
 

 

 

Short-term Link Travel Time Prediction and 

Intersection Priority Control for 

Urban Traffic Control and Management System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TANG Ruotian 

 

 

 

  



 

  



 

 

 

 

 

Short-term Link Travel Time Prediction and 

Intersection Priority Control for 

Urban Traffic Control and Management System 

 

 

by 

Tang Ruotian 

Department of Civil Engineering 

Nagoya University 

 

 

 

 

 

 

Submitted in partial fulfillment  

of the requirements for the degree of  

Doctor of Engineering 

 

 

Nagoya, Japan 

March 2020 

 

 

 



  



i 

 

ABSTRACT 

Traffic congestion has bothered people for a long time since motorization and 

urbanization took place in many cities around the world. Traffic congestion results from 

the imbalance between traffic demand and supply, so many governments used to 

construct more roads to meet the increasing traffic demand. However, it turned out to 

stimulate more congestion on the road. With the rapid development of computer and 

sensor technologies, decision-makers are trying to control and manage the traffic based 

on the intelligent transportation system (ITS) which shows great potential in reducing 

the congestion. To handle more and more complicated traffic conditions, many 

researchers devoted their efforts to expand traffic control and management from the 

real-time into the future and from highways to urban networks.  

This study contributed to an ITS-based traffic control and management strategy 

which dynamically controls the priority at the intersection and employs short-term 

urban link travel time prediction so that it can catch up with the frequent change in the 

urban traffic condition. As an important component in modern traffic control and 

management systems, short-term travel time prediction models are widely studied using 

probe vehicle data, but the low penetration rate of probe vehicles limits their real-world 

applications in highways and urban arterials. Therefore, this study proposed 

non-parametric models to enhance the coverage rate of the prediction under the low data 
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penetration rate and expand the prediction horizon so that they can be applied on the 

whole urban network in the real world. When the study site changes from the highway 

to the urban network, the traffic condition becomes more complex. It is more doable to 

solve the congestion problem over a small scale where the traffic condition has a similar 

characteristic instead of reducing the congestion on the whole network. Therefore, the 

intersection which is the main potential bottleneck of the urban network attracts our 

attention. This study proposed a strategy to dynamically determine the priority of each 

incoming link at the intersection to reduce the congestion. Three main sections were 

employed to explain the details of this study. 

Firstly, this study aimed to relieve the limitation of study sites caused by the low data 

penetration rate when predicting short-term travel time at urban networks. It was realized 

through a non-parametric model which is based on Bayes’ theorem under a 

“prediction-resampling” structure. To predict the travel time for a link, most previous 

approaches used data only from vehicles on the target link. In contrast, the proposed 

model in this study considered data from vehicles in the crossing direction. With the 

data from both directions, the coverage rate of an application using the proposed model 

can be expanded, especially when the data penetration rate is low. Besides, the signal 

pattern was estimated through the utilization of relationships between vehicles in both 

directions. The proposed model was evaluated in a computer simulation to test its 

robustness and reliability under different data penetration rates. The results implied that 
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the proposed model has a high coverage rate and stable and acceptable performance at 

different penetration rates. 

Secondly, this study further expanded the prediction horizon of the proposed model 

mentioned above, which can only make predictions within a signal cycle due to its short 

time interval and expensive computational cost. To make multistep predictions into a 

longer future, most research chose to aggregate probe data to obtain useful samples when 

the penetration rate is low. However, the aggregation of probe data can only provide a 

general description of the travel time, which cannot capture changes in travel time during 

a short time interval. To overcome this limitation, a non-parametric model using 

disaggregate probe data based on dynamic time warping (DTW) was developed. Besides, 

instead of estimating the signal pattern, data from the target link were separated into 

different signal phases by the data from the crossing direction. A classical k-nearest 

neighbor (KNN) model and a naïve model were compared with the proposed model. The 

models were tested using the same computer simulation data. Moreover, data from two 

real-world cases in Nagoya, Japan were also used to evaluate the models. The results 

showed that the proposed model outperforms the other two models under different data 

penetration rates because its utilization of vehicle data is more efficient. 

Lastly, to find out a practical method which can reduce congestion on the urban 

network in the real world, attention is concentrated on small but easy-congested locations 

such as the intersection. This study combined the link transmission model and a local 
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linear programming formulation to dynamically determine the priority of each incoming 

link at each intersection on the urban network. This model provided a local optimum 

solution for the traffic congestion so it can be added to other approaches that have 

different global objectives. The proposed model and models using other intersection 

priority strategies are tested by simulation data. Results showed that the congestion level 

in the proposed model was lower than other models, while the travel cost remained 

similar. 
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CHAPTER 1 Introduction 

 

1.1  Background 

1.1.1 Traffic congestion 

With the rapid urbanization and motorization, traffic congestion has been an increasing 

social problem in both developed and developing countries. Traffic congestion does not only 

bring unpleasant experience to individuals but also cause actual financial loss and excess fuel 

energy consumption (Jayasooriya and Bandara, 2017). Transportation is recognized as one of 

the main sources for greenhouse gas emission and vehicles produce more emissions in the 

congestion (Barth and Boriboonsomsin, 2008). For example, congestion in the U.S. has kept 

growing since 1982 regardless of the city size (Texas Transportation Institute and INRIX, 

2015). In 2014, 6.9 billion hours of extra time and 3.1 billion gallons of fuel were wasted due to 

the congestion in the 471 U.S. urban areas, and the corresponding economic cost to the average 

auto commuter was $ 960. Most developing countries experiencing urbanization and 

motorization are also facing the same problem which developed countries already have. Cities 

in developing countries are more vulnerable to congestion problems than cities in developed 

countries due to the higher urban densities but less public transport (Barte, 2000). Traffic 

congestion results from the imbalance between traffic demand and supply, so many 

governments used to solve the congestion problem by constructing more roads (Hook and 

Replogle, 1996). However, the expansion of road capacity inversely stimulates additional 
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traffic demand, so attention has changed from infrastructure construction to traffic control and 

management.  

1.1.2 ITS-based traffic control and management 

Traffic control and management usually focus on the demand side to reduce congestion. 

For example, one of the most widely used traffic management strategies is road pricing which 

is aimed to restrict the use of private cars. According to the report by Tri-State Transportation 

Campaign (2018), road pricing has successfully reduced the congestion and improved air 

quality in London, Stockholm, and Singapore. However, Richards (2006) argued that pricing 

policy like congestion charge might have a negative effect on the economy of the target area 

and the burden of the extra pricing might finally fall on people living in the target area. With the 

development of computer science and data collection technology, the intelligent transportation 

system (ITS) solution for congestion is drawing increasing attention in the field of traffic 

control and management. Instead of reducing people’s travel demand, the ITS-based traffic 

control and management focus on optimizing the utilization of the transportation resources. For 

example, the introduction of the electronic toll collection system can significantly improve 

vehicle throughput on highways; drivers can avoid traffic congestion on their route based on 

the traffic information provided by the ITS.  

1.1.3 ITS solution for reducing congestion on the urban network 

To support the rapid urbanization and motorization, the research interest of the ITS-based 

traffic control and management is switching from highways to urban roads. Traffic condition 
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on the urban network is more complex than the highway, so various pieces of traffic 

information are needed to describe the traffic condition. Among all types of traffic information, 

travel time plays the most important role because it is the most sensitive and 

easy-understanding information to individual drivers. Since traffic conditions on the urban 

network change frequently and there is always a time lag between systems and users, especially 

for the ITS applying pull-based strategies, the real-time information cannot always reflect the 

current traffic condition (Xu et al., 2018). Therefore, short-term travel time prediction, which 

makes predictions from several seconds to several hours into the future, has become 

increasingly crucial for the ITS-based traffic control and management (Vlahogianni et al., 

2014). 

On the other hand, many researchers focused on solving the congestion problem or other 

traffic-related problems using the dynamic traffic assignment (DTA) over the whole network. 

However, since urban traffic condition differs according to the location on the network, it is 

better to control and manage the traffic over a small scale where the traffic condition has a 

similar characteristic. In the real world, it is more doable to solve the congestion problem over 

a small scale instead of solving the optimization problem over the whole network by the DTA 

approach. Another advantage of focusing on the small scale is the future traffic information can 

be predicted more accurately. Consequently, the intersection which is the main potential 

bottleneck on the urban network attracts our attention. To reduce the traffic congestion on a 

large urban network, it is necessary to develop an ITS-based traffic control and management 

strategy that manages the traffic flow at the intersection. The control and management 
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strategy on each intersection will affect drivers’ behaviors and further improve the traffic 

condition on the whole network. It is also worthwhile adding short-term travel time prediction 

to the ITS-based traffic control and management so that it can react to the complex and 

changeable traffic condition on the urban network. 

 

1.2  Problem Statement 

1.2.1 Low penetration rate problem in short-term travel time prediction 

Traffic conditions are so complicated and unstable that large amounts of data are required 

to catch up with the changes in travel time. For research which utilizes probe data, the amount 

of data collected relies on two variables: the penetration rate of probe vehicles and their 

frequency (Bucknell and Herrera, 2014). The data frequency can be increased easily as long as 

the computer is able to handle and store these data, whereas it is difficult to increase the 

penetration rate because the public is reluctant to change their vehicles into probe vehicles. Lu 

et al. (2018) pointed out that a high frequency requires the penetration rate at a relatively high 

level, so the influence of penetration rate on the short-term travel time prediction should be 

fully considered. Most approaches to short-term prediction using probe data examined 

highways or urban arterials (Chen and Rakha, 2014; Guo et al., 2014, Habtemichael and 

Cetin, 2016), but they did not consider the low penetration rate because traffic on highways 

or urban arterials is relatively high. Argote-Cabañero et al. (2015) emphasized that higher 

traffic results in higher variability so it might be an increased need for higher penetration 
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rates. 

On the other hand, there is an increasing motivation to expand the forecasting scale to 

urban networks where the penetration rate is low. On the urban network, most probe data are 

collected from probe vehicles (e.g. taxis and buses) which only account for part of vehicles. 

Abundant data can be collected to build up the historical database for the travel time 

prediction as long as the collection period is long enough. However, in real-time situations, if 

the penetration rate is low, which means there are not enough probe vehicles on the link 

during a time period, even though there are normal vehicles going through the link, no 

successive predictions can be made during that time period. Even though each vehicle might 

be equipped with onboard GPS units in the future, most researchers agreed that the 

penetration rate of vehicles sending probe data to the transportation system is still limited due 

to the privacy issue, and the cost for data processing and storage (Alrukaibi et al., 2018; 

Bellavista et al., 2018; Cheu et al., 2002; Jenelius and Koutsopoulos, 2013; Sanaullah et al., 

2016; Srinivasan and Jovanis, 1996; Wan et al., 2016). Therefore, a part of the literature has 

focused on determining the optimal penetration rate for providing accurate traffic information 

(Lu et al., 2018; Cheu et al., 2002; Srinivasan and Jovanis, 1996). To obtain reliable traffic 

information, the optimal penetration rate ranges from 1% to 60% because it depends on 

network characteristics and estimation methods. Even though there might be an agreement on 

the best penetration rate of probe vehicles, it seems far from real-world cases of practical 

application because it is impractical to assume that probe vehicles are distributed uniformly 

on the network (Bellavista et al., 2018). 
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1.2.2 Drawbacks for aggregating data in short-term travel time prediction 

Probe data usually distribute unevenly over time, so many researchers tend to aggregate 

the raw data to obtain useful samples when the prediction horizon is long. Fusco and Gori 

(1995) pointed out that a 5-min interval is required in the advanced traveler information 

system. Therefore, the data are usually aggregated in 5 min in many aspects of research (Cai 

et al., 2016; Chen and Rakha, 2014; Elhenawy et al., 2014; Xia et al., 2011). However, some 

studies have adopted a longer time interval, such as 15 min (Guo et al., 2014; Habtemichael 

and Cetin, 2016; Polson and Sokolov, 2017). 

Although the aggregation of data is necessary, especially for multistep prediction, there 

are two drawbacks for application on urban networks. First, forecasting results are also 

aggregated. Because the urban traffic condition changes quickly, forecasting results that are 

aggregated by minutes cannot react to changes in traffic conditions that occur in seconds. 

Second, the influence of the traffic signal cannot be reflected properly. The variation of travel 

time in urban networks comes mainly from the traffic signal. Thus, because the length of 

most aggregation time intervals that have been adopted is longer than the length of a signal 

cycle, the aggregation might reduce the variation of travel time. The reduction of this 

variation is good for the model, but the temporal change of the traffic condition could be 

missed. Although some aggregate models can provide travel time distributions for signalized 

sections of the roadway, their assumptions about distributions might vary according to the 

study site (Cao et al., 2014). Such distributions can provide a general description of travel 

time during the time interval, but they cannot reflect temporal changes in a short period. 
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1.2.3 Difficulties of SODTA approaches for reducing the urban congestion 

Most research at urban networks devoted effort to reducing the urban traffic congestion 

by solving the system optimum dynamic traffic assignment (SODTA) problem. The SODTA 

usually employs a linear programming formulation that aims to minimize the total travel time. 

With the expansion of the urban network scale, the computational cost is increasing. Since 

the traffic condition differs according to the locations on the urban network and changes 

frequently, the global solution for the urban congestion based on the SODTA may be difficult 

to catch up with the change in the current traffic condition. When more factors are taken into 

consideration to reproduce the real-world situation, the problem may become nonlinear. It is 

more difficult and costly to solve the nonlinear programming problem and sometimes the 

only approximate global solution can be achieved. Even though the SODTA can be realized 

in time, most drivers might not follow the routes resulting from the SODTA in the real world 

because they might not be the best choice for individual drivers. Moreover, there is an 

increasing tendency to directly consider other congestion-related issues like environmental 

sustainability instead of minimizing the total travel time on the network (Wang et al., 2018). 

Although different combinations of the SODTA model and the linear programming 

formulation can adequately solve various traffic-related problems, one formulation can only 

solve one problem because only one objective function can be used for one global 

optimization. Therefore, it is sometimes even counterintuitive that the SODTA is realized 

when the road is congested (Bruechner, 2011).  
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1.3 Research Objectives 

As stated already, the ITS-based traffic control and management has been widely 

recognized as an effective solution for traffic congestion but there are still limitations when 

applying to urban networks in the real world. To reduce the urban traffic congestion, this 

study contributes to ITS-based traffic control and management strategy which dynamically 

controls the priority at the intersection and employs short-term urban link travel time 

prediction so that it can catch up with the frequent change in the urban traffic condition. This 

objective is mainly realized by solving the three problems mentioned in the last section. 

Firstly, the penetration rate of probe vehicles influences both coverage rate and accuracy of 

travel time prediction at urban networks, but most researches only focused on the accuracy 

(Srinivasan and Jovanis, 1996). Although there is no agreement on the optimal penetration rate, 

the low penetration rate situation is expected to exist for a long time, which will restrict the 

application of the ITS. This study aims to enhance the coverage rate and maintain accuracy 

when predicting the travel time at urban networks under the low penetration rate. 

Secondly, there is an increasing requirement of timely and reliable traffic information for 

applications such as online personal car navigation and driverless vehicle. Current ITS 

usually extracts information after aggregating the data, especially when making predictions, 

but these pieces of information cannot describe the frequent changes in traffic conditions. 

This study contributes to utilizing disaggregate data to provide future information that can 

reflect the variations in travel time at urban networks. 
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Thirdly, to reduce the computational burden for solving the global optimization problem 

of congestion so that real-world applications can be realized, it is necessary to split the whole 

network into several parts to solve the urban congestion problem. Although there are 

researchers focusing on reducing the congestion at the urban intersection by managing traffic 

signals (García-Nieto et al., 2012; Park et al., 2000; Wiering, 2000), it is difficult to apply 

these methods to wide networks because they are restricted by the situation of their study 

sites. This study aims to reduce the congestion at each intersection on the urban network by 

managing the traffic flow of each incoming link. Another advantage for solving the 

congestion at an intersection scale is that it is more flexible to combine with other global 

solutions that have different goals. 

To catch up with the frequent changes in urban traffic conditions, the predicted travel 

time is used to reflect the traffic condition in a short future. Based on the predicted travel time, 

the movement of the vehicle on the whole network can be simulated by a dynamic network 

loading (DNL) model. Among all DNL models, the link transmission model (LTM) is the 

most computationally efficient one that can replicate traffic flows and reflect relationships 

between links and nodes. LTM focuses on the updating of the number of vehicles passing 

through the endpoints of each link so the traffic flow control at the intersection which is 

proposed in this study can be integrated to reduce the congestion over the whole network based 

on the LTM. Moreover, the advantage of the LTM in computational ability makes it possible to 

apply in the real world where a large amount of calculation is required. 

In addition, many researchers focused on route travel time, but Shi et al. (2017) argued that 
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the route travel time can be formulated as the sum of the link travel times. Using this 

formulation, the distinct travel time delays due to traffic signals and different turning behaviors 

can be well captured. It is also more flexible to use the link travel time because it is difficult to 

predict the travel demand and the routes that travelers may take. Therefore, this study 

concentrated on the link travel time rather than the route travel time. 

 

1.4  Research Structure 

The research structure of this study is shown in Figure 1.1. The dissertation consists of six 

chapters. In Chapter 1, the traffic congestion problems around the world and the ITS-based 

traffic control and management for the congestion reduction were introduced. Problems for 

extending the ITS-based traffic control and management to urban networks and the 

corresponding objectives of this study were pointed out. In Chapter 2, three sections were 

employed to review the related work about travel time prediction models, extensions of travel 

time prediction to urban networks, and the LTM and its applications. Chapter 3, 4 explained 

the details of relieving the limitations on the short-term urban link travel time prediction when 

extending to the urban network. This was realized by considering vehicles in the crossing 

direction to enhance the coverage rate of short-term travel time prediction and applying 

Dynamic Time Warping (DTW) to expand the prediction horizon based on disaggregate probe 

data. To reduce traffic congestion, Chapter 5 proposed a method which controls the intersection 

priority. The short-term travel time prediction can be combined with the priority control at the 
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intersection so that it can react to the frequent change in traffic conditions on the urban network. 

Finally, conclusions and future work of this study were given in Chapter 6. 

 

Figure 1.1 Structure of the dissertation 
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CHAPTER 2 Literature Review 

 

2.1 Travel Time Prediction Models 

To date, many models have been developed to predict travel time. They can be 

categorized into four types, namely, the naïve model, the traffic flow-based model, the 

data-driven model, and the hybrid model (Mori et al., 2015). Naïve models use the average 

value of the instantaneous or historical data as the prediction. Despite their low accuracy, 

they are employed widely due to their low computation cost and convenient implementation. 

They are also used as a benchmark for comparison with other complex models in academic 

research. Traffic flow-based models include macroscopic, microscopic, and mesoscopic 

simulation models (Ben-Akiva et al., 2001). They can provide detailed information, such as 

the delay and the queue length, for decision-making based on traffic theory. However, the 

real traffic condition is so complex that it is difficult to make a general simulation. Unlike 

traffic flow-based models, data-driven models perform better under complex and dynamic 

traffic conditions because there is no restricted theory. Although there is a lack of 

interpretability, these models can make considerable predictions as long as there are enough 

data available at the study site. Hybrid models refer to combinations of traffic flow-based 

models and data-driven models (Elhenawy et al., 2014; Hofleitner et al., 2012). Widespread 

application of hybrid models in the future could be promising because they have the 
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advantages of both the traffic-flow model and the data-driven model. For more details, 

readers can refer to reviews of up-to-date methods concerning traffic forecasting (Mori et al., 

2015; Van Hinsbergen et al., 2007; Vlahogianni et al., 2014).  

Since the application of probe vehicles makes large amounts of data available, 

data-driven models are drawing increasing attention. There are two main types of data-driven 

models: the parametric model and the non-parametric model. Among the different types of 

parametric models, time series models, which take advantage of the temporal relationship 

between travel time and traffic condition, have received the most attention. For example, a 

Kalman filter (KF) is commonly used to estimate the traffic condition and can be associated 

with an autoregressive integrated moving average (ARIMA) model, which can project the 

recurrent pattern of the traffic condition into the future (Guo et al., 2014; Xia et al., 2011). 

Other methods such as the Bayesian dynamic linear model (Fei et al., 2011) are also used to 

make predictions under both recurrent and non-recurrent traffic conditions. Most parametric 

models can provide accurate predictions under linear situations, such as highways and 

arterials, but they have difficulty addressing non-linear situations, such as urban roads. In the 

case of a non-linear situation, non-parametric models are preferred. 

Among the different types of non-parametric models, neural network (NN) models and 

pattern recognition models are most popular. Researchers have devoted substantial efforts to 

developing different types of NN models. For example, Jiang and Zhang (2001) proposed a 

generalized regression neural network that can convert the average speed into a travel time 

and tested the model on an arterial road in China; Lint et al. (2005) proposed a state-space 
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neural network (SSNN) to predict travel time on freeways with missing data; Lint (2008) 

further combined SSNN and KF to solve the inherently delayed travel time prediction 

problem. Fusco et al. (2016) applied a NN model to an urban network, and the results showed 

that the NN model outperforms the ARIMA model under recurrent congestion conditions. 

Although NN models are capable of extracting the complex relationships between different 

traffic variables, there are three main drawbacks that constrain them from practical 

applications on large networks. First, NN models require long training processes and have to 

train at each study site. Second, NN models require large storage capacity to store a huge 

amount of data, but the storage capacity of a vehicle’s onboard unit is limited because of 

other smart functions. Third, NN models lack interpretability due to their ‘black box’ nature 

(Elhenawy et al., 2014; Mori et al., 2015; Xu et al., 2018).  

On the contrary, pattern recognition models are easy to implement and transfer to 

different sites without data training. For example, the KNN model, which is more popular 

than other pattern recognition models such as particle filtering (PF) model (Chen and Rakha, 

2014), support vector machine (Wang and Shi, 2013), and cluster analysis (Xia et al., 2012), 

is used widely to predict different traffic variables. Smith and Demetsky (1994) showed that 

KNN models have the potential to serve as accurate and portable prediction models and have 

advantages over NN models. Habtemichael and Cetin (2016) compared the KNN model with 

the adaptive KF model and the seasonal ARIMA model when predicting the traffic flow on 

freeways. The results demonstrated that the KNN model outperforms the adaptive KF model 

and the seasonal ARIMA model in real-time traffic control and management for freeways. 
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Robinson and Polak (2005) predicted the urban link travel time in London and tested their 

model using different KNN design parameters. 

 

2.2 Extensions of travel time prediction to urban networks 

When study sites of travel time estimation extended to urban networks where the 

penetration rate of probe data is still low, many researchers devoted their efforts to improve 

the estimation. For example, Wan et al. (2016) reconstructed the maximum likelihood 

trajectory to estimate the time spent on each segment of the road; Li et al. (2018) 

reconstructed vehicle trajectories based on a KNN regression algorithm so as to support 

travel time estimation; Jenelius and Koutsopoulos (2013) proposed a statistical regression 

model to estimate urban road travel time by vehicle trajectory data and included correlation 

between travel times of different links based on a spatial moving average structure to capture 

the spatiotemporal variations in speeds; Sanaullah et al. (2016) used a distance and time 

proportion method based on the map-matched points from adjacent links to enhance the 

coverage and to reduce the uncertainty of the estimation, and further applied spatial and 

temporal moving average to improve the accuracy; Alrukaibi et al. (2018) used simulation to 

increase the sample size and employed neighbor links to estimate the travel time of the target 

link. However, there are few researchers who consider problems resulted from the low 

penetration rate when making travel time prediction because most study sites of travel time 

prediction were highways and urban arterials where data are easy to collect. 
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Unlike the highway, traffic of roads on the same urban network often affects each other, 

especially those on adjacent links. For example, Bauer et al. (2019) investigated the travel 

time covariance between pairs of urban links when making the travel time prediction and 

found out that there were significant correlations between residuals on adjacent links. They 

pointed out it is necessary to add the travel time covariance when summing up the predicted 

link travel time and its prediction error to generate the predicted route travel time. Therefore, 

spatiotemporal relationships were often added to different types of models to improve 

accuracy when predicting travel time and other traffic-related parameters. Wang et al. (2016) 

reviewed traditional statistical models which included space-time autoregressive integrated 

moving average (STARIMA) and proposed a space-time delay neural network model 

(STDNN) which integrated the spatiotemporal autocorrelation of road traffic networks using 

NN. They used data collected from Automatic Number Plate Recognition cameras in London 

for travel time prediction and showed that the STDNN is more accurate than the STARIMA 

because it can capture spatiotemporal autocorrelation locally and dynamically. Cai et al. 

(2016) used a spatiotemporal state matrix to describe the traffic state instead of only a time 

series as in the classic KNN model at urban networks. The results showed that the improved 

KNN model outperformed the Elman-NN model. To make multi-time-step travel time 

prediction for route buses, Petersen et al. (2019) proposed a convolutional long short-term 

memory (LSTM) neural network which used a convolutional layer to capture the spatial 

correlations between different route segments and used the LSTM layer to capture temporal 

travel time pattern. Jenelius and Koutsopoulos (2018) proposed a multivariate probabilistic 
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principal component analysis (PPCA) model which can capture spatiotemporal correlations 

from historical data to predict urban network travel time. They tested the PPCA model under 

different penetration rates and applied an EM algorithm to deal with missing data. However, 

the lowest penetration rate in their study was 55% which can be hardly achieved in the real 

world.  

In addition, traffic signals at urban networks should also be considered but most 

researchers chose to neglect the influence of traffic signals for the sake of simplicity. For 

instance, Fusco et al. (2016) touched upon the connection between traffic signals and 

individual speeds by considering the distribution of individual speeds but did not consider 

their overall influence. Feng et al. (2014) developed a Bayesian method to determine actual 

traffic conditions in real-time based on synthetic GPS data and a signal timing that is known 

and static. 

 

2.3 Link Transmission Model and its applications 

So far, many DTA models have been developed and they can be categorized into two 

groups—the analytical model and the simulation-based model (Peeta and Ziliaskopoulos, 

2001). The simulation-based approach was preferred when describing the spatiotemporal 

interactions and traffic flow propagation because analytical approaches cannot replicate traffic 

relationships adequately. The DNL model plays a critical role in simulation-based approaches 

because it can capture the progression of the traffic flow which accounts for the congestion and 
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delay on networks (Osorio and Flötteröd, 2014). 

Among all DNL models, the cell transmission model (CTM) seems a suitable choice 

because it can capture traffic flow variability on each link based on the kinematic waves theory 

(KWT) (Daganzo, 1994). However, its application in the real world is constrained by the 

triangle shape of the fundamental diagram. Although Sumalee et al. (2011) introduced 

stochastic elements to relieve this constraint, Gentile (2010) criticized that the CTM suffered 

from high computational cost because it divided a link into small cells, which also deteriorated 

the accuracy of the CTM. Therefore, the LTM which can capture the progression of traffic flow 

in terms of cumulative counts (Newell, 1993) at the link’s boundaries is preferred in this 

dissertation. It is proven that the LTM is more computationally efficient and robust than the 

CTM because it applies simplified KWT without separating the link (Chakraborty et al., 2018; 

Gentile, 2010; Nezamuddin and Boyles, 2014). 

Yperman (2007) first combined the cumulative curves and the CTM to propose the classic 

LTM which was based on the triangle fundamental diagram. Because the assumption of 

triangle fundamental diagram limited the application of the classic LTM, Gentile (2010) 

proposed a general LTM (GLTM) which was based on any concave fundamental diagram. Van 

der Gun et al. (2017) made a similar effort to extend the classic LTM to any continuous 

concave fundamental diagram in addition to a capacity drop. Although this extension had 

desirable properties like realism, it increased the computational cost and required temporal 

discretization to find an approximate solution. Consequently, Bliemer and Raadsen (2018) 

proposed on-the-fly multi-step linearization techniques to reduce the computational cost and it 
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led to an exact solution in continuous time. The LTM was applied only to road networks until 

Gentile (2017) extended the LTM to transit and pedestrian networks. To further describe the 

traffic situation in the real world, Flötteröd and Osorio (2017) added the stochasticity at the 

upstream and downstream boundaries of a link and decomposed the network to capture 

stochastic dependencies between queues. So far most LTM research was based on computer 

simulation, only a few researchers (Hajiahmadi et al., 2013; Himpe et al., 2016) tested the 

LTM with data from the real world. 

Since the LTM is computationally efficient and can adequately capture the progression of 

traffic flow, it is widely used to address different issues. Although there was no explicit 

velocity equation in the LTM, Hajiahmadi et al. (2013) used the delays generated from the 

LTM to provide variable speed limit control for traffic networks. Levin (2017) solved the 

shared autonomous vehicle routing problem resulting from the combination of the dial-a-ride 

service constraints and the linear program for  the SODTA which was modeled by the LTM. 

To address the environmental issue, Long et al. (2018) used SODTA models to minimize total 

system emissions in single destination networks based on the LTM. Chakraborty et al. (2018) 

applied the LTM to solve the network design problem by minimizing the difference between 

the inflow and the outflow of each link under the flow-conservation and budget constraints. 

Gentile (2015) presented a general framework to reproduce network congestion using GLTM. 

To reduce the network congestion, Van de Weg et al. (2016) reformulated the LTM into a linear 

programming problem to make sure the link outflow is no more than the corresponding inflow 

considering the shock-wave dynamics, but this attempt also ended up minimizing the 
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difference between the inflow and the outflow of each link.  
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CHAPTER 3 Considering Vehicles in the Crossing Direction to 

Enhance the Coverage Rate of Prediction under Low Penetration 

Rate 

 

3.1 Introduction 

As living standards improve, the public is no longer satisfied with a transportation 

system that can only deal with traffic problems that have already happened. A timely, reliable, 

and safe transportation system that can predict traffic conditions is hence required (Smith et 

al., 2002). Recently, the probe vehicle has been widely recognized as a promising source for 

collecting large amounts of traffic data to support such kind of system. However, the 

penetration rate of probe vehicles is low at current urban networks and is expected to be 

restricted in the future. The penetration rate of probe vehicles has a significant influence on 

traffic prediction so many researchers focused on improving the accuracy of the travel time 

prediction. Except for the accuracy, the coverage rate of the travel time prediction is also 

critical for its application in the real world. Although some developed models can make quite 

accurate predictions, it is doubtable that they have a high coverage rate for the practical 

application when the penetration rate is low. In this study, the coverage rate is defined as the 

proportion of targets a model can predict. The objective of this chapter is to enhance the 

coverage rate of the travel time prediction and maintain its accuracy when the penetration rate 

is low. 
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To realize the objective, this chapter proposed a non-parametric model which not only 

utilized the spatiotemporal relationship between vehicles in the target link, but also took 

advantage of the spatiotemporal relationship between vehicles in the target link and vehicles 

in the crossing direction. Most non-parametric models need a large amount of probe data for 

the frequent training and calibration requirements because of their data-driven characteristics 

(Dhivyabharathi et al., 2016). Therefore, the computer simulation was often used to evaluate 

the performance of the model and the influence of different penetration rates of probe 

vehicles (Bucknell and Herrera, 2014; Zheng and Zuylen, 2013). In this chapter, a computer 

simulation was used to compare the performance of the proposed model with two 

conventional non-parametric models based on the KNN and the PF approaches, at different 

penetration rates. 

 

3.2 Methodology 

3.2.1 Descriptions of the proposed model 

Urban link travel time is influenced by many factors such as signal timing, overtaking 

behavior, and turning at intersections. In this chapter, to capture the influence of traffic 

signals, a link is defined as a segment of the road which is separated by two adjacent 

signalized intersections. Many researchers have demonstrated that different turning 

movements experience different delays at signalized intersections and exhibit significantly 

different distributions (Lu et al., 2018). For simplicity, attention was focused on predicting 
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the travel time for vehicles going straight because vehicles turning left or right from the 

opposing direction must give way to vehicles going straight, which usually form the majority 

of the total traffic (Feng et al., 2014). Moreover, in this study, it was assumed that there is a 

right-turn lane (in the case of Japan) so vehicles going straight were not influenced by 

vehicles with other turning choices. Because vehicles going straight have priority when going 

through non-signalized intersections, roads separated by non-signalized intersections were 

treated as one link with signalized intersections at its end-points. The link travel time consists 

of both the time taken to traverse the link and the stopping time due to the traffic and the 

traffic signal at the downstream intersection. Hence, the exit time of a link was used as the 

time stamp. For clarity, the main terms in this chapter are defined in Table 3.1 and illustrated 

in Figure 3.1. 

Table 3.1 Definition of terms related to vehicles 

Term Definition 

Object vehicle 
Probe vehicle that travels straight through the downstream signalized 

intersection. 

Normal vehicle Vehicle that cannot send probe data. 

Crossing vehicle 
Probe vehicle traveling in the crossing direction that goes through the 

same downstream signalized intersection. 

Penetration rate The ratio of probe vehicles to all vehicles 

Coverage rate The proportion of time points that can be predicted 

 

 
Figure 3.1 Vehicles at a regular intersection (where the penetration rate is 50%) 

There are two main applications of the proposed model in the real world: travel time 
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reliability analysis and reliable route searching. The prediction in the proposed model is 

represented by a distribution instead of the weighted summation. Travel time distribution can 

provide more information than the weighted summation such as the travel time variability 

which plays an important role in travel time reliability measurements. The proposed model 

can make dynamic link travel time predictions in the form of distribution and these 

predictions can be used as the input for reliability analysis models such as the mean-variance 

model (Carrion and Levinson, 2012; Li et al., 2010). Li et al. (2010) pointed out that 

risk-averse travelers are willing to pay for the reduction in travel time variability rather than 

travel time savings. Some of them prefer the more reliable route, even though the expected 

travel time is higher in comparison to other routes with shorter expected travel time and 

higher uncertainty. Chen et al. (2016) proposed a two-stage reliable path-finding algorithm 

and compared it with other algorithms on the urban network in Wuhan, China. They used the 

link travel time distributions which were estimated by existed data from a floating-car system 

as the input of the reliable path-finding algorithms. Because our proposed model could 

achieve a high coverage rate on urban networks when the penetration rate is low in the real 

world, its predictions of link travel time distributions can be used for real-time reliable route 

searching by different reliable path-finding algorithms (Chen et al., 2016). When generating 

the route travel time, both link travel time and travel time covariance are summed up. In this 

study, the focus was limited on the link travel time prediction so the travel time covariance 

estimation remains as future work. 
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3.2.2 Details of the proposed model 

The structure of our proposed model is shown in Figure 3.2 (a). The proposed model is 

based on the prediction process consisting of prediction and resampling. According to 

Bucknell and Herrera (2014), there is not much difference in prediction when the time 

interval is shorter than 5 s. To capture the frequent changes in travel time on the urban 

network, the prediction time interval should be set as short as possible. Therefore, it was set 

to 5 s in this chapter. 

 
(a) 

 
(b) 

Figure 3.2 Framework of the proposed model: (a) Model structure; (b) Example of using 

the data for prediction 
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The proposed model can make successive predictions as long as the computation 

resources are available, which means it is able to make predictions for several minutes or 

even hours later. However, to reflect the influence of signal timing, the prediction period is 

based on the average length of the green-light signal phase. Although information about 

signal timing might be accessible to researchers or even the public in the future, at present, it 

is still difficult to access in some countries such as Japan. Several methods that used 

trajectory data from probe vehicles have been developed to estimate signal timing (Axer et al., 

2017; Fayazi et al., 2015; Kerper et al., 2012; Yu and Lu, 2016). However, in this study, there 

were no trajectory data available before the vehicles stop, so a simple algorithm was 

developed to approximately estimate the signal timing using the data collected when vehicles 

exit a link. This algorithm can also be applied to estimate the actuated traffic signal by data 

from links with similar characteristics and traffic conditions. Details of the estimation 

algorithm are given in Appendix A. 

In the proposed model, data from both object vehicles and crossing vehicles are used for 

the real-time prediction and are recorded in the historical database for estimating the travel 

time distribution and the signal timing. Figure 3.2 (b) gives an example of how data are used 

in the proposed model. If travel time 𝑡𝑎 from an object vehicle is observed in a data stream, 

a prediction process (Process I) will start and the travel time is predicted every 5 s until the 

prediction horizon. If a new object vehicle whose travel time is 𝑡𝑏 is observed during the 

Prediction Process I, candidates for the travel time prediction at that time point will be 

resampled based on 𝑡𝑏 and the crossing vehicle in the preceding red phase. At the same time, 
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a new prediction process (Process II) will start. If there are prediction results from different 

prediction processes at the same time point, they will be merged together. In addition, if no 

object vehicle is observed after the red phase, prediction can also be made based on the 

crossing vehicle data in the preceding red phase (Process III). 

For one prediction, travel time is determined by both the first observed object vehicle’s 

travel time and the previous travel time prediction. Provided the prediction process starts 

when there is an observed data 𝑡𝑛 at time point n, the probability of travel time 𝑡𝑛+𝑙
𝑗

 at time 

point (n + l) can be calculated by 

𝑃(𝑡𝑛+𝑙
𝑗

) = 𝛼𝑃(𝑡𝑗|𝑡𝑛+𝑙−1
𝑖 , 𝐷𝑛+𝑙−1

𝑛+𝑙 ) + (1 − 𝛼)𝑃(𝑡𝑗|𝑡𝑛, 𝐷𝑛
𝑛+𝑙) (3-1) 

where 𝑃(𝑡𝑗|𝑡𝑞 , 𝐷𝑞
𝑝) represents the probability of travel time 𝑡𝑗  at time point p given travel 

time 𝑡𝑞 at time point q (𝑝 ≥ 𝑞) and 𝐷𝑞
𝑝
 is the leaving time difference (LTD) between p and 

q. Parameter 𝛼 is defined as 𝑙 (𝑙 + 1)⁄ , which states that the object vehicle receives more 

influence from a vehicle that is closer to it. Next, one of the travel time candidates at time 

point (n + l) is calculated based on the first k possible travel times with the biggest 

probability using 

𝑡𝑛+𝑙
𝑖 = ∑ 𝑃(𝑡𝑛+𝑙

𝑗
)𝑡𝑗

𝑘

𝑗
∑ 𝑃(𝑡𝑛+𝑙

𝑗
)

𝑘

𝑗
⁄ + 𝛿 (3-2) 

where 𝛿 is an error term which follows a standard Gaussian distribution. To compare the 

proposed method with the KNN-based model, a weighted summation of these candidates is 

used to represent the prediction and weight 𝑤𝑚
𝑖  is calculated by 
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𝑤𝑚
𝑖 = 𝑝𝑁(𝑡𝑚 − 𝑡𝑚

𝑖 ) (3-3) 

where 𝑡𝑚 is the observed travel time and 𝑝𝑁 is a likelihood function, which is chosen to be 

a standard Gaussian distribution. 

Table 3.2 Algorithm I: Proposed travel time prediction process 

1. Initialize prediction horizon 𝑀𝐺  using Algorithm A 

2. If at time point n, there is an observed travel time 𝑡𝑛, 

3. For i = 1:100, 

4. Generate possible candidate 𝑡𝑛
𝑖  using 𝑃(𝑡𝑗|𝑡𝑛, 𝐷𝑛

𝑛) with error term 𝛿; 

5. Calculate similarity 𝑤𝑛
𝑖  for each candidate 𝑡𝑛

𝑖  using Eq. (3-3); 

6. End For 

7. For l = 1: 𝑀𝐺 ,  

8. For i = 1:100,  

9. For each possible travel time 𝑡𝑗 , calculate probability 𝑃(𝑡𝑛+𝑙
𝑗

) 

10. at time point (n + l) using Eq. (3-1); 

11. Calculate travel time candidate 𝑡𝑛+𝑙
𝑖  using Eq. (3-2); 

12. End For 

13. If object vehicle 𝑡𝑛+𝑙 is observed at time point (n + l),  

14. 𝑤𝑛+𝑙
𝑖 = 𝑝𝑁(𝑡𝑛+𝑙 − 𝑡𝑛+𝑙

𝑖 ), 𝑖 ∈ [1,100]; 

15. Begin the resampling process to modify the candidates. 

16. Else if a crossing vehicle is observed at time point (n + l),  

17. If there is an observed crossing vehicle at time point (n + l − p), 

18. 𝑡𝑛+𝑙
𝑖 = 𝑡𝑛+𝑙−𝑝

𝑖  (l-p<𝑀𝑅, p<l); 

19. Else 

20. 𝑡𝑛+𝑙
𝑖 = 𝑡𝑛+𝑙

𝑖 + 5𝑀𝑅 , 𝑖 ∈ [1,100]; 

21. 𝑤𝑛+𝑙
𝑖 = 𝑤𝑛+𝑙−1

𝑖 , 𝑖 ∈ [1,100]; 

22. Else, 𝑤𝑛+𝑙
𝑖 = 𝑤𝑛+𝑙−1

𝑖 , 𝑖 ∈ [1,100] ; 

23. End For 

*MG=length of green phase/5 and MR=length of red phase/5 

Algorithm I for the prediction process is listed in Table 3.2. The prediction horizon is 

defined to be the estimated green phase length, so each prediction process may have a 

different length (Line 1). The prediction process starts when an object vehicle is observed 

(Line 2). If there is more than one object vehicle observed at the same time point, the average 
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travel time is used because the travel times are similar within 5 s in most cases. Here, 100 

candidates are generated according to probability 𝑃(𝑡𝑗|𝑡𝑛, 𝐷𝑛
𝑛)  with the corresponding 

weight 𝑤𝑛
𝑖  (Lines 3-6). Following that, candidates at step l are calculated (Lines 8-12). 

During the prediction, if a new object vehicle is observed at the time point (n + l), a 

resampling process begins and the weights are updated (Lines 13-15). If a crossing vehicle is 

found and it is the first crossing vehicle in the same red phase, the travel time candidate is 

increased by the length of a red phase because it is assumed that the vehicle must come to a 

full stop to wait for the signal at the intersection (Line 20). Otherwise, the lengths of the 

candidates remain the same as those at the earlier step if a crossing vehicle is observed (Line 

18). Moreover, if no new object vehicle is observed, the weights remain the same as that of 

the preceding step (Lines 21, 22). 

If there is no observed object vehicle, Algorithm I cannot be applied, and this situation 

often happens because of the low penetration rate. To address this situation, an object 

vehicle’s travel time can be estimated using the travel time distribution under the 

corresponding exit time difference (ETD) 𝑑𝑛. The ETD is defined as the difference between 

the exit time of an object vehicle and the last observed crossing vehicle that goes through the 

intersection before it. 

To be specific, the 100 candidates are generated according to the conditional probability 

𝑃(𝑡|𝑑𝑛). An error term 𝛿 is also added to reflect some unexpected situations. The average 

travel time of the 100 candidates is used as the object vehicle’s travel time 𝑡𝑛. Given 𝑡𝑛 and 

100 candidates at time point n, Algorithm I can be applied. 
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The prediction process tends to decrease the travel time because, in the green phase, the 

queue is decreasing. Although the travel time might be long at the beginning, it will soon 

drop to a normal level after several prediction steps. However, when congestion or accidents 

happen, the queue exists for longer, so the prediction is shorter than the real travel time. The 

resampling process relieves this problem by replacing candidates with smaller weights with 

candidates with bigger weights, just as in the conventional PF model. During the prediction 

process, if a new object vehicle is observed, it will be used to resample candidates at the 

current step. For example, if the real-time traffic condition is congested, the short travel-time 

candidates will be replaced by long travel-time candidates. However, this method lacks 

diversity because it resamples from existing candidates. To improve diversity, candidates 

derived from probability 𝑃(𝑡|𝑑𝑛) are introduced. 

Table 3.3 Algorithm II: Resampling 

1. If at time point m, an object vehicle data 𝑡𝑚 is observed, 

2. Sort candidates according to their weight in decreasing order,  

3. and remove the later 50 candidates; 

4. If 𝑑𝑚 < 𝑀𝐺  at time point m, 

5. For j = 1:100, 

6. Select 𝑡𝑚
𝑗

 according to 𝑃(𝑡|𝑑𝑚), calculate weight 𝑤𝑚
𝑗

 using Eq. (3-3); 

7. If 𝑤𝑚
𝑖 < 𝑤𝑚

𝑗
 (𝑖 = 50), 𝑡𝑚

𝑘 = 𝑡𝑚
𝑗

, 𝑤𝑚
𝑘 = 𝑤𝑚

𝑗
 (k = 1…K); 

8. End For 

9. Combine {𝑡𝑚
1 , 𝑡𝑚

2 , 𝑡𝑚
3 … 𝑡𝑚

50} with {𝑡𝑚
1 , 𝑡𝑚

2 , 𝑡𝑚
3 … 𝑡𝑚

𝐾 } 

10. and sort candidates according to weight in decreasing order; 

11. Else K = 0; 

12. If 50 + K > 100, remove the later (K − 50) candidates; 

13. If 50 + K < 100, 

14. Select (50 − K) candidates randomly from{𝑡𝑚
1 , 𝑡𝑚

2 … 𝑡𝑚
50+𝐾} 

15. according to their weight and add them to {𝑡𝑚
1 , 𝑡𝑚

2 … 𝑡𝑚
50+𝐾}; 
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Algorithm II for resampling samples is shown in Table 3.3. Here, the resampling rate is 

set to 50%. Providing the resampling process starts at time point m (𝑛 < 𝑚 ≤ 𝑛 + 𝑀𝐺), the 

50 candidates with the lowest weights are removed (Lines 1-3). If the ETD is less than the 

length of the green phase, another 100 candidates are selected according to conditional 

probability 𝑃(𝑡|𝑑𝑚) and their weights are calculated by Eq. (3-3) (Lines 4-6). Then, new 

candidates whose weights are bigger than 𝑤𝑚
𝑖  (𝑖 = 50) are added to {𝑡𝑚

𝑖 } (𝑖 ∈ [1,50]) 

(Lines 7-10). If the size of the new candidate set is larger than 100, the candidates with the 

smallest weight are removed. Otherwise, candidates are copied randomly until the size 

increases to 100 (Lines 13-16). 

Because a prediction starts whenever there is an observed object vehicle or an estimated 

one and the process continues until it reaches the prediction horizon, there might be several 

predictions for the same time point. Therefore, it is necessary to merge these predictions into 

one. The candidates from each prediction are determined. The number of candidates is 

proportional to the duration between the starting and merging time points. The weight of each 

selected candidate is normalized, and then either a weighted summation or the candidate with 

the maximum weight is used to compare with the prediction results of the KNN-based and 

the PF-based models. 
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3.3 Experiments 

3.3.1 Data description 

In this study, models have to be tested under different penetration rates to show the 

influence of the penetration rate on the coverage rate. Since the probe data are usually 

collected from special vehicles such as taxis and buses, the penetration rate of real-world data 

is at a low level. Therefore, the simulation data are required to obtain traffic data at different 

penetration rates. VISSIM has been proven to be an effective simulation model to reproduce 

real-world traffic flow under different traffic conditions at both microscopic and macroscopic 

levels because it applies a psycho-physical car-following model that can adapt different 

driving behaviors (Bloomberg and Dale, 2000; Fellendorf and Vortisch, 2001). In addition, 

VISSIM allows users to adjust model parameters so that it can reflect the traffic condition for 

a particular real-world case (Fellendorf and Vortisch, 2001). However, since this study 

focused on enhancing the coverage rate instead of improving the prediction accuracy on a 

certain link, default settings for the car-following model and vehicle delivery were used. 

The traffic simulation was constructed using VISSIM (version 7.0) at a normal cross 

intersection with four 200-m-long links and attention was focused on only one link called the 

target link. For simplicity, vehicles only moved straight through the intersection so there was 

only one lane for each link. There was no non-signalized intersection within a link. To 

reproduce the real-world traffic condition, the speed when vehicles enter the link varied 

randomly from 10 to 50 km/h which is based on the real-world situation in Nagoya. To 
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reproduce the appearance and disappearance of traffic congestion during a day in the real 

world, it is based on the distribution of vehicle trips from the 2017 American National 

Household Travel Survey so as (U.S. Department of Transportation, 2017), traffic flow of the 

target link was set to 200, 600, and 100 vehicles/h in the first, second, and third 10 min 

respectively, and this pattern was repeated every 30 min. As for the other three links, the 

traffic volume was fixed at 200 vehicles/h for simplicity. The signal pattern was set to have 

two phases without the all-red phase, and the length of each phase was 60 s. 

To obtain sufficient data, the simulation was repeated 30 times. One trial was used as the 

test data and the remaining 29 simulations made up the historical database. The number of 

data in the testing database was 295, whereas the number of data in the historical database 

was 8,568. The average link travel time in the testing database was 90.5 s, whereas in the 

historical database, it was 85.7 s. The distribution of the target link’s travel times is illustrated 

in Figure. 3.3. 

 

Figure 3.3 Distribution of simulation travel times 

3.3.2 Relationships between individual vehicles 

The prediction process of the proposed model was based on the spatiotemporal 
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relationship between individual vehicles. Bayes’ theorem was introduced to describe the 

interactions among vehicles and reflect the influence of traffic signals. Lu et al. (2018) 

pointed out that travel time concerning signalized intersections might follow various 

distributions. Therefore, in this chapter, no specific distribution was employed. 𝑃(𝑡𝑗|𝑡𝑞 , 𝐷𝑞
𝑝) 

was derived from the relationship between the travel times for two object vehicles, while 

𝑃(𝑡|𝑑𝑛) was derived from the relationship between the ETD and object vehicle’s travel time. 

The relationship between the travel times for two object vehicles is presented in Figure. 3.4. 

 

(a) 

 

(b) 

Figure 3.4 Relationship between the travel times of two object vehicles: (a) LTD within 

60 s; (b) LTD more than 60 s 

The horizontal axis represents the travel time of the first vehicle, whereas the vertical 

axis represents the travel time of the second vehicle. The color indicates the difference 

between the times when the two vehicles leave the link, and each dot represents a pair of 

travel times with different LTDs. In Figure 3.4(a), the diagonal consists of pairs (dark blue 

dots) that are close to each other, which means that travel times were similar for small LTD. 

Most pairs are distributed under the diagonal, which means that after the signal turned green, 

vehicles that arrived later had a higher probability of going through the intersection without 
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delay or needing to stop. There is a line of yellow dots parallel with the diagonal (with a 

vertical axis intercept of 60 s). These dots represent two vehicles that were suddenly 

separated by the red signal. In Figure 3.4(b), most pairs are distributed above the diagonal 

because the second vehicle was separated from the first vehicle by a red signal and was likely 

to stop at the intersection (the LTD ranges from 60 to 120 s). Consequently, if the first 

vehicle’s travel time 𝑡𝑓𝑖𝑟𝑠𝑡  and the LTD 𝐷𝑓𝑖𝑟𝑠𝑡
𝑠𝑒𝑐𝑜𝑛𝑑 are known, the probability of travel time 

of the second vehicle 𝑃(𝑡|𝑡𝑓𝑖𝑟𝑠𝑡, 𝐷𝑓𝑖𝑟𝑠𝑡
𝑠𝑒𝑐𝑜𝑛𝑑) can be inferred by Bayes’ theorem. 

 

Figure 3.5 Relationship between object vehicles and crossing vehicles 

The relationship between the ETD and the object vehicle’s travel time is presented in 

Figure. 3.5. When the ETD was low (e.g., less than 20 s), the travel time tended to be longer 

(e.g., more than 60 s) because if vehicles go through the intersection right after the signal 

turns green, they probably have a stop at that intersection. When the ETD increased, the 

probability density of short travel time increased because if vehicles go through the link 

during the middle or end of the green phase, they are more likely to go through the 

intersection without a stop. The two peaks for the long travel times when the ETD is 

relatively large represent congestion in which the vehicles must stop at least once at the 
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intersection. Consequently, if the ETD is known, the probability of the travel time of the 

object vehicle 𝑃(𝑡|𝑑𝑛) can be inferred by Bayes’ theorem. 

3.3.3 Models for comparison 

Two non-parametric models based-on the KNN and the PF approaches were used to 

compare with the proposed model. For the KNN-based model, it selected time-sequential 

samples {𝑥𝑚
(𝑖)

, 𝑡𝑚+𝑙
(𝑖)

} (𝑥𝑚
(𝑖)

= [𝑡𝑚−𝑛
(𝑖)

, 𝑡𝑚−𝑛+1
(𝑖)

, … , 𝑡𝑚
(𝑖)

]) at different time points which were 

indicated by m from historical data. Here, n is the length of the sample and samples can be 

collected from different days. To predict the travel time, historical samples were compared 

with the current traffic condition which is measured by 𝑥𝑐 = [𝑡𝑐−𝑛, 𝑡𝑐−𝑛+1, … , 𝑡𝑐]. Each 

sample has a weight 𝑤𝑚
(𝑖)

 that represents its similarity with the current traffic condition. 

There are several ways to calculate the weight by selecting the distance metric, but Robinson 

and Polak (2005) concluded that the KNN-based model is not sensitive to the distance metric. 

In this study, the Euclidean distance is used to calculate the weight of sample i as follows: 

𝑤𝑚
(𝑖)

= 1 √(𝒙𝒄 − 𝒙𝒎
(𝒊)

)(𝒙𝒄 − 𝒙𝒎
(𝒊)

)
𝑇

⁄  (3-4) 

The KNN-based model can use the first k samples with the biggest weights to make the 

prediction at l step forward until the prediction horizon L (n+l<L) as long as there are 

corresponding samples, as follows: 

𝑡𝑐+𝑙 = ∑ 𝑤𝑚
(𝑖)

𝑘

𝑖=1

∙ 𝑡𝑚+𝑙
(𝑖)

∑ 𝑤𝑚
(𝑖)

𝑘

𝑖=1

⁄  (3-5) 
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Unlike the KNN-based model, the PF-based model did not traverse all the historical data. 

It randomly selected N candidates {𝒙𝒎
(𝒊)

, 𝑡𝑚+1
(𝑖)

}  and resampled part of them using the 

sampling importance resampling (SIR) filter to solve the problem of degeneracy (Chen and 

Rakha, 2014). According to the SIR, candidates were resampled based on their weight as 

follows: 

𝑤𝑚
(𝑖)

∝ 𝑤𝑚−1
(𝑖)

∙
𝑝(𝒙𝒄|𝑡𝑚

(𝑖)
)𝑝(𝑡𝑚

(𝑖)
|𝑡𝑚−1

(𝑖)
)

𝑞(𝑡𝑚
(𝑖)

|𝑡𝑚−1
(𝑖)

, 𝒙𝒄)
 (3-6) 

In the SIR, the importance density 𝑞(𝑡𝑚
(𝑖)

|𝑡𝑚−1
(𝑖)

, 𝑥𝑐) was assumed to have the same value 

as the transitional prior pdf 𝑝(𝑡𝑚
(𝑖)

|𝑡𝑚−1
(𝑖)

), so Eq. (3-6) can be simplified as Eq. (3-7) where 

𝑝(𝑥𝑐 − 𝑥𝑚
(𝑖)

) represents the similarity between the candidate and the current traffic condition. 

There are also several ways to calculate the weight, but the same calculation as Eq. (3-4) was 

used for the PF-based model in this study. Readers can refer to the work of Chen and Rakha 

(2014) for more details about the PF in travel time prediction. 

𝑤𝑚
(𝑖)

∝ 𝑝(𝒙𝒄|𝑡𝑚
(𝑖)

) = 𝑝(𝒙𝒄 − 𝒙𝒎
(𝒊)

) (3-7) 

The PF-based model can make predictions successively by shifting the time window one 

step forward at each step until the prediction horizon L, as follows: 

𝑡𝑐+1 = ∑ 𝑤𝑚
(𝑖)

𝑁

𝑖=1

∙ 𝑡𝑚+1
(𝑖)

∑ 𝑤𝑚
(𝑖)

𝑁

𝑖=1

⁄  (3-8) 

As for the historical database, the PF-based model only needs one database once the 

length of the candidate is decided because its prediction step is identical. In contrast, the 

KNN-based model needs several historical databases according to the prediction horizon. 
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Process of the three models is illustrated in Figure 3.6, where the black dots represent the 

observed travel time of an object vehicle, whereas the red dots represent the model 

predictions. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.6 Models used in this study: (a) KNN-based model; (b) PF-based model; (c) 

Proposed model 

In the proposed model, the historical data provide the prior travel time distributions 

based on the spatiotemporal relationships between object vehicles and the spatiotemporal 

relationships between object vehicles and crossing vehicles. Therefore, a prediction can be 

made whenever there is an observed data sample (i.e., an object or crossing vehicle). In 

contrast, the KNN-based and the PF-based models can only make a prediction when there are 



39 

 

continuously observed object vehicle data. Because of the use of information from crossing 

vehicles to make predictions, the proposed model is expected to achieve a higher coverage 

rate than the other two models. As mentioned before, to make a prediction at one time point, 

there might be several prediction processes in the proposed model, depending on the number 

of observed vehicles during the prediction period. Therefore, it was difficult to calculate the 

computation cost for one prediction in the proposed model because it varied from case to case. 

However, the proposed model was expected to have higher computation costs than the 

KNN-based and the PF-based models which only have one prediction process for one 

prediction. 

3.3.4 Experiment setting 

One-third of the testing data collected from the target link was selected randomly as 

travel times for prediction (target data), whereas the remaining two-thirds were treated as 

travel time that can be observed during the prediction (observed data). Then, some observed 

data and data from crossing vehicles (crossing vehicle data), were removed randomly to 

simulate the situation under different penetration rates. In the KNN-based and the PF-based 

models, historical samples with a similar pattern of the current traffic condition were used to 

predict the travel time for a certain link. Because different links have different characteristics, 

historical samples from one link can only be used to predict the travel time for that link. That 

is the reason why KNN-based and PF-based models cannot use the crossing vehicle data to 

predict the travel time for the target link. However, the correlation between adjacent links can 

help improve the accuracy of travel time prediction so many researchers applied the crossing 
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vehicle data to the link travel time prediction as introduced in chapter 2.2. Because the 

accuracy improvement is not the interest of this paper, the crossing vehicle data were not 

used in the KNN-based and the PF-based models in this study. On the other hand, the 

proposed model without considering crossing vehicles, namely proposed model 𝛽 (PM_𝛽), 

should be tested to evaluate the influence of crossing vehicles because the travel time of the 

target link can be predicted directly from the crossing vehicle data in the proposed model. 

As for the parameter calibration in the KNN-based model, Robinson and Polak (2005) 

pointed out that attention should be paid to determining the optimal value of k which depends 

on the database size. In their research, no matter how the database size changed, the optimal 

value of k was less than 300 and the difference between the mean absolute percentage error 

(MAPE) with a different value of k within that range was within 5%. A similar pattern of the 

relationship between the MAPE and the value of k as that in Robinson and Polak’s (2005) 

research can be found in other KNN-based studies (Cai et al., 2016; Habtemichael and Cetin, 

2016) and the difference between the MAPE with a different value of k in these studies was 

also within 5%. Although the value of k affects the accuracy of the KNN-based model, it is 

reasonable to fix the value of k without calibration because a 5% difference is at an 

acceptable level when the main concern of this chapter is not improving the accuracy. 

Consequently, the value of k in (3-5) was set as 4 and the sample length n was set as 2 to 

ensure the database size is large enough in advance. 

For the parameter calibration in the PF-based model, Chen and Rakha’s (2014) work 

showed that although the number of candidates and the value of the resampling rate 
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influenced the accuracy of the PF-based model, the difference in the MAPE was also within 

5%. For the same reason, the number of candidates and the value of the resampling rate were 

fixed in advance without calibration. The number of candidates N in (3-8) was set as 100. The 

resampling rate was set as 50%, which means that the latter 50 candidates were replaced by 

the former 50 candidates according to their weight. 

This chapter aims to maintain the accuracy of the proposed model at the same level as 

that of the KNN-based and the PF-based models, so some parameters in the proposed model 

were set as the same value as those in the two comparison models in advance. The value of k 

in (3-2) was set as 4, the number of candidates was set as 100, and the resampling rate was 

set as 50%. The discussion of α is out of the scale of this chapter so it remains as future 

work. In addition, the time interval and prediction horizon for the three models were the 

same. 

3.3.5 Results and discussion 

Although the number of target data was the same under different penetration rates, not all 

of them can be predicted. The proportion of target data that can be predicted was referred to 

as coverage rate. The coverage rate under different penetration rates for different models is 

shown in Figure. 3.7. The coverage rate for each model shrank when the penetration rate 

decreased, but the coverage rate of the proposed model was always higher than that of other 

models. Its coverage rate was also stable if the penetration rate was more than 50%. Even 

when the penetration rate was less than 50%, the proposed model could cover over half of the 
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points in time if the penetration rate was no less than 10%. The coverage rate may be 

influenced by the length of the time interval and the traffic volume, but these variables were 

set in advance in the simulation. Therefore, the analysis of the relationship between the 

coverage rate and these variables will remain as future work. 

 

Figure 3.7 Coverage rate under different penetration rates 

The same historical database was used for different penetration rates because it was 

assumed that sufficient data can be collected, regardless of the penetration rate, if the period 

of data collection was reasonably long. Consequently, the spatiotemporal relationships and 

signal timing estimation were the same for different penetration rates. The estimation of the 

green phase was 65 s with a 5-s variance, whereas the estimation of the red phase was 55 s 

with a 5-s variance. The estimation was comparatively close to the setting, which was 60 s for 

both phases.  

Two indices were used to measure the accuracy of the proposed model. One was the 

MAPE and the other was the root mean squared error (RMSE), defined as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑡𝑖 − 𝑡̂𝑖|

𝑡𝑖

𝑁

𝑖

 (3-9) 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑡𝑖 − 𝑡̂𝑖)2

𝑁

𝑖

 (3-10) 

where N is the total number of predictions. At time point i, 𝑡𝑖 is the true value of the travel 

time, whereas 𝑡̂𝑖 is its prediction. 

The accuracy of the proposed model under different penetration rates is shown in Table 

3.4. 

Table 3.4 Accuracy for the proposed model under different penetration rates 

Penetration rate (%) 100 50 25 10 5 

Proposed model MAPE 

(%) 

19.3 25.6 26.2 
26.5 33.8 

Proposed model RMSE 19.7 24.4 29.2 27.3 30.7 

Average value MAPE (%) 71.9 65.5 57.5 58.9 54.0 

Average value RMSE 43.1 42.6 44.3 39.8 34.2 

The accuracy deteriorated slightly when the penetration rate decreased, but it remained at 

a stable level. If the average value of travel time in the historical database was used as the 

prediction, the accuracy increased when the penetration rate decreased. This is because, when 

the penetration rate decreased, the traffic conditions where predictions can be made were 

probably in congestion, and the average travel times in the historical database were relatively 

long. Nevertheless, the proposed model had higher accuracy than just using the average value 

under different penetration rates. 

Because the coverage rate of each model under different penetration rates varied and the 

proposed model can make predictions at more points in time, it was unreasonable to compare 

the MAPE or RMSE directly. Therefore, the following adjusted measurements of accuracy 
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were used in this chapter: 

𝑀𝑜𝑑𝑒𝑙 − 𝑑𝑖𝑓𝑓. 𝑀𝐴𝑃𝐸 =
1

𝑁𝑎
(∑

|𝑡𝑖 − 𝑡̂𝑖
𝑃𝑀|

𝑡𝑖

𝑁𝑎

𝑖
− ∑

|𝑡𝑖 − 𝑡̂𝑖
𝑀|

𝑡𝑖

𝑁𝑎

𝑖
) (3-11) 

𝑀𝑜𝑑𝑒𝑙 − 𝑑𝑖𝑓𝑓. 𝑅𝑀𝑆𝐸 = √
1

𝑁𝑎
∑ (𝑡𝑖 − 𝑡̂𝑖

𝑃𝑀)2
𝑁𝑎

𝑖
− √

1

𝑁𝑎
∑ (𝑡𝑖 − 𝑡̂𝑖

𝑀)2
𝑁𝑎

𝑖
 (3-12) 

where Model represents the name of the comparison method and 𝑁𝑎 is the total number of 

predictions it can make. At time point i, 𝑡̂𝑖
𝑃𝑀 is the prediction of the proposed model, and 𝑡̂𝑖

𝑀 

is the prediction of the comparison method. 

Table 3.5 Studies on the impact of the car sharing 

Penetration rate (%) 100 50 25 10 5 

kNN-diff.MAPE (%) 3.2 -1.0 -8.0 - - 

kNN-diff.RMSE 2.0 -1.0 -5.0 - - 

PF-diff.MAPE (%) -12 -12 -27 - - 

PF-diff.RMSE -9.0 -9.0 -15 - - 

PM_𝛽-diff.MAPE(%) 0.0 2.0 0.0 -1.0 -1.0 

PM_𝛽-diff.RMSE -3.0 1.0 2.0 0.0 -6.0 

The accuracy for comparing methods under different penetration rates is shown in Table 

3.5. Because the coverage rates of the KNN-based and the PF-based models were remarkably 

low when the penetration rate was no more than 10%, results are not shown. The KNN-based 

model outperformed the proposed model when the penetration rate was remarkably high, but 

this advantage was not obvious. When the penetration rate decreased, the accuracy of the 

proposed model became better than that of the KNN-based and the PF-based model. 

Considering the coverage rate, the performance of the proposed model was better than the 

KNN-based and the PF-based models under different penetration rates. As for PM_𝛽, there 

was little difference between the proposed model and PM_𝛽, so crossing vehicles did not 
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influence the accuracy when data from the object vehicle were plentiful. Nevertheless, if the 

object vehicle was unavailable, crossing vehicles could provide information to make 

predictions at a similar level of accuracy, so it is still necessary to consider crossing vehicles 

to achieve a high coverage rate. 

Some examples of predictions by the proposed model under different penetration rates 

are shown in Figure 3.8. The orange dots (target) represent the travel times for prediction, 

whereas the blue dots represent observed data during prediction under a 100% penetration 

rate. For simplicity, the travel time of the crossing vehicle was changed to 70 s because the 

value of travel time does not affect the prediction. Because there is no vehicle passing 

through the intersection when the signal is red, there is no prediction during the red phase 

where the crossing vehicles appear successively. If the prediction during the red phase is 

needed, for example, for the route choice task, the prediction at the beginning of the 

following green phase can be used because it includes the stopping time at the intersection. 

 

(a) 
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(b) 

Figure 3.8 Predictions of the proposed model under different penetration rates: (a) Time 

points from 10 to 70; (b) Time points from 248 to 308 

The proposed model could make predictions under most traffic conditions if the 

penetration rate was no less than 25%, but it might not be useful under unsaturated traffic 

conditions if the penetration rate was lower than 25%. For example, when congestion was 

disappearing, the proposed model could not work at the low penetration rate in Figure 3.8 (b). 

The proposed model could reflect the fact that link travel time decreases after the signal turns 

green and the increase in travel time at the beginning of the green phase due to the stop at the 

intersection, especially under unsaturated traffic conditions, as shown in Figure 3.8 (a). When 

the penetration rate was high, the proposed model could trace the change in travel time 

resulting from congestion using its resampling process. However, the proposed model could 

not react to the sudden change in traffic conditions promptly unless there were data observed 

after the change. For example, in Figure 3.8 (b), from time points 273 to 283, the congestion 

started to disappear, but the proposed model did not reflect the drop in travel time until new 

data were observed. However, the resampling process sometimes made the prediction 

overreact to some unexpected change in travel time, as shown in time points 55 to 60 in 
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Figure 3.8 (a). 

 

3.4 Summary 

Generally speaking, the proposed model had a high coverage rate and stable performance 

under different penetration rates because it used the information from both object vehicles 

and crossing vehicles as well as a resampling process to trace the change in travel time due to 

unexpected events. In this study, although the crossing vehicle data did not contribute to the 

accuracy improvement, they can make travel time prediction at the same level as using the 

data from the target link. Therefore, the proposed model can significantly enhance the 

coverage rate when applying to the urban networks where the penetration rate of probe 

vehicles is low. Since the distribution of probe vehicles is not uniform in the real world, most 

researches have difficulty in practical application because they have limited coverage rates. 

However, the proposed method can predict link travel time in the form of distribution on the 

whole urban network for searching the most reliable route wherever the penetration rate of 

probe vehicles is low. Furthermore, the travel time distribution can provide more information 

than a weighted summation in practical applications such as travel time reliability analysis. 
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CHAPTER 4 Applying Dynamic Time Warping to Expand the 

Prediction Horizon using Disaggregate Probe Data 

 

4.1 Introduction 

In the last chapter, we enhanced the coverage rate when predicting travel time at urban 

networks, but the proposed model can only predict travel time within a signal cycle, so it is 

necessary to expand the prediction horizon for real-world application. As introduced in 

chapter 2, the pattern recognition model is more suitable than other types of models for 

practical application at urban networks. However, most pattern recognition models have to 

use aggregated data because they compare the alignment between two time-sequential groups 

of data, which must be sorted in exactly the same time interval and have exactly the same 

length.  

To avoid the constraints of data aggregation, which were stated in chapter 1, this chapter 

developed a new pattern recognition model based on DTW to predict the short-term link 

travel time at urban networks using disaggregate probe data. The proposed model aimed to 

expand the prediction horizon and reflect temporal changes in travel time, so the forecasting 

step was based on the traffic signal cycle instead of a fixed time interval. To show the 

capability of the proposed model in practical application, it was compared with the classic 

KNN model and the naïve model under two real-world cases. In real-world cases, probe data 

were collected from the taxi in Nagoya, Japan within two months. In addition, the computer 

simulation under the same settings as in chapter 3 was also used to test the three models 

under different penetration rates.  
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4.2 Methodology 

DTW was originally developed to classify nonlinear time-sequential sequences with 

different lengths and has long been used in speech pattern recognition (Muller, 2007). DTW 

has been applied successfully to various fields such as data mining (Berndt and Clifford, 

1994) and bioinformatics analysis (Aach and Church, 2001). In the field of transportation, 

DTW was employed for out-of-sequence traffic classification by comparing two traffic flows 

with different lengths (Yan et al., 2013). Another application was to estimate the vehicle 

speed with a distorted magnetic signature due to behaviors such as acceleration and 

deceleration within the monitoring distance (Zhang et al., 2017). 

Like the last chapter, this chapter was still focused on object vehicles that go straight 

through the intersection and the urban link was defined by the segment of a roadway between 

two adjacent signalized intersections. Consequently, the link travel time consists of the 

running time on the link and the stopping time at the downstream signalized intersection. To 

reflect the influence of traffic signals, crossing vehicles were also recorded. The time stamp is 

defined as the time when vehicles leave the link at the downstream signalized intersection. 

4.2.1 Sample selection 

Similar to the KNN model, the proposed model compares samples (i.e., link travel time 

sequences) from the historical database with the real-time sample. Figure 4.1 shows an 

example of a sample in the proposed model, along with the corresponding example in the KNN 

model. 
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Figure 4.1 Examples of samples with two signal cycles 

One sample consists of two sections: a reference section and a prediction section. The 

reference section is used to make a comparison between the historical sample and the real-time 

sample, whereas the prediction section is used to produce a prediction. In this chapter, the 

length of each section is measured by the number of signal cycles. A signal cycle is divided into 

two phases: a green phase when the object vehicle can move through the intersection and a red 

phase when crossing vehicles can move through the intersection. The continuous object vehicle 

data stream is used to represent the green phase, whereas the continuous crossing vehicle data 

stream is used to represent the red phase. Because the value of the crossing vehicle is not of 

interest, it is set as L, which is significantly greater than any possible value of the object vehicle 

data. 

In the proposed model, the travel times from both object vehicles and crossing vehicles are 

directly recorded in the same link travel time sequence to represent the sample, whereas 

average travel times of the object vehicles are used in the KNN model. For both sections, the 
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start point is the first observation in the continuous object vehicle data stream, and the end 

point is the last observation in the continuous crossing vehicle data stream. A reference section 

must contain more than two object vehicle observations to avoid a significant difference in 

length (Muller, 2007). There are no other observations between the two sections in the same 

sample. Two conditions for collecting the samples follow: 

1. If the current sampling time is in the red phase, the current crossing vehicle observations 

are at the end of the sample; the observations before it should be recorded until the 

predefined length of each section is reached. 

2. If the current sampling time is in the green phase, one crossing vehicle observation is 

added at the end of the sample, and the observations before it are recorded in the same way 

as in condition 1. 

For the historical sample, the prediction section contains only one signal cycle, whereas 

the reference section can contain successive signal cycles. For comparison with the historical 

sample, the reference section in the real-time sample should have the same length as in the 

historical sample. On the other hand, to simulate the multi-step prediction, the prediction 

section in the real-time sample contains successive signal cycles. 

 

4.2.2 DTW algorithm in the proposed model 

In the proposed model, the classic DTW algorithm is modified to compare reference 

sections of the historical sample and the real-time sample, e.g., 𝑃 = (𝑝1, 𝑝2, … 𝑝𝑁) and 
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𝑄 = (𝑞1, 𝑞2, … 𝑞𝑀). To compare the different travel times between the two sections, a local 

cost measure is needed. There are various methods for calculating the local cost (Muller, 

2007), such as the Manhattan distance and the Euclidean distance. Eq. (4-1) is used in the 

proposed model to calculate the local cost. 

𝑐𝑖𝑗 = (𝑝𝑖 − 𝑞𝑗)2, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (4-1) 

A local cost matrix, in which each element represents the local cost 𝑐𝑖𝑗 between the 

points 𝑝𝑖 and 𝑞𝑗, is built, and several optional alignments between P and Q can be found. 

An optional alignment is represented by a warping path 𝐴 = (𝑎1, 𝑎2, … 𝑎𝐻) with 𝑎ℎ = (𝑖, 𝑗) 

for ℎ ∈ [1, 𝐻], which is shown in Figure 4.2.  

 

Figure 4.2 Illustrations of a warping path 

There are two basic constraints on the warping path selection (Muller, 2007): 

1. Boundary constraint: 𝑎1 = (1,1) and 𝑎𝐻 = (𝑁, 𝑀). 

2. Unit step-size constraint: For any ℎ ∈ [1, 𝐻 − 1], 𝑎𝑘+1 − 𝑎𝑘 ∈ {(1,0), (0,1), (1,1)}. 
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The boundary constraint makes sure that the sequences are compared from the beginning 

to the end. The unit step-size constraint makes sure that all elements in the sequence are 

checked so that each element in the warping path is unique. The unit step-size constraint 

gives rise to another constraint called monotonicity. In other words, for any ℎ ∈ [1, 𝐻 − 1], 

if 𝑎ℎ+1 = (𝑖, 𝑗)  and 𝑎ℎ = (𝑖′, 𝑗′)  , then 𝑖 ≥ 𝑖′  and j  ≥ 𝑗′ . The monotonicity constraint 

ensures that there is no step back while searching for the warping path. 

The purpose of the DTW is to ascertain the shortest warping path between the sections P 

and Q. Each path has its own accumulated cost, which is the summation of each local cost 

corresponding to each path obtained by using Eq. (4-2). 

𝐶𝐴(𝑃, 𝑄) = ∑ 𝛼ℎ𝑐𝑖𝑗(𝑎ℎ)𝐻
ℎ=1 , 𝑎ℎ ∈ 𝐴 (4-2) 

𝛼ℎ = {
1,
2,

 
𝑎ℎ − 𝑎ℎ−1 ∈ {(1,0), (0,1)}

𝑎ℎ − 𝑎ℎ−1 = (1,1)
, 𝑎0 = (0,0) (4-3) 

The coefficient 𝛼ℎ is calculated by Eq. (4-3) to avoid the preference of choosing the 

diagonal path. The shortest warping path is the one with the minimum accumulated cost, i.e., 

DTW(P,Q)=min{CA(P,Q)|A is a warping path between sequences P and Q}, which represents 

the similarity between the two sections. 

If the accumulated cost of each possible warping path is calculated, the shortest path can 

be found. However, it is computationally expensive to do so, particularly when the local cost 

matrix is large. However, there is an existing method to find the shortest warping path 

without calculating the costs of all the possible paths (Muller, 2007; Zhang et al., 2017). The 

minimum accumulated cost can be calculated using the algorithm listed in Table 4.1. First, a 
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local cost matrix between the sections P and Q is built (Lines 1–2). Then, an additional 

column and an additional row are added to the original local cost matrix (Lines 3–5). Finally, 

the cost of the shortest warping path between the sections P and Q is calculated using Eq. 

(4-4) (Lines 6–13). 

Table 4.1 Modified classic DTW algorithm 

1. Build an N-by-M local cost matrix C between sequences 𝑃 = (𝑝1, 𝑝2, … 𝑝𝑁) and 

2.  𝑄 = (𝑞1, 𝑞2, … 𝑞𝑀) 

3. Add an additional row, where 𝑐𝑖0 = ∞, 𝑖 > 0 

4. Add an additional column, where 𝑐0𝑗 = ∞, 𝑗 > 0 

5. 𝑐00= 0 

6. For i = 1 to N 

7.     For j = 1 to M 

8. 

𝐷𝑇𝑊(𝑝𝑖, 𝑞𝑗) = 𝑚𝑖𝑛 {

𝐷𝑇𝑊(𝑝𝑖−1, 𝑞𝑗) + 𝑐𝑖𝑗

𝐷𝑇𝑊(𝑝𝑖 , 𝑞𝑗−1) + 𝑐𝑖𝑗

𝐷𝑇𝑊(𝑝𝑖−1, 𝑞𝑗−1) + 2𝑐𝑖𝑗

 (4-4) 9. 

10. 

11.     End For 

12. End For 

13. DTW(P,Q) = DTW(𝑝𝑁, 𝑞𝑀) 

Table 4.2 presents an example of searching for the shortest warping path between the 

reference sections of two samples: (70,20,15,L,L,90,88,L) and 

(68,60,26,10,L,L,L,82,77,69,L,L). The reference sections of both samples contain two signal 

cycles. The shaded portion from the upper left to the lower right represents the shortest 

warping path. In Table 4.2, elements represent the local costs calculated using Eq. (4-1), 

except for those in the first column and the first row. The local cost matrix can be divided 

into several sub-matrices using the crossing vehicle data L as long as the value of L is 

sufficiently high. The sub-matrices, through which the shortest warping path traverses, 

represent the local cost matrices between the travel time sequences in the corresponding 
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signal phases. When the penetration rate is high, it is necessary to record the crossing vehicle 

data so that the travel time sub-sequence in one sample can be compared with the one in the 

corresponding signal phase in another sample if there is more than one signal cycle in the 

reference section. When the penetration rate is low, the crossing vehicle might be misleading. 

Therefore, the shortest warping path between the reference sections of two samples without 

recording the crossing vehicle should also be found. 

Table 4.2 Example of searching the shortest warping path in the local cost matrix 

 70 20 15 L L 90 88 L 

68 4 2304 2809 L
2
 L

2
 484 400 L

2
 

60 100 1600 2025 L
2
 L

2
 900 784 L

2
 

26 1936 36 121 L
2
 L

2
 4096 3844 L

2
 

10 3600 100 25 L
2
 L

2
 6400 6084 L

2
 

L L
2
 L

2
 L

2
 0 0 L

2
 L

2
 0 

L L
2
 L

2
 L

2
 0 0 L

2
 L

2
 0 

L L
2
 L

2
 L

2
 0 0 L

2
 L

2
 0 

82 144 3844 4489 L
2
 L

2
 64 36 L

2
 

77 49 3249 3844 L
2
 L

2
 169 121 L

2
 

69 1 2401 2916 L
2
 L

2
 441 361 L

2
 

L L
2
 L

2
 L

2
 0 0 L

2
 L

2
 0 

L L
2
 L

2
 L

2
 0 0 L

2
 L

2
 0 

 

4.2.3 Prediction 

In the classical KNN model, the average travel time for object vehicles in each signal 

cycle is used. The prediction  𝑡̃ is given by the weighted summation of 𝑡̃𝑘 from the first K 

historical samples with the highest weight, as shown in Eq. (4-5) and Eq. (4-6): 

𝑊𝑘 = 1 √∑ (𝑇̅𝑜
𝑟 − 𝑇̅𝑘

𝑟)2𝑁𝑟
𝑟⁄   (4-5) 
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𝑡̃ = ∑ 𝑡̃𝑘𝑊𝑘

𝐾

𝑘
∑ 𝑊𝑘

𝐾

𝑘
⁄  (4-6) 

where 𝑊𝑘  is the weight, 𝑇̅𝑘
𝑟  is the average travel time for the rth signal cycle in the 

reference section of the historical sample,  𝑇̅𝑜
𝑟 is the average travel time for the rth signal 

cycle of the real-time sample, Nr is the number of signal cycles in the reference section, and 

𝑡̃𝑘 is the average travel time for the prediction section of the historical sample. 

Some pieces of information are lost when using the average travel time in a signal cycle. 

For example, the link travel time tends to decrease after the traffic signal turns green because 

vehicles leaving in the subsequent green phase might pass through the intersection without a 

stop. In the proposed model, the prediction is based on the link travel time sequence instead 

of one single value. Because the exact length and start time point of a signal phase is 

unknown, it is unreasonable to merge the travel time sequences from the prediction section of 

different historical samples. Therefore, the prediction section of the historical sample with the 

highest similarity is used directly for the prediction. The similarity is calculated by Eq. (4-7): 

𝑆𝑟 = 1 √𝑚𝑖𝑛{ 𝐷𝑇𝑊(𝑃, 𝑄) 𝑙⁄ , 𝐷𝑇𝑊(𝑃′, 𝑄′) 𝑙′⁄ }⁄   (4-7) 

where P is the reference section of the historical sample with the crossing vehicle data, Q is 

the reference section of the real-time sample with the crossing vehicle data, l is the length of 

the shortest warping path between P and Q, Pʹ is the reference section of the historical sample 

without the crossing vehicle data, Qʹ is the reference section of the real-time sample without 

the crossing vehicle data, and lʹ is the length of the shortest warping path between Pʹ and Qʹ. 

As mentioned above, the prediction section of the historical data contains only one signal 
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cycle, implying that predictions can be made only in the next signal cycle. For the multi-step 

prediction, a new reference section of the real-time sample is made at each step by removing 

the first signal cycle of the reference section and adding the current prediction to the end of 

the reference section. Then, the prediction at the next step can be made by comparing the 

historical samples and the real-time sample with the new reference section. 

 

4.3 Experiments 

4.3.1 Data description 

Currently, probe data are usually collected from special vehicles (e.g., taxis and buses), so 

the penetration rate of vehicles that can send probe data is usually low. This chapter used probe 

data collected from taxis, which means that it also suffers from the problem of low penetration 

rate. Therefore, the computer simulation under the same settings as in the last chapter was 

employed to evaluate the proposed model under different penetration rates.  

However, in this chapter, five trials were used as the testing data and the remaining 25 

trials made up the historical database. The amount of data in the testing database was 1,475, 

whereas the amount of data in the historical database was 7,388. The average link travel time in 

the test database was 82.0 s, whereas that in the historical database was 86.6 s. Figure 3.3 and 

Figure 4.3 show the distribution of travel time and the changes in travel time on the target link. 

Fusco et al. (2016) showed that the connection between the traffic signals and the individual 

vehicle speeds can be inferred by the distribution of individual vehicle speed. For the same 
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reason, the connection between the traffic signals and the travel times can be inferred by the 

distribution of travel time. For example, the peak at approximately 60 s represents data from 

vehicles having a stop at the intersection, whereas the peak at approximately 110 s represents 

data from vehicles having at least one stop at the intersection. In this manner, the traffic 

condition was defined as congested when the average travel time was greater than 80 s in the 

simulation. Congestion was observed from the 14th min to the 24th min and from the 44th min 

to the 54th min. 

 

Figure 4.3 Changes in travel time on the target link in the computer simulation 

The probe data used in the real-world cases were obtained from taxis in Nagoya, Japan, in 

February and June 2015 (58 days in total). Each data record represented a taxi that passed 

through a link and included information such as the times the taxi entered and exited the link, 

the ID and length of the link, the ID of the next link, and the latitude and longitude of the 

endpoints for each link. Data pertaining to the stopping of the taxi on the link to pick up or 

deliver passengers were discarded. Because taxis only accounted for a small portion of all 

vehicles on the road, some of the links had insufficient data. Consequently, two links with a 

relatively large amount of data were selected from the entire network as target links. One link 
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(Link 1) was a 209-m-long west-east link on Hirokoji Street, which connects the city center and 

a suburban area. The other one (Link 2) was a 223-m-long north-south link on Ootsu Street at 

the city center. Both of the links connect signalized intersections. 

The amount of data for Link 1 was 23,815, among which the number of data of taxis 

moving straight was 17,478. The amount of data for Link 2 was 47,001, and the number for 

taxis going straight was 26,586. The number of data of taxis going straight for both links was 

overwhelming compared to all possible turning choices. Link 1 consists of a right-turn lane, a 

left/straight optional lane and two straight lanes. Link 2 consists of a right-turn lane, a left-turn 

lane and two straight lanes. Therefore, vehicles going straight in the real-case received little or 

no influence from vehicles with other turning behaviors. For simplicity, it is assumed that 

vehicles going straight on the left/straight optional lane have the same characteristics as 

vehicles on the straight lane, so it is reasonable to focus on predicting travel time of vehicles 

going straight as in the simulation. Figure 4.4 shows the changes in the average number and 

travel time of taxis going straight per hour during one day for both links in February and June. 
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Figure 4.4 Changes in average number and travel time of taxis going straight during 

one day. 

The situations in February and June were similar for both links. Although both links had 

more data than most other links in the network, the amount of data was still insufficient 

because of the low penetration rate. The average number of taxis going straight per hour for 

Link 2 was approximately 19, compared to approximately 300 in the simulation. Therefore, the 

penetration rate of Link 2 was approximately 6%, and this rate was even worse for Link 1. The 

average travel time for Link 1 was 49.1 s, whereas that for Link 2 was 57.4 s. 

4.3.2 Parameter calibration 

As mentioned previously, the prediction in the proposed model is based on the travel 

time sequence instead of one single value. This makes it possible to reflect the changes in 

travel time during a signal cycle. Because the time interval and sample length of the 

forecasting result differ from the target, DTW is also used to compare the forecasting result 

and the target. As shown in Figure 4.2, the travel time in one sequence can be matched with 

the travel time in another according to the warping path. For example, in Figure 4.2, if P 

represents the forecasting result and Q represents the target, then 𝑝1, 𝑝2 refers to 𝑞1, and 

𝑝2 refers to 𝑞2. Therefore, according to the shortest warping path, the travel time in the 

target can be represented by the average value of the corresponding elements in the 
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forecasting result. For example, if the forecasting result is (68, 60, 26, 10) and the target is 

(70, 20, 15), the forecasting result can be transformed into (64, 26, 10). Aside from the KNN 

model, the naïve model, which uses the average value of the historical data as the forecasting 

result, was also used to compare with the proposed model. The average value used in the 

KNN model or in the naïve model was considered as a forecasting result containing only one 

element. The MAPE and RMSE were used to measure the accuracy of the proposed model.  

The simulation data were used to calibrate the parameters. The proposed model and the 

KNN model were tested under different penetration rates in the simulation. If more than 75% 

of the data were reduced, the number of effective samples would be insufficient for parameter 

calibration. Therefore, the data were randomly reduced by 50% and 75% to simulate 

conditions of 50% and 25% penetration rates, respectively. When calibrating the parameters, 

the prediction horizon was fixed as one signal cycle. 

For the KNN model, two parameters required calibration: the length of the reference 

section, which influences the sample size and the information provided by the sample, and 

the value of K, which is the number of historical samples used for prediction. Figure 4.5 

shows the MAPE of the KNN model with different combinations of reference section length 

and K under different penetration rates. 
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Figure 4.5 MAPE of the KNN model with different combinations of reference section 

length and K under different penetration rates 

If the reference section is too short, there might not be enough information for 

comparison. On the other hand, if it is too long, the information might be redundant, making 

it difficult to collect effective samples. Therefore, when the penetration rate is not 100%, the 

MAPE for a length of 1 or 5 is not as good as that for a length ranging from 2 to 4. The length 

was set as 3 because this length results in stable performance under different penetration rates. 

When K increases, the MAPE decreases and then becomes stable. K was set as 8 because the 
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MAPE is best under this condition, irrespective of the penetration rate.  

For the proposed model, only the length of the reference section needs to be determined. 

Figure 4.6 shows the MAPE of the proposed model with different reference section lengths 

under different penetration rates. 

 

Figure 4.6 MAPE of the proposed model with different reference section lengths under 

different penetration rates 

The MAPE fluctuates slightly when the penetration rate is 100%. The MAPE decreases 

at first and then increases under the other two penetration rates. The MAPE decreases 

because the additional length is expected to help provide more information. The increase in 

the MAPE is due to the lack of crossing vehicle data, which can separate the signal cycles 

under low penetration rates. If the data are not separated into corresponding signal cycles, 

more data lead to more redundancy. This can also explain why the increase in the MAPE 

under the 25% penetration rate is faster than that under the 50% penetration rate. Therefore, 

to ensure sufficient samples and that the proposed model can attain a stable accuracy, the 

length was set as 2. 
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4.3.3 Results and discussion 

The proposed model, along with the KNN and naïve models, was tested against the 

simulation and real-world cases. Because the length of the reference section of the real-time 

samples used in the proposed model was shorter than that in the KNN model, the number of 

real-time samples in the proposed model was larger. Therefore, when testing the proposed 

model, the same real-time samples as in the KNN model were used to make sure that the 

real-time sample size was the same, but only the last two signal cycles were used when 

comparing the reference sections. In the simulation, multi-step predictions were made using 

the models under different penetration rates. As mentioned previously, there must be more 

than two object vehicle observations in each signal cycle of a sample. However, when the 

penetration rate is 10%, each signal cycle of the samples contains at least two object vehicle 

observations to make sure there are enough samples. Despite this, there is no qualified sample 

with a prediction horizon of five when the penetration rate is 10%. Figure 4.7 shows the 

accuracy of the three models under different penetration rates in terms of MAPE and RMSE. 
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Figure 4.7 Accuracy of different models under different penetration rates in the 

simulation 

The proposed model outperforms the other two models irrespective of the penetration 

rate because it can reflect the changes in travel time during a signal cycle. When the 

prediction horizon increases, the accuracy of the proposed model deteriorates. This occurs 

because it cannot catch up with the change in traffic time in the long term if there are no new 

data to update the current traffic condition. However, when the penetration rate is 10%, the 

accuracy fluctuates. The accuracy of the naïve model is relatively stable under different 

prediction horizons, except for the case of the 10% penetration rate. Therefore, it is 

reasonable to conclude that the fluctuation comes from the bias of samples under the low 

penetration rate. 
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When the penetration rate decreases, the MAPE values of all three models tend to 

decrease because the sample diversity decreases and the predictable range shrinks. We now 

consider samples with a prediction horizon of one as an example, as listed in Table 4.3. 

Table 4.3 Sample size and composition 

Penetration rate (%) 100 50 25 10 

Sample size 600 235 70 26 

Ratio of samples in congestion (%) 46 89 96 100 

Because each sample must contain four successive signal cycles and each signal cycle 

must contain at least two object vehicle observations according to the previous setting, if the 

penetration rate decreases, the sample size also decreases. For the same reason, successive 

signal cycles that contain sufficient object data tend to appear congested under low 

penetration rates. Therefore, both the historical and real-time samples tend to be collected 

when the traffic is congested under low penetration rates, implying that the proposed and 

KNN models can hardly be applied to an uncongested traffic condition. If the samples are 

taken from similar traffic conditions, it is likely that they exhibit similar patterns and have 

similar travel times, making it easy to achieve accurate predictions under low penetration 

rates. Moreover, because the samples are mainly obtained from congested conditions in 

which the travel time is considerable, the MAPE tends to be low. Concerning the 

computation cost, the program was built by C++ and run by a computer with a 2.5 GHz Intel 

Core i7 processor and 16 GB of 1600 MHz DDR3 memory. The running time for one 

prediction in the proposed model was approximately 0.45 s. In the KNN model, it was 

approximately 0.02 s. 
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As for the real cases, the parameter setting was the same as that in the simulation. 

Because the penetration rate was extremely low, the prediction horizon was fixed as one 

signal cycle and the length of the reference section was set as 2 to collect sufficient real-time 

samples. For the proposed model, the sample sizes in Links 1 and 2 were 246 and 115, 

respectively, whereas for the KNN model, the sample sizes in Links 1 and 2 were 66 and 9, 

respectively. Therefore, data were used more effectively in the proposed model than in the 

KNN model. Although the amount of data in Link 1 was less than that in Link 2, the sample 

size in Link 1 was greater than that in Link 2. This occurred because most of the data in Link 

1 were distributed during the nighttime, whereas in Link 2, the data were distributed more 

evenly, as shown in Figure 4.4. Leave-one-out cross-validation was performed to test the 

different models in Links 1 and 2, as listed in Tables 4.4 and 4.5.  

Table 4.4 Accuracy of different models in Link 1 

 Proposed model KNN model Naïve model 

MAPE (%) 45.3 56.1 52.9 

RMSE 18.8 20.7 20.5 

 

Table 4.5 Accuracy of different models in Link 2 

 Proposed model KNN model Naïve model 

MAPE (%) 36.7 66.4 62.0 

RMSE 22.2 28.9 27.1 

The proposed model still outperformed the KNN model and the naïve model under 

extremely low penetration rates. The accuracy of the KNN model is lower than that of the 

naïve model because the length of the signal cycle changes for the real cases, implying that 

the time interval when collecting samples in the KNN model is not equal. However, the 
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proposed model is free from the equal time interval constraint, thus exhibiting a higher 

accuracy. To compare the proposed model and the KNN model further, a residual analysis 

was performed and the results are shown in Figure 4.8.  

  

Figure 4.8 Results of the residual analysis 

The residual is defined as the difference between the observed travel time and its 

prediction. The distribution of residuals in the KNN model tends to be linear because it uses 

the weighted average value as the prediction. The distribution of residuals in the proposed 

model shows more randomness than that in the KNN model because its prediction is in the 

form of a travel time sequence, which can reflect changes in travel time. However, when the 

observed travel time is too short or too long, the residuals of the proposed model also have a 

bias. This occurs because the penetration rate is so low that the proposed model cannot find 

similar patterns in the past to make predictions. On the whole, it is reasonable to conclude 

that the residual has a more desirable random distribution in the proposed model than in the 

KNN model. 
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4.4 Summary 

In this study, a pattern recognition model based on the DTW was developed to expand the 

prediction horizon using disaggregate probe data when predicting short-term urban link travel 

time. The DTW is a method used to compare two sets of the time sequential data and is free 

from constraints of the equal time interval and equal sample length. In the proposed model, 

crossing vehicle data were introduced to divide the object data into different traffic signal 

cycles instead of identifying the exact signal patterns, so the changes in travel time caused by 

the traffic signal can be reflected. The proposed model predicted the travel time sequence in a 

signal cycle instead of the average travel time. The longest prediction horizon was five signal 

cycles, which corresponds to ten minutes. Because the proposed model took advantage of 

disaggregate data and because it was not required to estimate the exact signal pattern, the 

method can use data more effectively to achieve higher accuracy and had wider applicability 

than the classical KNN model and the naïve model.  
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CHAPTER 5 Intersection Priority Control for Urban Traffic 

Management to Reduce Traffic Congestion 

 

5.1 Introduction 

In the last two chapters, effort was devoted to expanding short-term travel time prediction 

to urban networks. Based on the predicted travel time, the ITS-based traffic control and 

management can react to traffic condition that might happen in a short future. Since the 

SODTA approach that solves the congestion problem at the scale of the whole network is 

difficult to implement in the real-world application, it is necessary to consider solving the 

congestion at a small scale. Therefore, this chapter proposed a LTM-based model to reduce the 

congestion by managing the incoming traffic flows at each intersection which is the main 

potential bottleneck on the urban network.  

This model combined a local linear programming formulation with the LTM to minimize 

the congestion on the incoming links by optimizing their priority in the condition that route 

choices are determined in advance. The reason to use the LTM is that it is computationally 

efficient to manage the transition traffic flows between links connected by the intersection. 

The main advantage of the proposed model is that it can be added to other SODTA approaches 

that have different global objectives like minimizing the total emission. Moreover, the 

proposed model is easy to be extended from one application to another because it has no 
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pre-defined assumption and it is not constrained by the type of intersection. In this chapter, a 

computer simulation was employed to compare the proposed model with other models using 

different intersection priority strategies at the Sioux Falls network. 

 

5.2 Methodology 

5.2.1 Classic LTM 

The LTM network consists of homogeneous links and different types of nodes, including 

inhomogeneous node, origin node, destination node, merge node, diverge node, and crossing 

node. The main reason why the LTM is more computationally efficient than the CTM is that it 

only focuses on the update of the cumulative number of vehicles N(x,t) at the upstream and 

downstream boundaries of link i which are denoted as 𝑥𝑖
0 and 𝑥𝑖

𝐿 respectively.  

The LTM consists of the link model and the node model. In the link model, two variables 

are defined—the sending flow 𝑆𝑖(𝑡) and the receiving flow 𝑅𝑗(𝑡). During the time interval 

[𝑡, 𝑡 + ∆𝑡], 𝑆𝑖(𝑡) represents the maximum number of vehicles that can potentially leave the 

downstream boundary of link i, whereas 𝑅𝑗(𝑡) represents the maximum number of vehicles 

that can be received from the upstream boundary of link j. They are defined as: 

𝑆𝑖(𝑡) = 𝑚𝑖𝑛{[𝑁(𝑥𝑖
0, 𝑡 + ∆𝑡 − 𝐿𝑖 𝑣𝑓,𝑖⁄ ) − 𝑁(𝑥𝑖

𝐿 , 𝑡)], 𝑞𝐷,𝑖∆𝑡}  (5-1) 

𝑅𝑗(𝑡) = 𝑚𝑖𝑛{[𝑁(𝑥𝑗
𝐿 , 𝑡 + ∆𝑡 + 𝐿𝑗 𝑤𝑗⁄ ) + 𝑘𝑗

𝑗𝑎𝑚
𝐿𝑗 − 𝑁(𝑥𝑗

0, 𝑡)], 𝑞𝑈,𝑗∆𝑡} (5-2) 

where, 
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𝐿𝑖, 𝐿𝑗  : length of link i and j respectively,  

𝑣𝑓,𝑖  : free-flow speed of link i, 

𝑤𝑗  : negative maximum spillback wave speed of link j, 

𝑘𝑗
𝑗𝑎𝑚

 : jam density of link j, 

𝑞𝐷,𝑖  : capacity of link i at the downstream boundary, and 

𝑞𝑈,𝑗 : capacity of link j at the upstream boundary. 

In the node model, three variables are defined—the turning fraction 𝛽𝑖𝑗(𝑡), the priority 

fraction 𝜑𝑖𝑗(𝑡), and the transition flow 𝐺𝑖𝑗(𝑡) (𝑖 ∈ 𝐼𝑛, 𝑗 ∈ 𝐽𝑛). 𝐼𝑛 represents the assemblage 

of incoming links of node n, whereas 𝐽𝑛 represents the assemblage of outgoing links of node 

n. 𝛽𝑖𝑗(𝑡) represents the proportion of vehicles leaving the same incoming link i for different 

outgoing links, whereas 𝜑𝑖𝑗(𝑡) represents the proportion of vehicles entering the same 

outgoing link j from different incoming links. 𝐺𝑖𝑗(𝑡) represents the maximum number of 

vehicles that can actually transfer from incoming link i to outgoing link j through node n 

during the time interval [𝑡, 𝑡 + ∆𝑡]. The main process of the LTM, which is to update the 

cumulative number of vehicles, is shown in Table 5.1. 

Table 5.1 Algorithm of updating the cumulative number of vehicles 

For each time step t: 

 Using the link model to determine 𝑆𝑖(𝑡) and 𝑅𝑗(𝑡) for each link. 

 Using the node model to determine 𝛽𝑖𝑗(𝑡), 𝜑𝑖𝑗(𝑡), and 𝐺𝑖𝑗(𝑡) for each node. 

 For each incoming link i at node n, 𝑁(𝑥𝑖
𝐿 , 𝑡 + ∆𝑡) = 𝑁(𝑥𝑖

𝐿 , 𝑡) + ∑ 𝐺𝑖𝑗(𝑡)𝐽𝑛
𝑗   

 For each outgoing link j at node n, 𝑁(𝑥𝑗
0, 𝑡 + ∆𝑡) = 𝑁(𝑥𝑗

0, 𝑡) + ∑ 𝐺𝑖𝑗(𝑡)𝐼𝑛
𝑖  
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The definition of 𝐺𝑖𝑗(𝑡) differs according to the type of node. For the inhomogeneous 

node which connects one incoming link to one outgoing link, 𝐺𝑖𝑗(𝑡) is intuitively defined as 

𝐺𝑖𝑗(𝑡) = 𝑚𝑖𝑛{𝑆𝑖(𝑡), 𝑅𝑗(𝑡)} (5-3) 

For the diverge node which connects only one incoming link to two or more outgoing links, 

the sending flow of the incoming link is decomposed into several sub-flows denoted by 𝑆𝑖𝑗(𝑡) 

according to 𝛽𝑖𝑗(𝑡). As mentioned before, most LTM-based SODTA approaches focused on 

solving the routing problem which determines the turning fraction. Similarly, in this chapter, 

𝛽𝑖𝑗(𝑡) was determined by the route search according to the dynamic user optimal assignment 

in advance. It is assumed that vehicles at the intersection obey the first-in-first-out (FIFO) 

discipline, so the transition flow for one outgoing link is constrained not only by the receiving 

flow of this link but also other outgoing links. Consequently, 𝐺𝑖𝑗(𝑡) for the diverge node is 

defined as 

𝑆𝑖𝑗(𝑡) = 𝛽𝑖𝑗(𝑡)𝑆𝑖(𝑡)  (5-4) 

𝐺𝑖𝑗(𝑡) = 𝑚𝑖𝑛
𝑗′∈𝐽𝑛

{𝑆𝑖𝑗(𝑡),
𝑆𝑖𝑗(𝑡)

𝑆𝑖𝑗′(𝑡)
𝑅𝑗′(𝑡)} (5-5) 

For the merge node which connects two or more incoming links to only one outgoing link, 

the receiving flow of the outgoing link is allocated to incoming links according to 𝜑𝑖𝑗(𝑡). 

Thus, 𝐺𝑖𝑗(𝑡) for the merge node is defined as 

𝐺𝑖𝑗(𝑡) = 𝑚𝑖𝑛{𝑆𝑖𝑗(𝑡), 𝜑𝑖𝑗(𝑡)𝑅𝑗(𝑡)} (5-6) 

Daganzo (1995) provided another method to calculate 𝐺𝑖𝑗(𝑡), but it is preferred when 

there are only two incoming links (Hajiahmadi et al., 2013), so it is not discussed here. There 
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are several methods for calculating 𝜑𝑖𝑗(𝑡), for example, many researchers (Lebacque, 1996; 

Gentile, 2010; Van de Weg et al., 2016; Nezamuddin and Boyles, 2014) used the fixed fraction 

which is proportional to the capacity of each incoming link. Except for the capacity, Jin and 

Zhang (2003) used fixed fraction which is proportional to the demand of each incoming link. In 

this chapter, a new method is proposed to calculate 𝜑𝑖𝑗(𝑡) so as to reduce the congestion on 

networks. 

For the crossing node which connects two or more incoming links to two or more 

outgoing links, it can be treated as the combination of merge and diverge nodes. Therefore, 

𝐺𝑖𝑗(𝑡) for the crossing node is defined as 

𝐺𝑖𝑗(𝑡) = 𝑚𝑖𝑛
𝑗′∈𝐽𝑛

{𝑆𝑖𝑗(𝑡), 𝜑𝑖𝑗′(𝑡)
𝑆𝑖𝑗(𝑡)

𝑆𝑖𝑗′(𝑡)
𝑅𝑗′(𝑡)} (5-7) 

For the origin node, it is assumed that there is one dummy incoming link which has no 

length but infinite capacity. The sending flow of its dummy incoming link is defined as 

𝑆𝑖(𝑡) = 𝑁𝑜(𝑡 + ∆𝑡) − 𝑁(𝑥𝑖
0, 𝑡) (5-8) 

where, 

oN : cumulative traffic demand at origin o.  

Consequently, the origin node can be treated as the diverge node. Similarly, it is assumed 

that the destination node connects to one dummy outgoing link which has no length but infinite 

capacity. Thus, the destination node can be treated as the merge node which can receive all 

flows from incoming links. Readers who need more details about the classic LTM can refer to 
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Yperman’s (2007) Ph.D. dissertation. 

5.2.2 Local linear formulation to reduce the congestion 

According to Eq. (5-7), there is no guarantee that the sub-sending-flow 𝑆𝑖𝑗(𝑡) equals to 

the corresponding transition flow 𝐺𝑖𝑗(𝑡). The difference between 𝑆𝑖𝑗(𝑡) and 𝐺𝑖𝑗(𝑡) results 

from the gap between demand and supply, and the FIFO behavior. This difference implies that 

there are vehicles remaining at the link which may cause the congestion. Therefore, a local 

linear programming formulation is proposed to reduce the congestion on the network. It 

minimizes the difference between the sub-sending-flow and the corresponding transition flow 

for each node (intersection) at each time step. The objective function is defined as: 

𝑚𝑖𝑛 ∑ ∑ [𝑆𝑖𝑗(𝑡) − 𝐺𝑖𝑗(𝑡)]
𝐽𝑛

𝑗

𝐼𝑛

𝑖
 (5-9) 

Because the crossing node is a mix of merge and diverge nodes, and the origin and 

destination nodes can be viewed as diverge and merge nodes respectively, 𝐺𝑖𝑗(𝑡)  for 

different types of nodes can be generally represented in the form of the crossing node. 

Therefore, if substituting Eq. (4-7) into Eq. (4-9), the local linear programming formulation 

can be written as: 

𝑚𝑖𝑛 ∑ ∑ [𝑆𝑖𝑗(𝑡) − 𝑚𝑖𝑛
𝑗′∈𝐽𝑛

{𝑆𝑖𝑗(𝑡), 𝜑𝑖𝑗′(𝑡)
𝑆𝑖𝑗(𝑡)

𝑆𝑖𝑗′(𝑡)
𝑅𝑗′(𝑡)}]

𝐽𝑛

𝑗

𝐼𝑛

𝑖
  

= 𝑚𝑖𝑛 ∑ ∑ 𝑆𝑖𝑗(𝑡) {1 − 𝑚𝑖𝑛
𝑗′∈𝐽𝑛

[1,
𝑅𝑗′(𝑡)

𝑆𝑖𝑗′(𝑡)
𝜑𝑖𝑗′(𝑡)]}

𝐽𝑛

𝑗

𝐼𝑛

𝑖
  

= 𝑚𝑖𝑛 ∑ 𝑆𝑖(𝑡) 𝑚𝑎𝑥
𝑗′∈𝐽𝑛

[0,1 −
𝑅𝑗′(𝑡)

𝑆𝑖𝑗′(𝑡)
𝜑𝑖𝑗′(𝑡)]

𝐼𝑛

𝑖
 (5-10) 

subject to, 
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∑ 𝜑𝑖𝑗(𝑡)
𝐼𝑛

𝑖
= 1 

Since the turning fraction is fixed by solving the routing problem in advance, this linear 

programming problem results in optimizing the combination of 𝜑𝑖𝑗(𝑡)  to reduce the 

congestion at each incoming link at the node. It can be further reformulated as a standard form: 

𝑚𝑖𝑛 ∑ 𝑆𝑖(𝑡) [1 −
𝑅𝑗∗(𝑡)

𝑆𝑖𝑗∗(𝑡)
𝜑𝑖𝑗∗(𝑡)]

𝐼𝑛

𝑖
+ ∑ 𝑅𝑗(𝑡) [1 − ∑ 𝜑𝑖𝑗(𝑡)

𝐼𝑛

𝑖
]

𝐽𝑛

𝑗
  

⇔ 𝑚𝑎𝑥 ∑
𝑆𝑖(𝑡)𝑅𝑗∗(𝑡)

𝑆𝑖𝑗∗(𝑡)
𝜑𝑖𝑗∗(𝑡)

𝐼𝑛

𝑖
+ ∑ ∑ 𝑅𝑗(𝑡)𝜑𝑖𝑗(𝑡)

𝐽𝑛

𝑗

𝐼𝑛

𝑖
 (5-11) 

subject to, 

0 ≤ 𝜑𝑖𝑗(𝑡) ≤ 𝑆𝑖𝑗(𝑡) 𝑅𝑗(𝑡)⁄  (5-12) 

∃𝑗∗ ∈ 𝐽𝑛, 𝜑𝑖𝑗∗(𝑡)𝑅𝑗∗(𝑡) 𝑆𝑖𝑗∗(𝑡)⁄ − 𝜑𝑖𝑗(𝑡)𝑅𝑗(𝑡) 𝑆𝑖𝑗(𝑡)⁄ ≤ 0 (5-13) 

∑ 𝜑𝑖𝑗(𝑡)
𝐼𝑛

𝑖
≤ 1  

The first term of the reformulated objective function (5-11) is to make sure that the 

throughput of the transition flow which is most congested at the intersection is as large as 

possible. The second term of the reformulated objective function (5-11) is to make sure that 

the total available capacity of outgoing links is as large as possible. In a word, the 

reformulated objective function (5-11) is to maximize the throughput of the intersection. The 

constraint (5-12) is to make sure that the available capacity of the outgoing link is larger than 

the number of vehicles from the incoming link. The constraint (5-13) is to find out the most 

congested transition flow. 
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5.3 Experiments 

  In this chapter, a model that combined the classic LTM and the local linear programming 

formulation mentioned above is proposed to reduce the congestion on networks. To evaluate 

the effect of the congestion reduction, the average congestion index (ACI) is introduced. The 

ACI is positively related to the congestion, which means higher the ACI is, heavier the 

congestion is on the whole network (Sun et al., 2014). Besides the ACI, the total travel time 

(TTT) was also used to evaluate the performance of the models. The travel time consisted of 

the running time and waiting time on the link. Since the LTM algorithm calculated cumulative 

vehicle numbers on discrete time steps, travel time was estimated based on an interpolation 

procedure which was explained in Yperman’s (2007) Ph.D. thesis. The ACI is defined as: 

𝐴𝐶𝐼 = ∑ (
𝑡𝑡𝑖

𝑇 − 𝑡𝑡𝑖
0

𝑡𝑡𝑖
0 𝑓𝑖

𝑇) ∑ 𝑓𝑖
𝑇

𝑁

𝑖
⁄

𝑁

𝑖
 (5-14) 

where, 

N : assemblage of links (without dummy links) on analyzed network,  

T

itt  : actual travel time of link i during time period T, 

0

itt  : free-flow travel time of link i, 

T

if  : traffic flow of link i during time period T. 

Three other LTM-based models with different definitions of priority fraction are used to 

compare with the proposed model. Their names and definitions of priority fraction are shown 

in Table 5.2. 
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Table 5.2 Models for comparison 

 Definition of priority fraction 

Fairness Model 𝜑𝑖𝑗(𝑡) = 1 𝐼𝑛⁄  

Capacity Model 𝜑𝑖𝑗(𝑡) = 𝑄𝑖 ∑ 𝑄𝑖
𝐼𝑛
𝑖⁄  (𝑄𝑖: Capacity at the downstream boundary of link i) 

Demand Model 𝜑𝑖𝑗(𝑡) = 𝑆𝑖(𝑡) ∑ 𝑆𝑖(𝑡)
𝐼𝑛

𝑖
⁄  

In the fairness model, each incoming link has the same priority fraction. In the capacity 

model, the priority fraction is proportional to the capacity at the downstream boundary of the 

incoming link. In the demand model, the priority fraction is proportional to the demand of the 

incoming link. In this section, simulations were run at two networks to test the four models. 

One was a simple grid network which was aim to compare the performances of the four 

models at a single crossing intersection. The other one was the Sioux Falls network which was 

originally from the real-world urban network so that the potential of practical application for 

the four models can be evaluated. 

5.3.1 Simulation at a simple grid network 

  The topology of the simple grid network is shown in Figure 5.1. There are three origins O 

and 1 destination D which are connected with nodes at the network by the dummy link. The 

blue number refers to the link number, whereas the red number refers to the node number. 

Each link only has one lane. Attributes of the simple grid network are shown in Table 5.3. 
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Figure 5.1 The simple grid network 

 

Table 5.3 Attributes of the simple grid network. 

Link number Length (m) Capacity (veh/s) 

Jam 

density 

(veh/m) 

Free-flow 

speed(m/s) 

1,2,3,28 0 10000 1000 30 

4,6,7,9 600 0.5 0.1 20 

5,8,10,11,14,17,18,23 600 1 0.2 30 

12,15,16,19,22,24,25,27 600 0.5 0.1 30 

The assignment period was 300 seconds. The traffic demand for each origin during the 

assignment period was the same, which was 1 vehicle/s. Since vehicles cannot go through a 

link within one update time interval in the LTM, the update time interval should be no more 

than the minimum free-flow travel time. In this section, different update time intervals, which 

were 1s, 5s, 10s, and 20s, were tested. The simulation continued after the assignment period 

until all vehicles reached the destination. To reproduce the supply uncertainty, a noise that 

followed the standard normal distribution was added to the link capacity for both upstream and 

downstream boundaries. 30 sets of random seeds were tested for each model under different 

update time intervals. Last but not least, the route for a vehicle was decided based on the 

current traffic condition using the Method of Successive Average (MSA) before vehicles enter 
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the network, which means the turning choice at each intersection is determined. It is possible 

for a vehicle to search the route at each intersection based on the current traffic condition. The 

dynamic priority control and the route choice may affect each other but this chapter focused 

on the influence of the priority control on reducing congestion so the application of the route 

searching at each intersection will remain as a future work. 

  

Figure 5.2 ACI and TTT for models under different update time intervals 

Results of both the ACI and the TTT for each model under different update time intervals 

are shown in Figure. 5.2. When the update time interval increased, the ACI and TTT became 

larger because simulation with a shorter time interval can capture more changes in the traffic 

flow. The traffic congestion level in the proposed model was lower than the other three 

models, especially when the update time interval was short. However, there was no obvious 

difference between the travel costs of these models when the update time interval was long. 

To exclude the influence of stochasticity from link boundary capacity on the results, a t-test is 

conducted between the proposed model and other LTM-based models.  

Table 5.4 Results of the t-test between the proposed model and other LTM-based 

models. 

t value for the ACI 

Update time interval (s) 20 10 5 1 

Fairness Model -2.36 -1.65 -7.27 -15.63 

Capacity Model -3.55 -3.95 -7.69 -18.12 
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Demand Model -3.01 -2.55 -6.53 -16.64 

P value for the ACI 

Update time interval (s) 20 10 5 1 

Fairness Model 0.01 0.05 0.00 0.00 

Capacity Model 0.00 0.00 0.00 0.00 

Demand Model 0.00 0.01 0.00 0.00 

t value for the TTT 

Update time interval (s) 20 10 5 1 

Fairness Model -0.19 -0.82 -6.36 -22.08 

Capacity Model 0.64 0.95 -2.75 -13.60 

Demand Model 1.30 2.04 -1.78 -10.49 

P value for the TTT 

Update time interval (s) 20 10 5 1 

Fairness Model 0.43 0.21 0.00 0.00 

Capacity Model 0.26 0.17 0.00 0.00 

Demand Model 0.10 0.02 0.04 0.00 

𝛼=0.1, sample size=30 

According to the results of the t-test in Table 5.4, the proposed model had a distinctly 

lower congestion level than the other three models regardless of the update time interval. The 

proposed model also had lower travel costs than the other three models, but when the update 

time interval increased, the difference in the TTT became insubstantial. It can be concluded 

that the proposed model has the potential of reducing traffic congestion in the real world. 

However, the grid network is too simple to describe the real-world urban network, so 

simulation at the real-world based network is a must. 

5.3.2 Simulation at the Sioux Falls network 

  To further evaluate the proposed model, the Sioux Falls network, which is widely used as 

a substitute for the real-world network in urban transportation research, was employed in this 
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section. Attributes of the Sioux Falls network are shown in Table 5.5 and its topology is 

shown in Figure 5.3.  

Table 5.5 Attributes of the Sioux Falls network. 

Link number Length (m) 
Capacity 

(veh/s) 

Jam density 

(veh/m) 

Free-flow 

speed(m/s) 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,

17,18,19,20,21,22,23,24,101,102,103,

104,105,106,107,108,109,110,111,112

,113,114,115,116,117,118,119,120,12

1,122,123,124 

0 10000 10000 30 

30,33,35,36,38,39,42,45,48,50,53,54,5

6,58,61,62,65,67,73,76,77,80,83,86,90

,92,93,95,96,100 

600 0.5 0.15 30 

26,28,29,32,40,41,47,49,51,55,60,66,6

8,70,71,74,78,79,82,84,85,87,91,94 
600 1 0.2 30 

34,52 600 1.5 0.2 30 

63,69,88,99 840 1 0.2 30 

31,44 1200 1.5 0.2 30 

37,57,59,64,72,75,81,98 1200 1 0.2 30 

25,27 1800 0.5 0.15 30 

46,89 2400 1 0.2 30 

43,97 2460 1 0.2 30 
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Figure 5.3 The Sioux Falls network 

The origin node whose node number is 1, the destination node and dummy links are 

necessary for iterating the LTM, but they do not actually exist, so they are not shown in 

Figure 5.3. There are 24 0-meter-long dummy links connecting the origin node with each 

node at the network so that each node can generate vehicles. Similarly, there are 24 

0-meter-long dummy links connecting the destination node with each node at the network so 

that each node can receive vehicles. The blue number refers to the link number, whereas the 

black number refers to the node number. Each link only has one lane. 
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In this simulation, a vehicle was generated based on the Poisson distribution from each 

node and was randomly assigned to another node. The vehicle determined its route by the 

MSA before it entered the network as in the simulation of the simple grid network. The 

assignment period continued for 240 seconds and the vehicle generating rate for each node 

was 1 vehicle/s. The simulation continued after the assignment period until all vehicles 

reached the destination. To reproduce the supply uncertainty, a noise that followed the 

standard normal distribution was added to the link capacity for both upstream and downstream 

boundaries. For simplicity, the update time interval was fixed as 1 second in this simulation 

and 30 sets of random seed were tested for each model. The ACI and TTT for each model and 

the results of the t-test between the proposed model and other LTM-based models are shown 

in Table 5.6. 

Table 5.6 Results of the simulation on the Sioux Falls network. 

 
Fairness Model Capacity Model 

Demand Model 
Proposed 

Model 

ACI 3.75 3.62 3.40 3.22 

TTT (min) 43117 41354 40362 39355 

t value for the ACI -7.03 -4.19 -2.16 - 

P value for the ACI 0.00 0.00 0.02 - 

t value for the TTT -10.55 -5.24 -3.30 - 

P value for the TTT 0.00 0.00 0.00 - 

𝛼=0.1, sample size=30 

It is obvious that in this simulation the proposed model outperformed other LTM-based 

models in both the traffic congestion level and the travel cost. Intuitively, at a complicated 

urban network like the Sioux Falls network, it is better to apply dynamic priority at the 

intersection than the static priority. Therefore, to further compare the difference between the 

proposed model and the demand model, nodes that connected more than four links at the 
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Sioux Falls network, were selected to show the changes in the priority for the incoming links 

which correspond to their outgoing link. For simplicity, the priority was aggregated in one 

minute. Due to the paper limitation, part of the results is shown in Figure 5.4 the remaining 

part is shown in Appendix B. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
(m) 

 
(n) 

Figure 5.4 Changes in the priority in the proposed model and the demand model 
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Compared with the demand model, the proposed model tended to give less priority to the 

incoming link with the largest demand in most cases. In other word, incoming links were 

treated more equally in the proposed model because the proposed model was intended to make 

the maximum use of each link. If the significance level of the t-test in Section 5.2.1 was 

increased to 0.05, the proposed model would have a similar congestion level with the fairness 

model when the update time interval was 10. Therefore, it could be concluded that the 

proposed model is somehow fair when allocating the road resource so that vehicles are 

encouraged to use the whole network instead of some main roads that have large demand. The 

advantage of encouraging the full use of the whole network is obvious, which is the reduction 

of congestion level at the network. To make the full use of the network, the proposed model 

might even give higher priority to the incoming link which had lower demand as shown in 

Figure 5.4 (e) and (f). Figure 5.4 (e) and (f) also demonstrated that the proposed model can be 

applied to different types of the intersection. Figure 5.4 (m) and (n) shown that even though 

there was no vehicle from Link 88 to Link 100, the proposed model can still allocate the 

capacity of Link 100 to other incoming links. Therefore, the proposed model is flexible to deal 

with different traffic conditions in the real world.  
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Figure 5.5 The difference of cumulative traffic flow between the proposed model and the 

demand model 

Although the proposed model cannot decide the route choice, it affects the route searching 

by controlling the priority of each link. To further find out its influence on the route choice, 

the difference of cumulative traffic flow between the proposed model and the demand model 

is shown in Figure 5.5. Roads that were more frequently used in the proposed model were 

represented by the red solid line, whereas roads that were more frequently used in the demand 

model were represented by the green dash line. The black solid line represented the road 

where one direction was more frequently used in the proposed model and the other direction 
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was more frequently used in the demand model. Vehicles in the proposed model tended to 

detour whereas vehicles in the demand model tended to use the shortest route.  

In the demand model, vehicles on the uncongested link had to give way to vehicles on the 

congested link. Therefore, even though the running time of the congested link was more than 

the uncongested road, the waiting time at the intersection of the congested link was less than 

the uncongested road. When the extra waiting time and the extra detour time were more than 

the time lost in the congestion, most vehicles in the demand model prefer the shortest road 

which usually was more congested. On the contrary, in the proposed model, since links were 

treated more fairly, the influence of the extra waiting time at the intersection was not as 

significant as the time lost in the congestion. If the extra detour time was less than the time lost 

in the congestion, vehicles were willing to detour to avoid the congested links. Due to the full 

use of the network, the congestion level can be reduced in the proposed model. The travel cost 

might not decrease significantly in the proposed model as shown in Table 5.4 because the 

extra detour time depends on the topology of the network. To further analyze the influence of 

the proposed model on the route choice, another simulation which aimed to reproduce the tidal 

traffic that usually appears during peak hours in the real-world urban network was conducted. 

Similar results can be found and details are attached in Appendix C. In a word, it can be 

concluded that the proposed model can reduce the congestion of the network with similar 

travel cost, compared with other LTM-based models. 
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5.4 Summary 

This chapter combined the classic LTM and a local linear programming formulation 

which optimized the throughput of each incoming link at each intersection to reduce the 

congestion on networks. The characteristic of the proposed model is that it reduces the 

congestion when the route choice is determined, so it can be added to other existing traffic 

problem solutions, such as the routing approach which aims at minimizing the total emission. 

The proposed model might have other practical applications, for example, the dynamic 

determination of priority fraction can be converted into the real-time signal control; the 

proposed model can be applied to the negotiation among vehicles when the car connection and 

driverless car are realized in the future. 

The simulation results showed that compared with other LTM-based models, vehicles in 

the proposed model were more willing to detour to avoid the congestion if the extra detour 

time was less than the time lost in the congested link because incoming links at the 

intersection were assigned with relatively fair priority. It can be concluded that the proposed 

model can reduce the congestion at the network because of the full use of the network while 

maintaining a similar or even less travel cost.  
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CHAPTER 6 Conclusions and Future Work 

 

6.1 Conclusions  

The development of data collection technology, especially the probe data, made a large 

abundant of real-time urban traffic data available so that the ITS solution for urban 

congestion has become possible. However, there are still some problems restricting the wide 

application of ITS-based traffic control and management in the real-world. This dissertation 

focused on the following three issues to contribute to ITS-based traffic control and 

management strategy which dynamically controls the priority at the intersection and employs 

short-term urban link travel time prediction so that it can catch up with the frequent change in 

the urban traffic condition. 

Firstly, the low penetration rate of probe vehicles often constrains the wide application of 

the ITS solution at the urban network. For example, when making travel time prediction 

which is very important for route searching, the travel time of some links from the route 

might be unpredictable due to the low penetration rate. To overcome the low penetration rate 

problem, a non-parametric model based on Bayes’ theorem and a resampling process was 

proposed to predict short-term urban link travel time in chapter 3. Most existing models, such 

as the KNN-based model, predicted the travel time of the target link with data from that link. 

To improve accuracy, they used to add the correlation between links to the prediction results 
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by applying data from the adjacent links. Differently, the proposed model predicted the travel 

time of the target link by data from its crossing direction when there was no observation on 

the target link. Compared with the KNN-based and PF-based models, the proposed model 

had similar prediction accuracy but a higher coverage rate. Results showed that the data from 

the crossing direction can make a prediction as accurate as using the data from the target link. 

Therefore, using the data from the crossing direction can significantly enhance the coverage 

rate and maintain the prediction accuracy in the low penetration rate environment. 

Secondly, travelers sometimes need traffic information in the longer future, but the 

current ITS system usually provides this kind of information in an aggregation form because 

the data used to provide the information were aggregated. The aggregation information only 

can provide a general description of the traffic condition so it is difficult to meet different 

individual needs. For example, some commuters prefer routes with higher travel time 

reliability (less variety) rather than routes with shorter average travel time. To provide more 

useful information, a non-parametric model using disaggregate probe data based on the DTW 

was developed in chapter 4. Instead of a fixed prediction interval, the proposed model can 

make travel time prediction based on the traffic signal cycle so that it can reflect changes in 

travel time during a signal cycle. The proposed model was compared with the classic KNN 

model and the naïve model by both simulation data and real-world data. Results showed that 

the proposed model outperformed the other two models even under extremely low 

penetration rates and that it can be applied more widely because it was free from the 

constraint of the equal time interval and can reflect changes in travel time. 
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Thirdly, when the study site changes from the highway to the urban network, the traffic 

condition becomes more complex. It is more doable to solve the congestion problem over a 

small scale where the traffic condition has a similar characteristic instead of reducing the 

congestion on the whole network.  Intuitively, the intersection which is the main potential 

bottleneck on the urban network attracts our interest. To reduce congestion at the intersection, 

a local linear programming formulation was combined with the LTM to dynamically 

determining the priority of each incoming link in chapter 5. The priority strategy was decided 

by the traffic condition of the link connecting to the intersection, which means the decision of 

the priority at each intersection is independent. The proposed priority strategy has the 

potential to be applied to the urban network in the real world because all intersections on the 

urban network can be processed simultaneously by this strategy. Results showed that 

compared with other priority strategies, the proposed priority strategy can reduce congestion 

at the network because it encouraged individuals to make full use of road resources. In other 

words, the individual’s route choice was affected by the proposed priority strategy. Even 

though the individual might choose to make a detour, the extra detour time is no more than 

the time lost in the congestion of the “shortest” route. Otherwise, the individual would still 

choose the “shortest” route. 

 



94 

 

6.2 Future Work 

There is still much room for improving the dissertation. As for the short-term urban link 

travel time prediction which was explained in chapters 3 and 4, the focus will be concentrated 

on the following tasks in the future:  

i) Consider different turning behaviors.  

ii) Calibrate parameters of the proposed model in chapter 3 for higher accuracy.  

iii) Analyze the relationship between the coverage rate and variables, such as the 

length of the time interval and the traffic volume. 

iv) Reduce computation cost and further extend the prediction horizon.  

v) Consider the actuated traffic signal.  

vi) Test the proposed models in the real-world network and realize applications, such 

as travel time reliability analysis and reliable route searching. 

As for the intersection priority control which was explained in chapter 5, the focus will be 

concentrated on the following tasks in the future:  

i) Apply the route searching at each intersection in the simulation. 

ii) Combine the proposed priority control strategy with other SODTA approaches to 

realize congestion reduction and other system optimal goals, such as emission 

reduction, at the same time 
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Last but not least, the combination of the short-term travel time prediction and the 

intersection priority control should be tested. However, due to the lack of data, this will also 

remain as future work. In addition, traffic demand prediction is needed to describe the traffic 

condition in the future. Using the prediction of travel time and traffic demand as the input, the 

proposed ITS-based traffic control and management strategy can simulate the traffic 

condition in the future so that the corresponding intersection priority control can not only 

reduce the traffic congestion that already exists at the network but also prevent the traffic 

congestion that will happen in a short future. 
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APPENDIX A Algorithm for Signal Timing Estimation 

To build a relatively sufficient historical database, it is assumed that the signal pattern 

remains the same during the same period of the day. In this algorithm, one signal cycle is 

divided into two phases—the green phase when the object vehicle can move straight through 

the intersection, and the red phase when the crossing vehicle can move through the 

intersection. There are two problems in estimation. One is the errors; for example, there 

might be an object vehicle data appearing in a stream of crossing vehicle data, which is 

physically impossible. The other one is an overestimation of the signal phase due to the lack 

of data. 

Table A.1 Algorithm A-I: Signal timing estimation 

Part 1 

1-1 Measure the period over which object vehicle data appear continuously as the length of the 

green phase. Intervals between each green phase are treated as red phases. 

1-2 Change the red phases shorter than 40 s into green phases and remove the first and last 

phases. 

Part 2 

2-1 Measure the period over which crossing vehicle data appear continuously as the length of 

the red phase. Intervals between each red phase are treated as green phases. 

2-2 Change the green phase shorter than 40 s into red phases and remove the first and last 

phases. 

Part 3 

3-1 Replace the red phases longer than 80 s in Part 2 with the corresponding segment in Part 1. 

3-2 Calculate the average length of the green phase (AVEgreen) and its standard deviation 

(SDgreen) in part 2 with green phases between 40 s and 80 s long.  

Length of  green phase = 𝐴𝑉𝐸𝑔𝑟𝑒𝑒𝑛 + 𝜀𝑔𝑟𝑒𝑒𝑛 (A-1) 
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where εgreen = {

SDgreen, δ ∈ (SDgreen, +∞)

δ,   δ ∈ [−SDgreen, SDgreen]  

−SDgreen, δ ∈ (−∞, −SDgreen)

 and 𝛿~(0,1) (A-2) 

3-3 Calculate the average length of the red phase (AVEred) and its standard deviation (SDred) in 

part 2 with red phases between 40 s and 80 s long.  

Length of  red phase = 𝐴𝑉𝐸𝑟𝑒𝑑 + 𝜀𝑟𝑒𝑑 (A-3) 

where 𝜀𝑟𝑒𝑑 = {

𝑆𝐷𝑟𝑒𝑑, 𝛿 ∈ (𝑆𝐷𝑟𝑒𝑑, +∞)

𝛿,   𝛿 ∈ [−𝑆𝐷𝑟𝑒𝑑, 𝑆𝐷𝑟𝑒𝑑]  

−𝑆𝐷𝑟𝑒𝑑, 𝛿 ∈ (−∞, −𝑆𝐷𝑟𝑒𝑑)
 and 𝛿~(0,1) (A-4) 

 

Algorithm A-I for signal timing estimation is shown in Table A.1. The historical data of 

object vehicles and crossing vehicles at the intersection from the same day are sorted as a 

time sequence. If there are object vehicles going through the intersection, the signal is green; 

otherwise, the signal is red, and vice versa (1-1 and 2-1). To address the first problem, the 

phase is changed when its length is under 40 s (1-2 and 2-2). Because traffic signals change 

successively, the phase at the beginning and end of the time period is removed. To address 

the second problem, the red phases in Part 2 over 80 s long are replaced by corresponding 

segments in Part 1 (3-1), and vice versa. Signal phases whose length is over 80 s are also 

removed from the calculation (Part 3). Here, 40 s and 80 s are used as the thresholds because 

in Japan, it is common for the average length of a signal phase to be 60 s with a variance of 

20 s. Error term 𝛿 is added to reflect unexpected events, such as a change in signal pattern. 

It is assumed that 𝛿 follows a standard Gaussian distribution. Provided the historical data are 

abundant and precise, Part 1 or Part 2 can be used alone without overestimating the length of 

the phase. 

 

  



98 

 

APPENDIX B Changes in the Priority in the Proposed Model and 

the Demand Model 
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Figure B.1 Changes in the priority in the proposed model and the demand model 
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APPENDIX C Simulation of tidal traffic on the Sioux Falls 

network  

To simulate the tidal traffic, 6 nodes (Node 2-7) located on the top part of the Sioux Falls 

network were selected as the origin, while 6 nodes (Node 20-25) located on the bottom part of 

the Sioux Falls network were selected as the destination. OD pairs were randomly selected 

from these nodes. The assignment period was extended to 300 seconds. Other simulation 

settings were as same as in section 5.3.2. The ACI and ATT for each model and the results of 

the t-test between the proposed model and other LTM-based models are shown in Table C.1. 

Table C.1 Results of the simulation of tidal traffic on the Sioux Falls network. 

 
Fairness Model Capacity Model 

Demand Model 
Proposed 

Model 

ACI 2.10 2.05 1.84 1.62 

ATT (s) 706.74 682.81 645.16 651.18 

t value for the ACI -15.99 -14.31 -7.60 - 

P value for the ACI 0.00 0.00 0.00 - 

t value for the ATT -12.85 -7.10 1.64 - 

P value for the ATT 0.00 0.00 0.11 - 

𝛼=0.1, sample size=30 

It is obvious that the proposed model outperformed the fairness model and the capacity 

model because the proposed model employed dynamic priority. The ATT of the proposed 

model was at the same level as that of the demand model, but the proposed model had a 

distinctly lower congestion level than the demand model. To further compare the proposed 

model and the demand model which both employed the dynamic priority, the first 10 links 

sorted by the difference of cumulative traffic flow between the proposed model and the 

demand model are shown in Figure C.1. 
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Figure C.1 First 10 links sorted by the difference of cumulative traffic flow between the 

proposed model and the demand model 

The difference of cumulative traffic flow between the proposed model and the demand 

model shows the influence of the priority fraction on the route choice. In Figure C.1, the red 

links were used more frequently by vehicles in the proposed model, whereas the green links 

were used more frequently by vehicles in the demand model. It is intuitive that vehicles in the 

demand model tended to use the shortest path, whereas vehicles in the proposed model 

tended to detour. It is reasonable that vehicles in the proposed model used less congested 

roads to compensate for the time lost in detouring. This explains why the congestion level in 

the proposed model was distinctly lower than the demand model and they experienced similar 

average travel times at the same time.  
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