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Abstract
It is said that there are various analogies between the arithmetic of number

fields (characteristic 0 case) and function fields (positive characteristic case). Find-
ing analogues is one of fundamental issues in positive characteristic number theory.
In this thesis, we study positive characteristic analogue of multiple zeta values with
their variants and positive characteristic analogue of multi-poly-Bernoulli numbers.

In Chapter 1, we discuss four formulae conjectured by J. A. Lara Rodríguez on
certain power series in characteristic p, which yield sum-shuffle relations for positive
characteristic analogue of double zeta values. We prove affirmatively the first two
formulae. While we detect and correct errors in the last two formulae, and prove
them. In Chapter 2, we introduce and study multi-poly-Bernoulli-Carlitz numbers
(MPBCNs in short), a positive characteristic analogue of the multi-poly-Bernoulli
numbers. In characteristic 0 case, the multi-poly-Bernoulli numbers (MPBNs in
short) were introduced by Imatomi-Kaneko-Takeda in 2014. They found an ex-
plicit formula to express MPBNs in terms of factorials and Stirling numbers of the
second kind. They also proved a certain relation between MPBNs and finite mul-
tiple zeta values. As a positive characteristic analogue of their result, we prove an
explicit formula to express MPBCNs in terms of factorials and Stirling numbers of
the second kind in positive characteristic. We also show a relation which connects
MPBCNs with a positive characteristic analogue of finite multiple zeta values. In
Chapter 3, we introduce positive characteristic alternating multiple zeta values. In
characteristic 0 case, the alternating multiple zeta values are twisted generalization
of multiple zeta values by units of integers. In positive characteristic case, we define
their positive characteristic analogue by twisting them with units of 1-variable poly-
nomial ring over finite fields. We explore their properties including non-vanishing
property, sum-shuffle relation, period interpretation and linear independence. As a
by-product, we settle a positive characteristic analogue of alternating multiple zeta
values version of Goncharov’s conjecture.

This docter thesis is based on three papers [H18b, H18c, H19].
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CHAPTER 0

Introduction

In §0.1, we recall multiple zeta values, the sum-shuffle relations, multi-poly-
Bernoulli numbers, finite multiple zeta values and alternating multiple zeta values
and their several properties. In §0.2, we explain their characteristic p counterparts.
Further we briefly describe our main results in the thesis (cf. [H18b, H18c, H19])
which are characteristic p counterparts of these properties for the corresponding
notions.

0.1. Characteristic 0 case

In §0.1, we recall some definitions whose characteristic p analogues are seen
in §0.2. In §0.1.1, we recall the multiple zeta values and sum-shuffle relations.
In §0.1.2, we recall Imatomi-Kaneko-Takeda’s multi-poly-Bernoulli numbers. We
introduce their result, that is, an explicit formula of multi-poly-Bernoulli numbers
and a relation with Kaneko-Zagier’s finite multiple zeta values. In §0.1.3, we recall
alternating multiple zeta values which are certain generalization of multiple zeta
values.

0.1.1. Multiple zeta values and sum-shuffle relations. We recall multiple
zeta values in characteristic 0 which is a multi-variable generalization of Riemann
zeta values,

ζ(s) ∶= ∑
m>0

1

ms
∈ R(0.1.1)

for s ∈ Z>1. It is said that the research of multiple zeta values is originated from
Euler’s work [E] in 1776.

Definition 0.1.1. For s ∶= (s1, . . . , sr) ∈ Nr and s1 > 1 (the condition to be
convergent),

ζ(s) ∶= ∑
n1>⋯>nr>0

1

ns11 ⋯n
sr
r
∈ R.(0.1.2)

We note r is called the depth and ∑r
i=1 si is called the weight of the presentation of

ζ(s1, . . . , sr).

In his paper [E], Euler proposed three methods to calculate relations for dou-
ble zeta values (depth 2 multiple zeta values) with non-mathematical proofs and
unconventional notations (they were reformulated with mathematical proofs and
conventional modern notations in [H18a]).

7



8 0. INTRODUCTION

The multiple zeta values are special values of the multiple polylogarithms (MPLs
in short). For s ∶= (s1, . . . , sr) ∈ Zr and r-variables z1, . . . , zr, MPLs are defined by

Lis(z1, . . . , zr) ∶= ∑
m1>⋯>mr>0

zm1

1 ⋯zmr
r

ms1
1 ⋯m

sr
r
∈ Q[[z1, . . . , zr]].(0.1.3)

Clearly, for s ∶= (s1, . . . , sr) ∈ Nr with s1 > 1, MPLs recover multiple zeta values as
the (z1, . . . , zr) = (1, . . . ,1) case.

It is known that the multiple zeta values satisfy the sum-shuffle relations (also
known as stuffle relations, harmonic product relations) which are derived from series
expression of the multiple zeta values. The easiest one is described as follows:

ζ(m)ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m + n)

form,n ≥ 2. We can extend this relation to the higher depth case by using induction
on the depth.

Remark 0.1.2. It is known that the multiple zeta values also satisfy the integral
shuffle relations which are derived from integral expression of the multiple zeta
values. The easiest one is described as follows:

ζ(m)ζ(n) =
n−1
∑
i=0
(m − 1 + i

i
)ζ(m + i, n − i) +

m−1
∑
j=0
(n − 1 + j

j
)ζ(n + j,m − j)

for m,n ≥ 2.

By sum-shuffle relations, we see that a Q-vector space generated by 1 and all
multiple zeta values forms a Q-algebra. On the Q-algebra we have the following
folklore conjecture:

Conjecture 0.1.3. Let Z be the Q-algebra generated by multiple zeta values
and Zw be the Q-vector space spanned by the weight w multiple zeta values for
w ≥ 2. Then one has the following:

(i) Z forms an weight-graded algebra, that is, Z = Q⊕w≥2 Zw;
(ii) Z is defined over Q, i.e. the canonical map Q⊗Q Z→ Z is bijective.

We note that this conjecture is a stronger version of Goncharov’s conjecture in
[Go98, Conjecture 4.2] where he stated a similar conjecture over Q instead of Q.

0.1.2. The multi-poly-Bernoulli numbers and Kaneko-Zagier’s finite
multiple zeta values. In 1997, M. Kaneko introduced and investigated gener-
alizations of the Bernoulli numbers, the poly-Bernoulli numbers in [K97]. He
obtained explicit formulae for the poly-Bernoulli numbers which includes the Stir-
ling numbers of the second kind. He and T. Arakawa found that poly-Bernoulli
numbers express the special values of Arakawa-Kaneko zeta functions at nega-
tive integers in [AK99]. After 2000, the several multi-poly-Bernoulli numbers,
generalizations of the poly-Bernoulli numbers, were posted by several researchers,
Hamahata-Masubuchi [HM07], Imatomi-Kaneko-Takeda [IKT14] and M.-S. Kim-
T. Kim [KiK] in different ways from each other.

The Bernoulli numbers Bn (n = 0,1, . . .) are rational numbers defined by the
following generating function

∞
∑
n=0

Bn
zn

n!
∶= zez

ez − 1
.(0.1.4)
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It is known that we have the following equation

Bn = 0 (for n ≥ 3 so that 2 ∤ n).(0.1.5)

Moreover, the Bernoulli numbers are expressed as follows [Kr]:

Bn = (−1)n
n+1
∑
m=1

(−1)m−1(m − 1)!
m

{ n

m − 1
},(0.1.6)

where {n
m
} ∈ Z are the Stirling numbers of the second kind defined by

(ez − 1)m

m!
=
∞
∑
n=0
{n
m
}z

n

n!
.(0.1.7)

Imatomi-Kaneko-Takeda concerned the following two types of the multi-poly-
Bernoulli numbers which generalize the Bernoulli numbers.

Definition 0.1.4 ([IKT14, (1)] and [AK99, (8)]). For s ∶= (s1, . . . , sr) ∈ Zr,
the multi-poly-Bernoulli numbers (MPBNs for short) of B-type, C-type are the ra-
tional numbers which are defined by the following generating functions respectively
(for Lis(z1, . . . , zr), see (0.1.3)):

∞
∑
n=0

Bs
n

zn

n!
∶= Lis(1 − e−z,

r−1
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1)

1 − e−z
,

∞
∑
n=0

Cs
n

zn

n!
∶= Lis(1 − e−z,

r−1
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1)

ez − 1
.

Remark 0.1.5. When r = 1, Bs
n and Cs

n are the poly-Bernoulli numbers of B-
type, C-type (cf. [AK99, K97]), respectively. When r = 1 and s1 = 1, Lis(z1, . . . , zr) =
− log(1 − z) and then B

(1)
n agrees with (0.1.4) of the Bernoulli numbers. We note

that B(1)1 = 1/2 and C(1)1 = −1/2 and B(1)n = C(1)n = Bn for n ≠ 1.

In [IKT14], they obtained the explicit formulae for MPBNs which are the
following finite sums involving the Stirling numbers of the second kind.

Proposition 0.1.6 ([IKT14, Theorem 3]). For s = (s1, . . . , sr) ∈ Zr and n ≥ 0,
we have

Bs
n = (−1)n ∑

n+1≥m1>m2>⋯>mr>0
(−1)m1−1(m1 − 1)!{

n

m1 − 1
} 1

ms1
1 ⋯m

sr
r

and
Cs

n = (−1)n ∑
n+1≥m1>m2>⋯>mr>0

(−1)m1−1(m1 − 1)!{
n + 1
m1
} 1

ms1
1 ⋯m

sr
r
.

Imatomi-Kaneko-Takeda also showed that the following relations hold between
the MPBNs and the Bernoulli numbers for the special case (s1, . . . , sr) = (1, . . . ,1).

Proposition 0.1.7 ([IKT14, Proposition 4]). For r ≥ 1 and n ≥ r−1, we have

B(

r

³ ¹¹¹¹· ¹¹¹¹µ
1,...,1)

n = 1

n + 1
(n + 1

r
)B(1)n−r+1,

C(

r

³ ¹¹¹¹· ¹¹¹¹µ
1,...,1)

n = 1

n + 1
(n + 1

r
)C(1)n−r+1.
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Further, they obtained relations which connect the MPBNs and the finite mul-
tiple zeta values. The finite multiple zeta values are variants of the multiple zeta
values which are introduced by Kaneko and Zagier in [KZ].

Definition 0.1.8 ([KZ]). We set a Q-algebra A by

A ∶=∏
p

Z/pZ/⊕
p

Z/pZ

where p runs over all prime numbers. For s ∶= (s1, . . . , sr) ∈ Zr, the finite multiple
zeta values are defined by

ζA (s) ∶= (ζA (s)(p)) ∈ A

where

ζA (s)(p) ∶= ∑
p>m1>⋯>mr>0

1

ms1
1 ⋯m

sr
r
∈ Z/pZ.

By the work of [IKT14], the finite multiple zeta values are related to multi-
poly-Bernoulli numbers.

Proposition 0.1.9 ([IKT14, Theorem 8]). For s = (s1, . . . , sr) ∈ Zr, we have

ζA (s)(p) = −C
(s1−1,s2,...,sr)
p−2 mod p

and for d ≥ 0,

ζA (1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

, s1, . . . , sr)(p) = −C
(s1−1,s2,...,sr)
p−d−2 mod p.

Here we note that the second relation generalizes the first relation.

0.1.3. The alternating multiple zeta values. The alternating multiple zeta
values1 are twisted generalizations of multiple zeta values by units of integers and
defined as the following series:

Definition 0.1.10. For s ∶= (s1, . . . , sr) ∈ Nr, ϵ ∶= (ϵ1, . . . , ϵr) ∈ {±1}r with
(s1, ϵ1) ≠ (1,1),

ζ(s; ϵ) ∶= ∑
n1>⋯>nr>0

ϵn1

1 ⋯ϵnr
r

ns11 ⋯n
sr
r
∈ R.

In these two decades, they were also studied by Broadhurst, Deligne-Goncharov,
Glanois, Hoffman, Ihara-Kaneko-Zagier and Kaneko-Tsumura. Due to their contri-
butions, now it is known that alternating multiple zeta values have connections to
the studies of knots [Br96a], Feynman diagrams [Br96b], modular forms [KT13],
mixed Tate motives over Z[1/2] [DG05]. The alternating multiple zeta values also
have integral expressions and series expressions and they enjoy sum-shuffle relations
and integral shuffle relations [Go98, Ra02]. Thus we see that a Q-vector space
generated by 1 and all alternating multiple zeta values forms a Q-algebra.

1They are also known as Euler sums [Br96a] or level 2 colored multiple zeta values
[BJOP02].
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0.2. Characteristic p case

Next we turn into the positive characteristic case. In 1919, Kornblum proved a
positive characteristic analogue of Dirichlet prime number theorem in his PhD thesis
[KL]. It is said that the study of arithmetic in characteristic p has been started
after that. Since then, many analogues have been detected by Anderson, Carlitz,
Drinfeld, Goss, Thakur, etc (for more detail, see [G96, T04]). Those analogies
enable us to consider and develop the arithmetic of characteristic p. Hence finding
positive characteristic analogues is one of fundamental issues.

In §0.2.1, we describe Lara Rodríguez’ full conjecture which gives the sum-
shuffle relations for double zeta values in characteristic p with specific indices. We
settle the conjecture (partially affirmatively and partially negatively). In §0.2.2, we
introduce a characteristic p analogue of multi-poly-Bernoulli numbers and charac-
teristic p counterparts of results by Imatomi-Kaneko-Takeda [IKT14]. In §0.2.3,
we introduce characteristic p analogue of alternating multiple zeta values. We recall
their definition and briefly describe their four fundamental properties which consist
of non-vanishing properties, sum-shuffle relations, period interpretations and linear
independence.

We recall the following notations which are used in the rest of this thesis.

q a power of a prime number p.
Fq a finite field with q elements.
θ, t independent variables.
A the polynomial ring Fq[θ].
A+ the set of monic polynomials in A.
Ad+ the set of elements of A+ of degree d.
k the rational function field Fq(θ).

k∞ the completion of k at the infinite place ∞, Fq(( 1θ )).
k∞ a fixed algebraic closure of k∞.
C∞ the completion of k∞ at the infinite place ∞.
k a fixed algebraic closure of k in C∞.

∣ ⋅ ∣∞ a fixed absolute value for the completed field C∞ so that ∣θ∣∞ = q.
T the Tate algebra over C∞, the subring of C∞[[t]] consisting of

power series convergent on the closed unit disc ∣t∣∞ ≤ 1.
Di ∏i−1

j=0(θq
i

− θq
j

) ∈ A+ where D0 ∶= 1.
Li ∏i

j=1(θ − θq
j

) ∈ A+ where L0 ∶= 1.
Γn+1 the Carlitz gamma, ∏iD

ni

i (n = ∑i niq
i ∈ Z≥0 (0 ≤ ni ≤ q − 1)).

Π(n) the Carlitz factorial, Γn+1

Int(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x is not an integer,
1 if x is an integer.

0.2.1. The multiple zeta values and sum shuffle relations in charac-
teristic p. We recall the characteristic p analogues of multiple zeta values which
were invented by Thakur [T04]. Firstly, we recall the power sums. For s ∈ Z and
d ∈ Z≥0, power sums are defined by

Sd(s) ∶= ∑
a∈Ad+

1

as
∈ k.
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For s = (s1, . . . , sr) ∈ Nr and d ∈ Z≥0, we define

Sd(s) ∶= Sd(s1) ∑
d>d2>⋯>dr≥0

Sd2(s2)⋯Sdr(sr) ∈ k.

For s ∈ Z≥0, the Carlitz zeta values [Ca35] are defined by

ζA(s) ∶= ∑
a∈A+

1

as
∈ k∞.

These values are characteristic p analogues of (0.1.1). Thakur generalized this
definition to that of multiple zeta values in characteristic p.

Definition 0.2.1. For s = (s1, . . . , sr) ∈ Nr,

ζA(s) ∶= ∑
d1>⋯>dr≥0

Sd1(s1)⋯Sdr(sr) = ∑
a1,...,ar∈A+

dega1>⋯>degar≥0

1

as11 ⋯a
sr
r
∈ k∞.

These values are characteristic p analogues of (0.1.2). For a, b ∈ Z>0, we define

∆d(a, b) ∶= Sd(a)Sd(b) − Sd(a + b).
The following relation holds by summing ∆d(a, b) over d.

ζA(a)ζA(b) = ζA(a, b) + ζA(b, a) + ζA(a + b) +
∞
∑
d=0

∆d(a, b).(0.2.1)

Remark 0.2.2. By the lack of integral expression of multiple zeta values in
characteristic p, it is not known if we have the integral shuffle relations for multiple
zeta values in characteristic p.

In [La10], J. A. Lara Rodríguez conjectured precise formulation of the relations
in the case of depth 2 with special weights. This conjecture contained five formulae
and the first formula was proved by himself in [La12]. The rests are stated as
follows:

Conjecture 0.2.3 (Conjecture 1.2.1, [La10, Conjecture 2.8]). For n, d ∈ Z≥1
and general q, we have

∆d(qn + 1, qn) = Int(
2

q
)Sd(2,2qn − 1)

(0.2.2)

−
qn−1
q−1

∑
j=1

Sd(3 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)).

∆d(qn − 1, qn + 1) = −
qn+q−2

q−1

∑
j=1

Sd(2 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)).

(0.2.3)

∆d(qn−1, qn + 1) = Int(
2

q
)Sd(2, qn + qn−1 − 1)

(0.2.4)

−
qn−1−1

q−1

∑
j=1

Sd(3 + (j − 1)(q − 1), qn + qn−1 − 2 + (j − 1)(q − 1)).
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For 0 ≤ i ≤ n, we have

∆d(qn + 1, qn + 1 − qi) = Int(
2

q
)Sd(2,2qn − qi)

(0.2.5)

−
qn−qi
q−1

∑
j=1

Sd(3 + (j − 1)(q − 1),2qn − qi − 1 − (j − 1)(q − 1))

+
qn−qi
q−1

∑
j= qn−qi

q−1 +1

Sd(3 + (j − 1)(q − 1),2qn − qi − 1 − (j − 1)(q − 1)).

By using H. J. Chen’s result in [Chen15], we will prove affirmatively the second
and third formulae in Theorem 1.3.1 and 1.3.2. Whereas we detect and correct
errors in the fourth and fifth formulae, and prove corrected ones in Theorem 1.3.3
and 1.3.4. These results are stated as follows:

Theorem 0.2.4 ([H18b, Theorem 3-6]). In the Lara Rodríguez’ full conjecture,
the two relations (0.2.2) and (0.2.3) hold while the other two corrected (0.2.4) and
(0.2.5) hold.

By this theorem, we obtain sum-shuffle relations for characteristic p double zeta
values with certain indices. Those relations are stated in Corollary 1.3.5.

0.2.2. The multi-poly-Bernoulli numbers and finite multiple zeta val-
ues in characteristic p. In 1935, L. Carlitz [Ca35] introduced and investigated
characteristic p analogues of the Bernoulli numbers, the Bernoulli-Carlitz num-
bers BCn. By using them, he obtained an analogue of Euler’s famous formula
ζ(m) = − (2πi)

m

2(m!) Bm (for even m) in [Ca35] and the von Staudt-Clausen theorem
in [Ca37, Ca40].2 E. Gekeler proved several identities for the Bernoulli-Carlitz
numbers in [Ge89]. Furthermore, H. Kaneko and T. Komatsu obtained explicit
formulae for Bernoulli-Carlitz numbers by using characteristic p analogues of the
Stirling numbers in [KK16].

In Chapter 2, we introduce and study characteristic p analogues of the multi-
poly-Bernoulli numbers which are related to characteristic p analogue of finite mul-
tiple zeta values. The results in Chapter 2 are characteristic p analogues of the
results in [IKT14].

A characteristic p analogues of multi-poly-Bernoulli numbers are defined by the
following generating function:

Definition 0.2.5 (Definition 2.2.7, [H18c, Definition 21]). For s = (s1, . . . , sr) ∈
Nr, j = (j1, . . . , jr) ∈ Js (for Js, see Notation 2.1.8), we define multi-poly-Bernoulli-
Carlitz numbers (MPBCNs for short) BCs,j

n to be elements of k as follows:

∑
n≥0

BCs,j
n

zn

Π(n)
∶=
Lis(eC(z)u1j1 , u2j2 , . . . , urjr)

eC(z)
.

Here definition of uiji (1 ≤ i ≤ r) is described in Notation 2.1.8.

2An analogue of von Staudt-Clausen theorem stated in [Ca37, Ca40] was corrected by L.
Carlitz [Ca41] for q = 2.
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We also discuss generalizations of the vanishing condition (a characteristic p
analogue of (0.1.5))

BCn = 0 (q − 1 ∤ n)(0.2.6)

shown in [Ca37] and explicit formulae which (a characteristic p analogue of (0.1.6))

BCn =
∞
∑
j=0

(−1)jDj

L2
j

{ n

qj − 1
}
C

(0.2.7)

shown in [KK16]. A generalization of (0.2.6) is obtained as the following proposi-
tion.

Proposition 0.2.6 (Proposition 2.2.9, [H18c, Remark 23]). For r ∈ N, s =
(s1, . . . , sr) ∈ Nr, j = (j1, . . . , jr) ∈ Js and n ∈ Z≥0 with (q − 1) ∤ n,

BCs,j
n = 0.

A generalization of (0.2.7) is obtained as the following theorem.

Theorem 0.2.7 (Theorem 2.3.1, [H18c, Theorem 27]). For r ∈ N, s = (s1, . . . , sr) ∈
Nr, j = (j1, . . . , jr) ∈ Js and n ∈ Z≥0,

BCs,j
n = ∑

logq(n+1)≥i1>⋯>ir≥0
Π(qi1 − 1){ n

qi1 − 1
}
C

uq
i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

.(0.2.8)

Theorem 0.2.7 is characteristic p analogue of Proposition 0.1.6 while Proposi-
tion 0.2.6 has no counterpart in characteristic 0. In §2.3 we show that multi-poly-
Bernoulli-Carlitz numbers with special indices are expressed by Bernoulli-Carlitz
numbers as follows:

Theorem 0.2.8 (Theorem 2.3.4, [H18c, Theorem 30]). For r ≥ 1 and n ≥
qr−1 − 1, we have

BC(

r

³ ¹¹¹¹· ¹¹¹¹µ
1,...,1),(

r

³ ¹¹¹¹· ¹¹¹¹µ
0,...,0)

n = ∑
logq(n+1)≥i1>⋯>ir≥0

{ n

qi1 − 1
}
C

BCqi1−1
BCqi2−1

Π(qi2 − 1)
⋯

BCqir−1

Π(qir − 1)
.

(0.2.9)

This theorem is characteristic p analogue of Proposition 0.1.7.
We show that multi-poly-Bernoulli-Carlitz numbers are connected to a char-

acteristic p analogue of finite multiple zeta values. The finite multiple zeta values
in characteristic p are characteristic p analogue of the finite multiple zeta values
(Definition 0.1.8) which were introduced by Chang and Mishiba [CM17].

Definition 0.2.9 (Definition 2.1.1, [CM17, (2.1)]). We set a k-algebra as
follows:

Ak ∶=∏
℘
A/℘A/⊕

℘
A/℘A

where ℘ runs over all monic irreducible polynomials in A. For s ∶= (s1, . . . , sr) ∈ Nr

and a monic irreducible polynomial ℘ ∈ A, finite multiple zeta values are defined as
follows:

ζAk
(s) ∶= (ζAk

(s)℘) ∈ Ak

where
ζAk
(s)℘ ∶= ∑

deg℘>dega1>⋯>degar≥0
a1,...,ar∈A+

1

as11 ⋯a
sr
r
∈ A/℘A.
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Theorem 0.2.10 (Theorem 2.3.6, [H18c, Theorem 32]). For s = (s1, . . . , sr) ∈
Nr and a monic irreducible polynomial ℘ ∈ A so that ℘ ∤ Γs1⋯Γsr , we have the
following:

ζAk
(s)℘ =

1

Γs1⋯Γsr

∑
j∈Js

aj(θ)
deg℘−1
∑

i=r−1

1

Li

BCs,j
qi−1

BCqi−1
mod ℘.(0.2.10)

For s = (1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

, s1, . . . , sr) ∈ Nr+d (d ≥ 0) and a monic irreducible polynomial

℘ ∈ A so that ℘ ∤ Γs1⋯Γsr , we have the following (for the definition of aj(θ) and
aj′(θ), see Notation 2.1.8):

ζAk
(s)℘ =

1

Γs1⋯Γsr

∑
j′∈Js′

aj′(θ) ∑
deg℘>i0>⋯>id≥r−1

1

Li0⋯Lid

BCs′,j′

qid−1

BCqid−1
mod ℘.

(0.2.11)

Here we put s′ = (s1, . . . , sr).

This theorem is a characteristic p analogue of Proposition 0.1.9.

0.2.3. The alternating multiple zeta values in characteristic p. In
Chapter 3, we introduce the alternating multiple zeta values in characteristic p
which are defined as the following infinite sums.

Definition 0.2.11 (Definition 3.1.1, [H19, (1)]). For s = (s1, . . . , sr) ∈ Nr and
ϵ = (ϵ1, . . . , ϵr) ∈ (F×q )

r,

ζA(s; ϵ) ∶= ∑
a1,...,ar∈A+

dega1>⋯>degar≥0

ϵdega1

1 ⋯ϵdegar
r

as11 ⋯a
sr
r

∈ k∞.(0.2.12)

We call wt(s) ∶= ∑r
i=1 si the weight and dep(s) ∶= r the depth of the presentation

of ζA(s; ϵ). We also note that ζA(s; ϵ) is generalization of Thakur’s multiple zeta
values, characteristic p analogue of multiple zeta values.

Thakur multiple zeta values were studied by G. W. Anderson, Thakur and
Chang. They found the following properties:

(a). Non-vanishing property ([T09a, Theorem 4])
(b). Sum-shuffle relations ([T10, Theorem 3])
(c). Period interpretation ([AT09, Theorem 1])
(d). Linear independence ([C14, Theorem 3.4.5])

A characteristic p analogue of Conjecture 0.1.3 was settled affirmatively by (d) in
[C14, Theorem 2.2.1].

We investigate properties of AMZVs corresponding to (a)-(d) as following:
(A). Non-vanishing property (Theorem 3.2.1)
(B). Sum-shuffle relations (Theorem 3.2.8)
(C). Period interpretation (Theorem 3.3.4)
(D). Linear independence (Theorem 3.4.7)
For the property (A), it is proven by an inequality of the absolute values of

power sums proved by Thakur [T09a]. For the property (B), it is proven by Chen’s
formula [Chen15] and induction method by Thakur [T10]. For the property (C),
it is proven by construction of a certain suitable pre-t-motives. The construction is



16 0. INTRODUCTION

based on the result in [AT09] which enables us to give a period interpretation of
multiple zeta values in characteristic p. For the property (D), it is proven by the use
of the Anderson-Brownawell-Papanikolas criterion [ABP04] and the alternating
analogue of MZ property. This method is based on the [C14]. By the linear
independence result (D), we have the following theorem.

Theorem 0.2.12 (Theorem 3.4.10, [H19, Theorem 4.10]).
(i) AZ forms an weight-graded algebra, that is, AZ = k⊕w∈NAZw,
(ii) AZ is defined over k, that is, we have the canonical map k ⊗k AZ → AZ

which is bijective.

This settles characteristic p analogue of alternating version of Conjecture 0.1.3.



CHAPTER 1

On Lara Rodriguez’ full conjecture for double zeta
values in function fields

In characteristic 0 case, it is known that multiple zeta values satisfy sum-shuffle
relations (also known as stuffle relations or harmonic product relation).

In characteristic p case, Thakur showed that characteristic p multiple zeta
values satisfy sum-shuffle relations in 2010. He showed the product of two charac-
teristic p multiple zeta values is expressed by a linear combination of characteristic
p multiple zeta values although he did not present their coefficients explicitly. In
2010, Lara Rodríguez posed a conjecture which is called the full conjecture. It
gives an explicit form of sum-shuffle relations for certain weights. In this chapter,
we solve the conjecture. The full conjecture contains four formulae on certain power
series in characteristic p, which yield sum-shuffle relations for positive characteris-
tic analogue of double zeta values. In §1.1, we recall results by Chen and Lucas
which are used to prove the conjecture. In §1.2, we recall the statement of the full
conjecture and show their counter-examples. In §1.3, we prove affirmatively the
first two formulae while we detect and correct errors in the last two formulae, and
prove corrected ones.

1.1. Chen’s formula and Lucas’s theorem

H. J. Chen proved the following formula for the power sums in [Chen15] The-
orem 3.1 and Remark 3.2.

Proposition 1.1.1 (Chen’s formula). For r, s, d ∈ Z≥1, the following relation
holds.

∆d(r, s) = ∑
i+j=r+s
q−1∣j
i,j≥1

{(−1)s−1(j − 1
s − 1
) + (−1)r−1(j − 1

r − 1
)}Sd(i, j).

Here we put (a
b
) = 0 for a, b ∈ Z≥0 with a < b.

We can determine the value of the binomial coefficients modulo p by using
Lucas’s theorem ([Lu, §3]).

Proposition 1.1.2 (Lucas’s Theorem). Let p be a prime number and m,n ∈
Z≥0. Then we have

(m
n
) ≡ (m0

n0
)⋯(mk

nk
) mod p

where m =m0+m1p+⋯+mkp
k and n = n0+n1p+⋯+nkpk (mi, ni ∈ {0,1, . . . , p−1}

for i = 0,1, . . . , k) are the p-adic expansions of m and n.

17
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1.2. Lara Rodríguez’ full conjecture and counter-examples

Lara Rodríguez conjectured several relations for Thakur’s double zeta values
in [La10]. We recall it in Section 1.2.1. We detect some typos and errors in his
formulae in Section 1.2.2.

1.2.1. Statements. The following is one of those conjectures which he called
the full conjecture ([La10, Conjecture 2.8]). It yields “full” descriptions of the
‘sum-shuffle’ relation for specific double zeta values (cf. [La10, §1]).

Conjecture 1.2.1 (Lara Rodríguez’ full conjecture). For n, d ∈ Z≥1 and general
q, we have

∆d(qn + 1, qn) = Int(
2

q
)Sd(2,2qn − 1)

(1.2.1)

−
qn−1
q−1

∑
j=1

Sd(3 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)).

∆d(qn − 1, qn + 1) = −
qn+q−2

q−1

∑
j=1

Sd(2 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)).

(1.2.2)

∆d(qn−1, qn + 1) = Int(
2

q
)Sd(2, qn + qn−1 − 1)

(1.2.3)

−
qn−1−1

q−1

∑
j=1

Sd(3 + (j − 1)(q − 1), qn + qn−1 − 2 + (j − 1)(q − 1)).

For 0 ≤ i ≤ n, we have

∆d(qn + 1, qn + 1 − qi) = Int(
2

q
)Sd(2,2qn − qi)

(1.2.4)

−
qn−qi
q−1

∑
j=1

Sd(3 + (j − 1)(q − 1),2qn − qi − 1 − (j − 1)(q − 1))

+
qn−qi
q−1

∑
j= qn−qi

q−1 +1

Sd(3 + (j − 1)(q − 1),2qn − qi − 1 − (j − 1)(q − 1)).

1.2.2. Remarks and Counter-examples.

Remark 1.2.2. Actually, in [La10, Conjecture 2.8 (2.8.1)], Lara Rodríguez
conjectured one more relation

∆d(qn, qn − 1) = −Sd(qn, qn − 1).

However he proved it in his later paper [La12, Theorem 6.3].
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Remark 1.2.3. The equation (1.2.1) was stated as [La10, (2.8.2)]. In the case
when q = 2, this coincide with second formula in [T04, Section 4.1.3]. The equation
(1.2.1) will be affirmatively proven in Theorem 1.3.1.

Remark 1.2.4. The equation (1.2.2) was stated as [La10, (2.8.3)]. In the case
when q = 2, this coincide with third formula in [T04, Section 4.1.3]. Again, the
equation (1.2.2) will be affirmatively proven in Theorem 1.3.2.

Remark 1.2.5. The equation (1.2.3) was stated as (2.8.4) in [La10] (in the
case when q = 2, this coincide with fourth formula in [T04, Section 4.1.3]). It
looks that (1.2.3) contains a typo, and furthermore it requires an additional term
to correct it.

Indeed it is quite curious to expect such an equality among the values with
different weights (the sum of the first and the second components of double indices):
In the right hand side of the equation (1.2.3), the first term is with weight qn+qn−1+1
while the summand of the second term is with weight qn + qn−1 + 1+ 2(j − 1)(q − 1).
In the case when q = 2, d = 2 and n = 3, the equation (1.2.3) claims

∆2(4,9) = S2(2,11) − S2(3,10) − S2(4,11) − S2(5,12),(1.2.5)

while Chen’s formula says

∆2(4,9) = ∑
i+j=13
i,j≥1

{(j − 1
8
) − (j − 1

3
)}S2(i, j)(1.2.6)

≡ S2(2,11) + S2(3,10) + S2(4,9) + S2(5,8) + S2(9,4) mod 2.

Therefore we must have

S2(2,11) + S2(3,10) + S2(4,11) + S2(5,12)(1.2.7)
− S2(2,11) − S2(3,10) − S2(4,9) − S2(5,8) − S2(9,4) ≡ 0 mod 2.

However,

S2(4,11) + S2(5,12) − S2(4,9) − S2(5,8) − S2(9,4)
≡ S2(9,4) + S2(5,12) + S2(5,8) + S2(4,11) + S2(4,9) mod 2

= S2(9,4) + S2(5)(1 + S1(12)) + S2(5)(1 + S1(8))

+ S2(4)(1 + S1(11)) + S2(4)(1 + S1(9))

= S2(9,4) + S2(5)(S1(12) + S1(8)) + S2(4)(S1(11) + S1(9))
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Each term is calculated to be

S2(9,4)

≡
{∑33

i=0 t
i + t32 + t31 + t30 + t26 + t25 + t22 + t17 + t16 + t15 + t8 + t6 + t5 + t2}

t22(t + 1)19(t2 + t + 1)9(t2 + 1)5

⋅ (t + 1)6(t2 + 1)5 mod 2,

S2(5)(S1(12) + S1(8))

≡ ∑
29
i=0 t

i + t26 + t25 + t23 + t21 + t20 + t19 + t16 + t13 + t12 + t9 + t8 + t5

t22(t + 1)19(t2 + t + 1)9(t2 + 1)5

⋅ (t2 + t + 1)4(t + 1)2 mod 2,

S2(4)(S1(11) + S1(9)) ≡
{t12 + t5 + t4 + t3 + t2 + t + 1}t3(t2 + t + 1)8(t2 + 1)5

t22(t + 1)19(t2 + t + 1)9(t2 + 1)5
mod 2.

The degrees of numerators of S2(9,4), S2(5)(S1(12) + S1(8)) and S2(4)(S1(11) +

S1(9)) are 49, 39 and 41 respectively. Thus we find the degree of each numerator is
different while they have the same denominators. Then it follows that S2(4,11) +
S2(5,12) − S2(4,9) − S2(5,8) − S2(9,4) ≢ 0 mod 2 and this contradicts to (1.2.7).
This gives the counter-example of (1.2.3).

Therefore, we may correct (1.2.3) as follows.

∆d(qn−1, qn + 1) = Int(
2

q
)Sd(2, qn + qn−1 − 1)

(1.2.8)

−
qn−1−1

q−1

∑
j=1

Sd(3 + (j − 1)(q − 1), qn + qn−1 − 2 − (j − 1)(q − 1)).

However, the above equation is not correct, due to a lack of an additional terms
which is explained below: When q = 3, d = 1 and n = 3, (1.2.8) claims

∆1(9,28) = −S1(3) − S1(5) − S1(7) − S1(9).(1.2.9)

But according to Chen’s formula, we have

∆1(9,28) = ∑
i+j=37
2∣j

i,j∈Z≥1

{−(j − 1
27
) + (j − 1

8
)}S1(i).

By Lucas’s theorem, we find that the coefficient of S1(i)’s vanish modulo 3 except
−S1(3),−S1(5),−S1(7),−S1(9) and S1(19). That is,

∆1(9,28) = −S1(3) − S1(5) − S1(7) − S1(9) + S1(19).(1.2.10)

By the definition of power sum,

S1(19) =
1

t19
+ 1

(t + 1)19
+ 1

(t + 2)19
= t

19(t + 2)19 + (t + 1)19(t + 2)19 + t19(t + 1)19

t19(t + 1)19(t + 2)19
.

The numerator of the right hand side has 219 ≡ −1 mod 3 as a constant term.
Therefore S1(19) does not vanish modulo 3. Thus (1.2.9) contradicts to (1.2.10).
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So this suggests that we need additional terms to correct it. In Theorem 1.3.3, we
correct the equation (1.2.3) as the equation (1.3.7) and prove it.

Remark 1.2.6. The equation (1.2.4) was stated as (2.8.5) in [La10]. Again, it
looks that the equation (1.2.4) contains a typo because the summation of the third
term in right hand side runs over the empty sum. We correct the equation (1.2.4)
as the equation (1.3.13) and prove it in Theorem 1.3.4.

1.3. Main results

Theorem 1.3.1. For n and d ∈ Z≥1, the equation (1.2.1) holds.

Proof. By Chen’s formula, we have

∆d(qn + 1, qn) = ∑
i+j=2qn+1

q−1∣j

aj,nSd(i, j)

where

aj,n = (−1)q
n−1( j − 1

qn − 1
) + (−1)q

n

(j − 1
qn
) = ( j − 1

qn − 1
) − (j − 1

qn
).

When 0 < j ≤ qn − 1 with q − 1∣j, it is easily seen that

aj,n = 0 − 0 = 0.(1.3.1)

When qn + q − 2 ≤ j ≤ 2qn − 2 with q − 1∣j, let

j − 1 = j0 + j1p +⋯ + jlnpln,

qn − 1 = p − 1 + (p − 1)p +⋯ + (p − 1)pln−1

be the p-adic expansions of j − 1 and qn − 1. By applying Lucas’s theorem, we have

( j − 1
qn − 1

) =
ln−1
∏
k=0
( jk
p − 1
)(jln

0
),

(j − 1
qn
) =

ln−1
∏
k=0
(jk
0
)(jln

1
).

Thus it follows that

( j − 1
qn − 1

) ≠ 0⇔ jk = p − 1 (k ∈ {0,1,⋯, ln − 1}),

(j − 1
qn
) ≠ 0⇔ jln ≠ 0.

By the condition qn + q − 1 ≤ j ≤ 2qn − 2, we have

qn + q − 1 = pln + pl − 1 ≤ j ≤ p − 2 + (p − 1)p +⋯ + (p − 1)pln−1 + pln = 2qn − 2.

So we always have jln = 1. Then (jln
1
) = 1 for j with qn + q − 1 ≤ j ≤ 2qn − 2 and

q − 1∣j. It follows that

(j − 1
qn
) = 1.

If jk = p − 1 for all k ∈ {0,1, . . . , ln − 1} we have j − 1 = qn − 1 + qn = 2qn − 1 because
we always have jln = 1. This contradicts the condition qn + q − 2 ≤ j ≤ 2qn − 2. Thus
we have

( j − 1
qn − 1

) = 0.
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for j with qn + q − 2 ≤ j ≤ 2qn − 2 and q − 1∣j. Therefore

aj,n = 1(1.3.2)

for j with qn + q − 2 ≤ j ≤ 2qn − 2 and q − 1∣j.
It remains to analyze j = 2qn, 2qn −1. If q > 2, q −1 does not divide j, aj,n is 0.
When q = 2, q − 1 always divides j. Then by using Chen’s formula and Lucas’s

Theorem, we obtain aj,n = 0 when j = 2n+1 and aj,n = 1 when j = 2n+1−1. Therefore
Sd(2,2qn − 1) appears only when q = 2.

This explains the first term dependence on q in (1). The rest contribution to
(1) is, by (1.3.1) and (1.3.2),

− ∑
i+j=2qn+1

qn+q−2≤j≤2qn−2
q−1∣j

Sd(i, j) = −
qn−1
q−1

∑
j=1

Sd(3 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)),

where the equality follows by the substitutions 3+ (j − 1)(q − 1) for i and 2qn − 2−
(j − 1)(q − 1) for j. (Note, we have qn + q − 2 ≤ 2qn − 2− (q − 1)(j − 1) ≤ 2qn − 2 and
thus 1 ≤ j ≤ qn−1

q−1 .) This finishes the proof of (1).
□

Theorem 1.3.2. For n and d ∈ Z≥1, the equation (1.2.2) holds.

Proof. By Chen’s formula,

∆d(qn − 1, qn + 1) = − ∑
i+j=2qn
q−1∣j

bj,nSd(i, j)

where

bj,n = (−1)q
n−1{(j − 1

qn
) + ( j − 1

qn − 2
)} = (j − 1

qn
) + ( j − 1

qn − 2
).

By the same arguments to those of the proof for Theorem 1.3.1, we have

bj,n = 0(1.3.3)

for j < qn − 1 with q − 1∣j,

bj,n = (
qn − 2
qn
) + (q

n − 2
qn − 2

) = 0 + 1 = 1(1.3.4)

for qn − 1 ≤ j ≤ qn with q − 1∣j and

bj,n = 1(1.3.5)

for qn − 1 ≤ j ≤ 2qn − 2 with q − 1∣j.
By (1.3.3), (1.3.4) and (1.3.5), we obtain

bj,n =
⎧⎪⎪⎨⎪⎪⎩

0 if j < qn − 1 with q − 1∣j,
1 if qn − 1 ≤ j ≤ 2qn − 2 with q − 1∣j.

(1.3.6)
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Therefore Chen’s formula becomes

∆d(qn − 1, qn + 1) = − ∑
i+j=2qn

qn−1≤j≤2qn−2
q−1∣j

Sd(i, j).

Replacing j with 2qn−2−(j−1)(q−1), we have qn−1 ≤ 2qn−2−(j−1)(q−1) ≤ 2qn−2
and thus 1 ≤ j ≤ qn+q−2

q−1 . Therefore

∆d(qn − 1, qn + 1) = −
qn+q−2

q−1

∑
j=1

Sd(2 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)).

Then we obtain the equation (1.2.2). □

Theorem 1.3.3. For d,n ∈ Z≥1, we have

∆d(qn−1, qn + 1) = Int(
2

q
)Sd(2, qn + qn−1 − 1)

(1.3.7)

−
qn−1−1

q−1

∑
j=1

Sd(3 + (j − 1)(q − 1), qn + qn−1 − 2 − (j − 1)(q − 1))

+ Sd(2qn−1 + 1, qn − qn−1).

Proof. Since 1 ≤ j ≤ qn−1−1
q−1 , we have

qn + q − 2 ≤ qn + qn−1 − 2 − (j − 1)(q − 1) ≤ qn + qn−1 − 2.
By replacing qn + qn−1 − 2 − (j − 1)(q − 1) by j, we see that it is enough to prove

∆d(qn−1, qn + 1) =Int(
2

q
)Sd(2, qn + qn−1 − 1) − ∑

qn+q−2≤j≤qn+qn−1−2
q−1∣j

i+j=qn+qn−1+1

Sd(i, j)(1.3.8)

+ Sd(2qn−1 + 1, qn − qn−1),

which is a reformulation of (1.3.7).
We note that Chen’s formula says

∆d(qn−1, qn + 1) = ∑
i+j=qn+qn−1+1

q−1∣j
i,j∈Z≥1

cj,nSd(i, j)(1.3.9)

where

cj,n = (−1)q
n

(j − 1
qn
) + (−1)q

n−1−1( j − 1
qn−1 − 1

) = −(j − 1
qn
) + ( j − 1

qn−1 − 1
).

When 0 < j − 1 ≤ qn−1 − 2 with q − 1∣j, it is easily seen that

cj,n = −0 + 0 = 0.(1.3.10)

When qn−1 + q − 3 ≤ j − 1 ≤ qn − 2 with q − 1∣j, it is clear that

(j − 1
qn
) = 0.
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By applying the same method as that of the proof of Theorem 1.3.1, we obtain

( j − 1
qn−1 − 1

) =
⎧⎪⎪⎨⎪⎪⎩

1 if j = qn − qn−1,
0 if j ≠ qn − qn−1.

Therefore

cj,n =
⎧⎪⎪⎨⎪⎪⎩

1 if j = qn − qn−1,
0 if j ≠ qn − qn−1.

(1.3.11)

When qn + q − 3 ≤ j − 1 ≤ qn + qn−1 − 3 with q − 1∣j, by Lucas’s theorem, we have

cj,n = −1 + 0 = −1.(1.3.12)

By (1.3.10), (1.3.11) and (1.3.12), we have

cj,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if j ≤ qn − 1 with q − 1∣j and j ≠ qn − qn−1,
1 if j = qn − qn−1,
−1 if qn + q − 2 ≤ j ≤ qn + qn−1 − 1 with q − 1∣j.

We note that this specializes to the following when q = 2,

cj,n =
⎧⎪⎪⎨⎪⎪⎩

1 if j = 2n−1 or 2n ≤ j ≤ 2n + 2n−1 − 1,
0 if 1 ≤ j < 2n−1, 2n−1 < j < 2n or j = 2n + 2n−1.

Therefore we obtain (1.3.8) by (1.3.9) so the equation (1.3.7) follows.
□

Theorem 1.3.4. We set d,n ∈ Z≥1. For 0 ≤ s ≤ n, the following equation holds.

∆d(qn + 1, qn − qs + 1) = Int(
2

q
)Sd(2,2qn − qs)

(1.3.13)

−
qn−qs
q−1

∑
j=1

Sd(3 + (j − 1)(q − 1),2qn − qs − 1 − (j − 1)(q − 1))

+
qn−1
q−1

∑
j= qn−qs

q−1 +1
Sd(3 + (j − 1)(q − 1),2qn − qs − 1 − (j − 1)(q − 1)).

We remark that when s = 0 (resp. s = n), the third term (resp. the second
term) of the right hand side of (1.3.13) means the empty sum. We note that in the
case when s = 0, it recovers (1.2.1).

Proof. We apply the same method as that of the proof of Theorem 1.3.1.
We have qn+q−qs−1 ≤ 2qn−qs−1−(j−1)(q−1) ≤ 2qn−qs−1 when 1 ≤ j ≤ qn−1

q−1 .
Replacing 2qn − qs − 1 − (j − 1)(q − 1) with j, we see it is enough to prove

∆d(qn + 1, qn + 1 − qs) =Int(
2

q
)Sd(2,2qn − qs)

(1.3.14)

− ∑
qn+q−2≤j≤2qn−qs−1

i+j=2qn−qs+2
q−1∣j

Sd(i, j) + ∑
qn−qs+q−1≤j≤qn−1

i+j=2qn−qs+2
q−1∣j

Sd(i, j).
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Chen’s formula says

∆d(qn + 1, qn − qs + 1) = ∑
i+j=2qn−qs+2

q−1∣j

dj,n,sSd(i, j).

where

dj,n,s = (−1)q
n−qs( j − 1

qn − qs
) + (−1)q

n

(j − 1
qn
) = ( j − 1

qn − qs
) − (j − 1

qn
).

When s = 0, we have (1.3.13) because it is equivalent to (1.2.1).
When s = n, Chen’s formula becomes

∆d(qn + 1,1) = ∑
i+j=qn+2

q−1∣j

dj,n,nSd(i, j).

It is easily seen that
dj,n,n = 1 − 0 = 1

for all j with q − 1 ≤ j ≤ qn − 1 and q − 1∣j. Thus we have

∆d(qn + 1,1) = ∑
q−1≤j≤qn−1
i+j=qn+2

q−1∣j

Sd(i, j).

Hence we get (1.3.14) and therefore the equation (1.3.13) holds in this case.
So we may assume that 1 ≤ s ≤ n − 1.
When 1 ≤ j ≤ qn − qs or j = 2qn − qs +1 with q−1∣j (this only holds when q = 2),

it is easily seen that

dj,n,s = 0.(1.3.15)

When qn − qs + 1 ≤ j ≤ qn − 1 with q − 1∣j, it is clear that (j−1
qn
) = 0. In this case,

by applying Lucas’s theorem, we have

dj,n,s = 1(1.3.16)

for all j with qn − qs + 1 ≤ j ≤ qn − 1 and q − 1∣j (this only holds for q = 2 when q > 2,
it should be qn − qs + q − 1 ≤ j ≤ qn − 1 and q − 1∣j).

When qn ≤ j ≤ 2qn − qs with q − 1∣j (this only holds for q = 2, when q > 2, it
should be qn + q − 2 ≤ j ≤ 2qn − qs − 1 with q − 1∣j), again by Lucas’s theorem, it
follows that

dj,n,s = −1.(1.3.17)

Therefore by (1.3.15), (1.3.16) and (1.3.17), we obtain

dj,n,s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if 1 ≤ j ≤ qn − qs or j = 2qn − qs + 1 with q − 1∣j,
1 if qn − qs + 1 ≤ j ≤ qn − 1 with q − 1∣j,
−1 if qn ≤ j ≤ 2qn − qs with q − 1∣j.

We note that this specializes to the following when q = 2,

dj,n,s =
⎧⎪⎪⎨⎪⎪⎩

0 if 1 ≤ j ≤ 2n − 2s or j = 2n+1 − 2s + 1,
1 if 2n − 2s + 1 ≤ j ≤ 2n+1 − 2s.

So (1.3.14) holds in this case by Chen’s formula. Therefore (1.3.13) follows. □
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Summing all of the equation (1.2.1), (1.2.2), (1.3.7) and (1.3.13) over d respec-
tively and noting that all hold trivially for d = 0, we obtain the following corollary.

Corollary 1.3.5. The following ‘sum-shuffle product’ formula holds:

ζ(qn + 1)ζ(qn) =ζ(qn + 1, qn) + ζ(qn, qn + 1) + ζ(2qn + 1) + Int(2
q
)ζ(2,2qn − 1)

(1.3.18)

−
qn−1
q−1

∑
j=1

ζ(3 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)),

ζ(qn − 1)ζ(qn + 1) =ζ(qn − 1, qn + 1) + ζ(qn + 1, qn − 1) + ζ(2qn)(1.3.19)

−
qn+q−2

q−1

∑
j=1

ζ(2 + (j − 1)(q − 1),2qn − 2 − (j − 1)(q − 1)),

ζ(qn−1)ζ(qn + 1) =ζ(qn−1, qn + 1) + ζ(qn + 1, qn−1) + ζ(qn + qn−1 + 1)

(1.3.20)

+ Int(2
q
)ζ(2, qn + qn−1 − 1)

−
qn−1−1

q−1

∑
j=1

ζ(3 + (j − 1)(q − 1), qn + qn−1 − 2 − (j − 1)(q − 1))

+ ζ(2qn−1 + 1, qn − qn−1),
and for 0 ≤ s ≤ n,

ζ(qn + 1)ζ(qn + 1 − qs) =ζ(qn + 1, qn + 1 − qs) + ζ(qn + 1 − qs, qn + 1) + ζ(2qn + 2 − qs)

(1.3.21)

+ Int(2
q
)ζ(2,2qn − qs)

−
qn−qs
q−1

∑
j=1

ζ(3 + (j − 1)(q − 1),2qn − qs − 1 − (j − 1)(q − 1))

+
qn−1
q−1

∑
j= qn−qs

q−1 +1
ζ(3 + (j − 1)(q − 1),2qn − qs − 1 − (j − 1)(q − 1)).



CHAPTER 2

On multi-poly-Bernoulli-Carlitz numbers

In this chapter, we introduce multi-poly-Bernoulli numbers in characteristic
p. In characteristic 0 case, Imatomi-Kaneko-Takeda [IKT14] introduced multi-
poly-Bernoulli numbers which are generalization of Bernoulli numbers and showed
several formulae. In particullar, they showed an explicit formula of multi-poly-
Bernoulli numbers by using factorials and Stirling numbers of the second kind.
Further they showed the relations which connect multi-poly-Bernoulli numbers with
Kaneko-Zagier’s finite multiple zeta values. We describe the characteristic p ana-
logues of their results by using characteristic p counterparts of finite multiple zeta
values, factorials and Stirling numbers of the second kind. In §2.1.10, we recall
the definition of Chang-Mishiba’s finite multiple zeta values, that is, characteristic
p analogue of Kaneko-Zagier’s finite multiple zeta values. In §2.1.2, we recall the
definitions of (finite) multiple polylogarithms in characteristic p. In §2.2 we recall
characteristic p analogue of Bernoulli numbers and Stirling numbers of the second
kind, that is, Bernoulli-Carlitz numbers and Stirling-Carlitz numbers of the second
kind. Then we introduce multi-poly-Bernoulli numbers in characteristic p. In §2.3,
we prove main results which consist of an explicit formula to express characteristic p
analogue of multi-poly-Bernoulli numbers in terms of Carlitz factorials and Stirling-
Carlitz numbers of the second kind, a relation which connects multi-poly-Bernoulli
numbers in characteristic p with Chang-Mishiba’s finite multiple zeta values and
several relations between them.

2.1. Definitions

2.1.1. Definition of finite multiple zeta values in characteristic p. In
this subsection, we recall the characteristic p analogue of finite multiple zeta values
which were introduced in [CM17].

In 1935, L. Carlitz [Ca35] considered an analogue of the Riemann zeta values
in characteristic p which we call the Carlitz zeta values. For s ∈ N, they are defined
by

ζA(s) ∶= ∑
a∈A+

1

as
∈ k∞.

D. S. Thakur [T10] generalized this definition to that of multiple zeta values in A,
which are defined for s = (s1, . . . , sr) ∈ Nr,

ζA(s) ∶= ∑
dega1>⋯>degar≥0

a1,...,ar∈A+

1

as11 ⋯a
sr
r
∈ k∞.

Also, Chang-Mishiba and D. S. Thakur concerned v-adic variant ([CM19, CM,
T10]) and finite variant ([CM17, T17]). In this paper, we consider Chang and
Mishiba’s finite variant ([CM17]).

27
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Definition 2.1.1 ([CM17, (2.1)]). We set a k-algebra as follows:

Ak ∶=∏
℘
A/℘A/⊕

℘
A/℘A

where ℘ runs over all monic irreducible polynomials in A. For s ∶= (s1, . . . , sr) ∈ Nr

and a monic irreducible polynomial ℘ ∈ A, finite multiple zeta values are defined as
follows:

ζAk
(s) ∶= (ζAk

(s)℘) ∈ Ak

where

ζAk
(s)℘ ∶= ∑

deg℘>dega1>⋯>degar≥0
a1,...,ar∈A+

1

as11 ⋯a
sr
r
∈ A/℘A.

2.1.2. Definition of finite Carlitz multiple polylogarithms. In 2014, C.-
Y. Chang [C14] introduced the Carlitz multiple polylogarithms as characteristic p
analogues of the multiple polylogarithms.

Definition 2.1.2 ([C14, Definition 5.1.1]). For s = (s1, . . . , sr) ∈ Nr, the Carlitz
multiple polylogarithms are defined as the following series of r-variables z1, . . . , zr:

Lis(z1, . . . , zr) ∶= ∑
i1>⋯>ir≥0

zq
i1

1 ⋯zq
ir

r

Ls1
i1
⋯Lsr

ir

∈ k[[z1, . . . , zr]].

Remark 2.1.3. We recover the Carlitz logarithms in the case of r = 1 and s1 = 1

logC(z) ∶=∑
i≥0

zq
i

Li
∈ k[[z]].

In [CM17], C.-Y. Chang and Y. Mishiba introduced finite Carlitz multiple
polylogarithms, a finite variant of the Carlitz multiple polylogarithms.

Definition 2.1.4 ([CM17, (3.1)]). For s = (s1, . . . , sr) ∈ Nr and r-tuple of
variables z = (z1, . . . , zr), finite Carlitz multiple polylogarithms are defined as follows:

LiAk,s(z) ∶= (LiAk,s(z1, . . . , zr)℘) ∈ Ak,z

where

LiAk,s(z1, . . . , zr)℘ ∶= ∑
deg℘>i1>⋯>ir≥0

zq
i1

1 ⋯zq
ir

r

Ls1
i1
⋯Lsr

ir

mod ℘ ∈ A[z1, . . . , zr]/℘A.

Here Ak,z is the following quotient ring

Ak,z ∶=∏
℘
A[z]/℘A[z]/⊕

℘
A[z]/℘A[z]

(we put A[z] ∶= A[z1, . . . , zr]).

Remark 2.1.5. In the above definition, we remark that ℘ does not divide Li

for i < deg℘.

In [CM17], they established an explicit formula expressing ζAk
(s) as a k-

linear combination of LiAk,s(z1, . . . , zr)℘ evaluated at some integral points. Before
we recall it, let us prepare the Anderson-Thakur polynomial.
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Definition 2.1.6 ([AT90, (3.7.1)]). Let θ, t, x be independent variables. For
n ∈ Z≥0, Anderson-Thakur polynomial Hn ∈ A[t] is defined by

{1 −
∞
∑
i=0

∏i
j=1(tq

i

− θq
j

)
Di∣θ=t

xq
i

}
−1

=
∞
∑
n=0

Hn

Γn+1∣θ=t
xn.

Remark 2.1.7. We note that Hn = 1 for 0 ≤ n ≤ q − 1.

Notation 2.1.8. For r-tuple s = (s1, . . . , sr) ∈ Nr, let Hsi−1 = ∑
mi

j=0 uijt
j (uij ∈

A,1 ≤ i ≤ r) and then, we set following symbols which are introduced in [CM17]:

Js ∶= {0,1, . . . ,m1} ×⋯ × {0,1, . . . ,mr}.

For each j = (j1, . . . , jr) ∈ Js, we set

uj ∶= (u1j1 , . . . , urjr) ∈ Ar,

and
aj ∶= aj(t) ∶= tj1+⋯+jr .

Examples 2.1.9. We note that when s = (s1, . . . , sr) = (1, . . . ,1), by Remark
3.2.2, we have Js = {0} ×⋯ × {0} and uj = (1, . . . ,1) for j ∈ Js.

The following equation was obtained by C.-Y. Chang and Y. Mishiba in [CM17].

Proposition 2.1.10 ([CM17, p.1056]). For s = (s1, . . . , sr) ∈ Nr, let ℘ ∈ A be
a monic irreducible polynomial which satisfy ℘ ∤ Γs1⋯Γsr . Then we have

ζAk
(s)℘ =

1

Γs1⋯Γsr

∑
j∈Js

aj(θ)LiAk,s(uj)℘.

2.2. Multi-poly-Bernoulli-Carlitz numbers

In this section, we define multi-poly-Bernoulli-Carlitz numbers which are char-
acteristic p analogues of multi-poly-Bernnoulli numbers.

In 1935, L. Carlitz [Ca35] introduced the Bernoulli-Carlitz numbers, charac-
teristic p analogues of the Bernoulli numbers by using the Carlitz factorials Π(n)
and the Carlitz exponentials

eC(z) ∶=∑
i≥0

zq
i

Di

as follows.

Definition 2.2.1 ([Ca35]). For n ∈ Z≥0, the Bernoulli-Carlitz numbers BCn

are the elements of k defined by
∞
∑
n=0

BCn
zn

Π(n)
∶= z

eC(z)
.

In [Ca37], L. Carlitz obtained the following:

BCn = 0 for (q − 1) ∤ n.

In 2016, H. Kaneko and T. Komatsu [KK16] introduced the Stirling-Carlitz num-
bers of the first and second kind as an analogue of the Stirling numbers which were
introduced in (0.1.7). We recall below those of the second kind.
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Definition 2.2.2 ([KK16, (15)]). For m ∈ Z≥0, the Stirling-Carlitz numbers
of the second kind {n

m
}
C
∈ k are defined by
∞
∑
n=0
{n
m
}
C

zn

Π(n)
∶= (eC(z))

m

Π(m)
.

In addition, they [KK16] showed that

{n
0
}
C
= 0 (n ≥ 1), {n

m
}
C
= 0 (n <m), {n

n
}
C
= 1 (n ≥ 0)(2.2.1)

and the following property.

Proposition 2.2.3 ([KK16, Proposition 8]). For n,m ∈ Z>0 with λ(n) > λ(m),

{n
m
}
C
= 0

here we noted λ(n) ∶= ∑i ni where ni are the digits of q-adic expansion n = ∑i niq
i.

By using the Stirling-Carlitz numbers of the second kind, they obtained the
following proposition as a characteristic p analogue of (0.1.6).

Proposition 2.2.4 ([KK16, Theorem 2]). For n ∈ Z≥0, we have

BCn =
∞
∑
j=0

(−1)jDj

L2
j

{ n

qj − 1
}
C

.

Remark 2.2.5. In [KK16], they put Lj by ∏j
i=1(θ

qi − θ). But the above
equation is same to their equation (cf. [KK16, (20)]) due to the appearance of L2

j .

Remark 2.2.6. By the definition of Dm, we have

Dq
m =

m−1
∏
i=0
(θq

m

− θq
i

)q =
m−1
∏
i=0
(θq

m+1
− θq

i+1
) =

m

∏
i′=1
(θq

m+1
− θq

i′

) = − Dm+1

(θ − θqm+1)
.

Thus we obtain
Dq−1

m = − Dm+1

Dm(θ − θqm+1)
.

By the definition of Carlitz factorial, Lj and the above equation, we have the
following:

Π(qj − 1) =
j−1
∏
m=0

Dq−1
m =

j−1
∏
m=0
− Dm+1

Dm(θ − θqm+1)
= (−1)j

Dj

Lj
(j ∈ Z≥0).(2.2.2)

Thus we may write the formula in Theorem 2.2.4 as follows:

BCn =
∞
∑
j=0

Π(qj − 1)
Lj

{ n

qj − 1
}
C

.

Next we introduce multi-poly-Bernoulli-Carlitz numbers (MPBCNs) as char-
acteristic p analogues of MPBNs (Definition 0.1.4). It is defined by the following
generating function.

Definition 2.2.7. For s = (s1, . . . , sr) ∈ Nr, j = (j1, . . . , jr) ∈ Js (for Js, see No-
tation 2.1.8), we define multi-poly-Bernoulli-Carlitz numbers (MPBCNs for short)
BCs,j

n to be elements of k as follows:

∑
n≥0

BCs,j
n

zn

Π(n)
∶=
Lis(eC(z)u1j1 , u2j2 , . . . , urjr)

eC(z)
.(2.2.3)
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Remark 2.2.8. In the case when r = 1 and s1 = 1 in the above definition, we
have Lis(z1, . . . , zr) = logC(z) and Js = {0}, u1j1 = u10 = 1 since Hs1−1 = H0 = 1.
Hence we recover the Definition 2.2.1 by

∑
n≥0

BC(1),(0)n

zn

Π(n)
= logC(eC(z))

eC(z)
= z

eC(z)
.

This is the one we have seen in Definition 2.2.1 so we have

BC(1),(0)n = BCn.(2.2.4)

Proposition 2.2.9. For s = (s1, . . . , sr) ∈ Nr, j = (j1, . . . , jr) ∈ Js and n ∈ Z≥0
with (q − 1) ∤ n, we have

BCs,j
n = 0.

Proof. Let g be a generator of F×q then we have

gn = 1⇔ (q − 1)∣n.(2.2.5)

By the definition, it follows that eC(gz) = geC(z). Then by (2.2.3) and Definition
2.1.2, we have

∑
n≥0

BCs,j
n

(gz)n

Π(n)
=
Lis(eC(gz)u1j1 , u2j2 , . . . , urjr)

eC(gz)
= ∑

i1>⋯>ir≥0
eC(gz)q

i1−1u
qi1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

by using eC(gz) = geC(z) and (2.2.5),

= ∑
i1>⋯>ir≥0

eC(z)q
i1−1u

qi1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

=
Lis(eC(z)u1j1 , u2j2 , . . . , urjr)

eC(z)

= ∑
n≥0

BCs,j
n

zn

Π(n)
.

By comparing the coefficients of zn, we have gnBCs,j
n = BCs,j

n . Therefore we obtain
the following by (2.2.5):

BCs,j
n = 0 for (q − 1) ∤ n.

□

The MPBNs are defined for si ∈ Z, on the other hand our MPBCNs are defined
for si ∈ N. It is because in Definition 2.2.7, we use uiji , the coefficients of Hsi−1
which are defined for si ∈ N. We remark that we do not have two kinds of MPBCNs
as we do in Definition 0.1.4.

2.3. Several properties of multi-poly-Bernoulli-Carlitz numbers

In this section, we obtain characteristic p analogues of some results in [IKT14].
We prove characteristic p analogues of Proposition 0.1.6-0.1.9. The following

theorem is a characteristic p analogue of Proposition 0.1.6.

Theorem 2.3.1. For r ∈ N, s = (s1, . . . , sr) ∈ Nr, j = (j1, . . . , jr) ∈ Js and
n ∈ Z≥0,

BCs,j
n = ∑

logq(n+1)≥i1>⋯>ir≥0
Π(qi1 − 1){ n

qi1 − 1
}
C

uq
i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

.(2.3.1)
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Proof. By Definition 2.1.2, the right hand side of (2.2.3) is translated as
follows.

Lis(eC(z)u1j1 , u2j2 , . . . , urjr)
eC(z)

= ∑
i1>⋯>ir≥0

eC(z)q
i1−1u

qi1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

by Definition 2.2.2 for m = qi1 − 1,

= ∑
i1>⋯>ir≥0

∑
n≥0

Π(qi1 − 1){ n

qi1 − 1
}
C

zn

Π(n)
uq

i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

= ∑
n≥0

∑
i1>⋯>ir≥0

Π(qi1 − 1){ n

qi1 − 1
}
C

uq
i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

zn

Π(n)

= ∑
n≥0

∑
logq(n+1)≥i1>⋯>ir≥0

Π(qi1 − 1){ n

qi1 − 1
}
C

uq
i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

zn

Π(n)
.

Then by Definition 2.2.7, we have

∑
n≥0

BCs,j
n

zn

Π(n)
= ∑

n≥0
∑

logq(n+1)≥i1>⋯>ir≥0
Π(qi1 − 1){ n

qi1 − 1
}
C

uq
i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

zn

Π(n)
.

By comparing the coefficients of zn, we obtain the formula (2.3.1). □

From (2.2.1) and (2.3.1), we easily deduce that BCs,j
n = 0 if n < qr−1 − 1. We

note that for x, y ∈ N, all digits of the q-adic expansion of qx −1 and qy −1 are q−1.
Therefore we have

{q
x − 1
qy − 1

}
C

=
⎧⎪⎪⎨⎪⎪⎩

0 if x ≠ y,
1 if x = y,

(2.3.2)

by Proposition 2.2.3 and (2.2.1). Thus we have the following from Theorem 2.3.1.

Corollary 2.3.2. For m ∈ N, we have

BCs,j
qm−1 = ∑

m>i2>⋯>ir≥0
Π(qm − 1)

uq
m

1j1
uq

i2

2j2
⋯uq

ir

rjr

Ls1
mL

s2
i2
⋯Lsr

ir

.(2.3.3)

Remark 2.3.3. When r = 1 and s1 = 1, we have Hs1−1 = H0 = 1. Then
Js = {0}, u1j1 = u10 = 1 hence we have

BC(1),(0)n = ∑
logq(n+1)≥i1≥0

Π(qi1 − 1){ n

qi1 − 1
}
C

1

Li1

by using (2.2.2),

= ∑
logq(n+1)≥i1≥0

(−1)i1Di1

L2
i1

{ n

qi1 − 1
}
C

.

Therefore by Remark 2.2.8 our Theorem 2.3.1 includes H. Kaneko and T. Ko-
matsu’s result (Proposition 2.2.4) in the case of r = 1 and s1 = 1.
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We obtain the following relation between the MPBCNs and the Bernoulli-
Carlitz numbers for the tuple (1, . . . ,1) as a characteristic p analogue of Proposition
0.1.7.

Theorem 2.3.4. For r ≥ 1 and n ≥ qr−1 − 1, we have

BC(

r

³ ¹¹¹¹· ¹¹¹¹µ
1,...,1),(

r

³ ¹¹¹¹· ¹¹¹¹µ
0,...,0)

n = ∑
logq(n+1)≥i1>⋯>ir≥0

{ n

qi1 − 1
}
C

BCqi1−1
BCqi2−1

Π(qi2 − 1)
⋯

BCqir−1

Π(qir − 1)
.

(2.3.4)

Proof. Let us first prove an equation
BCqi−1

Π(qi − 1)
= 1

Li
(2.3.5)

for each i ≥ 0. It follows from Proposition 2.2.4 that we have

BCqi−1 =
∞
∑
j=0

(−1)jDj

L2
j

{q
i − 1
qj − 1

}
C

.

The right hand side is translated as follows:
∞
∑
j=0

(−1)jDj

L2
j

{q
i − 1
qj − 1

}
C

= (−1)
iDi

L2
i

= Π(qi − 1)
Li

.

The first equality follows from Proposition 2.2.3, the second one follows from (2.2.2).
Then we have the equation (2.3.5).

It follows from Theorem 2.3.1 that we have

BC(

r

³ ¹¹¹¹· ¹¹¹¹µ
1,...,1),(

r

³ ¹¹¹¹· ¹¹¹¹µ
0,...,0)

n = ∑
logq(n+1)≥i1>⋯>ir≥0

{ n

qi1 − 1
}
C

Π(qi1 − 1)
Li1⋯Lir

.

By using the equation (2.3.5) to the right hand side,

BC(

r

³ ¹¹¹¹· ¹¹¹¹µ
1,...,1),(

r

³ ¹¹¹¹· ¹¹¹¹µ
0,...,0)

n

= ∑
logq(n+1)≥i1>⋯>ir≥0

{ n

qi1 − 1
}
C

Π(qi1 − 1)
BCqi1−1

Π(qi1 − 1)
BCqi2−1

Π(qi2 − 1)
⋯

BCqir−1

Π(qir − 1)
.

Therefore we obtain the desired equation (2.3.4). □

Next, before we see a characteristic p analogue of Proposition 0.1.9, we prepare
the following lemma.

Lemma 2.3.5. When r ≥ 2, we have the following equation for s = (s1, . . . , sr) ∈
Nr, j ∈ Js and m ≥ r − 1.

BCs,j
qm−1 = BC

(s1),(j1)
qm−1

m−1
∑

i=r−2

1

Π(qi − 1)
BC

(s2,...,sr),(j2,...,jr)
qi−1 .(2.3.6)

Proof. By using Theorem 2.3.1, we have

BCs,j
qm−1 = ∑

m≥i1>⋯>ir≥0
{q

m − 1
qi1 − 1

}
C

Π(qi1 − 1)
uq

i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

.
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Then by using (2.3.2), we have

BCs,j
qm−1 = ∑

m>i2>⋯>ir≥0
Π(qm − 1)

uq
m

1j1
uq

i2

2j2
⋯uq

ir

rjr

Ls1
mL

s2
i2
⋯Lsr

ir

= Π(qm − 1)
uq

m

1j1

Ls1
m

∑
m>i2>⋯>ir≥0

uq
i2

2j2
⋯uq

ir

rjr

Ls2
i2
⋯Lsr

ir

.

By using Theorem 2.3.1, we have

BCs,j
qm−1 = BC

(s1),(j1)
qm−1 ∑

m>i2>⋯>ir≥0

uq
i2

2j2
⋯uq

ir

rjr

Ls2
i2
⋯Lsr

ir

(2.3.7)

= BC(s1),(j1)qm−1

m−1
∑

i=r−2

1

Π(qi − 1) ∑
i>i3>⋯>ir≥0

Π(qi − 1)
uq

i

2j2
uq

i3

3j3
⋯uq

ir

rjr

Ls2
i L

s3
i3
⋯Lsr

ir

again by using Theorem 2.3.1,

= BC(s1),(j1)qm−1

m−1
∑

i=r−2

1

Π(qi − 1)
BC

(s2,...,sr),(j2,...,jr)
qi−1 .

Then we obtain the desired equation (2.3.6). □

The following result is an analogue of Proposition 0.1.9 which provides the
connection between MPBCNs and finite multiple zeta values in characteristic p
case.

Theorem 2.3.6. For s = (s1, . . . , sr) ∈ Nr and a monic irreducible polynomial
℘ ∈ A so that ℘ ∤ Γs1⋯Γsr , we have the following:

ζAk
(s)℘ =

1

Γs1⋯Γsr

∑
j∈Js

aj(θ)
deg℘−1
∑

i=r−1

1

Li

BCs,j
qi−1

BCqi−1
mod ℘.(2.3.8)

For s = (1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

, s1, . . . , sr) ∈ Nr+d (d ≥ 0) and a monic irreducible polynomial

℘ ∈ A so that ℘ ∤ Γs1⋯Γsr , we have the following:

ζAk
(s)℘ =

1

Γs1⋯Γsr

∑
j′∈Js′

aj′(θ) ∑
deg℘>i0>⋯>id≥r−1

1

Li0⋯Lid

BCs′,j′

qid−1

BCqid−1
mod ℘.(2.3.9)

Here we put s′ = (s1, . . . , sr).

We remark that both sides of the equation (2.3.8) become 0 for deg℘ < r (resp.
(2.3.9), deg℘ < d + r).
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Proof. We first prove that the equation (2.3.8). From Definition 2.1.2, the
equation (2.3.3) and (2.3.5) we have

LiAk,s(uj)℘ = ∑
deg℘>i1>⋯>ir≥0

uq
i1

1j1
⋯uq

ir

rjr

Ls1
i1
⋯Lsr

ir

=
deg℘−1
∑

i=r−1

1

Π(qi − 1) ∑
i>i2>⋯>ir≥0

Π(qi − 1)
uq

i1

1j1
uq

i2

2j2
⋯uq

ir

rjr

Ls1
i1
Ls2
i2
⋯Lsr

ir

=
deg℘−1
∑

i=r−1

1

Π(qi − 1)
BCs′,j′

qi−1

=
deg℘−1
∑

i=r−1

1

Li

BCs′,j′

qi−1

BCqi−1
.

By our assumption ℘ ∤ Γs1⋯Γsr we may apply Proposition 2.1.10 and obtain the
desired formula (2.3.8).

Next we prove the equation (2.3.9). By using (2.3.8) for s = (1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

, s1, . . . , sr),

the ℘-part of ζ(s)℘ is computed as

ζ(s)℘ =
1

Γd
1Γs1⋯Γsr

∑
j∈Js

aj(θ)
deg℘−1
∑

i=d+r−1

1

Li

BCs,j
qi−1

BCqi−1

= 1

Γd
1Γs1⋯Γsr

∑
j∈Js

aj(θ)
deg℘−1
∑

i0=d+r−1

BCs,j
qi0−1

Π(qi0 − 1)
.

Then by using Lemma 2.3.5,
BCs,j

qi0−1
Π(qi0−1) is computed as

BCs,j
qi0−1

Π(qi0 − 1)
=
BC

(1),(0)
qi0−1

Π(qi0 − 1)

i0−1
∑

i1=d+r−2

BC
(1,...,1,s1,...,sr),(0,...,0,j1,...,jr)
qi1−1

Π(qi1 − 1)

=
BC

(1),(0)
qi0−1

Π(qi0 − 1)

i0−1
∑

i1=d+r−2

BC
(1),(0)
qi1−1

Π(qi1 − 1)

i1−1
∑

i2=d+r−3

BC
(1,...,1,s1,...,sr),(0,...,0,j1,...,jr)
qi2−1

Π(qi2 − 1)

=
BC

(1),(0)
qi0−1

Π(qi0 − 1)

i0−1
∑

i1=d+r−2

BC
(1),(0)
qi1−1

Π(qi1 − 1)

i1−1
∑

i2=d+r−3

BC
(1),(0)
qi2−1

Π(qi2 − 1)

i2−1
∑

i3=d+r−4

⋯
id−1−1
∑

id=r−1

BC
(s1,...,sr),(j1,...,jr)
qid−1

Π(qid − 1)

= 1

Li0

i0−1
∑

i1=d+r−2

1

Li1

i1−1
∑

i2=d+r−3

1

Li2

i2−1
∑

i3=d+r−4
⋯

id−1−1
∑

id=r−1

1

Lid

BC
(s1,...,sr),(j1,...,jr)
qid−1

BCqid−1
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= ∑
i0>i1>⋯>id

il≥d+r−l−1 for each l

1

Li0Li1⋯Lid

BC
(s1,...,sr),(j1,...,jr)
qid−1

BCqid−1

= ∑
i0>i1>⋯>id≥r−1

1

Li0Li1⋯Lid

BC
(s1,...,sr),(j1,...,jr)
qid−1

BCqid−1
.

Thus by Γ1 = 1, we have

1

Γs1⋯Γsr

∑
j∈Js

aj(θ) ∑
deg℘>i0>⋯>id≥r−1

1

Li0⋯Lid

BC
(s1,...,sr),(j1,...,jr)
qid−1

BCqid−1
= ζAk

(s)℘ mod ℘.

For s = (1, . . . ,1, s1, . . . , sr), we have Js = {0} × ⋯ × {0} × {0,1, . . . ,m1} × ⋯ ×
{0,1, . . . ,mr} so aj(θ) = θj1+⋯+jr for j = (0, . . . ,0, j1, . . . , jr) ∈ Js and thus aj(θ)
depends only on j′ = (j1, . . . jr) ∈ Js′ . Therefore the above equation is rewritten as
follows:

1

Γs1⋯Γsr

∑
j′∈Js′

aj′(θ) ∑
deg℘>i0>⋯>id≥r−1

1

Li0⋯Lid

BCs′,j′

qid−1

BCqid−1
= ζAk

(s)℘ mod ℘.

Thus we obtain the equation (2.3.9). □
We remark that the relation (2.3.9) is a generalization of (2.3.8).



CHAPTER 3

Alternating multiple zeta values in positive
characteristic

In this chapter, we introduce alternating multiple zeta values in positive char-
acteristic and show their various properties. In §3.1, we introduce a characteristic
p analogue of alternating multiple zeta values by using alternating power sums. We
also express those values by using Anderson-Thakur polynomials. In §3.2, we obtain
several fundamental properties of alternating multiple zeta values in positive char-
acteristic. In §3.2.1, we prove that characteristic p analogue of alternating multiple
zeta values is non-vanishing by using an inequality shown by Thakur [T09a]. In
§3.2.2, we prove sum-shuffle relations among them by showing alternating analogue
of Chen’s formula and by using induction on the depth of alternating multiple zeta
values in characteristic p. In §3.3, we construct certain pre-t-motives which express
characteristic p analogue of alternating multiple zeta values. In §3.4, we show a
linear independence property of alternating multiple zeta values in characteristic p
by using the Anderson-Brownawell-Papanikolas criterion and an alternating version
of the MZ-property.

3.1. Definitions

In the characteristic p case, A is an analogue of the integer ring Z. Thus we
may consider A× = F×q as an analogue of Z× = {±1}.

We define alternating power sums and alternating multiple zeta values in posi-
tive characteristic along the construction of multiple zeta values in characteristic p
(MZVs in short) by Thakur. For s ∈ N, ϵ ∈ F×q and d ∈ Z≥0, we define the alternating
power sums by

Sd(s; ϵ) ∶= ϵdSd(s) = ∑
a∈Ad+

ϵd

as
∈ k.

The above alternating power sums are extended inductively as follows.
For s = (s1, . . . , sr) ∈ Nr, ϵ = (ϵ1, . . . , ϵr) ∈ (F×q )

r and d ∈ Z≥0, we define

S<d(s; ϵ) ∶= ∑
d>d1>⋯>dr≥0

Sd1(s1; ϵ1)⋯Sdr(sr; ϵr) ∈ k

and

Sd(s; ϵ) ∶= Sd(s1; ϵ1)S<d(s2, . . . , sr; ϵ2, . . . , ϵr)(3.1.1)

∶= Sd(s1; ϵ1) ∑
d>d2>⋯>dr≥0

Sd2(s2; ϵ2)⋯Sdr(sr; ϵr) ∈ k.

When r − 1 > d, Sd(s; ϵ) = 0 since it is empty sum. By using these alternating
power sums, characteristic p analogue of alternating multiple zeta values (AMZVs
in short) (cf. (0.2.12) ) are interpreted as follows.

37
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Definition 3.1.1. For s = (s1, . . . , sr) ∈ Nr, ϵ = (ϵ1, . . . , ϵr) ∈ (F×q )
r we define

the alternating multiple zeta values by the following series:

ζA(s; ϵ) ∶= ∑
d≥0

Sd(s; ϵ) ∈ k∞.(3.1.2)

Remark 3.1.2. We remark that ζA(s; ϵ) specializes to ζA(s) when ϵ = (ϵ1, . . . , ϵr) =
(1, . . . ,1).

Remark 3.1.3. In writing this paper, the author got to know that there exist
the colored variant of MZVs by communicating with Thakur. They were defined
by his students Qibin Shen and Shuhui Shi as follows. For s = (s1, . . . , sr) ∈ Nr, and
n ∈ N, let ξ = (ξ1, . . . , ξr) ∈ (Fq

×)r so that each ξi is n-th root of unity. Then level
n colored MZVs are the following series:

ζA(s;ξ) ∶= ∑
a1,a2,...,ar∈A+

dega1>dega2>⋯>degar≥0

ξdega1

1 ξdega2

2 ⋯ξdegar
r

as11 a
s2
2 ⋯a

sr
r

.(3.1.3)

This ζA(s;ξ) includes AMZVs as level q − 1 case and we remark that the q − 1 case
was defined by the author and Shen-Shi independently.

In this paper, we write n-fold Frobenius twisting as follows.

C∞((t))→ C∞((t))

f ∶=∑
i

ait
i ↦∑

i

aq
n

i ti =∶ f (n).

Moreover, we fix a fundamental period π̃ of the Carlitz module (see [G96, T04]).
We define the following power series.

Ω = Ω(t) ∶= (−θ)−q/(q−1)
∞
∏
i=1
(1 − t/θq

i

) ∈ C∞[[t]]

where (−θ)1/(q−1) is a fixed (q−1)st root of −θ so that 1
Ω(θ) = π̃ ([ABP04, AT09]).

Here, we also introduce another expression of ζA(s; ϵ) by using the following theo-
rem which was shown by Anderson and Thakur.

Theorem 3.1.4 ([AT90]). For each s ∈ N, there exists an unique polynomial
Hs =Hs(t) ∈ A[t] such that

(Hs−1Ω
s)(d)∣t=θ = ΓsSd(s)/π̃s(3.1.4)

for all d ∈ Z≥0 and s ∈ N. Moreover, when we regard Hs as a polynomial of θ over
Fq[t] by A[t] = Fq[t][θ] then

degθHs ≤
sq

q − 1
.(3.1.5)

This polynomial Hs is the Anderson-Thakur polynomial which we recalled
in Definition 28. From (3.1.2) and (3.1.4), we obtain the following expression of
ζA(s; ϵ);

ζA(s; ϵ) =
π̃s1+⋯sr

Γs1⋯Γsr

∑
d1>⋯>dr≥0

ϵd1

1 (Hs1−1Ω
s1)(d1)∣t=θ⋯ϵdr

r (Hsr−1Ω
sr)(dr)∣t=θ.(3.1.6)

3.2. Fundamental properties

In this section, we prove the non-vanishing and sum-shuffle relation of AMZVs.
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3.2.1. Non-vanishing property of AMZVs. We show the non-vanishing
property as the following theorem by using valuation of power sums which evaluated
by Thakur [T09a].

Theorem 3.2.1. For any s = (s1, . . . , sr) ∈ Nr and ϵ = (ϵ1, . . . , ϵr) ∈ (F×q )
r,

ζA(s; ϵ) are non-vanishing.

Proof. From (3.1.2), we can write ζA(s; ϵ) as follows.

ζA(s; ϵ) = ∑
d1>d2>⋯>dr≥0

ϵd1

1 ϵ
d2

2 ⋯ϵ
dr
r Sd1(s1)Sd2(s2)⋯Sdr(sr)

On the other hand, in [T09a], Thakur showed that

degθ Sd(k) > degθ Sd+1(k).
Therefore we have

∣ζA(s1, . . . , sr; ϵ1, . . . , ϵr)∣∞ = ∣ ∑
d1>d2>⋯>dr≥0

ϵd1

1 ϵ
d2

2 ⋯ϵ
dr
r Sd1(s1)Sd2(s2)⋯Sdr(sr)∣∞

= ∣Sr−1(s1)Sr−2(s2)⋯S0(sr)∣∞
≠ 0

by using degθ S0(k) = 0 and degθ Sd(k) < 0 (k > 0, d > 0) in [T09a, §2.2.3.]. Thus
ζA(s; ϵ) are non-vanishing. □

3.2.2. Sum-shuffle relation for AMZVs. In this section, we give sum-
shuffle relations for our ζA(s; ϵ). This kind of relations show that products of two
AMZVs are expressed by Fp-linear combination of AMZVs with preserving their
weights. From the relation, ζA(s; ϵ) form an Fp-algebra.

For the products of power sums Sd(s), the following formula was shown by
Chen [Chen15].

Proposition 3.2.2 ([Chen15, Theorem 3.1]). For s1, s2 ∈ N, we have

Sd(s1)Sd(s2) − Sd(s1 + s2) = ∑
0<j<s1+s2

q−1∣j

∆j
s1,s2Sd(s1 + s2 − j, j)

where

∆j
s1,s2 = (−1)

s1−1( j − 1
s1 − 1

) + (−1)s2−1( j − 1
s2 − 1

).(3.2.1)

The key idea to prove Proposition 3.2.2 is the following partial fraction decom-
position

1

as1bs2
= ∑

0<j<s1+s2

⎧⎪⎪⎨⎪⎪⎩

(−1)s1−1( j−1
s1−1)

as1+s2−j(a − b)j
+
(−1)s2−1( j−1

s2−1)
bs1+s2−j(a − b)j

⎫⎪⎪⎬⎪⎪⎭
for a, b ∈ A/{0}. By using the above decomposition, she obtained the following
formula in the proof of [Chen15, Theorem3.1]:

∑
a≠b∈A+

dega=deg b

1

as1bs2
= ∑

0<j<s1+s2
(q−1)∣j

⎧⎪⎪⎨⎪⎪⎩
∑

a,b∈A+
dega>deg b

(−1)s1−1( j−1
s1−1)

as1+s2−jbj
+ ∑

a,b∈A+
deg b>dega

(−1)s2−1( j−1
s2−1)

bs1+s2−jaj

⎫⎪⎪⎬⎪⎪⎭
.

(3.2.2)

Chen’s method is applied to prove the following lemma.
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Lemma 3.2.3. For s1, s2 ∈ N, ϵ1, ϵ2 ∈ F×q and d ∈ Z≥0, we have

Sd(s1; ϵ1)Sd(s2; ϵ2) − Sd(s1 + s2; ϵ1ϵ2) = ∑
0<j<s1+s2

q−1∣j

∆j
s1,s2Sd(s1 + s2 − j, j; ϵ1ϵ2,1)

(3.2.3)

Proof. We give a proof based on the idea in [Chen15].

Sd(s1; ϵ1)Sd(s2; ϵ2) − Sd(s1 + s2; ϵ1ϵ2)

= ∑
a∈Ad+

ϵd1
as1

∑
b∈Ad+

ϵd2
bs2
− Sd(s1 + s2; ϵ1ϵ2)

= ∑
a,b∈A+

d=dega>deg b≥0

(ϵ1ϵ2)d

as1bs2
+ ∑

a,b∈A+
d=deg b>dega≥0

(ϵ1ϵ2)d

bs2as1
+ ∑

a=b∈Ad+
d=dega=deg b

(ϵ1ϵ2)d

as1bs2

+ ∑
a≠b∈A+

d=dega=deg b

(ϵ1ϵ2)d

as1bs2
− Sd(s1 + s2; ϵ1ϵ2).

By (3.1.1), we have ∑ a=b∈A+
d=dega=deg b

(ϵ1ϵ2)d
as1bs2

= Sd(s1 + s2; ϵ1ϵ2) and thus

∑
a,b∈A+

d=dega>deg b≥0

(ϵ1ϵ2)d

as1bs2
+ ∑

a,b∈A+
d=deg b>dega≥0

(ϵ1ϵ2)d

bs2as1
+ ∑

a=b∈Ad+
d=dega=deg b

(ϵ1ϵ2)d

as1bs2

+ ∑
a≠b∈A+

d=dega=deg b

(ϵ1ϵ2)d

as1bs2
− Sd(s1 + s2; ϵ1ϵ2)

= Sd(s1, s2; ϵ1ϵ2,1) + Sd(s2, s1; ϵ1ϵ2,1) + ∑
a≠b∈A+

d=dega=deg b≥0

(ϵ1ϵ2)d

as1bs2
.

By (3.2.2), we have

∑
a≠b∈A+

d=dega=deg b≥0

(ϵ1ϵ2)d

as1bs2
= ∑

0<j<s1+s2
q−1∣j

⎧⎪⎪⎨⎪⎪⎩
∑

x,y∈A+
d=degx>deg y

(−1)s1−1( j−1
s1−1)(ϵ1ϵ2)

d

xs1+s2−jyj

+ ∑
x,y∈A+

d=deg y>degx

(−1)s2−1( j−1
s2−1)(ϵ1ϵ2)

d

ys1+s2−jxj

⎫⎪⎪⎬⎪⎪⎭

= ∑
0<j<s1+s2

q−1∣j

∆j
s1,s2Sd(s1 + s2 − j, j; ϵ1ϵ2,1).

Therefore the relation (3.2.3) is proved. □

Remark 3.2.4. In Lemma 3.2.3, coefficients ∆j
s1,s2 are independent of d.

Preceding to the next argument, we introduce an expression which is used in the
rest of this section. For any index s = (s1, s2, . . . , sr) ∈ Nr, we can write s = (s1, s′)
where s′ = (s2, . . . , sr) ∈ Nr (resp. ϵ = (ϵ1, . . . , ϵr) ∈ (F×q )r) and when r = 1, we set
s′ = ϕ (resp. ϵ′ = ϕ) and further Sd(s′; ϵ′) ∶= 1.
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Next we prepare the following lemma to show sum-shuffle relations for alter-
nating power sums in general depth.

Lemma 3.2.5. For a ∶= (a1, a2, . . . , ar) ∈ Nr, b ∶= (b1, b2, . . . , bs) ∈ Ns, ϵ ∶=
(ϵ1, ϵ2, . . . , ϵr) ∈ (F×q )r and λ ∶= (λ1, λ2, . . . , λs) ∈ (F×q )s, we may express the product
S<d(a; ϵ)S<d(b;λ) as follows:

S<d(a; ϵ)S<d(b;λ) =∑
i

fiS<d(ci1, . . . , cili ;µi1, . . . , µili)(3.2.4)

for some cij ∈ N, µij ∈ F×q so that ∑r
m=1 am +∑

s
n=1 bn = ∑

li
h=1 ch, ∏

r
m=1 ϵm∏

s
n=1 λn =

∏li
h=1 µh, li ≤ r + s and fi ∈ Fp which are independent of d for each i.

Proof. We proceed to prove the result by induction on dep(a) + dep(b)(=
r + s) > 2:

S<d(a; ϵ)S<d(b;λ)

= ( ∑
0≤m1<d

Sm1
(a; ϵ))( ∑

0≤n1<d
Sn1
(b;λ)) = ∑

0≤m1,n1<d
Sm1
(a; ϵ)Sn1

(b;λ)

= ∑
0≤n1<m1<d

Sm1(a; ϵ)Sn1(b;λ) + ∑
0≤m1<n1<d

Sm1(a; ϵ)Sn1(b;λ)

+ ∑
0≤n1=m1<d

Sm1(a; ϵ)Sn1(b;λ)

= ∑
0≤m1<d

(Sm1(a1; ϵ1)S<m1(a′; ϵ′) ∑
0≤n1<m1

Sn1(b;λ))

+ ∑
0≤n1<d

(Sn1(b1;λ1)S<n1(b′;λ
′) ∑

0≤m1<n1

Sm1(a; ϵ))

+ ∑
0≤m1=n1<d

Sm1(a1; ϵ1)S<m1(a′; ϵ′)Sn1(b1;λ1)S<n1(b′;λ
′)

= ∑
0≤m1<d

Sm1(a1; ϵ1)S<m1(a′; ϵ′)S<m1(b;λ)

+ ∑
0≤n1<d

Sn1(b1;λ1)S<n1(b′;λ
′)S<n1(a; ϵ)

+ ∑
0≤m1<d

Sm1(a1; ϵ1)S<m1(a′; ϵ′)Sm1(b1;λ1)S<m1(b′;λ
′)
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by applying induction hypothesis to the first, second series of power sums and
applying Lemma 3.2.3 to the third series in the right hand side of last equality, we
have

= ∑
0≤m1<d

Sm1(a1; ϵ1)∑
i

fiS<m1(ci1, . . . , cili ;µi1, . . . , µili)

+ ∑
0≤n1<d

Sn1(b1;λ1)∑
i

f ′iS<n1(c′i1, . . . , c′ili ;µ
′
i1, . . . , µ

′
ili)

+ ∑
0≤m1<d

⎛
⎝ ∑
0<j<a1+b1

q−1∣j

∆j
a1,b1

Sm1(a1 + b1 − j, j; ϵ1λ1,1) + Sm1(a1 + b1; ϵ1λ1)
⎞
⎠

⋅ S<m1(a′; ϵ′)S<m1(b′;λ
′)

= ∑
0≤m1<d

Sm1(a1; ϵ1)∑
i

fiS<m1(ci1, . . . , cili ;µi1, . . . , µili)

+ ∑
0≤n1<d

Sn1(b1;λ1)∑
i

f ′iS<n1(c′i1, . . . , c′ili ;µ
′
i1, . . . , µ

′
ili)

+ ∑
0≤m1<d

⎛
⎝ ∑
0<j<a1+b1

q−1∣j

∆j
a1,b1

Sm1(a1 + b1 − j; ϵ1λ1)S<m1(j; 1) + Sm1(a1 + b1; ϵ1λ1)
⎞
⎠

⋅ S<m1(a′; ϵ′)S<m1(b′;λ
′).

Again by applying induction hypothesis for S<m1(a′; ϵ′)S<m1(b′;λ
′), the above

quantity equals

= ∑
0≤m1<d

∑
i

fiSm1(a1, ci1, . . . , cili ; ϵ1, µi1, . . . , µili)

+ ∑
0≤n1<d

∑
i

f ′iSn1(b1, c′i1, . . . , c′ili ;λ1, µ
′
i1, . . . , µ

′
ili)

+ ∑
0≤m1<d

∑
0<j<a1+b1

q−1∣j

∆j
a1,b1∑

i

giSm1(a1 + b1 − j, ei1, . . . , eili ; ϵ1λ1, ηi1, . . . , ηili)

+ ∑
0≤m1<d

∑
i

g′iSm1(a1 + b1, e′i1, . . . , e′ili ; ϵ1λ1, η
′
i1, . . . , η

′
ili)

for some gi, g′i ∈ Fp. Therefore the product S<d(a; ϵ)S<d(b;λ) is expressed by an
Fp-linear combination of S<d(−;−) with the desired conditions. □

To prove the sum-shuffle result in Theorem 3.2.8 the following is the key ingre-
dient.

Theorem 3.2.6. For a ∶= (a1, a2, . . . , ar) ∈ Nr, b ∶= (b1, b2, . . . , bs) ∈ Ns, ϵ ∶=
(ϵ1, ϵ2, . . . , ϵr) ∈ (F×q )r and λ ∶= (λ1, λ2, . . . , λs) ∈ (F×q )s, we may express the product
Sd(a; ϵ)Sd(b;λ) as follows:

Sd(a; ϵ)Sd(b;λ) =∑
i

f ′iSd(ci1, . . . , cili ;µi1, . . . , µili)(3.2.5)

for some cij ∈ N, µij ∈ F×q so that ∑r
m=1 am +∑

s
n=1 bn = ∑

li
h=1 cih, ∏

r
m=1 ϵm∏

s
n=1 λn =

∏li
h=1 µih, li ≤ r + s and f ′i ∈ Fp for each i.

Proof. From the decomposition which is described in (3.1.1), we have

Sd(a; ϵ)Sd(b;λ) = Sd(a1; ϵ1)S<d(a′; ϵ′)Sd(b1;λ1)S<d(b′;λ′).
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By using the equation (3.2.4) to the product S<d(a′; ϵ′)S<d(b′;λ′), we have

Sd(a; ϵ)Sd(b;λ) = Sd(a1; ϵ1)Sd(b1;λ1)
⎛
⎝∑i

fiS<d(ci1, . . . , cili ;µi1, . . . , µili)
⎞
⎠

Using the equation (3.2.3), the quantity above is equal to

= ∑
0<j<a1+b1

q−1∣j

⎛
⎝
∆j

a1,b1
Sd(a1 + b1 − j, j; ϵ1λ1,1) + Sd(a1 + b1; ϵ1λ1)

⎞
⎠

⋅
⎛
⎝∑i

fiS<d(ci1, . . . , cili ;µi1, . . . , µili)
⎞
⎠

= ∑
0<j<a1+b1

q−1∣j

⎛
⎝
∆j

a1,b1
Sd(a1 + b1 − j; ϵ1λ1)S<d(j; 1) + Sd(a1 + b1; ϵ1λ1)

⎞
⎠

⋅
⎛
⎝∑i

fiS<d(ci1, . . . , cili ;µi1, . . . , µili)
⎞
⎠

= ∑
0<j<a1+b1

q−1∣j

∑
i

fi∆
j
a1,b1

Sd(a1 + b1 − j; ϵ1λ1)

⋅ S<d(j; 1)S<d(ci1, . . . , cili ;µi1, . . . , µili)
+ ∑

0<j<a1+b1
q−1∣j

∑
i

fiSd(a1 + b1; ϵ1λ1)S<d(ci1, . . . , cili ;µi1, . . . , µili).

Applying (3.2.4) to the product S<d(j; 1)S<d(ci1, . . . , cili ;µi1, . . . , µili), we have

Sd(a; ϵ)Sd(b;λ) = ∑
0<j<a1+b1

q−1∣j

∑
i

fi∆
j
a1,b1

Sd(a1 + b1 − j; ϵ1λ1)

⋅
⎛
⎝∑m

gmS<d(em1, . . . , emnm ;νm1, . . . , νmnm)
⎞
⎠

+ ∑
0<j<a1+b1

q−1∣j

∑
i

fiSd(a1 + b1; ϵ1λ1)S<d(ci1, . . . , cili ;µi1, . . . , µili)

= ∑
0<j<a1+b1

q−1∣j

∑
i,m

figm∆j
a1,b1

Sd(a1 + b1 − j, em1, . . . , emnm ; ϵ1λ1, νm1, . . . , νmnm)

+ ∑
0<j<a1+b1

q−1∣j

∑
i

fiSd(a1 + b1, ci1, . . . , cili ; ϵ1λ1, µi1, . . . , µili).

Thus we show that Sd(a; ϵ)Sd(b;λ) is expressed by with the desired formulation.
□

Remark 3.2.7. In Theorem 3.2.6, coefficients fi ∈ Fp are independent of d by
Lamma 3.2.5.

The main result on sum-shuffle relations for AMZVs are the following.
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Theorem 3.2.8. For a ∶= (a1, a2, . . . , ar) ∈ Nr, b ∶= (b1, b2, . . . , bs) ∈ Ns, ϵ ∶=
(ϵ1, ϵ2, . . . , ϵr) ∈ (F×q )r and λ ∶= (λ1, λ2, . . . , λs) ∈ (F×q )s, we may express the product
ζA(a; ϵ)ζA(b;λ) as follows:

ζA(a; ϵ)ζA(b;λ) =∑
i

f ′′i ζA(ci1, . . . , cili ;µi1, . . . , µili)(3.2.6)

for some cij ∈ N and µij ∈ F×q so that ∑r
m=1 am+∑

s
n=1 bn = ∑

li
h=1 cih, ∏

r
m=1 ϵm∏

s
n=1 λn =

∏li
h=1 µih, li ≤ r + s and f ′′i ∈ Fp for each i.

Proof. By the set theoretical inclusion-exclusion principle, we can express
∑d≥0 Sd(a; ϵ)Sd(b;λ) as follows:

∑
d≥0

Sd(a; ϵ)Sd(b;λ)

=
⎛
⎝∑d1≥0

Sd1(a; ϵ)
⎞
⎠
⎛
⎝∑e1≥0

Se1(b;λ)
⎞
⎠
− ∑

d1>e1≥0
Sd1(a; ϵ)Se1(b;λ) − ∑

e1>d1≥0
Se1(b;λ)Sd1(a; ϵ)

=
⎛
⎝∑d1≥0

Sd1(a; ϵ)
⎞
⎠
⎛
⎝∑e1≥0

Se1(b;λ)
⎞
⎠
− ∑

d1>0
Sd1(a; ϵ)S<d1(b;λ) − ∑

e1>0
Se1(b;λ)S<e1(a; ϵ)

=
⎛
⎝∑d1≥0

Sd1(a; ϵ)
⎞
⎠
⎛
⎝∑e1≥0

Se1(b;λ)
⎞
⎠

− ∑
d1>0

Sd1
(a1; ϵ1)S<d1

(a′; ϵ′)S<d1
(b;λ) − ∑

e1>0
Se1(b1;λ1)S<e1(b′;λ

′)S<e1(a; ϵ).

By (3.2.4), the above is equal to

=
⎛
⎝∑d1≥0

Sd1(a; ϵ)
⎞
⎠
⎛
⎝∑e1≥0

Se1(b;λ)
⎞
⎠
− ∑

d1>0
∑
i

giSd1(a1,mi1, . . . ,mili ; ϵ1, µi1, . . . , µili)

− ∑
e1>0
∑
i

hiSe1(b1, ni1, . . . , nili ;λ1, ηi1, . . . , ηili).

for some gi, hi ∈ Fp. Combining the expression of Sd(a; ϵ)Sd(b;λ) in (3.2.5) with
the above, we have the following identity

∑
d≥0
∑
i

f ′iSd(ci1, . . . , cili ;µi1, . . . , µili) = ∑
d1≥0

Sd1(a; ϵ) ∑
e1≥0

Se1(b;λ)

− ∑
d1>0
∑
i

giSd1(a1,mi1, . . . ,mili ; ϵ1, µi1, . . . , µili)

− ∑
e1>0
∑
i

hiSe1(b1, ni1, . . . , nili ;λ1, ηi1, . . . , ηili).

The coefficients f ′i , gi, hi are independent of d by Theorem 3.2.6. Thus by (3.1.2),
we obtain

∑
i

f ′iζA(ci1, . . . , cili ;µi1, . . . , µili) = ζA(a; ϵ)ζA(b;λ)

−∑
i

giζA(a1,mi1, . . . ,mili ; ϵ1, µi1, . . . , µili)

−∑
i

hiζA(b1, ni1, . . . , nili ;λ1, ηi1, . . . , ηili).
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Thus we have

ζA(a; ϵ)ζA(b;λ) =∑
i

f ′iζA(ci1, . . . , cili ;µi1, . . . , µili)

+∑
i

giζA(a1,mi1, . . . ,mili ; ϵ1, µi1, . . . , µili)

+∑
i

hiζA(b1, ni1, . . . , nili ;λ1, ηi1, . . . , ηili).

By Lemma 3.2.5 and Theorem 3.2.6, the indices and coefficients in the above equa-
tion satisfy desired conditions.

Therefore we obtain the sum-shuffle relation for ζA(s; ϵ). □

By Theorem 3.2.8, the Fp-linear span of our AMZVs form an Fp-algebra.

Examples 3.2.9. For some q, (a; ϵ) and (b;λ), the product ζA(a; ϵ)ζA(b;λ) is
explicitly computed as follows.

When q = 3, (a; ϵ) = (2; 1) and (b;λ) = (1,2; 2,2),

ζA(2; 1)ζA(1,2; 2,2) = ζA(3,2; 2,2) − ζA(1,2,2; 2,2,1) + ζA(1,2,2; 2,1,2)
+ ζA(1,4; 2,2) + ζA(2,1,2; 1,2,2)

When q = 5, (a; ϵ) = (2; 3) and (b;λ) = (3; 1),

ζA(2; 3)ζA(3; 1) = ζA(5; 3) + ζA(2,3; 3,1) + ζA(3,2; 1,3).

Later we give an explicit sum-shuffle relation for a product of any depth 2
AMZV and depth 1 AMZV in Appendix.

3.3. Period interpretation of AMZVs

In this section, we show that each ζA(s; ϵ) appears as a period of certain pre-
t-motive basing on the idea in [AT09].

We denote the ring k(t)[σ,σ−1] the non-commutative Laurent polynomial ring
in σ with coefficients in k(t) subject to the following relations,

σf = f (−1)σ, f ∈ k(t).

We denote E to be the ring consisting of formal power series
∞
∑
n=0

ant
n ∈ k[[t]]

such that
lim
n→∞

n
√
∣an∣∞ = 0, [k∞(a0, a1, . . .) ∶ k∞] <∞.

We note that the former condition guarantees that such a series is an entire function,
that is, it has an infinite radius of convergence with respect to the absolute value
∣ ⋅ ∣∞ thus E ⊂ T. The latter condition guarantees that for any t0 ∈ k∞ the value of
such a series at t = t0 belongs again to k∞. We note that

Ω ∈ E.(3.3.1)

Therefore Ω ∈ T.
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3.3.1. Review of pre-t-motive. First we recall the notions of pre-t-motives.
For more detail, see [P08].

Definition 3.3.1 ([P08, §3.2.1]). A pre-t-motive M is a left k(t)[σ,σ−1]-
module that is finite dimensional over k(t).

Let M be a pre-t-motive dimension r over k(t) and Φ be representing matrix
of multiplication by σ on M with respect to a given basis of m of M , then M is
rigid analytically trivial if and only if there is a matrix Ψ ∈ GLr(L) (L is a quotient
field of T) satisfying

Ψ(−1) = ΦΨ.
Here we define Ψ(−1) by (Ψ(−1))ij ∶= (Ψij)(−1). Such matrix Ψ is called rigid analytic
trivialization of Φ and if all the entries of Ψ are convergent at t = θ, and entries of
Ψ∣t=θ are called periods of M .

Anderson and Thakur obtained period interpretation of MZVs in [AT09], that
is, they showed that MZVs appear as entries of Ψ∣t=θ for Ψ which is a rigid analytic
trivialization of the rigid analytically trivial pre-t-motive with dimension r + 1 over
k(t) multiplication by σ is represented by the following matrix Φ:

Φ ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

(t − θ)s1+⋯+sr 0 0 ⋯ 0 ⎞
⎟⎟⎟⎟⎟⎟
⎠

(t − θ)s1+⋯+srH(−1)s1−1 (t − θ)s2+⋯+sr 0 ⋯ 0

0 (t − θ)s2+⋯+srH(−1)s2−1 ⋱ ⋮
⋮ ⋱ (t − θ)sr 0

0 ⋯ 0 (t − θ)srH(−1)sr−1 1 .

They obtained the rigid analytic trivialization of Φ as the following matrix:

Ψ ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ωs1+⋯+sr ⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

L(s1)Ωs2+⋯+sr Ωs2+⋯+sr

⋮ L(s2)Ωs3+⋯+sr ⋱
⋮ ⋮ ⋱ ⋱

L(s1, . . . , sr−1)Ωsr L(s2, . . . .sr−1)Ωsr ⋱ Ωsr

L(s1, . . . , sr) L(s2, . . . , sr) ⋯ ⋯ L(sr) 1 .

Here we define

L(s1, . . . , sr) ∶= ∑
d1>⋯>dr≥0

(Hs1−1Ω
s1)(d1)⋯(Hsr−1Ω

sr)(dr).

By using Ω∣t=θ = π̃−1 and (3.1.4), we obtain the following for 1 ≤ i ≤ j ≤ r:

L(si, . . . , sj)∣t=θ =
Γsi⋯Γsj

π̃si+⋯+sj ∑
di>⋯>dj≥0

Sdi(si)⋯Sdj(sj) =
Γsi⋯Γsj

π̃si+⋯+sj
ζA(si, . . . , sj).

Therefore it is known that MZVs are periods of the rigid analytically trivial pre-t-
motive M defined by Φ.

3.3.2. AMZVs as periods. Next we give a period interpretation of AMZVs
.

Definition 3.3.2. Given γi ∈ Fq
× (i = 1, . . . , r), a fixed (q−1)st root of ϵi ∈ F×q ,

we let M be the pre-t-motive such that dimk(t)M = r+1 and for the fixed k(t)-basis
m of M which satisfy

σm = Φm
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where Φ is the following matirix:

⎛
⎜⎜⎜⎜⎜⎜
⎝

(t − θ)s1+⋯+sr 0 0 ⋯ 0 ⎞
⎟⎟⎟⎟⎟⎟
⎠

γ
(−1)
1 (t − θ)s1+⋯+srH(−1)s1−1 (t − θ)s2+⋯+sr 0 ⋯ 0

0 γ
(−1)
2 (t − θ)s2+⋯+srH(−1)s2−1 ⋱ ⋮

⋮ ⋱ (t − θ)sr 0

0 ⋯ 0 γ
(−1)
r (t − θ)srH(−1)sr−1 1 .

Here Hsi−1 ∈ A[t] is the Anderson-Thakur polynomial.

For the above pre-t-motive, we can give a matrix Ψ which has a relation with
Φ as the following proposition.

Proposition 3.3.3. For the pre-t-motive M defined in Definition 3.3.2, there
exists Ψ ∈ GLr+1(k[t]) so that it satisfies Ψ(−1) = ΦΨ.

Proof. For the matrix Φ in Definition 3.3.2, we show that the matrix Ψ ∈
GLr+1(k[t]) satisfies Ψ(−1) = ΦΨ and which is given as follows:

Ψ ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ωs1+⋯+sr ⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

γ1L(s1)Ωs2+⋯+sr Ωs2+⋯+sr

⋮ γ2L(s2)Ωs3+⋯+sr ⋱
⋮ ⋮ ⋱ ⋱

γ1⋯γr−1L(s1, . . . , sr−1)Ωsr γ2⋯γr−1L(s2, . . . .sr−1)Ωsr ⋱ Ωsr

γ1⋯γrL(s1, . . . , sr) γ2⋯γrL(s2, . . . , sr) ⋯ ⋯ γrL(sr) 1 .

(3.3.2)

Here we define the following:

L(s1, . . . , sr) ∶= L(s1, . . . , sr; ϵ1, . . . , ϵr)

∶= ∑
d1>⋯>dr≥0

ϵd1

1 (Hs1−1Ω
s1)(d1)⋯ϵdr

r (Hsr−1Ω
sr)(dr).

We also note that the following equations hold by their definitions.

γ
(−1)
i =ϵ−1i γi,(3.3.3)

Ω(−1) =(t − θ)Ω,(3.3.4)

L(s1, . . . , sr)(−1) =(
r

∏
n=0

ϵn)L(s1, . . . , sr)(3.3.5)

+ (
r−1
∏
n=0

ϵn)(ΩsrHsr−1)(−1)L(s1, . . . , sr−1).

Now we show the validity of the equation

Ψ(−1) = ΦΨ

by comparing their entries.
For 1 ≤ i ≤ r + 1, and i ≤ j ≤ r + 1, it is obvious that (i, j)-th entry of the left

hand side Ψ
(−1)
ij is equal to the (i, j)-th entry of the right hand side (ΦΨ)ij by

(3.3.4).
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In the rest of this proof, we set ∏j
n=i γn = 1 for 0 ≤ j < i since it is empty

product. For 2 ≤ i ≤ r and 1 ≤ j < i, Ψ(−1)ij is transformed as follows.

Ψ
(−1)
ij =(

i−1
∏
n=j
(γn)(−1))(t − θ)si+⋯+srΩsi+⋯+srL(sj , . . . , si−1)(−1)

by using the equation (3.3.5),

=(
i−1
∏
n=j

γ(−1)n ){(t − θ)Ω}si+⋯+sr(
i−1
∏
n=j

ϵn)L(sj , . . . , si−1)

+ (
i−1
∏
n=j

γ(−1)n ){(t − θ)Ω}si+⋯+sr(
i−2
∏
n=j

ϵn)(Ωsi−1Hsi−1−1)(−1)L(sj , . . . , si−2)

by using the equation (3.3.3),

=(
i−1
∏
n=j

γn){(t − θ)Ω}
si+⋯+sr

L(sj , . . . , si−1)

+ γ(−1)i−1 (
i−2
∏
n=j

γn){(t − θ)Ω}
si+⋯+sr(Ωsi−1Hsi−1−1)(−1)L(sj , . . . , si−2)

by using the equation (3.3.4),

=(
i−1
∏
n=j

γn){(t − θ)Ω}
si+⋯+sr

L(sj , . . . , si−1)

+ γ(−1)i−1 (
i−2
∏
n=j

γn){(t − θ)Ω}
si−1+⋯+sr(Hsi−1−1)(−1)L(sj , . . . , si−2).

On the other hand, (ΦΨ)ij is the product of i-th row of Φ

i−2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

( 0 ⋯ 0 γ
(−1)
i−1 (t − θ)

si−1+⋯+srH
(−1)
si−1−1 (t − θ)si+⋯+sr 0 ⋯ 0 )

and j-th column of Ψ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
j − 1⋮

0

(∏j−1
n=j γn)Ω

sj+⋯+sr

(∏j
n=j γn)Ω

sj+1+⋯+srL(sj)
⋮

(∏r−1
n=j γn)ΩsrL(sj , . . . , sr−1)

(∏r
n=j γn)L(sj , . . . , sr) .

(3.3.6)
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That is,

(ΦΨ)ij =γ(−1)i−1 (t − θ)
si−1+⋯+srH

(−1)
si−1−1(

i−2
∏
n=j

γn)Ωsi−1+⋯+srL(sj , . . . , si−2)

+ (t − θ)si+⋯+sr(
i−1
∏
n=j

γn)Ωsi+⋯+srL(sj , . . . , si−1).

Thus we have (ΦΨ)ij = Ψ(−1)ij . □

As we will see in Lemma 3.4.3 later, the matrix Ψ in (3.3.2) belongs to Matr+1(T)
then we obtain that Ψ ∈ GLr+1(L) from (3.3.1) and detΨ = Ω∑

r
i=1 di ≠ 0 where

di = si + ⋯ + sr. Therefore Ψ is a rigid analytic trivialization of Φ and we call
each entry of Ψ∣t=θ a period of M . Thus we have the following result by the above
proposition.

Theorem 3.3.4. For s = (s1, . . . , sr) ∈ Nr and ϵ = (ϵ1, . . . , ϵr) ∈ (F×q )r, ζA(s; ϵ)
are periods of the pre-t-motive M in Definition 3.3.2.

Proof. By using Ω∣t=θ = π̃−1 and (3.1.4), we obtain

L(s)∣t=θ =
Γs1⋯Γsr

π̃s1+⋯+sr ∑
d1>⋯>dr≥0

ϵd1

1 ⋯ϵ
dr
r Sd1(s1)⋯Sdr(sr)(3.3.7)

= Γs1⋯Γsr

π̃s1+⋯+sr
ζA(s; ϵ).

Therefore by the matrix Ψ in (3.3.2), ζA(s; ϵ) are periods of the pre-t-motive M in
Definition 3.3.2. □

3.4. Linear independence of monomials of AMZVs

In this section, we show that AMZVs form an weight-graded algebra as an
application of their period interpretation in the former section. The proof is shown
along the method which was invented by Chang [C14].

3.4.1. ABP-criterion. In our proof, we need to use ABP criterion (ABP
stands for Anderson-Brownawell-Papanikolas), which was introduced in [ABP04].

The ABP criterion is stated as the following theorem.

Theorem 3.4.1 ([ABP04, Theorem 3.1.1]). Fix Φ ∈Matd(k[t]) so that detΦ =
c(t − θ)s for some c ∈ k

×
and some s ∈ Z≥0. Suppose that there exists a vector

ψ ∈Matd×1(E) satisfies
ψ(−1) = Φψ.

For every ρ ∈ Mat1×d(k) such that ρψ(θ) = 0, there is a P ∈ Mat1×d(k[t]) so that
P (θ) = ρ and Pψ = 0.

From Proposition 3.3.3, it is a simple matter to verify that the matrices Φ
in Definition 3.3.2 satisfy the conditions. We thus only need to show that Ψ ∈
Matr+1(E). This is necessary in applying Theorem 3.4.1 to our AMZVs. We use
the following proposition which was given in [ABP04].

Proposition 3.4.2 ([ABP04, Proposition 3.1.3]). Suppose

Φ ∈Matl(k[t]), ψ ∈Matl×1(T)
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such that

detΦ∣t=0 ≠ 0, ψ(−1) = Φψ.

Then

ψ ∈Matl×1(E).

By using this proposition, we prove the following lemma whose proof is based
on [C14, Lemma 5.3.1].

Lemma 3.4.3. Let Ψ ∈ GLr+1(k[t]) be as in Proposition 3.3.3. Then the fol-
lowing holds:

Ψ ∈Matr+1(E).

Proof. To apply Proposition 3.4.2, we first prove that Ψ ∈ Matr+1(T). By
(3.3.1), Ω ∈ T thus it is sufficient to show that each (∏j

n=i γn)L(s; ϵ) belongs to T
where s = (si, . . . , sj) and ϵ = (ϵi, . . . , ϵj) for 1 ≤ i ≤ j ≤ r. When ∣t∣∞ ≤ 1, we have
the following for ∑m

n=0 ant
n ∈ k[t]:

∣∣
m

∑
n=0

ant
n∣∣∞ = max

m≥n≥0
{∣an∣∞} ≥ max

m≥n≥0
{∣antn∣∞} ≥ ∣

m

∑
n=0

ant
n∣∞ ≥ 0.

Thus if ∣∣∑m
n=0 ant

n∣∣∞ → 0 as m→∞, ∑∞n=0 antn converges. Then for the following
series

⎛
⎝

j

∏
n=i

γn
⎞
⎠
L(s; ϵ) = ∑

di>⋯>dj≥0
γiϵ

di

i (Hsi−1Ω
si)(di)⋯γjϵ

dj

j (Hsj−1Ω
sj)(dj)

= Ωsi+⋯+sj ∑
di>⋯>dj≥0

(γiϵdi

i )
1

qdi H
(di)
si−1⋯(γjϵ

dj

j )
1

q
dj H

(dj)
sj−1

((t − θq)⋯(t − θqdi ))si⋯((t − θq)⋯(t − θqdj ))sj
,

we need to show that when ∣t∣∞ ≤ 1,

∣∣(γiϵdi

i )
1

qdi H
(di)
si−1⋯(γjϵ

dj

j )
1

q
dj H

(dj)
sj−1∣∣∞

∣∣((t − θq)⋯(t − θqdi ))si⋯((t − θq)⋯(t − θqdj ))sj ∣∣∞
→ 0

as 0 ≤ dj < ⋯ < di →∞ (di goes to infinity preserving 0 ≤ dj < ⋯ < di). By ϵn ∈ F×q
and γn ∈ Fq

×
, we have ∣(γnϵdn

n )
1

qdn ∣∞ = 1 and thus

∣∣(γnϵdn
n )

1

qdn H
(dn)
sn−1∣∣∞ = ∣∣H

(dn)
sn−1∣∣∞.(3.4.1)

Moreover, by ∣t∣∞ < ∣θ∣∞ we have ∣t − θq
n

∣∞ = ∣θq
n

∣∞ and then

∣∣((t − θq)⋯(t − θq
di ))si⋯((t − θq)⋯(t − θq

dj ))sj ∣∣∞ = ∣(θq⋯θq
di )si⋯(θq⋯θq

dj )sj ∣∞.

For each i ≤ n ≤ j, we have

1

∣θq+⋯+qdn ∣sn∞
= 1

qsn(qdn+qdn−1+⋯+q)
= 1

qqsn(qdn−1+qdn−2+⋯+1)
= qqsn/(q−1)

(qqsn/(q−1))qdn
.

(3.4.2)
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By using (3.1.5), (3.4.1) and (3.4.2) we have

∣∣(γiϵdi

i )
1

qdi H
(di)
si−1⋯(γjϵ

dj

j )
1

q
dj H

(dj)
sj−1∣∣∞

∣∣((t − θq)⋯(t − θqdi ))si⋯((t − θq)⋯(t − θqdj ))sj ∣∣∞

= (∣∣Hsi−1∣∣q
di

∞ /∣θq+⋯+q
di ∣si∞)⋯(∣∣Hsj−1∣∣q

dj

∞ /∣θq+⋯+q
dj ∣sj∞)

≤ ((q
si−1
q−1 q)

qdi

q
qsi
q−1 /(q

qsi
q−1 )

qdi

)⋯((q
sj−1
q−1 q)

qdj

q
qsj
q−1 /(q

qsj
q−1 )

qdj

)

= q
q

q−1 (si+⋯+sj)(q−si−
1

q−1 )q
di⋯(q−sj−

1
q−1 )q

dj
.

It is clear that (q−si−
1

q−1 )q
di⋯(q−sj−

1
q−1 )q

dj → 0 as 0 ≤ dj < ⋯ < di →∞.
Thus we obtain the desired conclusion and therefore

Ψ ∈Matr+1(T).(3.4.3)

Now we complete the proof. Let ψi ∈ Matr+1×1(T) (1 ≤ i ≤ r + 1) be the
column of the matrix Ψ. Then by using Proposition 3.3.3, we can show that Φ ∈
Matr+1(k[t]) in Definition 3.3.2 and ψi satisfy ψ(−1)i = Φψi for each i. Furthermore,
Φ satisfies detΦ∣t=0 = (−θ)∑

r
i=1 di ≠ 0 where di = si + ⋯ + sr. Thus we may apply

Proposition 3.4.2 to Φ and ψi and therefore we obtain

Ψ ∈Matr+1(E).

□

3.4.2. MZ property for AMZVs. First we verify that AMZVs satisfy the
following lemma which is alternating analogue of MZ property in [C14].

Lemma 3.4.4. For a given AMZV ζA(s; ϵ) with wt(s) = w and dep(s) = r, there
exists Φ ∈Matr+1(k[t]) and ψ ∈Mat(r+1)×1(E) with r ≥ 1 such that:

(i) ψ(−1) = Φψ and Φ satisfies the condition of Theorem 3.4.1;
(ii) the last column of Φ is of the form (0, . . . ,0,1)tr;
(iii) for some a ∈ F×q and b ∈ k×, ψ(θ) is of the form with specific first and last

entries

ψ(θ) =
⎛
⎝

1

π̃w
, . . . , a

bζA(s; ϵ)
π̃w

⎞
⎠

tr

;

(iv) for any N ∈ N and some c ∈ F×q , ψ(θq
N

) is of the form

ψ(θq
N

) =
⎛
⎝
0, . . . ,0, acN(bζA(s; ϵ)

π̃w
)
qN⎞
⎠

tr

.

Proof. We may take matrices Φ ∈ Matr+1(k[t]) and Ψ ∈ Matr+1(E) (r ≥ 1)
for each ζA(s; ϵ) with wt(s) = w and dep(s) = r as in Definition 3.3.2 and (3.3.2)
respectively. Let us denote ψi ∈Mat(r+1)×1(E) (1 ≤ i ≤ r + 1) the i-th column of Ψ.
From Definition 3.3.2, Proposition 3.3.3 and Lemma 3.4.3, it is evident that Φ and
each ψi satisfy (i)-(iii). Thus it is enough to check the condition (iv) for each ψi.
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For each i (1 ≤ i ≤ r), we put

L(s)i ∶= ∑
di>⋯>dr≥0

ϵdi

i ⋯ϵ
dr
r (ΩsiHsi−1)(di)⋯(ΩsrHsr−1)(dr),

L(s)i,≥N ∶= ∑
di>⋯>dr≥N

ϵdi

i ⋯ϵ
dr
r (ΩsiHsi−1)(di)⋯(ΩsrHsr−1)(dr),

L(s)i,<N ∶= ∑
di>⋯>dr
dr<N

ϵdi

i ⋯ϵ
dr
r (ΩsiHsi−1)(di)⋯(ΩsrHsr−1)(dr).

It is obvious that L(s)i = L(s)i,≥N+L(s)i,<N . By the definition, Ω has simple zero at
t = θq

N

and its (si+⋯+sr)-th power has si+⋯+sr order of zero at t = θq
N

while the
denominator of each term in L(s)i,<N has at most si+⋯+sr−1 order of zero at t = θq

N

.
Then we have L(s)i,<N ∣t=θqN = 0 and thus L(s)i∣t=θqN = L(s)i,≥N ∣t=θqN . Here we
note that L(s)i,≥N ∣t=θqN converges because of both Ωsi+⋯+sr and denominator of
each term has si +⋯+ sr order of zero at t = θq

N

. We have the following equalities:

L(s)i∣t=θqN = L(s)i,≥N ∣t=θqN = ∑
di>⋯>dr≥N

ϵdi

i ⋯ϵ
dr
r {(ΩsiHsi−1)(di)⋯(ΩsrHsr−1)(dr)}∣t=θqN

= ∑
di>⋯>dr≥0

ϵdi+N
i ⋯ϵdr+N

r {(ΩsiHsi−1)(di+N)⋯(ΩsrHsr−1)(dr+N)}∣t=θqN

= ϵNi ⋯ϵNr ∑
di>⋯>dr≥0

ϵdi

i ⋯ϵ
dr
r {(ΩsiHsi−1)(di+N)⋯(ΩsrHsr−1)(dr+N)}∣t=θqN

= ϵNi ⋯ϵNr ( ∑
di>⋯>dr≥0

ϵdi

i ⋯ϵ
dr
r {(ΩsiHsi−1)(di)⋯(ΩsrHsr−1)(dr)}∣t=θ)

qN

.

Let (ΩsiHsi−1)(di)⋯(ΩsrHsr−1)(dr) = ∑n≥0 ant
n ∈ C∞[[t]], then the last equality in

the above is shown by the following:

{(∑
n≥0

ant
n)
(N)
}∣t=θqN = ∑

n≥0
aq

N

n θnq
N

= {(∑
n≥0

ant
n)∣t=θ}

qN

.

Thus we have

L(s)i∣t=θqN = ϵNi ⋯ϵNr L(s)
qN

i .

Therefore by using Ω∣t=θqN = 0, (3.3.6) and (3.3.7), indeed we obtain

ψi(θq
N

) =
⎛
⎝
0, . . . ,0, acN(bζA(si; ϵi)

π̃wi
)
qN⎞
⎠

tr

where si = (si, . . . , sr), ϵi = (ϵi, . . . , ϵr), wi = wt(si), a = ∏r
j=i γj , b = Γsi⋯Γsr and

c =∏r
j=i ϵ

j for each i. □

Next we show that monomials of AMZVs also satisfy Lemma 3.4.4 by using the
same method in proof of [C14, Proposition 3.4.4].

Proposition 3.4.5. We let ζA(s1; ϵ1), . . . , ζA(sn; ϵn) AMZVs with weights w1,

. . . ,wn respectively and let m1, . . . ,mn ∈ Z≥0. Then there exist matrices Φ ∈Matd(k[t])
and ψ ∈ Matd×1(E) with d ≥ 2 so that (Φ, ψ, ζA(s1; ϵ1)m1⋯ζA(sn; ϵn)mn) satisfies
(i)-(iv) in Lemma 3.4.4.
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Proof. We take triple (Φi, ψi, ζA(si; ϵi)) which satisfies Lemma 3.4.4 for each
i. Then we consider the Kronecker product ⊗ (See [S05, Chapter 8]) of Φi and ψi

respectively as following:

Φ ∶= Φ⊗m1

1 ⊗⋯⊗Φ⊗mn
n , ψ ∶= ψ⊗m1

1 ⊗⋯⊗ ψmn
n .

By our assumption, (Φi, ψi, ζA(si; ϵi)) satisfy Lemma 3.4.4 and thus by using the
property of Kronecker product which involves matrix multiplication (cf. [S05,
Theorem 7.7]), the triple (Φ, ψ, ζA(s1; ϵ1)m1⋯ζA(sn; ϵn)mn) does so. □

Definition 3.4.6. Let ζA(s1; ϵ1), . . . , ζA(sn; ϵn) be AMZVs of wt(si) = wi (i =
1, . . . , n). For m1, . . . ,mn ∈ Z≥0 not all zero, we define the total weight of the
monomial ζA(s1; ϵ1)m1⋯ζA(sn; ϵn)mn as

n

∑
i=1
miwi.

For w ∈ N, we denote AZw the set of monomials of AMZVs with total weight w.

We note that AZw is finite set.
Now we prove the linear independence of monomials of AMZVs.

Theorem 3.4.7. Let w1, . . . ,wl ∈ N be distinct. We suppose that Vi is a k-
linearly independent subset of AZwi for i = 1, . . . , l. Then the following union

{1}
l

⋃
i=1
Vi

is a linearly independent set over k, that is, there are no nontrivial k-linear relation
among elements of {1}⋃l

i=1 Vi.

Proof. We may assume that wl > ⋯ > w1 without loss of generality. For each
i = 1, . . . , l, AZwi is a finite set by definition and thus its subset Vi is also finite.
Let Vi consist of {Zi1, . . . , Zimi} where Zij ∈ AZwi(j = 1, . . . ,mi) are the same total
weight wi. The proof is by induction on weight wl.

We require on the contrary that {1}⋃l
i=1 Vi is k-linearly dependent set. Then

we may also assume that there are nontrivial k-linear relations

a0 ⋅ 1 + a11Z11 +⋯ + a1m1Z1m1 +⋯ + al1Zl1 +⋯ + alml
Zlml

= 0,

we may take a0, a11, . . . , alml
∈ k with ali ≠ 0 for some i = 1, . . . ,ml.

We proceed our proof by assuming the existence of nontrivial k-linear relations
between Vl and {1}⋃l−1

i=1 Vi.
For 1 ≤ i ≤ l and 1 ≤ j ≤ ml, by combining Proposition 3.3.3 with Proposition

3.4.5, there exist the matrices

Φij ∈Matdij(k[t]) and ψij ∈Matdij×1(E)(3.4.4)

so that dij ≥ 2 and each (Φij , ψij , Zij) satisfy Lemma 3.4.4.
For the matrix Φij and the column vector ψij , we define the following block

diagonal matrix and the column vector

Φ̃ ∶=
l

⊕
i=1
(
mi

⊕
j=1
(t − θ)wl−wiΦij) and ψ̃ ∶=

l

⊕
i=1
(
mi

⊕
j=1

Ωwl−wiψij).

In this proof, we define the direct sum of any column vectors v1, . . . ,vm whose
entries belong to C∞((t)) by ⊕m

i=1 vi ∶= (vtr
1 , . . . ,v

tr
m)tr.
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By the requirement, {1}⋃l
i=1 Vi is a linearly dependent over k. Thus there

exists a nonzero vector

ρ = (v11, . . . ,v1m1 , . . . ,vl1, . . . ,vlml
)

such that

ρ ⋅ (ψ̃∣t=θ) = ρ ⋅
l

⊕
i=1

mi

⊕
j=1

⎛
⎝

1

π̃wl
, . . . , a

bZij

π̃wl

⎞
⎠

tr

= 1

π̃wl
(v11, . . . ,v1m1 , . . . ,vl1, . . . ,vlml

)
l

⊕
i=1

mi

⊕
j=1

⎛
⎝
1, . . . , abZij

⎞
⎠

tr

= 0,

where vij ∈ Mat1×dij(k) for 1 ≤ i ≤ l and 1 ≤ j ≤ mi. Then we have nontrivial
k-linear relation

(v11, . . . ,v1m1 , . . . ,vl1, . . . ,vlml
)

l

⊕
i=1

mi

⊕
j=1

⎛
⎝
1, . . . , abZij

⎞
⎠

tr

= 0.

In the beginning of this proof, we assumed that there exists nontrivial k-linear rela-
tions between Vl and {1}⋃l−1

i=1 Vi and then for some 1 ≤ s ≤ml, the last entry of vls is
nonzero. Since the last entry in vli is coefficient of abZli for 1 ≤ i ≤ml in the above
relation. By using Theorem 3.4.1, we have F ∶= (f11, . . . , f1m1 , . . . , fl1, . . . , flml

)
where fij = (fi1, . . . , fidij) ∈Mat1×dij(k[t]) for 1 ≤ i ≤ l, 1 ≤ j ≤mi and it satisfies

Fψ̃ = 0 and F∣t=θ = ρ.

The last entry of fls is a nontrivial polynomial because the last entry of vls is not
zero. We choose a sufficiently large N ∈ Z so that fls∣t=θqN ≠ 0. We rewrite the
equation (Fψ̃)∣t=θqN = 0 by using Ω∣t=θqN = 0, Lemma 3.4.4 (iv) and the definition
of ψ̃ as follows:

(Fψ̃)∣t=θqN

= (f11, . . . , f1m1 , . . . , fl1, . . . , flml
)∣t=θqN

l

⊕
i=1

mi

⊕
j=1

Ωwl−wi ∣t=θqN

⎛
⎝
0, . . . ,0, ajc

N
j (

bjZij

π̃wi
)
qN⎞
⎠

tr

= (f11, . . . , f1m1 , . . . , fl1, . . . , flml
)∣t=θqN

ml

⊕
j=1

⎛
⎝
0, . . . ,0, ajc

N
j (

bjZlj

π̃wl
)
qN⎞
⎠

tr

= (f11, . . . , f1d11 , . . . , fl1, . . . , fldlml
)∣t=θqN

ml

⊕
j=1

⎛
⎝
0, . . . ,0, ajc

N
j (

bjZlj

π̃wl
)
qN⎞
⎠

tr

=
ml

∑
j=1
(fldlj

∣t=θqN )ajcNj (
bjZlj

π̃wl
)
qN

= 0.

Thus we obtain the following nontrivial k-linear relation with some fldls
≠ 0:

ml

∑
j=1
(fldlj

∣t=θqN )ajcNj (bjZlj)
qN

= 0.
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Therefore by taking qN th root of the above k-linear relation, we get a nontrivial
relation for {Zl1, . . . , Zlml

} as follows.
ml

∑
j=1
{(fldlj

∣t=θqN )ajcNj }
1

qN

bjZlj = 0.

This shows that Vl is a k-linearly dependent set. Then by using Lemma 3.4.8,
we can show that Vl is a k-linearly dependent subset. However, it contradicts the
condition saying that Vl is the k-linearly independent set. Therefore we obtain the
claim. □

Lemma 3.4.8. Let V be a finite k-linearly dependent subset of AZw. Then V
is a finite k-linearly dependent subset of AZw.

Proof. We put V = {Z1, . . . , Zm}. Without loss of generality, we may assume
that m ≥ 2 by Theorem 3.2.1 and

dimkSpank{V } =m − 1.(3.4.5)

Again we may assume that Z1 ∈ Spank{Z2, . . . , Zm}, then by the assumption (3.4.5),
{Z2, . . . , Zm} is a linearly independent set over k. As in the proof of our previous
theorem, we take the matrix Φj , and the column vector ψj (1 ≤ j ≤m) so that the
triple (Φj , ψj , Zj) satisfying Lemma 3.4.4 (i)-(iv), we define block diagonal matrix
Φ and column vector ψ as follows.

Φ ∶=
m

⊕
j=1

Φj and ψ ∶=
m

⊕
j=1

ψj .

In the above, we again define the direct sum of column vectors v1, . . . ,vm whose en-
tries belong to C∞((t)) by⊕m

i=1 vi ∶= (vtr
1 , . . . ,v

tr
m)tr. By definition, each (Φj , ψj , Zj)

satisfy Lemma 3.4.4 (i)-(iv) and then we have

ψ∣t=θ =
m

⊕
j=1

⎛
⎝

1

π̃w
, . . . , aj

bjZj

π̃w

⎞
⎠

tr

(3.4.6)

for some aj ∈ F
×
q , bj ∈ k× and

ψ∣t=θqN =
m

⊕
j=1

⎛
⎝
0, . . . ,0, ajc

N
j (

bjZj

π̃w
)
qN⎞
⎠

tr

.(3.4.7)

for some cj ∈ F×q , N ∈ N. By using Theorem 3.4.1, there exist row vectors fj =
(fj,1, . . . , fj,dj) ∈ Mat1×dj(k[t]) (j = 1, . . . ,m) so that if we put F = (f1, . . . , fm),
then we have

Fψ = 0, f1,d1 ∣t=θ = 1 and fj,i∣t=θ = 0 for 1 ≤ i < dj
since f1,d1 ∣t=θ is coefficient of a1b1Z1/(π̃w) in (Fψ)∣t=θ = 0 and by the assumption
(3.4.5), Z1 is expressed by nontrivial k-linear combinations of Z2, . . . , Zm. We write
F′ ∶= (1/f1,d1)F and d ∶= ∑m

j=1 dj . Note that the vector F′ is of the form

F′ = (f ′1,1, . . . , f ′1,d1
, . . . , f ′m,1, . . . , f

′
m,dm

) ∈Mat1×d(k(t))

where f ′1,d1
= 1. We have the following from Fψ = 0 and fj,i∣t=θ = 0 for 1 ≤ i < dj :

F′ψ = 0 and f ′j,i∣t=θ = 0 for all 1 ≤ i < dj .(3.4.8)
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By using Lemma 3.4.4, we obtain F′(−1)Φψ = (F′ψ)(−1) = 0 and thus

F′ψ −F′(−1)Φψ = (F′ −F′(−1)Φ)ψ = 0.(3.4.9)

The last column of the matrix Φj is (0, . . . ,0,1)tr for each j and consequently, the
d1-th entry of row vector F′−F′(−1)Φ is zero since the d1-th entry of the row vectors
F′ and F′

(−1)
Φ are 1. The ∑j

i=1 di-th column of Φ is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

∑j
i=1 di

⋮
0
1
0
⋮
0 .

Then the ∑j
i=1 di-th entry of the row vector F′(−1)Φ is f ′(−1)j,dj

. Thus the ∑j
i=1 di-th

entry of F′ −F′(−1)Φ is written as follows.

f ′j,dj
− f ′(−1)j,dj

for j = 1, . . . ,m.

We have the equation f ′j,dj
− f ′(−1)j,dj

= 0 for j = 2, . . . ,m. Indeed, if there exist some

2 ≤ j ≤m so that f ′j,dj
− f ′(−1)j,dj

≠ 0, we can derive the contradiction in the following
way:

Let us take sufficiently large N ∈ N so that (f ′j,dj
− f ′(−1)j,dj

)∣t=θqN ≠ 0 and all

entries of (F′ − F′(−1)Φ) are regular at t = θq
N

. By using (3.4.7) and substituting
t = θq

N

in (3.4.9), we obtain

{(F′ −F′(−1)Φ)ψ}∣t=θqN = {(F′ −F′(−1)Φ)}∣t=θqN

m

⊕
j=1

⎛
⎝
0, . . . ,0, ajc

N
j (

bjZj

π̃w
)
qN⎞
⎠

tr

=
m

∑
j=1
(f ′j,dj

− f ′(−1)j,dj
)∣t=θqN ajc

N
j (

bjZj

π̃w
)
qN

= 1

π̃w

m

∑
j=1
(f ′j,dj

− f ′(−1)j,dj
)∣t=θqN ajc

N
j (bjZj)

qN

= 0.

Thus combining with the f ′1,d1
− f ′(−1)1,d1

= 1 − 1 = 0, we obtain a nontrivial k-linear

relations among ZqN

2 , . . . , ZqN

m as follows:
m

∑
j=2
(f ′j,dj

− f ′(−1)j,dj
)∣t=θqN ajc

N
j (bjZj)

qN

= 0.

Then by taking qN th root of the relation, we obtain the following nontrivial k-linear
relation among Z2, . . . , Zm:

m

∑
j=2
{(f ′j,dj

− f ′(−1)j,dj
)∣t=θqN ajc

N
j }

1

qN

bjZj = 0.

This contradicts our assumption saying that {Z2, . . . , Zm} is a k-linearly indepen-
dent set.
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Therefore we get f ′j,dj
− f ′(−1)j,dj

= 0 for j = 2, . . . ,m and this equation shows the
following:

f ′j,dj
∈ k (j = 2, . . . ,m).(3.4.10)

By substituting t = θ in the equation F′ψ = 0 and using (3.4.6), (3.4.8), we obtain
the following equalities:

(F′ψ)∣t=θ = (0, . . . ,0, f ′1,d1
, . . . ,0, . . . ,0, f ′m,dm

)∣t=θ
m

⊕
j=1

⎛
⎝

1

π̃w
, . . . , aj

bjZj

π̃w

⎞
⎠

tr

=
m

∑
j=1
(f ′j,dj

∣t=θ)aj
bjZj

π̃w
= 1

π̃w

m

∑
j=1
(f ′j,dj

∣t=θ)ajbjZj = 0.

By f ′1,d1
= 1 and (3.4.10), we have the following nontrivial k-linear relation among

Z1, . . . , Zm:
m

∑
j=1
(f ′j,dj

∣t=θ)ajbjZj = 0.

Therefore we obtain the claim. □

The above theorem provides an alternating analogue of Theorem 2.2.1 in [C14].
Finally, we define the following notations and state the result.

Notation 3.4.9. We denote AZw (resp. AZw) be the k-vector space (resp.
k-vector space) spanned by weight w AMZVs. By Theorem 3.2.8, we derive AZw ⋅
AZw′ ⊆ AZw+w′ . We also note the k-algebra AZ (resp. k-algebra AZ) generated
by AMZVs.

Theorem 3.4.10. We have the following:
(i) AZ forms an weight-graded algebra, that is, AZ = k⊕w∈NAZw,
(ii) AZ is defined over k, that is, we have the canonical map k ⊗k AZ → AZ

which is bijective.

This is characteristic p version of alternating version of Conjecture 0.1.3. A
direct consequence of Theorem 3.4.10 is the following transcendence result.

Corollary 3.4.11. Each AMZV ζA(a; ϵ) is transcendental over k.

Appendix. Explicit sum-shuffle relations in a lower depth case

We provide several steps to calculate an explicit sum-shuffle relation for ζA(a; ϵ)ζA(b;λ)
with a ∶= (a1, a2) ∈ N2, b ∶= (b1) ∈ N, ϵ ∶= (ϵ1, ϵ2) ∈ (F×q )2 and λ ∶= (λ1) ∈ (F×q ).

(I) Express ζA(a; ϵ)ζA(b;λ) in alternating power sums by using (3.1.1) and
(3.1.2):

ζA(a; ϵ)ζA(b;λ) = ∑
d≥0

Sd(a; ϵ)Sd(b;λ) + ∑
d>e≥0

Sd(a; ϵ)Se(b;λ) + ∑
e>d≥0

Se(b;λ)Sd(a; ϵ)

= ∑
d≥0

Sd(a; ϵ)Sd(b;λ) + ∑
d>e≥0

Sd(a; ϵ)Se(b;λ) +∑
e≥0

Se(b,a;λ, ϵ).

(II) Express Sd(a; ϵ)Sd(b;λ) and ∑d>e≥0 Sd(a; ϵ)Se(b;λ) as an Fp-linear com-
bination of Sd1(−;−) by using (3.1.1), (3.2.3) and Remark 3.2.3 (for ∆j1

a1,b1
,

∆j2
j1,a2

and ∆j3
a2,b1

, see (3.2.1)).
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For ∑d≥0 Sd(a; ϵ)Sd(b;λ), we have the following:

∑
d≥0

Sd(a; ϵ)Sd(b;λ) = ∑
d1≥0

Sd1(a; ϵ)Sd1(b;λ) = ∑
d1≥0

Sd1(a1; ϵ1)S<d1(a2; ϵ2)Sd1(b1;λ1)

= ∑
d1≥0

Sd1(a1; ϵ1)Sd1(b1;λ1) ∑
d1>d2≥0

Sd2(a2; ϵ2)

= ∑
d1≥0
( ∑
a1+b1>j1>0

q−1∣j1

∆j1
a1,b1

Sd1(a1 + b1 − j1, j1; ϵ1λ1,1)

+ Sd1(a1 + b1; ϵ1λ1)) ∑
d1>d2≥0

Sd2(a2; ϵ2)

= ∑
d1≥0
( ∑
a1+b1>j1>0

q−1∣j1

∆j1
a1,b1

Sd1(a1 + b1 − j1; ϵ1λ1) ∑
d1>d′2≥0

Sd′2
(j1; 1)

+ Sd1(a1 + b1; ϵ1λ1)) ∑
d1>d2≥0

Sd2(a2; ϵ2)

= ∑
d1≥0
( ∑
a1+b1>j1>0

q−1∣j1

∆j1
a1,b1

Sd1(a1 + b1 − j1; ϵ1λ1){ ∑
d1>d′2=d2≥0

Sd′2
(j1; 1)Sd2(a2; ϵ2)

+ ∑
d1>d′2>d2≥0

Sd′2
(j1; 1)Sd2(a2; ϵ2) + ∑

d1>d2>d′2≥0
Sd2(a2; ϵ2)Sd′2

(j1; 1)}

+ ∑
d1≥0

Sd1(a1 + b1, a2; ϵ1λ1, ϵ2))

= ∑
d1≥0
( ∑
a1+b1>j1>0

q−1∣j1

∆j1
a1,b1

Sd1(a1 + b1 − j1; ϵ1λ1)

{ ∑
d1>d′2≥0

( ∑
j1+a2>j2>0

q−1∣j2

∆j2
j1,a2

Sd′2
(j1 + a2 − j2, j2; ϵ2,1) + Sd′2

(a2 + j1; ϵ2))

+ ∑
d1>d′2≥0

Sd′2
(j1, a2; 1, ϵ2) + ∑

d1>d2≥0
Sd2(a2, j1; ϵ2,1)}

+ ∑
d1≥0

Sd1(a1 + b1, a2; ϵ1λ1, ϵ2))

= ∑
a1+b1>j1>0

q−1∣j1

∆j1
a1,b1
( ∑
j1+a2>j2>0

q−1∣j2

∆j2
j1,a2

∑
d1≥0

Sd1(a1 + b1 − j1, j1 + a2 − j2, j2; ϵ1λ1, ϵ2,1)

+ ∑
d1≥0

Sd1(a1 + b1 − j1, j1 + a2; ϵ1λ1, ϵ2) + ∑
d1≥0

Sd1(a1 + b1 − j1, j1, a2; ϵ1λ1,1, ϵ2)

+ ∑
d1≥0

Sd1(a1 + b1 − j1, a2, j1; ϵ1λ1, ϵ2,1)) + ∑
d1≥0

Sd1(a1 + b1, a2; ϵ1λ1, ϵ2).
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For ∑d>e≥0 Sd(a; ϵ)Se(b;λ), we have the following:

∑
d>e≥0

Sd(a; ϵ)Se(b;λ) = ∑
d1>e1≥0

Sd1(a; ϵ)Se1(b;λ) = ∑
d1>e1≥0

Sd1(a1; ϵ1)S<d1(a2; ϵ2)Se1(b1;λ1)

= ∑
d1≥0

Sd1(a1; ϵ1) ∑
d1>d2≥0

Sd2(a2; ϵ2) ∑
d1>e1≥0

Se1(b1;λ1)

= ∑
d1≥0

Sd1(a1; ϵ1)( ∑
d1>d2=e1≥0

Sd2(a2; ϵ2)Se1(b1;λ1) + ∑
d1>d2>e1≥0

Sd2(a2; ϵ2)Se1(b1;λ1)

+ ∑
d1>e1>d2≥0

Se1(b1;λ1)Sd2(a2; ϵ2))

= ∑
d1≥0

Sd1(a1; ϵ1)( ∑
d1>d2=e1≥0

{ ∑
a2+b1>j3>0

q−1∣j3

∆j3
a2,b1

Sd2(a2 + b1 − j3, j3; ϵ2λ1,1)

+Sd2(a2 + b1; ϵ2λ1)} + ∑
d1>d2>≥0

Sd2(a2, b1; ϵ2, λ1) + ∑
d1>e1>≥0

Se1(b1, a2;λ1, ϵ2))

= ∑
a2+b1>j3>0

q−1∣j3

∆j3
a2,b1 ∑

d1≥0
Sd1(a1, a2 + b1 − j3, j3; ϵ1, ϵ2λ1,1) + ∑

d1≥0
Sd1(a1, a2 + b1; ϵ1, ϵ2λ1)

+ ∑
d1≥0

Sd1(a1, a2, b1; ϵ1, ϵ2, λ1) + ∑
d1≥0

Sd1(a1, b1, a2; ϵ1, λ1, ϵ2).

(III) Use step (II) and (3.1.2). Then we obtain a sum-shuffle relation for
ζA(a; ϵ)ζA(b;λ) with explicit coefficients.

ζA(a; ϵ)ζA(b;λ) = ∑
d≥0

Sd(a; ϵ)Sd(b;λ) + ∑
d>e≥0

Sd(a; ϵ)Se(b;λ) +∑
e≥0

Se(b,a;λ, ϵ)

= ∑
a1+b1>j1>0

q−1∣j1

∆j1
a1,b1
( ∑
j1+a2>j2>0

q−1∣j2

∆j2
j1,a2

ζA(a1 + b1 − j1, j1 + a2 − j2, j2; ϵ1λ1, ϵ2,1)

+ ζA(a1 + b1 − j1, j1 + a2; ϵ1λ1, ϵ2) + ζA(a1 + b1 − j1, j1, a2; ϵ1λ1,1, ϵ2)

+ ζA(a1 + b1 − j1, a2, j1; ϵ1λ1, ϵ2,1)) + ζA(a1 + b1, a2; ϵ1λ1, ϵ2)

+ ∑
a2+b1>j3>0

q−1∣j3

∆j3
a2,b1

ζA(a1, a2 + b1 − j3, j3; ϵ1, ϵ2λ1,1) + ζA(a1, a2 + b1; ϵ1, ϵ2λ1)

+ζA(a1, a2, b1; ϵ1, ϵ2, λ1) + ζA(a1, b1, a2; ϵ1, λ1, ϵ2)
+ ζA(b,a;λ, ϵ).
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