主論文の要約

 論文題目 All-Atom Molecular Dynamics Study on Interfacial Tension at Amphiphilic Aggregates/Solution and Solid Polymer/Solution Interfaces (全原子分子動力学シミュレーションを用 いた両親媒性分子会合体/溶液および固体 高分子/溶液間に働く界面張力の分子論的 研究)

氏 名 北畑 雅弘

論文内容の要約

1. 序論

界面張力は界面形成時の過剰自由エネルギーを表すことから、高分子の相分離や両親媒 性分子の自己組織化など、界面を含む不均一系の自由エネルギーを記述する場合に非常に 重要な役割をはたす。例えば、Cahn-Hilliard モデル¹⁾における系の全自由エネルギー変化 は界面自由エネルギー(界面張力)と混合自由エネルギーの和で表される。このモデルで は、均一な混合状態での自由エネルギーと、界面を形成した場合の過剰な自由エネルギー とのバランスにより、不均一系の構造が決定されると考える。Cahn-Hilliard モデルはマク ロスケールのシミュレーション手法である phase-field 法に用いられ、高分子ブレンドの相 分離など多様な分野に適用されている。しかし、このような熱力学モデルでは、界面張力 は界面の濃度勾配に比例する巨視的な熱力学量でしかなく、界面の分子構造や相互作用が どのように界面張力を決定するかといった分子論的な理解を得ることはできない。

構造形成に界面張力が重要な役割を果たし、かつ界面張力の分子論的な理解がほとんど なされていない系として、両親媒性分子による水中での球状ミセル形成と非溶媒誘起相分 離(NIPS)の多孔質形成が挙げられる。これらの系の研究は基礎科学的に興味深いというだ けでなく、産業応用上も大きな意義を持つ。球状ミセルは可溶化剤やドラッグデリバリー など様々な産業分野に応用されている。また NIPS は高分子多孔質膜の製造に用いられ、 水処理や酸性ガス分離など分離膜として産業利用されている。

分子動力学(MD)シミュレーションと統計力学的・熱力学的な解析手法を組み合わせるこ とにより、両親媒性分子や高分子、溶媒の化学的な特徴を考慮した界面張力の描像を解明 できる。そこで本学位論文では、球状ミセル/水および固体高分子/良溶媒・非溶媒混合溶液 の MD シミュレーションを実施し、これらの界面に作用する界面張力の分子論的描像を明 らかにした。

2. 両親媒性分子会合体に働く界面張力:水中の SDS ミセルとドデカン液滴

両親媒性分子は臨界ミセル濃度(CMC)以上で水に溶解すると、低濃度領域では直径数 nm の球状ミセルとして熱力学的に安定に存在するが、同程度の直径の油滴は安定に存在でき ない。この球状ミセルの安定性には界面張力が重要な役割を果たすと考えられているが、 これまで分子論的な描像は明らかにされていない。

球状ミセルにおける疎水コア付近の領域は、液体の炭化水素に近いことが知られている ことから、球状ミセル/水界面は液/液界面とみなすことができる。液/液界面においては、界 面張力は界面に生じる局所圧力の異方性に等しい(力学的定義)。球界面における力学的定義 による界面張力γ_sは

$$\gamma_s^3 = -\frac{1}{8} \left\{ \int_{R^\alpha}^{R^\beta} \frac{dP_N(R)}{dR} dR \right\}^2 \int_{R^\alpha}^{R^\beta} R^3 \frac{dP_N(R)}{dR} dR, \qquad (1)$$

と表される。ここで、Rは動径方向の距離、 R^a , R^b は積分区間で界面から十分離れた位置、 $P_N(R)$ は動径方向の局所圧力テンソルの分布である。局所圧力は Irving-Kirkwood の方法 20

を多体力が取り扱えるよう拡張し求めた。本研究では、(a) SDS(sodium dodecyl sulfate)ミセルを計算対象とし た。SDS は代表的な界面活性剤であり、会合数や CMC など基礎的な物性が十分に調べられており、工業的に も広く用いられる。また比較のため SDS の疎水性コ アを想定したドデカンの液滴の計算も行った。

水中の SDS ミセルとドデカン液滴の動径方向と接 平面方向の圧力テンソル差の分布 $P_N(R) - P_T(R)$ を Fig. 1 に示した。これを積分して求められた SDS ミ セルとドデカン液滴の界面張力は、それぞれ 20 およ び 44 mJ/m²となった。これに界面の面積との積から 界面における過剰な自由エネルギーを見積もると 340 および 1331 kJ/mol となった。即ち SDS ミセルは親 水基から 991 kJ/mol もの安定化を得ることがわかっ た。ドデカン液滴の大きな界面張力は、Rの全領域に おいてゼロまたは正の圧力差 $P_N(R) - P_T(R)$ を示すこ

Fig. 1水中の(a)SDSミセルと(b)ドデカ ン液滴の圧力テンソル差の分布

とに由来する。一方、SDS ミセルは負の圧力差を示す領域が存在するため、界面張力が小 さくなることが明らかになった。また相互作用グループ毎の寄与に界面張力を分割したと ころ、SDS ミセルは極性の大きなグループの寄与が支配的であり、SDS ミセルの界面張力 の大部分は静電相互作用に由来する。

3. 固体高分子表面に働く界面張力

高分子溶液を非溶媒中に射出することによって、NIPS で多孔質膜を製造することが工業 的に行われている。この膜の細孔形状の決定には、良溶媒/非溶媒の混合溶液と凝固する高 分子界面に働く界面張力が大きく寄与すると考えられている。本研究では NIPS 系として、 高分子にポリフッ化ビニリデン(PVDF)を、良溶媒に NMP を、非溶媒として水を選択した。 PVDF と NMP/水混合溶液の界面は固/液界面であり、固体の弾性率の寄与を考慮する必要 があるため、一般的には液/液界面のように力学的定義が適用できない。そこで、固体表面 の液滴の接触角(濡れ)から固/液界面張力y_{sl}を評価する。y_{sl}は次の Young の式より

$\gamma_{sv} = \gamma_{lv} \cos\theta_{\infty} + \gamma_{sl} \tag{2}$

と表される。ここで γ_{sv} と γ_{lv} は固/気および気/液界面張力を示し、 θ_{∞} はマクロな液滴の接触角を表す。しかしながら、MD シミュレーションで扱うことのできるミクロな液滴の接触角は、大きく液滴サイズに依存することが知られている。そのため、次の修正 Young の式を用いることで接触角のサイズ依存性を考慮した。

$$\cos\theta = \cos\theta_{\infty} - \frac{\tau}{\gamma_{lv}} \frac{1}{r_{dr}(Z_0)},\tag{3}$$

ここで θ はミクロ液滴の接触角、 τ は線張力、 $r_{dr}(Z_0)$ は液滴と基板の接触面の半径を表す。 なお MD シミュレーションからのミクロ液滴の接触角を評価には Ingebrigsten-Toxvaerd 法 3 を用いた。

(a) 水によるポリフッ化ビニリデン表面の濡れ

まず PVDF 表面の微細構造が水との濡れ性および界面張力に与える影響を解析した。 PVDF は半結晶性高分子であるため、表面は結晶と非晶の混合表面である。そこで結晶表

面および非晶表面のモデルを独 立に作成し、これらの表面に 5 種類の異なる直径の水滴を接触 させ接触角を求めた。

得られた水滴の接触角のサイ ズ依存性を Fig. 2 に示した。結 晶 ・ 非 晶 表 面 共 に $\cos\theta$ は $1/r_{dr}(Z_0)$ に比例するため、修正 Young の式に従うことがわかっ た。修正 Young の式より、マク ロ液滴の接触角 θ_{∞} は結晶表面で

Fig. 2 PVDF結晶および非晶表面における水滴の接触角の液滴サ イズ依存性(左図)とシミュレーションスナップショット(右図)

96°、非晶表面で 86°が得られ、非晶表面の方がより低い疎水性を持つことがわかった。結 晶/非晶混合表面上の接触角は、純結晶および純非晶の接触角と Cassie 方程式 4を用いるこ とで 91°と推算された。推算値は実験値(80°-90°)とよく一致した。Young の式より導かれる 界面張力は、混合表面では 34 mJ/m²、結晶表面では 40 mJ/m²、非晶表面では 28 mJ/m² であった。さらに相互作用エネルギーの解析を実施した。その結果、非晶表面は水とより 強く相互作用するため、この相互作用が界面の過剰な自由エネルギーを減少させ、表面の 疎水性を低下させることがわかった。

(b) 良溶媒および良/非混合溶媒によるポリフッ化ビニリデン表面の濡れ

次に NMP および NMP/水混合溶液の液滴を結晶および非晶 PVDF に接触させたときの 接触角を MD シミュレーションから求めた。得られたミクロ液滴の接触角と修正 Young の 式から、マクロ液滴の接触角 θ_{α} を算出し、実験値と Fig. 3(a), (b)で比較した。

結晶表面におけるマクロ液滴の接触角は実験値より高く、非晶表面では低い。実際の PVDF 表面は結晶/非晶混合表面であるため、実験値が結晶と非晶の中間に位置することは 妥当である。液滴と基板の構造解析を実施したところ、結晶表面では、液滴中の NMP 濃度 の増加による接触角の減少は、固/液および気/液界面における NMP 密度の増加で説明でき ることがわかった。一方、非晶表面では、高濃度 NMP の液滴における接触角は、PVDF

の膨潤の影響を強く受けることが わかった。さらに Cassie 方程式か ら混合表面の接触角を推算したと ころ、実験値と非常に高い相関(相 関係数 0.99)を示すだけでなく、定 量的にもよく一致した(Fig. 3(b))。 Cassie 方程式の接触角と Youngの 式を用いて_{ysl}の NMP 濃度依存性 を明らかにした(Fig. 3(c))。液滴中 の NMP 濃度の増加に伴いγ_{sl}は減 少し、80wt%以上で負の界面張力 を示した。負の界面張力は界面を 形成するよりも均一な混合状態の 方が安定であることを示しており、 NMP が PVDF に対し良溶媒であ る事実と整合する。

Fig. 3 (a)PVDF表面におけるマクロなNMP/水混合液 滴の接触角 (b) MDと実験値の相関 (c) 固/液界面張力 のNMP濃度依存性

4. 結論

上記の MD シミュレーションにより、水中の球状ミセル界面および半結晶性高分子と良・ 非混合溶媒界面に働く界面張力の分子レベルでの描像を明らかにした。本研究の方法を用 いると様々な界面活性剤で構成される球状ミセルの安定性を予測可能であり、工業的に重 要な球状ミセルの分子設計につながることが期待される。また固体高分子表面の水による 濡れは分離膜のファウリングの指標として活用されている。そこで本手法を様々な高分子 表面に適用することで、耐ファウリング膜の分子設計が可能になると考える。さらに本研 究で扱った界面自由エネルギーに加え、バルク状態の混合自由エネルギーを MD により求 めるとマルチスケールシミュレーションが可能となる。これを NIPS に適用すれば、これ まで実験では観測が困難だった細孔形成の過程を、分子描像を考慮して解明することが可 能となり、産業界に大きなインパクトを与える研究となるであろう。

参考文献

- 1) J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 1958, 28, 258.
- 2) J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 1950, 18, 817.
- 3) T. Ingebrigtsen and S. Toxvaerd, J. Phys. Chem. C 2007, 111, 8518-8523.
- 4) A. B. D. Cassie, *Discuss. Faraday Soc.* 1948, **3**, 11.