the invariance under the coordinate transformation xµ ! x0µ(x). The

metric tensor gµ⌫ transforms in the coordinate transformation,

gµ⌫ ! @x⇢

@x0µ
@x�

@x0⌫
g⇢� , (2.2.4)

All the physical quantities are required to be invariant under the coordinate trans-

formations. In the mathematical language, the general relativity is nothing but the

di↵eomorphism invariance on a Riemannian manifold. All the symmetries in the gen-

eral covariance are divided into global or local symmetry. The global symmetries in

the general covariance is

- time translation

- global spatial homogeneity

- global spatial isotropy

all of which are the sub-transformation of the global Lorentz symmetry. The spe-

cific configurations of space-time are Minkowski space or de Sitter space. The FRW

spacetime does not have the time translation symmetry. The local symmetries, on the

contrary, are given by any infinitesimal transformation between the space-time coor-

dinates. In other words, the local symmetries are described with a group of a local

gauge transformation. In a specific case, one enables to confirm that the local Lorentz

symmetry is actually conserved in general covariant theory. We specifically see the

subgroup of the general covariance.

Translation invariance

Translation invariance denotes the system does not change the time translation by any

constant, i.e.,

xµ ! xµ + const. , (2.2.5)

In theories without gravity, since the space-time is given as the Minkowski space-time,

the translation invariance always realises. When including gravity, however, the time

translation invariance is no longer respected, except the de Sitter space. Note that

is the generalisation of the Galilean translation invariance in the Newton’s classical

theory of motion.
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Parity invariance

The parity invariance is the symmetry such that physical quantities does not change

by a coordinate transformation in spatial coordinates, i.e., x ! �x. Under the general

covariance, it is possible to make operators in a Lagrangian that breaks the parity

invariance. For instance, we consider the term like Rµ⌫⇢�R̃µ⌫⇢� ⌘ ✏⇢�⇢
0
�
0
Rµ⌫⇢�Rµ⌫

⇢0�0 .

Here ✏⇢�⇢
0
�
0
is the totally anti-symmetric epsilon tensor. The Einstein gravity is given

only by the Ricci scalar R in the Lagrangian formulation, automatically parity invari-

ant.

Di↵eomorphism invarinace

The rest part of the general covariance is the di↵eomorphism invariance, stating that

all the physical quantities are invariant under any infinitesimal coordinate transforma-

tion. In Riemaniann geometry, the di↵eomorphism invariance is realised any qunatity

contracted by the metric tensor, gµ⌫ in the line element ds2 = gµ⌫dxµdx⌫ .

2.2.4 Locality

The locality is fundamental so that the physical phenomena would be well isolated

once we assume the interaction would decay as the distance gets large. The locality

firstly came out with the conceptual controversy on the instantaneous interaction in

the Coulomb’s law of electric forces. The issue of instantaneous interactions in the

Coulomb’s law was theoretically superseded by Maxwell’s Equations of electromag-

netism, and accomplished for the Newton law of gravity by Einstein in the framework

of general relativity. Previously, the homogeneous solution in the Newtonian gravity

would violate to the locality or homogeneity (see Jean’s swindle), but this reconciles

when we assume the general relativity and the equivalence principle (see Birkov’s the-

orem). In the context of quantum theory, the locality is not satisfied by observing the

violation of Bell’s inequality. In quantum mechanics, the entanglement will carry the

non-local information, or global symmetry will take place as non-local e↵ects.

2.2.5 Observational tests of gravity

The experiments and observations for testing gravity has been presented for many

years. The discovery of the Hulse-Taylor pulsar measured the decrease rate of the

orbital period, proving it precisely matches what the Einstein’s gravity predicts. The

Cassini space craft firstly achieved the Shapiro time-delay made by the Sun’s gravity

field. The lunar laser ranging measures how the mutual orbit at the centre of the mass
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of the Moon and the Earth fit with the Newton’s gravity law. Recently, the detection

of gravitational waves has open up a test of Einstein gravity in strong field regime,

showing no significant evidence of a violation of Einstein gravity. In conclusion, we

recognise that there is no evidence of any deviation from the Einstein’s gravity.

2.3 Standard cosmology

More than 70 years have passed since G. Gamow proposed Big Bang Theory, and as a

collection of research in astronomy, Big Bang Theory has become a monument in human

history. Based on Big Bang theory, the universe begins with a high temperature and

density, and then becomes a dynamic universe that expands. Cosmic expansion was

firstly discovered in 1929 by observations of nearby galaxies by E. Hubble. Furthermore,

as a remnant of the universe being in thermal equilibrium, the current universe is filled

with Cosmic Microwave Background (CMB). After the discovery of CMB by A.Penzias

and R.Wilson in 1964 by measuring 3K black-body radiation from the sky, the number

of probes has been done. The first satellite mission to catch CMB light is COBE [5],

finding 2.725 ± 0.0001 K with the temperature fluctuations at µK level.

WMAP [6] and Planck satellites [7]. WMAP and Planck satellites precisely mea-

sured the anisotropy of CMB temperature and polarisation. Since the angular cor-

relations of CMB anisotropy is precisely measured, the parameters of the Big Bang

Universe model are precisely determined by the observation data of CMB. Meanwhile,

observations of distant type Ia supernovae [8, 9] revealed that the current universe is

acceleratingly expanding. In the end, the standard model of the Universe, i.e,, the

⇤CDM model has been established. The matter content of the Universe is well ap-

proximated by the pressure-less matter. This is called the Cold Dark Matter. The

insu�ciency of the atomic or baryonic matter by the explanation of galaxies rotation

curves, it is commonly accepted that the majority of the matters that gravitates the

galaxies is believed to be a dark matter.

2.3.1 Cosmic expansion

Cosmological principle

The cosmological principle has been argued one of the fundamental property of the

Universe we observed. In the mid 1920, the majority of astronomer blindly believed

that the universe has a centre, i.e, the break of Copernican perspective or Coperni-

can principle. However, Edwin Hubble observationally prove that the measurement

of the recession velocity of galaxies is almost isotropic from us Inhomogeneity of the
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Universe falsified by 6dF galaxy surveys, which achieved the Large Scale Structure of

the Universe for the first time, revealing that the distribution of the galaxies looks

fluctuated on the homogeneous mean density field. The measurement of the CMB con-

clusively suggests that the microwave radiation follows isotorpy at the 10�5 accuracy.

In a practical application, the statistical analysis of observable. The cosmological prin-

ciple is a strong working principle to compare the observable quantities and theoretical

predictions.

Friedmann-Lemâıtre-Robertson-Walker spacetime

The homogeneity and the isotropy of the spacetime is uniquely given by the FLRW

metric at four dimension. Under the cosmological principle and a simple topology,

the geometry of the universe is uniquely determined in FLRW metric. The solution

described as a solution when the space-time is considered to be uniformly isotropic. A

homogeneous and isotropic spacetime metric is Friedmann Robertson Waker (Lametre)

metric is given by

ds2 = �dt2 + a2(t)�ijdx
idxj , (2.3.1)

Here, a is the scale factor, �ij is the spatial metric. The temporal component of Ricci

tensor is given by

R00 = �3ä

a
, (2.3.2)

R0i = 0 , (2.3.3)

Rij =

"
ä

a
+ 2

✓
ȧ

a

◆2

+
2K

a2

#
�ij , (2.3.4)

In general, the curvature of the Universe is non-zero value, K. The 3d Riemann

curvature tensor is given by

(3)Rijkl = K(�ik�jl � �il�jk) , (2.3.5)

and 3d-Ricci tensor is given as

(3)Rij ⌘ �kl(3)Rijkl

= 2K�ij , (2.3.6)
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Hubble - Lametre’s Law

The cosmic expansion given in the Friedmann equations gives the time evolution of

the expansion history. The Hubble - Lametre’s Law states how the expansion looks

like from a local observer in a fixed cosmological time. The Hubble - Lametre’s Law

is briefly derive from the metric in Eq. (2.3.1). Let’s consider a local observer located

at (x, y, z) = (0, 0, 0). To the observer, the velocity at the physical distance at x =

a(t)xcom with is

dx

dt
= aẋcom +Hx , (2.3.7)

where H = ȧ/a is the Hubble rate. The first term is called the peculiar velocity, while

the second term is called recession velocity. When the peculiar velocity is smaller that

the recession, the Hubble - Lemâıtre’s Law

dx

dt
' Hx , (2.3.8)

is obtained. This is what E. Hubble found.

Redshifting

Since an object in a distance from an observer always has a recession velocity in an ex-

panding universe. As a result, the Doppler e↵ect is induced in frequency of observables.

This is redshifting.

�obs
�em

⌘ 1 + z , (2.3.9)

The light propagation in the expanding universe follows null world line ds2 = 0.

Z
tobs

tem

dt

a(t)
= �obs � �em , (2.3.10)

where �i(i = em, obs) is the co-moving coordinate of an emitter and and observer,

respectively Since the co-moving distance unchanges, then we obtain for an infinitesimal

time interval for the emitter and the observer as,

Z
tobs

tem

dt

a(t)
=

Z
tobs+�tobs

tem+�tem

dt

a(t)
(2.3.11)
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and equivalently obtain

�tem
a(tem)

=
�tobs
a(tobs)

, (2.3.12)

Then we apply that �ti = �i for |�ti| ⌧ 1/H. In comparison to Eq. (2.3.9) we obtain

aobs
aem

=
1 + zem
1 + zobs

, (2.3.13)

This is well known the redshifting by cosmic expansion. Hereafter, the observer frame

is fixed to the present universe, i.e., zobs = 0. Correspondingly, we set aobs = 1 as a

reference scale factor. Then, the scale factor is given via the redshift zem,

aem =
1

1 + zem
, (2.3.14)

Cosmic distance

A way to measure distance to an object in cosmology is di↵erent from the static space-

time such as Minkowski space. The distance will change as universe expands, resulting

departures from the Euclidean measures in 3d space. Let us introduce two distance

indicators. Luminosity distance and angular diameter distance should be shown. The

luminosity distance is defined via the energy flux,

F =
Lem

4⇡d2
L

, (2.3.15)

Here Lem denotes the absolute luminosity of the emitter at a static frame. Provided

that a photon in a single wavelength �em, since the luminosity is in a unit in energy per

time Lem / 1/�em�tem. Recall that �em = aem� and �tem = aem�t by redshifting. The

distance without cosmic expansion is nothing but the co-moving scale, �. By replacing

�em and �tem by � and �t, we eventually obtain

dL = aem
�1� , (2.3.16)

The angular diameter distance is a distance measured by an object whose real size is l

and observed angular size is ✓. As similar to the Euclidean geometry, it is possible to

relate the angular to the distance from l/✓. In an expanding universe, l = aem�✓ and

thus

dA = aem� , (2.3.17)
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is the distance measured by the angular scale. This is called angular diameter distance.

Here, � is co-moving distance.

2.3.2 Cosmic expansion with Einstein’s gravity

The FLRW metric successfully explains the Hubble - Lemetre’s Law and redshifting.

The entire time evolution of the universe, however, yet given. The Einstein equation

play a role to determine the cosmic expansion history at a given initial conditions. The

Einstein equation is given as

Gµ⌫ + ⇤gµ⌫ = 8⇡GNTµ⌫ , (2.3.18)

The right hand side of the Einstein equation Eq. (2.3.18) is determined when we pick the

matter component of the Universe. Conventionally, the covariant energy momentum

tensor of the perfect fluid is considered.

Tµ⌫ = ⇢uµu⌫ + P (gµ⌫ + uµu⌫) , (2.3.19)

where uµ = (�1,0). From Eqs. (2.3.1) - (2.3.19), the Einstein equation Eq. (2.3.18)

is obtained as

H2 =
8⇡GN⇢

3
� K

a2
+
⇤

3
, (2.3.20)

ä

a
= Ḣ +H2 = �4⇡GN

3
(⇢+ 3P ) +

⇤

3
, (2.3.21)

2.3.3 Composition of Universe

The matter composition of the universe should be observationally given. The universe

was made of the relativistic and non-relativistic matters at certain fractions of them,

although the current state of the universe is exceptionally dominated. The number of

the relativistic species is given by the black body radiation of the cosmic microwave

background, unless before CMB was emitted in the bulk. The number of baryonic

matter in the total matter density is nicely determined by the amplitude of the baryon

acoustic oscillation. The curvature components that could be generated at the birth

of the universe is consistent with zero by observing the peak position of the first peak

of the CMB anisotropy that is determined by the time when the recombination is

achieved.
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X

i

⌦i(a) = 1 , (2.3.22)

⌦i ⌘
8⇡GN⇢i
3H2

, (2.3.23)

where i = (radiation, dust, cosmological constant, curvature).

For clarifying the property of matters in cosmic expansion, it is useful to introduce

the equation of state parameter,

wi ⌘
Pi

⇢i
, (2.3.24)

From the Friedmann equations in Eqs. (2.3.20) and (2.3.21), we obtain the following

di↵erential equation

⇢i + 3H⇢i(1 + wi) = 0 , (2.3.25)

This is nothing but the continuity equation of the matter i. In the case of the dust,

wdust = 0, and relativistic matters. wrad = 1/3. Most of the case we consider as a

matter, it is justified to set wi is constant. In this case, the solution of the Friedmann

equations in Eqs. (2.3.20) and (2.3.21) is exactly given. Provided that i-th component

dominates the universe, i.e, ⌦i ⇠ 1. Then the solution of Eqs. (2.3.20) and (2.3.21)

are obtained as

a / t
2

3(1+wi) , (2.3.26)

H =
2

3(1 + wi)t
, (2.3.27)

here we remove the cases 1 + wi  0. In terms of the acceleration is given by

ä

a
=

1 + 3wi

3(1 + wi)
H2 , (2.3.28)

The condition for the acceleration under 1 + wi > 0 is thus

ä

a
> 0 , wi < �1

3
, (2.3.29)

Cosmological constant

Historically the well-known ”mistake” of the cosmological constant by Einstein is for

evading the cosmic instability with the positive curvature. Based on Lovelock theorem,
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the only two parameters, the gravitational constant and the cosmological constant is the

free parameter of the Einstein’s theory. In the weak field limit of a static spacetime, the

gravitational constant uniquely determined, regardless of what value of the cosmological

constant. This is because, the cosmological constant is the homogeneous part of the

Einstein’s field equations completely eliminated from the spacetime via background

subtraction. The only way to determine the cosmological constant is thus to measure

the expansion rate of the universe. Interestingly the domination of the cosmological

constant leads a universe to an accelerating phase; de Sitter universe. The de Sitter

models is given with the Friedmann equations

H2 =
⇤

3
, (2.3.30)

Ḣ = 0 , (2.3.31)

The exact solution is a / exp(
p
⇤/3t), leading the well known exponential expansion

of the universe. In summary, the evolution of the universe with di↵erent value of the

curvature and the cosmological constant are shown.

Relativistic components

The Hot Big Bang Theory presume that in the very early universe, the matter compo-

nents are relativistic. The peculiar features on the relativistic components is that the

density is given in particle physics. The e↵ective degree of freedom g⇤ will change in

time as the detailed nucleic interactions changed. When the relativistic species are in

thermal equilibrium, the temperature is uniformly determined. By summing up all the

bosonic or Fermionic species

⇢r =
⇡4

30
g⇤T

4 , (2.3.32)

where

g⇤ =
X

boson

gboson +
7

8

X

fermion

gfermion , (2.3.33)

The precise value of g⇤ is dependent on what type of particle theory you use. In the

present universe, the photon (or graviton?) is the only relativistic species. The photon

is currently in the state of CMB, and thus the temparature T0 is measured by COBE

T0 = 2.725 ± 0.0001K. Moreover, the e↵ective degree of freedom g⇤ = 2?. Therefore,
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the density parameter for the relativistic components at present, ⌦r0 is given by

⌦r0 = 4.155h2 ⇥ 10�5 , (2.3.34)

Neutrinos

⇢⌫ =
⇡4

30
Ne↵T

4
⌫ , (2.3.35)

Note that T⌫ = (4/11)1/3T because of the entropy transfer at the time when the elec-

tron positron annihilation completed. Then the total energy density of the relativistic

components are

⇢r =

 
1 +Ne↵

7

8

✓
4

11

◆4/3
!
T 4 , (2.3.36)

where the e↵ective degree of freedom Ne↵ is given by Ne↵ = 3.046. Recently, the e↵ects

of the neutrinos are important to develop the structure in the universe.

Spatial curvature

The value of spatial curvature K is undetermined in theory, and thus it is common

that the density parameter for the curvature is in the matter component as well. The

density parameter is defined as

⌦K ⌘ � K

H2a2
, (2.3.37)

Note that the positive curvature induce the instability of the Universe as a solution

of the Friedmann equations in Eqs. (2.3.20) and (2.3.21). The feature of the density

parameter of curvature is that it decrease in time when the universe is acceleratingly

expanding, i.e., 1/Ha decreased in time . This means that any accelerating phase of

the Universe may smooth out the information of curvature.

Commenting on that FLRW spacetime itself does not give any instability without

the positive curvature case (K > 0). The bouncing universe. The summary figure is

important to show here.

2.3.4 Structure formation

The structure in the universe evolves by gravity. Current observations show that the

current universe has hierarchical structures such as stars, galaxies, galaxy clusters, and
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Figure 2.1. The Friedmann equations (2.3.20)[6]

large-scale structures. Cosmological perturbation theory is a powerful technique for

calculating the evolution of first order perturbations on a background spacetime. Here

we treat only on scalar perturbations.

Evolution of density fields

Time evolution of perturbative quantities, are described through linearised Einstein

equation and the energy momentum tensor in Eq. (2.3.19). As a local observer, we

take the Conformal Newtonian gauge. In this gauge, the metric is

ds2 = �a2(1 + 2�)d⌘2 + a2(1� 2 )�ijdx
idxj , (2.3.38)

Here � is Newton potential and  is the scalar curvature perturbation. The density

perturbation � is defined as

� ⌘ �⇢

⇢
, (2.3.39)



CHAPTER 2. STANDARD GRAVITATION AND COSMOLOGY 36

We consider the evolution of the density field in Fourier space. We define

�̃(k, t) =

Z
d3xe�ik·x�(x, t) (2.3.40)

Then in the Conformal Newtonian gauge the linearised Einstein equations are de-

composed into the two dynamical equations

�̃0 = �(1 + w)(kṼ � 3�0) + 3aHw

 
�̃ �

˜�P

P

!
, (2.3.41)

Ṽ 0 = �aH(1� 3w)Ṽ � w0

1 + w
Ṽ + k

˜�P

P
� 2

3
k

w

1 + w
⇧̃+ k�̃ , (2.3.42)

(2.3.43)

and the two constraint equations

�̃ + 3
aH

k
(1 + w)Ṽ = �2

3

✓
k

aH

◆2

 ̃ , (2.3.44)

⇧̃ =

✓
k

aH

◆2

(�̃�  ̃) , (2.3.45)

V is the divergent term of velocity field. w ⌘ P/⇢, and ⇧ is the anisotropic stress. Note

that the variables with tilde denotes the Fourier mode for corresponding variables. By

solving the above four equations, we obtain the time evolution of the density perturba-

tion. When we focus on the matter dominant epoch, w = 0 and �P = 0 are satisfied.

If we assume ⇧ = 0. From Eqs. (2.3.41), (2.3.45), (2.3.68), and (2.3.69), � follows

the second order di↵erential equation,

�̃00 +H�̃0 �
�
4⇡G⇢� c2sk

2
�
�̃ = 0 , (2.3.46)

At larger scales than the Jeans scale, i.e., k < (4⇡G⇢/c2s)
�1/2, we obtain

�̃00 +H�̃0 � 4⇡G⇢� = 0 , (2.3.47)

This equation has two analytic solutions as

� = D+(a)�i , (2.3.48)

D+(a) =
5

2
H⌦m0

Z
a

0

dx

x2H2
, (2.3.49)

where �i denotes the initial value of the density perturbation. We define the linear
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growth rate f as

f ⌘ d lnD+

d ln a
, (2.3.50)

If we take the background with ⇤-CDM model, f is given as

f = �1� ⌦m

2
+ ⌦⇤ +

Z 1

0

dx

(⌦m/x+ ⌦⇤x2)3/2

��1

, (2.3.51)

Note that ⌦m and ⌦⇤ are time-dependent density parameters,

⌦m ⌘ ⌦m0a�3

⌦m0a�3 + ⌦⇤0
,⌦⇤ ⌘ ⌦⇤0

⌦m0a�3 + ⌦⇤0

In the Einstein de Sitter universe (⌦m0 = 1), f = 1 is satisfied. Moreover, � grows

with the scale factor a, namely reflecting the gravitational evolution of structures as

the universe expands. Therefore, the index f is useful to test gravity at cosmological

scales.

2.3.5 Initial conditions

The initial condition of the Universe are considered in accommodation with the Big

Bang Theory. However, the Big Bang Theory has a pathology to argue the initial state

of the universe consistent within the framework of physics.

Flatness problem

The curvature constant could be arbitrary with a nonzero value. The flatness problems

appears the subsequent evolution in the universe, the curvature term will exceed the

universe than the matter or radiation components. The observations, in contrast, the

curvature is should be smaller at present value. Then this puzzles in rationalising how

the present curvature is small. This is called Flatness problem.

Horizon problem

The COBE satellite prove that the temperature of CMB is almost isotropic at the level

of µK, that is 10�5. Moreover, the successor satellites such as WMAP and Planck

virtually found that there are certainly the anisotropic fluctuations of temperature and

polarisation exist, revealing that the statistical property of the fluctuations are almost

Gaussian. This fact looks strange with second thoughts when the causal interactions in
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the very early universe are taken into account. As the universe expands with relativis-

tic or non relativistic matters, the maximum length for physical interactions, the event

horizon, shrinks. The present horizon scale, on the contrary, much larger than the

past horizons, where the physical interactions in the early universe should have been

disorganised in their initial conditions. The CMB measurements are obvious coun-

terexamples for the non-correlations well beyond the limit of any physical contact, by

the fact well-correlated physical states as shown in the data. This is called horizon

problem.

Relic problem

In the early universe, due to a number of phase transitions including the beyond Stan-

dard Model physics, particles generated. The lightest relics or topological defects have

yet to be found by observations. This strongly bounds the ways of phase transitions in

the early universe, ending up with the normal standard model prediction.

2.3.6 Inflation

Nowadays, inflation is a well-census mechanism to deal with all the problem shown in

above. The idea is the provision such that we insert the acceleration of the universe,

inflation, before hot Big Bang started. Inflation has been considered as the state in the

very early Universe since it was firstly invented [10, 11, 12]. In modern perspective,

inflation is defined as the state of the universe that is given by the condition below.

The definition of inflation is

ä =
d

dt
Ha > 0 , d

dt
Ha > 0 , (2.3.52)

Slow roll inflation

It has been understood that the acceleration phase of the universe is realised by the

slow roll condition. In the literature, the mechanism of the inflation explains with a

single scalar field.

3M2
plH

2 =
�̇2

2
+ V (�) , (2.3.53)

M2
pl(2Ḣ + 3H2) = � �̇

2

2
+ V (�) , (2.3.54)
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and the Klein Gordon equation is

�̈+ 3H�̇+ V� = 0 , (2.3.55)

The slow roll inflation are given with the following conditions,

✏1 ⌘ � Ḣ

H2
⌧ 1 , (2.3.56)

✏2 ⌘
1

H

d✏H
dt

⌧ 1 , (2.3.57)

These conditions are equivalent to

|✏V | ⌧ 1 , |⌘V | ⌧ 1 , (2.3.58)

for

✏V ⌘
M2

pl

2

✓
V�

V

◆2

, (2.3.59)

⌘V ⌘ M2
pl
V��

V
, (2.3.60)

Under the slow roll conditions, Eq. (2.3.55) approximates to

�̇ ' �
V�

3H
, (2.3.61)

Primordial fluctuations during inflation

In the inflationary universe, quantum fluctuations of the metric and scalar field exists

at perturbative level. The canonical quantisation

⇣ ⇠ �H

�̇
�� , (2.3.62)

The novel property of the power spectrum of the fluctuations is the scale independence.

The power spectrum of the curvature perturbations is given

P⇣ =

✓
H

�̇

◆2✓H

2⇡

◆2

, (2.3.63)

Besides, the quantum fluctuation of tensor filed simultaneously exist and

Ph =

✓
H

2⇡

◆2

, (2.3.64)
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The scalar to tensor ratio

r ⌘ Ph

P⇣

, (2.3.65)

The consistency condition

nt = � r

16
, (2.3.66)

2.3.7 Observational understandings

Current observations show that the universe is flat. More precisely, the curvature of

the universe is determined by the prospective angle of CMB’s first peak. In actual

observations, the cosmological parameter ⌦K = �K/a2H0
2 is limited to the accuracy

of ⌦K0 = �0.0052(64) [13, 6, 14]. Therefore, it is reasonable to assume that ⌦K0 =

0.Therefore, we assume zero three-dimensional curvature, i.e., K = 0. The FRW metric

with K = 0 is given by

ds2 = �dt2 + a2(t)�ijdx
idxj , (2.3.67)

Friedmann equations Eqs. (2.3.20) and (2.3.21) are given as

H2 =
8⇡G⇢

3
= H2

0⌦ , (2.3.68)

ä

a
= Ḣ +H2 = �4⇡G

3
(⇢+ 3P ) = �H2

0

2
(⌦m0a

�3 � 2⌦⇤0) , (2.3.69)

where H0 is the Hubble constant and ⌦ is the total density parameter

⌦ = ⌦m0a
�3 + ⌦⇤0 , (2.3.70)

H0 and ⌦m0 are constrained from observations. The Hubble constant can be estimated

from the receding velocity of nearby galaxies at redshift z = 0.01 ⇠ 0.1 [15]. Re-

strictions on ⌦⇤0 and ⌦m0 from the magnitude function of type Ia supernovae, etc.

[8, 9]. One the other hand, There is a method to describe the structure evolution in

the universe in detail as a theoretical model, and to limit the cosmological parameters

by comparing the model with observations, which makes it possible to determine the

parameters in more detail. The optical depth ⌧ , density parameter for baryons ⌦b, and

the amplitude of the primordial fluctuation As and its spectral index of power spectrum

ns, additionally appears, ⇤ - CDM model is described by six paramters:⌦m0, ⌦b, H0,

⌧ , As, and ns. The latest constraints on the six parameters by Planck satellite is shown
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in [16]. The scalar to tensor ratio is measured by Planck, r < 0.07 (95 % C.L.).



Chapter 3

Beyond standards

The standard theories of gravity and cosmology have succeeded in the explanation of

astrophysical and cosmological phenomena. One could argue that the model of our

Universe has been well established from small to large scales, few problems being left.

However, this is not true, proceeding to the bunch of scientific controversy. At present,

the majority of discussions in the studies of gravity and cosmology are involved with

the physics of the two ends of energy scale; the lowest or highest regime.

In theory, the physics of the two ends of the lowest or highest energy can end up

with the failure of perturbative approaches, particularly pathological when including

gravity. Phenomenologically, the cosmic accelerations, i.e., the inflation and the late-

time acceleration would give a good probe for the two extreme ends of energy scales.

The acceleration of the cosmic expansion has been investigated with the de Sitter

space, leading the quasi-de Sitter approximations. A prominent example is the slow-

roll approximation, which has been developed in the context of inflation [10, 11, 12].

Except some extreme cases such that the kinetic motion of the energy components of

the universe drives the acceleration, it has been known that the cosmic acceleration

can be well described with the slow-roll approximation. This approximation is simply

characterised as called so-called ”Dark Energy” in the following papers [17, 18, 19] In

a more general point of view, the cosmic acceleration can be approached in terms of

the modification of gravity, which has been intensively progressed studied in the last

decades. Interestingly, the modification of gravity make an interesting way of thinking

about cosmic acceleration beyond the quintessence model.

The modification of gravity is not only motivated by the cosmic acceleration. But

also, Einstein’s gravity is very naive at high energies mostly above the Planck scale,

i.e., 1019GeV. The issues are relatively older than the issues for cosmic acceleration,

having been well described into the singularity problem or cosmic censorship. Most

42
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importantly, the UV incompleteness of the Einstein’s gravity has lead the disability of

quantum gravity. The UV incompleteness of Einstein gravity should be solved in a more

profound stage of theoretical physics, such as string theory. Most of the possible defor-

mations of Einstein gravity provide a new dynamical degree of freedom, consequently

changing the phenomenology. Some signatures of the additional degree of freedom are

able to be measured by observations.

From the observational point of view, the precision of forthcoming cosmological

probes have been sophisticated has improved up to the percent level. Particularly, the

Planck legacy survey for the CMB accomplished percent-level constraints on the ⇤CDM

concordance cosmology. Practically speaking, the accuracy that has been achieved for

the ⇤CDMmodel is transferable to constrain the modification of gravity at cosmological

scales.

In this chapter, we sculpture summarise the upfront issues of Einstein gravity and

the concordance ⇤CDM cosmology, and argue the observational possibility to probe

any phenomenology in modifications of gravity.

3.1 Problems left

3.1.1 Quantum gravity

Apart from the fine-tuning problem in phenomenological parameters, Einstein gravity

is doubtful in the framework of quantum theory. The long argued problem is the

non-renormalisability of Einstein gravity. As first pointed out by Stelle 1977 [20], and

investigated by G. t’Hooft in 1993 [21], pure gravity with simple matter fields such as a

scalar or vector field could not be renormalisable as well. What non-renormalisability

causes in phenomenology is the failure of prediction of quantum features in gravity.

Although many alternative ideas have been considered, the problem is still unsolved,

which is one of the hardest problems left in physics. The prominent imperfection of

Einstein gravity to describe the quantum nature of gravity is highlighted as follows.

Planck scale

The Planck scale is the limit of the scale at which the quantum coherent length, i.e.,

the Compton wavelength is equivalent to the Schwartzshild radius. In the equation

h

mc
=

GNm

c2
, (3.1.1)
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where h is the Planck constant. The mass scale is derived from Eq. (3.1.1), which is

the Planck mass defined as

mpl ⌘
r

hc

GN
, (3.1.2)

The Planck length `pl is then given as `pl = GNmpl/c2 =
p
hGN/c3. Below the Planck

scale `pl. All the information is inside the black hole, which cannot be probed from

the outside. Consequently, the quantum coherence at the Planck scale is not able

to be detected in principle. In many papers, people have argued how we physically

investigate at the Planck scale. In this thesis, however, we would not deal with scales

above the Planck scale.

Non-renormalisability

When it comes to considering low energy physics, it is possible to ignore any physical

process at short distance with high energy: it can be integrated out over observing

scale or time we are looking at. The process of such integration is generally termed

renormalisation. More specifically, renormalisation is a procedure such that we change

the strength of a field, or coupling between matters we observe while the mathematical

structure of a theory we use remains unchanged. Renormalisation is well formulated

for quantum field theory and atomic physics. One could think if renormalisation works

in Einstein gravity, but it is not the case.

Essentially, the reason why renormalisation fails is related to the strong coupling na-

ture of Einstein gravity. The gravitational strength at smaller scales becomes stronger

as a high energy excitation of matter occurs at short distances, making a back reaction

to lower energy scales. Especially when taking into account the quantum corrections

from shorter scales, there are no parameters that regularise the divergent contribution

of the quantum corrections. As a result, the parameters, namely GN or ⇤ do not work

for the describing quantum corrections. It is one of the cutting edge areas of study to

investigate what properly regularises the quantum corrections.

Cosmologically, the non-renormalisability of Einstein gravity matters at the begin-

ning of the Universe which is assumed to be around the Planck scales. At least for

phenomenological reasoning of how the initial conditions of the Universe are given,

non-renormalisability may not cause any struggles. In fact, many of the scenarios of

inflation work below the Planck scale where gravitational back reaction is negligible,

and the most of the models succeed in explaining the initial power spectrum of the

cosmological perturbations from the CMB. However, possible regularisation for the



CHAPTER 3. BEYOND STANDARDS 45

quantum correction of gravity may make imprints on the primordial spectra. For ex-

ample, the non -Gaussian departure of primordial fluctuation can pick up information

from higher energy scales. The di�culty for these studies is the separation from sys-

tematises non linearity during the evolution of the Universe, i.e., the phase transitions,

energy injections, or the gravitational structure formations. Apart from such obstruc-

tion, it is interesting to look into what di↵erence the quantum regulators make to the

cosmological initial conditions.

After all, we would not wish to increase the theoretical di�culty of Einstein gravity.

We once motivate ourselves on the renormalisability of gravity in the context of the

test of Lorentz invariance. In that chapter, however, the main argument is how it is

possible to test Lorentz invariance from cosmological observations.

3.1.2 Observational shortcomings of the standard cosmology

cosmological constant problem

The problem appears when we interpret the observed value of the cosmological constant

with fundamental theories. In comparison of the energy scale of gravitational coupling

and the cosmological constant, i.e., the reduced Planck mass scale Mpl = mpl/
p
8⇡

and ⇤, there is a huge hierarchy in energy scale. Hereafter the explanation is based on

L. Amendola and S. Tsujikawa 2010 [22] In the energy density scale,

⇤ ⇡ H2
0 = (2.1332h⇥ 10�42Gev)2 , (3.1.3)

The corresponding energy density ⇢⇤ is given as

⇢⇤ ' M2
plH

2
0 ⇠ 10�123M4

pl , (3.1.4)

where we have used h ⇡ 0.7 and mpl ⇡ 1019GeV. The enormous di↵erence of the

energy scale between the Planck scale and the cosmological constant could be milder,

if the history of phase transitions of the vacuum state is treated more carefully. The

matter energy momentum tensor in the right hand side of the Einstein equation has a

term from the vacuum energy, which is mathematically equivalent to the cosmological

constant. Then one can expect that the non-trivial contributions from the vacuum

energy can tune the cosmological constant. Suppose that the zero-point energy of a

free field with mass m and momentum k, the vacuum energy of the field is E = !/2.

Here ! is the frequency of the field given by the dispersion relation ! =
p
k2 +m2.

Summing over all the vacuum energy up to the momentum cut o↵ kmax(� m), we
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obtain

⇢vac =

Z
kmax

0

dk 4⇡ k2

(2⇡)3
1

2

p
k2 +m2 ⇡ k4max

16⇡2
, (3.1.5)

For the second equality in we use kmax � m and the dominance of the mode with large

k. When we take kmax to be mpl, we obtain ⇢vac ' 1074(GeV)4, that is still 10121 larger

than ⇢⇤. This huge gap of energy scale still exists even we take the QCD scale, i.e.,

kmax ⇡ 0.1GeV we have ⇢vac ⇡ 10�3(GeV)4 and thus ⇢vac � ⇢⇤. Hence, it has been

recognised that the tuning problem of the cosmological constant from the fundamental

theories is left to be the worst hierarchy problems1.

The coincidence problem

The second problem in observational cosmology is called the coincidence problem. This

problem asks why the observed cosmological constant is of the same order as the matter

density in the Universe. It is observationally determined that the curvature of the

Universe is almost zero, leading the relation between the matter density parameter

⌦m and the density parameter of the cosmological constant ⌦⇤ satisfy the relation

⌦m + ⌦⇤ = 1. According to the SN Ia surveys and the WMAP CMB measurements,

the present values of the density parameters, ⌦m0 and ⌦⇤0 are observationally given

as ⌦m0 ⇠ 0.3 and ⌦⇤0 ⇠ 0.7. In theory, the cosmological constant is nothing to do

with the matter density of the universe, and thus we may ask why the two values are

close with each other. In the current studies we consider some possible solutions for

the coincidence problem, but none of the models are satisfactory to reveal how the

coincidence of the two density parameters happen.

Tension of the Hubble constant

The third problems has arisen much more recently than the above two problems after

the Planck CMB measurement was released in 2013. The problem is that the mea-

sured Hubble constant by Planck is significantly di↵erent from the local measurement

of it, at more than 3� confidence level. To make matters worse, the tension in very

recent measurement via the strong gravitational lensing of quasars tightened the ten-

sion toward 5.3� confidence level. As a third way to measure the Hubble constant,

gravitational waves have constrained the Hubble constant. Currently, the constraint

1A more careful relativistic calculation is needed, and then one finds a density not M
4, where M

is the cuto↵ mass, but m
4 ln(M/m), where m is the particle mass. Note that m = 0,i.e., the vacuum

energy is zero if the particle is mass-less In more detail, see [23]
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on the Hubble constant is with the constant has large variations, hopefully improved

by future observations.

Figure 3.1. The Hubble tension from L. Verde, T. Treu, and A. G. Riess [24]

3.1.3 Other issues

Other problems in cosmology are represented as

• CP violation

• Strong CP problem

• Matter - antimatter asymmetry
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In this thesis, we will not consider these issues because these are less involved with the

space-time symmetry.

Figure 3.2. Energy hierarchy in cosmology
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3.2 Dark Energy paradigm

Let us think about the cosmological constant problem. At present, there are so many

models of alternative explanations for the late-time acceleration. One of the common

features of the models proposed is that they give the time-evolving energy component,

called ”Dark Energy” [17, 18]. Another is that the dark energy appears associated

with a new scalar field. This essential characteristic of dark energy is firstly proposed

in J. Peebles and B. Ratra 2002 [19]. We mainly pick up two representative models for

dark energy, i.e., the quintessence and XCDM model. As an alternative way to explain

dark energy, the modification of gravity is also taken into account.

3.2.1 Quintessence

Quintessence is a model such that a very light scalar field dominates the present uni-

verse. The idea is very similar to the inflaton in an inflationary universe. The action

is in quintessence is given as

SQ =

Z
d4x

p
�g

✓
�1

2
gµ⌫rµ�r⌫�� V (�)

◆
, (3.2.1)

The scalar field behaves as a perfect fluid, and it possesses the e↵ective energy density

and the pressure as

⇢Q =
1

2
�̇2 + V (�) , (3.2.2)

pQ =
1

2
�̇2 � V (�) , (3.2.3)

As similar to the case of the inflaton, the accelerating expansion like the cosmological

constant realises when �̇2 ⌧ 2V (�), pQ ' �⇢Q. In addition, quintessence is consider

as a consequence of spontaneous symmetry breaking. If this quintessential scalar field

drives the late-time acceleration, the mass of the scalar field, mQ, is extremely light,

i.e., mQ ⇠ H0 ⇠ 10�33[eV]. Scalar fields are generally predicted in beyond standard

model of particle physics or string theory, but such a tiny mass often su↵ers from the

large quantum correction from the vacuum. This may require that the quintessential

dark energy should be improved.

3.2.2 XCDM model

Another possible scenario of dark energy is a some kind of perfect fluid, represented as

X, whose equation of state, wX , is constant [18]. The argument is equivalently written
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as

pX = wX⇢X , (3.2.4)

In the XCDM model, wX is a constant fixed by microscopic processes. In other words,

the fluid is something unknown. One of the interesting features of the X-fluid is that

it may contain a new type of matter in the Universe. Note that when wX < �1, that

is called ”phantom energy”. A novel feature of phantom energy is that it breaks the

null energy condition, i.e., ⇢X + pX  0. The breaking of the null energy condition,

however, can induce instability of the background space-time. This is well known in

the case of the quintessence field. Therefore the X-fluid would be carefully constructed

in order not to spoil the expanding evolution of the universe. As we see from the two

representative models for the cosmic acceleration at late times, it is known that the

simplest thought would not be enough to solve the cosmological constant problem.

3.3 Modified Gravity

The modification of gravity gives one of the possible ways to explain the cosmic accel-

eration. By contrast to quintessence or the X-fluid, the cosmic acceleration is given

by modifying the strength of gravity at cosmological distances. What is interesting

in modified gravity is that a theory of modified gravity may succeed in constructing

quantum gravity. In other words, the cosmic acceleration may signify certain fea-

tures of quantum gravity. Currently, in the case of modification with a scalar field,

the universal description to treat dark energy and modified gravity together is called

scalar-tensor theory. In particular, Horndeski theory [25, 26] is the most general form

of these theories with a space-time curvature and a scalar field whose equations of mo-

tion contain second-order space-time derivatives. The Horndeski theory includes not

only quintessence and nonlinear kinetic theory, but also many specific theories: f(R)

theories [27], covariant Galileons [28], and kinetic gravity braiding [29]. The Horndeski

theory can also be extended further to a more general framework in the language of an

e↵ective field theory (EFT). An EFT for dark energy was formulated by Gubitosi et

al. [30], Gleyzes et al.[31], and Bellini and Sawicky [32].

3.4 Global time-translation symmetry-breaking

In the modern perspective of inflation and dark energy are captured by the symmetry

breaking of the global time-translation symmetry. This means that Lorentz invariance



CHAPTER 3. BEYOND STANDARDS 51

of a space-time is partially broken. Quantitatively, the coordinate transformation given

as

t ! t+ ⇡(t,x) , (3.4.1)

⇡(t,x) breaks time translation symmetry of space-time. Inflationary cosmology is de-

scribed via this symmetry-breaking from de Sitter space-time. [33]. A similar formula-

tion is formulated at the present energy scales of the Universe [30, 34] (detail discussions

are shown in Appendix.B. Below a symmetry breaking scale, it is possible to formulate

an e↵ective field theory. EFT is phenomenologically useful to test various models of

inflation, dark energy, or modified gravity.

3.5 Summary

We briefly highlight the problems that can be a signature for new understanding of

the space-time symmetry and the foundation of gravity. In the rest of this part of the

thesis, we argue the specific cases. We consider such a general framework of modified

gravity theories in Chapter. 4. In Chapter. 5, we study a case when local Lorentz

invariance is broken in gravity in the inflationary Universe.



Chapter 4

Observationally-viable

scalar-tensor theories

We consider the phenomenology of scalar-tensor theories at cosmological distances.

Scalar-tensor theories are familiarly known as one of the extensions of Einstein gravity,

which respect general covariance whereas containing one scalar degree of freedom in

addition to normal massless tensor. A novel property of the scalar field is its ability

to change the cosmic expansion and growth rate of structures either faster or slower.

Another aspect of scalar tensor theories is that the scalar field modifies gravitational

interactions as the expansion. When the scalar field couples on Ricci tensor or another

geometrical quantity such as Einstein tensor, called this case as ”non-minimal cou-

pling”, gravitational interactions between massless/massive matters. As a consequence

of non-minimal coupling, the equivalence principle is no longer respected, leading cru-

cial di↵erences from Einstein gravity. Throughout this chapter, we discuss cosmological

phenomenology of the scalar-tensor theories, showing how possible to distinguish the

scalar-tensor theories from the concordance Einstein gravity. Important remarks are

given as follows.

• A scalar field is compatible to the cosmological principle; i.e., homogeneity and

isotropy are still viable in scalar-tensor theories.

• Equivalence principle would be broken due to non-trivial interactions with the

massless spin-2 graviton.

• Observational constraints on scalar-tensor theories are to be expected.

52
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4.1 Covariant theories beyond Einstein’s gravity

We consider the mathematical structure of covariant theories as extensions of Einstein

gravity.

4.1.1 Conformal and disformal transformation

The main idea beyond Einstein gravity is to introduce another dynamical scaling into

a theory. It comes up with the conformal or disformal transformation. The conformal

transformation has been known as

gµ⌫ �! g̃µ⌫ = ⌦2(x)gµ⌫ , (4.1.1)

Since the operator of the conformal transformation ⌦2(x) is common in all the metric

components, the transformed line element ds̃2 is proportional to ds2,

ds2 �! ds̃2 = ⌦2(x)ds2 , (4.1.2)

This results in the preservation of causal structure of a theory before and after the

conformal transformation.

The disformal transformation is defined as

gµ⌫ �! g̃µ⌫ = gµ⌫ + �(x)vµv⌫ , (4.1.3)

where vµ is a covariant vector which is either time-like, null, or space-like. With any

configuration of vµ, the point is that the line element is given as

ds̃2 = ds2 + �(x)vµv⌫dx
µdx⌫ , (4.1.4)

Physical consequences of conformal and disformal transformation is

• Conformal transformation changes, while leaving the structure of the null geodesics

unchanged.

• Disformal transformation change the shape of the null geodesics and the associ-

ated light cones.

As firstly introduced in J. Bekenstein 1993 [35], the WEP should be satisfied as

long as we consider that all the matters are universally coupled [36]. In that case, it is

required that ⌦(x) and �(x) only depends on some invariant quantities under general
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covariance. A popular choice is introducing a scalar field �, and its canonical kinetic

term X = �gµ⌫@µ�@⌫�/2, i.e., ⌦(x) = ⌦(�, X) and �(x) = �(�, X).

Note that the di↵eomorphism invariance still keeps in both transformations. In this

chapter, we consider a specific type of the conformal and disformal transformation by a

scalar degree of freedom. After the construction of a theory in the family of the confor-

mal and disformal transformations, the theory is not fully guaranteed as a physically

sensible, leading further inspection of dynamical instability of the Hamiltonian.

4.2 Kinematic bounds in gravity

We briefly review a couple of types of covariant scalar-tensor theories. The variation

of scalar-tensor theories appears as the theories are required the conditions whether

or not the Hamiltonian is bounded, i.e., the degeneracy conditions. The degeneracy

conditions are required for constructing a theory in order to a ghost degree of freedom

from being dynamical at any energy scale. The types of scalar tensor theories are

determined by what condition for the degeneracy is imposed. The kinematic theory

often requires certain criteria for theories such that a physical state realised in a theory

is stable in its dynamical time. The well known criteria are that (1) the Hamiltonian

is bounded from the minimum, (2) kinetic energy for dynamical mode should not be

negative. (1) and (2) guarantee that a system considered is kinetically stable. Such

criteria would be applied for gravity theories as well.

4.2.1 Ostrogradosky’s instabilities

As is often the case, the Lagrangian only argues with q and q̇; L(q, q̇). Generally

speaking, this statement is replaced by the absent of the higher time derivative of q. Let

us think the second derivative of q, i.e., q̈. By pointing out that the linear dependency

of q̈ does not lead the higher derivative dependency on the Euler - Lagrange equation,

it is crucial to consider the quadratic or other dependencies of q̈. Then the condition

is written as

@2L

@q̈2
6= 0 , (4.2.1)

This is called the non degeneracy condition. Under the non degeneracy condition, the

Euler-Lagrange equation is

d2

dt2
@L

@q̈
� d

dt

@L

@q̇
+
@L

@q
= 0 , (4.2.2)
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Q1 = q , Q2 = q̇ , P1 =
@L

@q̇
� d

dt

@L

@q̈
, P2 =

@L

@q̈
, (4.2.3)

These combinations of variables satisfy the Hamilton Jacobi equations; Ṗi = �@H/@Qi

and Q̇i = @H/@Pi from the Hamiltonian H(Q1, Q2, P1, P2),

H(Q1, Q2, P1, P2) = P1Q2 + P2Q(Q1, Q2, P2)� L(Q1, Q2,Q(Q1, Q2, P2)) , (4.2.4)

where we solve q̈ via

q̈ = Q(Q1, Q2, P1) , (4.2.5)

which is allowed from the non-degeneracy condition in Eq. (4.2.1). Then we will see

that the Hamiltonian is linearly dependent on the canonical momentum Pi(i = 1, 2).

As a result, it is not guaranteed that the Hamiltonian possesses its minima. What if

the minima of the Hamiltonian does not exist leads is that spontaneous decay of the

dynamical system into instability, which should be avoidable for dynamical analysis.

Not that this instability should be respected whether or not we work in classical or

quantum mechanics. In Einstein gravity looks violating for the non degeneracy condi-

tion since the Ricci curvature R depends on the second derivative of the metric, but

the terms appears only at linear order and behave as the surface terms, being irre-

spective to the equation of motion. Hence, we would expect that the extension of the

degeneracy conditions leads to a new class of theories without violating the analytical

mechanical limitation. In particular, the insertion of an additional degree of freedom

can avoid the non degeneracy of the Lagrangian with specific form of the degeneracy

condition. Hereafter, let us show the cases with a scalar degree of freedom.

4.3 The Lovelock’s theorem

A strong conclusion is obtained from the David. Lovelock’s simple mathematical theo-

rem called ”Lovelock theorem”. We investigate the whole picture of how we construct

gravity theory with the essential compositions needed for modelling gravity. The Love-

lock theorem states that

(a) Aij is symmetric, i.e.,

Aij = Aji , (4.3.1)
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(b) Aij is a concomitant of the metric tensor gab and its first two derivatives, i.e.,

Aij = Aij(gab; gab,c, gab,cd) , (4.3.2)

(c) Aij is divergence free, i.e.,

Aij

;j = 0 , (4.3.3)

(d) Aij is linear in the second derivatives of gab

To satisfy the conditions (a)-(d), Aij is determined as

Aij = aGij + bgij , (4.3.4)

for the arbitrary coe�cients a and b is the unique expression of Aij . The Lovelock’s

theorem states a strong constraint to develop gravity theory. To break the Lovelock’s

theorem, one of the following statements should be needed,

• The dimension of a spacetime is higher than four

• The local general covariance is broken

• The higher derivatives with the higher curvature terms are included

• An extra degree of freedom is coupled to gravity

Note that the equivalence principle is not implicitly broken. It is known that

4.4 Specific scalar-tensor theories

We consider scalar-tensor theories that have been known. These theories are made

by satisfying the dynamical stability of their Hamiltonian, i.e., degeneracy conditions,

while breaking the Lovelock’s statement, which is firstly porposed by G. W. Horndeski

in 1974 [25]. Decades after the original work of G. W. Horndeski [25], Horndeski theory

was rediscovered in the construction of general formulation for modification of gravity

[37, 26]. A few years later, though, Horndeski theory is not a unique extension of grav-

ity, resulting in the construction of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theory

[38]. Since GLPV theory is written in ADM formalism, Hamiltonian is well-defined and

conditions for avoiding Ostrogradosky instability are transparently given ( see in detail

in Appendix. A). In 2015, Degenerated Higher-Order Scalar-Tensor (DHOST) theory

was proposed as the most general scalar-tensor theory without Hamiltonian instability

by D. Langlois and K.Noui [39, 40].
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4.4.1 Horndeski theory

One of the oldest theories with the extra scalar field is Horndeski theory [41, 26]. The

covariant Lagrangian of the Horndeski theory is given as 1,

L =
5X

i=2

Li . (4.4.1)

where

L2 = G2(�, X) , (4.4.2)

L3 = �G3(�, X)2� , (4.4.3)

L4 = G4(�, X)R+G4X(�, X)
⇥
(2�)2 � �;µ⌫�

;µ⌫
⇤
, (4.4.4)

L5 = G5(�, X)Gµ⌫�
;µ⌫

� 1

6
G5X(�, X)

"
(2�)3 � 32�;µ⌫�;µ⌫

+ 2�;µ
;⌫�;⌫

;��;�
;µ

#
. (4.4.5)

Here ;µ is a covariant derivative and X = ��;µ�;µ/2, the canonical kinetic energy

density of �. The Lagrangian does not plague with the higher order derivatives of the

scalar field, ending up with the equations of motion include up to the second derivative.

The Horndeski theory widely include specific types of theories. The Horndeski theory

includes not only the quintessence [42, 43] and nonlinear kinetic theory [42, 43], but

also many specific theories: f(R) theories [27], covariant Galileons [37, 44], and kinetic

gravity braiding [29]. However, it has been known that the Horndeski theory is not the

most general scalar-tensor theory.

4.4.2 DHOST theory

The Degenerated Higher Order Scalar Tensor (DHOST) theory is the most general

scalar-tensor theory currently found. The DHOST theory is firstly discovered by

D. Langlois and K. Noui 2015 [39], and successively investigated by J. B. Achour et al.

[45] and H. Motohashi et al. in the di↵erent context [46]. The covariant Lagrangian is

1
G2(�, X) is often written K(�, X) in literature.
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given as

L = f0(�, X) + f1(�, X)2�+ f2(�, X)R+ Cµ⌫⇢�

(2) �;µ⌫�;⇢�

+ f3(�, X)Gµ⌫�
;µ⌫ + Cµ⌫⇢�↵�

(3) �;µ⌫�;⇢��;↵� , (4.4.6)

Cµ⌫⇢�

(2) �;µ⌫�;⇢� =
5X

A=1

aA(�, X)L(2)
A

, (4.4.7)

where the quadratic order is given as

L(2)
1 = �;µ⌫�

;µ⌫ , L(2)
2 = (2�)2 , L(2)

3 = 2��;µ�;⌫�;µ⌫
L(2)
4 = �;µ�;µ⇢�

;⇢⌫�;⌫ , L(2)
5 = (�;µ�;⌫�;µ⌫)

2 , (4.4.8)

and the cubic order is given as

Cµ⌫⇢�↵�

(3) �;µ⌫�;⇢��;↵� =
10X

A=1

bA(�, X)L(3)
A

(4.4.9)

L(3)
1 = (2�)3 , L(3)

2 = 2��;µ⌫�;µ⌫ , L(3)
3 = �;µ⌫�

;⌫⇢�;µ;⇢ , L(3)
4 = , (2�)2�;µ�;µ⌫�;⌫

L(3)
5 = 2��;µ�;µ⌫�;⌫⇢�;⇢ , L(3)

6 = �;µ⌫�
;µ⌫�;⇢�

;⇢��;� , L(3)
7 = �;µ�

;µ⌫�;⌫⇢�
;⇢��;� ,

L(3)
8 = �;µ�

;µ⌫�;⌫⇢�
;⇢�;��

;���;� , L(3)
9 = 2�(�;µ�;µ⌫�;⌫)2 , L(3)

10 = (�;µ�
;µ⌫�;⌫)

3 ,

(4.4.10)

The crucial di↵erence from Horndeski theory is that DHOST theory has the higher order

derivative operators L(2)
3,4,5 and L(3)

4�10 respectively shown in Eqs. (4.4.8) and (4.4.10)

with the arbitrary coe�cients depending on � and X. while keeping the second order

of equations of motion. To achieve this, the ”degeneracy conditions” are imposed,

successfully avoiding the Ostrogradosky instability [40].

GLPV theory

GLPV theory is understood as a peculiar subclass of DHOST theory. Although it

might be transparent in logic to derive GLPV theory from DHOST theory, we explain

GLPV theory based on the original proposal of GLPV theory,i.e. J. Gleyzes et al. 2014
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[38] The Lagrangian of GLPV theory is given as

L =
5X

i=2

Li , (4.4.11)

L2 = G2(�, X) , (4.4.12)

L3 = �G3(�, X)2� , (4.4.13)

L4 = G4(�, X)R+G4X(�, X)[(2�)2 � �;µ⌫�;µ⌫ ]

+ F4(�, X)✏µ⌫⇢� ✏µ
0
⌫
0
⇢
0
��;µ�;µ0�;⌫⌫0�;⇢⇢0 , (4.4.14)

L5 = G5(�, X)Gµ⌫�
;µ⌫ � 1

6
G5X [(2�)3 � 32��;µ⌫�;µ⌫ + 2�;µ⌫�

;µ��⌫�]

+ F5(�, X)✏µ⌫⇢�✏µ
0
⌫
0
⇢
0
�
0
�;µ�;µ0�;⌫⌫0�;⇢⇢0���0 , (4.4.15)

The theory space of the scalar-tensor theories are schematically shown in Fig. 4.1. The

main message here is that DHOST theory includes Horndeski theory and GLPV theory.

Figure 4.1. The landscape of scalar-tensor theories shown in [47]
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4.5 Observational constraints of scalar-tensor theories

Observational constraints for constructing a viable model in scalar-tensor theories are

important to be considered. We pick up significant conditions currently obtained by

observations.

4.5.1 The late-time acceleration

As is already known, the expansion of the Universe is accelerating at late-time Uni-

verise. From the first direct measurement of the cosmic accelerating expansion with

type-Ia supernovae [9, 8], subsequent observations of the cosmic microwave background

(CMB) and surveys of large scale structure (LSS) have strongly suggested that the

⇤CDM model is the best explanation to describe the cosmic acceleration. [7, 16].

Nowadays, however, modified gravity is one of candidates to explain the late-time cos-

mic acceleration. As is di↵erent from the ⇤CDM model or well-known models such

as quintessence [19] and the nonlinear kinetic term of a scalar field [42, 43], modified

gravity changes gravitational interactions between matters while accounting for the

cosmic acceleration. In comparison to the local tests of gravity suggesting Einstein

gravity fits to experiments and observations, gravity at cosmological scales are less un-

derstood. Therefore, it is interesting to consider the possible modification of gravity

at cosmological scales by the additional scalar field, providing a solution the cosmic

acceleration.

4.5.2 Observation of GW170817 and GRB170817A

Very recently, LIGO and VIRGO detected a binary neutron star (BNS) merger named

GW170817 [48]. This event is special because a few gamma-ray telescopes simultane-

ously caught the signal of a short gamma-ray burst, GRB170817A, and it was identified

as the electromagnetic transient counterpart of GW170817. By using the di↵erence of

the arrival times between GW170817 and GRB170817A, they obtained a stringent

constraint on �g down to �7.0 ⇥ 10�16 . �g . 3.0 ⇥ 10�15[49]. This means that the

propagation of gravitational waves almost the same as the speed of light. Therefore,

the observation of GW170817 and its electro-magnetic counterpart, i.e., GRB170817A

has provided important constraints on gravity theories.

Modification of Gravitational-Wave propagation at cosmological scales

We briefly introduce how GW is deformed during propagation because of the modifica-

tion of gravity. This argument was originally proposed in Saltas et al. [50] and recently
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it has been extended by Nishizawa to a general framework to test gravity theories [51].

The propagation equation of GW is generally given by

h00ij + (2 + ⌫)Hh0ij + (c2Tk
2 + a2µ2)hij = a2��ij , (4.5.1)

where hij is a tensor perturbation (GW) and 0 denotes the derivative with respect to

conformal time. In Eq. (4.5.1) there are four time-dependent parameters ⌫, cT , µ,

and �. ⌫ is the Planck mass run rate, cT is the phase velocity of a GW and µ is the

graviton mass. � denotes extra sources generating GW. We assume that the gravitons

are massless 2 and there is no source, i.e. µ = 0 and � = 0. In the case that ⌫, cT

are slowly varying functions with a cosmological timescale, the solution of Eq. (4.5.1)

is given in [51] as

h = CMGhGR , (4.5.2)

where

CMG ⌘ e�De�ik�T , (4.5.3)

D ⌘ 1

2

Z
⌧

d⌧ 0⌫H , (4.5.4)

�T ⌘
Z

⌧

d⌧ 0�g . (4.5.5)

In Eq. (4.5.5) we replace 1�cT with the deviation parameter �g. D and �T correspond

to the amplitude damping index and additional time delay of GW, respectively. We

see that the damping parameter ⌫ only appears in GW amplitude, while �g and µ

are both involved in the GW phase. In order to measure the arrival time di↵erence

between a GW and a photon, �g is small enough to make the time delay shorter than

the timescale of GW observations. We consider the case when �g is small. Note that

D and �T are the observables given after integrating all e↵ects between emission and

detection. However, we are now interested in the case that all the quantities vary in

the cosmological timescale. In such a case it is justified to use the Taylor expansion

with respect to H0⌧LB as given in Eq. (4.6.5). As we introduced in Sec. II, ⌫ and �g

are the observational parameters that are model independent. With the definitions of

2Mass of gravitons should not be given without thoughts of instability, as the mass for gauge fields
can induce unstable degree of freedoms. More careful consideration are shown in literature, e.g.[52, 53]
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the time evolution of ⌫ and �g as

⌫ = ⌫0 � ⌫1H0⌧LB , (4.5.6)

�g = �g0 � �g1H0⌧LB , (4.5.7)

expanding up to the next-to-leading order in H0⌧LB gives the approximated expressions

of Eqs. (4.5.4) and (4.5.5) as

D ' 1

2

n
⌫0 ln (1 + z)� ⌫1

2
(H0⌧LB)

2
o
, (4.5.8)

�T ' 1

H0

⇢
�g0H0⌧LB � �g1

2
(H0⌧LB)

2

�
. (4.5.9)

We now give observational constraints on ⌫0, ⌫1, �g0, and �g1 from the detection

of GW170817 and GRB170817A. The reason to choose this GW event is that the

redshift of the GW is independently measured from the optical follow-up observation

of NGC4993 [54], which resolves the degeneracy between the redshift and the luminosity

distance in the GW observation. For the observables, D and �T , we have to take into

account their estimation errors. In the case of measuring the arrival time di↵erence,

errors arise due to the accuracy of time resolution and intrinsic time delay at the source.

As mentioned in the paper [55], the time resolution is su�cient so that we ignore the

timing error and consider only the arrival time di↵erence. As we see in [48], the arrival

time di↵erence is measured as 1.7s, which gives the upper bound on cT . We also set

the intrinsic time delay at the source to 10s to obtain the lower bound of cT .

The constraint on ⌫ is given by comparison between the observed luminosity dis-

tance and the computed one using redshift determined by optical observations. As

shown in [48], the observed luminosity distance is given with error as 40+8
�14Mpc, corre-

sponding to the redshift is z ⇠ 0.008. In this case, H0⌧LB ⇠ z is a good approximation,

being independent with the cosmological parameters. �T , on the contrary, explicitly

depends on the Hubble constant. We assume that H0 = 67.8kms�1Mpc�1. By substi-

tuting z = 0.008 and H0 = 67.8kms�1Mpc�1 into Eqs. (4.5.8) and (4.5.9), obtaining

Eqs. (4.5.10) and (4.5.11) and Figs. 4.2 and 4.3.

If we take the cases that ⌫1 = 0 or �g1 = 0, we obtain the constraints on ⌫0 and �g0

as

�75.3 ⌫0  78.4 , (4.5.10)

�4.7⇥ 10�16 �g0  2.2⇥ 10�15 . (4.5.11)

⌫0 is too loose to constrain the gravity theories, but being bounded in the finite value.
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Figure 4.2. Observational constraint on ⌫0 and ⌫1 by GW170817. The width of the

coloured region is given at a 1� confidence level of the GW observation. The red solid

line is ⌫1 = 0.

On the other hand, �g0 is well determined enough to exclude the models. The time

variation of ⌫ and �g, i.e., ⌫1 and �g0 respectively, are almost unconstrained, because

the only one event is observed. Note that the ⇤CDM model, i.e., ⌫ = 0, �g = 0, is

observationally consistent to these constraints. Note that the ⇤CDM model explains

all the observational features
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Figure 4.3. Observational constraint on �0 and �1 by GW170817/GRB170817A. The

width of the coloured region is given between the lower and upper bounds. Inset: the

enlarged version around the centre of the figure. The width of the coloured region is

given at a 1� confidence level of the GW observation. The red solid line is �g1 = 0.
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4.6 Modelling of the observationally-viable scalar-tensor

theories

We argue models in scalar-tensor theories so that they satisfy the observational con-

straints in the previous section; the late-time acceleration, observation of GW170817,

and constraints from the early Universe. To create the models under the observational

constraints, we assume the following conditions for making a model;

1. The scalar field varies only at late-time Universe, being subdominant in the matter

and radiation dominant Universe.

2. The expansion history of the Universe is assumed to be close to that of the ⇤CDM

model.

3. The background universe should be stable at cosmological scale, i.e., linear insta-

bility does not occurs.

4. Scalar-tensor theories are treated as an EFT

The first condition for the scalar field states that the scalar field becomes dynamical

at cosmological scales only at late-time. The second condition is to satisfy the current

observations of the Hubble expansion. These conditions guarantees that the expan-

sion history of the Universe is not so di↵erent from that of the ⇤CDM concordance

cosmology, being consistent to the BAO or CMB observations. The third condition

is theoretical to prevent a background universe modelled in the scalar-tensor theories

from being unstable by perturbations on the background. The last condition is to re-

duce the theories to what phenomenologically interesting. Since we are interested in

the deviation from the ⇤CDM model, it is not necessarily to consider all the possible

choices of arbitrary functions in covariant Lagrangians. We will explain the above four

conditions in more detail.

4.6.1 Jordan frame ansatz

For the modelling of modification of gravity, we presume that the gravity minimally

couples with the gravity. Specifically this is written with the action as

Stot = SG +

Z
d4x

p
�gLm(gµ⌫ , ) , (4.6.1)

where  denote any type of the matter fields In the context of the scalar-tensor theories,

the Jordan frame ansatz avoids the complications in the followings
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• The decay of the scalar field will not cause the additional creation/annihilation

of standard model particles

• The physical interpretation of gravitational interactions are simply understood.

• It is easy to control the deviation from Einstein gravity.

Note that Einstein gravity is given at the minimally coupled matter when modelling

the gravitational interactions. When it comes to explain the late-time acceleration with

the scalar filed, the mass of the scalar field is extremely light, not causing any decay

for the baryonic matters but the massless In the Jordan frame, the decay of the scalar

field only a↵ects gravitational waves that is the only massless fields coupling with the

scalar field. In summary, the Jordan frame ansatz nicely works for the purpose of the

measurable deviation from Einstein gravity. Hereafter, we assume the Jordan frame.

4.6.2 Time evolution of scalar field

The challenge is to find the right parametrisation for the evolution of the scalar field

for which the Taylor series expansion would be pertinent in the late time universe as

well as in the early universe up to (z ⇠ 1000) of the CMB last scattering.

The simple choice of the expansion parameter of the scalar field is the inverse of the

redshift. Though that expansion works well only in the high redshift region, z > 1, and

diverges in the smaller redshift. Another possibility of the Taylor expansion parameter

is the scale factor, a, which would work well for a  1. But from the physical point of

view, the scale factor measures the expansion of the universe. But the time evolution of

the scalar field is nothing to do with the size of the universe. Hence it is not a natural

choice. Another possibility is the look back (LB) time. The scalar field evolution in

terms of the look back cosmic time is valid for the very late time universe, z < 1, but

the look back time quickly converges around z = 1, making it hard to extract the time

evolution of the scalar field at z > 1. [4]. On the other hand, the conformal time is the

local time in each cosmological era, which a scalar field feels. The region of convergence

would also include the region z � 1. Therefore, if we want the time evolution of the

scalar field which is valid for both regimes, the late-time (today) as well as the early

universe (z ⇠ 1000), then the automatic choice for the expansion of the scalar field

evolution is the look back conformal time. We define a flat FLRW Universe

ds2 = �dt2 + a2(t)�ijdx
idxj . (4.6.2)
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Using the look-back conformal time ⌧LB

⌧LB(a) =

Z 1

a

da0

a02H(a0)
, (4.6.3)

H(z) = H0

p
⌦m0(1 + z)3 + 1� ⌦m0 . (4.6.4)

as a time variable, the time dependence of � is expanded as the Taylor series to the

Nth order

�(⌧LB) = M�

NX

n=0

�(n)

n!
⌧nLB , (4.6.5)

where �(n) ⌘ dn�/d⌧nLB and M� is the normalisation of � at ⌧LB = 0, being unfixed.

Hereafter we assume N = 3 to make � slowly varying out to higher redshifts. When

we take the cosmic expansion in the ⇤CDM model H⇤CDM(a) as in Eq. (4.6.4), the

look-back time in Eq. (4.6.3) is expanded around a = 0 as

⌧LB(a) = ⌧LB(0)�
1

H0at
p
1� ⌦m

⇥
(
2

✓
a

at

◆1/2

+O
 ✓

a

at

◆7/2
!)

. (4.6.6)

Here we introduce the scale factor at which the energy density of matter equals to

that of the cosmological constant, at ⌘ (⌦m/(1 � ⌦m))1/3. Notice that ⌧LB(0) and

at are determined once we fix ⌦m and H0. Hereafter we assume ⌦m = 0.3080 to

be consistent with the Planck observation of cosmic microwave background (CMB)

[56]. Then we obtain H0⌧LB(0) ⇠ 3.27 and at ⇠ 0.76, i. e., zt = a�1
t

� 1 ⇠ 0.31.

Equation (4.6.6) gives ⌧LB with respect to a for a ⌧ at, representing the time in

the matter-dominated Universe. The approximation for ⌧LB breaks down at a > at

(z < zt) and may lose an accuracy in computations at low redshifts. For instance, the

exact value is H0⌧LB(z = 0.1) = 0.10, while the approximated value from Eq. (4.6.6)

is H0⌧LB(z = 0.1) = 0.19. However, the discrepancy in the approximation of ⌧LB is

absorbed by the coe�cients �(n) and the normalisation of �, causing no inconsistency.

We choose the normalisation of � in the following way. Substituting Eq. (4.6.6) into

Eq. (4.6.5), we approximate � as

�(a) ' M̃�

(
c(0)
�

+
NX

n=1

c(n)
�

(1� an/2)

)
. (4.6.7)
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Here we normalize the coe�cients of � with its asymptotic value at a = 0, that is,

�(⌧LB(0)) in Eq. (4.6.5) so that

M̃� = M�

P
N

n=0
�
(n)

n! ⌧
n

LB(0)

c(0)
�

+
P

N

n=1 c
(n)
�

. (4.6.8)

Notice that N = 3 is the same as in Eq. (4.6.5) to guarantee the smoothness of the

functional shape. The time evolution of �(a) is controlled by the coe�cients c(n)
�

(n =

0, 1, 2, 3) instead of �(n). We assume without loss of generality that the coe�cients c(n)
�

(n=0,1,2,3) span in the range [�1, 1]. This is because the energy scale of �, namely,

M̃� determines the normalisation of �. The approximation of � in Eq. (4.6.7) traces

the models such that � changes in time at intermediate redshifts, z . 10 as shown in

Fig. 4.4. At low redshifts, � diversely fluctuates, depending on the random coe�cients.

On the contrary, at higher redshifts z & 10, � converges to its initial value and �̇

derived from Eq. (4.6.7) by di↵erentiating with respect to t in both sides of the equation

universally scales, regardless of the random parameters, as �̇/H / �
p
a / �(1+z)�1/2.

Thus, the time evolution of � becomes relatively slower as a redshift increases. In our

previous work [4], the applicable range of a redshift was limited to z . 1 and is now

extended to higher redshifts due to the di↵erent parametrisation of time. Note that even

a relatively fast-evolving solution like the tracker solution [57] is marginally included in

the truncation N = 3. Since, the tracker solution is �̇ / 1/H / t, then � / ⌧2 at low

redshift we can include. On the other hand, in the matter-dominated Universe, since

the conformal time and the cosmic time are related by ⌧n / tn/3, the tracker solution

(n = 6) might apparently look excluded in our expansion. However, we are interested

in the tracker solution after the late matter-dominated era (z  1) where the di↵erence

between the cosmic time and the conformal time is not large (only a factor of O(1)),

the tracker solution is practically captured by our expansion at the order of n = 2,

even the scalings are di↵erent. After all, we claim that our formalism are available at

redshifts z ⇠ 1 for models which are already known, capturing wider phenomenological

di↵erences of models of cosmic acceleration in DHOST theory.

4.6.3 Consistency and stability conditions

We provide the conditions for the expansion history and the stability of a background

universe. We shall call the consistency conditions and stability conditions, respectively.

The consistency condition and the stability condition are given as follows.

• 1. Consistency :
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Figure 4.4. Time variation of � with di↵erent random coe�cients, c(n)
�

(n = 0, 1, 2, 3).

Collecting the models whose cosmological time evolution are HHorn and ḢHorn.

HHorn and ḢHorn are given by the Friedmann equations in Eqs. (4.11.8) and

(4.11.9) in the Appendix. To obtain HHorn and ḢHorn, we substitute H⇤CDM and

�(t) for the right-hand side of Eqs. (4.11.10) and (4.11.11). Then we impose the

consistency criteria

����1�HHorn/H⇤CDM

���� < 20% , (4.6.9)
����1� ḢHorn/Ḣ⇤CDM

���� < 20% . (4.6.10)

Equations. (4.6.9) and (4.6.10) work to select the models that pass the observa-

tional bound on the cosmic expansion by assessing the deviation fromH⇤CDM and

Ḣ⇤CDM. We choose the allowed range of estimation errors for the Hubble param-

eter up to 20% based on current variable observations of the Hubble parameter

below z = 0.1, as shown in Table. I of [58].

• 2. Stability :

Avoidance of ghost and gradient instabilities for the perturbations of scalar and
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tensor modes.

The quadratic action for the scalar and tensor perturbations with the perfect-fluid

matter are given in the unitary gauge,

S2 =

Z
dtd3xa3

"
Qs

✓
⇣̇2 � c2s

a2
(@i⇣)

2

◆

+QT

✓
ḣ2ij �

c2
T

a2
(@khij)

2

◆#
, (4.6.11)

where the subscripts s and T represent a scalar and tensor modes in cosmological

perturbation, respectively. To evade the ghost and gradient instabilities, the

following conditions must be satisfied,

Qs > 0, c2s > 0, QT > 0, c2T > 0 . (4.6.12)

Qs, c2s, QT , and c2
T
are specifically given once specifying a scalar-tensor theory.

We numerically utilise the consistency and stability conditions to select specific

models.

4.7 EFT-like modelling of scalar-tensor theories at cos-

mological scales

For determining a model in the framework of the scalar-tensor theory, it is necessary

to choose the arbitrary functions. Specifically, the four free functions in the covariant

form of Horndeski theory, i.e., Gi (i = 2, 3, 4, 5) must be specifically given as a function

of � and X. For the purpose of choosing Gi(i = 2, 3, 4, 5), we apply a way of selecting

models, as we shall say, ”EFT-like modelilng”. This means that we expand Gi with

respect to � and X at a given energy scale, processing the model - independent analysis.

Hereafter, we shall call this just as ”EFT modelling”.

In the EFT modelling, we parameterise the arbitrary functions Gi(i = 2, 3, 4, 5) in

Horndeski theory as

Gapp
i

(�, X) ⌘ Gi(Mpl, M̃�, H0)

NappX

m,n=0

gi,mn

m!n!
�̂mX̂n . (4.7.1)

Here Napp controls the truncation order for the expansion of the Gapp
i

with respect

to �̂ and X̂. �̂ and X̂ are the dimensionless quantities given as �̂ ⌘ �/M̃� and X̂ ⌘



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 71

�̇2/2H2
0M̃

2
�
. The dot denotes the derivative with respect to physical time t. We assume

that Napp = 3 to guarantee for Gapp
i

to change slowly in time, compared with the cosmic

expansion. Gi are normalisation factors such as

G2 = M4 , G3 =
M4

M̃�H2
0

, G4 =
M4

H2
0

, G5 =
M4

M̃�H4
0

, (4.7.2)

where M ⌘
q
M̃�H0. These normalisation factors are determined in the way that the

Lagrangian density of the system is of the order of M̃2
�
H2

0 = M4.

The philosophy of the EFT modelling is the rationality such that the ⇤CDM model

should emerge as a consequence of the decoupling limit of the scalar field in the scalar-

tensor theory with the conventional matter. If we take the limit where the scalar field

is cosmologically static, i.e., �̇ ! 0, leading Gi are all constant from Eq. (4.7.1). This

identifies a cosmological model to the ⇤CDM parametrisation. After all, the EFT

model a�rmatively works for selecting an appropriate model for the cosmic expansion

in the scope of the physics at cosmological scales, i.e., the lowest energy scale we have

currently probed.

4.8 Monte-Carlo sampling of models in Horndeski theory

In this section we provide a numerical modelling of Horndeski theory independent of

specific models. As we mentioned in Sec. 1, the current observational analyses for

Horndeski theory are only limited to specific models. This is because Horndeski theory

is too general to investigate. Consequently, one can hardly extract information for

which models are relatively favoured from others under observational constraints. To

tackle this di�culty, we perform a Monte Carlo simulation with a suitable parametri-

sation independent of specific models. We classify models in Horndeski theory into

subgroups, depending on which arbitrary functions Gi play a role in accelerating the

cosmic expansion. To this end, we now compute all physical quantities by randomly

drawing all the coe�cients from a uniform distribution, [�1, 1], with a Monte Carlo

method. As shown in Fig. 4.5, we filter the solutions by the following two conditions.

As shown in Fig. 4.5, the consistency and stability conditions are numerically im-

posed. For the computation of these conditions, we substitute H = H⇤CDM, Ḣ =

Ḣ⇤CDM in the quantities. Although we should use HHorn to compute the quantities in

Eq. (4.6.12), the di↵erence of the quantities stays within observational errors. Hence

the systematic misestimation of the stability condition associated with the choice of

the Hubble parameter is negligibly small to sample consistent models.



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 72

Figure 4.5. The procedure to extract observationally reliable models with Monte

Carlo simulation

4.8.1 Equations of motion in Horndeski theory

The equations of motion on a flat FLRW universe in the framework of Horndeski theory

is originally derived in T. Kobayashi, M. Yamaguchi, and J. Yokoyama 2011[26]. Per-

turbative expansion with matters for Horndeski theory is firstly derived in A. De Felice

and S. Tsujikawa 2012 [59] and for GLPV theory by J. Gleyzes 2016[60]. After that,

another formulation has been proposed in more simplified and physically-transparently

by E. Bellini and I. Sawicki 2014 [32], which is commonly used for the tests of cosmo-

logical surveys. We follow the notation of the Friedmann equations and the equation

of motion of a scalar field based on E. Bellini and I. Sawicki 2014 [32] for convenience

of discussion. The Friedman equations in Horndeski theory are given by

3M2
⇤H

2 = ⇢m + E , (4.8.1)

M2
⇤ (2Ḣ + 3H2) = �pm � P , (4.8.2)
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E and P are given by

E

= �G2 + 2X(G2X �G3�)

+ 6�̇H(XG3X �G4� � 2XG4�X)

+ 12H2X(G4X + 2XG4XX �G5� �XG5�X)

+ 4�̇H3X(G5X +XG5XX) , (4.8.3)

P

= G2 � 2X(G3� � 2G4��)

+ 4�̇H(G4� � 2XG4�X +XG5��)

�M2
⇤↵BH

�̈

�̇
� 4H2X2G5�X + 2�̇H3XG5X . (4.8.4)

The equation of motion for the scalar field is given as

ṅ+ 3Hn = P� , (4.8.5)

where

n ⌘�̇(G2X � 2G3�) + 6HX(G3X � 2G4�X)

+ 6H2�̇(G4X + 2XG4XX �G5� �XG5�X)

+ 2H3X(3G5X + 2XG5XX) , (4.8.6)

and

P� ⌘ G2� � 2XG3�� + 2�̈(XG3�X + 3H�̇G4�X) + 6ḢG4�

+ 6H2(2G4� + 2XG4�X �XG5��) + 2H3�̇XG5�X , (4.8.7)

Physically, n denotes the current associate with the scalar field, whereas P� is the

charge sourced by the motion of the scalar field3.

The EFT parameters are given in ↵ parametrisation in Bellini and Sawacki [32]

and [61]. We adopt the notation of [61]. The time-evolving parameters , ↵M,K,B,T are

derived with the free functions as

3The notation of n and P� corresponds to J and P in T. Kobayashi et al. 2012, respectively.
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M2
⇤ ⌘ 2(G4 � 2XG4X +XG5� � �̇HXG5X) , (4.8.8)

HM2
⇤↵M ⌘ d

dt
M2

⇤ , (4.8.9)

H2M2
⇤↵K ⌘ 2X(G2X + 2XG2XX � 2G3� � 2XG3�X)

+ 12�̇XH(G3X +XG3XX � 3G4�X � 2XG4�XX)

+ 12XH2(G4X + 8XG4XX + 4X2G4XXX)

� 12XH2(G5� + 5XG5�X + 2X2G5XXX)

+ 4�̇XH3(3G5X + 7XG5XX + 2X2G5XXX) , (4.8.10)

HM2
⇤↵B ⌘ ��̇(XG3X �G4� � 2XG4�X)

� 4XH(G4X + 2XG4XX �G5� �XG5�X)

� �̇XH2(3G5X + 2XG5XX) , (4.8.11)

M2
⇤↵T ⌘ 2X(2G4X � 2G5� � (�̈� �̇H)G5X) . (4.8.12)

Qs =
M2

⇤D

2(1 + ↵B)2
, (4.8.13)

c2s =
2(1 + ↵B)

H2D

"
Ḣ +H2↵B(1 + ↵T )

�H2(↵M � ↵T ) + 2H↵̇B + ⇢̃m + p̃m

#
, (4.8.14)

D ⌘ ↵K + 6↵2
B ,

while

QT =
M2

⇤
8

, (4.8.15)

c2T = 1 + ↵T , (4.8.16)

To avoid the theoretical instabilities, we should impose the condition that Qs > 0,

c2s > 0, QT > 0, and c2
T
> 0.

4.8.2 The e↵ect of G4 and G5

The functions G4 and G5 play significant roles for ↵T and ↵M . In fact, one can see

that ↵T and ↵M are determined solely by G4 and G5 in Eqs. (4.8.26) and (4.8.27). In

addition, G4 and G5 can control the cosmic accelerating expansion. Because of their

importance, we firstly perform our simulation while leaving G4 and G5 nontrivial and



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 75

setting G2 = 0 = G3.

Parameter distribution in di↵erent expansion history

Firstly we see how the di↵erent histories of cosmic expansion a↵ect the model distribu-

tion on the ↵T - ↵M plane. Here we refer to the cosmic expansion in the EdS universe.

We now obtain the distribution in the case of the EdS just by replacing H⇤CDM and

Ḣ⇤CDM in Eqs. (4.6.9) and (4.6.10) with those of the EdS model, HEdS and ḢEdS, re-

spectively. Figure 2 shows how distinctively the models distribute on the ↵T -↵M plane

under two di↵erent histories of the cosmic expansion. Moreover, to realise the cosmic

expansion close to the case in the ⇤CDM model with G4 and G5, either ↵T or ↵M

must be O(1). This result is expected from the analytic estimation of Lombriser and

Taylor [62], but the shape of our distribution is di↵erent in detail from theirs. The dots

are very sparse at the top left or bottom right, where either ↵T or ↵M is extremely

small. The main reason for this is due to the random sampling of models from all

possible models. In other words, the models that have tiny values of ↵M and ↵T need

fine-tuning to realise the cosmic expansion in the same way as the ⇤CDM model.

Figure 4.6. Distribution of the models in the ↵T -↵M plane with di↵erent cosmic

expansion histories. The ⇤CDM model (cyan dots) and the EdS model (dark blue

dots) are considered. We collect the models in Horndeski theory via the consistency

condition in Eqs. (4.6.9) and (4.6.10), comparing the Hubble parameter of models with

those of ⇤CDM or EdS.
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Model classification on the ↵T -↵M plane in general cases

We now allow all the model parameters to vary; namely G2 and G3 are both nonzero.

The parameters in Eqs. (4.6.5) and (4.7.1) are now provided at random. What we show

in this section is how the models belonging to the di↵erent subclasses of Horndeski

theory are distributed on the ↵T -↵M plane. For instance, quintessence and the scalar

field with nonlinear kinetic theory are exactly at the point of ↵T = 0 = ↵M , while f(R)

theory is on the ↵M axis (↵T = 0). We now classify the models into four categories, as

shown in Table. I. Based on the classification, we carry out the Monte Carlo simulation

and obtain the distributions of each subclass in Fig. 4.7.

Subclass of Horndeski theory Parameters of G(app)
i Models Refs.

(I) G4 +G5 G2, G3 = 0 Self acceleration [62]

Quintessence [19]

(II) G4 +G5 +G2 g2, g2X , g2�� 6= 0 nonlinear kinetic theory [42]

f(R) theories [27, 63]

(III) G4 +G5 +G3 G3 6= 0 Cubic Galileons [64, 65]

(IV) Cov.Gal g2X , g3X , g4XX , g5XX 6= 0 Covariant Galileons [37, 44]

Table 4.1. Division of subclasses with parameters in G(app)
i

and corresponding theories

Figure 4.7. Distribution of models in each subclass shown in Table. I on ↵T � ↵M

plane.

As we see in Fig. 4.7, the models except the subclass (II) are distributed in the

domain with large ↵T . This is because in those cases G4 and G5 mainly drive the

cosmic accelerating expansion and ↵T consequently becomes large. In the subclass

(II), on the contrary, the models diagonally concentrate toward the area in which both

↵T and ↵M are small. This is because G2 in turn plays a role in accelerating the
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cosmic expansion, which relaxes the constraints on G4 and G5. In this subclass, we

also find that the models are predicted to align along the diagonal line, |↵T | / |↵M |2.
We discuss analytically why this feature appears in the following way. First of all, we

assume that �̇ is initially tiny and the time evolution of �̇ is very slow as |�̈/H�̇| ⌧ 1.

In this case, we expand Gi as

Gi(�, X) ' Gi(�0, X0)�Gi�(�0, X0)�̇0⌧LB , (4.8.17)

where the subscript 0 denotes the values at the present time. Note that we use the

fact that the di↵erence between the look-back conformal time ⌧LB and the look-back

cosmic time tLB is at higher order of Taylor expansion in time, i.e. ⌧LB ' a�1tLB '
(1 +H0tLB)�1tLB ' tLB .Hereafter we simplify the expressions Gi(�0, X0) = Gi,0 and

Gi⇢(�0, X0) = Gi⇢,0, where ⇢ = � or X. In the same way as in Eq. (4.8.17), we obtain

the observable parameters ↵M and ↵T from Eqs. (4.8.25) � (4.8.27) as

↵M '
G4�,0

G4,0
�̇0 , (4.8.18)

↵T '
2(G4�,0 �G5�,0)

G4,0
X0 , (4.8.19)

Considering X0 = �̇20/2, we obtain the relation between ↵M and ↵T as

↵T

↵2
M

'
G4,0(G4X,0 �G5�,0)

G4�,0
2 =

g4(g4X � g5�)

g4�2
. (4.8.20)

Equation. (4.8.20) is only valid if g4� = 0. The second equality is obtained from

Eq. (4.7.1). Since in our computation the model parameters are given by constants

at random, we see that models are distributed along the line of |↵T | / |↵M |2, which
corresponds to a diagonal line on the ↵T -↵M plane in the logarithmic scale. Our

analysis also suggests that the naive parametrisation of ↵s is not always applicable. In

the literature, it is widely accepted that the time evolution of all ↵0s is proportional to

the energy density of dark energy, ↵ = ⌦DE↵i, where ⌦DE(t) ⌘ Ẽ/3H2
0 and ↵i is the

initial value of ↵ [32]. Indeed, this parametrisation has proved to be valid in Galileon

theories [66] and it is supported in cosmological surveys by Bayesian evidence[60].

However, as Linder has pointed out recently, this assumption is not always correct in

the case of f(R) gravity [67]. Our results also support this statement. Here we only see

the correlation between ↵T and ↵M , but our technique is easily applicable to investigate

the correlations among other parameters, including ↵K and ↵B.



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 78

4.8.3 Constraints on Horndeski theory by GW170817/GRB170817

When we consider the scalar-tensor gravity, ⌫ and �g are given as a function of ↵M

and ↵T . Expanding both sides of Eqs. (4.8.28) and (4.8.29) with respect to H0⌧LB and

assuming �g to be considerably small, we obtain ⌫0, ⌫1, �g0, and �g1 as

⌫0 = ↵M,0 , (4.8.21)

⌫1 =
↵̇M,0

H0
, (4.8.22)

�g0 = �↵T,0

2
, (4.8.23)

�g1 = � ↵̇T,0

2H0
. (4.8.24)

In Horndeski theory, ↵M and ↵T are given by

M2
⇤ (t) ⌘ 2(G4 � 2XG4X +XG5� � �̇HXG5X) , (4.8.25)

↵M (t) =
1

HM2
⇤

dM2
⇤

dt
, (4.8.26)

↵T (t) =
2X(2G4X � 2G5� � (�̈� �̇H)G5X)

M2
⇤

. (4.8.27)

↵M and ↵T are related to the observable parameters ⌫ and �g as

⌫ = ↵M , (4.8.28)

�g = 1�
p
1 + ↵T . (4.8.29)

Note that �g ' �↵T /2 if �g is small. Substituting �(t), the Hubble parameter in

Eq. (4.6.3), and all G(app)
i

in Eq. (4.7.1) into Eqs. (4.8.25) � (4.8.27), we can compute

↵M and ↵T as a function of redshift.

Converting the model parameters in the previous section to those in Eqs. (4.8.21) -

(4.8.24), we obtain the distributions of the observable parameters as shown in Fig. 4.8.

Similar to Fig. 4.8, Fig. 4.2 shows that the e↵ect of the G4 and G5 functions is distin-

guishable in both parameters ⌫ and �g, while Fig. 4.8 additionally shows the information

about the time evolution of the models in terms of ⌫1 and �g1. The model space of

Horndeski theory after GW170817 is significantly reduced into the quadratic order of

the second derivative of �. By taking into account the constraints |�g0| . 10�15, the

right column in Fig. 4.8 tells that the models we construct are significantly excluded.
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Figure 4.8. Model distributions on the observable parameter plane for the subclasses

shown in Table. I. Each colour of the dots corresponds to that in Fig. 4.7.
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4.9 Horndeski theory after GW170817

The constraint from the simultaneous observation of GW170817 and GRB170817A is

robust on ↵T as |↵T | . 10�15, practically ↵T = 0. In Horndeski theory, ↵T = 0 has

resulted in G4X = 0 and G5 = 0. Once imposing G4X = 0 and G5 = 0, the Lagrangian

in Eq. (4.4.5) is reduced to

Lc2g=1 = P (�, X) +Q(�, X)2�+ F (�)R , (4.9.1)

where we define G2 = P (�, X), G3 = �Q(�, X), and G4 = F (�). Although the action

in Eq. 4.9.1 is rather simple than the Lagrangian in Eq. (4.4.5), it significantly changes

the law of gravity via Q(�, X) and F (�). This Lagrangian is interesting at cosmological

scales because it is capable of making the cosmic acceleration. We construct the models

that explain the cosmic expansion history.

4.9.1 Friedmann equations

The Friedman equations in Horndeski theory are given by

3M2
⇤H

2 = ⇢m + E , (4.9.2)

M2
⇤ (2Ḣ + 3H2) = �pm � P , (4.9.3)

Ẽ and P̃ are given by

E = �P + 2X(PX +Q�) + 6�̇H(XPX � F�) , (4.9.4)

P = P + 2X(P� + 2F��) + 4�̇HF� �M2
⇤↵BH

�̈

�̇
. (4.9.5)

↵M,K,B are derived with P , Q, and F as

M2
⇤ ⌘ 2F , (4.9.6)

HM2
⇤↵M ⌘ d

dt
M2

⇤ , (4.9.7)

H2M2
⇤↵K ⌘ 2X(PX + 2XPXX + 2Q� + 2XQ�X)

� 12�̇XH(QX +XQXX) , (4.9.8)

HM2
⇤↵B ⌘ �̇(XQX + F�) , (4.9.9)
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Qs =
M2

⇤D

2(1 + ↵B)2
, (4.9.10)

c2s =
2(1 + ↵B)

H2D

"
Ḣ +H2↵B �H2↵M + 2H↵̇B + ⇢̃m + p̃m

#
, (4.9.11)

QT =
M2

⇤
8

, (4.9.12)

c2T = 1 , (4.9.13)

D ⌘ ↵K + 6↵2
B ,

To avoid the theoretical instabilities, we should impose the condition that Qs > 0,

c2s > 0, QT > 0.

4.9.2 Gravitational couplings at cosmological scales

When one considers the fluctuations of a scalar field on a given cosmological back-

ground, the scalar field acquires the mass M . For a canonical field with a potential

V (�), M2 is nothing but the second derivative of V with respect to �, V��. However,

M arises not only from V in P but also from Q and F (see Eq. (35) in [68] for the exact

expression of M). When M is much larger than the Hubble scale H, the scalar field

fluctuation does not propagate at cosmological scales. On the contrary, when M ⇠ H,

the fluctuation a↵ects the cosmic expansion. Since we are interested in the case when

the scalar field fluctuations significantly modify the gravitational force at cosmological

scales in accordance with the late-time acceleration of the Universe, we consider the

case of M ⇠ H0, where H0 is the Hubble constant.

In particular, under the quasi-static approximation (QSA), we ignore all dynamical

terms in the equations of motion. Then the Poisson and lensing equations are given by

[69, 70]

k2 ' �4⇡Gmatter(k, ⌧)�⇢m , (4.9.14)

k2( + �) ' �8⇡Glight(k, ⌧)�⇢m , (4.9.15)

where ⌧ is the conformal time, �⇢m is the density fluctuation of matter.

Hence it is convenient to divide into two cases: super-Compton limit (k/a ⌧ M)
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and sub-Compton limit (k/a � M). According to [68, 71], the couplings at the super-

Compton scales become

Gmatter = Glight = GN

M2
pl

M2
⇤
, (4.9.16)

while at the sub-Compton scales

Gmatter = GN

M2
pl

M2
⇤
(1 + �2

⇠
) , (4.9.17)

Glight = GN

M2
pl

M2
⇤

"
1 + �2

⇠
+

s
2

c2
S
D

↵M�⇠
2

#
, (4.9.18)

where �⇠ is

�⇠ = �
s

2

c2
S
D

(↵M � ↵B) . (4.9.19)

Here and hereafter we use Mpl to denote the reduced Planck mass. Particularly, the

function �⇠ plays an important role to distinguish the gravitational couplings. This

di↵erence is originated from the fluctuations of a scalar field.

4.9.3 Model distributions

From Eqs. (4.9.16)-(4.9.18), we obtain Gmatter = Glight at the super-Compton scales,

while Glight and Gmatter are not equivalent at the sub-Compton scales. To see these

behaviors, it is useful to see the correlation between Gmatter and Glight. In addition to

that, we are interested in how ↵M is distributed and related to Gmatter and Glight. In

Figs. 4.9 and 4.10, we distribute the models filtered by the conditions in Sec. 4.9 and

show ↵M in colour on the Glight-Gmatter plane at di↵erent redshifts for two representa-

tive models of Horndeski theory.

At first glance, there is little di↵erence between the Horndeski Lagrangian with/

without the Q function. This explicitly shows that the Q term does not play any

significant role to distribute models in the parameter space.

At the super-Compton scales in Fig. 4.9, all the models are aligned along the di-

agonal line, while at the sub-Compton scales in Fig. 4.10, the o↵-diagonal scatter is

apparent. This trend at sub-Compton scales is expected since the fluctuations of a

scalar field become significant. The o↵set trend is traced back to the third term in

Eq. (4.9.18).

For convenience to discuss the o↵set trend, we introduce the gravitational slip
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Figure 4.9. Time evolution of the correlation between Glight and Gmatter at super-

Compton limit. The colour bar shows the value of ↵M . The diagonal dashed lines show

Gmatter = Glight, i.e. �� = 0. Top: models without Q term. Bottom: models with Q

term. The range of ↵M covers over 95% of all the filtered models.

parameter � [72, 73, 74]4 as

� = � , (4.9.20)

where � and  are the linear perturbations of the space-time metric. In general

relativity, � = 1, while in general theories of modified gravity, � 6= 1. Therefore,

� 6= 1 explicitly captures the modification of gravity. We further introduce the deviation

parameter �� ⌘ ��1. Let us focus on the sub-Compton scales. By using Eqs. (4.9.14),

(4.9.15), and (4.9.20), �� relates to the gravitational couplings as

Glight

Gmatter
= 1 +

��

2
, (4.9.21)

4In the literature [75, 76, 77], the gravitational slip parameter has di↵erent definitions.
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Figure 4.10. Time evolution of the correlation between Glight and Gmatter at sub-

Compton limit. The colour shows the value of ↵M . The diagonal dashed lines show

Gmatter = Glight, i.e. �� = 0. Top: models without Q term. Bottom: models with Q

term. The range of ↵M covers over 95% of all the filtered models.

and from Eqs. (4.9.17) and (4.9.18),

�� =

s
2

c2
S
D

↵M�⇠
1 + �2

⇠

. (4.9.22)

When �� = 0, the o↵set disappears and there are two di↵erent branches ↵M = 0 or

�⇠ = 0. From Eq. (4.9.19), the latter is the case of ↵B = ↵M , known as No Slip Gravity

[78].

Taking a closer look at low redshifts below z = 1 in Fig. 4.10, the o↵set trend we

observe implies �� < 0, consequently ↵M�⇠ < 0 from Eq. (4.9.22). To understand the

condition ↵M�⇠ < 0, we recall the relation among ↵M , ↵B, and Q, which comes from

Eqs. (4.9.7) and (4.9.9),

↵B =
↵M

2
+
�̇XQX

2HF
. (4.9.23)
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The case when Q = 0 (the top panels in Fig. 4.10), we obtain ↵B = ↵M/2. In this case,

by substituting �⇠ in Eq. (4.9.19) for Eq. (4.9.22) and using ↵B = ↵M/2, �� becomes

�� = � ↵2
M

c2
S
D(1 + �2

⇠
)
. (4.9.24)

Since we impose the stability conditions, c2
S
> 0 and D > 0, �� < 0 is always satisfied

for a non-zero ↵M . Consequently, the o↵set scatters above the diagonal line, as seen

in the top panels of Fig. 4.10.

The opposite case �� > 0 with a nonzero Q is also possible in principle. However,

the bottom panels of Fig. 4.10 in the presence of Q show no trend of �� > 0. To have a

positive ��, the second term on the right-hand side in Eq. (4.9.23) should be negative

and dominate the first term. In other words, � should decrease in time as rapid as the

cosmic expansion. However, this is not the case, indicating that the models such that �

changes rapidly is less supported by our filtering conditions we imposed. The absence

of the contribution from the Q term in Eq. (4.9.23) is because of the small value of

X. In fact, the derivative of Q with respect to X and the multiplication of X in the

term �̇XQX/2HF bring the suppression factor proportional to X̂3/2. The smallness

of X̂ is due to the filtering conditions on the cosmic expansion history in Eqs. (4.6.9)

and (4.6.10). As explicitly shown in Fig. 4.11, the filters in Eqs. (4.6.9) and (4.6.10)

preferentially choose the models with smaller magnitude of X̂. This is because the time

variation of the energy density on the right-hand side in Eq. (4.11.8) is slow to keep

the agreement with the ⇤CDM model. For these reasons, the models with �� > 0 do

not appear.

The interesting feature is the signature of ↵M . We clearly see that the trend ↵M . 0

at low redshifts, that is, M2
⇤ decreases in time. In addition, the magnitude of ↵M is

of the order of 0.1. At the super-Compton scales, the models with negative ↵M have

smaller Gmatter and Glight, namely, M2
⇤ larger than M2

pl from Eq. (4.9.16). On the

other hand, at the sub-Compton scales, the values of Gmatter and Glight distribute more

widely from smaller to larger and the o↵set scatter significantly correlates with the

negative values of ↵M , unlike the super-Compton case. This di↵erence arises since the

magnitude of �⇠ is larger as that of ↵M is larger. In other words, Gmatter and Glight

at the sub-Compton scales are significantly diversified by the larger magnitude of ↵M ,

explicitly breaking the equivalence principle of gravity.
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Figure 4.11. The probability distribution of X̂, showing the roles of the filters at

z = 0.1. In the legend, “FH”, “FdH”, and “stab” denote the filters in Eqs. (4.6.9),

(4.6.10), and (4.6.12), respectively. “no filtering” denotes the distribution without any

filter.

4.9.4 Negative sign of ↵M

Remarkably, the origin of the negative value of ↵M is the conditions that the cosmic

expansion history should be similar to that of the ⇤CDM model. As shown in Fig. 4.12,

the consistency conditions for HHorn and ḢHorn are essential to bias ↵M toward the

negative side as the redshift becomes smaller. Looking at the Friedmann equation in

Eq. (4.11.8) divided by 3H2 for the both sides of the equation, we obtain

1 =
Ve↵

3M2
⇤H

2
+

⇢m
3M2

⇤H
2
+O(X̂) , (4.9.25)

where we omit the kinetic terms and define Ve↵ as

Ve↵ = �3M2
⇤H

2↵M + V (�) . (4.9.26)

Here V (�) denotes the terms in G2 depending only on �. When the Universe is

accelerating and the kinetic energy X̂ is small, i. e., the second and last terms in
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Eq. (4.9.25) are negligible, Ve↵ ⇠ 3M2
⇤H

2. The both terms in Eq. (4.9.26) equiv-

alently contribute to Ve↵ because there is no prior knowledge about which term is

more significant than the other. Therefore, it is probabilistically reasonable to assume

�3M2
⇤H

2↵M ⇠ V (�) ⇠ 0.5Ve↵ > 0. As a result, ↵M stays negative.

The other evidence for ↵M < 0 is the signature of Ḣ. It is useful to present an

additional equation for Ḣ from Eqs. (4.11.8) - (4.11.11) as

(2 + ↵M )M2
⇤ Ḣ = �HM2

⇤ ↵̇M +H2M2
⇤↵M (1� ↵M )

� 2X(P2X + 2Q�) + 6�̇HXQX

+ (↵M � 2↵B)
M2

⇤H�̈

�̇
� ⇢m � pm , (4.9.27)

where we replaced F�� with ↵̇M by using the relation

↵̇M = H

(
4XF��

H2M2
⇤
+

 
�̈

H�̇
� Ḣ

H2

!
↵M � ↵2

M

)
. (4.9.28)

From Fig. 4.12, we find that the time variation of ↵M with redshifts is small, i.e.,

|↵̇M/H↵M | ⌧ 1. Since ↵̇M is negligibly small, we can drop the term with ↵̇M from

Eq. (4.9.27) and obtain

(↵M + 2)
Ḣ

H2
= ↵M � ⇢m

H2M2
⇤
+ (kinetic terms for �) , (4.9.29)

where we omit ↵2
M

and take pm = 0. When the second and last terms in Eq. (4.9.29)

are negligibly small compared to ↵M , namely, corresponding to the epoch when the

Universe is accelerating with the slow-rolling scalar field, the signature of the Ḣ is the

same as ↵M/(↵M +2). Since the range of ↵M is |↵M | < 1 in Fig. 4.12, the consistency

condition in Eq. (4.6.10) selects Ḣ < 0 and consequently ↵M < 0.

We comment the following two points on the negativeness of ↵M . Firstly, we can

show that the signature of ↵M does not a↵ect the condition c2
S
> 0 at the leading order.

By substituting Eq. (4.9.27) into Eq. (4.9.11), we obtain

c2s =
2X(PX + 2Q�)/H2M2

⇤ + 3↵2
M
/2 +�

↵K + 6↵2
B

, (4.9.30)



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 88

where � in the numerator denotes

� = (↵M � 2↵B)

(
Ḣ

H2
� �̈

H�̇
+ 4� ↵M � 2↵B

2

)

+
↵̇M � 2↵̇B

H
. (4.9.31)

Under the approximation X̂ ⌧ 1 obtained from the conditions in Eqs. (4.6.9) and

(4.6.10) (more directly see Fig. 4.11), we obtain the following equations from Eqs. (4.9.23)

and (4.8.10),

↵B =
↵M

+
O(X̂3/2) , (4.9.32)

↵K =
2X(PX + 2Q�)

H2M2
⇤

+O(X̂3/2), (4.9.33)

By using Eqs. (4.9.32) and (4.9.33), c2
S
is given by

c2S = 1 +O(X̂1/2) , (4.9.34)

where we use ↵K + 6↵2
B

= O(X̂) and � = O(X̂3/2). The formula in Eq. (4.9.34)

explicitly states that the condition c2
S

> 0 is nothing to do with the value of ↵M .

Secondly, one might consider that the negative ↵M or the decrease of M2
⇤ seem to be

counter-intuitive as a behaviour of the cosmic acceleration because a larger gravitational

coupling could decelerate the Universe more by stronger gravitational attraction. How-

ever, we find that M⇤ larger than Mpl is realised in the filtered solutions. As a result,

Gmatter and Glight remain smaller than the Newton constant at the super-Compton

scale. In Fig. 4.13, at low redshifts, M2
⇤ mostly stays larger than M2

pl, while ↵M is

negative. Therefore, ↵M . 0 and weaker gravitational couplings are compatible.

Finally, we mention that the gravitational slip parameter �� is positively correlated

with ↵M , as we see in Fig. 4.14. More quantitatively, both of �� and ↵M are of the

order of �0.1 at z = 0.

4.9.5 Current observational constriants on Horndeski theory

Although in the model of the Horndeski theory in Eq. (4.10.8), the Vainshtein mecha-

nism produces the Newtonian law of gravity at small scales, whereas the time variation

of the gravitational couplings are allowed at cosmological scales [79]. However, the

direct measurements of the gravitational couplings with local astronomical objects can

give the constraint on the present value of ↵M , denoted by ↵M0, by connecting a local



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 89

-1

-0.5

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

α
M

redshift

FH + FdH + stab

FH + stab

Figure 4.12. The e↵ect of the consistency filters. The points at the middle of the

lines represent the mean values. The ranges of the lines correspond to the standard

deviation. Note that the stability conditions are already imposed on the both cases.

The legends “FH” and “EdH”, and “stab” denote the filters in Eqs. (4.6.9), (4.6.10),

and (4.6.12), respectively.

solution of a scalar field to a cosmological solution. For instance, the observations of

the binary pulsars [80] and the lunar laser ranging experiments [81] currently give the

constraints5 |Ġ/G| ⇡ 0.02H0. As pointed out by [79], these observations directly mea-

sure ↵M , namely |↵M0| < 0.02, which gives the tightest constraint on ↵M so far. As

we discussed in this paper, the GW observation can constrain ↵M at the order of 0.01,

which is comparable with the local measurements such as the binary pulsar and the

lunar laser ranging. More importantly, the observation of GW propagation does not

rely on gravity at local scales but can measure modification of gravity at cosmological

scales directly. Potentially, the GW observation allows us to measure not only the time

dependence of ↵M but also the scale dependence. For these reasons, the GW observa-

tion combined with the local measurements is significant to check the consistency of a

gravity theory over the wide ranges of space and time.

5The upper limit can be stronger by one order of magnitude by assuming the advanced models of
the lunar core rotation for lunar laser ranging [82] and of solar mass loss for Mercury’s ephemeris [83].
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Figure 4.13. The ranges of ↵M and M2
⇤ /M

2
pl at z = 0, 0.1, 0.5, 1.0, 1.5, and 2.0. The

mean value and the standard deviation are shown.

It is known that cosmological observations also put bounds on the gravitational

couplings. For instance, the gravitational constant G is constrained at the time of

the Big Bang nucleosynthesis, |1 � G/GN | < 20% [84, 85]. Moreover, G has been

constrained by the detailed analyses of the CMB anisotropy [86, 87, 88]. However,

these constraints are implicitly based on that the equivalence principle of gravity holds

through the past of the Universe, which is in general not the case among the modified

gravity theories. Recently, the constraint on ↵M0 has been obtained from the CMB

observation by Planck [74], by jointly analyzing the galaxy survey data [89] and the

recent cosmic shear measurement data by KiDS and GAMA observations [90]. In these

studies, the violation of the equivalence principle is taken into account by implementing

Gmatter and Glight for cosmological perturbations. The current stringent bound on ↵M0

is |↵M0| < 0.04 [74]. However, in order to put the bounds on Gmatter, Glight, and ↵M by

cosmological observations, it is crucial to assume simple forms of the time evolutions

for them, except for specific models such as the Jordan-Brans-Dicke theory [91, 92].

In this sense, it is di�cult to compare the constraining power of these cosmological

observations with GW observations. In addition, the simple parametrization may be

problematic in that it cannot cover the whole parameter space of the Horndeski theory.
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Figure 4.14. The contour plot of �� on the Gmatter �Glight plane at z = 0.

4.9.6 Concluding remarks

We have done the numerical search of the models in Horndeski theory which successfully

explain the cosmic expansion history of the Universe. We found that

• It is significantly distinguished in ↵M and ↵T whether the cosmic expansion is

described by Einstein-de Sitter or the ⇤CDM models.

• |↵T | < 10�15 by the simultaneous observation of GW170817 and GRB170817A

crucially requires that G4X = 0 and G5 = 0.

• Horndeski theory with ↵T = 0 predicts the negative ↵M and Gmatter & Glight at

low redshift.

• Lunar Laser Ranging experiment give the most stringent constraints on ↵M ,

|↵M0| ' 0.01 for the rest of Horndeski theory with ↵T = 0.
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4.10 DHOST theory after GW170817

We briefly summarise the DHOST framework after GW170817/GRB170817A, i.e.,

cg = 1, and introduce the EFT parametrization of the DHOST theory. We utilise

the numerical simulation that had been developed for the Horndeski theory. Then the

distributions of the models in the space of the EFT parameters are presented.

The covariant form of DHOST theory obeying cg = c has four arbitrary free func-

tions. In the e↵ective field theory (EFT) description of the DHOST theory [93], this

framework is expressed in terms of additional time-dependent parameters in the linear

perturbations from the ⇤CDM model.

Let us consider the general DHOST action [39, 94, 95],

S =

Z
d4x

p
�gL , (4.10.1)

where the DHOST Lagrangian, L is defined as the sum of the following four parts,

L = Lg + L� + Loth + Lm , (4.10.2)

with

Lg ⌘ F (�, X)R , (4.10.3)

L� ⌘
5X

i=1

Ai(�, X)Li , (4.10.4)

Loth ⌘ P (�, X) +Q(�, X)2� , (4.10.5)

where X ⌘ �rµ�rµ�/2, and the L� contains all possible contractions of a scalar field

of the quadratic polynomial degree in second-order derivatives of the scalar field, i.e.,

�µ⌫ with

L1 = �µ⌫�
µ⌫ , L2 = (2�)2 , L3 = (2�)�µ�µ⌫�⌫ ,

L4 = �µ�µ⇢�
⇢⌫�⌫ , L5 = (�µ�µ⌫�

⌫)2 .
(4.10.6)

The matter Lagrangian, Lm, is minimally coupled to the metric, gµ⌫ . We are using

the short hand notations �µ = rµ�, �µ⌫ = rµr⌫�.

Among the degenerate classes of DHOST theory, only dubbed class I does not

su↵er from the gradient instability [93]. One could enlarge DHOST theory by adding

the cubic, quartic or quintic dependencies on �µ⌫ to the action (4.10.2). For fulfilling

the constraint on the speed of the GW, c2g = c2, independent of any background, A1 = 0
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for the quadratic polynomial degree of DHOST theory given in Eq. (4.10.2), and all

cubic or higher polynomial degrees should be vanished, hence not discussed here.

The degeneracy conditions, which ensures the absence of the Ostrogradsky ghost of

the class I DHOST theory after the GW170817 event are

A1 = �A2 = 0 ,

A4 =
1

2F

⇥
3FX

2 � 2(F �XFX)A3 �X2A2
3

⇤
,

A5 = � 1

F
(FX +XA3)A3 ,

(4.10.7)

where FX = @F/@X.

The corresponding Lagrangian of the Class I DHOST theory after GW170817 event

is

LDHOST
cg=1 = P+Q2�+F R+A3�

µ�⌫�µ⌫2�+A4�
µ�µ⌫���

�⌫+A5(�µ�
µ⌫�⌫)

2 . (4.10.8)

Viable (cg = c) GLPV theory can be identified as the above DHOST theory with

the following mapping (using GLPV notation of [38]):

F = G4 , A3 = �A4 = �G4X

X
, A5 = 0 . (4.10.9)

We call it as GLPV limit in rest of the article.

Horndeski theory is included in DHOST theory as well as GLPV theory. Viable

(cg = c) Horndeski theory can be classified from Eq. (4.10.9) by further setting

F4 = 0 = FX = G4X , (4.10.10)

which restrict G4 = G4(�). We call Eqs. (4.10.9) and (4.10.10) as Horndeski limit in our

remaining paper. Hereafter we call the theories given by the Lagrangian in Eq. (4.10.8)

DHOST theory simply, and use it as our generalised framework in this article.

4.11 Numerical formulation of DHOST theory

The characteristic behaviours of the aforementioned EFT parameters can be under-

stood if one could find the cosmological solution of the scalar field, � and gravitational

perturbations of the full DHOST theory. But the cosmological solution of the full

DHOST theory for general arbitrary functions in all redshift regimes is unsolved yet.
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The full numerical solution is neither studied yet nor computationally cheap. But we

are interested in studying the maximum possible range of models which is acceptable

by the observation in a model-independent way. Therefore, first, we approximate the

scalar field, �, and the arbitrary free functions, P,Q, F,A3
6 by using Taylor series

expansion without solving the background Friedmann equations of the system. Then

we will check the stability and consistency with the observations of those solutions.

4.11.1 Characteristic parameters

Modification of GR can be in both, background as well as perturbations. In this section,

we parameterise the cosmological perturbations in the DHOST theory, which capture

the modifications from GR in the linear perturbations. We adopt the low-energy single-

field EFT of DE and MG parametrisations which describes a cosmological background

evolution and the linear perturbations around it [30, 97, 98]. These minimal EFT

parameters, ↵M , ↵K , ↵B, ↵H , and �1 represent the observational deviation of a model

in the DHOST theory from the ⇤CDM model in the linear regime [32, 93]. In this

article, we are considering the detuning of the extrinsic curvature parameter, ↵L = 0

for the degeneracy class [93]. The excess tensor speed parameter is set to ↵T = 0

since we consider the DHOST theory with cg = 1. It is worth mentioning that ↵K,B,M

parameters are shared with the Horndeski theory. Therefore our purpose here is to

figure out the deviations from the Horndeski theory in the DHOST theory. In order to

see the di↵erences, it is convenient to express those EFT parameters into two parts:

↵DHOST
M,K,B = ↵Horn

M,K,B + ↵res
M,K,B , (4.11.1)

where ↵Horn
M,K,B

characterises the Horndeski theory with cg = 1, and ↵res
M,K,B

characterises

the deviations from the Horndeski theory. We compute the EFT parameters of the

DHOST theory in Appendix. A.2.2 and the expressions are given below. The running

of the e↵ective Planck mass M⇤ =
p
2F is given as

↵M =
1

HF

dF

dt
= ↵Horn

M + ↵res
M , (4.11.2)

where

↵Horn
M ⌘

�̇F�

HF
, ↵res

M ⌘ ẊFX

HF
. (4.11.3)

6It has been already known that the constraints so that gravitons do not decay into scalar field is
obtained[96]. We will take into account this as ’A3eq0cg=1’ model in Table. 4.2



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 95

Here and hereafter, the dot in �̇ denotes the time derivative with respect to the cosmic

time. The e↵ective Planck mass does not change in time when ↵M = 0. The parameter

↵M becomes nonzero in general for modified gravity theories with a non-minimal cou-

pling to matter. Above expressions explain that ↵res
M

vanishes in the Horndeski limit,

FX = 0, and one can recover Horndeski theory from the DHOST theory.

↵Horn
B ⌘

�̇(QXX + F�)

2FH
, (4.11.4)

↵res
B ⌘ 1

2FH

h
4HXFX + 2�̇XF�X + �̇�̈ {2X(FXX +A3 +A3XX) + 3(FX +A3X)}

i
.

(4.11.5)

Notice that ↵res
B

= 0 when FX = 0 for the Horndeski theory.

The parameter ↵K , commonly appearing in the EFT parameters, is also computed

in the DHOST theory and denotes the coe�cient of the scalar perturbation. Since we

use ↵K only for assessing the stability conditions throughout this paper, we omit the

specific expression of ↵K here (see Appendix. A.2.2 for the explicit form of ↵K). Beside

the aforementioned ↵res
M,K,B

, two additional EFT parameters associated to the devia-

tions of the DHOSTcg=1 theory from the Horndeski theory are ↵H and �1 expressed

as

↵H = �2XFX

F
, (4.11.6)

�1 =
X(FX +A3X)

F
. (4.11.7)

Notice that �1 = 0 in the GLPV limit in Eq. (4.10.9), and ↵H = 0 = �1 in the

Horndeski limit in Eq. (4.10.10).

The summary of the characteristic EFT parameters of the DHOST theory are shown

in Table I. As we discuss in Sec. 4.12, we propose a method to distinguish the theories

within the DHOSTcg=1 theory via ↵M,B,H and �1.

4.11.2 Equations of motion

The Friedman equations of the DHOST theory was firstly derived in [99], just after the

full derivation was completed for the GLPV theory [31]. We independently derived the

Friedmann equations in [1] as

3M2
⇤H

2 = ⇢m + E , (4.11.8)

M2
⇤ (2Ḣ + 3H2) = �pm � P , (4.11.9)
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where the e↵ective mass, M2
⇤ = 2F . ⇢m and pm are the background energy density

and pressure of all the matter components together, while E and P are the background

energy density and pressure of the dark energy, which are defined as

E = 4FX �̇
2 + 6FX �̇

2Ḣ

+6

✓
�F��̇� 1

2
QX �̇
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�FX �̇+

✓
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FX
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3

2
A3

FX
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FX
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FX
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8
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FX
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FX
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+ 3

FXFXX

F

◆
�̇4

+6

✓
5

16

A2
3

F
+

A3XFX

4F
�A3

FX
2

4F 2
+A3

FXX

4F

◆
�̇6 +

✓
3

4

A3A3X

F
� 3

8

A2
3FX

F 2

◆
�̇8
!
�̈2

 ✓
�A3� � 3

FX
2F�

F 2
+ 6

FXF�X

F

◆
�̇4

+3

✓
A3�FX

F
�A3

FXF�

F 2
+A3

F�X

F

◆
�̇6 � 3

4

✓
2
A3A3�

F
+

A2
3F�

F 2

◆
�̇8
!
�̈

+(PX +Q�)�̇
2 � P , (4.11.10)

P =
1

2F

"
4
⇣
F��̇+ FX �̇�̈

⌘
H + 2FX �̇

...
�

+

 
2FX +

✓
A3 + 3

FX

F
+ 2FXX

◆
�̇2 � 3

2
A3

FX

F
�̇4 � 3

8

A2
3

F
�̇6
!
�̈2

+2

✓
F� + (2F�X +

1

2
QX)�̇2

◆
�̈+ (2F�� +Q�) �̇

2 + P

#
. (4.11.11)

We indicate the appearance of Ḣ and
...
� in the above Friedmann equations. By

using the spatial component of the Einstein equation, one can eliminate the Ḣ and
...
� in the temporal component if necessary, and rewrite the second order Friedmann

equations as mentioned in [100, 101]. Here we are keeping Ḣ and
...
� in the equation

without substitution because the higher derivatives would not give any trouble in our

numerical computation.

By using the formula Eq. (4.6.6), the evolution of �(a) is rewritten as

�̂ ⌘ �(a)/M̃� = c0 +
3X

i=1

ci(1� ai/2) . (4.11.12)
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where M̃� is the normalisation at a = 0. We assign that the coe�cients ci are utterly

random in the range [�1, 1]. Note that we are precisely sampling c(n)
�

in Eq. (37) of [2].

The dimensionless arbitrary functions as a function of time are

Â(app)
i

⌘ A(app)
i

(�, X)

Ai(⇤P ,⇤Q)
= ai +

X

⇢=�̂,X̂

ai,⇢⇢+
X

⇢,�=�̂,X̂

ai,⇢�
2

⇢� +
X

⇢,�,�=�̂,X̂

a,i⇢��
6

⇢�� ,

(4.11.13)

where X̂ ⌘ ��̇2/M̃2
�
H2. A(app)

i
(�, X) with i = 1, 2, 3, 4 represent the DHOST theory

functions, P , Q, F , or A3, respectively. H0 is the Hubble constant of today. M̃� and

Ai(⇤P ,⇤Q) are the normalisation factors to make � and A(app)
i

(�, X) dimensionless,

A1 = ⇤
4
P , A2 =

⇤4
P

⇤3
Q

, A3 =
⇤8
P

⇤6
Q

, A4 =
1

⇤6
Q

, (4.11.14)

where ⇤P ⌘ (M̃�H0)1/2 and ⇤Q ⌘ (M̃�H2
0 )

1/3, respectively describing the dynamical

energy scale of � and the cut-o↵ scale of non-linearity of � at the present Hubble scale,

H0. Note that the cosmic acceleration realises since E is at the order of the cosmic

critical density, M2
plH

2
0 .

The above expressions are valid for the both, the late and early Universe. The

model coe�cients, ci (i = 0, 1, 2, 3) and ai (i = 1, 2, 3, 4), are the inputs in the numerical

program, which are randomly chosen in the range of [-1,1]. This choice of the range

is motivated by our normalisation in Eqs. (4.11.12) and (4.11.13). A particular set of

values of ai (i = 1, 2, 3, 4) in Eq. (4.11.13) represents a model within the framework of

the DHOST theory, and a set of ci in Eq. (4.11.12) represents the time evolution of the

scalar field in that model. Given the expressions of �(a) and A(app)
i

(a), we would able

to evaluate all EFT parameters, ↵M,B,H , and �1, mentioned in the previous section by

using Eqs. (4.11.12) and (4.11.13).

4.11.3 Filtering through the consistency and stability conditions

We check the following consistency and stability conditions at redshifts, z = 0, 0.1, 0.5,

1.0, 1.5, and 2.0, where the constraints on the Hubble parameter exist [58].

(i) Consistency conditions: In the previous section, we arbitrarily produced the

numerical solution of � without solving the Friedmann equation. Therefore, we will

filter only the models which can consistently produce the Hubble parameter, H, and

its time variation, Ḣ, within the observational error, 20% deviation from the ⇤CDM

model (Table I of [58]).

We substitute H⇤CDM and �(t) in the right-hand sides of Eqs. (4.11.8) and (4.11.9)
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which give HDHOST and ḢDHOST. Then we check two following consistency filters for

the Hubble parameter(FH) and the derivative of the Hubble parameter (FdH),

FH :

����1�HDHOST/H⇤CDM

���� < 20% , (4.11.15)

FdH :

����1� ḢDHOST/Ḣ⇤CDM

���� < 20% . (4.11.16)

These consistency conditions guarantee the evolution of �(⌧LB) within the observational

ranges of the Hubble parameter and its changes.

(ii) Stability conditions: For ensuring the linear scalar and tensor perturbations

are free from ghost and gradient instabilities, we pass through the stability conditions

[99],

A
⇣̃
+
⇢m + pm
M2

⇤H
2

3�1(2 + 3c2m�1)

(1 + ↵B � �̇1/H)2
> 0 ,

B
⇣̃
+
⇢m + pm
M2

⇤H
2

✓
1 + ↵H + �1

1 + ↵B � �̇1/H

◆2

< 0 , M2
⇤ > 0 . (4.11.17)

All the aforementioned quantities are derived and defined in the Appendix A.2.2 (see

Eqs. (A.2.30) and (A.2.31)). Please note that the inclusion of matter changes the

stability conditions, since matter itself may introduce the instability. Linear stability

may also depend on the chosen basis of scalar perturbations and particularly on nonzero

↵H and �1. Detailed discussion is in Appendix A.2.2.

4.12 Discriminating theories via the distributions of char-

acteristic parameters

In this section, we will demonstrate the correlations among the characteristic parame-

ters; ↵M , ↵B, ↵H , and �1, introduced in Sec. 4.11.1, and present the model distributions

in the parameter space as a function of redshifts z in the range of 0  z  2 by using

the numerical techniques explained in the previous section 4.11. The model distribu-

tion is shown for each subgroup of the DHOST theory summarised in Table 4.2 and is

interpreted based on the order-of-magnitude estimation. The essential ingredients for

the estimation are the slow time-evolution of �, i.e. |X̂| ⌧ 1, and the expansions of the

arbitrary functions in Eq. (4.11.13).
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H
H
H
H
H
H
H
HH

Theory
cg = 1

arbitrary functions linear parameters

F (�) FX A3
↵M ↵B

↵H �1
↵Horn
M

↵res
M

↵Horn
B

↵res
B

Horneskicg=1 " 0 0 " 0 " 0 0 0

GLPVcg=1 " " A3 = �FX/X " " " " " 0

A3eq0cg=1 " " 0 " " " " " �1 = �↵H/2

DHOSTcg=1 " " " " " " " " "

Table 4.2. Distinction of the theories with cg = 1 by EFT parameters and arbitrary

functions.

4.12.1 Time evolution of characteristic parameters

Figure 4.15. The model distribution in ↵M at z = 0 with the bin size �↵M = 0.01.

The solid colour lines represent Horndeski (blue), GLPV (orange), A3eq0 (green), and

DHOST (red), respectively. This is the enlarged version of the top left panel in Fig. 4.16.

By using the expansions of �̂ and Â(app)
i

in Eqs. (4.11.12) and (4.11.13), we get the
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Figure 4.16. The model distribution in ↵M at di↵erent redshift from z = 2.0 to z = 0

with the bin size �↵M = 0.01. The colours are the same as in Fig. 4.15

order of the ↵M from Eqs. (4.11.3) and (4.11.2),

↵Horn
M =O(|X̂|1/2) , ↵res

M = O(|X̂|) , (4.12.1)

↵M = ↵Horn
M

⇣
1 +O(|X̂|1/2)

⌘
(4.12.2)

' ↵Horn
M since |X̂| ⌧ 1. (4.12.3)

Since the order of ↵M of DHOST theories is the same as the Horndeskicg=1 theory,

↵M parameter is almost identical. Indeed, the indistinguishability of ↵M is confirmed

from the distribution of ↵M at all di↵erent redshifts, z = 0 , 0.1 , 0.5 , 1 , 1.5 , 2.0 in the

Figs. 4.15 and 4.16.

Figs. 4.15 and 4.16 show that ↵M has a peak around ↵M ⇠ �0.5 at all redshifts.

For the interpretation of the negative value, the Friedmann equation (4.11.10) helps us

understand it intuitively from the point of view of energy balance. The energy density

of DHOST theory from Eq. (4.11.8) is

E = Ve↵ +O(|X̂|)M4 , (4.12.4)

with Ve↵ ⌘ V (�)� 3M2
⇤H

2↵Horn
M . (4.12.5)
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Here we recall M4 = M2
PlH

2, the critical density associating with the cosmic expansion.

The potential V (�) is the sum over the � dependence terms in E . By inserting the

approximated E into Eq. (4.11.10), we express the Friedmann equation as

1 =
Ve↵

3M2
⇤H

2
+

⇢m
3M2

⇤H
2
+O(|X̂|) . (4.12.6)

The matter density is negligible during the cosmic acceleration, resulting in Ve↵ ⇠
3M2

⇤H
2. Because the model are sampling by random coe�cients, there is no pref-

erence which term in Ve↵ is significant at the same order in X̂, ending up with

�3M2
⇤H

2↵Horn
M

⇠ V ⇠ 0.5Ve↵ > 0. The negative value ↵M has already been encoun-

tered in our previous investigation of the Horndeski theory [2] under the assumption

of |X̂| ⌧ 1. In summary, ↵M does not tell the di↵erence between DHOST theory from

the Horndeski theory in the observations.

Figure 4.17. The model distribution in ↵B with the bin size �↵B = 0.01. The colours

are the same as in Fig. 4.15

In contrary, Fig. 4.17 shows that the theories are distinguishable in ↵B at lower

redshifts, while being hard to distinguish at the redshifts above z = 1.0. The values

of ↵B for the theories are biased toward the negative side at all the redshifts. The

locations of the peaks of all the distributions are almost identical for all the theories.
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In more detail, the distribution for the GLPV theory in orange is almost identical

to that of the Horndeski theory. The distributions of the A3eq0 theory in green and

the DHOST theory in red are widely scattered around the peak of distribution of the

Horndeski theory.

The reason of the scattering is understood from Eq. (4.11.4) as follows. The first

term of ↵Horn
B

, �̇QXX/2FH, is of the order of O(|X̂|3/2) and the second term �̇F�/2FH

is exactly the same as ↵Horn
M

/2 and is of the order of O(|X̂|1/2). One can derive the

order of the ↵B from Eqs. (4.11.4) and (4.11.5),

↵Horn
B =O(|X̂|1/2) , ↵res

B = O(|X̂|) , (4.12.7)

↵B =
↵Horn
M

2

⇣
1 +O(|X̂|1/2)

⌘
, (4.12.8)

The leading term of Eq. (4.12.8) is ↵Horn
M

, which is negative. Therefore, ↵B is biased

to the negative values in Fig. 4.17. The di↵erence in ↵B arises from the second term

in Eq. (4.12.8), which is of the order of O(|X̂|1/2). Earlier, we saw that the theories

are hardly distinguishable in ↵M . Therefore, the locations of the distribution peaks in

↵B are almost identical ↵M .

We interpret the broader distributions of the A3eq0 theory and the DHOST with

the help of Eq. (4.12.8). The distributions of the two theories look like the superposition

of the two components: the principal component making the peak of the distribution in

the Horndeski theory and the random component around the peak. It is worth noting

that the subleading contribution of ↵res
B

in ↵B is quantitatively larger than ↵res
M

in ↵M

because the dimensionless coe�cients multiplied by the terms HXFX and �̇�̈FX in

↵res
B

are relatively larger.

The variance of ↵M and ↵B decrease as a redshift increases, because the time

evolution of � is slower at higher redshifts where matter starts to dominate, i.e., |X̂| /
�̇2/H2 / H�2/3, and the magnitudes of ↵M and ↵B are roughly given by ↵M =

O(|X̂|1/2) and ↵B = O(|X̂|1/2).

Beyond Horndeski parameters: ↵H and �1

The models distributions in ↵H and �1 are shown in Figs. 4.18 and 4.19, respectively.

At first glance, ↵H is evenly scattered around zero for the three plotted theories. The

A3eq0 and the DHOST are distributed almost identically in ↵H . In the GLPV theory,

the models are highly concentrated around zero due to the condition for the GLPV

theory, i.e., 4FX +A3X = 0. Using this relation in the definition of ↵H in Eq. (4.11.6),

we have ↵H = �2XFX/F = A3X2/2F = O(|X̂|2).
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Figure 4.18. The model distribution in ↵H with the bin size �↵H = 0.01. The colours

are the same as in Fig. 4.15. We do not plot the Horndeski theory in which ↵H = 0.

Consequently, the models in the GLPV theory are peaked sharply at ↵H = 0.

For the other theories, A3eq0 and DHOST, ↵H = O(|X̂|) still keeps the distributions

peaked at ↵H = 0, in contrast to ↵M = O(|X̂|1/2) and ↵B = O(|X̂|1/2), merely because

of a higher order contribution.

The other beyond-Horndeski parameter �1 is shown in Fig. 4.19 and has a subtle

di↵erence in the distributions between A3eq0 and DHOST. This is because the function

which discriminate A3eq0 and DHOST is A3, whose term is always subleading in �1,

e.g., A3X2/F = O(|X̂|2). From Eqs. (4.11.6) and (4.11.7), we obtain the relation

↵H = �2�1 +O(|X̂|2) . (4.12.9)

After all, ↵H and �1 are dependent up to the order of O(|X̂|). The di↵erence begins

to arise at the higher orders than O(|X̂|).
We summarise the following remarks. For all the theories in Table. 4.2,↵M hardly

tells the di↵erences among the theories via Eq. (4.12.2). In contrast, ↵B gives the

significant discrimination among the theories. This is because ↵res
B

contains multiple

terms. ↵H is generally O(|X̂|), and ↵H and �1 always correlates via Eq. (4.12.9).

Throughout the features of ↵M , ↵B, ↵H , and �1, the terms associated with A3 are
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Figure 4.19. The model distribution in �1 with the bin size ��1 = 0.01. The colours

are the same as in Fig. 4.15. We do not plot the Horndeski theory and the GLPV

theory in which �1 = 0.

always negligible. Interestingly, we find specific features in the GLPV theory, ↵B ⇡
↵Horn
B

and ↵H ⇡ 0. These state that the condition 4FX + A3X = 0 for the GLPV

theory selects out a fine-tuned theory from the DHOST theory as a model for the

cosmic acceleration.

4.12.2 Correlations between characteristic parameters

We further investigate the di↵erences among the theories via correlations among the

four characteristic parameters, ↵M , ↵B, ↵H , and �1. Since ↵H is related to �1 via

Eq. (4.12.9), we study the correlations among three parameters, ↵M , ↵B, and �1.

Figure 4.20 shows the model distributions in three dimensional parameter space

composed of ↵M , ↵B, and �1 in the DHOST and A3eq0 theories. Firstly, in the

left panel, we confirm that the distributions of ↵M and ↵B for di↵erent values of �1

in di↵erent colours are stretched along the line whose inclination is approximately 2

and clearly form the layers in parallel to a black line. In the right panel, the model

distributions in the A3eq0 theory are shown. The features discussed above on the left

panel also hold on the right except for that the distribution is slightly biased to smaller
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↵B and smaller �1.

One can find the following relations by expanding the analytic forms of the ↵M ,

↵B, and �1 given in Eqs. (4.11.3), (4.11.4), and (4.11.7) up to the leading and next-to-

leading orders in X̂.

O(|X̂|1/2) : ↵Horn
M = 2↵Horn

B , (4.12.10)

O(|X̂|) : ↵res
M =

2

3
↵res
B � 4

3
�1 . (4.12.11)

The inclination of the black line and the coloured layers are originated from Eq. (4.12.10).

The inclination of the stretched distributions coincides with the coe�cient in Eq. (4.12.11).

The continuous change of the colour is characterised by the second term in Eq. (4.12.11).

The negative sign in front of the term 4�1/3 precisely explains that the larger

(smaller) values of �1 locate at the top right (bottom left). Comparing both the panels

in Fig. 4.20, we could not distinguish them other than a slightly broadened distribution

of �1. However, the DHOST and A3eq0 theories indeed deviate from the Horndeski

theory (away from the black line).

The domain of ↵B with �1 6= 0 is significantly distinguishable. Discriminating the

GLPV theories from the Horndeski theory is di�cult, since ↵B ⇡ ↵Horn
B

, ↵H ⇡ 0, and

�1 = 0 are satisfied.

Theoretically, the di↵erence of the Horndeski theory from the rest of the theories

in ↵B is characterized by ↵res
B

. By using the estimation in Eqs. (4.12.2), (4.12.10) and

(4.12.11) and considering the indistinguishability of the thories in ↵M , we find that

↵B�↵M/2 is the main component that discriminates the Horndeski theory from GLPV,

A3eq0, and DHOSTcg=1 theory. Since Eqs. (4.12.9), (4.12.10), and (4.12.11) reduce

the six parameters (↵M ,↵Horn
M

,↵B,↵Horn
B

,↵H ,�1) into three parameters, we conclude

that (↵M ,↵B�↵M/2,�1) is a useful parameter to discriminate the DHOSTcg=1 theory

from the Horndeski theory.

4.12.3 Redshift evolution of ↵M , ↵B � ↵M/2, and �1

As found in Sec.4.12.2, the set of parameters (↵M ,↵B � ↵M/2,�1) is a well-motivated

selection of parameters to discreminate the DHOSTcg=1 theory from the Horndeski

theory. We give the redshift evolution of the parameter (↵M ,↵B � ↵M/2,�1) in the

models in the Horndeski theory and DHOSTcg=1 theory.

In Fig.4.21, the redshift evolutions of the filtered models in the Horndeski theory

(left) and the DHOSTcg=1 theory (right). At first glance, the trend of redshift evo-

lution is similarly monotonic in the both theories. Taking a more closer look, in the
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comparison of the Horndeski theory and the DHOSTcg=1 theory , the models in the

DHOSTcg=1 theory slightly diversify in their evolution to steeper or milder extent,

while the range of ↵M does not significantly change in the both theories. To diagnose

the di↵erence between the two theories, let us see ↵res
M

of the models in the DHOSTcg=1

theory in Fig. 4.22. As we see at z < 1, ↵res
M

have oscillations. Since in Horndeski the-

ory ↵res
M

= 0, this oscillatory behaviour propagates as a pure signal of the DHOSTcg=1

theory.

In Fig. 4.23, ↵B �↵M/2 fluctuates in z < 2 and swiftly converges to zero in higher

redshifts, which is mutual in the both theories. In contrast to ↵M , we clearly find that

the range of ↵B � ↵M/2 significantly di↵erentiate the Horndeski and the DHOSTcg=1

theory at z . 1. Moreover, the evolution of ↵M � ↵B/2 in the DHOSTcg=1 theory

is more oscillatory than the Horndeski counterpart. In Fig. 4.24, �1 shows also the

conversion to zero at z > 2. We observe that the initial value of �1 is less than 0.1 in

the shown models. Although the absolute value of �1 is small, �1 oscillatorily evolves

in redshift.

In terms of the distinguighment of the DHOSTcg=1 theory and the Horndeski theory

in ↵B � ↵M/2 or �1, we predict that an observation at z < 2 is crucial to inspect the

theories. Moreover, oscillatory features of the parameters are generally expected in the

DHOSTcg=1 theory, which can suggest that the parametrisation of ↵M , ↵B � ↵M/2,

and �1 should take into account for the oscillation properly.

Figures 4.25 and 4.26 show the cumulative probabilities of ↵M and ↵B for each

theory, respectively. In Fig. 4.25, more than 90% of the models for all the theories

are distributed in �1 < ↵M < �0.2, and there are few distinguished features in the

shape of the lines for the corresponding theories. On the other hand, in Fig. 4.26, we

notice that the model distributions in ↵B < �1 or ↵B > 0.5 is almost similar among

the four theories, but in �1 < ↵B < 0.5 the distribution of the Horndeski theory is

peculiarly di↵erent from the other three theories. Thus it is able to say that a test of

↵B in observations is very likely to discriminate the Horndeski theory from the other

three theories in Table 4.2.

Theoretically, the di↵erence of the Horndeski theory from the rest of the theories

in ↵B is characterised by ↵res
B

. By using the estimation in Eqs. (4.12.2), (4.12.10)

and (4.12.11) and considering the indistinguishability of the theories in ↵M , we find

that ↵B � ↵M/2 is the main component that discriminates the Horndeski theory from

GLPV, A3eq0, and DHOST theory.
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Figure 4.20. Correlations among ↵M ,↵B, and �1. The panels show the distribution

of models in the DHOSTcg=1 theory (left) and the A3eq0 theory (right), respectively.

The cross points in magenta show the distribution of the Horndeski theory, which is

overlapped partially with the distribution of the DHOSTcg=1 and A3eq0 theories.
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Figure 4.21. The time evolution of ↵M in Horndeski theory (left) and DHOSTcg=1

theory (right). 10 models of 104 generated models for each theory are arbitrary selected

shown in the range of redshift 0  z  10.
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Figure 4.22. The time evolution of ↵res
M

in DHOSTcg=1 theory. 10 models of 104

generated models are arbitrary selected shown in the range of redshift 0  z  10.The

same models as in Fig. 4.21 are plotted.
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Figure 4.23. The time evolution of ↵B � ↵M/2 in Horndeski theory (left) and

DHOSTcg=1 theory (right). 10 models of 104 generated models for each theory are

arbitrary selected shown in the range of redshift 0  z  10. The same models as those

in Fig. 4.21 are plotted.
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Figure 4.24. The time evolution of �1 in DHOSTcg=1 theory. 10 models of 104

generated models are arbitrary selected shown in the range of redshift 0  z  10.The

same models as in Fig. 4.21 and Fig. 4.23 are plotted.
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Figure 4.25. The cumulative probabilities of ↵M .
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Figure 4.26. The cumulative probabilities of ↵B.



CHAPTER 4. OBSERVATIONALLY-VIABLE SCALAR-TENSOR THEORIES 114

4.12.4 Other constraints on DHOST theory

In the following discussion, we comment on the impact of our results on the existing

parameterization, and constraints on the DHOST theory.

• The condition for evading graviton decay obtained in [96] is A3 = 0, i.e, ↵H +

2�1 = 0. Indeed the A3eq0 theory is precisely the theory when we apply the

constraint from the no graviton decay. However, the impact of graviton decay

constraint is very insignificant, at least at cosmological scales, when the DE field

is rolling slowly. Because, the terms associated to A3 in ↵B in Eq. (4.11.5) and

�1 in Eq. (4.11.7), are very small which is the order of O(|X̂|2) under the slow-

rolling assumption, |X̂| ⌧ 1. Indeed, Fig. 4.20 shows that the di↵erence between

A3eq0 (right) and DHOST (left) theories are very insignificant, i.e., A3 = 0 leads

to a slight shift towards the left in the distribution of the model parameters.

• The remaining DHOST models after the constraint of the no graviton decay (↵H+

2�1 = 0) are principally characterized by ↵M , ↵B�↵M/2 and �1. Let us mention

the current constraints on the present values of these parameters. ↵M is currently

bounded at small scales; |↵M | = O(10�2) [80, 81, 82], only when the screening

mechanism are realized. ↵M and ↵B has been constrained in the Horndeski theory

at cosmological scales [102, 103, 104, 90], typically |↵M |, |↵B| = O(10�1), whereas

has yet to be constrained in the DHOST theory. References [105, 100] claimed

that the measurement of the orbital decay rate of the Hulse - Taylor binary

pulsars constrains up to |�1| = O(10�3). Moreover, the simultaneous fitting of

the X-ray and lensing profiles of galaxy clusters could reaches at |�1| = O(10�1)

as mentioned in [105]. In our simulation, |�1| = O(10�1) is allowed at lower

redshifts as shown in Fig. 4.19. If we assume that �1 at local scales could be

extrapolated to cosmological scales, the Hulse-Taylor pulsar rules out almost all

the extended Horndeski models in Fig. 4.20. On the other hand, our models are

still compatible with the constraint on �1 from galaxy clusters.

• The paper [106] claims that the instability of dark energy can be induced by the

kinetic - braiding interaction in the system of a compact binary. The instability

is evaded if the kinetic - brading term in the Lagrangian is dropped o↵. In

the Horndeski theory, Q(�, X) ⇠ 0 is obtained, resulting in ↵M � ↵B/2 ⇠ 0

from Eqs. (4.8.26) and (4.11.4). In the DHOST theory, however, ↵M �↵B/2 still

deviates from zero due to the e↵ects from F (�, X), even after setting Q(�, X) ⇠ 0.

This may indicate that the parameter ↵B � ↵M/2 is significant to probe the

DHOST theory.
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• The redshift evolutions of (↵M ,↵B � ↵M/2,�1) in the DHOST theory show

the oscillatory features that are hardly realized in the Horndeski theory. The

parametrization for the time evolution of ↵M and ↵B in cosmology is often as-

sumed to be monotonic in literature, such as ↵M,B(z) = ↵M,B(z = 0)⇥(1�⌦m(z))

in [39] or ↵M,B(z) = ↵M,B(z = 0)⇥ (1+ z)�� in [74, 103]. Such parametrizations

may approximately work for the Horndeski theory as confirmed in this paper and

[2], but is no longer valid in the DHOST theory because of the oscillations.

After all, our predictions in the DHOST theory are still worth being tested by

observations at cosmological scales. For observations, the cosmological perturbations

need to be studied further in the DHOST theory, except for the linear growth of matter

in the shift-symmetric case [107]. In addition, it is significant to take into account the

oscillatory behavior of ↵B �↵M/2, or �1 to trace their redshift evolution and compare

with observational data.

4.13 Conclusion

4.13.1 Horndeski theory at cosmological scales

We have discussed constraints on Horndeski theory with GW propagation. We firstly

reviewed the general framework for the waveform deformation from modified gravity

including the Horndeski theory. Then we numerically formulated the Horndeski theory

at the cosmological scale to compute ↵M and ↵T .

Next, we performed a Monte Carlo simulation that keeps the models consistent

with the observations of cosmic expansion. In this procedure, we adopted two criteria;

consistency and stability. Carrying out the simulation, we obtained the model distri-

bution on the ↵T � ↵M plane. Then we found that ↵M and ↵T have large values in

the models including only G4 or G5, while including G2 together with G4 or G5 allows

both ↵M and ↵T to be smaller. Thanks to this feature, the models are significantly

distinguishable depending on whether or not the models include the function G2.

Finally, we constrained the Horndeski theory from the simultaneous detection of

GW170817 and GRB170817A. We provided the observational bounds for the physical

parameters that are involved in GW propagation ;⌫0, ⌫1, �g0, and �g1. As a result, we

found that the constraints on ⌫0 and ⌫1 are still too weak to distinguish the specific

models shown in the Table. I, while those on �g0, and �g1 are su�ciently strong enough

to exclude the models that contain G4 or G5 without G2. Consequently, we concluded

that the model space of the Horndeski theory must be significantly reduced to explain

the cosmic accelerating expansion and the GW propagation simultaneously. In other
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words, in the Horndeski framework the main driver of the cosmic accelerating expansion

should be G2. At present, the models such as quintessence, nonlinear kinetic theory,

or f(R) theories are still allowed.

In addition to our work, we comment on the theories other than the Horndeski

theory including higher derivatives of a scalar curvature and a scalar field. Our for-

mulation in e↵ect contains those theories because the higher derivative terms become

too tiny to be observed at the cosmological scale. This argument agrees with the re-

cent reports just after the detection of GW170817 was announced [108, 109, 110, 111].

However, our work quantitatively discusses how much the fine-tuning of the model is

required within the current observational errors. In addition, as shown in Eq. (4.5.10),

we obtained for the first time the constraint on the amplitude damping parameter ⌫ by

the observation of GW170817. Although the constraint is loose, it plays an important

role in further restricting the models whose �g is fine-tuned to zero.

In the end, we report on an accidental finding that the parametrization of ↵ /
⌦DE↵i is not valid in general. This assumption is now widely used when comput-

ing cosmological observables, particularly the CMB angular power spectrum, using

Einstein-Boltzmann solvers [112, 113, 114]. Therefore, it is important to revisit the

previous constraints on the Horndeski theory that parametrized ↵ / ⌦DE↵i and to

investigate the application of our simulation to other cosmological observations such as

CMB or LSS. We will address this issue in a future publication

4.13.2 Horndeski theory after GW170817

We have studied how modification of gravity, particularly, in Horndeski theory with

cT = 1, a↵ects the properties of GW propagation. In the former part, we have estimated

the measurement errors of the modification parameters with Voyager and the third

generation detectors such as CE and ET, showing that

• the measurement errors of the gravity modification parameters, ⌫ and µ, hardly

depend on a redshift due to the accumulation e↵ect during propagation,

• a heavier source in general gives a smaller error,

• the future GW observation can reach the measurement error of �⌫ ⇡ 0.02, sig-

nificantly depending on the maximum redshift at which a source redshift can be

identified with electromagnetic observations.

In the latter part, we have studied the model distribution of the Horndeski theory with

a numerical approach. We performed a Monte Carlo-based numerical simulation and

computed Gmatter, Glight, and ↵M . We found that
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• Gmatter ⇡ Glight in the super-Compton case, while Gmatter � Glight in the sub-

Compton case,

• model-filtering conditions consistent with ⇤CDM cosmology preferentially select

the negative sign of ↵M at lower redshifts z < 1, indicating that the observed

amplitude of a GW is relatively enhanced.

Thus, the future GW observations can constrain ⌫ in the general formalism of GW

propagation and equivalently ↵M in the Horndeski theory at the precision of O(0.01),

which is comparable with the local measurements such as the binary pulsars and the

lunar laser ranging. The strength of the GW observations is that it does not rely on

gravity at local scales but can measure modification of gravity at cosmological scales

directly, allowing us to measure not only the time dependence of ↵M but also the scale

dependence of ↵M . In the future, the GW observations combined with the local and

cosmological measurements play a significant role to check the consistency of a gravity

theory at cosmological distance.

4.13.3 DHOST theory after GW170817

We have numerically investigated the DHOST theory after GW170817, i.e., DHOSTc2g=1

theory with the conventional matter at cosmological scales. We assumed the slow time

evolution of the scalar field, |X̂| ⌧ 1, particularly realizing the cosmic expansion of the

late-time acceleration and the matter dominant epoch. We numerically computed the

conventional EFT parameters, and found that the stable models that explain the cosmic

acceleration within the DHOSTc2g=1 theory framework have the following features:

• The Planck mass run rate, ↵M , is almost identical in all subclasses of the DHOSTcg=1

theory, which makes di�cult to distinguish the DHOSTcg=1 theory from the Horn-

deski theory. In general, ↵M has a negative value, ↵M  �0.1, as found in the

Horndeski theory in [2].

• The kinetic brading parameter, ↵B, sensibly distinguishes the theories. In the

region that ↵B > �0.1, the Horndeski theory is clearly distinguished from the

DHOSTcg=1 theory.

• ↵H and �1 are correlated by ↵H + 2�1 = O(|X̂2|), which is generically satisfied

in the DHOSTcg=1 theory. The values of ↵H and �1 in our computation range

from -0.2 to 0.2.
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• The GLPV theory peculiarly predicts ↵H = O(|X̂|2), and deviates from the

Horndeski theory in ↵M and ↵B at the order of O(|X̂|2). This is due to the

condition of �1 = 0. This makes the discrimination of these theories di�cult.

In conclusion, we note that the correlations among ↵M , ↵B, and ↵H , and �1 reduce

the number of the characteristic parameters to three parameters. We propose that a

parameter set of (↵M ,↵B�↵M/2,�1) is the principal set to discriminate the subdivision

of the DHOSTcg=1 theory. We find that the common parameters ↵M and ↵B � ↵M/2

in the Horndeski and DHOSTcg=1 theories can di↵er by the oscillatory features in

their redshift evolutions. Our prediction on (↵M ,↵B � ↵M/2,�1) can provide a broad

opportunity to test the DHOSTcg=1 theory for the cosmological surveys such as cosmic

shear measurements [115, 116, 117, 118, 119, 120] and upcoming GW observations

[2, 121]. We will address the constraints on (↵M ,↵B � ↵M/2,�1) quantitatively from

the di↵erent observations in the future work.



Chapter 5

Inflation without Lorentz

invariance

The Lorentz invariance is one of the most fundamental properties of physics. Although

the Lorentz invariance occasionally confirmed by the Michealson-Morley interferomet-

ric experiment in 1901, that resulted in the perpetual change of the classical Newtonian

dynamics, leading the development of the electromagnetism, the special relativity, and

the general relativity. The Lorentz invariance healthily accommodates with the quan-

tum mechanics, i.e., unitarity of the time evolution, and non-trivially confines the types

of elementary particles by its mathematical symmetry. Experimentally, a number of ex-

periments and observations have verified that the Lorentz invariance in particle physics

is truly evident. In particular, the constraint of the Lorentz invariance in the electro-

magnetic physics, was tightly obtained, as shown in Fig. (5.1). Deviations from Lorentz

invariance are tightly constrained in the Standard Model sector [122, 123, 124]. Hence,

the verification of the Lorentz invariance is prominently established.

When it comes to the local Lorentz invariance, which is subgroup of the di↵eo-

morphism invariance of gravity theories, the experiments and observation for testing

it is much less than the that of global Lorentz invariance. This is partially because

the cut-o↵ scale of the Einstein gravity is located at the Planck scale 1019GeV, at

which the energy is well above from the range we can probe in. Nonetheless, a num-

ber of observations at low energies such as Solar System tests [124, 125], pulsar tim-

ing [126, 127, 128, 129], cosmology [130, 131, 132, 133, 134, 135, 136] and direct detec-

tion of the gravitational waves [137, 138, 49, 139].

In the cosmological context, the break of the Lorentz invariance is significant. As

discussed in the EFT of inflation [33] (or brief summary in Appendix. B), the inflaton

can be understood as a Nambu-Goldstone bosons induced by the spontaneous symmetry

119
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breaking of the global time translation invariance of de Sitter spacetime. In other words,

the inflaton is created by the break of the (global) Lorentz invariance. Then one naively

wonders whether or not the local Lorentz invariance of space-time is sustained in the

inflationary universe. To think of this much further, a theoretical framework to describe

such phenomena in an appropriate sense of physics.

It has been acknowledged that the mechanisms in the absence of the local Lorentz in-

variance actually exist, i.e., the ghost condensation, the Aether field, or the anisotropic

scaling of space and time. We further make use of such Lorentz-violating physics as a

solution to the UV completion of gravity, specifically the renormalisability of gravity.

Interestingly, the renormalisability of gravity can be achieved by introducing anisotropic

scaling law of space and time, as P.Horava firstly showed in 2009 [140]. This is called

Hořava-Lifshitz gravity. In this Chapter, we focus on the Hořava-Lifshitz gravity and

exhibit the phenomenology in Hořava-Lifshitz gravity.

By contrast the theories investigated in Chapter 4, Hořava - Lifshitz gravity explic-

itly breaks di↵eomorphism invarinace between space and time. Therefore, it is signif-

icant to argue independently whether or not the Hořava-Lifshitz gravity is consistent

to the experimental and observational constraints on gravity.

5.1 Gravity without local general covariance

The general covariance, or the di↵eomorphism invariance, is one of the essential status

of the gravity theories. To be more general, however, the break of the general covariance

can be realized as an possible extension of the gravity theories. Moreover, it has been

less tested in phenomenology whether or not the gravitational interactions respect

the general covariance. Hence the construction of gravity theories without general

covariance is an important question to look into. In this section, we summarise the

theories that virtually general covariance.

5.1.1 Ghost condensation

A well-known mechanism of breaking the general covariance is Ghost condensation

[141]. The ghost condensation is found to be a general realisation of a spontaneous

symmetry breaking of general covariance, sometimes noted as the Higgs mechanism in

gravity. As is often the case, we start with a vacuum such that an underlining scalar

field has a trivial vacuum expectation value,i.e.,

h�i = 0 (5.1.1)
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When we consider the scalar field whose kinetic term is opposite. With the metric

configuration gµ⌫ = (�,+,+,+), the kinetic term is given as

S� =

Z
d4x

p
�g


+
1

2
gµ⌫@µ�@⌫�+ . . .

�
, (5.1.2)

By imposing the shift symmetry, i.e., �! �+ a, there are only the derivative interac-

tions in the action Eq. (5.1.2). Then action is written as

S =

Z
d4x

p
�gM4P (X) , (5.1.3)

where X = gµ⌫@µ�@⌫� is the canonical kinetic term of the scalar field, and P (X) is an

arbitrary dimensionless function of X. Note that this is the most general action that

realises the shift symmetry. With the FLRW metric

ds2 = �dt2 + a2(t)d⌦2 , (5.1.4)

where d⌦2 is the spatial metric for a maximally symmetric 3-dimensional space. When

the scalar field only depends on the time t, the equation of motion of the scalar field is

derived as

@t[a
3P 0(�̇2)�̇] = 0 , (5.1.5)

By integrating Eq. (5.1.5) and we obtain

�̇P 0(�̇2) =
const.

a3(t)
, (5.1.6)

In the expanding universe, the long range limit is given by a ! 1. Then we have two

fixed points,

�̇ = 0, P 0(�̇2) = 0 , (5.1.7)

The stability around the two fixed points are derived. In particular, the second fixed

point is stabilised whenever the condition P 00(�̇2) > 0 is satisfied. When we take that

the scalar field to be a time coordinate with the excitation ⇡, i.e., � = M2t + ⇡, the

second fixed point is able to be stabilised from the higher derivative operator,

D
�̇
E
= M2 6= 0 , (5.1.8)
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can be stabilised via the higher derivative

S ⇠
Z

d4x


1

2
⇡̇2 � 1

2M2
(r2⇡)2 + . . .

�
(5.1.9)

The dispersion relation of the excitation is given as

!2 ⇠ k4

M2
, (5.1.10)

At this phase, the background with the scalar field with wrong sign of the kinetic

term is stable. Since the dispersion relation suggest that the propagation speed of ⇡ is

c2⇡ ⇠ k2/M2, causing the break of the Lorentz symmetry breaking.

5.1.2 Einstein-Aether theory

The Einstein Aether theory is a covariant theory with a time-like vector field that

breaks local Lorentz symmetry. The action is given as

S =
1

16⇡G

Z
d4x

p
�g

⇣
R+Kab

mnran
mrbn

n + �(nana + 1)
⌘
, (5.1.11)

where

Kab
mn = c1g

abgmn + c2�
a

m�
b

n + c3�
a

n�
b

m � c4n
anbgmn , (5.1.12)

where the coe�cients ci(i = 1, 2, 3, 4) are free constants typically at the order of unity.

Then the Gauss - Godazzi identity is given as

R = (3)R+Kµ⌫K
µ⌫ �K2 + 2rµ(Knµ � n⇢r⇢n

µ) , (5.1.13)

The covariant derivative of the Aether field ua is given as

ranb = Kab + navb , (5.1.14)

vb denotes the acceleration vector that satisfies ncrcna = �va. Note that the ac-

celeration vector va is perpendicular to na, i.e., vana = 0. By replacing ranb with

Eq. (5.1.14) and inserting R with Eq. (5.1.13) in the action Eq. (5.1.11), we obtain the

S =
1

16⇡G

Z
d4x

p
�g

⇥
(1 + c13)Kµ⌫K

µ⌫ � (1� c2)K
2 � c14vav

a
⇤
, (5.1.15)
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where c13 ⌘ c1 + c3 and c14 ⌘ c1 + c4. Since c13 and c2 are independently chosen,

this theory is a theory such that the propagation speed of the gravitational waves are

not identical to the speed of light. As shown later, this theory is nothing but the

non-projectable Hořava - Lifshitz theory at the anisotropic scaling index z is given by

z = 1. In fact in the ADM form, nadxa = �Ndt, na@a = (1/N,�N i/N), va is obtained

as va@a = (0, �ij@jN/N), which is precisely equivalent to z = 1 non projectable Hořava

- Lifshitz gravity.

5.1.3 Anisotropic scaling in space and time

The origin of the general covariance is the equivalence of space and time. The realisa-

tion of the equivalence is formulated in the Lorentz invariance by keeping the causal

structure of physical theory. Once we admit that the space and time is no longer the

same, an instant consequence is that the break of the Lorentz invariance.

The realization for such a theory is the Horava Lifshitz gravity The local Lorentz

invariance is broken.

• The review of Horava Lifshitz gravity from my master thesis (and its review

papers)

t ! bzt , x ! bx , (5.1.16)

The di↵eomorphism of the theory

t ! t̃ = t̃(t) , x ! x̃ = x̃(x) , (5.1.17)

The metric is given as

ds2 = �N2c2dt2 + gij(dx
i +N idt)(dxi +N idt) , (5.1.18)

The action is given as

SHL =
M2

pl

2

Z
dtdDx

p
g
n
N [KijK

ij � �K2] + ⇠(D)R� 2⇤+ ↵viv
i + V

o
, (5.1.19)

where V denotes the e↵ective potential term that contains the higher curvatures,

V = R2, �R , RijR
ij , RijklR

ijkl , (aia
i)2, aia

iR , . . . (5.1.20)

The anisotropic scaling law defined in Eq. (5.1.16) has a novel property such that
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the spatial derivatives are capable of the higher numbers of derivatives while the time

derivatives are up to quadratic order, consequently the initial data of dynamics does not

induce additional degree of freedom. Moreover, the higher spatial derivative terms play

a role to suppress the high energy momenta at smaller scales, satisfying the property

of power counting renormalizability. In more detail, we discuss in the Chapter 5.

5.2 Toy model: Lifshitz scalar

Before working with gravity, let us see a toy model of anisotropic scaling in the flat

Minkowski spacetime. We introduce a scalar field called Lifshitz scalar. The anisotropic

scaling is defined as

t ! b�zt , x ! b�1x , (5.2.1)

That means the space and time di↵erently scales in energy. For the generality, let us

consider 1+D dimensional spacetime. Since the action principle states that the action

should be invariant from energy scaling, the free interaction of the Lifshitz scalar is

determined. The action of the Lifshitz scalar is given as

S =
1

2

Z
dtdDx

✓
�̇2 � 1

M2(z�1)
��z�� Lint

◆
, (5.2.2)

The scaling dimension of the kinetic term gives the dynamical scale of �, i.e., [�],

[�] =
D � z

2
, (5.2.3)

The interaction term is given by

Lint�n�
n , (5.2.4)

The scaling dimension of the coupling constant [�n] is

[�n] = D + z � n[�] , (5.2.5)

The contribution in the Lagrangian is

Z
dtdDx�n / E�[�n]/z , (5.2.6)

Notice that [�n] � 0 is necessary condition for the finite convergence of interaction
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terms in UV regime. Whenever we consider the scaling exponent z in the range z � D,

the second term in Eq. (5.2.5) is always positive regardless of the artbitorary n and

thus [�n] is positive. Therefore, the necessary condition for the renormalisation is given

as z � D.

5.3 Hořava Lifshitz gravity

General relativity (GR) accurately describes all known gravitational phenomena. Still,

it has a theoretical flaw: it is not renormalizable [142] and thus cannot be a com-

plete theory of quantum gravity. One way to address this problem is to introduce

terms with higher powers of the curvature tensor which make the theory renormal-

isable [143, 20]. However, if Lorentz invariant, these higher curvature terms lead to

loss of unitarity. This motivated P. Hořava to propose a framework to render gravity

power-counting renormalisable by abandoning Lorentz invariance [140]. By breaking

Lorentz invariance, we can introduce higher spatial derivative terms, while avoiding

higher time derivative terms and thus making the theory compatible with unitarity.

A key role in the power-counting argument is played by an approximate invariance of

the theory at high energies and momenta with respect to the so-called Lifshitz scal-

ing transformations. These stretch space and time by di↵erent amount, so they are

also often referred to as anisotropic scaling. The dispersion relations of various de-

grees of freedom at high energies, compatible with anisotropic scaling, have the form

! / pz/M z�1
⇤ , where ! and p are particle’s energy and momentum, z is the Lifshitz

exponent (z equals the number of spatial dimensions in Hořava’s proposal) and M⇤ is

the energy threshold, above which the anisotropic scaling sets in. This framework has

received the name of Hořava–Lifshitz (HL) gravity and the so-called projectable sub-

class of the resulting theories has been rigorously demonstrated to be perturbatively

renormalizable [144, 145]. Moreover, in 2 spatial and 1 time dimensions the theory

exhibits asymptotic freedom [146] which strongly suggests that it is ultraviolet (UV)

complete.

5.3.1 Cosmological perturbations in Hořava-Lifshitz gravity

The discussion is based on the review by S. Mukohyama 2015 The infinitesimal coor-

dinate transformation is given as

�t = f(t) , �xi = ⇠i(t, x) , (5.3.1)
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The metric is given as

ds2 = (N2 �NiN
i)dt2 � 2Nidx

idt� gijdx
idxj , (5.3.2)

The gauge structure is given as

�N = @t(Nf) , (5.3.3)

�N i = @t(N
if) + @t⇠

i + L⇠N
i , (5.3.4)

�Ni = @t(Nif) + gij@t⇠
j + L⇠Ni , (5.3.5)

�gij = f@tgij + L⇠gij , (5.3.6)

Projectable version

The projectable version of the Hořava - Lifshitz gravity is a theory given by the following

action,

S =
M2

pl

2

Z
dtd3x

p
gN(KijK

ij � �K2 � V [gij ]) , (5.3.7)

where

Vproj = �⇠R+M�2
pl (A1�R+A2RijR

ij + . . . )

M�4
pl (B1Rr2R+B2RijR

jkRki + . . . ) , (5.3.8)

The symmetry of the projectable version is the rule of coordinate transformation of the

lapse function,

N ! Ñ = N
@t

@ t̃
, (5.3.9)

The perturbative quantities are

N = 1 + �(t) , (5.3.10)

Ni =
@p
�
B , (5.3.11)

gij = �ij � 2

✓
�ij �

@i@j
�

◆
 � 2

@i@j
�

E , (5.3.12)
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namely in the Minkowski space The Lagrangian of the scalar perturbation at the

quadratic order, L(2)
scalar is

L(2)
scalar =

M2
P

2

(
� ̇2 � 2 � + 4 

p
�Ḃ + 4 Ë

� (�� 1)
⇣p
�B + Ė + 2 ̇

⌘2
� f1

M2
⇤
(� )2 � g1

M4
⇤
 �3 

)
, (5.3.13)

f1 and g1 are related to the constant coe�cients in Eq. (5.3.8), which are not important

for the following discussion. Note that the perturbation of the lapse � drops out due

to the projectability condition The hamiltonian constraint is derived as

4 ̇ + 2(�� 1)(
p
�B + Ė + 2 ̇) = 0 , (5.3.14)

By eliminating
p
�B from Eq. (5.3.13) we obtain

L(2)
scalar =

M2
P

2

⇢
2(3�� 1)

�� 1
 ̇2 �  

✓
2�+

f1
M2

⇤
�2 +

g1
M4

⇤
�3

◆
 

�
, (5.3.15)

To keep the positive kinetic term of  yields the necessary condition,

3�� 1

�� 1
> 0 , (5.3.16)

The dispersion relation of  is

!2 = � �� 1

3�� 1

✓
p2 � f1

2M2
⇤
p4 +

g1
2M4

⇤
p6
◆

, (5.3.17)

Here p denotes the norm of the spatial momentum. M⇤ is the cut of scale at which

the contributions of higher derivatives as a result of anisotropic scaling are relevant

above M⇤. � controls the propagation speed of  at the low energy limit. The general

relativity realises when � = 1, but it is worth mentioning that the limit of �! 1+0 with

the respect of the condition Eq. (5.3.16) does not properly recover the general relativity

in the linear perturbation, which is due to the disappearance of the spatial derivatives

of  . It is instantly found that the condition of the positive kinetic energy prohibit

the avoidance of the gradient instability, !2 < 0 at p/M⇤ . 1. This causes a pathology

when applying in phenomenology. To accommodate with the current stability of the

universe at least in the Hubble time scale, 1/H0, the instability of !2

Im! ⇠
p
|�� 1|M⇤ < H0 , (5.3.18)
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which ends up with the upper limit of M⇤. Although it is theoretically motivated

that M⇤ is close to the Planck mass scale, M⇤ could be chosen at any scale. Hence,

the bound in Eq. (5.3.18) is still thoughtful. On top of that, the consistency of the

Newtonian gravity at the scale of 10µm [], M⇤ has a lower limit,

M⇤ > 0.1eV , (5.3.19)

In the combination of the conditions in Eqs. (5.3.18) and (5.3.19), � is constrained as

p
|�� 1| . 10�61 , (5.3.20)

The value of � is unsatisfactory in theoretical modeling. Therefore, the projectable

Hořava - Lifshitz gravity is not viable as a model for cosmology.

Non-projectable version

In the framework of the Hořava - Lifshitz gravity, the projectable condition Eq. (5.3.9)

is not necessary. The non projectable version of the Hořava - Lifshitz gravity is given

by removing the projectable condition Eq. (5.3.9). As a result, an additional operator

ai ⌘ @iN/N can appear in the Lagrangian. Specifically in z = 3 case,

Vnon�proj = Vproj + C1aia
i + C2Rria

i + C3ai�ai + C4�Rria
i + C5ai�

2ai , (5.3.21)

The quadratic Lagrangian of the scalar sector is

L(2)
scalar =

M2
P

2

(
� ̇2 � 2 � + 4�� + 4 

p
�Ḃ + 4 Ë

� (�� 1)
⇣p
�B + Ė + 2 ̇

⌘2
+ ↵(@i�)

2

� f1
M2

⇤
(� )2 � 2f2

M2
⇤
��� � f3

M2
⇤
(��)2

� g1
M4

⇤
 �3 � 2g2

M4
⇤
��3 � g3

M4
⇤
��3�

)
, (5.3.22)

where the constants ↵, fn, and gn are related to the coe�cients of the terms in the

potential Vnon�proj. By fixing the gauge B = 0 and integrating out the non dynamical

fields E and �, we obtain

L(2)
scalar =

M2
⇤
2

⇢
2(3�� 1)

�� 1
 ̇2 +  

P [M�2
⇤ �]

Q[M�2
⇤ �]

� 

�
, (5.3.23)
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where the polynomials P , Q have the form

P [x] = (g22 � g1g3)x
4 � (g1f3 + g3f1 � 2g2f2)x

3 + (f2
2 � 4g2 � f1f3 � 2g3 � g1↵)x

2

� (2f3 + f2↵+ 4f2)x+ (4� 2↵) ,

(5.3.24)

Q[x] = g3x
2 + f3x+ ↵ , (5.3.25)

The Lagrangian Eq. (5.3.23) does not plague with the instabilities by the following two

conditions. The first is the positivity of the kinetic energy of the system, realising when

� > 1 in the accommodation with the small deviation from the general relativity. The

second is the absence of gradient instability, namely satisfying by the frequency

!2 =
�� 1

2(3�� 1)

P [�p2/M2
⇤ ]

Q[�p2/M2
⇤ ]

, (5.3.26)

is positive, !2 > 0 at all the spatial momentum p. Equivalently, the condition reads

P [x]/Q[x] > 0 at x < 0 , (5.3.27)

This condition leads the certain constraints on the coe�cients ↵, fn, and gn. In com-

parison of the inevitable gradient instability in the projectable version, we particularly

focus on the condition at p/M⇤ ⌧ 1. By the truncation of the higher order of p/M⇤,

we obtain

!2 =
�� 1

3�� 1

✓
2

↵
� 1

◆
p2 , (5.3.28)

and thus the stability condition requires

0 < ↵ < 2 , (5.3.29)

As a result, the theoretical pathology raising in the projectable version does not the case

in the non projectable one. It is shown that the low energy limit of the non projectable

version is equivalent to the covariant theory with a vector field of a preferred direction

of time, so called the Einstein Aether theory.
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5.4 Early universe

In the framework of the Hořava-Lifshitz gravity, the scenario of the early universe gives

us some insightful features. Let us discuss in the non projectable version of Hořava-

Lifshitz gravity, in which we have known no pathology in its theoretical construction.

As derived in the previous section, the dispersion relation depends on the energy scale.

At the time when the anisotropic scaling index z is given the

!2 = c2zp
2
⇣ p

aM

⌘2(z�1)
, (5.4.1)

where c2z denotes the coe�cient in the dimension of the sound speed which is order of

unity, and M denotes the mass scale at which the anisotropic scaling matters, typically

given M ⇠ M⇤. In the case of z = 1, Eq. (5.4.1) is nothing but the normal dispersion

relation with non trivial sound speed, by the independence from M . The fluctuation of

a canonical scalar field, �� is normalised by the canonical quantisation, acquiring the

norm 1/a
p
2! the dimensionless power spectrum of �� is given at the horizon crossing,

i.e, ! ⇠ aH,

P�� ⌘ p3

2⇡3
|��|2 =

✓
M

2⇡

◆2✓H

M

◆(3�z)/z

, (5.4.2)

where the scale factor is replaced by solving ! ⇠ aH with a. Note that z = 1 recovers

the normal power spectrum of a canonical field, (H/2⇡)2. Interestingly, z = 3 gives

the independence from the horizon scale H, realising the scale invariance of the power

spectrum. The condition such that the power spectrum is frozen out during the cosmic

expansion at ! ⌧ aH is that

d

dt

✓
a2H2

!2

◆
> 0 , (5.4.3)

This condition could be realised not only de Sitter universe, but also one with the

power-law expansion. In particular, when z = 3, the scale invariance is preserved even

in the radiation or matter domination epoch.

5.5 Inflationary universe with Lifshitz scaling

In order to examine the consequences of violation of Lorentz invariance at high energies

we study in this paper its e↵ect on cosmic inflation in the early universe. One may
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expect that breaking of Lorentz invariance during inflation will leave an imprint on the

primordial perturbations generated during inflation. This possibility has been explored

in a number of works [141, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157]. In HL

gravity, where 4D di↵eomorphism (Di↵) is reduced to foliation preserving Di↵, there

appears a scalar degree of freedom in gravity sector, so called khronon. It is tempting to

speculate that this additional degree of freedom can play the role of inflaton. However,

at the moment this seems to be forbidden due the restrictive structure of the theory.

Therefore, to drive inflation, we need to introduce a scalar field, as usual. Then, in

general, generation of the primordial scalar perturbation is described by a coupled

system for two fields, the inflaton and khronon perturbations.

To provide a prediction of the observable quantities, we need to solve consistently

the two field system of the inflaton and khronon, which are coupled with each other

during inflation. When 4D Di↵ is preserved and the universe is dominated by a single

component, it is well-known that the adiabatic curvature perturbation ⇣ stays constant

in time after the Hubble crossing (see, e.g., Refs. [158, 159]). On the other hand, in

HL gravity the number of scalar degrees of freedom is always greater than one due to

the presence of khronon and it is not clear a priori if there exists a conserved variable

or not.

The inflaton and khronon are gravitationally coupled even in the absence of a direct

interaction between them. In this paper we compute the primordial power spectra by

consistently solving the two field models with the inflaton and khronon. The previous

studies mostly focused on the regime where the Hubble scale of inflation is low, H <

M⇤, so that the higher derivative terms in the action are unimportant and the theory

is described by its infrared (IR) limit. By contrast, in this paper we are interested

in the high-energy regime of Lifshitz scaling relevant for the case1 H > M⇤. We

consider both projectable and non-projectable versions of HL gravity. As discussed in

Refs. [160, 161], the khronon sector of the projectable HL gravity su↵ers from either

the gradient instability or the strong coupling in the IR limit. This means that it

cannot describe the physics all the way down to low energies, unless inflationary epoch

is separated from the later hot universe by a phase transition that eliminates khronon

from the spectrum. Still, the projectable version is perfectly well-behaved in the high-

energy regime and its study is instructive to make comparison with the non-projectable

version.

1Recent observation of gravitational waves from neutron star merger in coincidence with the elec-
tromagnetic signal [49] points towards an upper bound on the scale M⇤ in non-projectable HL gravity,
M⇤ . 1011GeV [139]. Hence, in this theory the Lifshitz regime is relevant whenever the inflationary
Hubble exceeds 1011GeV.
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When the fluctuations are deep inside the Hubble scale, the gravitational interaction

is suppressed and we simply have two decoupled Lifshitz scalars. On the other hand, in

the super Hubble scales, the gravitational interaction makes the inflaton and khronon

coupled. Then one may naively expect that the primordial spectrum will depend on

the time evolution of these two fields and we will need to solve the evolution all along

also after the Hubble crossing time. Indeed, this is the case for the projectable version.

On the other hand, in the non-projectable version, we will find that khronon gets

decoupled from the adiabatic curvature perturbation ⇣. As a result, ⇣ is conserved at

large scales and the power spectrum of ⇣ is solely determined by the inflaton. Thanks

to the presence of the conserved quantity, we can easily calculate the spectrum of the

fluctuation at the end of inflation. Then the consequence of the LV in the spectrum of

⇣ only stems from the modification of the dispersion relation.

The spectrum of primordial gravitational waves in HL gravity was computed in

Ref. [147]. Once the scalar perturbation is obtained, we can also compute the tensor to

scalar ratio r. In a 4D Di↵ invariant theory, there exists a universal relation between

r and the tensor spectral tilt nt, the so-called consistency relation. We will show that

this consistency relation can be broken if the primordial perturbations are generated

in the anisotropic scaling regime. The violation of the consistency relation provides a

signal of LV in the gravity sector in the high energy regime.

This paper is organized as follows. In Sec. 5.6 we describe our setup and review the

computation of the power spectrum of the Lifshitz scalar and the gravitational waves

generated in the anisotropic scaling regime. In Sec. 5.7 we discuss the behaviour of the

khronon perturbation. We show that khronon stays gapless in the projectable version,

while it is gapped in the non-projectable version, which leads to the decoupling from

the adiabatic mode. In Sec. 5.8 we discuss violation of the consistency relation by

inflationary perturbations with Lifshitz scaling. We conclude in Sec. 5.9. Appendices

summarise some technical details.

5.6 Primordial perturbations with anisotropic scaling

In this section we describe our setup and briefly summarise the computation of the

primordial spectra of the Lifshitz scalar and gravitational waves.
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5.6.1 Projectable and non-projectable Hořava gravity

Lagrangian densities

First, we consider the non-projectable version of HL gravity [140] with the extension

introduced in [162]. Due to the complexity of the most general Lagrangian in this

framework, we restrict only to the terms that contribute to the action at quadratic

order in the perturbations around spatially flat backgrounds and that preserve the

parity invariance. This restriction is su�cient to capture the qualitative features of the

theory. The complete list of these terms is given in [162] and leads to the following

Lagrangian density,

LHG = N
p
h

⇢
M2

⇤
2


1

↵1
KijK

ij � 1

↵2
K2 +

1

↵3
R+

aiai

↵4

�

� 1

2


RijRij

�1
+

R2

�2
� Rriai

�3
+

ai�ai

�4

�

� 1

2M2
⇤


(riRjk)2

�1
+

(riR)2

�2
+
�Rriai

�3
� ai�2ai

�4

��
, (5.6.1)

where we used the ADM line element, given by

ds2 = (N2 �NiN
i)dt2 � 2Nidtdx

i � hijdx
idxj . (5.6.2)

Here Rij , ri and � denote the 3-dimensional Ricci tensor, the covariant derivative

with respect to hij and the covariant Laplacian,

Kij =
ḣij �riNj �rjNi

2N
(5.6.3)

is the extrinsic curvature and we have defined ai as

ai ⌘
@iN

N
. (5.6.4)

Here, the dot denotes the derivative with respect to the cosmological time. Note that

we included the integration measure in the definition of the Lagrangian density. The

terms in the first line of Eq. (5.6.1) describe the low energy part of the action, and the

parameters entering it are constrained by the present-day observations2. The relation

2We assume that during inflation these parameters have the same values as nowadays. This as-
sumption can be relaxed in a more general setup.
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between these parameters and the parameters ↵,�, ⇠ introduced in [161] is

M2
⇤ = M2

P↵ , ↵1 = ↵ , ↵2 = ↵/� , ↵3 = ↵/⇠ , (5.6.5)

where MP is the Planck mass. In what follows, we will write

↵1 � ↵2 = 2↵1↵̄ . (5.6.6)

We also discuss the projectable version, where the lapse function is postulated to

be space-independent,

N = N(t) . (5.6.7)

The action for the projectable version can be obtained simply by dropping the pertur-

bation of the lapse function in the action for the non-projectable version. Then the

parameters ↵4, �3, �4, �3, and �4 are irrelevant in the projectable theory.

For both the non-projectable and projectable versions, we add as the inflaton a

Lifshitz scalar field whose Lagrangian density is given by:

Linf = N
p
h

⇢
(�̇�N i@i�)2

2N2
� {1

2
ri�ri�� {2

2M2
⇤
rirj�rirj�

� {3

2M4
⇤
rirjrk�rirjrk�� V (�)

�
. (5.6.8)

In principle, the coe�cients {1,2,3 here can be functions of the field � which has zero

scaling dimension. We concentrate on the case of constant coe�cients for simplicity.

We assume that the inflaton is minimally coupled to the gravity sector. We will briefly

discuss a non-minimally coupled case in Sec. 5.9.

Parameter hierarchy

The Lagrangian density (5.6.1) contains a number of parameters. Here we discuss the

hierarchy between them. First of all, we require that the anisotropic scaling sets in

before the gravity becomes strongly coupled, assuming

0 < ↵1 < 1 . (5.6.9)
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Consider now the propagation of gravitational waves in flat spacetime where their

dispersion relation is given by

!2(p) = p2
3X

z=1

{�,z

✓
p

M⇤

◆2(z�1)

, (5.6.10)

with

{�,1 ⌘
↵1

↵3
, {�,2 ⌘

↵1

�1
, {�,3 ⌘

↵1

�1
. (5.6.11)

The coe�cient {�,1 determines (the square of) the propagation speed of the gravita-

tional waves at low energies. According to the constraints from the observation of the

Hulse-Taylor pulsar [129] and more directly from the detections of the gravitational

waves at the two detector sites [137], the propagation speed of the gravitational waves

in the IR should be of order of the speed of light, which imposes ↵1 ' ↵3. The recent

detections of GW170817 and GRB170817A give a tight constraint |{�,1 � 1| < 10�15

[49]. (See also Ref. [163] for the constraint on the subluminal propagation of the

gravitational waves from the absence of the gravitational Cherenkov radiation.) Next,

requiring that the transition from linear dispersion relation to the Lifshitz scaling hap-

pens at p ⇠ M⇤ we obtain the requirements {�,2,{�,3 ' 1. By combining these two

conditions, we obtain

↵1 ' ↵3 ' �1 ' �1 < 1 . (5.6.12)

The conditions described above are common both for the projectable and non-projectable

versions.

Let us now turn to khronon. In the projectable version its dispersion relation reads,

!2
pr(p) =

↵1↵̄

1 + ↵̄
p2
"
� 1

↵3
+

✓
3

�1
+

8

�2

◆✓
p

M⇤

◆2

+

✓
3

�1
+

8

�2

◆✓
p

M⇤

◆4
#
. (5.6.13)

The first term in the square brackets is negative and is responsible for gradient insta-

bility in IR. On the other hand, the remaining terms in (5.6.13) can be chosen positive,

so that at p > M⇤ the dispersion relation is well-behaved. Again, setting the transition

to Lifshitz scaling at around p ' M⇤ and taking into account (5.6.12) we obtain

↵1,3 ' �1,2 ' �1,2 < 1 . (5.6.14)

Further, for simplicity, requiring that the overall magnitude of the frequency !pr(p) in
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UV is O(1) ⇥ pz/M z�1
⇤ we set ↵̄ ' O(1). To sum up, in the projectable case we will

work under the assumptions,

↵1,2,3 ' �1,2 ' �1,2 < 1 , ↵̄ = O(1) (projectable). (5.6.15)

In the non-projectable version, constraints on deviations from Lorentz invariance

at low energies require [161]

↵1 ⌧ ↵4 . (5.6.16)

The dispersion relation for khronon now becomes more complicated and is given by

!2
npr(p) = !2

pr(p) +
2↵1↵̄

1 + ↵̄
p2

h
� 1

↵3
+ 1

�3
( p

M⇤
)2 + 1

�3
( p

M⇤
)4
i2

1
↵4

+ 1
�4
( p

M⇤
)2 + 1

�4
( p

M⇤
)4

, (5.6.17)

where the second piece comes from integrating out the lapse function N which enters

into the action without time derivatives. Setting the transition scale at p ' M⇤ and

using Eqs. (5.6.12) and (5.6.16), we obtain

↵1,3 ' �1,2,3 ' �1,2,3 ⌧ ↵4 , ↵4 ' �4 ' �4 . (5.6.18)

Similarly to the discussion of the projectable version, for simplicity, we assume that

!(p) becomes O(1)⇥ pz/M z�1
⇤ in UV and obtain

↵̄ ' �23
�4↵1

' ↵1

↵4
⌧ 1 , (5.6.19)

where we used Eq. (5.6.16). Notice that the order of ↵̄ in the non-projectable version is

di↵erent from the one in the projectable version, cf. Eq. (5.6.15). Using Eqs. (5.6.18)

and (5.6.19), we find that (the leading term in) the propagation speed of khronon in

the IR, ↵1↵̄↵4/↵2
3 , is now set to O(1). Combining all conditions together, we obtain

↵1,2,3

↵4
' �1,2,3

�4
' �1,2,3

�4
' ↵̄⌧ 1 , ↵4 ' �4 ' �4 (non-projectable). (5.6.20)

The parameters which satisfy these conditions are consistent with the experimental

data in IR3 [161].

In summery, the parameter hierarchy (5.6.20) is derived by imposing i) the phe-

nomenological condition in the IR (5.6.16) ii) the simplicity assumption !(p) ' O(1)⇥

3We leave aside the question of stability of the parameter hierarchy under radiative corrections.
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pz/M z�1
⇤ in the UV and iii) the other simplicity assumption that khronon and gravita-

tional waves both make transition from the isotropic scaling regime to the anisotropic

scaling regime at p ' M⇤.

5.6.2 Background equations

Equations for the inflationary background read,

3M2
P

1 + ↵̄

1� 2↵̄
H2 =

�̇2

2
+ V , (5.6.21)

�̈+ 3H�̇+ V� = 0 , (5.6.22)

where � is the background value of the inflaton and V� denotes the derivative of V with

respect to �. Positivity of the l.h.s. in the Friedmann equation (5.6.21) requires ↵̄ to

be in the range �1 < ↵̄ < 1/2. We define the slow-roll parameters,

"1 ⌘ � Ḣ

H2
=

1� 2↵̄

2(1 + ↵̄)

 
�̇

MPH

!2

, (5.6.23)

and

"n =
d ln "n�1

d ln a
, (5.6.24)

for n � 2. The expressions for the slow-roll parameters agree with the standard ones

up to O(↵̄) corrections. Using "2 we can express the second derivative of � as

�̈

H�̇
=
"2
2

� "1 . (5.6.25)

We also define the slow-roll parameters "V and ⌘V as

"V ⌘ M2
P

2

✓
V�

V

◆2

=
1� 2↵̄

1 + ↵̄
"1 +O("2) , (5.6.26)

⌘V ⌘ M2
P

V��

V
=

1� 2↵̄

1 + ↵̄

⇣
2"1 �

"2
2

⌘
+O("2) , (5.6.27)

where V�� ⌘ d2V/d�2. In the limit ↵̄ ! 0 the relations between ("1, "2) and ("V , ⌘V )

agree with those in GR.
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5.6.3 Lifshitz scalar in a fixed background

As a warm-up exercise, in this subsection we briefly review the computation of the

spectrum of a probe massless scalar field ' in a fixed inflationary background. From

now on we will work in conformal time t and denote derivatives with respect to it by

primes. The action for Fourier modes of the field reads,

Sscalar =
1

2

Z
dt

Z
d3p a2

⇥
'0
p'

0
�p � !2

'(t, p)'p'�p
⇤
. (5.6.28)

Anisotropic scaling in UV implies modified dispersion relation [150],

!2
'(t, p)

H2
=

p2

H2

"
{1 + {2

✓
p

aM⇤

◆2

+ {3

✓
p

aM⇤

◆4
#
, (5.6.29)

where H = a0/a = aH. The mode equation is given by

'00
p + 2H'0

p + !2
''p = 0 . (5.6.30)

During inflation, we have

H = �1/t , (5.6.31)

where we have neglected the corrections suppressed by the slow-roll parameters. When

the contribution from either of z = 1, 2, 3 dominates the others, using Eq. (5.6.31) and

imposing the adiabatic initial condition:

'p(t) !
1

a

1p
2!'

e�i
R
dt!' , (5.6.32)

we can solve the mode equation as

'p =
1

2a

r
�⇡t
z

ei
⇡(2⌫+1)
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"p{z

z

p

H

✓
p
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◆
z�1

#
, (5.6.33)

where the index of the Hankel function is given by

⌫ =
3

2z
. (5.6.34)
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At the Hubble crossing, !'/H ' z, after which ' ceases to oscillate, we obtain the

power spectrum of Lifshitz scalar ' as

PLS(p) ⌘
p3

2⇡2
|'p|2 =

↵⌫(z�1)
1

{⌫
z

(2⌫�[⌫])2

8⇡3
z

3
z
�1M2

P

✓
Hp

MP

◆ 3
z
�1

, (5.6.35)

where Hp denotes the Hubble parameter at this time. In order to obtain the power

spectrum at the end of inflation, we need to solve the time evolution also after !'/H '
z. In the massless case ' stops evolving in time soon after the Hubble crossing. Then

Eq. (5.6.35) gives the spectrum of ' at the end of inflation. Notice that, as discussed in

Ref. [150], for z = 3 the spectrum of Lifshitz scalar is exactly flat. This is a consequence

of the fact that for z = 3 the scaling dimension of the scalar ' vanishes. If the Lifshitz

scalar has a small mass, its evolution must also be traced after the Hubble crossing and

the final spectrum in general depends on the details of this evolution.

5.6.4 Gravitational waves

In this subsection we compute the spectrum of the gravitational waves generated during

inflation in HL gravity. We consider the metric,

N = 1, Ni = 0, hij = a2 (�ij + �ij) (5.6.36)

with the transverse traceless condition on the perturbations:

@i�ij = 0 , �ii = 0 . (5.6.37)

The quadratic Lagrangian density for the gravitational waves is given by

LGW =
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�
.

(5.6.38)

This is the most general form of the Lagrangian for linear tensor perturbations in HL

gravity in the absence of parity violation and non-minimal coupling to the inflaton.

(See Ref. [147] for the computation of the polarised gravitational wave spectrum in the

presence of the parity violation.)

Taking variation with respect to �ij , we obtain the mode equation for �ij as usual,

�00ij p + 2H�0ij p + !2
� �ij p = 0 , (5.6.39)
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where the frequency !� is given by

!2
�(⌘, p)
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⌘2 3X
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✓
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, (5.6.40)

with {�,z given in Eq. (5.6.11). We quantize the gravitational waves as

�ij(x) =
X

�=±

Z
d3p

(2⇡)3/2
�p(t)e

(�)i
j(p)e

ip·xa(�)p + (h.c.) , (5.6.41)

where � is the helicity of the gravitational waves, e(�)
ij

are the standard transverse and

traceless polarization tensors, and a(�)k are the annihilation operators which satisfy

h
a(�)k , a(�

0)†
p

i
= ���0�(3)(k � p) . (5.6.42)

The number of the polarisation in HL gravity is the same as in GR. Imposing the

adiabatic initial condition:

�p(t) !
2

aMP

1p
2!�

e�i
R
dt!� , (5.6.43)

we obtain the mode functions �p as

�p(t) =
1

MPa
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where the Hankel index ⌫ is given in Eq. (5.6.34). Like in the GR, �p is conserved in time

for !�/H < z. Using Eq. (5.6.44) we obtain the power spectrum of the gravitational

waves as

P� ⌘ p3

⇡2
|�p|2 =
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1
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, (5.6.45)

where Hp,� denotes the Hubble parameter when !�/H ' z.

The spectral index for the gravitational waves is given by

nt ⌘
d lnP�

d ln p
' �3� z

z
"1 . (5.6.46)

In 4D Di↵ invariant theory, the spectrum of the primordial gravitational waves is

generically red-tilted in an inflationary universe with "1 > 0 [164, 165]. By contrast, in

HL gravity, for z = 3, the spectral index nt vanishes even if "1 6= 0. This serves as a
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distinctive feature of the anisotropic scaling regime of gravity. Since the lapse function

is irrelevant to the gravitational waves at the linear order of perturbation, the results of

this section apply both to the projectable and non-projectable versions of HL gravity.

5.7 Decoupling and non-decoupling of khronon

In this section, we consider the scalar linear perturbations including the inflaton and

metric perturbations. We express the fields as,

�(t, x) = �(t) + '(t, x) , N = a(1 + �N) , Ni = a2@iB , hij = a2e2R�ij .

(5.7.1)

In general relativity, the metric perturbation R and the fluctuation of the inflaton '

are not independent. By contrast, in HL gravity R serves an additional scalar degree of

freedom, khronon, as a consequence of the lack of 4D Di↵ invariance. In this section we

discuss the evolution of khronon both in the projectable and non-projectable versions

of HL gravity. We will find that the khronon behaviour di↵ers qualitatively in these

two cases.

5.7.1 Projectable HL gravity

First we consider the projectable version of HL gravity. A review of this version can be

found in Ref. [166]. In this case the lapse function is constrained to be homogeneous and

does not a↵ect local physics. Setting �N = 0 and integrating out the non-dynamical

field B we find the action,

S =

Z
dt

Z
d3p [LR + L' + LR'] , (5.7.2)

with
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⇤
, (5.7.4)

LR' = a2
1� 2↵̄

↵̄
�0'pR0

�p . (5.7.5)
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The frequencies !2
R and !2

' are given by
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(5.7.6)
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(5.7.7)

We observe that in de Sitter universe, where the inflaton is absent, khronon R behaves

as a massless Lifshitz scalar and thus is conserved at super Hubble scales. However,

mixing with the inflaton (5.7.5) essentially modifies the dynamics.

Positivity of khronon kinetic energy requires,

1 + ↵̄

↵1↵̄
> 0 , (5.7.8)

which implies thatR su↵ers from a gradient instability in the IR limit, since ↵3 > 0. An

attempt to suppress this instability by taking the coe�cient ↵1↵̄/↵3(1+ ↵̄) to be small

leads to strong coupling and invalidates the perturbative description (see a detailed

discussion in Ref. [161]). Thus, projectable HL gravity cannot provide a viable low-

energy phenomenology in the regime of weak coupling. By analogy with non-Abelian

gauge theories, one might envision a scenario where strong coupling occurs only in IR

and leads to confinement of khronon at low energies. However, currently there exist

no controllable realizations of this scenario. Here we restrict to the anisotropic scaling

regime where the second and third terms in the brackets in (5.7.6) dominate, the theory

is stable and weakly coupled.

Estimates of various terms in the Lagrangian show that at !R,!' � H
p
" the

mixing term between R and ' is negligible and these two fields evolve independently.

Assuming that either z = 2 or z = 3 contribution is dominant and imposing the

standard WKB initial condition we find the mode functions for R and ',
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ei
⇡(2⌫+1)

4 H(1)
⌫

h!R
zH

i
, (5.7.9)

'p(t) =
1

2a

r
�⇡t
z

ei
⇡(2⌫+1)

4 H(1)
⌫

h !'

zH

i
, (5.7.10)

where the Hankel index ⌫ is given by Eq. (5.6.34). We did not write explicitly the

arguments of the Hankel functions; they have the same dependence on p and t as those
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in Eqs. (5.6.33) and (5.6.44). We have also neglected the slow-roll correction in !'/H,

since the momentum dependent contribution dominates it in this regime.

The above solutions cannot be extended to super Hubble evolution where !R,!' .
H
p
" and the mixing between R and ' becomes important. In this regime we have

two light Lifshitz scalars, the inflaton and khronon, which are mixed with each other.

As in a 4D Di↵ invariant theory with more than one light scalar fields, in this case

we do not find an adiabatic mode which is conserved in time at large scales (see, e.g.,

Ref. [167]). Then, in order to compute the observed fluctuations, we need to solve the

time evolution which can depend on concrete models of the reheating, the transition

to the isotropic scaling regime, and so on. As discussed above, this would require

also a controllable description of the mechanism that suppresses the IR instability of

the theory, which is currently missing. Therefore it appears problematic to provide a

robust prediction for primordial scalar power spectrum in the projectable version of

HL gravity.

5.7.2 Non-projectable HL gravity

In this subsection we will find that the time evolution of khronon in the non-projectable

version is qualitatively di↵erent from the one in the projectable version discussed above.

In particular, we will show that khronon is decoupled from the adiabatic curvature

perturbation ⇣ at large scales. Because of that, ⇣ is conserved in time as in the single

field model with 4D Di↵ invariance. Therefore, we can derive a robust prediction for the

power spectrum of ⇣ without solving the detailed evolution after the Hubble crossing.

Mass gap of khronon and anti-friction

In the non-projectable version of HL gravity, upon eliminating the non-dynamical fields

B and �N , we obtain the action for R and ' in the form (5.7.2) with

LR = a2M2
⇤
1 + ↵̄

↵1↵̄

⇥
(1� ⌦1(t, p))R0

pR0
�p � !2

R(t, p)RpR�p
⇤

. (5.7.11)

5.7.3 Action for R and '

The expressions for L',LR' are given as follows. Substituting the fields (5.7.1) into the

Lagrangian consisting of (5.6.1) and (5.6.8), expanding to second order in perturbations

and integrating out the lapse function and the shift vector, we obtain

S =

Z
d4xL =

Z
dt

Z
d3p [LR + L' + LR'] (5.7.12)
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with

LR = a2M2
⇤
1 + ↵̄

↵1↵̄

⇥
(1� ⌦1(t, p))R0

pR0
�p � !2

R(t, p)RpR�p
⇤
, (5.7.13)

L' =
a2

2

✓
1� ↵̄"1

1� 2↵̄
⌦1(t, p)

◆
'0
p'

0
�p � !2

'(⌘, p)'p'�p

�
, (5.7.14)

LR' = a2
⇢
� �0

H⌦1(t, p)'
0
pR0

�p +


1� 2↵̄

↵̄
(1� ⌦1(t, p))�

0 + ⌦1(t, p)
�00 �H�0

H

�
'pR0

�p

� �0⌦2(t, p)'
0
pR�p �

✓
1 + ↵̄

↵̄
H�0 + a2V�

◆
⌦2(t, p)'pR�p

�
,

(5.7.15)

where the functions ⌦1,2(t, p) have been introduced in (5.7.23), (5.7.24), the frequency

!R is given by Eq. (5.7.25) and !' is given by

!2
'(t, p)

H2
=

✓
p

H

◆2
"
{1 + {2

✓
p

aM⇤

◆2

+ {3

✓
p

aM⇤

◆4
#
+

a2V��

H2
� 1 + ↵̄

↵̄
"1

+
(1 + ↵̄)↵1

2↵̄M2
⇤

✓
�0 +

↵̄

1 + ↵̄

a2V�

H

◆2⌦1(t, p)

H2

� ↵1

2M2
⇤

1

(Ha)2


a2�0

✓
�0 +

↵̄

1 + ↵̄

a2V�

H

◆
⌦1(t, p)

H

�0
. (5.7.16)

By inspection of various terms in the Lagrangian we can see thatR and ' are decoupled

in the limit of large momenta p.

5.7.4 Action for ⇣ and '

Using ⇣ defined in (5.7.47) and eliminating R, we obtain the quadratic action as

S =

Z
dt

Z
d3p

h
L⇣ + L̃' + L⇣'

i
(5.7.17)

with

L⇣ = a2M2
⇤
1 + ↵̄

↵1↵̄

⇥
(1� ⌦1(t, p))⇣

0
p⇣

0
�p � !2

R(t, p)⇣p⇣�p
⇤
, (5.7.18)

L̃' =
a2

2


(1� 2↵̄)↵1

2(1 + ↵̄)"1

✓
1 +

↵̄"1
1� 2↵̄

◆
⌦3(t, p)'

0
p'

0
�p � !̃2

'(t, p)'p'�p

�
, (5.7.19)

L⇣' = a2
⇢
M2

⇤
H
�0
⌦3(t, p)

✓
⇣ 0p'

0
�p � �00 �H�0

�0
⇣ 0p'�p

◆
� �0⌦2(t, p)⇣p'

0
�p

�

2M2

⇤
1 + ↵̄

↵1↵̄

H
�0
!2
R(t, p) +

✓
1 + ↵̄

↵̄
H�0 + a2V�

◆
⌦2(t, p)

�
⇣p'�p

�
,(5.7.20)
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where we introduced

⌦3(t, p) =

✓
p

H

◆2
1 +

1

�4

✓
p

aM⇤

◆2

+
1

�4

✓
p

aM⇤

◆4�
⌦1(t, p) . (5.7.21)

The new expression for the '-frequency is

!̃2
'(t, p)

H2
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✓
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⌘2�
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1

(aH)2
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a2H


�⌦2(t, p) +

(1� 2↵̄)↵1

2(1 + ↵̄)"1
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1 +

"1↵̄

1� 2↵̄

◆
⌦3(t, p)

��0

+ 2

✓
1� 2↵̄
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+ "1 �

"2
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◆
⌦2(t, p)�

(1� 2↵̄)↵1

8(1 + ↵̄)

"2
"1

("2 � 4"1)⌦3(t, p).

(5.7.22)

Notice that all terms in L⇣' and L̃' are multiplied by factors of order O(X) (The de-

coupling of ⇣ from ' can be explicitly seen by changing ' to the canonically normalized

variable.). This implies that ⇣ has a constant solution in the long-wavelength limit.

We introduce the functions ⌦i(t, p) with i = 1, 2 as

⌦1(t, p) =

(
1 +

↵̄"1
1� 2↵̄

+
↵1↵̄

2(1 + ↵̄)

✓
p

H

◆2 1

↵4
+

1

�4

✓
p

aM⇤

◆2

+
1

�4

✓
p

aM⇤

◆4�)�1

,

(5.7.23)

⌦2(t, p) =
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1 + ↵̄

✓
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� 1

↵3
+

1

�3

✓
p

aM⇤
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+
1

�3

✓
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◆4
#
⌦1(t, p) . (5.7.24)

In terms of these quantities the frequency !R is expressed as,

!2
R(t, p)

H2
=
↵1↵̄

1 + ↵̄

✓
p

H

◆2
"
� 1

↵3
+

✓
3

�1
+

8

�2

◆✓
p

aM⇤

◆2

+

✓
3

�1
+

8

�2

◆✓
p

aM⇤

◆4
#

+
⌦2
2(t, p)

⌦1(t, p)
� (a2H⌦2(t, p))0

a2H2
.

(5.7.25)

We observe that the khronon Lagrangian is now much more complicated than in the

projectable case. A crucial new feature is the dependence of the coe�cient in front of

the term with time derivatives in (5.7.11) on the mode momentum. This leads to a
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peculiar behavior of khronon in inflationary universe, as we presently discuss.

It is convenient to introduce the notation,

X(t, p) ⌘
✓

p

H

◆2⇢
1 +

↵4

�4

✓
p

aM⇤

◆2

+
↵4

�4

✓
p

aM⇤

◆4�
. (5.7.26)

Roughly speaking, this quantity characterises the (square of the) ratio between the

frequencies of the perturbations and the Hubble rate (the precise expressions will be

given below). In the course of cosmological evolution it goes through four di↵erent

regimes:

(a) X � 1/↵̃2 , (5.7.27)

(b) "1/↵̃⌧ X ⌧ 1/↵̃2 , (5.7.28)

(c) 1 ⌧ X . "1/↵̃ , (5.7.29)

(d) X ⌧ 1 . (5.7.30)

Recall that in the non-projectable case the parameters are assumed to satisfy the

hierarchy (5.6.20). Here and below we symbolically denote the small quantities in the

first equation of Eq. (5.6.20) by ↵̃. Additionally, we will assume for the moment that

"1/↵̃� 1 . (5.7.31)

The opposite case will be commented on at the end of the section. Let us consider the

above regimes one by one.

(a) X � 1/↵̃2. In this case

⌦1 '
2↵4

↵1↵̄X
⌧ 1 , (5.7.32)

!2
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' 2↵1↵̄

✓
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� 1
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+ 1

�3
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)2 + 1

�3
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1
↵4

+ 1
�4
( p

aM⇤
)2 + 1

�4
( p

aM⇤
)4

. (5.7.33)

In the latter expression we recognize the dispersion relation of khronon in flat spacetime

(5.6.17) (up to suppressed corrections). In the UV regime, p > aM⇤, it behaves as a

Lifshitz scalar with z = 3 and

!2
R ' 2�4↵1↵̄

�23
p2
⇣ p

aM⇤

⌘4
,
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whereas if p < aM⇤ (but (5.7.27) still satisfied) it obeys the z = 1 scaling,

!2
R ' 2↵4↵1↵̄

↵2
3

p2 .

Note that in both limiting cases the ratio !2
R/H2 is of order X(t, p). One can infer

that inflaton ' also behaves in this regime as a Lifshitz scalar with dispersion relation

(5.6.29). Further, by estimating various terms in the Lagrangian LR', Eq. (5.7.15), it

is straightforward to check that mixing between modes R and ' is negligible4.

The IR limit p ⌧ aM⇤ of non-projectable HL gravity is closely related to Einstein-

aether theory [168]. Evolution of cosmological perturbations in the latter theory was

analyzed in [133] and it was shown that in the short wavelength limit the khronon R
and the fluctuation of the inflaton ' are decoupled from each other, which allows to

impose the WKB initial condition as usual. Our analysis provides a generalisation of

this result to the UV modes of HL gravity where terms with Lifshitz scaling z = 2 and

3 are important.

(b) "1/↵̃⌧ X ⌧ 1/↵̃2. In this regime we have,

⌦1 ⇡ 1� ↵1↵̄

2↵4
X ,

and the khronon Lagrangian takes the form,

LR = a2
M2

⇤X(t, p)

2

�
R0

pR0
�p � !̄2

R(t, p)RpR�p
�
.

The khronon frequency !̄R now reads,
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1
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�4
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�4
( p

aM⇤
)4

,

(5.7.34)

4Strictly speaking, the mixing can be resonantly enhanced if the frequencies !R(t, p) and !'(t, p)
happen to cross at some specific time. In our analysis, we do not consider this possibility. However,
even if the crossing takes place, the mode functions stay in the WKB form and the time evolution
remains essentially unchanged after the crossing.
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where

m2
k,1 ⌘ 2

↵4

↵3
"1H

2 , (5.7.35)

m2
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✓
3
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�3

◆
H2 , (5.7.36)

m2
k,3 ⌘ 2�4

✓
3

�1
+

8

�2
+

3

�3

◆
H2 . (5.7.37)

The second term in (5.7.34) is the same as (5.7.33). However, we observe that a new

contribution appears which gives the khronon a mass gap. For the regime where terms

with a given z = 1, 2, 3 dominate the mass is given by mk,z. Notice that mk,1 is

suppressed by the slow-roll parameter compared to mk,2 and mk,3. Still, within our

assumption (5.7.31) all the masses are parametrically larger than the Hubble rate. Note

that we can study evolution of R separately.

Due to the mass gap, the khronon rapidly oscillates. However, unlike one could

naively expect, the amplitude of these oscillations does not decay in the Lifshitz regime.

When either z = 2 or z = 3 contribution is dominant and the khronon frequency !̄R is

dominated by the mass term, as happens for X ⌧ 1/↵̃, the equation for R reads,

R00 � 2(z � 1)HR0 + a2m2
k, z

R = 0 . (5.7.38)

The second term here produces an ‘anti-friction’. The canonically normalized mode

functions have the form in the WKB approximation,

R(t) =
HM z�2

⇤
pz
p
2mk,z

(a(t))z�3/2 e�i
R
dta(t)mk,z , (5.7.39)

and describe oscillations with a growing amplitude, |Rp| / az�3/2. We are going to

see in the next subsection that the growth of khronon perturbations persists also at

X < "1/↵̃ as long as the modes remain in the Lifshitz regime and stops only when they

pass into the isotropic scaling z = 1. To stay within the validity of perturbation theory,

we will impose the requirement that the amplitude of khronon perturbations remains

small throughout the cosmological evolution, p3/2|Rp| < 1. This translates into certain

conditions on the inflationary parameters that will be discussed below.

Khronon-inflaton mixing

As the modes are further redshifted, the fields R and ' get mixed and no longer

provide a convenient basis for perturbations. To find the appropriate basis, we study
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the Lagrangian for R and ' in the regime: (c) 1 ⌧ X . "1/↵̃. We will focus in this

subsection on the case when the terms with Lifshitz scaling z = 2 or 3 dominate in the

dispersion relation. This is true if the inflationary Hubble rate H is bigger than M⇤,

which is the scenario of primary interest to us. For completeness we consider the case

of isotropic scaling, which will be shown in Sec. 5.7.4.

In the Lifshitz regime the leading mixing term is the first contribution in (5.7.15).

Simplifying the expressions using the assumed parameter hierarchy and introducing

the canonically normalised field

R̂ ⌘
p
2"1 + ↵1X/↵4MPR ,

we obtain the relevant part of the Lagrangian,

L =
a2

2

�
R̂0

pR̂0
�p � !̂2

RR̂pR̂�p
�
+

a2

2

�
'0
p'

0
�p � !2

''p'�p
�
� a2q

1 + ↵1X

2"1↵4

'0
pR̂0

�p ,

(5.7.40)

where !2
' is given by (5.6.29) and

!̂2
R =

!2
R

↵̄("1 + ↵1X/(2↵4))
.

In deriving these expressions we have neglected contributions of order H into the fre-

quencies. Note that !̂R is much higher than !'. Indeed, we have

!̂2
R ' a2

↵1

"1↵4
m2

k,z
X ' H2X

"1
� H2X ' !2

' . (5.7.41)

The Lagrangian (5.7.40) confirms explicitly our previous assertion that atX � "1/↵̃

the mixing between R and ' is negligible. On the other hand, we see that at X ⌧ "1/↵̃

it becomes essential. To identify the independent modes we use the substitution,

�+ = ' cos ✓ � R̂ !̂R
!'

sin ✓ , (5.7.42)

�� = '
!'

!̂R
sin ✓ + R̂ cos ✓ , (5.7.43)
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and find that the mixing term between �± disappears provided that5

tan 2✓ =
2!'!̂R
!̂2
R � !2

'

1q
1 + ↵1X

2"1↵4

. (5.7.44)

Due to (5.7.41) the mixing angle ✓ is always small and the expressions for the new

variables �± simplify. At X ⌧ "1/↵ they become,

�+ = '�
p
2"1MPR , (5.7.45)

�� =
p
2"1MPR+

⇣ !'

!̂R

⌘2
' , (5.7.46)

where we have switched back to the original metric perturbation R. In the expression

(5.7.45) we recognise the standard gauge invariant variable

⇣ ⌘ R� H
�0
' = �H

�0
�+ (5.7.47)

describing curvature perturbation on the slices of constant inflaton field. The La-

grangian for �± reads,

L =
a2

2

�
�0
+
2 � !2

'(t, p)�
2
+

�
+ a2

↵1X(t, p)

4"1↵4

�
�0
�
2 � !̄2

R(t, p)�
2
�
�
, (5.7.48)

where !̄2
R is the same as in (5.7.34). We see that �+ (or equivalently ⇣) inherits the

dispersion relation of the inflaton, whereas the second mode �� — that of khronon.

In other words, in the regime (5.7.29) we still have two independent physical excita-

tions, inflaton and khronon, with their respective dispersion relations (5.6.29), (5.7.34).

The corresponding eigenfunctions are connected to the original variables by (5.7.45),

(5.7.46). This is illustrated in Fig. 5.3.

We chose the positive frequency mode by imposing the WKB initial condition (see

Sec. 5.6.3) in the limit X � "1/↵̃, where R and ' are decoupled. Then, since the

rotation of the bases (5.7.45) and (5.7.46) does not mix the positive and negative

frequency modes, �± stay (the positive frequency mode of) the WKB solution for

X >⇠ 1.

5We again neglect contributions proportional to H that come from time variation of !̂R, !', X.
These are irrelevant as long as the frequencies of the fields are higher than the Hubble rate.
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Khronon-inflaton mixing for z = 1

If the inflationary Hubble rate is low, H < M⇤
p
↵1/"1, mixing between the inflaton

and khronon perturbations occurs in the regime where the dynamics is dominated by

the terms with relativistic scaling z = 1. In this Appendix, we consider the case with

"1/↵ > 1 and the range X ⌧ 1/↵2.

Compared to the Lagrangian (5.7.40) considered in the main text, one should keep

an additional mixing contribution, so that the total mixing Lagrangian reads,

LR' = a2

�

'0
pR̂

0
�pq

1 + ↵1X

2"1

+
↵1

↵3

H2Xq
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'pR̂�p

�
. (5.7.49)

The quantity X is now given simply by,

X = (p/H)2 ,

whereas the fields’ frequencies are,

!̂2
R = p2

↵1

↵3

1 + ↵1↵̄

↵3"1
X

1 + ↵1X

2"1

, !2
' = {1p

2 .

At X � "1/↵1 the fields ' and R̂ are decoupled and have the same velocities as the

inflaton and khronon in flat spacetime, whereas at X ⌧ "1/↵1 they become strongly

mixed. To diagonalize the Lagrangian in the latter case, we write it in terms of ' and

�+ = '� R̂q
1 + ↵1X

2"1

.

It is straightforward to see that the mixing terms are negligible at X ⌧ "1/↵1. Thus,

we conclude that in this regime the decoupled modes are �+ (or equivalently ⇣, see

Eq. (5.7.47)) and '. Their Lagrangian reads,

L =
a2

2

⇣
�0
+
2 � ↵1

↵3
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+
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+
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�
. (5.7.50)

It is worth stressing that in this Appendix we have focused on ‘sub Hubble’ modes, i.e.

modes with X � 1. Nevertheless, we observe that the '-equation following from the

Lagrangian (5.7.50) coincides with Eq. (5.7.59) obeyed by super Hubble isocurvature

modes in the z = 1 regime. In other words, in the z = 1 case the adiabatic and

isocurvature modes are described respectively by ⇣ and ' at all times when X ⌧ "1/↵1.
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Note that the velocity of the adiabatic mode is given by
p
↵1/↵3 and coincides with

the velocity of gravitons, rather than the velocity of inflaton.

Long wavelength evolution and power spectrum

We have shown that the variables �± are independent as long as the frequencies of

the modes remain higher than the Hubble rate. As the modes redshift and approach

the ‘horizon crossing’, X ' 1, the situation gets more complicated due to the terms

proportional to H in the Lagrangian that can no longer be neglected. However, the

situation simplifies again for ‘super Hubble’ modes corresponding to the regime:

(d) X ⌧ 1. In the standard relativistic single field inflation the curvature pertur-

bation ⇣ is conserved at these scales. All non-derivative terms in the ⇣-equation turn

out to be suppressed by X, so that we obtain the solution,

⇣ = const . (5.7.51)

This allows to immediately write down the power spectrum for ⇣ by matching to the

amplitude of �+ fluctuations at the Hubble crossing, see Eq. (5.7.47),

P⇣(p) =
1

2"1,pM2
P

PLS(p) , (5.7.52)

where PLS(p) is the power spectrum of the Lifshitz scalar and "1,p is the value of the

slow-roll parameter at the Hubble crossing time of the mode p. Explicitly we have,

P⇣(p) =
↵⌫(z�1)
1

"1,p{⌫
z

(2⌫�[⌫])2

16⇡3
z

3
z
�1

✓
Hp

MP

◆ 3
z
�1

, ⌫ =
3

2z
. (5.7.53)

Note that for z = 3 the spectrum is independent of the Hubble rate at inflation,

P⇣(p) =
1

8⇡2
↵1

"1,p
p{3

, z = 3 . (5.7.54)

The spectral index is given by

ns � 1 ⌘
d lnP⇣

d ln p
= �3� z

z
"1 � "2 , (5.7.55)

or alternatively,

ns � 1 = �3(1 + z)

z
"V + 2⌘V . (5.7.56)
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For z = 1 we recover the standard expressions.

We now analyze the super Hubble behavior of khronon, or ‘isocurvature’ mode.

Despite the fact that the frequency term for ' in the Lagrangian (5.7.19), as well as

its mixing with ⇣, are suppressed by X, it still evolves non-trivially, because its time

derivative term is also proportional to X. When the contributions with Lifshitz scaling

z = 2, 3 dominate, the equation for ' following from (5.7.19), (5.7.20) simplifies,

'00 � 2H(z � 1)'0 + a2m2
k,z

�
'+

p
2"1MP ⇣) = 0 . (5.7.57)

The combination in brackets in the last term is nothing but
p
2"1MPR, which also

coincides with ��, up to slow-roll suppressed corrections. Also Eq. (5.7.57) is the same

as the khronon equation (5.7.38). We conclude that khronon preserves its identity

through Hubble crossing. Despite very long wavelength of the modes, they continue

to rapidly oscillate with growing amplitude due to anti-friction. The decoupling of

⇣ and R now receives an intuitive explanation: these excitations have very di↵erent

frequencies and therefore cannot mix.

The amplitude of khronon oscillations seizes to grow when the momentum redshifts

down to p/aM⇤ ' 1. For
p
"1 ⌧ p/aM⇤ ⌧ 1 the equation for ' reads,

'00 + �4
p2m2

k,2

M2
⇤

�
'+

p
2"1MP ⇣) = 0 , (5.7.58)

and describes pure oscillations of R with constant amplitude. This is illustrated in

Fig. 5.4. Finally, for p/aM⇤ ⌧
p
"1 the '-equation becomes,

'00 +
2H2"1
↵1

⇣
{1 �

↵1

↵3

⌘
' = 0 . (5.7.59)

First, we notice that ' has completely decoupled from ⇣. This is consistent with the

result of [133] which studied inflation in the z = 1 limit of HL gravity and identified the

independent modes in the super Hubble regime as ⇣ and �N = (H/�0)'. The latter

has geometric interpretation of the di↵erence in the number of e-foldings between the

surfaces of constant inflaton (i.e. constant density) and constant khronon. Second,

the nature of solutions to (5.7.59) depends on the sign of the combination in brackets

which has the physical meaning of the di↵erence between (the squares of) the low-

energy velocities of the inflaton, c2' ⌘ {1, and graviton c2� ⌘ ↵1/↵3 (see Eqs. (5.6.11),

(5.6.29)). If it is positive, the mode ' performs rapid oscillations with the physical

frequency !'/a ' H
p
"1/↵1 � H and the amplitude decaying as a�1/2. On the other
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hand, if {1 < ↵1/↵3, the solutions to (5.7.59) exhibit an exponential runaway behavior,

signaling an instability. These two cases are illustrated in Fig. 5.4. To avoid instability,

we will assume that {1 > ↵1/↵3.

Equation (5.7.59) has been derived under the assumption that the low-energy ve-

locities of inflaton and graviton di↵er by a factor of order one. Alternatively, one can

impose the requirement that this di↵erence should be small, c2' � c2� = O(↵), which

corresponds to an emergence of approximate Lorentz invariance at low energies. In

this case one must retain additional contributions of the same order in the expression

(5.7.22) for the frequency of ', so that the '-Lagrangian becomes,

L̃' = a2
↵1

4"1

✓
p

H

◆2
'02 �H2 "1

✓
1� "2

2"1
+

2(c2' � c2�)

↵1
+

3c2
k

c2�

◆
'2

�
, (5.7.60)

where c2
k
⌘ 2↵1↵̄/↵2

3 is the low-energy velocity of the khronon. Upon proper translation

of notations, this coincides with the Lagrangian for the isocurvature mode obtained

in [133]. From (5.7.60) we see that the isocurvature mode evolves slowly with the rate

suppressed by the slow-roll parameter "1. This behavior is also illustrated in Fig. 5.4.

Even if the isocurvature mode does not develop instability at late times, it initially

grows due to anti-friction, see Eq. (5.7.57) and Fig. 5.4. By the time the growth

terminates the power spectrum of R reaches

PR

���
a=p/M⇤

=
H2

4⇡2mk,zM⇤
' H

4⇡2MP

. (5.7.61)

For the validity of the linearized theory developed above we must require that the

perturbations of R do not exceed unity. Then we obtain an upper bound on the

inflationary Hubble scale,

H < 4⇡2MP . (5.7.62)

This constraint is somewhat unexpected, as a priori HL gravity should be appli-

cable also at trans-Planckian energies6. In fact, the requirement (5.7.62) may be too

restrictive. It follows from consideration of metric perturbations with very long wave-

lengths. Unlike in GR, we cannot use a space-dependent reparameterization of time to

remove this perturbation completely. However, space-independent time reparametrisa-

tions are still a symmetry of HL gravity and can be used to remove the fluctuation R
at any given point. This suggests that coupling of khronon to other physical degrees

6Recall, in particular, that for z = 3 the power spectra of the curvature perturbation ⇣ and the
gravitational waves � do not depend on the Hubble scale, so their perturbative calculation does not
require sub-Planckian energies.
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of freedom should involve spatial derivatives and its almost homogeneous fluctuation,

even with a large amplitude, should not have any e↵ect locally. This property is indeed

satisfied by the Lagrangian (5.7.20) describing dynamics of ⇣ and khronon at super

Hubble scales. We have also verified that in pure de Sitter universe the growth of R
does not lead to divergence of local gauge invariant observables constructed out of the

metric hij , such as the extrinsic curvature K and Ki
jKj

i and the spatial Ricci scalar

R. For instance, the linear perturbation of the trace part of the extrinsic curvature is

given by

�K = K � 3H = �1� 2↵̄

↵̄

h
(1� ⌦1)Ṙ� ⌦2HR

i
/ a�(z+ 3

2 ) . (5.7.63)

These arguments indicate that the constraint (5.7.62) may be avoided by a more careful

treatment where the growth of super Hubble khronon fluctuations is absorbed by an

appropriate field redefinition. This study is, however, beyond the scope of the present

paper.

Before concluding this section, let us describe what happens if the slow-roll param-

eter "1 is the smallest quantity in the setup,

"1/↵1 ⌧ 1 . (5.7.64)

In this case the perturbations R and ' are decoupled all the way through the Hubble

crossing down to X ' "1/↵. After that, the good variables are ⇣ and '. As before, ⇣ is

conserved, whereas the evolution of ' is described by Eqs. (5.7.57), (5.7.58), (5.7.59),

(5.7.60). The power spectrum of ⇣ is determined by matching it to the fluctuations of

the inflaton and khronon at X ' "1/↵. It is easy to see that the inflaton fluctuations

dominate, so the spectrum is still given by (5.7.53) (leaving aside a small correction

due to the damping of the inflaton perturbations between the Hubble crossing and

X ' "1/↵). Note that for z = 3 the hierarchy (5.7.64) is actually not viable, as it

would imply that the power spectrum is larger than unity, see Eq. (5.7.54).

5.8 Violation of consistency relation

In the previous section, we computed the power spectra of the adiabatic curvature

perturbation ⇣ and the primordial gravitational waves in the anisotropic scaling regime

of HL gravity. In particular, we have shown that in the non-projectable case ⇣ is

conserved at super Hubble scales during inflation, despite the presence of an isocur-

vature scalar perturbation. The intuitive explanation of this conservation is that the

isocurvature mode, associated to the shift of khronon, is locally unobservable and its
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interaction with ⇣ is suppressed by spatial derivatives. This suggests that ⇣ will not be

a↵ected by the isocurvature mode at super Hubble scales also after the end of inflation.

Indeed, conservation of ⇣ at super Hubble scales has been demonstrated for rather

general matter content in the low-energy limit (z = 1) of non-projectable HL gravity

in Refs. [133, 151]. We will proceed under the assumption that this also holds between

the end of inflation and the time when the universe enters into the isotropic scaling

regime. Below we discuss a signal of the Lifshitz scaling in the primordial spectra.

5.8.1 Consistency relation in 4D Di↵ invariant theories

Before discussing the primordial spectra generated in the anisotropic scaling regime,

let us review the discussion in theories encompassed by the E↵ective Field Theory

(EFT) of inflation [33] where the inflaton background breaks 4D Di↵ invariance down

to time-dependent spatial Di↵. We follow Ref. [164, 165]. Within EFT of inflation, the

quadratic action for the gravitational waves is given by

S�� =
1

8

Z
dt d3x a2

M2
P

c2�

⇥
(�0ij)

2 � c2�(@k�ij)
2
⇤
. (5.8.1)

In the presence of a time-dependent inflaton background which breaks Lorentz invari-

ance and time-translations, the parameters MP and c� can deviate from their vacuum

values and can vary with time. However, one can always set these parameters to fixed

values by a redefinition of the metric. Indeed, performing the disformal transformation:

gµ⌫ 7! gµ⌫ + (1� c2�(t))nµn⌫ , (5.8.2)

where nµ is the unit vector orthogonal to the constant-inflaton slices, and successively

performing the conformal transformation to the Einstein frame,

gµ⌫ 7! c�1
� (t)

M2
P
(t)

M2
P,0

gµ⌫ , (5.8.3)

we can set the graviton speed c� to unity and M2
P
to constant. The equivalence between

the Einstein frame and the Jordan frame for the gravitational waves was explicitly

confirmed in Ref. [164, 165]. The price to pay is that these transformations also alter

the sector of scalar perturbations. For instance, if the propagation speed of the inflaton

cs is 1 in the original frame, after the above disformal transformation which sets c� to

1, the sound speed cs is changed into cs = c�1
� .

After inflation, the non-minimal coupling introduced by the inflaton should disap-

pear. Therefore, it is reasonable to calculate the primordial spectra in the Einstein
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frame for the gravitational waves. Then the spectrum for the gravitational waves is

given by the standard expression and depends only on the ratio of inflationary Hubble

scale and Planck mass. Besides, one obtains the well-known consistency relation

nt = � r

8cs
, (5.8.4)

which relates the spectral index for the gravitational waves nt and the tensor to scalar

ratio r. (The sub leading contribution to the consistency relation in the slow-roll

approximation can be found, e.g., in Ref. [169].) In a Lorentz invariant theory the

velocity of any excitation cannot exceed unity, cs  1, which implies a bound,

� nt �
r

8
. (5.8.5)

This is a robust prediction of (single field) EFT of inflation. Moreover, when cs is

smaller than 1 the equilateral non-Gaussianity is enhanced by 1/c2s (see, e.g., Refs. [170,

171, 172]). Thus, a deviation from equality in (5.8.5) should be accompanied by large

non-Gaussianity.

5.8.2 Violation of consistency relation in Hořava–Lifshitz gravity

We now discuss the primordial spectra generated in gravity with anisotropic scaling.

In this case the symmetry breaking pattern is di↵erent: there are no 4D Di↵ to start

with, but only the reduced symmetry of foliation-preserving Di↵, that is further broken

to time-dependent spatial Di↵ by the inflaton background. The velocity of graviton

depends now on the wavenumber p, so one cannot set it to unity by the disformal trans-

formation which globally changes the time component of the metric. This means that

the modified dispersion relation physically changes the spectrum of the gravitational

waves. In particular, the relation between the power spectrum P� , Eq. (5.6.45), and

the inflationary Hubble rate is no longer straightforward: it depends on the scaling

exponent z and other parameters of the theory. For z = 3 the tensor power spectrum

does not depend on H at all. On the other hand, a robust prediction for z = 3 is

vanishing of the tensor spectral index, nt = 0.

Using Eqs. (5.6.45) and (5.7.53), at the leading order in the slow-roll approximation,
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we obtain the tensor-to-scalar ratio as7

r ⌘ P�

P⇣

' 16"1

✓
{z

{�,z

◆ 3
2z

. (5.8.8)

Exceptionally, for {z = {�,z the tensor-to-scalar ratio is given by the standard ex-

pression irrespective of the value of z. Using Eqs. (5.6.46) and (5.8.8), we obtain the

modified consistency relation for the primordial perturbations in the anisotropic scaling

regime as

nt ' �3� z

z

r

16

✓
{�,z

{z

◆ 3
2z

. (5.8.9)

We see that nt and r are still related linearly, but the coe�cient depends on z, {z,

and {�,z. Clearly, this can violate the lower bound (5.8.5) on �nt obtained in Lorentz

invariant theories.

5.9 Concluding remarks

HL gravity contains an additional scalar degree of freedom in the gravity sector,

khronon, corresponding to fluctuations of the preferred time foliation. Therefore, a

minimal model of inflation possesses two scalar degrees of freedom: the inflaton and

khronon. These two fields are coupled gravitationally. In the small scale limit, as

usual, the gravitational interaction is suppressed and we simply have two decoupled

Lifshitz scalar fields. Naively, one may expect that in the large scale limit, the gravi-

tational interaction becomes important and these two fields start to be coupled. This

is indeed the case in the projectable version of HL gravity. The inflaton and khronon

stay nearly gapless modes which are bi-linearly coupled. Then the adiabatic curvature

perturbation ⇣ is generically not conserved at large scales.

On the other hand, the situation is crucially di↵erent in the non-projectable version.

7Equations (5.6.45) and (5.7.53) directly give

r = 16"1

✓
{z

{�,z

◆ 3
2z

✓
Hp,�

Hp

◆ 3
z �1

. (5.8.6)

For {z 6= {�,z, the Hubble crossing times for the adiabatic perturbation does not necessarily coincide
with the one for the gravitational waves and the Hubble parameters at these times are related as

Hp,�

Hp

'

✓
{z

{�, z

◆ "1
2z

. (5.8.7)
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In the anisotropic scaling regime, khronon acquires the e↵ective mass mK , which is

much larger than the Hubble scale, well before Hubble crossing time. It then decouples

from the adiabatic mode ⇣ and does not leave any impact on the power spectrum of ⇣,

which is conserved at super Hubble scales. The power spectrum of ⇣ is simply given

by that of the Lifshitz scalar with the multiplicative factor 1/(2"1M2
P
). The decoupled

khronon rapidly oscillates, with the amplitude of the oscillations growing exponentially

due to anti-friction. The growth persists until the mode enters into the regime of

isotropic scaling as a consequence of the redshift of its momentum. We need a more

careful consideration to see if this exponential growth can or cannot a↵ect observable

quantities.

One remaining question is whether the decoupling between the adiabatic mode ⇣

and khronon is a robust feature of non-projectable HL gravity also beyond the restricted

setup considered in this paper. We have focused on the linear order in perturbations.

The physical interpretation presented in Sec. 5.7.2 suggests that the decoupling will

also persist at non-linear orders. We postpone an explicit analysis of this issue, as

well as of primordial non-Gaussianity, to a future work. In this paper we assumed the

minimal coupling of the inflaton to the gravity sector. One may wonder whether a

non-minimal interaction can prevent the decoupling of khronon. Recall that khronon

gets gapped due to a peculiar structure of the coe�cient in front of the (quadratic)

time derivative term in the action. Thus, to make khronon gapless, the non-minimal

coupling should modify the time derivative terms. The only contribution that can

change the time derivative terms under the assumption of foliation-preserving Di↵ and

time reversal symmetry is the term with K�̇/N . However, this can be removed by a

redefinition of the metric hij ! ⌦2(�)hij and N ! ⌦3(�)N . Therefore, we expect that

the decoupling between ⇣ and khronon takes place generically in the non-projectable

version of HL gravity with the time reversal symmetry in the anisotropic scaling regime.

It may be interesting to study if this decoupling takes place also in the case when the

time reversal symmetry is broken, e.g. by a term with
p
h �̇/N .

We also pointed out that the consistency relation between the tensor to scalar ratio r

and the tensor spectral index nt, which holds in the general single field EFT of inflation,

can be violated by the primordial perturbations generated during the anisotropic scaling

regime. If the primordial gravitational waves are detected, the value of r will give the

lower bound on �nt in Lorentz invariant theory. A violation of this bound will indicate

violation of Lorenz invariance in the early universe.
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Figure 5.1. The observational constraints on the Lorentz invariance
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Figure 5.2. The summary table of parameter hierarchy

Figure 5.3. Summary of the time evolution of the fluctuations. The central axis

denotes the quantity X(t, p) introduced in Eq. (5.7.26).
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Figure 5.4. The amplitude of a khronon mode with conformal momentum p as a

function of the scale factor. It grows in the Lifshitz regime and reaches the valuep
H/MP . Then it remains constant till a ⇠ p/M⇤

p
"1, where the mode enters into the

z = 1 scaling. The subsequent evolution depends on the relation between velocities of

the inflaton and graviton characterized by the parameters {1 and ↵1/↵3, as explained

in the main text.



Chapter 6

Testing gravity with CMB

lensing

The cosmic structures existing in today’s Universe, i.e., the planets, stars, galaxies,

and the large structure have grown from the initial seeds buried in the early Universe.

The crucial driver of the cosmic structure formation is gravity. For the large scale

structure, gravity a↵ects the speed of the cosmic growth of the structures both in

locally and distantly. As a local scale, less than 1Mpc the gaseous objects or dark

matters freely falls in a gravitational potential self produced by them. In the distant

scale, typically 100Mpc where the cosmic expansion well dominates the coherent motion

of the galaxies, the cosmic growth of the gravitational potentials being further deepened

or shallower in cosmological time-scale. The cosmic expansion generates the two e↵ects

on the gravitationally evolved structures; gravitational redshifts and the growth rate

of the potential. The gravitational redshifts are di↵erently known as the Kaiser e↵ect

[173, 174] and the Fingers of God e↵ect [175]. These e↵ects was directly measured

by 2dF galaxy survey [176], successively confirmed by SDSS survey [177]. Nowadays

people call it as the redshift space distortions. On the other hand, the growth speed

of the structure formation mainly change the amplitude and clustering degree of the

galaxies.

Provided the gravitational interactions are normally given by the Einstein’s general

relativity in the past 10 billion years, the redshift space distortions and the growth rate

of the structure are directly trace the matter clustering. However, if the law of gravity

in the past deviates from the Einstein’s gravity, the growth of the structure accumulate

the change of gravitational law in the cosmological time scale. As predicted in Chapter

4 the change of the additional scalar intermediate causes the observationally significant

features on observable quantities.

163
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Observationally, the decode of the modification of gravity and the matter clustering

is hard to distinguish. By combining the clustering information and the light deviation

by gravitational lensing, however, enables in principle us to disentangle the e↵ects of

the gravity from those of the matters. In particular, the time lapse of the cosmic

structures carry abundant information of cosmology.

We develop the methodology of testing gravity at high redshifts. We consider the

gravitational lensing of CMB by the massive radio galaxies, aiming to measure the

growth history of the large scale structure at z > 1. We provide all-sky data of radio

surveys and develop the method of how we properly assign the number distribution

and the galaxy bias of radio sources. We identify the main di�culty for the extraction

of growth history of the large scale structure with the existing data of galaxy and

radio surveys, and CMB-lensing by Planck 2015, discussing possible removals of such

di�culty in future radio and galaxy surveys.

6.1 CMB lensing

We review the CMB lensing based on A. Lewis and A. Challinor 2006 [178] . The

small notations are changed, as fitted to the entire thesis. We consider that the metric

perturbations in the conformal Newtonian gauge with a flat FLRW background space-

time is given as

ds2 = �a2(⌘)(1 + 2 )d⌘2 + a2(⌘)(1� 2�)�ijdx
idxj , (6.1.1)

Due to the conformal invariance of a null geodesic on which photons are at motion, the

certain conformal transformation so that the spatial metric is nothing but that of the

background makes the derivation of formulae for the photon propagation easier. The

metric after this transformation is obtained as

ds2 = �a2(1 + 4 W )d⌘2 + a2�ijdx
idxj , (6.1.2)

where the Weyl potential  W
1 is defined as

 W ⌘  + �

2
(6.1.3)

Note that when modified gravity theory is presented, the Weyl potential should reflect

that the modification of the gravitational strength for a photon by comparison to the

1 W is often called the Weyl potential because the general linear scalar-mode of the Weyl tensor.
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Newton potential computed via the Poisson equation for a photon propagation2,

r2 W = 4⇡GNa
2(⇢̄m� +⇧) , (6.1.4)

Whenever the anisotropic stress ⇧ is negligible smaller than the density contrast, the

Weyl potential  W is solely determined by the density fluctuation of the matter in the

universe. Hereafter, we treat that ⇧ = 0. ⇢̄m is represented as

⇢̄m =
3H2

0

8⇡GNc2
⌦m , (6.1.5)

Let us consider the CMB lensing. On the way through that a CMB photon passes,

the deflection by a local gravitational potential bends the trajectory of a photon. By the

fact that we can only know from which angle in the line of sight the photons come from,

then the physical information of the CMB photons, i.e., the black-body temperature,

polarisation, or the energy injection are all di↵erent of the values that suppose to be

observed along the line of sight. We represent this fact for the temperature fluctuations.

The CMB photons that we actually measures along the line of sight n̂ are T̃ (n̂) given

through

T̃ (n̂) = T (n̂+r ) , (6.1.6)

where T (n̂) is the original temperature fluctuation of the CMB photons without any

deflection e↵ect. We call rn̂ as the deflection vector. The integral of the Weyl

potential on the line of sight provides you the total deflection vector rn̂ . i.e., the

gradient of a scalar potential; along the line of sight is given as

 (n̂) = �2

Z
�⇤

0
d�
�⇤ � �

�⇤ · �
 W (�n̂; ⌘0 � �) , (6.1.7)

Here  is called the lensing potential and �⇤ represents the co-moving coordinate at

the last scattering surface. Hereafter we omit the subscript and argument n̂ from the

derivatives. The schematic image is shown here.

The lensing convergence is defined by

r2 = �2 , (6.1.8)

2In modified gravity theories, Poisson equation of a photon is generally obtained in a form
Eq. (4.9.15)



CHAPTER 6. TESTING GRAVITY WITH CMB LENSING 166

Figure 6.1. The schematic image of CMB lensing

 is the magnification of CMB flux. By operating Laplacian onto Eq. (6.1.7) and using

Eqs. (6.1.8) and (6.1.4),  is obtained as

 =
3H2

0⌦m0

2c2

Z
�⇤

0
d��(�)

�(�⇤ � �)

a�⇤
⌘
Z

d��(�)K(�) , (6.1.9)

We explicitly see that the density contrast � is related to . Note that K is a kernel

function that gives the probability of lensing events at a certain co-moving distance.

The dependency of a cosmological model appears in the relation of redshift and co-

moving distance and the temporal growth of �.
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6.2 Wide area CMB lensing tomography

CMB lensing is in principle able to measured by cross-correlating with the matter

distribution of the Universe. This is reasonable because a gravitational potential at a

local environment which induces gravitational lensing on CMB photons is given by the

Poisson equation in Eq. (6.1.4). It is able to measure the growth speed of large scale

structure in di↵erent redshift intervals. We briefly summarise a study that has been

done by J. A. Peacock and M. Bilicki 2018 [179]. As argued in [179], in the correlation

of the CMB or galaxies, the angular correlations are

Cab(`) = 4⇡

Z
d ln k�2(k)

Z
d�Kaj`(k�)

Z
d�Kbj`(k�) , (6.2.1)

where �2(k) ⌘ (k3/2⇡2)P�(k) is the dimensionless power spectrum of matter density

contrast. The Limber approximation is applied, obtaining the shorthanded form of the

angular correlation as

`(`+ 1)

2⇡
Cab =

⇡

`

Z
d��2(`/�)�Ka(�)Kb(�) , (6.2.2)

where Ka,b are kernel functions of tracers of matter density contrast. For instance,

galaxies well trace the density contrast in the Universe. We use CMB lensing kernel

and the distribution of galaxies.

Kg(�) ⌘ �b(z)
c

H(z)

dn(z(�))

dz
, (6.2.3)

where we use the defnition of the co-moving distance, i.e., d�/dz = �c/H(z). We follow

that the galaxy bias b(z) is scale-independent, as shown in [180]. Note that the determi-

nation of the redshift distribution of galaxies is essential. To compute the matter power

specrum �2(k), we use CLASS [181], a publicly-available Einstein-Boltzmann solver

of CMB. For simplicity, we set the background cosmology to the ⇤CDM model as de-

fault in CLASS,i.e., (h,⌦m0h2,⌦bh2, As, ns, ⌧reio) = (0.67556, 0.142412, 0.022032, 2.215·
10�9, 0.965, 0.0925). We switch on HALOFIT approximation in CLASS to be accurate

to the non-linear scale above 0.1hMpc�1.

6.3 Pseudo estimator of angular power spectrum

When dealing real data, it is often a case that an area of the sky that is observed

is incompletely covered all the sky, e.g., foreground emissions, instrumental barriers,
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limitation of survey time. This causes a loss of astrophysical information. It is known

that an artificial mask on the observed signal is an e�cient way to remove noises on

the true signal. The price to pay is that we cannot see all the sky, generating statistical

uncertainties and some systematic noises.

6.3.1 Fair sample hypothesis

Fair sample hypothesis states that signals in di↵erent parts of the sky we observe are

assumed to be generated by a same random process. This hypothesis ensures that

the average of a signal such as CMB temperature fluctuation or galaxy distributions

over the areas we are able to observe are considered as di↵erent realisations of cosmo-

logical information. Thanks to the central limit theorem, statistical errors shrink to

the true distributions of physical parameters we want to test. As it has been conclu-

sively established, the measurement of CMB anisotropy almost reaching to the cosmic

variance limit. We rely on the fair sample hypothesis, assuming that the distribution

of radio samples in di↵erent part of the sky would trace same randomness of density

fluctuations.

6.3.2 Pseudo angular power spectrum

The fair sample hypothesis enables us to obtain physical parameters in cosmology via

statistical estimators. One of the popular estimators is called pseudo power angular

power spectrum [182] which is defined as

Cab(pseudo) ⌘
1

fsky
Cab(masked) , (6.3.1)

where fsky is the sky fraction, which depends on the actual set-up. The mathematical

derivation of this formula is shown in Appendix. C.1. We apply the mask for the Planck

2015 lensing, whose sky fraction is fsky = 0.68. For sampling the we use HEALPix

[183, 184], which provides the pixelisation of the sky and compute the angular power

spectra.

By using the data of the Planck 2015 for the CMB lensing convergence 3, we demon-

strate the computation of angular auto power spectrum of CMB convergence. As

Fig. 6.3 shows, the noise dominates at higher multipoles in C. Therefore, we use

a model prediction of C in the measurements of the cross power spectrum between

radio galaxies and CMB lensing convergence.

3for the data, please read the link; https://pla.esac.esa.int/
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Figure 6.2. Planck 2015 mask for lensing
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Figure 6.3. Angular power spectrum of CMB lensing (convergence). The blue dot

is the real data measured and the green line is the theoretical prediction by the

⇤CDM model with (h,⌦m0h2,⌦bh2, As, ns, ⌧reio) = (0.67556, 0.142412, 0.022032, 2.215 ·
10�9, 0.965, 0.0925)
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6.4 The massive radio galaxies

The massive radio galaxies are radio-loud galaxies observed in radio bands. It is be-

lieved that the radio galaxies are bright in radio waves because radio emission is en-

ergised by active galactic nucleis at the centre of the galaxies, which generates enor-

mous outflow of energy. The luminosity of a radio galaxy at 500 MHz is typically

L500(rest) > 1027W Hz�1[185].

Observationally, the radio galaxies are identified as a point source in the sky as

they are distant from us. Currently, tens of millions sources are found in the previous

radio surveys, e.g., NRAO VLA Sky Survey (NVSS)[186], Sydney University Molonglo

Sky Survey (SUMSS)[187], and VLA FIRST survey[188]. The spectroscopy of radio

galaxies is done for 132 galaxies in CENSORS [189, 190], but the rest of radio galaxies

are not positioned in redshift space.

Clustering of radio galaxies in NVSS catalog was firstly argued in [191, 192], ob-

taining non-zero angular correlation between the radio galaxies. The angular cross-

correlation with CMB temperature fluctuations is obtained as non-zero value by K. Smith

et al. 2007 [193], evidently showing that the radio galaxies are indeed a source of grav-

itational lensing. The other measurement of the angular cross power between a radio

catalogue and CMB lensing is obtained with data of FIRST and Acatama Cosmology

Telescopes (ACT) [194]. At present, however, the theoretical predictability of the cross

power is very limited by uncertainty of radio galaxy bias and the redshift distributions

of radio galaxies. To improve theoretical predictions, it is necessary to obtain the bias

and the redshift distribution accurately.

The massive radio galaxies are good tracers at higher redshifts at z > 1, where

the matter components dominate the Universe, determining the expansion history the

and structure formation. The growth history of the, typically parametrised by �8(z)

that gives the amplitude of the structure formation is less known at z > 1. The main

di�culty to measure �8 is that we have less tracers that accurately distributes in the

redshift space.

Survey frequency flux cut beam size

NVSS 1.4GHz � 6mJy 45 arcsec

SUMSS 843GHz � 8mJy 45 arcsec

CENSORS 1.4GHz > 7.5mJy 45 arcsec

Table 6.1. Data for radio galaxies

The combination of the tabled data covers over 80% of all the sky,i.e., the sky
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fraction is fsky = 0.823.

Figure 6.4. The sky map of NVSS-SUMSS radio galaxies. The number distribution

is shown.
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6.5 Estimated redshift distribution of radio sources

We try to estimate the redshift distribution of the radio galaxies in NVSS and SUMSS

with the optical galaxies in Kilo Square Degree Survey (KiDS)4. We assume that the

radio galaxies locates in galaxy clusters and member galaxies in a cluster can be seen

in the catalogs of optical galaxies.

6.5.1 KiDS optical galaxies

KiDS optical galaxies provide the completed catalog of optical galaxies in a wide range

of redshifts. Since KiDS is an imaging survey, the redshift of the KiDS galaxies is not

spectroscopically but photometrically measured. As [195] shows, the uncertainty of

redshifts of KiDS galaxies is h�z/(1 + z)i < 4⇥ 10�5 and the scatter is �(�z/(1+ z)) <

0.019.

The survey area is shown in Fig. 6.5. For the purpose of estimating the redishift

distribution of the radio galaxies, we apply DR1, DR2, and DR3 data of KiDS galaxies.

Figure 6.5. Sky distribution of survey tiles released in KiDS-ESO-DR3 (green) and

in the previous releases KiDS-ESO-DR1 and -DR2 (blue). The multi-band source

catalogue covers the combined area (blue + green) and the full KiDS area is shown

in grey. Top: KiDS-North. Bottom: KiDS- South. Black dashed lines delineate

the locations of the GAMA fields; the single pointing at RA=150� is centered at the

COSMOS/CFHTLS D2 field. Referred from Figure 1 in J. T. A. de Jong et al. [196]

4
http://kids.strw.leidenuniv.nl/
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6.5.2 Stacking analysis

Practically, we stack the position of optical galaxies for each radio galaxies at certain

range of angles, picking up the optical galaxies that could be associating with the radio

samples.

Figure 6.6. Radial number density of KiDS galaxies stacked around a radio sources

The stacked distribution of KiDS galaxies is shown in Fig. 6.6. We see that a

significant concentration of the stacked KiDS galaxies around a radio galaxies, roughly

r . 4as. The radial number density in Fig. 6.6 is fitted by the following function,

n(r) = n0

⇣
1 + ↵1e

�r
2
/2�2

1 + ↵2e
�r

2
/2�2

2

⌘
, (6.5.1)

The best fit value is (n0,↵1,↵2,�1,�2) = (2.080 · 10�3, 10.29, 6.037, 0.3053, 2.957). We

find that the background component appears at as the best-fitted line of the background

well fits at r & 6as. We conclude that the member galaxies associating with the radio

galaxies are included within r < 4as, and the background galaxies are well picked up

at r > 6as.
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In order to remove the background distribution of the KiDS galaxies, we select the

KiDS galaxies in range of r > 10as where the background components dominates as

shown in Fig. 6.6, obtaining the histogram of the background KiDS galaxies in redshifts.

The redshift distribution of the KiDS galaxies inferred as the ones in the concentration

are shown in Fig. 6.7.

Figure 6.7. Various redshift distributions. All the redshift distributions are obtained

by interpolation at quadratic order. Note that the distribution of CENSORS is some-

times crossing to negative due to the interpolation.

In Fig. 6.7, we find that the redshift distribution of the radio galaxies estimated

by KiDS (red solid line) is more peaky at z . 1 and smaller at z & 1 than the other

distributions. This might imply that we miss the radio galaxies at z > 1 by the

stacking analysis. One possibility to explain the feature of the red solid line is that

the contamination of the KiDS galaxies which are not accompanied with the radio

galaxies as the members of clusters. We check this in terms of the distribution of

KiDS galaxies in I-band magnitude space, which is shown in Fig. 6.8. Fig. 6.8 shows

an another perspective to check how the selected galaxies in the stacking distribution

are distributed in its I-band magnitude. We find that the KiDS galaxies within 4as
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from radio positions are bias to lower magnitude, i.e., more brighter galaxies. This can

indicate that the selected galaxies that locate 4as from radio positions are likely to be

the foreground galaxies for distant radio sources. Hence we conclude that we should be

doubtful to use the stacked KiDs galaxies as a tracer of the radio galaxies distributions

in redshift space. Hereafter, we use the redshift distribution of radio galaxies estimated

by K. Smith et al. 2007 [197].

Figure 6.8. I-band magnitude of KiDS galaxies
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6.6 Angular power spectra of radio galaxies and CMB

lensing

We compute the angular power spectra of the radio galaxies in NVSS and SUMSS and

Plack 2015 CMB lensing. Theoretical predictions of the kernel function of the radio

galaxies are computed with the fidutial ⇤CDMmodel (specifically given in Sec. 6.2) and

the redshift distribution of K. Smith et al. 2007 [197]. We assume that bias parameter

of the radio galaxies stays constant. To measure the angular power spectra of the radio

galaxies, it is important to consider the shot noise subtraction which dominates the real

signals at higher multipoles. What is crucial is that the radio signals from a massive

galaxy are double or more image. In number counting, the multiple images cause the

miscounting of the true number of radio galaxies. Especially, the subtraction for shot

noise is crucially incorrect once the multiple sources are included.

6.6.1 Modelling for contamination of double images

For computing the power spectrum, it is often the case that we treat a galaxy from

observation as a single source. In the most of the previous surveys, the treatment

e�ciently works for cosmological measurements. When we use a data of radio surveys,

however, the situation, the prescription with a single image sometimes fails. There

are two reasons. Firstly the radio emission from a galaxy is continuum of synchrotron

radiation, only providing contour map of radio intensity. Some radio signals from

nearby radio galaxies is hard to be resolved as point source. Secondly, radio signals

spot o↵ from the centre of mass of a galaxy, mainly coming from the relativistic jet

outflow. The jet is tightly beamed until stopping at some distance where inter galactic

medium bumps with the jet. Typically the jet has several times larger in its width

than the size of a galaxy. The brightness of the bumped regions is peculiarly highest

in radio signals, therefore most of radio signals have a couple of bright spots well

separated in resolution. For this reason, from analyses with radio signals could cause

the overestimation of the number of galaxy. In this section we provide a prescription

for the overestimation of the number of radio galaxies.

�radio =
N1�1 + 2N2�2
N1 + 2N2

, (6.6.1)

⌦
�2radio

↵
=

N2
1

⌦
�21
↵
+ 4N1N2 h�1�2i+ 4N2

2

⌦
�22
↵

(N1 + 2N2)2
(6.6.2)
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Notice that �1 and �2 is not independent. Then we assume the linear response to the

density fraction �m as �i = b̄�i�m (i = 1, 2)5. Then we obtain

�radio = b̄�m ⇥ {�1(1� 2f) + 2�2f} , (6.6.3)
⌦
�2radio

↵
= b̄2

⌦
�2m

↵
⇥ {�1(1� 2f) + 2�2f}2 , (6.6.4)

where f ⌘ N2/(N1 + 2N2) denotes the fraction of the doubles. We choose b̄ = 1

and define b = �1(1� 2f) + 2�2f .

Then the noise terms are formulated as

�shot =
N1�shot,1 + 2N2�shot,2

N1 + 2N2
, (6.6.5)

h�1i = 0 = h�2i, h�shoti = 0. For the variance of �shot,
⌦
�2shot

↵
, the statistical inde-

pendence of �1 and �2 leads the elimination of the cross correlation between �1 and

�2.

⌦
�2shot

↵
=

N2
1

D
�2shot,1

E
+ 4N2

2

D
�2shot,2

E

(N1 + 2N2)2
, (6.6.6)

⌦
�2shot,i

↵
=

1

Ni

(i = 1, 2) , (6.6.7)

and we obtain

⌦
�2shot

↵
=

1 + 2f

N1 + 2N2
, (6.6.8)

where again f ⌘ N2/(N1 + 2N2) denotes the fraction of the doubles.

Cpseudo
gg =

1

fsky
Cdata
gg � 4⇡

1 + 2f

N1 + 2N2
, (6.6.9)

In summary, we develop the formula that takes into account the systematises e↵ects

of the doubles in the number fluctuation of the radio galaxies and the shot noise.

Remarkably, the e↵ect of the doubles is prominent in the shot noise while the power

spectrum less su↵ers with the doubles.

5In reality, the doubles is more relevant in the lower redshifts since the image is closer enough to
recognize the double images. In cases the linear bias evolves in time, �1 6= �2 is reasonably expected.
Although the o↵set of a position from the centre of mass from the radio sources should be taken into
account, but the bias factors almost degenerate with the o↵set e↵ect.
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Then we fit the parameters by using galaxy auto power. We choose b̄ = 1. fsky(N1+

2N2) = 833, 564 and f = 0.153. The sky fraction is given as fsky = 0.823.

dn(z)/dz b

KiDS 1.14

CENSORS 1.07

K.Smith 2007 1.58

Table 6.2. Fitted parameters

In Fig. 6.10, the data points shows two peaks at ` ⇠ 180 and ` ⇠ 300, which does

not fit with the theoretical predictions.
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Figure 6.9. The comparison of theory and data (shot noise subtracted) in auto cor-

relation of the radio galaxies
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Figure 6.10. The comparison of theory and data in cross power correlation of the

CMB lensing and radio galaxies
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6.7 Angular cross-power of radio galaxy with low z optical

galaxies

We test the three di↵erent redshift distributions in Table. 6.6.1 by using angular cross-

power with low z galaxies. We use the optical galaxies in 2MASS Photometric Redshift

catalogue (2MPZ)6 [198], WISE⇥SuperCOSMOS (WI⇥SC)7 [199], and the photomet-

ric redshift catalogue of Sloan Digital Sky Survey (SDSS DR12)8 [200], all of whose

positions are well measured in redshift space.

6.7.1 Redshift distributions of optical galaxies

We use the redshift distributions of 2MPZ, WI⇥SC, and SDSS DR12 optical galaxies,

those which are well investigated in J. A. Peacock and M. Biliki 2018 [179]. The

distributions are shown in Fig. 6.11 and 6.12. We confirm that the redishift distribution

successfully reproduces. The redshift distribution of the galaxies in 2MPZ - WI⇥SC

or SDSS DR12 are given as

The value of the biases for 2MPZ, WI⇥SC, and SDSS DR12 galaxies are given in

Table. 6.7.19

6
http://ssa.roe.ac.uk//TWOMPZ

7
http://ssa.roe.ac.uk/WISExSCOS.

8
http://www.sdss.org/dr12/algorithms/photo-z/

9Note that the best-fitted values of the biases are obtained by assuming a di↵erent fiducial cosmology
[179]. This may not cause the problems for our results because the uncertainty of the cosmological
parameters is at most percent level di↵erence.
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Figure 6.11. The redshift distribution of 2MPZ-WI⇥SC galaxies
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Figure 6.12. The redshift distribution of SDSS DR12 galaxies
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Dataset z b(z)

2MPZ 0.075 1.182±0.009

WI⇥SC 0.125 1.086±0.007

WI⇥SC 0.175 1.126±0.007

WI⇥SC 0.225 1.144±0.013

WI⇥SC 0.275 1.206±0.009

WI⇥SC 0.325 1.548±0.018

SDSS 0.125 0.915±0.010

SDSS 0.175 0.894±0.006

SDSS 0.225 0.909±0.007

SDSS 0.275 0.902±0.009

SDSS 0.325 0.888±0.013

SDSS 0.375 0.966±0.020

SDSS 0.450 0.980±0.019

SDSS 0.550 1.245±0.011

Table 6.3. Bias for 2MPZ, WI⇥SC, and SDSS DR12
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6.7.2 Theoretical predictions

We apply the redshift distributions and biases of 2MPZ, WI⇥SC, and SDSS DR12

galaxies for optical galaxies. We select a model of radio kernel with K. Smith 2007.

Figure 6.13. Model prediction of the cross-power spectrum between NVSS-SUMSS

and 2MPZ-WI⇥SC galaxies
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Figure 6.14. Model prediction of the cross-power spectrum between NVSS-SUMSS

and SDSS DR12 galaxies



CHAPTER 6. TESTING GRAVITY WITH CMB LENSING 188

6.7.3 Comparison models with real data

We compute the theoretical prediction of the three models and the data.

Figure 6.15. Comparison of data and theory in the model prediction of the cross

power spectrum between NVSS-SUMSS and 2MPZ-WI⇥SC
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Figure 6.16. Comparison of data and theory in the cross power spectrum between

NVSS-SUMSS and SDSS DR12
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In Figs. 6.15 and 6.16, we find that the model predictions of K. Smith 2007 and

KiDS are well fitted in the errors of the data, while CENSORS deviates from the data

points frequently. The model of KiDS is o↵ the data 0.05 < z < 0.1 with 2MPZ.

The lowest redshift bin with 2MPZ data shows that K.Smith 2007 is well fitted in

comparison to KiDS and CENSORS. Since we already know from Fig. 6.7 that the

redshift distributions of the three models are almost identical, we conclude that the

bias parameter should be around b = 1.58 below z < 0.1. The rest of the redshift

bins shows slight di↵erences for the models. This indicates that the detail of the three

models does not significantly change the predictability of the measured signals.

6.8 Normalised correlation coe�cient

We test the three di↵erent models in Table. 6.6.1 by the normalized correlation coe�-

cient,

rg ⌘ Cgp
CggC

, (6.8.1)

One imediately notice that this estimator is independent from any constant scaling

factors, e.g., H0, ⌦m0, and a constant bias. Since we assume that the bias is constant

for the three models, rg directly trace the di↵erence of the redshift distributions.

Fig. 6.17 shows the comparison with For reference, we plot three other Gaussian

models of redshift distribution that are previously shown in Fig. 6.7. We find that the

KiDS and CENSORS are not fitted with the measured data points. K. Smith 2007 is

more close to the data points. Interestingly, the model predictions are closer to the

data as the positions of the peaks move to higher redshifts. None of the models are

well fitted much with oscillatory structures at ` ⇠ 150 and ` ⇠ 320. Note that the

oscillatory features should be identical to those in Fig. 6.10.

6.9 Conclusions

We measured the angular cross-power between the radio galaxies in NVSS-SUMSS

catalogs and CMB lensing in Planck 2015. We tried determining the redshift distri-

bution of the radio galaxies by the stacking analysis of KIDS DR1-3 galaxies. Then

we measure the angular cross-power between NVSS-SUMSS radio galaxies and 2MPZ-

WISE⇥SuperCOSMOS (WI⇥SC)-SDSS DR12 optical galaxies. We compare the cross

power spectrum with the measurements and found the followings,
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Figure 6.17. Correlation coe�cient between radio galaxy and CMB lensing. The

dots and lines show the measurement and the theoretical predictions, respectively. The

data points are plotted with the auto-correlation of the radio galaxy estimated with

dn(z)/dz of K. Smith 2007.

• The estimated redshift distribution by KIDS galaxies has peaks at z . 1, and

damps over z & 1. This can be caused by the contamination the foreground KiDS

galaxies in lower redshifts.

• The angluar auto power spectrum of the radio galaxies and the formula shot noise

is modelled to deal with the multiple images of radio sources for one radio galaxy.

We obtained the best-fitting parameters for three di↵erent redshift distributions;

KIDS, K. Smith 2007, and CENSORS. We find that the fraction of double images

are universally given as f = 0.153 irrespective to the redishift distributions,

whereas the bias parameters fluctuates. .

• The angular cross power between the radio galaxies and the well-measured optical

galaxies in redshift range 0.05 < z < 0.6 shows that the model of K. Smith 2007
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is the best to explain the data. We conclude that the bias should be close to

b = 1.58 at redshift z < 0.1

In conclusion, the determination of the redshift distribution of radio galaxies should

be more considered. For testing gravity and cosmological models, more information

to constrain the models. Nevertheless, we confirmed that the NVSS-SUMSS data

at z . 0.6, where the data is overlapped with 2MPZ, WI⇥SC, and SDSS DR12, is

consistent with the ⇤CDM concordance concordance cosmology. We will continue the

work to measure more reliable information at z & 0.6.
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Conclusions

”What makes the desert beautiful is that somewhere it hides a well.”

The Little Prince, Antoine de Saint-Exupery

Framework for testing the fundamental principles in gravitation and cosmology are

essential to forgo into the better understanding of physics and the Universe itself. Any

possibility to go beyond the standard understanding of gravity, i.e., Einstein’s general

relativity in cosmology should be tested in existing and forthcoming observations. Since

the cosmic acceleration was discovered via SN-Ia supernovae, one can reconsider the

law of gravity at cosmological scales. In theoretical perspective, the UV incompleteness

of Einstein gravity motivate to construct a theory that is regular at high energy scales.

In this approach, the control of the higher curvature terms with respect to general

covariance could be a problematic issue.

A starting point to think gravity more than Einstein gravity is to add an extra

degree of freedom in gravity sector. Then one wonders how large the extension beyond

the standard gravitation and cosmology are possible. It has been known that the

theories with a scalar field is hugely extensible in mathematical and analytic ways,

resulting in obtaining abundant knowledge of gravity e.g., Horndeski theory, or its

conformal/disformal extensions, i.e., the DHOST theory. Phenomenologically, however,

the theoretical predictions of such theories must be viable to explain the primordial

initial conditions, observed expansion history of the Universe, and structure formation.

Until recently, cosmological modelling of gravity theories has been limited in some

specific types of theories, leaving the vast of theory space to be constrained.

In light of observational cosmology, the role of the extra degree of freedom is

significant, especially to explain the cosmic acceleration. As concisely described in

Quintessence field, a light scalar field succeeds in realising an accelerating universe.

193



CHAPTER 7. CONCLUSIONS 194

Theoretical interests in these models are to consider the shift symmetry, the scalar

field is massless. The tracker solution is obtained when we respect the shift symmetry

(or Galileon symmetry). However, these assumptions are claimed to be hypothetical

because the assumptions might model-dependent and it is not observationally proven

unlike the gauge symmetries in standard model of particle physics. Therefore, it is

important to reduce the assumptions as much as possible; more model-independent or

observationally-supported ways of probe theory space.

As argued in Chapter. 4, we investigate a wide range of models with the assump-

tion that the scalar field is slowly changing in comparison to the Hubble time scale.

The slow-rolling scalar field is viable because we know that the ⇤CDM model, which

is obtained in the limit of �̇ = 0, well describes the cosmic expansion history of the

Universe. Although it is rough to estimate cosmological evolution, but it is mean-

ingful to investigate at low redshifts. We found that the universal correlation laws

between characteristic parameters such as EFT parameters ↵M,K,B,T,H that specify

physical features of scalar-tensor theories are analytically and numerically derived ,

being consistent with the observational constraints of the cosmic expansion history.

We succeeded in predicting various signatures of scalar-tensor theories deviating from

the ⇤CDM concordance cosmology. In the forthcoming observations, those predictions

are able to be tested by cosmic shear, CMB lensing, or gravitational-wave observations.

For the initial conditions of the Universe, what we have known by observations is

that the inflationary cosmology with a single scalar field well match with the obser-

vations of CMB anisotropy. As the constraints by WMAP and Planck data prove,

the initial condition of the Universe is almost adiabatic and primordial tensor modes

are well suppressed below several percent level in comparison to the primordial scalar

fluctuations. Since the most of inflation models with the single scalar field satisfies the

adiabaticity and suppression of tensor modes only by assuming slow-roll conditions.

This raises a possibility to test whether or not the fundamental principles of physics

is still satisfied in the inflationary Universe. The most violent way to break Einstein

gravity is to break the local Lorentz invariance of space-time itself. Despite a simple

thinking it seems, constructing such a theory is hard to accommodate without spoiling

physical concepts, i.e., unitarity, causality, energy conservation, etc. Ghost condensa-

tion or Horáva-Lifshitz gravity are well-defined gravity theories to realise cosmology

without the local Lorentz invariance.

The price to pay for the violation of local Lorentz invariance is to introduce an extra

scalar degree of freedom , Khronon, in the Universe. One can expect whether Khronon

breaks the adiabaticity or suppression of primoridial gravitational waves despite the
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slow-roll conditions work. In Chapter. 6, in the framework of Hořava-Lifshitz gravity,

we found that the adiabaticity and suppression of the primordial gravitational waves

are still obtained, thanks to the mass gap of Khronon that is higher than typical infla-

tionary energy scale. This suggests that the violation of local Lorentz invariance could

not be falsified by the current observations of CMB. The spectrum of the primordial

gravitational waves only tells a signature of the violation of local Lorentz invariance.

The visualisation of the growth of Large Scale Structure (LSS) allows us to ver-

ify the law of gravity at cosmological scales. Gravitational lensing via LSS evidently

shows the geometrical nature of gravity, and thus it is possible to test gravity theories.

CMB lensing is a good phenomenon for testing gravity because it is directly based on

the fundamental principles of gravity, even when non-linear regime of structure forma-

tion is taken into account. In other words, theoretical prediction of CMB lensing is

straightforward. Extracting the signal of CMB lensing, however, it is inevitable to take

into account the properties of tracers, i.e., galaxies. At present, it is possible to know

distribution of galaxies in redshift space has been well known in the whole sky, e.g.,

2MPZ, WISE⇥SuperCOSMOS (WI⇥SC), or SDSS DR12. A weak point of these whole

sky map of galaxies is that the redshifts are shallow,i.e., z . 0.6. Further investigation

in higher redshift, i.e., z > 1, will be significant. This can be achieved by measuring

CMB lensing signals from massive radio galaxies toward the tests of gravity in higher

redshifts.

In Chapter 6, we developed the methodology to measure CMB lensing via radio

galaxies in NVSS-SUMSS catalogue being sensitive for tomographic scanning. We con-

firmed that the simple estimation of the redshift distribution of radio galaxies is not

fully established. In the range of redshift 0 . z . 0.6, the cross-power spectrum be-

tween the 2MPZ, WISE⇥SuperCOSMOS (WI⇥SC), or SDSS DR12 and radio galaxies

shows that the di↵erent types of redshift distributions are less significant to explained

the measured signals. A promising findings is that we measured the cross-correlation

between lensing convergence of CMB by Planck 2015 and the clustering of radio sam-

ples with less statistical errors compared to the previous measurement in K. Smith et

al. 2007. Interestingly, we confirmed some fluctuating features in the cross power be-

tween the radio galaxies and CMB lensing, which may tells us more information of the

redshift distribution and the bias of the radio galaxies. We will update more findings

in future.

In the forthcoming decades, we will reach to great opportunities to develop cosmol-

ogy in observations at unprecedented level of precision. It will be exciting if we can see
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any signature of new physics, deepening our understanding of the Universe. We hope

to get a new unknown which Prof. Stephen Hawking would have not expected.
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Appendix A

Formalism of the scalar-tensor

theories

Contents:

• selection of the seed theory: the ⇤CDM model

• perturbative expansion of conformal/disformal transformation

The Lagrangian of the seed theory is given by

Sseed =

Z
d4x

p
�g

(
M2

pl

2
R� ⇤4

0

)
, (A.0.1)

With the FLRW metric, we obtain the Friedmann Universe with the cosmological

constant ⇤4
0,

3M2
plH

2 = ⇤4
0 , (A.0.2)

M2
pl(2Ḣ + 3H2) = ⇤4

0 , (A.0.3)

ending up with the De Sitter solution is obtained. We rewrite Eq. (A.0.1) into the

ADM form for convenience, and obtain

Sseed =

Z
d4xN

p
�

(
M2

pl

2

⇣
KijK

ij �K2 + (3)R
⌘
� ⇤4

0

)
, (A.0.4)

where Kij ⌘ �̇ij�riNj�rjNi

2N is the extrinsic curvature and (3)R is the 3 dimensional

Ricci scalar.

198
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A.1 Conformal/disformal transformation

A.1.1 Conformal transformations

Conformal transformation is defined as

gµ⌫ ! C(�, X)gµ⌫ , (A.1.1)

Characteristics. The strength of gravitational couplings are adjusted, while the Lorentz

symmetry is kept for all the massless fields, such as photon, graviton, or a massless

scalar field.

A.1.2 Disformal transformations

gµ⌫ ! C(�, X)gµ⌫ +D(�, X)@µ�@⌫� , (A.1.2)

The inverse transformation is given by

gµ⌫ ! C�1(�, X)gµ⌫ � 1

C(�, X)�D(�, X)X

D(�, X)

C(�, X)
@µ�@⌫� , (A.1.3)

Disformal coupling changes the propagation speed of the massless particle depending

on its gravitational interaction.

The frame transformation is given by

gµ⌫ ! gµ⌫ = C(�, X)g̃µ⌫ +D(�, X)@µ�@⌫� , (A.1.4)

Here we define that X ⌘ �gµ⌫@µ�@⌫�/2. We assume that the background is a flat

FLRW universe,i.e., Ni = 0 and �ij = a2�ij we impose the unitary gauge @i� = 0.

Then we instantly obtain X = �̇2/2N2.

N =
p
C + 2DXÑ , (A.1.5)

p
� = C3/2

p
�̃ , (A.1.6)

Kij =
Cp

C + 2DX

 
K̃ij +

Ċ

NC
�̃ij

!
, (A.1.7)

(3)R =
1

C
(3)R̃ , (A.1.8)
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Figure A.1. Structure of the conformal/disfomal chains of scalar-tensor theories

shown in []

Then the seed action is expressed in terms of the transformed frame as

S =

Z
d4xÑ

p
�̃

"
M2

pl

2

⇢
1

C + 2DX
(K̃ijK̃

ij � K̃2)� 1

C
(3)R̃

�
� ⇤4

0

p
C + 2DXC3/2

�M2
pl

⇢
2Ċ/NC

C + 2DX
K̃ +

3

C + 2DX

✓
Ċ

NC

◆2�#
,

(A.1.9)

The propagation speed of GW is c2
T
= C/(C + 2DX). According to the simultaneous

observations of GW170817 and GRB170817A gives a novel condition D = 0, meaning

D is tightly pinned down to the trivial value. With D = 0 the action in Eq. (A.1.9) is

simplified as

S =

Z
d4xÑ

p
�̃

"
M2

pl

2C
(K̃ijK̃

ij � K̃2 � (3)R̃)� ⇤4
0C

2

�M2
pl

⇢
2Ċ

NC2
K̃ +

3

C

✓
Ċ

NC

◆2�#
, (A.1.10)
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A.1.3 Correspondence of covariant and ADM action

In the ADM expression, the e↵ective action described in the unitary gauge is more

accessibly simplified. Observationally, since the complication of the EFT formalism

is not important, it is preferred to choose what types of functions realize the changes

of phenomenological quantities. In fact as we will see the following formulations, the

functions that would be phenomenologically important are defined. In addition to such

a simplification, the structure of the specific theories such as the Horndeski theory or

are formalized in covariant way. Here let us introduce a popular prescription to map

the covariantly-given theories to the EFT form. Here we follow J.Gleyzes in 2014 [61].

The Gauss - Goddazi equation is given as

(4)R = (3)R�K2 +KµK
µ + 2rµ(Kn⌫ � n⇢r⇢n

µ) , (A.1.11)

The action L4 then changes to

L4 = B4
(4)R+ (A4 +B4)(K

2 �Kµ⌫K
µ⌫)� 2B4rµ(Knµ � ṅµ) , (A.1.12)

By recalling ṅµ = h⌫µr⌫X/(�2X),

K2 �Kµ⌫K
µ⌫ =

(2�)2 � �µ⌫�µ⌫

2X
� rµX(Knµ � ṅµ)

X
, (A.1.13)

Finally L4 is obtained as

L4 =B4
(4)R+

B4 +A4

2X
[(2�)2 � �µ⌫�

µ⌫ ]

+
B4 +A4 � 2XB4X

2X2
(�µ�⌫�µ⌫2�� �µ�µ⌫���

�⌫)

+ (C4 + 2XC4X)2�� 2XC4� , (A.1.14)

Then L5 is given as a similar way Gauss Godazzi relation for the Ricci scalar is

given as

Rµ⌫ = ((4)Rµ⌫)|| + (n�n⇢(4)Rµ�⌫⇢)|| �KKµ⌫ +Kµ�K
�

⌫ , (A.1.15)
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A5(K
3 � 3KKµ⌫ +Kµ⌫K

µ⇢K⌫

⇢ )

= �A5(2X)�3/2[(2�)3 � 32�µ⌫�µ⌫ + 2�µ⌫�
⌫⇢�µ⇢ ]

+ 3A5(2X)�3/2

"
+�⇢r⇢X(K2 �Kµ⌫K

µ⌫)� 2(2X)3/2(Kṅµṅ
µ �Kµ⌫ ṅ

µṅ⌫)

#
,

(A.1.16)

We define an auxiliary function, F5, such that it satisfies F5/4X+F5X/2 = �A5(2X)�3/2.

By integrating by parts the lastt line in Eq. (A.1.16), the equation changes to

A5(K
3 � 3KKµ⌫K

µ⌫ + 2Kµ⌫K
µ⇢K⌫

⇢ )

= �A5(2X)�3/2[(2�)3 � 32��µ⌫�µ⌫ + 2�µ⌫�
⌫⇢�µ⇢ ]

� 3A5(2X)�3/2
p
2X

"
1

2
(K3 � 3KKµ⌫K

µ⌫ + 2Kµ⌫K
µ⇢K⌫

⇢ ) +Kµ⌫n�n⇢(4)Rµ�⌫⇢

� 3Kn�n⇢(4)R�⇢ + ṅ�n⇢(4)R�⇢

#
�XF5�(K

2 �Kµ⌫K
µ⌫) , (A.1.17)

The second term is computed as

B5Kµ⌫G
µ⌫ =B5

"
Kµ⌫

(4)Gµ⌫ +Kµ⌫n�n⇢
(4)Rµ�⌫⇢ �Kn�n⇢

(4)R�⇢

+
1

2
(K3 � 3KKµ⌫K

µ⌫ + 2Kµ⌫K
µ⇢K⌫

⇢ )

#
, (A.1.18)

We define that G5 ⌘ �
R
dXB5X(2X)�1/2 and by integrating by parts, we obtain

B5Kµ⌫G
µ⌫ = G5�µ⌫

(4)Gµ⌫ +

✓
G5� +

B5�p
2X

◆
�µ�⌫

(4)Gµ⌫

+B5

"
1

2
(K3 � 3KKµ⌫K

µ⌫ + 2Kµ⌫K
µ⇢K⌫

⇢ )

+Kµ⌫n�n⇢
(4)Rµ�⌫⇢ �Kn�n⇢

(4)R�⇢ + ṅµn⌫
(4)Rµ⌫

#
, (A.1.19)

The Gauss Godazzi relations for the Einstein tensor Gµ⌫ is given as

nµn⌫
(4)Gµ⌫ =

1

2
((3)R+K2 �Kµ⌫K

µ⌫) , (A.1.20)
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The Lagrangian L5 is then given as

L5 =G5�µ⌫
(4)Gµ⌫ �A5(2X)�3/2[(2�)3 � 32��µ⌫�µ⌫ + 2�µ⌫�

⌫⇢�µ⇢ ]

+ (3A5 +XB5X)

"
1

2
(K3 � 3KKµK

µ⌫ + 2Kµ⌫K
µ⇢K⌫

⇢ )

#

+X

✓
G5� +

B5�p
2X

◆
(3)R+XG5�(K

2 �KµK
µ⌫) , (A.1.21)

By combining the terms from the cubic interaction of the galileon, the Lagrangian L5

is finally written as

L5 =G5
(4)Gµ⌫�

µ⌫ � (2X)�3/2A5[(2�)3 � 32��µ⌫�µ⌫ + 2�µ⌫�
⌫⇢�µ⇢ ]

� XB5X + 3A5

(2X)5/2
[(2�)2�µ�⌫�µ⌫ � 22��µ�µ⌫�⌫⇢�⇢ � �µ⌫�

µ⌫�⇢���
⇢� + 2�µ�

µ⌫�⌫⇢�
⇢���]

+ C5
(4)R+ C5X [(2�)2 � �µ⌫�

µ⌫ ] + (D5 + 2XD5X)2�� 2XD5� , (A.1.22)

Figure A.2. Image of the correspondence between EFT and scalar-tensor theories

(SST)
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A.1.4 Covariant/ADM form of Lagrangian

This is a note for the reference of the computation.

• I should write here the expression of the covariant and the ADM form of the

Lagrangian.

The computation of f(�, X)2� term.

Z
d4x

p
�gf(�, X)2� = �

Z
d4x

p
�grµ�rµf ,

= �
Z

d4x
p
�grµ�(rµ�f� +rµXfX) ,

= �
Z

d4x
p
�g(�2Xf� � 2XV fX) ,

= �
Z

d4x
p
�g(�2Xf� + 2X(AK + 2�)fX) ,

)
Z

d4x
p
�g(f + 2XfX)2� = 2

Z
d4x

p
�gXf� � 2

Z
d4x

p
�gAXfXK ,

(A.1.23)

where X = �rµ�rµ�/2 and V = nµrµA. The correspondence between the covariant

form and the ADM form is thus

G3(�, X) = f + 2XfX ,

f = �
Z

dXA3(2X)3/2 , (A.1.24)

A.2 E↵ective Field Theory approach for gravity

A.2.1 EFT with broken space-time symmetry

Preferred frame

In covariant theories, it is arbitrary to take a time coordinate. Under the existence of

a scalar field that supports time-like motion, one can take a specific time coordinate

such that the scalar field only depends on time, i.e., � = �(t). More specifically, we

choose the direction of time for

nµ ⌘ � @µ�p
�g⇢�@⇢�@��

, (A.2.1)

where nµnµ = �1 is satisfied. The simplest choice of the time coordinate could be

� = t, which is called the unitary gauge. In the unitary gauge the time-like vector nµ
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is simplified as

nµ = �
�0µp
�g00

, (A.2.2)

It is possible to contract tensors by nµ, leading g00 or R00 components in the action.

The dynamics of a spacetime is projected via the extrinsic curvature,

Kµ⌫ ⌘ h�µr�n⌫ , (A.2.3)

where hµ⌫ = gµ⌫ +nµn⌫ is the projection tensor on the surface perpendicular to nµ. At

first glance, the specification of the time coordinate to the unitary gauge looks violated

to the general covariance, which is in parallel to the case of the Einstein-Aether theory

where the general covariance is no longer respected. However, the general covariance

would recover by a induced degree of freedom by time translation, called Stuckelberg

trick. As the di↵eomorphism invariance is kept, it is possible to change the time

coordinate t ! t + ⇡(x) while x ! x for spatial coordinate. By considering this

peculiar time translation, every time-dependent function transforms along,

A(t) ! A(t+ ⇡) = A(t) + Ȧ(t)⇡ +
1

2
c̈(t)⇡2 + . . . , (A.2.4)

This coordinate transformation also change the tensor components,

g00 �! g00 + 2g0µ@µ⇡ + gµ⌫@µ⇡@⌫⇡ , (A.2.5)

g0i �! g0i + gµi@µ⇡ , (A.2.6)

�Kij �! �Kij � Ḣ⇡hij � @i@j⇡ , (A.2.7)

�K �! �K � 3Ḣ⇡ � a�2r2⇡ , (A.2.8)

As a result, we recover the di↵eomorphism invariant action helped by the new degree

of freedom ⇡(x).
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The EFT expansion

Under the unitary gauge condition, a general Lagrangian is given as

S =
1

2

Z
d4x

p
�g

"
M2

plf(t)� 2⇤(t)� 2c(t)g00

+M4
2 (t)(�g

00)2 � m̄3
1(t)�g

00�K � M̄2
2 �K

2

� M̄2
3 (t)�K

⌫

µ�K
µ

⌫ + �1�R
2 + µ2

1(t)�g
00�R+m2

2(t)h
µ⌫@µg

00@⌫g
00 + . . .

#
,(A.2.9)

where �g00 = �1 + g00. Each coe�cients in front of the geometrical operators are

generally time-dependent functions, which is consequently expected by the break of

the time translation symmetry of a background. The covariant form of the action

recovers by the Stuckelberg trick,

S =
1

2

Z
d4x

p
�g

"
F (⇡)R� Z(⇡)(@⇡)2 � 2V (⇡)

+ a1(⇡)(@⇡)
4 + a2(⇡)(@⇡)

22⇡ + a3(⇡)(2⇡)2 + . . .

#
, (A.2.10)

where the coe�cients on the operators are given by the combination of the ones in

Eq. (A.2.9), which are not important to see the explicit form of the coe�cients here.

A.2.2 The derivation of the EFT parameters and stability conditions

In this Appendix, we further argue the EFT parameters and the stability conditions

in the Class Ia DHOST theory 1. Throughout the Appendix, we work on in the ADM

formalism.

A.2.3 EFT description of the Class Ia DHOST theory

Taking the metric in the ADM form,

ds2 = �N2dt2 + gij(dx
i +N idt)(dxj +N jdt) . (A.2.11)

1The main arguments should be applicable in more general class of the DHOST theory such that
A1 = �A2 6= 0.
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We define that a time-like vector, nµ, orthogonal to the foliation as nµ@µ = (1/N,�N i/N).

The covariant action in Eq. (4.10.8) is converted to the ADM form. To realise this con-

version we take the time-like vector nµ proportional to the gradient of �,

rµ� = �Anµ , (A.2.12)

where A ⌘ nµrµ�. The time derivative of A, V , is defined as

V ⌘ nµrµA , (A.2.13)

and the total action is given as

S =

Z
dtd3xN

p
gL , (A.2.14)

L = P +Q2AK + F (R+KijK
ij �K2)� 2F�AK +

⇥
�2(A3 +A4)X + 4A5X

2
⇤
V 2

� 2(FX +A3X)AKV + 2(FX �A4X)@iA@
iA ,

(A.2.15)

where g = detgij andQ2(�, X) satisfiesQ = Q1+2XQ1X withQ1 ⌘ �
R
dX(2X)3/2Q2(�, X).

Then we impose the unitary gauge condition,i.e, ri� = 0, and the flat FLRW metric

such that gij = a2�ij . By following the notation in [93] the quadratic action is given as

S(2)
EFT =

Z
dtd3xa3

M2

2

(
�Kij�K

ij � �K2 +

 
�
p
h

a3
R+ �2R

!
+ (1 + ↵H)R�N

+H2↵K�N
2 + 4H↵B�N�K + 4�1�K�V + �2�V

2 + �3viv
i

)
,

(A.2.16)

where �V and ai are given as

�V ⌘ (�Ṅ �N i@iN)/N , (A.2.17)

vi ⌘ @iN/N , (A.2.18)

Since the second term of �V in Eq. (A.2.17) is at the second order of the perturbations,

the relation �V = �Ṅ is enough for computing the EFT parameters. As a consequence

of the degeneracy conditions, �2 and �3 must satisfy the following conditions,

�2 = �6�21 , �3 = �2�1[2(1 + ↵H) + �1] , (A.2.19)
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Here we derive ↵B and ↵K in the following way. In the unitary gauge, A = �̇/N

and V = �̈/N2 at the background, both of which contains lapse function. Provided

N = N̄ + �N , we obtain the perturbed V as

V =
�̈

N̄2

✓
1� 2

�N

N̄

◆
� �̇

N̄2
�Ṅ , (A.2.20)

Note that the second term in the first bracket in Eq. (A.2.20) contributes to the per-

turbation of the Lagrangian with respect to the lapse function, consequently changing

↵K,B. Importantly, the last term in Eq. (A.2.20) does not only appear with �1,2,3, but

also with ↵K by the cross multiplication of the second term in the bracket and the last

terms in V 2. We discuss this more specifically in the next paragraph. Hereafter we set

N̄ = 1.

To obtain the explicit forms of ↵K,B from the Lagrangian in Eq.—(A.2.15), we

apply the same computational strategy given in [38]. According the expansion shown

in Eq. (4.6.11), ↵B is formally given as

↵B =
2HLSN + LKN

4HLS
, (A.2.21)

where La ⌘= @L/@a and S ⌘ KijKij . The straightforward computation of Eq. (A.2.21)

with the choice N = 1 gives an explicit result in Eqs. (4.11.4) to (4.11.5). ↵K on the

contrary is more subtle to be computed. During the perturbation in terms of �N from

Eq. (A.2.15) to Eq. (4.6.11), the term �N�Ṅ appears from the term icluding V 2 and

AV . By taking the partial integral on this term, the additional terms should be in ↵K .

We explicitly treat the contribution from �N�Ṅ by the second term of the following

equation,

↵K =
2LN + LNN

2H2LS
� Ḃ + 3HB

H2LS
, (A.2.22)

where B is given as

B ⌘ 4�̇�̈X
�
3(A3 +A4)� 8A5X + (A3X +A4X)X � 2A5XX2

 

+ 6HX {2X(FXX +A3XX +A3) + 3(FX +A3X)} , (A.2.23)

Notice that if we take the condition for the GLPV theory, i .e. FX + A3X = 0,

A3 + A4 = 0 and A5 = 0 follow, leading B = 0. In the conformal frame where we

are working, the form of ↵K and ↵B are determined, but it becomes complicated since

�N�Ṅ exists by the choice of the conformal frame such that the scale factor obeys
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the Friedmann equations in Eqs. (4.11.8) and (4.11.9). By computing the first term in

Eq. (A.2.22), we obtain,

↵Horn
K =

1

H2F

n
X(PX + 2XPXX �Q� � 2XQ�X)� 6�̇HX(QX +XQXX)

o
,

(A.2.24)

↵res
K = �12(XFX + 4X2FXX)

F
�

12�̇X(3F�X + 2XF�XX)

HF

� 2V 2
⇣
2�̃2 + 5X�̃2X + 2X2�̃2XX

⌘
+ 6HAV

⇣
3�̃1 � 3X�̃1X + 2X2�̃1XX

⌘

� Ḃ + 3HB

2H2F
,

(A.2.25)

where we define �̃1 ⌘ �2F�1/X and �̃2 ⌘ �F�2/2X.

A.2.4 Stability conditions without matters

To derive the stability conditions for the perturbations, we derive the scalar and tensor

perturbation. We start with the metric perturbation in the scalar sector. The metric

is given as

g00 = �(1 + �N)2, g0i = gi0 = a2@i�, gij = a2(1 + 2⇣)�ij , (A.2.26)

In the expansion of the quadratic action is specifically given as,

S(2) =

Z
dtd3xa3

M2
⇤
2

(
�6⇣̇2 + 12�1⇣̇�Ṅ + �2�Ṅ

2 + 12H
h
(1 + ↵B)⇣̇ � �1�Ṅ

i
�N

H2(↵K � 6� 12↵B)�N
2 + 4

h
⇣̇ � �1�Ṅ �H(1 + ↵B)�N

i
@2�

1

a2
⇥
2(1 + ↵T )(@i⇣)

2 + 4(1 + ↵H)@i⇣@i�N + �3(@i�N)2
⇤
)
,

(A.2.27)

The scalar perturbation is diagonalized with the quantity

⇣̃ ⌘ ⇣ � �1�N , (A.2.28)
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with

S
⇣̃
=

Z
dtd3xa3

M2
⇤
2

"
A

⇣̃

˙̃⇣2 +B
⇣̃

(@i⇣̃)2

a2

#
, (A.2.29)

where  is the curvature perturbation in the spatial metric. Notice that ⇣̃ is not gauge

invariant quantity. Basic quantities that appear in the action in Eq. (A.2.29) are the

coe�cient on the kinetic terms and on the gradient term, A
⇣̃
and B

⇣̃
, respectively. In

the class I-a DHOST theory A
⇣̃
and B

⇣̃
are given as,

A
⇣̃
=

1

(1 + ↵B � �̇1/H)2


↵K + 6↵2

B � 6

a3H2M2
⇤

d

dt
(a3HM2

⇤↵B�1)

�
, (A.2.30)

B
⇣̃
= 2� 2

aM2
⇤

d

dt


aM2

⇤ (1 + ↵H + �1)

H(1 + ↵B)� �̇1

�
, (A.2.31)

C
⇣̃
= 0 , (A.2.32)

↵ = ↵K + 6↵2
B � 6

a3H2M2
⇤

d

dt
(a3HM2

⇤↵B�1) , (A.2.33)

Then the stability conditions for the scalar perturbation is given as

A
⇣̃
> 0 , B

⇣̃
< 0 , (A.2.34)

Then we consider the tensor sector. The spatial part of the metric is relevant,

gij = a2(�ij + hij) . (A.2.35)

After perturbing the action in Eq. (A.2.15) we obtain the quadratic action for the

tensor sector,

S(2)
h

=

Z
dtd3xa3

M2
⇤
2

h
ḣ2ij � (@khij)

2
i
, (A.2.36)

To avoid the ghost instability for the tensor perturbation,

M2
⇤ > 0 , (A.2.37)

is necessary.

For the purpose of considering the Universe at late time, it is inevitable to take into

account a matter. In other words, it is necessary to derive the stability conditions by
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including a matter other than the condition in Eq. (A.2.34).

A.2.5 Gradient instability with a fixed matter frame

We assume a matter component we look into is described by a barotropic perfect

fluid,i.e, pm = pm(⇢m). The behaviour of a barotropic perfect fluid is well mimicked

by a massless scalar field minimally coupled to gravity[201]. Although in detail the

physical property of a massless scalar field is not exactly the same as that of a perfect

fluid at certain situations[202], most of the properties are similarly followed. In our

paper, we consider a massless scalar field as a matter by assuming in matching situations

discussed in [201].

According to Gleyzes et al [203], the stablity conditions in the Beyond Horndeski

theory are di↵erent from the Horndeski theory by nonzero ↵H . On top of that, in

the DHOST theory, the stability conditions are also distinguishable from the beyond

Horndeski theory. Here we discuss the additional contribution in the DHOST theory to

measure any di↵erence of from the beyond Horndeski theory. For simplicity, we argue

the matter with the scalar field which minimally couples to gravity as

Sm =

Z
d3xdtN

p
hP (Y,�) , Y ⌘ gµ⌫@µ�@⌫� = �(�̇ �N i@i�)2

N2
+ hij@i�@j� ,

(A.2.38)

Notice that the inhomogeneity of � exists in the unitary gauge. Then � = �0 + �� and

perturbs the action in Eq. (A.2.38) the quadratic perturbation of the matter reads

S(2)
m =

Z
d3xdta3

(
�
p
h

a3
�NP +

 
�
p
h

a3
+ �N

!
(PY �1Y + P���)

+ PY �2Y +
PY Y

2
�1Y

2 + PY ��1Y �� +
P����2

2

)
, (A.2.39)

with

�
p
h

a3
= 3⇣ , (A.2.40)

�1Y = 2�̇20�N � 2�̇0��̇ , (A.2.41)

�2Y = �3�̇20�N
2 � ��̇2 + 4�̇0��̇�N + 2�̇0@iB�@

i� + hij@i�@j� , (A.2.42)
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Under the existence of the matter, the momentum constraint reads

�N =
1

H(1 + ↵B)� �̇1

✓
˙̃⇣ +

⇢m + pm
2M2

��

�̇0

◆
, (A.2.43)

Then we introduce the quantity Q� ⌘ �� � (�̇0/H)⇣̃. Note that Q� is not a gauge

invariant variable if �1 6= 0. Inserting �N in Eq. (A.2.43) and replacing ⇣ into ⇣̃ and

�� to Q�, the whole quadratic action reads

S(2) =

Z
dtd3xa3

⇣
L̃
⇣̃
+ L̃Q�

+ L̃
⇣̃Q�

+ (non derivative terms)
⌘
, (A.2.44)

where

L̃
⇣̃
=

M2
⇤
2

(
Ã

⇣̃

˙̃⇣2 + B̃
⇣̃

(@i⇣̃)2

a2

)
, (A.2.45)

L̃Q�
= �PY

c2m

✓
Q̇2

� � c2m
(@iQ�)2

a2

◆
, (A.2.46)

L̃
⇣̃Q�

= � 2�̇0PY

c2m(H(1 + ↵B)� �̇1)

 
(↵B � �̇1/H) ˙̃⇣Q̇� � c2m(↵B � �̇1/H � ↵H � �1)

@i⇣̃@iQ�

a2

!

(A.2.47)

Ã
⇣̃
= A

⇣̃
+

(⇢m + pm)

H2M2
⇤ c

2
m

 
H↵B � �̇1

H(1 + ↵B)� �̇1

!2

, (A.2.48)

B̃
⇣̃
= B

⇣̃
� ⇢m + pm

M2
⇤H

2

✓
1� 2(1 + ↵H + �1)

1 + ↵B � �̇1/H

◆
(A.2.49)

C̃
⇣̃
= C

⇣̃
= 0 , (A.2.50)

Here ⇢m + pm = �2�̇20PY and the sound speed of the matter is given as c2m ⌘
PY /(PY � 2�̇20PY Y ). To derive the stability conditions we rewrite the quadratic ac-

tion in Eq. (A.2.44) as

S(2) =

Z
dtd3xa3

M2
⇤
2

✓
ẋTKẋ+

@ixTG@ix
a2

◆
, (A.2.51)

where x ⌘ (⇣̃, Q�), and

K =

 
Ã

⇣̃
A(↵B � �̇1/H)

A(↵B � �̇1/H) �2PY /M2
⇤ c

2
m

!
, (A.2.52)
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G =

 
B̃

⇣̃
�Ac2m(↵B � �̇1/H � ↵H � �1)

�Ac2m(↵B � �̇1/H � ↵H � �1) 2PY /M2
⇤

!
,(A.2.53)

where

A =
�2�̇0PY

HM2
⇤ c

2
m(1 + ↵B � �̇1/H)

. (A.2.54)

To avoid the ghost and gradient instabilities of a cosmological solution, it is required

that the eigenvalues of K are positive, and the eigenvalues of G are negative. Since K
and G are a symmetric matrix, the necessarry and su�cient conditions of the stability

is,

Tr(K) > 0 and det(K) > 0 , (A.2.55)

Tr(G) < 0 and det(G) > 0 , (A.2.56)

Eqs. (A.2.55) and (A.2.56) with the null energy condition of the matter,i.e.,PY < 0

give the condition that

A
⇣̃
> 0, B

⇣̃
+
⇢m + pm
M2

⇤H
2

✓
1 + ↵H + �1

1 + ↵B � �̇1/H

◆2

< 0 , (A.2.57)

Note that the condition exactly recovers the same as the condition in Eq. (A.2.34) when

the matter is ignored,i.e, decoupling limit of the matter from gravity.

In a recent literature of cosmology of the DHOST theory, the stability conditions

with the matter have been derived [100]. However, the conditions make a di↵erence

from what we derived in Eq. (A.2.57). What a preference of our derivation is the

conditions in Eq. (A.2.57) is continuously applicable toward the super horizon initial

conditions by tracing ⇣̃ and Q�. In fact, ⇣̃ and Q� recovers their gauge invariance in

the case of the beyond Horndeski, i.e, �1 = 0. In fact, the conditions in the paper [100]

leads the same expression in the limit of �1 = 0. However, we admit that the variation

of the stability conditions are crucial for cosmology.

A.2.6 Dependence on basis of linear perturbations for stability con-

ditions

We show how a choice of the basis for the cosmological perturbation varies the observ-

able quantities we are interested in. We pick up the three di↵erent choices of the bases;
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stab wom,stab wm1, and stab wm2,respectively.

stab wom : A
⇣̃
> 0, B

⇣̃
< 0 , M2

⇤ > 0 , (A.2.58)

stab wm1 : A
⇣̃
> 0, B

⇣̃
+
⇢m + pm
M2

⇤H
2

✓
1 + ↵H + �1

1 + ↵B � �̇1/H

◆2

< 0 , M2
⇤ > 0 , (A.2.59)

stab wm2 : A
⇣̃
+
⇢m + pm
M2

⇤H
2

3�1(2 + 3c2m�1)

(1 + ↵B � �̇1/H)2
> 0 ,

B
⇣̃
+
⇢m + pm
M2

⇤H
2

✓
1 + ↵H + �1

1 + ↵B � �̇1/H

◆2

< 0 , M2
⇤ > 0 , (A.2.60)

Fig. A.3 provide how the three filtering methods for the stability conditions a↵ect

the posterior distribution of the characteristic parameters. Fig. A.3 quantitatively

shows that the di↵erence of the bases are ine↵ective to change the distributions of

the characteristic parameters. In comparison between the top and bottom figure, we

confirm that the choice of the basis makes little di↵erences in the range of redshifts we

are interested in.

In the deep era of matter dominant or radiation dominant epoch in the past Uni-

verse, the di↵erence of the basis for the stability conditions could be more serious issue

left. In fact the additional terms that appears on the stability coe�cients without

the matter could be compatible in the matter dominant epoch, namely ⇢m/3M2
⇤H

2.To

deal with the analysis for the stability conditions in those epoch, we might need a more

sophisticated and careful analysis. This point, however, is beyond the scope of this

paper. Hence, we conclude that a chose of the basis for the stability condition of the

scalar fluctuation and the matter fluctuation are less important with the assumptions

we take; the slow rolling scalar field and intermediate redshifts up to z = 2. Hereafter

we prefer the basis as following the one in M.Chrisostomi et al. 2019 [100], in which

the details of the models have been investigated.
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Figure A.3. Filter dependence in the model distributions.The panels show the redshift

z = 0 and z = 2.



Appendix B

Standard theory of inflation

In this appendix, we review the orthodox scenario of an inflationary universe.

B.1 The background spacetime

The system of the equations of motion are derived via the action principle with the

action

S� =

Z
d4x

p
�g

✓
�1

2
gµ⌫5µ�5⌫�� V (�)

◆
. (B.1.1)

When the Einstein gravity is considered, the action of gravity sector SG is equivalent to

the Einstein Hilbert action SEH, and thus the total action including the gravity sector

and the scalar filed sector S is shown in

S = SEH + S� =

Z
d4x

p
�g

✓
MP

2

2
R� 1

2
gµ⌫5µ�5⌫�� V (�)

◆
. (B.1.2)

Next, we utilise the variation principle, deriving the equations of motions

Gµ⌫ =
Tµ⌫

MP
2 ,

Tµ⌫ ⌘ � 2p
�g

�S�

�gµ⌫
= 5µ�5⌫�� gµ⌫

✓
1

2
5⇢�5⇢�� V (�)

◆
,

gµ⌫5µ5⌫�+ V� = 0, (B.1.3)

216
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By assuming the cosmological principle for the background scalar field, namely the

scalar field only varies in time, we obtain

H2 =
1

3MP
2

 
�̇2

2
+ V (�)

!
, (B.1.4)

�̈+ 3H�̇+ V� = 0 , (B.1.5)

Note that we obtain the dynamical evolution of the scalar field by solving Eqs. (B.1.4)

and (B.1.5)

B.2 Slow-roll condition

We impose the condition for the scalar field so that the inflation takes place. We define

the parameters for clarifying the dynamics of indlation

✏H ⌘ � Ḣ

H2
=

�̇2

2MP
2 ,

⌘H ⌘ � �̈

H�
, (B.2.1)

✏H and ⌘H describes the conditions for the slow-roll inflation. The condition for the

cosmic acceleration is given in terms of the slow-roll parameter ✏H as

(0 ) ✏H < 1 (B.2.2)

During Eq. (B.2.2) is satisfied, inflation occurs. We define the N-folding number N⇤ at

which the inflation begins. By the Taylor expansion of the Hubble parameter around

N = N⇤, we obtain

1

H
=

1

H⇤

✓
1 + ✏H⇤(N �N⇤) +

1

2

d✏H
dN ⇤

(N �N⇤)
2 +O((N �N⇤)

3)

◆
,

d✏H
dN ⇤

= 2(✏H⇤
2 � ✏H⇤⌘H⇤). (B.2.3)

When the inflation occurs exponentially, the Hubble parameter is almost constant

during�N = Ninf�N⇤. For the purpose of solving the horizon problem of the Universe,
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�N . 60 are required. Then ✏H⇤ and ⌘H⇤ are conditioned as

✏H⇤ ⇠
1

�N
⌧ 1,

⌘H⇤ ⇠
1

�N
⌧ 1, (B.2.4)

Note that these conditions are su�cient for the condition for inflation, i.e., Eq. (B.2.2).

These conditions are called as the slow-roll condition, and we call ✏H⇤ and ⌘H⇤ as

the slow-roll parameters (Slow Roll Parameters; SRP). The slow-roll conditions are

essential to construct the phenomenology of inflation. The conditions in Eq. (B.2.4)

are equivalently translated to another choice of the parameters as

✏V ⌘ MP
2

2

✓
V�

V

◆2

,

⌘V ⌘ MP
2V��

V
, (B.2.5)

✏V and ⌘V are called the potential slow-roll parameters. The slow roll parameters in

Eqs. (B.2.1) and (B.2.5) linearly correlate as

✏H = ✏V +O(SRP2),

⌘H = ⌘V � ✏V +O(SRP2). (B.2.6)

B.3 Quantum fluctuation during inflation

One of the biggest features of inflation theory is that quantum fluctuations generate ini-

tial density fluctuations that become the seeds of the structure of the universe. When

the initial density fluctuations enter the interior of the particle horizon again, they

change into various fluctuations. Specifically, the initial fluctuation that entered the

particle horizon before clearing is converted to fluctuation of baryon and gravity po-

tentials. During this period, baryons and photons are strongly coupled. Consequently,

when the universe eventually cools and clears up (zls ⇠ 1100), the e↵ects of initial

fluctuations are encoded into the temperature fluctuations and polarization of CMB.

Fortunately, we are able to measure CMB very precisely. Therefore, it is possible

to retrieve the component of the initial fluctuation by CMB observation and search for

whether or not inflation has occurred. We use the derivation of quantum fluctuations in

the manner of E.Stewart an D.Lyth1993 []. The definition of the slow-roll parameters

are shown in the way in A.Liddle, P.Parsons, and John D.Barrow 1994[]
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B.3.1 Evolution of pertrubations

We derive the primordial power spectra based on E. Stewart and D. Lyth 1993 [] based

on the time evolution of the background universe and the perturbative variables. At

linear order of perturbation, the perturbative variables with the di↵erent spin compo-

nents are independent with each other, allowing us to compute the scalar, vector, and

tensor modes separately. Firstly, we derive the perturbation of scalar modes as

ds2 = a(⌘)2
(
�(1 + 2A)d⌘2 + 2@iBdxid⌘dxi +

h
(1 + 2R)�ij + 2@i@jHT

i
dxidxj

)
.

(B.3.1)

For convenience we define ⇣ as

⇣ = R� H

�̇
�� , (B.3.2)

The Fourier decomposition of ⇣ is given as

⇣ =

Z
d3k

(2⇡)3
⇣k(⌘)e

ik·x, (B.3.3)

Since we consider that the isotropy of the background universe, the power spectrum

of ⇣ is independent with the angular direction and thus the power spectrum of ⇣ is

derived as

h⇣k⇣⇤k0 i =
2⇡2

k3
P⇣�

3(k� k
0
) . (B.3.4)

Similar to the scalar perturbations, the power spectrum of the tensor mode is

derived. The metric perturbation for the tensor mode is given as

ds2 = a(⌘)2[�d⌘2 + (�ij + 2hij)dx
idxj ] , (B.3.5)

The perturbative tensor mode hij satisfies transverse and traceless gauge condition,

i.e., @ihij = 0 and hi
i
= 0. The Fourier decomposition of hij is

hij =

Z
d3k

(2⇡)3

X

�=+,⇥
hk,�eij(k,�)e

ik·x . (B.3.6)

Note that the tensor mode should be decomposed by the orthonormal polarisation basis
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eij that are determined by the transverse and traceless gauge conditions,

eij = eji, eii, kieij = 0,

eij(k,�)e
⇤
ij(k, µ) = ��µ, eij(�k,�) = e⇤ij(k,�) . (B.3.7)

Then the power spectrum of the tensor mode PT is derived as

hhk,�hk0
,�
i = 2⇡2

k3
PT �

3(k� k
0
) , . (B.3.8)

We define the useful quantity called as the tensor to scalar ratio,

r =
PT

PR

. (B.3.9)

B.3.2 Mukhanov-Sasaki equation

To describe the dynamics of the quantum fluctuation, it is convenient to use a peculiar

gauge-invariant quantity called Mukhanov-Sasaki variable. Mukhanov-Sasaki variable

is defined as

u = �z⇣ . (B.3.10)

Here z = a�̇/H is given by the background. u satisfies the following action

SMS =
1

2

Z
d⌘d3x

"✓
du

d⌘

◆2

� (@iu)
2 +

1

z

d2z

d⌘2
u2
#
. (B.3.11)

and by variating u we obtain the Mukhanov-Sasaki equation

d2u(⌘, k)

d⌘2
+

✓
k2 � 1

z

d2z

d⌘2

◆
= 0 , (B.3.12)

Since the primordial perturbations during inflation behaves quantum-wise, the

physical quantity becomes an operator. We explicitly denote u as an operator û.

û is quantised by the canonical quantisation. As the background universe is confor-

mally flat, the quantisation procedure in the Minkowski space-time is applicable. By

expanding with the creation and annihilation operators and the plane waves, we obtain

û(⌘,x) =

Z
d3k

(2⇡)3

(
uk(⌘)âke

ik·x + u⇤
k
(⌘)â†ke

�ik·x

)
, (B.3.13)
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where the commutation relations of the creation and annihilation operators are

h
âk, â

†
k0

i
= �3(k� k

0
),

h
âk, âk0

i
= 0 =

h
â†k, â

†
k0

i
,

âk|0i = 0. (B.3.14)

Note that uk(⌘,x) = uk(⌘) thanks to the isotropy of the background. uk is called

mode function. From Mukhanov-Sasaki equation Eq. (B.3.12) is also satisfied with

u(⌘, k) as

d2uk
d⌘2

+

✓
k2 � 1

z

d2z

d⌘2

◆
uk = 0 , (B.3.15)

Note that the Wronskian preserves. The value of the Wronskian is determined by the

canonical quantisation as

uk
du⇤

k

d⌘
� duk

d⌘
u⇤
k
= i , (B.3.16)

The explicit form of z�1d2z/d⌘2 is derived as

1

z

d2z

d⌘2
= 2a2H2

✓
1 + ✏H � 3

2
⌘H +

1

2
⌘H

2 � 1

2
✏H⌘H +

1

2aH

d✏

d⌘
� 1

2aH

d⌘H
d⌘

◆
, (B.3.17)

⌘ is related to

⌘ =

Z
dt

a
=

Z
da

a2H
= � 1

aH
+

Z
da

✏H
a2H

, (B.3.18)

Note that this relation is exact. Once ✏H and ⌘H satisfies the slow roll condition

Eq. (B.2.4), it is good approximation that ✏H⇤ and ⌘H⇤ remains constant. By the

constancy of the slow roll parameter, we obtain

⌘ = � 1

aH

✓
1

1� ✏H⇤

◆
,

1

z

d2z

d⌘2
=

1

⌘2

✓
⌫⇤

2 � 1

4

◆
,

⌫⇤ =
1 + ✏H⇤ � ⌘H⇤

1� ✏H⇤
+

1

2
. (B.3.19)

By using the approximation in Eq. (B.3.19), the Mukhanov - Sasaki equation is
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rewritten as

d2uk
d⌘2

+
h
(k2 � 1

⌘2

✓
⌫⇤

2 � 1

4

◆i
uk = 0. (B.3.20)

This equation is in the category of Bessel di↵erential equation, and the analytic so-

lutions are given by the first and the second Hankel functions, i.e., H⌫
(1) and H⌫

(2)

as

uk =

r
⇡

4k

p
�k⌘

h
↵kH⌫

(1)(�k⌘) + �kH⌫
(2)(�k⌘)

i
, (B.3.21)

The normalization condition in Eq. (B.3.16) then reads

|↵k|2 � |�k|2 = 1, (B.3.22)

Note that there are certain arbitrariness to choose ↵k and �k. This is due to. In the

literature, the Bunch-Davis vacuum is often taken at the sub-horizon limit k/aH ! 1,

i.e.,

↵k = ei
⇡

2 (⌫⇤+
1
2),�k = 0, (B.3.23)

then we obtain

k/aH ! 1 =) uk =
1p
2k

e�k⌘,

k/aH ! 0 =) ei(⌫⇤�
1
2 )

⇡

2 2⌫⇤�
3
2
�(⌫⇤)

�(32)

1p
2k

(�k⌘)
1
2�⌫⇤ . (B.3.24)

From Eqs. (B.3.13) and (B.3.14), the two-point correlation function of ⇣ is given as

h0|⇣̂k⇣̂†k0 |0i = |uk|2
z2

�3(k� k
0
). (B.3.25)

In the limit k/aH ! 0, the two-point correlation function Eq. (B.3.25) is specifically

given and we obtain the power spectrum as

P
1
2
⇣
(k) =

r
k3

2⇡2

���
uk
z

��� = 2⌫⇤�
3
2
�(⌫⇤)

�(32)

1p
2k

(1� ✏H⇤)
1
2�⌫⇤ H2

2⇡|�̇|

�����
k=aH

. (B.3.26)

The similar calculation is available for the tensor perturbation. The action is derived
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as

Sh =
1

2

Z
d⌘d3x

"✓
dhij
d⌘

◆2

� (@lhij)
2

#
,

=
1

2

Z
d3k

X

�=+,⇥

Z
d⌘

"����
dvk,�
d⌘

����
2

�
✓
k2 � 1

a

d2a

d⌘2

◆
|vk,�|2

#
. (B.3.27)

where we use

vk,� = ahk,� , (B.3.28)

The quantisation of vk is

v̂k,�(⌘) = vk(⌘)âk,� + v⇤
k
(⌘)â†�k,�, (B.3.29)

h
âk,�, â

†
k0

,�

i
= ����

3(k� k
0
),

h
âk,�, âk0

,�

i
= 0 =

h
â†k,�, â

†
k0

,�

i
,

âk,�|0i = 0, (B.3.30)

By variating Eqs (B.3.27) and we obtain the equation of motion for vk as

d2vk
d⌘2

+

✓
k2 � 1

a

d2a

d⌘2

◆
vk = 0. (B.3.31)

By taking the Bunch-Davis vacuum as same as the scalar mode,

k/aH ! 1 =) vk =
1p
2k

e�k⌘,

k/aH ! 0 =) ei(µ⇤� 1
2 )

⇡

2 2µ⇤� 3
2
�(µ⇤)

�(32)

1p
2k

(�k⌘)
1
2�µ⇤ , (B.3.32)

where

µ⇤ =
1

1� ✏H⇤
+

1

2
, (B.3.33)

and compute

h0|ĥk,�ĥ†k0
,�
|0i = |vk|2

a2
����

3(k� k
0
), (B.3.34)
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and finally we obtain the power spectrum of the tensor mode, PT , as

P
1
2
T (k⇤) = 2µ⇤� 3

2
�(µ⇤)

�(32)
(1� ✏H⇤)

µ⇤� 1
2
H

2⇡

�����
k=aH

. (B.3.35)

B.3.3 Asymptotic values of power spectra

In Eqs. (B.3.29) and (B.3.35), we have obtained P⇣ and PT with the constant slow-roll

parameters. Since the constancy of the slow-roll parameters are guaranteed at the

linear order, we further approximation P⇣ and PT at the linear order of ✏H⇤ and ⌘H⇤.

µ⇤ and ⌫⇤ are given as

⌫⇤ =
3

2
+ 2✏H⇤ � ⌘H⇤,

µ⇤ =
3

2
+ ✏H⇤, (B.3.36)

and thus the power spectra are approximately obtained as

P
1
2
⇣(k) = [1 + (2� ln 2� b)(2✏H⇤ � ⌘H⇤)� ✏H⇤]

H2

2⇡|�̇|

�����
k=aH

+O(SRP2),

P
1
2
T (k) = [1� (ln 2 + b� 1)✏H⇤]

H

2⇡

�����
k=aH

+O(SRP2). (B.3.37)

where b denotes the Euler-Mascheroni constant 2�ln 2�b ' 0.7296, ln 2+b�1 ' 0.2704.

By using the relation at the horizon crossing for each scale k, i.e., ln k = d lnHa '
da

a
= dN , the spectral index of ⇣, n⇣ reads

n⇣(k) = 1 +
d lnP⇣

d ln k
,

' 1� 4✏H⇤ + 2⌘H⇤ � 2(1 + c)✏H⇤
2,

� 1

2
(3� 5c)✏H⇤⌘H⇤ �

1

2
(3� c)⇠H⇤

2 +O(SRP3),

= �6✏V ⇤ + 2⌘V ⇤ +
1

3
(44� 18c)✏V ⇤

2)

+ (4c� 14)✏V ⇤⌘V ⇤ +
2

3
⌘V ⇤

2 +
1

6
(13� 3c)⇠2V ⇤ +O(SRP3). (B.3.38)
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where c ⌘ 4(ln 2 + b)� 5 ' 0.08145. The tensorial spectral index nT is given by

nT (k) =
d lnPT

d ln k
,

' �2✏H⇤ � (3 + c)✏H⇤
2 + (1 + c)✏H⇤⌘H⇤ +O(SRP3),

= �2✏V ⇤ �
1

3
(8 + 6c)✏V ⇤

2 +
1

3
(1 + 3c)✏V ⇤⌘V ⇤ +O(SRP3). (B.3.39)

The tensor to scalar ration is obtained as

r =
25

2
✏H⇤

⇥
1 + 2c(✏H⇤ � ⌘H⇤) +O(SRP2)

⇤
,

=
25

2
✏V ⇤

"
1 + 2(c� 1

3
)(2✏V ⇤ � ⌘V ⇤) +O(SRP2)

#
. (B.3.40)

B.3.4 Example 1: power law inflation

The power law inflation models, i.e., a / tp(p > 1) provide the constant ✏H and ⌘H ,

having the analytic solutions. Specifically, 1/p ⌘ ✏H⇤ = ⌘H⇤ and we obtain the power

spectra shown in Eq. (B.3.37) as

P
1
2
⇣(k⇤) =

"
2

1
p�1
�(32 + 1

p�1)

�(32)

✓
1� 1

p

◆ p

p�1

#r
p

2

✓
k

k⇤

◆� 1
p�1

, (B.3.41)

and the tensor to scalar ration is

r =

r
2

p
. (B.3.42)

B.3.5 Example 2: natural inflation

The natural inflation models are provided V (�) as

V (�) = ⇤4

"
1 + cos

✓
�

f

◆#
, (B.3.43)
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By imposing �/f ⌧ 1, the equations of motion of the background are given as

H =

r
2

3
⇤2,

V� = �⇤
4

f2
�,

✏H⇤ ' 0, ⌘H⇤ '
3

2

✓r
1 +

2

3f2

◆
, (B.3.44)

Then the power spectra in Eq. (B.3.37) are

P
1
2
⇣(k) ' �

"
2⌘H⇤

�
�
3
2 � ⌘H⇤

�

�
�
3
2

�
#
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6⇡�⇤⌘H⇤

✓
k

k⇤

◆
⌘H⇤

,

P
1
2 T (k) =

⇤2

p
6⇡

. (B.3.45)

The spectral index for the scalar power spectrum n⇣ is derived as

n⇣ = 1 + 2⌘H⇤ . (B.3.46)

B.4 EFT of Inflation

This is a note how to compute the primordial power spectra in inflationary epoch in

the Lifshitz regime of Horava gravity. The main purpose of this note is to summarize

my previous computation in more formal way and also make it understood how a

scalar graviton gets decoupled with the adiabatic mode before the adiabatic mode is

preserved.

B.4.1 Construction of the action in unitary gauge

We consider an action that breaks time di↵eomorphism invariance t ! t̃(x) and preserve

spatilally de↵eomorphism invariance xi ! xi + ⇠i(x). If we choose the unitary gauge,

we can choose the time coordinate t = t̃. Then we can obtain a total Lagrangian as

S =

Z
d4x

p
�g

"
1

2
M2

PlR� c(t)g00 � ⇤(t) + 1

2!
M4

2 (t)(g
00 + 1)2 +

1

3!
M4

3 (t)(g
00 + 1)3

� M̄3
1 (t)

2
(g00 + 1)�Kµ

µ � M̄2
2 (t)

2
�Kµ

µ
2 � M̄2

3 (t)

2
�Kµ

⌫�K
⌫
µ

#
,

(B.4.1)
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where �Kµ⌫ = Kµ⌫ � a2Hhµ⌫ and hµ⌫ is spatially induced metric. If we consider the

FRW metric which is given by

ds2 = �dt2 + a2(t)gijdx
idxj . (B.4.2)

The background solutions are given as usual

H2 =
1

3M2
Pl

[c(t) + ⇤(t)] , (B.4.3)

ä

a
= Ḣ +H2 =

1

3M2
Pl

[2c(t)� ⇤(t)] . (B.4.4)

Solving for c(t) and ⇤(t) Eq. (B.4.1) is rewritten as

S =

Z
d4x

p
�g

"
1

2
M2

PlR+M2
PlḢg00 �M2

Pl(3H
2 + Ḣ) +

1

2!
M4

2 (t)(g
00 + 1)2 +

1

3!
M4

3 (t)(g
00 + 1)3

� M̄3
1 (t)

2
(g00 + 1)�Kµ

µ � M̄2
2 (t)

2
�Kµ

µ
2 � M̄2

3 (t)

2
�Kµ

⌫�K
⌫
µ

#
,

(B.4.5)

B.4.2 Action for the Goldstone Boson

Then we now observe that the breaking symmetry of time translation will produce

a new degree of freedom, which originate from gauge symmetry due to the general

covariance. Time translation is defined with some function ⇡(t,x) on space-time as

t ! t̃(t) = t+ ⇡(t,x) , (B.4.6)

In a usual case that time translation symmetry preserves, ⇡ never appears in the

Lagrangian, which behaves just a gauge degree of freedom. On the other hand ⇡

becomes a physical variable. due to the breaking of time translation symmetry. Under

the unitary gauge such that the background time is constant as t = t̃(t), it is quite easy

how ⇡ behaves as a Nambu-Goldstone mode. Here we consider a general case and then

we treat ⇡ in the same way. First of al, we begin with

Z
d4x

p
�g

⇥
A(t) +B(t)g00(x)

⇤
, (B.4.7)
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Under a broken time Di↵s. t ! +⇠0(x), x ! x̃ = x, g00 transforms as :

g00(x) ! g̃00(x̃(x)) =
@x̃0(x)

@xµ
@x̃0(x)

@x⌫
gµ⌫(x) , (B.4.8)

The action written in terms of the transformed fields is given by:

Z
d4x

p
�g̃(x̃(x))

����
@x̃

@x

����


A(t) +B(t)

@x̃0

@xµ
@x̃0

@x⌫
g00(x)

�
, (B.4.9)

Z
d4x̃

p
�g̃(x̃)


A(t̃� ⇠0(x(x̃))) +B(t̃� ⇠0(x(x̃)))

@(t̃� ⇠0(x(x̃)))

@x̃µ
g̃µ⌫(x̃)

@(t̃� ⇠0(x(x̃)))

@x̃⌫
g̃µ⌫(x̃)

�
,

(B.4.10)

⇠0(x(x̃)) ! �⇡̃(x̃) , (B.4.11)

⇡(x) ! ⇡̃(x̃) = ⇡(x)� ⇠0(x) , (B.4.12)

Then we assume that all coupling terms such as

M2
PlḢ⇡̇�g

00, M4
2 ⇡̇�g

00 ,

are negligible. In other words, this happens when we take the energy scale E satisfies

E � Emix. Here Emix is the energy scale at which the interaction terms become

relevant. Under the assumption we obtain the action with the NG boson ⇡ as

S⇡ =

Z
d4x

p
�g


1

2
M2

PlR�M2
PlḢ

✓
⇡̇2 � (@i⇡)2

a2

◆
+ 2M4

2

✓
⇡̇2 + ⇡̇3 � ⇡̇

(@i⇡)2

a2

◆
� 4

3
M4

3 ⇡̇
3

�
,

(B.4.13)

Then we pick up some examples. If we consider an inflationary model provided that it is

well described under a slow-roll approximation, the interaction terms with Ḣ becomes

sub-dominant.

gij = a2(t) [1 + 2⇣(t,x)�ij + hij ] , (B.4.14)

where hij is a tensor mode. We compute time translation t ! t�⇡(x). This translation
gives translation of the scale factor a(t) ! a(t � ⇡(x, t)). Due to the Di↵s invariance



APPENDIX B. STANDARD THEORY OF INFLATION 229

of the metric gij , ⇣ is given by

⇣(t,x) ! �H⇡(t,x) . (B.4.15)

Here, ⇣ corresponds to the curvature perturbation.

B.5 Preservation of adiabatic perturbation

B.5.1 Adiabatic perturbation

Spatial curvature perturbation R

�ij = a2e2R�ij , (B.5.1)

We consider four dimentional de Sitter space. The spacial metric in a de Sitter space

is

�ij = e2Ht+2R�ij , (B.5.2)

The metric �ij stays invariant with a certain coordinate transformation

t ! t� s,x ! esx (B.5.3)

As a result, any perturbative fluctuation R is not physical on a de Sitter space. In the

general space-time that is assymptotically de Sitter space, however,

x ! esx, R ! R� s , (B.5.4)

This instantly conclude that R does not have the mass term in its Lagrangian, prevent-

ing R from decay at lower energy scale, or equivalently at super-horizon scale. This is

why the R is ”frozen out” at the horizon crossing scale.

In the inflationary universe, the spacial curvature R and the inflaton fluctuation

' are both gauge-dependent. Thus we normally choose the gauge-invariant curvature

perturbation, ⇣,

⇣ ⌘ R� H

�̇
' , (B.5.5)

When the inflaton weakly couples with the curvature, namely, the slow-roll regime,

interaction terms between ⇣ and ' eventually disappears at k/aH ! 0. Recall, the
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power spectrum of ⇣

R ! R�HT , (B.5.6)

'! '� �̇T , (B.5.7)

After horizon exit, the curvature fluctuaion ⇣ seeds the density fluctuation, �⇢, at

sub-horizon scale through

⇣ = R+
�⇢

⇢+ P
, (B.5.8)

By solving the equation of motions, it is shown that

⇣ 0 ' O
 ✓

k

aH

◆2
!

, (B.5.9)

meaning the initial two-point correlation of ⇣ is still preserved outside the horizon.

For this property ⇣ is sometimes called as the adiabatic fluctiation in the sense that ⇣

would not source additional fluctuation at super horizon. In general, if there are non-

trivial interactions with other fields in the background spacetime with matter fields, the

adiabatic fluctuations are sourced by these materials and are no longer in conservation

mode. In general, entropy fluctuation occurs. For more information, [167] should be

referred.



Appendix C

Formulae for angular auto and

cross correlations

We briefly summarise the expansion with spherical harmonics of physical quantities.

We argue how angular power spectra are given by representative physical variables by

a representative physical variable A as,

A(t,x,n) =
1X

`=0

m=`X

m=�`

a`m(t,x)Y`m(n) , (C.0.1)

We specify a certain 2d surface in the spacetime with a coordinate (t,x). n denotes

a unit vector on unit 2d sphere. Once we determine a certain projection process, the

coordinate variables on the surface are functions with respect to n,i.e., (t(n),x(n)).

Hereafter we omit the arguments of the coordinates in a`m as a`m(n). The angular

correlation between two physical variables A and B are given as

⌦
A(n)B(n0)

↵
=

X

`,m,`0,m0

ha`mb`0m0iY`m(n)Y ⇤
`0m0(n0) , (C.0.2)

The bracket on the both sides of Eq. (C.0.2) denotes a ensemble average of the quantities

of what are in the bracket. To compute the ensemble average, we apply a hypothesis

owing to process the average. In cosmology, most of the cases, we apply the hypothesis

of homogeneity and isotropy of the Universe, namely the cosmological principle. Under

the cosmological principle, the average in the angular direction should be independent

in the direction, resulting the ensemble average of the coe�cient in the right hand side

231
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of Eq. (C.0.2) satisfies the following condition,

ha`mb`0m0i = CAB,`�``0�mm0 , (C.0.3)

where CAB,` is the angular correlation coe�cient between A and B, and �``0 and �mm0

are the delta functions. In particular, the auto power CAA,` is given as

CAA,` =
1

2`+ 1

m=`X

m=�`

ha`ma⇤
`m

i , (C.0.4)

Inserting the coe�cients in Eq. (C.0.3) into Eq. (C.0.2) and we obtain

⌦
A(n)B(n0)

↵
=

1X

`=0

2`+ 1

4⇡
CAB,`P`(n · n0) , (C.0.5)

where we use the addition theorem of the spherical harmonics,

Pl(n · n0) =
4⇡

2`+ 1

m=`X

m=�`

Y`m(n)Y ⇤
`m

(n0) , (C.0.6)

Here P`(x) gives Legendre polynomial. The coe�cients alm is inversely given by,

a`m =

Z
d⌦nA(n)Y ⇤

`m
(n) , (C.0.7)

by using the orthogonality of Y`m(n) as

Z
d⌦nYlm(n)Y ⇤

`0m0(n) = �``0�mm0 , (C.0.8)

If A(n) is constant in the whole sky, i.e., A(n) = Ā, the coe�cient a`m is computed

from Eq. (C.0.7) as

a`m =

Z
d⌦nĀY

⇤
`m

(n)

=
p
4⇡Ā

Z
d⌦nY00(n)Y

⇤
`m

(n)

=
p
4⇡Ā�0l�0m , (C.0.9)

This explicitly shows that the constant mode of a physical quantity is recasted by a00.
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C.1 angular correlations in imperfect sky

Ideally, the angular correlations of the CMB or galaxy distributions should be measured

on the whole sky. Under the cosmological principle, the observables in the average of

the angular direction is a good estimator corresponding to the ensemble of the physical

conditions that presumably realise in the Universe. In reality, however, only the part of

the sky is for the cosmological measurements, simply because we live in the galaxy with

the bunch of stars and gases that act as a foreground, ending up with the incompletion

of the cosmological ensemble. We treat such an imperfect information carefully to what

we can practically apply for the cosmological purposes. Here, we examine properties

of the angular correlation on the covered sky. We consider a certain physical variable

A(n) as

A(n) =
1X

`=0

`X

m=�`

a`mY`m(n) , (C.1.1)

Then we consider the window function W (n) that artificially covers depending on the

area of the sky ⌦,

W (n;⌦) =

8
<

:
1 (n 2 ⌦)

0 (n /2 ⌦)
(C.1.2)

The window function W (n;⌦) works on the variable A(n) in the form of a multiplier

as a consequence of the fair sample hypothesis. Then the observed value of A(n) is

given as

A(⌦) ⌘ W (n;⌦)A(n) (C.1.3)

where we denote A(⌦) as the variable limited in the uncovered sky. Notice that W (n)

changes the normalization of any angular average by the factor fsky ⌘
R
d⌦W (n)/4⇡.

Since the window function acts on the spherical orthogonal basis, we define

W (n;⌦)Y`m(n) ⌘
X

`0,m0

W``0
mm

0
Y`0m0(n) , (C.1.4)

Then we define the observed angular coe�cient as

A`m ⌘
X

`0,m0

W``0
mm

0
a`m , (C.1.5)
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We define the window function W (n;⌦) in the form of the Fourier coe�cient on the

sphere,

I`m =

Z
d⌦nW (n;⌦)Y ⇤

`m
(n) , (C.1.6)

For the later convenience, we introduce the coe�cient J`m

J`m =

Z
d⌦nW (n;⌦)Y`m(n)Y ⇤

`m
(n) , (C.1.7)

Notice that J`m is the Fourier coe�cient of the map W (n;⌦). Interestingly the angular

average of J`m robustly coincide with the sky coverage,

J` ⌘
1

2`+ 1

m=`X

m=�`

J`m =

Z
d⌦nW (n;⌦)

4⇡

"
4⇡

2`+ 1

m=`X

m=�`

Y`m(n)Y ⇤
`m

(n)

#
,

=

Z
d⌦nW (n;⌦)

4⇡
P`(1) =

Z
d⌦nW (n;⌦)

4⇡
= fsky (C.1.8)

Here we use Eq. (C.0.6) to extract the Legendre polynomial and the boundary condition

for the Legendre polynomial, P`(1) = 1.

C.2 Statistical preliminaries for galaxy surveys

C.2.1 Variance of galaxies

We argue how we apply galaxy surveys for obtaining information of cosmology. What

we should care when we use the data of galaxy distribution is the discreteness of

galaxies in the sky. In a real survey, galaxies are observed as luminous points in the

sky, leading a peculiar statistical error on measuring the density fluctuation in the

Universe. The statistical characteristics of the galaxy distribution is Poisson statistics

via its discreteness. Let us start with an array ni (i = 1, 2, ..., Npix) s.t
P

i
ni = Ngal.

We compute the mean value of the galaxies distributed in each pixel. Without no

preference of the pixel, namely, equipartition in pixels, the mean value is fairly given

by � = Npix/Ngal. Then the Poisson statistics provides a certain ni that is likely to be

the distribution of galaxies around the mean value �. The statistical measures, i.e, the

mean and the variance of ni are computed as

hni = � ,
⌦
n2
↵
� hni2 = � , (C.2.1)
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To reconstruct these statistical behaviours from observational data, we use standard

arithmetic estimators as

hniobs , �
2
obs ⌘

⌦
n2
↵
obs

� hni2obs , (C.2.2)

hAiobs ⌘
1

Npix

NpixX

i=1

Ai , (C.2.3)

According to the central limit theorem, at large Npix, the two statistics above makes a

relation as hAi = hAiobs +O(1/Npix), practically hAi ⇡ hAiobs. Hereafter ‘⇡’ denotes

the equality on the central limit theorem that is exactly identical to the true equal

when Npix ! 1. For convenience we define the contrast �i as

�i ⌘
ni � hni

hni , (C.2.4)

Hereafter we omit the di↵erence between the two statistics. Notice that h�i = 0. From

the central limit theorem we obtain

⌦
�2
↵
⇡ �

�2
⇡ Npix

Ngal
, (C.2.5)

Notice that
⌦
�2
↵
proportionally grows with Npix. This fundamentally captures the

feature that the estimator cannot tell any di↵erence of a observed statistics from the

uniform distribution of pixels. However, the randomness of the pixels is able to removed

by dividing by Npix, namely a meaningful estimator is �2 ⌘
⌦
�2
↵
/Npix. In fact, if �i is

realised under the Gaussian statistics with the variance �20, the randomness of the pixels

exactly increases by a factor Npix, leading us to estimate �20 via �20 ⇡ �2 = 1/Ngal. In

more detail, we compute
⌦
�2
↵
by the following integration,

⌦
�2
↵
⇡
Z
⇧id�i ⇥

X

j

�2j ⇥ {Norm(0,�20)}Npix = Npix�
2
0 , (C.2.6)

where Norm(0,�20) denotes the normal Gaussian distribution with the variance �20.

More optimal way to derive the same property of the distribution of the points is as

follows. ni = 0 or 1.

C.3 number density contrast

For preliminary, let me type out all the equations how the distribution of galaxies in

redshifts is projected on an observed sky. Starting with the definition of the number
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density contrast on an observed sky as

�g(zobs, ✓,') ⌘
⌃(zobs, ✓,')� ⌃̄(zobs)

⌃̄(zobs)
, (C.3.1)

Here ⌃(zobs, ✓,') is the surface number density of galaxies (more general any as-

tronomical objects) at z = zobs. ⌃̄(zobs) is the background density computed by

⌃̄(zobs) =
R
d⌦⌃(zobs, ✓,')/4⇡, where d⌦ denote infinitesimal solid angle. For sim-

plicity, we temporarily omit zobs from the functions used for the computation. To

derive ⌃(✓,'), we count the number of galaxies for each redshift. We define the num-

ber density of galaxies at a certain redshift z as n(z, ✓,'). The di↵erential volume

element at z is given with the comoving distance �(z) via d⌦d��2. By integrating

along � we obtain ⌃ as

⌃(z, ✓,') =

Z
�⇤

�

d��2n(z, ✓,') (C.3.2)

where �⇤ = �(z⇤) and �obs = �(zobs) respectively. Under the assumption of isotropy

of the Universe, ⌃̄ is given with the mean number density n̄(z) via

⌃̄ =

Z
�⇤

�obs

d��2n̄(z) , (C.3.3)

Replacing ⌃ and ⌃̄ in Eq. (C.3.1) with the right hand side of Eqs. (C.3.2) and (C.3.3)

we obtain the final expression of �g as

�g(zobs, ✓,') =

Z
z⇤

zobs

dzf(z)�̃g(z, ✓,') , (C.3.4)

�̃g(z, ✓,') ⌘
n(z, ✓,')� n̄(z)

n̄(z)
= b(z)�m(z, ✓,') , (C.3.5)

f(z) ⌘ d�/dz · �2n̄R
�⇤
�obs

d��2n̄
=

d⌃/dz

⌃̄
, (C.3.6)

where �m(z, ✓,'), the density contrast. We notice that f(z) describe the probability

distribution of galaxies since
R
dzf(z) = 1. Proportionality of �̃g to �m reasonably

captures at linear level that the formation of galaxies takes place in a dense region.

b(z) is called bias factor.
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[164] Paolo Creminelli, Jérôme Gleyzes, Jorge Noreña, and Filippo Vernizzi. Re-

silience of the standard predictions for primordial tensor modes. Phys. Rev.

Lett., 113(23):231301, 2014.



BIBLIOGRAPHY 250

[165] Shinji Tsujikawa. Disformal invariance of cosmological perturbations in a gener-

alized class of Horndeski theories. JCAP, 1504(04):043, 2015.

[166] Shinji Mukohyama. Horava-Lifshitz Cosmology: A Review. Class. Quant. Grav.,

27:223101, 2010.

[167] Christopher Gordon, David Wands, Bruce A. Bassett, and Roy Maartens. Adia-

batic and entropy perturbations from inflation. Phys. Rev., D63:023506, 2001.

[168] Ted Jacobson. Extended Horava gravity and Einstein-aether theory. Phys. Rev.,

D81:101502, 2010. [Erratum: Phys. Rev.D82,129901(2010)].

[169] Daniel Baumann, Daniel Green, and Rafael A. Porto. B-modes and the Nature

of Inflation. JCAP, 1501(01):016, 2015.

[170] David Seery and James E. Lidsey. Primordial non-Gaussianities in single field

inflation. JCAP, 0506:003, 2005.

[171] Daniel Baumann and Daniel Green. Equilateral Non-Gaussianity and New

Physics on the Horizon. JCAP, 1109:014, 2011.

[172] P. A. R. Ade et al. Planck 2015 results. XVII. Constraints on primordial non-

Gaussianity. Astron. Astrophys., 594:A17, 2016.

[173] N. Kaiser. Clustering in real space and in redshift space. Mon. Not. Roy. Astron.

Soc., 227:1–27, 1987.

[174] A. J. S. Hamilton. Linear redshift distortions: A Review. In Ringberg Workshop

on Large Scale Structure Ringberg, Germany, September 23-28, 1996, 1997.

[175] J. C. Jackson. A critique of Rees’s theory of primordial gravitational radiation.

Mon. Not. Roy. Astron. Soc., 156:1P, Jan 1972.

[176] John A. Peacock et al. A Measurement of the cosmological mass density from

clustering in the 2dF Galaxy Redshift Survey. Nature, 410:169–173, 2001.

[177] Lado Samushia et al. The clustering of galaxies in the SDSS-III Baryon Oscilla-

tion Spectroscopic Survey: measuring growth rate and geometry with anisotropic

clustering. Mon. Not. Roy. Astron. Soc., 439(4):3504–3519, 2014.

[178] Antony Lewis and Anthony Challinor. Weak gravitational lensing of the CMB.

Phys. Rept., 429:1–65, 2006.



BIBLIOGRAPHY 251

[179] J. A. Peacock and M. Bilicki. Wide-area tomography of CMB lensing and

the growth of cosmological density fluctuations. Mon. Not. Roy. Astron. Soc.,

481(1):1133–1148, 2018.

[180] T. M. C. Abbott et al. Dark Energy Survey year 1 results: Cosmological con-

straints from galaxy clustering and weak lensing. Phys. Rev., D98(4):043526,

2018.

[181] Diego Blas, Julien Lesgourgues, and Thomas Tram. The Cosmic Linear

Anisotropy Solving System (CLASS). Part II: Approximation schemes. ”JCAP”,

2011(7):034, Jul 2011.

[182] Benjamin D. Wandelt, Eric Hivon, and Krzysztof M. Gorski. The pseudo-C`

method: cosmic microwave background anisotropy power spectrum statistics for

high precision cosmology. Phys. Rev., D64:083003, 2001.

[183] E. Hivon, K. M. Gorski, C. B. Netterfield, B. P. Crill, S. Prunet, and F. Hansen.

Master of the cosmic microwave background anisotropy power spectrum: a fast

method for statistical analysis of large and complex cosmic microwave background

data sets. Astrophys. J., 567:2, 2002.

[184] K. M. Gorski, Eric Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Rei-

necke, and M. Bartelman. HEALPix - A Framework for high resolution dis-

cretization, and fast analysis of data distributed on the sphere. Astrophys. J.,

622:759–771, 2005.

[185] George Miley and Carlos De Breuck. Distant Radio Galaxies and their Environ-

ments. Astron. Astrophys. Rev., 15:67, 2008.

[186] James J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B.

Taylor, and J. J. Broderick. The NRAO VLA Sky survey. Astron. J., 115:1693–

1716, 1998.

[187] Tom Mauch, T. Murphy, H. J. Buttery, J. Curran, R. W. Hunstead, B. Piestrzyn-

ski, J. G. Robertson, and E. M. Sadler. SUMSS: A wide-field radio imaging sur-

vey of the southern sky. 2. The Source catalogue. Mon. Not. Roy. Astron. Soc.,

342:1117, 2003.

[188] Robert H. Becker, Richard L. White, and David J. Helfand. The FIRST Survey:

Faint Images of the Radio Sky at twenty centimeters. Astrophys. J., 450:559,

1995.



BIBLIOGRAPHY 252

[189] Philip N. Best, J. N. Arts, H. J. A. Rottgering, R. Rengelink, M. H. Brookes, and

J. Wall. CENSORS: A Combined EIS - NVSS survey of radio sources. 1. Sample

definition, radio data and optical identifications. Mon. Not. Roy. Astron. Soc.,

346:627, 2003.

[190] M. H. Brookes, P. N. Best, J. A. Peacock, H. J. A. Rottgering, and J. S. Dunlop.

A Combined EIS-NVSS Survey Of Radio Sources (CENSORS) III: Spectroscopic

observations. Mon. Not. Roy. Astron. Soc., 385:1297, 2008.

[191] Chris Blake and Jasper Wall. Measurement of the angular correlation function of

radio galaxies from the NRAO VLA Sky Survey. Mon. Not. Roy. Astron. Soc.,

329:L37–L41, 2002.

[192] Chris Blake, Pedro G. Ferreira, and Julian Borrill. The Angular power spectrum

of NVSS radio galaxies. Mon. Not. Roy. Astron. Soc., 351:923, 2004.

[193] Kendrick M. Smith, Oliver Zahn, and Olivier Dore. Detection of Gravitational

Lensing in the Cosmic Microwave Background. Phys. Rev., D76:043510, 2007.

[194] Rupert Allison et al. The Atacama Cosmology Telescope: measuring radio

galaxy bias through cross-correlation with lensing. Mon. Not. Roy. Astron. Soc.,

451(1):849–858, 2015.

[195] M. Bilicki et al. Photometric redshifts for the Kilo-Degree Survey. Machine-

learning analysis with artificial neural networks. Astron. Astrophys., 616:A69,

2018. [Astron. Astrophys.616,A69(2018)].

[196] J. T. A. de Jong et al. The third data release of the Kilo-Degree Survey and

associated data products. Astron. Astrophys., 604:A134, 2017.

[197] Tristan L. Smith, Elena Pierpaoli, and Marc Kamionkowski. A new cosmic mi-

crowave background constraint to primordial gravitational waves. Phys.Rev.Lett.,

97:021301, 2006.

[198] Maciej Bilicki, Thomas H. Jarrett, John A. Peacock, Michelle E. Cluver, and

Louise Steward. 2MASS Photometric Redshift catalog: a comprehensive three-

dimensional census of the whole sky. 2013. [Astrophys. J. Suppl.210,9(2014)].

[199] M. Bilicki et al. WISE x SuperCOSMOS photometric redshift catalog: 20 million

galaxies over 3pi steradians. 2016. [Astrophys. J. Suppl.225,5(2016)].



BIBLIOGRAPHY 253

[200] Róbert Beck, László Dobos, Tamás Budavári, Alexander S. Szalay, and

István Csabai. Photometric redshifts for the SDSS Data Release 12.

Mon.Not.Roy.Astron.Soc., 460(2):1371–1381, Aug 2016.

[201] Lotfi Boubekeur, Paolo Creminelli, Jorge Norena, and Filippo Vernizzi. Action

approach to cosmological perturbations: the 2nd order metric in matter domi-

nance. JCAP, 0808:028, 2008.

[202] Antonio De Felice, Jean-Marc Gerard, and Teruaki Suyama. Cosmological pertur-

bations of a perfect fluid and noncommutative variables. Phys. Rev., D81:063527,

2010.
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