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Preface

Classical representation theory of finite-dimensional algebras has a principle that we can under-
stand algebras by studying modules over them. In this branch of representation theory, it has
been investigated what properties modules have, and how restrictions on modules control the
structure of a ring.

During the 1960s and 70s, splendid successes in this area were done by many researchers, such
as P. Gabriel, M. Auslander, I. Reiten, Y. Drozd, and others, and a potent way was adumbrated
to develop the representation theory of commutative rings. Among them, the paper of Gabriel
[56] introduced the representations of quivers and his theorem on representation type of quivers
is as follows.

Theorem A ([56]). Let Q be a finite connected quiver without loops. The path algebra k[Q)]
of Q over a field k is of finite representation type if and only if the underlying graph of Q is a
Dynkin diagram A,,, D,, Eg, E7, or Eg.

Here we say that an associative ring A has finite representation type if there are only finitely
many isomorphism classes of finitely generated indecomposable modules over A.

Dealing with all finitely generated modules, the works of Drozd [46], Ringel [123] and
Klingler-Levy [93] tell us that it is hopeless to classify all finitely generated modules except
special cases. Therefore it is reasonable to focus on some special class of modules. From this
perspective, the works of Drozd-Roiter [48], Jacobinski [90] and Green-Reiner [67] are remark-
able. They introduced the conditions, which is nowadays called “Drozd—Roiter conditions”, to
clarify which commutative rings have only finitely many torsion-free modules; see [39, 108, 149]
for instance.

A Cohen-Macaulay ring was originally defined to be a commutative ring satisfying the “un-
mixed theorem”, namely, it satisfies certain good property on heights of ideals. By use of
homological methods in commutative algebra, the notion of a Cohen-Macaulay ring has been
developed with valuable applications in algebraic combinatorics. Over a Cohen—Macaulay ring,
maximal Cohen—Macaulay modules are well-behaved. For example, these modules are torsion-
free modules, the theory of Auslander—Reiten sequence is worked well for them, and any module
can be approximated by them (Auslander-Buchweitz theory [8]); see [108, 149] for details.
Gorenstein rings are special class of Cohen-Macaulay rings. Typical examples of Gorenstein
rings are complete intersections, including regular local rings and hypersurfaces. The behavior
of maximal Cohen—Macaulay modules over a Gorenstein ring is quite interesting. For instance,
a celebrated theorem of Buchweitz [20] shows that if R is a Gorenstein ring, then the stable
category of Cohen-Macaulay R-modules is triangle equivalent to the singularity category of R.



During the 1970s and 80s, the representation theory of maximal Cohen—Macaulay modules
began and grew quickly, inspired by the studies on finite-dimensional algebras. In this the-
ory, maximal Cohen—Macaulay modules over Cohen—Macaulay rings are mainly focused on. A
classification of Cohen—Macaulay local rings of finite CM-representation type (i.e. having only
finitely many isomorphism classes of indecomposable maximal Cohen—Macaulay modules) of
Krull dimension two is given by Auslander [6] and Esnault [53] (see also [108, Chapter 6,7]).

In the higher-dimensional case, the full classification of rings of finite CM-representation type
is still not known. However, a classification for Gorenstein local ring of finite CM-representation
type is provided by the result of Herzog [73], Buchweitz—Greuel-Schreyer [21] and Knorrer [101].

Theorem B ([73], [21], [101]). Let R be a d-dimensional Gorenstein complete local ring with an
algebraically closed coefficient field k of characteristic zero. Then R has finite CM-representation
type if and only if it is isomorphic to a ring of the form k[x,y, z2,...,24]/(f), where f is one
of the following forms:

Ay): i R A NP SUEP P} n>1
D,): 2y oy 42 422, n>4
) a3yt 2l
E7): B2+ 22
) Byt A2

Tensor product is an important tool in the study of modules. In general, the tensor product
of two maximal Cohen—Macaulay modules may not be maximal Cohen—Macaulay, and this is a
difference between rings of Krull-dimension zero and higher-dimensional rings. It is interesting
to understand what it means when the tensor product of two finitely generated modules over
a local ring is maximal Cohen—Macaulay. Huneke and Wiegand [87] approached this problem
by extending the rigidity theorem of Auslander [5] and Lichtenbaum [109]. They solved the
probrem for local hypersurfaces, but the general situation is still misterious, even in the case of
one-dimensiocal Gorenstein local rings. In order to explore further, they posed a conjecture on
the torsion-freeness of modules of the form M ® g Hompg(M, R); see Conjecture 1.1.1 for details.
It should be remarked that a complete answer for this conjecture is also not yet known even for
the ideal case.

In this thesis, we discuss various problems on the representation theory of Cohen—Macaulay
rings. We mainly deal with the local case.

In Chapter 1, we give a partial answer to the conjecture of Huneke and Wiegand with
consideration on the middle terms of the Auslander—Reiten sequences (Theorem 1.1.2). The key
tool of this chapter is some technical lemmas which are generalizations of Roy’s results [127].

Another type of an attempt to solve the conjecture was done by Lindo [110]. She verified that
the conjecture holds true for any module isomorphic to a trace ideal. After this, she and Pande
[111] asked for which ring every ideal is isomorphic to a trace ideal. In Chapter 2, we discuss
this question and give several answers. In particular, a complete answer is given in the local case
2.1.4. Note that a relationship between Lindo and Pande’s question and stable rings is found by
Goto-Isobe-Kumashiro [58]. Our result is proved by one of applications of the technique of finite



birational extensions (see Section 2.2). This technique also plays an important role in Chapters
3, 4 and 5.

As it is valuable to focus on torsion-free modules, good restrictions on modules are useful
in the representation theory of algebras. We explore suitable restrictions on maximal Cohen—
Macaulay modules to develop the representation theory of Cohen—Macaulay rings in Chapter 3,
4, and 5.

In Chapter 3, we turn our attention to maximal Cohen—Macaulay modules that are not
locally free on the punctured spectrum. These modules always appear when the ground ring
has a non-isolated singularity, for example a local hypersurface of countable CM-representation
type (i.e. having only countably but infinitely many isomorphism classes of indecomposable
maximal Cohen—Macaulay modules). The starting point of our research in this chapter is the
result of Araya, lima and Takahashi [3]. They observed that local hypersurfaces of countable
CM-representation type have only finitely many maximal Cohen—Macaulay modules that are not
locally free on the punctured spectrum. Our purpose of this chapter is to clarify whether the
converse of this holds true or not. In Theorem 3.5.1, we verify it for Gorenstein local rings of
dimension one. As one of the keys to prove this theorem, we use a finite birational extension in
order to construct infinitely many indecomposable modules with the desired properties (see the
proof of Theorem 3.5.5).

In Chapter 4, we consider two special classes of modules, syzygies of a maximal Cohen—
Macaulay module and Ulrich module. When and only when the considering ring is Gorenstein,
every maximal Cohen—Macaulay module is a syzygy of some maximal Cohen—Macaulay module.
So our motivation is to analyze non-Gorenstein Cohen—Macaulay rings by using such modules.
In the one-dimensional case, reflexive modules are syzygies of some maximal Cohen—Macaulay
modules, and the converse also holds under some assumption (Lemma 4.1.6). And H. Bass [14]
made an observation on reflexive modules below.

Theorem C (cf. [108]). Let (R,m) be a Cohen—Macaulay local ring of dimension one, and
B := Endg(m) be the endomorphism ring of m over R. If M is a reflexive R-module having no
free summands, then M has an B-module structure that extends the action of R on M.

Note that more general result, called the "rejection lemma of Drozd-Kirichenko”, is also
known; see [47, 77]. We try to extend the observation of Bass and our main result can be said as
follows. Let (R, m) be a Cohen—Macaulay local ring of dimension one with a canonical module
and an infinite residue field, and B be the endomorphism ring Endg(m) of m over R. Denote
by CM(B) and QCM*(R) be the categories of maximal Cohen—Macaulay B-modules and of first
syzygies of maximal Cohen-Macaulay R-modules without free summands, respectively.

Theorem D (Theorem 4.0.3). The natural inclusion R — B induces an equivalence CM(B) =
QCM*(R) of categories if and only if R is almost Gorenstein.

Here the class of almost Gorenstein rings are introduced by Barucci-Froberg [15] and Goto—
Matsuoka—Phuong [62], as one of the candidates for a class of rings having sufficiently good
property next to the Gorenstein rings in dimension one. Later, the theory of almost Gorenstein
rings in all dimensions are founded by Goto, Takahashi and Taniguchi [65]. In general, little
is known about the category QCM™*(R), except the case that R is a two-dimensional rational



singularity ([40]). Using the above theorem, we can understand QCM*(R) by more simpler
category CM(B) when R is an almost Gorenstein ring of dimension one.

In the higher-dimensional case, we compare syzygies of maximal Cohen-Macaulay modules
and Ulrich modules. Ulrich modules, which are also called maximally generated maximal Cohen—
Macaulay modules, are of some interest in that if the residue field is infinite such modules are
liftings of direct sums of copies of the residue field. Let UI(R) be the category of Ulrich modules
over a local ring R. If R is a local Cohen—Macaulay ring having minimal multiplicity, then
we check that the containment QCM*(R) C UI(R) holds, as subcategories of the category of
R-modules (Proposition 4.1.7). Moreover, we give conditions on rings R to have the equality
QCM*(R) = UI(R) in terms of the typical R-module Q%, the d-th syzygy of the residue field
k of R (Theorem 4.3.9 and 4.4.13). This equalty is also considered for cyclic quotient surface
singularities by Nakajama and Yoshida [115], while we treat it for rings not have cyclic quotient
surface singularity.

In Chapter 5, we return to the case of dimension one, and study the endomorphism rings
of the maximal ideals of Gorenstein local rings. The motivation to take case of such rings is
the observation (Theorem C) of Bass; over a Gorenstein local ring (R, m) of dimension one, a
maximal Cohen—Macaulay module with no free summands can be regarded as a maximal Cohen—
Macaulay module over the endomorphism ring B of m, and hence studying maximal Cohen—
Macaulay modules over B is essential to understand the maximal Cohen—-Macaulay modules
over R. So our aim in this chapter is to find basic properties of the endomorphism rings of the
maximal ideals of Gorenstein local rings of dimension one. We give several characterizations of
local rings which appear as the endomorphism rings of the maximal ideals of Gorenstein local
rings (Theorem 5.1.4). We also find connections between such rings and almost Gorenstein rings
(Corollary 5.1.5).

One of the outcomes in Chapter 6 is a result on classification of subcategories. The classi-
fication problem of subcategories has been studied by many researchers; see [55, 79, 117, 140]
for instance. One of the motivations of the problem is to understand the category of modules
regardless of the representation type. We begin Chapter 6 with introducing the notion of Burch
rings. The definition of Burch rings is very simple and it is easy to see that many examples
of rings including hypersurfaces and Cohen—Macaulay local rings with minimal multiplingicity
are Burch. We see that they have a good property which allows us to classify some resolving
subcategories of the category of finitely generated modules over them (Section 6.7). It means
that we provide a new class of rings to which the technical machinery of classifying subcategories



developed in [103, 140, 141] can be applied.
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Convention

In the rest of this thesis, unless otherwise specified, we adopt the following convention. Rings
are commutative and noetherian, and modules are finitely generated. Subcategories are full and
strict (i.e., closed under isomorphism). An identity matrix of suitable size is denoted by E.
Subscripts and superscripts are often omitted unless there is a risk of confusion.

Definition 0.0.1. Let R be a ring.

(1) An R-module M is mazimal Cohen—Macaulay if the inequality depth M, > dim R, holds for
all p € Spec R. Hence, by definition, the zero module is maximal Cohen—Macaulay.

(2) We denote by mod R the category of (finitely generated) R-modules, and by CM(R) the
subcategory of mod R consisting of maximal Cohen-Macaulay R-modules. For a subcategory
X of mod R, we denote by ind X the set of isomorphism classes of indecomposable R-modules
in X, and by addr X the additive closure of X', that is, the subcategory of mod R consisting
of direct summands of finite direct sums of objects in X.

(3) A subset S of SpecR is called specialization-closed if V(p) C S for all p € S. This is
equivalent to saying that S is a union of closed subsets of Spec R in the Zariski topology.

(4) Let S be a subset of Spec R. Then it is easy to see that
sup{dim R/p | p € S} > sup{n > 0 | there exists a chain pg C p1 C -+ C p, in S},

and the equality holds if S is specialization-closed. The (Krull) dimension of a specialization-
closed subset S of Spec R is defined as this common number and denoted by dim S.



(5) The singular locus of R, denoted by Sing R, is by definition the set of prime ideals p of R
such that R, is not a regular local ring. It is clear that Sing R is a specialization-closed
subset of Spec R. If R is excellent, then by definition Sing R is a closed subset of Spec R in
the Zariski topology.

(6) For an m x n matrix A over R, we denote by I5(A) the ideal of R generated by all the
s-minors of A. For a linear map ¢ of free R-modules, we define I;(¢) as the ideal I;(A),
where A is a presentation matrix of ¢.

Definition 0.0.2. Let (R, m, k) be a local ring.

(1) For an R-module M, we denote by vg(M) the minimal number of generators of M, that is,
VR(M) = dimk(M Rpr k:)

(2) Let M an R-module and n > 0 an integer. We denote by Q%M (or simply Q™M) the n-th
syzygy of M, i.e., the image of the n-th differential map in the minimal free resolution of M.
This is uniquely determined up to isomorphism. In particular, we simply denote by QM the
first syzygy of M unless otherwise specified.

(3) We denote by edim R the embedding dimension of R, and by codepth R the codepth of R,
i.e., codepth R = edim R — depth R. We say that R is a hypersurface if codepth R < 1.

(4) The punctured spectrum Spec’ R of R is the subset Spec R\ {m} of Spec R. By CMq(R) we
denote the subcategory of CM(R) consisting of modules that are locally free on Spec® R.

(5) Whenever R is Cohen-Macaulay and admits a canonical module w, we denote by (—)' the
canonical dual functor Homp(—, w).



Chapter 1

The Huneke—Wiegand conjecture
and middle terms of almost split
sequences

1.1 Introduction

The contents of this chapter is based on [96].
In this chapter, we study the following conjecture of Huneke and Wiegand; see [87, the
discussion following the proof of 5.2].

Conjecture 1.1.1 (Huneke and Wiegand [87]). Let R be a Gorenstein local domain of dimension
one. Let M be a maximal Cohen-Macaulay R-module. If M @ Hompg(M, R) is torsion-free,
then M is free.

Huneke and Wiegand [87] showed that this conjecture is true for hypersurfaces. Many other
partial answers are known [27, 28, 59, 66, 80, 127], but, the conjecture is still open in general. Let
R be a Gorenstein local domain of dimension one. A finitely generated R-module is torsion-free if
and only if it is reflexive if and only if it is maximal Cohen—Macaulay. Therefore Conjecture 1.1.1
implies the Auslander—Reiten conjecture for Gorenstein local domains ([30, Proposition 5.10]).
Assume that M is a torsion-free R-module. Then it is remarkable that the torsion-freeness of
M ®r Hompg(M, R) is equivalent to saying that Ext} (M, M) is zero; see [81, Theorem 5.9].

The main result of this chapter is the following.

Theorem 1.1.2. Let (R, m) be a Gorenstein local domain of dimension one. Let M be a nonfree
indecomposable torsion-free R-module. Assume that the number of indecomposable summand in
the middle term of the almost split sequence ending in M is greater than one. Then one has
Exth(M, M) # 0. Hence, Conjecture 1.1.1 holds true for M.

Remark that Roy [127] showed that for one-dimensional graded complete intersections R
satisfying some condition on the a-invariant, the assertion of Theorem 1.1.2 holds. Our result
is local (not graded), and we do not assume that the ring is a complete intersection.

In section 2, we give some preliminaries. In section 3, the proof of Theorem 1.1.2 is given.



1.2 Irreducible homomorphisms and almost split sequences

In this section, we prove lemmas needed to prove the main theorem. In the rest of this chapter,
let (R, m) be a commutative Gorenstein henselian local ring.

For R-modules M and N, let Homp (M, N) denote the quotient of Hompg(M, N) by the set
of homomorphisms from M to N factoring through a free R-module. Since R is Gorenstein, the
stable category CM(R) of CMg(R) is a triangulated category. Its morphism set is equal to the
stable homset Homp(—, —) and its shift functor is the functor taking €; see [69, Chapter 1] for
instance. Hence we obtain the following lemma.

Lemma 1.2.1. Let M, N be R-modules in CMo(R). Then we have the following isomorphisms.
(1) Homp(QM, N) = Exth (M, N), (2) Extk(M, N) = Exth(QM, QN),
(3) Homp(M, N) = Homp(QM,QN).

On the set Homp(M, N), we also use the following lemma.

Lemma 1.2.2. Let M, N be R-modules having no free summands and f: M — N be a homo-
morphism factoring through o free R-module. Then the image Im f of f is contained in mN.

Proof. Write f = hg where g: M — F and h: ' — N are homomorphisms with a free R-module
F'. Since M has no free summands, Im g is contained in mF. Hence Im f C h(mF) CmN. N

Recall that a homomorphism f: X — Y of R-modules is said to be irreducible if it is neither
a split monomorphism nor a split epimorphism, and for any pair of morphisms g and h such
that f = gh, either g is a split epimorphism or A a split monomorphism.

Lemma 1.2.3. Let M, N be R-modules having no free summands and f,g: M — N be homo-
morphisms. Assume that g factors through a free R-module. Then

1

f is an isomorphism if and only if so is f + g.

2) f is a split epimorphism if and only if so is f + g.

(1)
(2)
(3) f is a split monomorphism if and only if so is f + g.
(4)

4) f s irreducible if and only if so is f + g.

Proof. We only need to show one direction; we can view f as (f +g) — g.

(1): Assume that f is an isomorphism with an inverse homomorphism hA: N — M. Then
the composite homomorphisms gh factor through some free R-modules. It follows from Lemma
1.2.2 that there are inclusions Im gh C mM. By Nakayama’s lemma, we see that (f + g)h is a
surjective endomorphism of M, and hence are automorphisms. Since h is an isomorphism, it
follows that f + g is an isomorphism.

(2): Assume that there exists a homomorphism s: N — M such that fs = idy. We may
apply (1) to the homomorphism fs-+ gs to see that (f + g)s is also an isomorphism. This means
that f + g is a split epimorphism. The item (3) can be checked in the same way.

(4): Assume that f is irreducible. According to the previous part, f + ¢ is neither a split
monomorphism nor a split epimorphism. By the assumption, ¢ is a composite ba of homo-
morphisms a: M — F and b: F — N with a free R-module F. If there is a factorization

10



f 4+ g = dc for some homomorphisms ¢: M — X and d: X — N, then they induce a de-
composition M M Fp X % N of f. By the irreducibility of f, either ‘[a, ] is a split
monomorphism or [—b,d] is a split epimorphism. In the former case, we can take a homomor-
phism [p,q]: F & X — N such that the composite pa + gc = [p, q] o[a, ] is equal to the identity
map of N. Using (1), gc is also an isomorphism. This yields that ¢ is a split monomorphism. In
the latter case, we can see that d is a split epimorphism by similar arguments. Thus we conclude

that f + g is an irreducible homomorphism. |

Let M be a nonfree indecomposable module in CMg(R). Then there exists an almost split
sequence ending in M. Namely, there is a nonsplit short exact sequence

0=rML By S M0

in CMg(R) such that N is indecomposable and for any maximal Cohen—Macaulay R-module L
and a homomorphism h: L — M which is not a split epimorphism, h factors through g; see
[149, Chapter 2,3] for details. Note that an almost split sequence ending in M is unique up to
isomorphisms of short exact sequences. In particular, for any nonfree indecomposable R-module
M in CMgy(R), the R-modules M and E}; are unique up to isomorphism.

Lemma 1.2.4. Let M be a nonfree indecomposable module in CMy(R). Consider the almost
split sequences

0 rM L Ey S M0, 0= r(QM) = Eqy — QM — 0
ending in M and QM. Then Q(Ey) is isomorphic to Eqyr up to free summands.

Proof. By the horseshoe lemma, there exists a short exact sequence s: 0 — Q(7M) ENI9Y5) M D

P g—l> QM — 0 with some free R-module P. Here, the class ¢ € Homp(QEy, QM) of ¢
coincides with the image Q(g) of the class g of g under the isomorphism Q: Hom p(En, M) —
Homp(2E), QM) in Lemma 1.2.1. We want to show that the sequence s is an almost split
sequence ending in QM. By Lemma 1.2.3 (2), we see that ¢’ is a split epimorphism if and only if
g'h = id for some h in the category CMy(R). In view of the equivalence Q: CMy(R) — CMy(R),
g’ as well as g is not a split surjection. This means that s is not a split exact sequence.

We fix a homomorphism hA': X — QM which is not a split epimorphism. We can use
the equivalence Q: CMy(R) — CM,(R) again to obtain an equality h’ = ¢'p + rq with some
homomorphism p: X — QFy;, ¢: X — F, r: F — QM, where F is a free module. As ¢’ is an
epimorphism and F is free, r factors through g. This shows that i/ = ¢t for some t: X — QF);.
Consequently, s is an almost split sequence ending in QM. |

Consider the almost split sequence
0—=7(M)—=Ey—M—0

ended in M. We define a number (M) to be the number of nonfree indecomposable summand
of £ M-

Lemma 1.2.5. Let M be a nonfree indecomposable module in CMo(R). Then a(M) = a(Q2'M)
for all i > 0.

11



Proof. This is a direct consequence of Lemma 1.2.4. |

The following two lemmas play key roles in the next section. See [126, Lemma 4.1.8] for
details of the lemma below.

Lemma 1.2.6. Let f: M — N be an irreducible homomorphism such that M and N are
indecomposable in CMo(R). Assume that dim R = 1. Then f is either injective or surjective.

Recall that an R-module M has constant rank n if one has an isomorphism M, = REB" for
all associated primes p of R.

Lemma 1.2.7. Let M, N be nonfree indecomposable modules in CMy(R) having same constant
rank. Let f: M — N be an irreducible monomorphism. Assume that dim R = 1. Then Cok f is
isomorphic to R/m.

Proof. By the assumption that f is an irreducible monomorphism, f is not surjective. Hence we
can take a maximal proper submodule X of N containing Im f. Remark that the quotient N/X
is isomorphic to R/m and hence X and N has same constant rank. Since dim R = 1, X is an
R-module contained in CMg(R). Thus we have a factorization M — X — N of f in CMy(R).
By the irreducibility of f, it follows that either M — X is a split monomorphism or X — N is a
split epimorphism. As X is proper submodule of N, the later case cannot occur. Therefore, we
obtain a split monomorphism g: M — X. Then, by the equalities rank M = rank N = rank X,
g is an isomorphism. This implies the desired isomorphisms Cok f = N/X = R/m. |

1.3 Proof of the main theorem

In this section, we give a proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. Since R is a Gorenstein local ring of dimension one, 7(N) is isomorphic
to QN for any nonfree indecomposable R-module N in CMg(R). We assume that M is a
nonfree indecomposable R-module in CMg(R) satisfying Exth (M, M) = 0 and want to show
that a(M) = 1. We see from Lemma 1.2.1 that the isomorphisms

Exth(QF M, QM) = Exth(M, M) =0

hold for all i > 0. If Eqij has a free summand, then 7(Q°M) = Q"M has an irreducible
homomorphism into R. Hence Q'T1M is a direct summand of the maximal ideal m. Since R is
a domain, this means that Q**1 M is isomorphic to m. It follows that Ext}%(m, m) is zero, and so
R should be regular. Therefore, we may assume that Eqij; has no free summands for all ¢ > 0.
By lemma 1.2.5, it is enough to show that a(Q'M) = 1 for some i > 0. Thus by replacing M
with Q'M, we may assume that rank M is minimal in the set {rank Q‘M |i > 0}.

Decompose Eyy = E1 @ -+ @ E,, as a direct sum of indecomposable modules and consider
the almost split sequence

0— QM 4>(f1’ ofr) Ei®---9dFE, 4)(5/1, 9n) M =0

ended in M, where f,: QM — E, and g,: E, — N are irreducible homomorphisms and n =
a(M). Lemma 1.2.6 guarantees that each of fi,...,f, and gi,...,g, is either injective or
surjective.
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Claim 1. There is a number p such that f, is injective.

Proof of Claim 1. Suppose that all of the fi,..., f, are surjective. Then we get equalities
Img=>,Img; =, Img;f;. Since Homzr(QM, M) =0 (Lemma 1.2.1), it follows from Lemma
1.2.2 that Im g; f; C mM for all ¢ = 1,...,n. This yields that Im g C mM, which contradicts to
that g is surjective. [J

Claim 2. If there is a number p such that f, is injective and g, is surjective, then a(M) = 1.

Proof of Claim 2. Suppose that f, is injective and g, is surjective. Since Hompg(Q2M, M) = 0,
there is a free R-module F' and homomorphisms a: QM — F and b: F' — M such that g, f, = ba.
Since F' is free and g, is surjective, we have a factorization b = g,c with some homomorphism
c: F — E,. So we get an equality g,(f, — ca) = 0. In particular, f, — ca factors through
the kernel Ker g, of gp, i.e. f, —ca = ed with a homomorphism d: QM — Kerg, and the
natural inclusion e: Kerg, — E,. By Lemma 1.2.3 (2), the homomorphism f, —ca: M — E,
is also irreducible. Hence either e is a split epimorphism or d is a split monomorphism. In the
former case, the equality Kerg, = E, follows. It means that the map g, is zero. This is a
contradiction to the irreducibility of g,. So it follows that d is a split monomorphism. Then one
has rank QM < rank Ker g, = rank £, — rank M. This forces that n = 1. [

By Claim 1, we already have an integer p such that f, is a monomorphism. If g, is surjective,
then by Claim 2 it follows that o(M) = 1. Therefore, we may suppose that g, is injective. Then
the inequalities rank QM < rank ), < rank M hold. By the minimality of rank M, we have
rank QM = rank £, = rank M. In this case, we see isomorphisms Cok f, = R/m = Cokg,
by Lemma 1.2.7. Therefore, equalities /(M /Im(fpgp)) = ¢(Cok fp) + £(Cok g,) = 2 hold (here,
¢(X) denotes the length for an R-module X). By Lemma 1.2.2, Im(f,g,) C mM. So it follows
that ¢(M/mM) < 2. In other words, M is generated by two elements as an R-module. Since
M is nonfree, one has rank M = 1 and Homp(M, R) = QM. As rank QM = rank M = 1, we
can apply the same argument above for QM to see that QM is also generated by two elements.
Then by [72, Theorem 3.2], one can see that Exth(M, M) # 0, a contradiction. [

Chapter 2

Rings whose ideals are isomorphic to
trace ideals

2.1 Introduction

The contents of this chapter is based on author’s parer [100] with R. Takahashi.
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This chapter deals with trace ideals of commutative noetherian rings. The notion of trace
ideals is classical and fundamental; a lot of studies on this notion have been done in various
situations. Many references on trace ideals can be found in [106, 111]. Other than them,
for instance, trace ideals play an important role in the proof of a main result of Huneke and
Leuschke [84] on the Auslander—Reiten conjecture. Recently, Goto, Isobe and Kumashiro [5§]
study correspondences of trace ideals with stable ideals and finite birational extensions.

The main purpose of this chapter is to consider a question on trace ideals raised by Lindo
and Pande [111]. They prove as their main result that a local ring is an artinian Gorenstein
ring if and only if every ideal is a trace ideal, and ask for which ring every ideal is isomorphic to
some trace ideal. This question originates the celebrated Huneke-Wiegand conjecture: Lindo
[110] shows that for such a Gorenstein domain the conjecture holds. In this chapter, we begin
with answering the question for rings with full of zerodivisors, which complements the result of
Lindo and Pande.

Theorem 2.1.1. Let R be a commutative noetherian ring all of whose nonunits are zerodivisors
(e.g. a local ring of depth 0). Then the following are equivalent.

1

R is an artinian Gorenstein ring.

2) FEvery ideal of R is a trace ideal.

4

)
)
3) Every principal ideal of R is a trace ideal.
) Ewvery ideal of R is isomorphic to a trace ideal.
)

(
(
(
5

Every principal ideal of R is isomorphic to a trace ideal.

Next we investigate the question of Lindo and Pande in the case of a local ring of depth
one. We prove the following theorem, which states that such a ring as in the question is nothing
but a hypersurface singularity of type (A,), under some mild assumptions. This theorem also
removes the assumption of a Gorenstein domain from Lindo’s result mentioned above.

Theorem 2.1.2. Let R be a commutative noetherian local ring of depth 1. Consider the condi-
tions:

(1) Every ideal of R is isomorphic to a trace ideal,
(2) R is a hypersurface with Krull dimension 1 and multiplicity at most 2,
(3) The completion R of R is an (Ay)-singularity of Krull dimension 1 for some 0 < n < co.

Then the implications (1)< (2) < (3) hold. If the residue field of R is algebraically closed and
has characteristic 0, then all the three conditions are equivalent.

Finally, we explore the question of Lindo and Pande in the higher-dimensional case. It turns
out that the condition in the question is closely related to factoriality of the ring.

Theorem 2.1.3. Let R be a commutative noetherian ring. Assume that all mazrimal ideals of
R have height at least 2. Then the following are equivalent.
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(1) Every ideal of R is isomorphic to a trace ideal.
(2) R is a product of factorial rings (i.e., unique factorization domains).

In particular, when R is local, every ideal of R is isomorphic to a trace ideal if and only if R is

factorial.

Combining all the above three theorems, we obtain the following characterization of the local
rings whose ideals are isomorphic to trace ideals, which gives a complete answer to the question
of Lindo and Pande for local rings.

Corollary 2.1.4. Let R be a commutative noetherian local ring. Then the following are equiv-
alent.

(1) Ewvery ideal of R is isomorphic to a trace ideal.
(2) The ring R satisfies one of the following conditions.

(a) R is an artinian Gorenstein ring.
(b) R is a hypersurface of Krull dimension 1 and multiplicity at most 2.

(¢) R is a unique factorization domain.

This chapter is organized as follows. In Section 2, we give a brief survey on finite birational
extensions. The tools we mention in this section will be used commonly in the following sections
and chapters. In Section 3, we recall the definition of trace ideals and their several basic
properties. We also give a couple of observations on the Lindo—Pande condition. In Section 4,
we consider characterizing rings that satisfy the Lindo—Pande condition. We state and prove
our main results including the theorems introduced above.

2.2 Properties of finite birational extensions

In this section, we collect some basic facts on finite birational extensions, in order to prepare
the following sections. Let R be a ring with total quotient ring @ = Q(R). We denote by (—)*
the R-dual functor Hompg(—, R). We use e(R) to denote the multiplicity of R.

We start by remarking an elementary fact, which will be used several times later.

Remark 2.2.1. Let M be an R-submodule of Q). If M is finitely generated, then M is isomorphic
to an ideal of R, which can be taken to contain a non-zerodivisor of R if so does M.

Recall that a finitely generated R-module M is called reflezive if the natural map M —
Hom 4 (Homa (M, A), A) is an isomorphism. We denote by Ref(A) the subcategory of reflexive
A-modules. In the proofs of our results, it is essential to investigate R-submodules of @) and
their colons in Q.

Lemma 2.2.2. Let M be an R-submodule of Q) containing a nonzero divisor c.

(1) Let N be an R-submodule of Q). The assignment (x — ax) <=+ « make an isomorphism
Oy n: N : M = Hompg(M,N) of R-modules, where the inverse is given by the assignment

feLfo).
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(2) Suppose that M is finitely generated. Then M is reflexive if and only if there is an equality
M=R:(R:M) in Q.

Proof. (1) One can show that the equality f(c)z = c¢f(x) in Q holds for each = € M by describing
x as an element of Q). It is now easy to verify that the two assignments define mutually inverse
bijections.

(2) By Remark 2.2.1 we see that R : M contains a non-zerodivisor of R. Applying (1)
twice, we have isomorphisms M** = (M*)* = (R : M)* = R : (R : M). Composition with
the canonical homomorphism M — M** gives a homomorphism M — R : (R : M), which we
observe is nothing but the inclusion map. The assertion immediately follows from this. |

Remark 2.2.3. In view of Lemma 2.2.2 (1), the endomorphism ring Endg(M) of a submodule
M of @ is identified with the R-subalgebra M : M of ). Suppose that M is finitely generated.
Then the R-module Homp (M, M) is finitely generated, and hence the extension R C M : M is
module-finite. Hence M : M is contained in the integral closure R of R in Q. Moreover M : M
is semilocal if R is semilocal.

Remark 2.2.4. Let S be a ring extension of R in ). Let M and N be S-modules such that N
is torsion-free as an R-module. Then Homg(M, N) = Hompg(M, N).

Proof. Let f : M — N be an R-homomorphism. Take a € S and x € M. What we want to
show is that f(az) = af(z). Write a = g as an element of (). We have ¢(f(ax) — af(z)) =
cf(azx) —caf(x) = f(cax) — caf(x) = f(bx) — bf(x) = 0. Since N is torsion-free over R, we get
flaz) —af(z) =0. [ |

If (R, m) is local and depth R > 0, then a subring m : m of @ is semilocal and a module-finite
extension of R (Remark 2.2.3). The inclusions R C m : m C  show that m : m is a birational
extension of R. We give some lemmas on m : m.

Lemma 2.2.5. Let (R, m) be a local ring and M be an R-module without free summands. Then
the natural inclustion Homp(M, m) — Homp(M, R) is an equality.

Proof. Since R is local, for any homomorphism f: M — R the image of f is contained in m
(otherwise it would produce a non-trivial free summand of M). n

The following lemma is observed by Bass [14]. For the proof, see [108, Lemma 4.9)].

Lemma 2.2.6. Let (R, m) be a local ring and M be a reflexive R-module without free summands.
Then M has an m : m-module structure which is compatible with the action of R on M.

If R is Cohen-Macaulay of dimension one, we can obtain the following lemma.

Lemma 2.2.7. Let (R,m) be a Cohen—Macaulay local ring of dimension one. Assume R is not

a discrete valuation ring. Then
(a) m has no R-free summands.
(b)) m:m=R:m

(¢) Lr(m:m/R) is equal to r(R). In particular, R is properly contained in m : m.
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(d) m is reflexive as an R-module.
(e) m:m is reflexive as an R-module and has no R-free summands.

Proof. (a) By [9, Corollary 5.7], m has no free summand. (b) Combining Lemma 2.2.2, Lemma
2.2.5 and (a), the assertion follows. (c) We look at the long exact sequence

0 — Homp(R/m, R) — Homp (R, R) & Homp(m, R) — ExtL(R/m, B) — Exth(R, R) =0

induced by the short exact sequence 0 - m — R — R/m — 0.

The length of the R-module Ext},(R/m, R) is exactly equal to the type 7(R) of R. On the
other hand, one can directly check that the natural inclusion g : R — m : m = R : m satisfies the
equality ®p mog = fo®p g, where Ppn: R :m — Homp(m, R) and @i p: R: R — Homp(R, R)
are isomophirms as in Lemma 2.2.2. It follows that the cokernel m : m/R of g is isomorphic to
Ext}%(R/ m, R), the cokernel of f. In particular, both two R-module have same length. We thus
obtain the equality {g(m : m/R) = r(R).

(d) By (c), we see that m : m = R(m : m) # R. This means that R € R : (m : m). On the
other hand, the inclusion R C m : m induces an inclusion R : (m: m) C R : R = R. Additionaly,
the containment m(m : m) C m C R shows that m C R : (m : m). Thus we have an equality
m= R:(m:m). By (b), this is equlity m R : (R : m). Thus by Lemma 2.2.2, m is reflexive.

(e) Combining (b) and (d), we can see that R : (R: (m:m)) = m: m. Thus by Lemma 2.2.2,
m : mis reflexive. If m : m has a free summand, then its R-dual m is also has a free summand.
By (a), this is a contradiction. Therefore m : m has no free summands. |

2.3 Trace ideals and the Lindo—Pande condition

We begin with recalling the definition of a trace ideal.

Definition 2.3.1. Let M be an R-module. The trace of M is defined as the ideal
trpM = (f(x) | feM*, xe M)

of R, that is, each element has the form ) ;' ;| fi(x;) with f; € M* and 2; € M. Define the
R-linear map
M M*@p M - R, foxe flz).

Then trg M is nothing but the image of /\ﬁ. Using this, one can check that if M, N are R-
modules with M = N, then trg M = trg N. An ideal I of R is called an trace ideal if I = tr M
for some R-module M.

Proof. Let xy,...,z, generate M. Write z; = 2* as an element of @), and put 2z = 21 - - - 2. Then
zM is an ideal of R. As z is a non-zerodivisor of R, the module M is isomorphic to zM. If M
contains a non-zerodivisor r of R, then zM contains the element zr, which is a non-zerodivisor

of R. [ |

For R-submodules M, N of @ we denote by M N the R-submodule (zy | 2 € M,y € N) of
(), which consists of the sums of elements of the form zy with x € M and y € N. Here are
several fundamental properties of trace ideals, which will be used throughout the paper.
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Proposition 2.3.2. Let M be an R-submodule of QQ containing a non-zerodivisor ¢ of R.

(1) There is an equality tr M = (R : M)M in Q.

(2) The equality M = tr M holds in Q if and only if the equality M : M = R : M holds in Q.
Proof. (1) We can directly check the assertion by using the isomorphism in (1).

(2) By (1) we have only to show that M = (R: M)M if and only if M : M = R: M. It is
obvious that M D (R: M)M if and only if M : M O R: M. The implications

MC@R:MM=MCR=>M:MCR:M=1€R: M= MC (R: M)M
hold, which shows that M C (R: M)M if and only if M : M C R: M. [

Lindo and Pande [111] raise the question asking when each ideal of a given ring is isomorphic
to a trace ideal. To consider this question effectively, we give a name to the condition in it.

Definition 2.3.3. We define the Lindo—Pande condition (LP) by the following.
(LP) Every ideal of R is isomorphic to some trace ideal of R.
Question 2.3.4 (Lindo—Pande). When does R satisfy (LP)?

Let us give several remarks related to the condition (LP).

Remark 2.3.5. (1) Let M, N be R-modules. If M = tr N, then M = tr M. Therefore, (LP) is
equivalent to saying that each ideal I of R isomorphic to its trace: I = tr[.

(2) When R satisfies (LP), any finitely generated R-submodule M of @) admits an isomorphism
M =tr M.

(3) If R satisfies (LP), then so does Rg for each multiplicatively closed subset S of R. When R
is local, if the completion R satisfies (LP), then so does R.

Proof. (1) Taking the traces of both sides of the isomorphism M 2 tr N, we have tr M =
tr(tr V). The latter trace coincides with tr N by [110, Proposition 2.8(iv)]. Hence tr M =
tr N =2 M.

(2) The assertion follows from Remark 2.2.1 and (1).

(3) The assertion on localization is shown by using (1) and [110, Proposition 2.8(viii)]. For
the assertion on completion, apply (1) and [50, Exercise 7.5]. |

Now we recall that an invertible R-module is by definition a finitely generated R-module
M such that M, = R, for every prime ideal p of R. The isomorphism classes of invertible
R-modules form an abelian group with multiplication ® g and identity [R], which is called the
Picard group Pic R of R. The condition (LP) implies the triviality of this group.

Proposition 2.3.6. If R satisfies (LP), then Pic R = 0.

Proof. Let M be an invertible R-module. By [50, Theorem 11.6b] the R-module M is isomorphic
to an R-submodule of @, and we get M = trr M by Remark 2.3.5(2). By [50, Theorem 11.6a]
the map Af/‘, : M* ®r M — R is an isomorphism, which implies trp M = R. Hence we obtain
an isomorphism M = R, and consequently, the Picard group of R is trivial. |
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Recall that a Dedekind domain is by definition an integral domain whose nonzero ideals are
invertible, or equivalently, a noetherian normal domain of Krull dimension at most one. The
above proposition yields a characterization of the Dedekind domains satisfying the Lindo—Pande
condition.

Corollary 2.3.7. A Dedekind domain satisfies (LP) if and only if it is a principal ideal domain.

Proof. Fix a nonzero ideal I of R. If R is a Dedekind domain satisfying (LP), then Proposition
2.3.6 implies I = R. Conversely, if I =2 R, then tr] = trR = R = [. The assertion now
follows. u

2.4 Characterization of rings satisfying the Lindo—Pande condi-
tion

We first consider the Lindo-Pande condition for (not necessarily local) rings whose nonunits are
zerodivisors. For this, we need to extend a theorem of Lindo and Pande to non-local rings; the
assertion of the following proposition is nothing but [111, Theorem 3.5] in the case where R is
local.

Proposition 2.4.1. The following are equivalent.
(1) R is artinian and Gorenstein.

(2) Every ideal of R is a trace ideal of R.

(3) Every principal ideal of R is a trace ideal of R.

Proof. Let I be an ideal of R. Then I is a trace ideal if and only if I = trg I by [110, Proposition
2.8(iv)]. In general, I is contained in trg I by [110, Proposition 2.8(iv)] again, which enables us
to define the quotient (trg I)/I. Using [110, Proposition 2.8(viii)], we see that
I=trpl & (trgl)/I =0« ((trrl)/I), =0 for all p € Spec R
& (trg, Ip)/I, = 0 for all p € Spec R < I, = trg, I, for all p € Spec R.

Thus we can reduce to the local case and apply [111, Theorem 3.5] to deduce the proposition. B

Using the above proposition, we obtain the following theorem including a criterion for a ring
with full of zerodivisors to satisfy the Lindo—Pande condition. Note that in the case where R is
local the assumption of the theorem is equivalent to the condition that R has depth zero.

Theorem 2.4.2. Assume that all non-zerodivisors of R are units. Then the following are
equivalent.

1) R is artinian and Gorenstein.

3

(1)

(2) Every ideal of R is a trace ideal of R.

(3) Ewvery principal ideal of R is a trace ideal of R.
(4)

4) FEvery ideal of R is isomorphic to a trace ideal of R, that is, R satisfies (LP).

19



(5) Ewvery principal ideal of R is isomorphic to a trace ideal of R.

Proof. The equivalences (1)< (2)<(3) follow from Proposition 2.4.1, while the implications
(2)=(4)=-(5) are obvious. It suffices to show the implication (5)=-(3).

Assume that (3) does not hold, namely, that there exists a principal ideal (x) of R which
is not a trace ideal. Then, in particular, = is nonzero. It follows from (5), Remark 2.3.5(1)
and [111, Lemma 2.5 that (z) = tr(x) = Ann(Ann(z)). Let ¢ : Ann(Ann(z)) — (z) be the
isomorphism, and € : () — Ann(Ann(z)) the inclusion map. The endomorphism ¢6 : (z) — (x)
corresponds to an endomorphism R/ Ann(xz) — R/ Ann(z), which is a multiplication map by
some element @ € R/ Ann(x). Then ¢f is the multiplication map by the element a € R. Since
@0 is injective, a is a non-zerodivisor on (x). Hence grade((a),(z)) is positive, or in other
words, Homp(R/(a),(x)) = 0. Taking the R-dual of the isomorphism (z) = R/ Ann(z) yields

~Y

an isomorphism (z)* = Ann(Ann(z)), and hence (z) = (x)*. There are isomorphisms

0 = Hompg(R/(a), (v)) = Homp(R/(a), (z)*)
= (R/(a) ®g ()" = (R/(a) + Ann(z))" = Ann((a) + Ann(z)),

which show that the ideal (a) + Ann(z) contains a non-zerodivisor of R, which is a unit by the
assumption of the theorem. Therefore, 1 = ab + ¢ for some b € R and ¢ € Ann(z). We have
¢(z) = ¢pf(x) = ax and x = (ab+c)x = abr = bp(z). Take any element y € Ann(Ann(z)). There
exists an element d € R such that ¢(y) = dzx. Then ¢(y) = dbp(x) = ¢(dbz), which implies
y = dbx as ¢ is injective. Thus y belongs to (). Consequently, we obtain (x) = Ann(Ann(x)) =
tr(z). This contradicts our assumption that (z) is not a trace ideal. We now conclude that (5)
implies (3). [

Next, we study the Lindo—Pande condition for local rings of depth one. We start by showing
a lemma on Gorenstein local rings of dimension one. Recall that a local ring R is called a
hypersurface if R has codepth at most one, i.e., edim R — depth R < 1. This is equivalent
to saying that the completion of R is isomorphic to the quotient of a regular local ring by a
principal ideal. A Cohen—Macaulay local ring is said to have minimal multiplicity if the equality
e(R) = edim R — dim R + 1 holds; see [19, Exercise 4.6.14].

Lemma 2.4.3. Let R be a 1-dimensional Gorenstein local ring with mazimal ideal m. If m = m?,

then R is a hypersurface with e(R) < 2.

Proof. Put s = edim R. Note that m = m? 2 m3 = ..., Hence v(m’) = s for all i > 0, and
O(R/m™ 1) =370 f(m?/mit1) = 3" v(m?) = (n+1)s. Therefore e(R) = lim, o0 1¢(R/m" 1) =
s. As R has dimension one, it has minimal multiplicity. Since R is Gorenstein, it satisfies s < 2
(see [130, Corollary 3.2]) and so it is a hypersurface. [

We need one more lemma for our next goal.

Lemma 2.4.4. Let I be a reflexive ideal of R containing a non-zerodivisor of R, and set S =1 :
1. Assume that the equality I = trg I holds. Then one has an equality I = trg S. In particular,
if there is an isomorphism S = trr S of R-modules, then one has an isomorphism I =2 S of

S-modules.
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Proof. First of all, note that I is an S-module. We apply Proposition 2.3.2 several times. We
have S=I:I=R:landI =R:(R:1)=R:S. HencetrrS=(R:S5)S=I1S=I(I:1)=1.
Therefore, if S = trg S, then there is an R-isomorphism I = S, and it is an S-isomorphism by
Remark 2.2.4. |

For each n € Z>o U {o0}, a 1-dimensional hypersurface singularity of type (A,) (or (Ay)-
singularity for short) is by definition a ring that is isomorphic to the quotient

Ry = K[z, y]/(2* +y™)

of a formal power series ring over a field k, where we set Ry = k[z] and R = k[z,y]/(x?).
It is known that a 1-dimensional (A,)-singularity has finite (resp. countable) Cohen-Macaulay
representation type for n € Z>g (resp. n = 0); see [149, Corollary (9.3) and Example (6.5)].
Hence, there exist only at most countably many indecomposable torsion-free modules over such
a ring.

Now we can achieve our second purpose of this section, which is to give a characterization
of the local rings of depth one that satisfy the Lindo—Pande condition.

Theorem 2.4.5. Let (R, m, k) be a local ring with depth R = 1. Consider the following condi-
tions.

1) The ring R satisfies (LP).

3

(1)

(2) The completion R satisfies (LP).

(3) The ring R is a hypersurface with dim R =1 and e(R) < 2.
(

4) The completion R is a 1-dimensional (Ay,)-singularity for some n € Z>o U {oco}.

Then the implications (1)<(2)<(3) < (4) hold. Ifk is algebraically closed and has characteristic
0, then all the four conditions are equivalent.

Proof. (4)=(3): Since R is a hypersurface, so is R. We see directly from the definition of an
(An)-singularity that e(R) < 2. As the equality e(R) = e(R) holds in general, we have e(R) < 2.

(3)=(2): As e(]/%) = ¢(R), dim R = dim R and depth R = depth R, we may assume that R
is complete. Take any ideal I of R. The goal is to prove I 22 tr[.

We begin with the case where I is an m-primary ideal. Set S = I : I. Then S is an
intermediate ring of R and () which is finitely generated as an R-module, and I is also an ideal
of S. The proof of Remark 2.2.1 says 2S5 C R for some non-zerodivisor z of R. By [58, Theorem
3.11], the ring S is Gorenstein. Using Proposition 2.3.2(1) and Remark 2.2.4, we have an S-
isomorphism S = I : I — Hompg([,I) = Homg(I, I) given by s +— (i — si). Hence I is a closed
ideal of S in the sense of [18]. It follows from [18, Corollary 3.2] that I is an invertible ideal of
S. As S/mS is artinian and all maximal ideals of S contain mS, the ring S is semilocal. We
observe I 2 S by [19, Lemma 1.4.4]. Thus it is enough to check that S is isomorphic to its trace
as an R-module. Using Proposition 2.3.2, we obtain trg S = (R : S)S = R : S = S*. Since
R is henselian, S is a product of local rings: we have S = S; x --- x S, where S; is local for
1 <i <r. Each S; is a localization of S, so it is Gorenstein. Hence (S;)* = wg, = S; for each i,
and therefore S* = S. Consequently, we obtain S = trp .S as desired.
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Next we consider the case where I is not an m-primary ideal. Then I is contained in some
minimal prime p of R. When I = 0, we have I = tr I and are done. So we assume [ # 0, which
forces R not to be a domain. By Cohen’s structure theorem and the assumption that e(R) < 2,
we can identify R with the ring S/(f), where (S, n) is a 2-dimensional regular local ring and f is
a reducible element in n?\ n®. Write f = gh with g, h € n\n%. Then g, h are irreducible, and we
see that Min R = {gR, hR} (possibly gR = hR). Hence p is equal to either gR or hR. We also
observe Ann(gR) = hR = R/gR and Ann(hR) = gR = R/hR. As both R/gR and R/hR are
discrete valuation rings, any nonzero submodule of p is isomorphic to p, and therefore we have
only to show that p = trp. Thanks to [111, Corollary 2.9], we obtain trp = Ann(Annp) = p,
which particularly says p = trp.

(2)=-(1): This implication immediately follows from Remark 2.3.5(3).

(1)=(3): We have m C trm C R (see [110, Proposition 2.8(iv)]), and m = trm by Remark
2.3.5(1). If trm = R, then m = R, which means that R is a discrete valuation ring, and we are
done. Thus we may assume m = trm. Put S = m : m. Proposition 2.3.2(3) implies S = R : m.
Applying (—)* to the exact sequence 0 — m — R — k — 0 gives rise to an exact sequence
0= R m* Exth(k, R) — 0. Note that Exth(k, R) # 0 as depth R = 1. By Proposition
2.3.2(1), the map ¢ can be identified with the inclusion R C S and so we have R # S. Choose
an element x € S\ R and set X = R+ Rx C S. Since mX C mS C R, we have m C R: X and

m=mRCmX C(R: X)X =trg X CR,

where the second equality follows from Proposition 2.3.2(2). Hence trg X coincides with either
m or R. By Remark 2.3.5(2) we have X = trp X.

Assume trg X = R. Then X = R, and we find an element y € X such that X = Ry. As
1 € X, we have 1 = ay for some a € R. Since y € S, we get my C m, which shows a ¢ m. Hence
a is a unit of R, and we observe y € R. Therefore X = R, and z is in R, which contradicts the
choice of x.

Thus we have to have trg X = m, and get an R-isomorphism X = m. This implies that m is
generated by at most two elements as an R-module. Hence

1=depthR <dimR <edimR < 2.

If dim R = 2, then the equality dim R = edim R holds, which means that R is a regular local
ring. In particular, R is Cohen—Macaulay, and it follows that 1 = depth R = dim R = 2, which is
a contradiction. Thus dim R = 1, and we have edim R —dim R < 1, namely, R is a hypersurface.

It remains to prove that R has multiplicity at most 2. According to Lemma 2.4.3, it suffices
to show that m = m?. The R-module S is isomorphic to trg S by Remark 2.3.5(2). It follows
from Lemma 2.4.4 that m =2 S = R : m. Using Proposition 2.3.2(2), we obtain m = trpm = (R :
m)m = mm = m?, as desired. (In general, if a module X is isomorphic to a module Y, then AX
is isomorphic to AY for an ideal A.)

(3)=(4) (under the assumption that k is algebraically closed and has characteristic 0): Again,
we have e(}?i) < 2. Cohen’s structure theorem implies that R is isomorphic to a hypersurface
of the form k[z,y]/(f) with f € (z,y) \ (x,y)3. Changing variables, we can reduce to the case
where f = z or f = 2% or f = 22 + y' with t € Zs¢; see (i) of [149, Proof of (8.5)] and its
preceding part. |
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Remark 2.4.6. Let R be a ring satisfying Theorem 2.4.5(4). Then each ideal of R is a maxi-
mal Cohen—Macaulay R-module. The isomorphism classes of indecomposable maximal Cohen—
Macaulay R-modules are completely classified; see [149, Proposition (5.11), (9.9) and Example
(6.5)]. The implication (4)=-(1) in Theorem 2.4.5 can also be proved by using this classification
(although it is rather complicated).

Combining our Theorems 2.4.2 and 2.4.5, we obtain a remarkable result.
Corollary 2.4.7. The Lindo—Pande condition (LP) implies Serre’s condition (S2).

Proof. Suppose that R satisfies (LP). Let p be a prime ideal of R. The localization R, also
satisfies (LP) by Remark 2.3.5(3). We see from Theorems 2.4.2 and 2.4.5 that R, is Cohen—
Macaulay when depth R, < 1. It is easy to observe from this that R satisfies (S2). [

One of the original motivation of the condition (LP) is to seek a new class of rings which
Conjecture 1.1.1 holds for. After Theorem 2.4.5, we can check that Conjecture 1.1.1 holds for
rings satisfies (LP), by trivial application of [87, Theorem 3.1].

Corollary 2.4.8. Let R is a local ring of depth one, and suppose that R satisfies (LP). Let
M be an R-module having a rank. If M @r M* is torsion-free, then M is free. In particular,
Conjecture 1.1.1 holds for a ring satisfying (LP).

Proof. Theorem 2.4.5 implies that R is a 1-dimensional hypersurface. By [87, Theorem 3.1],
both M and M* are torsion-free, and either of them is free. If M* is free, then so is M by [28,
Lemma 2.13]. [ ]

Our next goal is to study the Lindo—Pande condition for rings having Krull dimension at
least two. The following proposition characterize the ideals of normal rings that are isomorphic
to trace ideals.

Proposition 2.4.9. Let M be a finitely generated R-submodule of () containing a non-zerodivisor
of R. Consider the following conditions.

(1) M is isomorphic to a trace ideal of R.
(2) M* is isomorphic to R.
(3) M is isomorphic to an ideal I of R with gradel > 2 (i.e. Exth(R/I,R) =0 fori < 2).

Then the implications (1) <= (2) <= (3) hold. All the three conditions are equivalent if R is
normal.

Proof. In view of Remark 2.2.1, we can replace M with an ideal J of R containing a non-
zerodivisor.

(3)=-(2): Dualizing the natural short exact sequence 0 - I — R — R/I — 0 by R induces
I = R.

(2)=(1): Using Proposition 2.3.2(1)(2), we have R: J = J* = R, and trJ = (R : J)J =
RJ =J.

(2)=(3): If J = R, then we have gradeJ = oo > 2 and are done. Let J # R. Then
(R/J)* =0, and dualizing the natural exact sequence 0 — J — R — R/J — 0 gives an exact
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sequence 0 — R — J* — Exth(R/J,R) — 0. Combining this with the isomorphism J* = R,
we find a non-zerodivisor z; of R such that Exth(R/J, R) = R/(x1). As J annihilates the Ext
module, it is contained in the ideal (x1). Hence we find an ideal J; of R such that J = z1J;. It
is easy to see that J; also contains a non-zerodivisor of R. As J; is isomorphic to J, we have
Ji = R. Thus the argument for J applies to Jy. If J; = R, then we are done. If J; # R, then we
find an ideal J5 and a non-zerodivisor xo with J; = x9J5. Iterate this procedure, and consider
the case where we get ideals J; and non-zerodivisors x; such that J; = x;11J;41 for all ¢ > 0. In
this case, there is a filtration of ideals of R:

J=JgCJ1 CJCJ3C---.

As R is noetherian, this stabilizes: there exists an integer ¢ > 0 such that J; = Jiy1. Hence
Ji+1 = wry1Je41, and Nakayama’s lemma gives rise to an element r € R such that 1 —r € (x441)
and rJy+1 = 0. The fact that J;11 contains a non-zerodivisor forces r to be zero, and x4 is a
unit of R. Therefore Exth(R/J;, R) = R/(x¢+1) = 0, and thus grade J; > 2. It remains to note
that J is isomorphic to J;.

Finally, we prove the implication (1)=(2) under the additional assumption that R is normal.
By Remark 2.3.5(1) the ideal J is isomorphic to its trace I := trJ. As J C I by [110, Proposition
2.8(iv)], the ideal I contains a non-zerodivisor of R. We have tr I = tr(trJ) = tr J = I by [110,
Proposition 2.8(iv)] again. Using (1) and (3) of Proposition 2.3.2, we get I* 2 R: I =1 : I.
The ring I : I is a module-finite extension of R in @), and hence it is integral over R. Since R is
normal, we have I : [ = R. We thus obtain J* 2 [*=]:] =R. |

The above proposition yields a characterization of the normal domains that satisfy the Lindo—
Pande condition. For a normal domain R we denote by Cl(R) the divisor class group of R.

Corollary 2.4.10. A ring R is a normal domain satisfying (LP) if and only if it is factorial.

Proof. Let R be a normal domain. Then it follows from [54, Proposition 6.1] that R is factorial
if and only if C1(R) = 0. The zero ideal is a trace ideal as 0 = tr 0. Applying Proposition 2.4.9,
we observe that R satisfies (LP) if and only if I* = R for all ideals I # 0. Therefore we have
only to show the following two statements (see [132, 2.10]).

(a) Suppose that I* is isomorphic to R for every nonzero ideal I of R. Let M be a finitely
generated reflexive R-module of rank one. Then [M] =0 in CI(R).

(b) Let I be a nonzero ideal of R. Then I* is a reflexive module of rank one.

(a): As M has rank 1 and is torsion-free, it is isomorphic to an ideal I # 0 of R. Then I* is
isomorphic to R by assumption, and we get isomorphisms M = M** = [** =2 R* = R. Hence
[M] =0 in CI(R).

(b): The module I has rank 1, and so does I*. For each R-module X, denote by p(X) the
canonical homomorphism X — X**. We can directly verify that the composition (p(I))* o p(I*)
is the identity map of I'*. Hence I'*** & [* @ E for some R-module E. Comparing the ranks, we
see that F is torsion. As FE is isomorphic to a submodule of the torsion-free module I***, it is
zero. Therefore I* is reflexive. |
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What we want to do next is to remove from the above corollary the assumption that R is a
normal domain. For this, we need to investigate the Lindo—Pande condition for a finite product
of rings.

Lemma 2.4.11. Let Ry,... R, be rings. Then the product ring Ry X --- X R, satisfies (LP) if
and only if R; satisfies (LP) for all1 < i <n.

Proof. The assignment (M, ..., M,)+— M; X --- x M, gives an equivalence
17", (Mod F;) = Mod([]7-, R

as tensor abelian categories, where for a ring A we denote by Mod A the category of arbitrary
A-modules. In particular, we can do the identification

[THompg, (M;, N;) = Homyy g, ([T Mi, [T No),  [1(M; ®r, Ni) = [T M; @1 g, [T N:.

Now it is easy to see that for all ideals I; of R; with 1 < i < n, one has

trHRi(HIi) = HtrRi Il (24111)
The “if” part of the lemma directly follows from (2.4.11.1) (see Remark 2.3.5(1)). Applying
(2.4.11.1) to the ideal 0 x -+ x 0 x I; x 0 x --- x 0 of [[ R; shows the “only if” part. |

Now we have reached our third (final) goal of this section, which is to give a criterion for a
certain class of rings with Krull dimension at least two to satisfy the Lindo—Pande condition.

Theorem 2.4.12. Assume that all mazimal ideals of R have height at least 2. Then R satisfies
(LP) if and only if R is a product of factorial rings. In particular, when R is a local ring or an
integral domain, it satisfies (LP) if and only if it is factorial.

Proof. The “if” part follows from Corollary 2.4.10 and Lemma 2.4.11. To prove the “only if”
part, it suffices to show that R is normal. Indeed, suppose that it is done. Then R is a product
Ry x -+- X Ry, of normal domains; see [114, Page 64, Remark]. By Lemma 2.4.11 and Corollary
2.4.10, each R; is factorial, and the proof is completed.

So let us show that R is normal. As R satisfies (S3) by Corollary 2.4.7, it is enough to verify
that R satisfies (R1). Fix a prime ideal p of R with htp < 1. What we want to show is that
R, is a regular local ring. By assumption, p is not a maximal ideal, and we find a prime ideal g
containing p with ht q/p = 1.

(i) We begin with considering the case where htp = 1. In this case, htq > 2. Note that
(S2) localizes, and so does (LP) by Remark 2.3.5(3). Replacing R with R,, we may assume
that (R, m) is a local ring with dim R = htm > 2 and dim R/p = htm/p = 1. Then R/p is a
1-dimensional Cohen—Macaulay local ring. Since R satisfies (S2), we have depth R > 2 and p
contains a non-zerodivisor of R; see [19, Proposition 1.2.10(a)]. To show that R, is regular, it
suffices to prove that R, has embedding dimension at most one.

Let us consider the case trp = R. Then p contains a nonzero free summand; see [110,
Proposition 2.8(iii)]. We find a non-zerodivisor = of R in p and a subideal I of p such that
p=(xz)® I Since (x) NI =0, we have I = 0, and I = 0 as x is a non-zerodivisor. Thus
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p = (z). In particular, we have edim R, < 1, which is what we want. Consequently, we may
assume that trp is a proper ideal of R.

We claim p = trp. Indeed, trp contains p by [110, Proposition 2.8(iv)]. Suppose that the
containment is strict. Then trp is m-primary as htm/p = 1. Apply the depth lemma to the
natural exact sequences

0—=p—R—R/p—0, 0—=trp—>R— R/trp—0.

We observe depthp = 2 and depth(trp) = 1. Our assumption that R satisfies (LP) and Remark
2.3.5(1) imply that p = trp, which gives a contradiction. Thus the claim follows.

Next, we claim that p is reflexive. In fact, let P be a prime ideal of R. According to [19,
Proposition 1.4.1], it is enough to check the following.

(a) If depth Rp < 1, then pRp is a reflexive Rp-module.
(b) If depth Rp > 2, then depthpRp > 2.

If P does not contain p, then pRp = Rp. If P contains p, then P coincides with p or m as
ht m/p = 1. Recall that depth R > 2 and depthp = 2. The fact that R satisfies (Sz) especially
says depth R, = 1. Theorem 2.4.5 and Remark 2.3.5(3) imply that R, is a Gorenstein local ring
of dimension 1, whence pR, is a reflexive R,-module. We now easily see that (a) and (b) hold,
and the claim follows.

Set S = p :p. Then S = R : p by the above first claim and Proposition 2.3.2(3). It
follows from the condition (LP), Remark 2.3.5(2), Lemma 2.4.4 and the above two claims that
S =2 trp S = p. Thus we obtain an S-isomorphism p =2 S; see Remark 2.2.4. The ideal p contains
a non-zerodivisor x of S such that p = xS. Note that x is also a non-zerodivisor of R. If p = zR,
then edim R, < 1 and we are done.

Now, let us suppose that p # xR, and derive a contradiction. Krull’s intersection theorem
shows (;»o(m’ + zR) = xR, which implies p ¢ m’ + zR for some ¢ > 0. Put I = pN (m’ +zR).
Notice that I contains the non-zerodivisor x of R and is strictly contained in p.

We claim that p = tr I. Indeed, we have

trI=(R:DI=(R:p)IC(R:pp=trp=p=aS=(R:p)zC(R:p)] =trl.

Here, the first and third equalities follow from Proposition 2.3.2(2). Consider the exact sequence
0154 p — p/I — 0, where f is the inclusion map. Note that p/I has finite length. As
depth R > 2, the map f*: p* — I* is an isomorphism. It is observed from this and Proposition
2.3.2(1) that the equality (R: I)I = (R : p)l appearing above holds.

This claim, the condition (LP) and Remark 2.3.5(1) imply p = I. Applying the depth
lemma to the exact sequence 0 — I — p — p/I — 0 shows that I has depth 1 as an R-module.
However, the R-module p has depth 2, and we obtain a desired contradiction. Thus, the proof
is completed in the case htp = 1.

(ii) Now we consider the case where htp = 0. We have htq > 1. If htq = 1, then R, is
regular by (i), and so is R, = (Rq)pr,, which is what we want. Assume htq > 2, and let us
derive a contradiction. Asin (i), replacing R with Ry, we may assume that (R, m) is a local ring
with depth R > 2 and R/p is a Cohen—-Macaulay local ring of dimension 1. Choosing an element
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y € m\p, we get an exact sequence 0 — R/p & R/p — R/p+(y) — 0. Since R/p+ (y) has finite
length and R has depth at least two, taking the R-dual yields the isomorphism (R/p)* EN (R/p)*.
Nakayama’s lemma implies (R/p)* = 0. Hence p has positive grade, but this contradicts the
fact that p is a minimal prime. |

As an application of the above theorem, we observe that the Lindo—Pande condition does
not necessarily ascend along the completion map R — R for a local ring R.

Corollary 2.4.13. Let R be a local ring. If§ satisfies (LP), then so does R. The converse also
holds if depth R < 1, but does not necessarily hold if depth R > 2.

Proof. The descent of (LP) is included in Remark 2.3.5(3), while the ascent for depth R < 1 is
observed from Theorems 2.4.2 and 2.4.5. There exists a factorial local ring R of depth 2 whose
completion is not factorial. In fact, Ogoma’s famous example [119] of a 2-dimensional factorial
local ring without a canonical module is such a ring by [19, Corollaries 3.3.8 and 3.3.19]; see also
[118, Example 6.1] and [19, Page 145]. Theorem 2.4.12 implies that this ring R satisfies (LP)
but R does not. |

Chapter 3

Maximal Cohen—Macaulay modules
that are not locally free on the
punctured spectrum

3.1 Introduction

The contents of this chapter is based on author’s work [98] with J. Lyle and R. Takahashi.

Cohen—Macaulay representation theory has been studied widely and deeply for more than
four decades. As we stated in Preface, the theorems of Herzog [73] in the 1970s and of Buchweitz,
Greuel and Schreyer [21] in the 1980s are recognized as one of the most crucial results in this long
history of Cohen—Macaulay representation theory. Both are concerned with Cohen—Macaulay
local rings of finite CM-representation type, that is, Cohen—-Macaulay local rings possessing
finitely many nonisomorphic indecomposable maximal Cohen—Macaulay modules. Buchweitz,
Greuel and Schreyer also proved that the local hypersurfaces of countable CM-representation
type are precisely the local hypersurfaces of type (Ay) and (Doo).

At the beginning of this century, Huneke and Leuschke [82] proved that Cohen—Macaulay
local rings of finite CM-representation type have isolated singularities. However, there are ample
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examples of Cohen—Macaulay local rings not having isolated singularities, including the local
hypersurfaces of type (A ) and (D) appearing above. Cohen-Macaulay representation theory
for non-isolated singularities has been studied by many authors so far; see [4, 22, 77, 88] for
instance. It should be remarked that a Cohen—Macaulay local ring with a non-isolated singularity
always admits maximal Cohen—Macaulay modules that are not locally free on the punctured
spectrum. Focusing on these modules, Araya, lima and Takahashi [3] found out that the local
hypersurfaces of type (A) and (Do) have finite CM -representation type, that is, there exist
only finitely many isomorphism classes of indecomposable maximal Cohen-Macaulay modules
that are not locally free on the punctured spectrum.

In this chapter, we investigate Cohen—-Macaulay local rings of finite CM_-representation
type from various viewpoints. Our basic landmark is the following conjecture, which includes
the converse of the result of Araya, lima and Takahashi stated above. We shall give positive
results to this conjecture.

Conjecture 3.1.1. Let R be a complete local Gorenstein ring of dimension d not having an
isolated singularity. Suppose that R has uncountable algebraically closed coefficient field of
characteristic not two. Then the following two conditions are equivalent.

(1) The ring R has finite CM, -representation type.

(2) There exist a complete regular local ring S and a regular system of parameters zg, ..., x4
such that R is isomorphic to

S/(af+ a3+ +ai) or S/(xgxr+ad+--+ ).

The implication (2) = (1) holds by [3, Proposition 2.1]. Also, (2) implies that R has
countable CM-representation type by [108, Proof of (iii)=(i) of Theorem 14.16]. Combining the
result of Buchweitz, Greuel and Schreyer, this conjecture says that, under the assumption of the
conjecture, finite CM_-representation type is equivalent to countable CM-representation type.

From now on, we state our main results and the organization of this chapter. Section 3.2
presents some conjectures and questions on finite/countable CM-representation type. Our results
are stated in the later sections. In what follows, let R be a Cohen—Macaulay local ring.

In Section 3.3, we consider the (Zariski-)closedness and (Krull) dimension of the singular
locus Sing R of R in connection with the works of Huneke and Leuschke [82, 83]. As we state
above, they proved in [82] that if R has finite CM-representation type, then it has an isolated
singularity, i.e., Sing R has dimension at most zero. Also, they showed in [83] that if R is
complete or has uncountable residue field, and has countable CM-representation type, then
Sing R has dimension at most one. In relation to these results, we prove the following theorem,
whose second assertion extends the result of Huneke and Leuschke [83] from countable CM-
representation type to countable CM, -representation type (i.e., having infinitely but countably
many nonisomorphic indecomposable maximal Cohen-Macaulay modules that are not locally
free on the punctured spectrum).

Theorem 3.1.2 (Theorem 3.3.2 and Corollary 3.3.3). Let (R, m, k) be a Cohen-Macaulay local
ring.
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(1) Suppose that R has finite CM -representation type. Then the singular locus Sing R is a finite
set. Equivalently, it is a closed subset of Spec R with dimension at most one.

2) Suppose that R has countable CM_-representation type. Then the set Sing R is at most
+
countable. It has dimension at most one if R is either complete or k is uncountable.

Furthermore, Huneke and Leuschke [83] proved that if R admits a canonical module and has
countable CM-representation type, then the localization R, at each prime ideal p of R has at
most countable CM-representation type as well. We prove a result on finite CM, -representation
type in the same context.

Theorem 3.1.3 (Theorem 3.3.7). Let (R,m) be a Cohen—Macaulay local ring with a canon-
ical module. Suppose that R has finite CM_-representation type. Then Ry has finite CM-
representation type for all p € Spec R\ {m}. In particular, R, has finite CM_-representation
type for all p € Spec R.

In Section 3.4 we provide various necessary conditions for a given Cohen—Macaulay local
ring to have finite CM_-representation type.

Theorem 3.1.4 (Theorem 3.4.5). Let (R,m) be a Cohen—Macaulay local ring of dimension
d> 0. Let I be an ideal of R such that R/I is mazimal Cohen—Macaulay over R. Then R has
infinite CM -representation type in each of the following cases.

(1) The ring R/I has infinite CM . -representation type.

(2) The set V(I) is contained in V(0 : I), and either R/I has infinite CM-representation type
ord> 2.

(3) The ideal I+ (0: 1) is not m-primary, R/I has infinite CM-representation type, and R/I is
either Gorenstein, a domain, or analytically unramified with d = 1.

This theorem may look technical, but it actually gives rise to a lot of restrictions which
having finite CM_-representation type produces, and is used in the later sections. Here we
introduce one of the applications of the above theorem.

Theorem 3.1.5 (Theorem 3.4.8). Let R be a Cohen—Macaulay local ring of dimension d > 0.
Let I be an ideal of R with V(I) C V(0 : I) such that R/I is mazximal Cohen—Macaulay over
R. Suppose that R has finite CM -representation type. Then one must have d = 1. If I =

for some integer n > 0, then CM(R) has dimension at most n — 1 in the sense of [43]. If R is
Gorenstein, then R is a hypersurface and Dsg(R) has dimension at most n — 1 in the sense of

[125].

There are folklore conjectures that a Gorenstein local ring of countable CM-representation
type is a hypersurface, and that, for a Cohen-Macaulay local ring R of countable CM-representation
type, CM(R) has dimension at most one. The above theorem gives partial answers to the variants
of these folklore conjectures for finite CM, -representation type.

In Section 3.5, we give a complete answer to Conjecture 3.1.1 in dimension one without the
assumption of the conjecture on the coefficient field.
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Theorem 3.1.6 (Theorem 3.5.1). Let R be a homomorphic image of a regular local ring. Sup-
pose that R does not have an isolated singularity but is Gorenstein. If dim R = 1, the following

are equivalent.
(1) The ring R has finite CM ,-representation type.

(2) There exist a regular local ring S and a regular system of parameters x,y such that R is
isomorphic to S/(x?) or S/(z%y).

When either of these two conditions holds, the ring R has countable CM-representation type.

In Section 3.6, we explore the higher-dimensional case, that is, we try to understand the
Cohen—Macaulay local rings R of finite CM_-representation type in the case where dim R > 2.
We prove the following two results in this section.

Theorem 3.1.7 (Corollary 3.6.8). Let R be a complete local hypersurface of dimension d > 2
which is not an integral domain. Suppose that R has finite CMy-representation type. Then one
has d = 2, and there exist a regular local ring S and elements x,y € S with R = S/(xy) such
that S/(x) and S/(y) have finite CM-representation type and S/(z,y) is an integral domain of
dimension 1.

Theorem 3.1.8 (Corollaries 3.6.10 and 3.6.11). Let R be a 2-dimensional non-normal Cohen—
Macaulay complete local domain. Suppose that R has finite CM_ -representation type. Then
the integral closure R of R has finite CM-representation type. If R is Gorenstein, then R is a
hypersurface.

The former theorem gives a strong restriction of the structure of a hypersurface of finite CM -
representation type which is not an integral domain. The latter theorem supports the conjecture
that a Gorenstein local ring of finite CM . -representation type is a hypersurface. Note that, under
the assumption of the theorem plus the assumption that R is equicharacteristic zero, the integral
closure R is a quotient surface singularity by the theorem of Auslander [6] and Esnault [53].

3.2 Conjectures and questions

In this section, we present several conjectures and questions which we deal with in later sections.
First of all, let us give several definitions of representation types, including that of finite CM -
representation type, which is the main subject of this chapter.

Definition 3.2.1. Let R be a Cohen—Macaulay ring. Set
CM,(R) := CM(R) \ CMg(R).!

For each X € {CM, CMg, CM,, } we say that R has finite (resp. countable) X-representation type if
there exist only finitely (resp. countably) many isomorphism classes of indecomposable modules
in X(R). We say that R has infinite (resp. uncountable) X-representation type if R does not have
finite (resp. countable) X-representation type. Also, R is said to have bounded X-representation

'The index 0 (resp. +) in CMg(R) (resp. CM,(R)) means that it consists of modules whose nonfree loci have
zero (resp. positive) dimension.
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type if there exists an upper bound of the multiplicities of indecomposable modules in X(R),
and said to have unbounded X-representation type if R does not have bounded X-representation

type.

Let R be a complete local hypersurface with uncountable algebraically closed coefficient
field of characteristic not two. Buchweitz, Greuel and Schreyer [21, Theorem B| (see also [108,
Theorem 14.16]) prove that R has countable CM-representation type if and only if it is either an
(Aoo)-singularity or a (Do )-singularity. Moreover, when this is the case, they give a complete
classification of the indecomposable maximal Cohen—Macaulay R-modules. Using this result,
Araya, lima and Takahashi [3, Theorem 1.1 and Corollary 1.3] prove the following theorem
(see [43, Proposition 3.5(3)]), which provides examples of a Cohen-Macaulay local ring of finite
CM  -representation type.

Theorem 3.2.2 (Araya-lima—Takahashi). Let R be a complete local hypersurface with un-
countable algebraically closed coefficient field of characteristic not two. If R has countable CM-
representation type, then the following statements hold.

(1) The ring R has finite CM ,-representation type.
(2) There is an inequality dim CM(R) < 1.

By definition, there is a strong connection between finite CM__-representation type and finite
CM-representation type. The first assertion of Theorem 3.2.2 suggests to us that finite CM, -
representation type should also be closely related to countable CM-representation type. Several
conjectures have been presented so far concerning finite/countable CM-representation type, and
we set the following proposal.

Proposal 3.2.3. One should consider the conjectures on finite/countable CM-representation
type for finite CM_-representation type.

There has been a folklore conjecture on countable CM-representation type probably since
the 1980s. Recently, this conjecture has been studied by Stone [134].

Conjecture 3.2.4. A Gorenstein local ring R of countable CM-representation type is a hyper-
surface.

This conjecture holds true if R has finite CM-representation type; see [149, Theorem (8.15)].
Also, the conjecture holds if R is a complete intersection with algebraically closed uncountable
residue field; see [12, Existence Theorem 7.8]. The following example shows that the assumption
in the conjecture that R is Gorenstein is necessary.

Example 3.2.5. Let S = C[z,y, z]/(zy). Then S is an (A )-singularity of dimension 2, and
has countable CM-representation type by [21, Theorem B]. Let R be the second Veronese subring
of S, that is, R = C[a?, zy, 22,9%,y2,2%] € S. Then R is a Cohen-Macaulay non-Gorenstein
local ring of dimension 2. We claim that R has countable CM-representation type. Indeed, let
N1, No, ... be the non-isomorphic indecomposable maximal Cohen-Macaulay S-modules. Let
M be an indecomposable maximal Cohen—Macaulay R-module. Then N = Hompg(S, M) is a
maximal Cohen—-Macaulay S-module, and one can write N =2 Nc?ibl DD Ngbf. Since R is a
direct summand of S, the module M is a direct summand of IV, and hence it is a direct summand
of N,, for some i. The claim follows from this.
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Combining Conjecture 3.2.4 with Proposal 3.2.3 gives rise to the following question.

Question 3.2.6. Let R be a Gorenstein local ring which is not an isolated singularity. Suppose
that R has finite CM-representation type. Then is R a hypersurface?

Here, the assumption that R is not an isolated singularity is necessary. Indeed, if R is an
isolated singularity, then #ind CM,(R) = 0 < oco. Obviously, if Conjecture 3.1.1 holds, then
this question is affirmative under the assumption of the conjecture. We shall give answers to
Question 3.2.6 in Sections 3.4 and 3.6.

Theorem 3.2.2(2) leads us to the following conjecture.

Conjecture 3.2.7. Let R be a Cohen—Macaulay local ring R of countable CM-representation
type. Then there is an inequality dim CM(R) < 1.

This conjecture holds true if R has finite CM-representation type; see [43, Proposition 3.7(1)].
Let R be a Gorenstein local ring. Then the stable category CM(R) of CM(R) is a triangulated
category, and one can consider the (Rouquier) dimension dim CM(R) of CM(R); we refer the
reader to [125] for the details. One has dim CM(R) < dim CM(R) with equality if R is a hyper-
surface; see [43, Proposition 3.5]. There seems to be a folklore conjecture asserting that every
(noncommutative) selfinjective algebra A of tame representation type satisfies the inequality
dim(mod A) < 1. So Conjecture 3.2.7 is thought of as a Cohen—Macaulay version of this folklore
conjecture. Combining Conjecture 3.2.7 with Proposal 3.2.3 leads us to the following question.

Question 3.2.8. Let R be a Cohen—Macaulay local ring of finite CM_-representation type.
Then does one have dim CM(R) < 17

If Conjecture 3.1.1 holds true, then Question 3.2.8 is affirmative for a Gorenstein local ring
satisfying the assumption of the conjecture by [21, Theorem B| and Theorem 3.2.2. We shall
give other answers to this question in Section 3.4.

Huneke and Leuschke ([83, Theorem 1.3]) prove the following theorem, which solves a con-
jecture of Schreyer [133, Conjecture 7.2.3] presented in the 1980s.

Theorem 3.2.9 (Huneke-Leuschke). Let (R, m, k) be an excellent Cohen—Macaulay local ring.
Assume that R is complete or k is uncountable. If R has countable CM-representation type, then
dim Sing R < 1.

Indeed, the assumption that R is excellent is unnecessary; see [137, Theorem 2.4]. This
result naturally makes us have the following question.

Question 3.2.10. Let R be a Cohen—Macaulay local ring. Suppose that R has finite CM,-
representation type. Then does Sing R have dimension at most one?

We shall give a complete answer to this question in the next Section 3.3. In fact, we can
even prove a stronger statement.
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3.3 The closedness and dimension of the singular locus

In this section, we discuss the structure of the singular locus of a Cohen—Macaulay local ring
of finite CM_-representation type. First, we consider what the finiteness of the singular locus

means.
Lemma 3.3.1. Let R be a local ring with mazimal ideal m. The following are equivalent.

(1) Sing R is a finite set.

(2) Sing R is a closed subset of Spec R in the Zariski topology, and has dimension at most one.

Proof. (2)=-(1): We find an ideal I of R such that Sing R = V(I). As Sing R has dimension at
most one, so does the local ring R/I. Hence Spec R/I = Min R/I U {m/I}, and this is a finite
set.

(1)=(2): Write Sing R = {p1,...,pn}. As Sing R is specialization-closed, it coincides with
the finite union V(p1) U--- U V(p,) of closed subsets of Spec R. Hence Sing R is closed.

To show the other assertion, we claim (or recall) that a local ring R of dimension at least two
possesses infinitely many prime ideals of height one. Indeed, for any € m we have ht(z) <1
by Krull’s principal ideal theorem, that is, (x) is contained in some prime ideal p with htp < 1.
This argument shows that m = UpESpec R bt p<1 - Now suppose that there exist only finitely
many prime ideals of R having height one. Then, since the number of the minimal primes is
finite, so is the number of prime ideals of height at most one. Therefore the above union is
finite, and by prime avoidance m is contained in some p € Spec R with htp < 1. This implies
dim R < 1, which is a contradiction. Thus the claim follows.

Now, assume that Sing R has dimension at least 2. Then dim R/p > 2 for some p € Sing R.
The above claim shows that the ring R/p has infinitely many prime ideals of height one, which
have the form q/p with q € V(p). Then q is also in Sing R, and hence Sing R contains infinitely
many prime ideals. This contradiction shows that the dimension of Sing R is at most 1. |

The following theorem clarifies a close relationship between finite/countable CM  -representation
type and finiteness/countablity of the singular locus.

Theorem 3.3.2. If R is a Cohen—Macaulay local ring of finite (resp. countable) CM | -representation
type, then Sing R is a finite (resp. countable) set.

Proof. First, let us consider the case where R has finite CM,-representation type. Write
indCM_(R) = {G1,...,G;}, and pick p € Sing R\ {m}. Set C = Q%L(R/p). We claim that
p = Anng Torf(C, C). Indeed, Torf(C, () is isomorphic to T := Torf ,,(R/p, R/p), which is
killed by p. Hence p is contained in the annihilator. Also, T}, is isomorphic to Torf”_'ﬁ2 J(E(), K(p)),
which does not vanish as p belongs to the singular locus. Hence p is in the support of T, and
contains the annihilator. Now the claim follows.

Note that Cj is stably isomorphic to Q%p (k(p)), which is not Rp-free since R, is singular.
This means that C' belongs to CM(R), and we get an isomorphism C' 2 foal G- P G;‘j“s OH
with s >land 1 <[; <---<ls<tandai,...,as >1and H € CMg(R). It is easy to see that

p= <ﬂ1§m§s Anng, Torf(Gy,, Glj)) N Anng Torf(H, M)
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for some R-module M. Since a prime ideal is irreducible in general, p coincides with one of the
annihilators in the right-hand side. The module H is locally free on the punctured spectrum,
and Anng Torf*(H, M) contains a power of m. As p is a nonmaximal prime ideal, it cannot
coincide with Anng Torf(H, M). We thus have p = Anng Torf"(Glp, Gy,) for some p,q. This
shows that we have only finitely many such prime ideals p. Consequently, Sing R\ {m} is a finite
set, and so is Sing R.

We can analogously deal with the case where R has countable CM__-representation type. In
this case, we can write indCM_(R) = {G1,G2,Gs,...}, and for each p € Sing R\ {m} there
exist p, ¢ such that p = Annp Tor{%(Glp, Gi,)- [ |

Theorem 3.3.2 yields the following corollary, which gives a complete answer to Question
3.2.10. We should remark that the second assertion of the corollary highly refines Theorem
3.2.9 due to Huneke and Leuschke.

Corollary 3.3.3. Let R be a Cohen—Macaulay local ring.

(1) If R has finite CM -representation type, then Sing R is closed and has dimension at most
one.

(2) Suppose that R has countable CM , -representation type.

(a) If k is uncountable, then Sing R has dimension at most one.

(b) If R is complete, then Sing R is closed and has dimension at most one.

Proof. (1) The assertion follows from Theorem 3.3.2 and Lemma 3.3.1.

(2) Theorem 3.3.2 implies that Sing R is a countable set. Note that Sing R is specialization-
closed. If R is complete or k is uncountable, then we can apply [137, Lemma 2.2] to deduce
that dim R/p < 1 for all p € Sing R. In case R is complete, Sing R is closed as well since R is
excellent. |

Next we investigate the relationship of finite CM_-representation type with localization of
the base ring at a prime ideal. For this, we establish two lemmas.

Lemma 3.3.4. Let R be a local ring. Let M, N,C be R-modules. Suppose that the endomor-
phism ring Endgr(C) is isomorphic to R, and that C' is not a direct summand of M or N. If
M@ C% = N @ C® for some a,b >0, then M = N and a = b.

Proof. Without loss of generality, we can assume a > b. Taking the completions, we get isomor-
phisms M@C® = NoC® and Endﬁ(a) ~ R. Since R is a local ring, Cis an indecomposable
R-module. Write M = X&C% and N = Y@ C®? with ¢,d > 0 integers and X, Y not containing
C as a direct summand. Then X @ C®(ct@) >y g C9@+b) Since R is henselian, we can apply
the Krull-Schmidt theorem to deduce that X =Y and c+a = d+b. Hence d = c+ (a —b), and
we obtain

N=Yaol%xXxgl%td) - jfg 0@ =T

where L := M @ C®(@=Y_ Tt follows from [50, Exercise 7.5] that N is isomorphic to L. As C' is
not a direct summand of N, we must have a = b, and therefore M = L = N. |
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Lemma 3.3.5. Let R be a local ring. Let M, N be R-modules.
(1) If R is a direct summand of M & N, then R is a direct summand of either M or N.

(2) Assume that R, M, N are mazimal Cohen—Macaulay, and that R admits a canonical module
w. If w is a direct summand of M & N, then w is a direct summand of either M or N.

Proof. (1) There exists a surjective homomorphism (f,g) : M @ N — R. Then we find elements
x € M and y € N such that f(x) 4+ ¢g(y) =1 in R. Since R is a local ring, either f(z) or g(y)
is a unit of R. If f(z) is a unit, then f : M — R is surjective, which implies that R is a direct
summand of M. Similarly, if g(y) is a unit, then R is a direct summand of N.

(2) Write M@®N = w@®L in mod R. Applying the canonical dual functor (=)' = Homg(—,w),
we get an isomorphism MT @ Nt = R @ LT, Tt follows from (1) that R is a direct summand of
either M or NT. Hence w is a direct summand of either M1 = M or NIt = N, |

Remark 3.3.6. Recall that an R-module C' is semidualizing if the natural map R — Endg(C)
is an isomorphism and Ext%(C,C) = 0 for all i > 0. Lemma 3.3.5(2) can be extended to
semidualizing modules, that is, the following statement holds: Let R be a Cohen—Macaulay
local ring and M, N maximal Cohen-Macaulay R-modules. If a semidualizing R-module C'is a
direct summand of M @ N, then C is a direct summand of either M or N. This is shown just
by replacing w with C' in the proof of Lemma 3.3.5(2).

Now we can prove the following theorem, which says that finite CM,-representation type
implies finite CM-representation type on the punctured spectrum. This especially shows that
finite CM_-representation type localizes, which should be compared with the result of Huneke
and Leuschke [83, Theorem 2.1] asserting that countable CM-representation type localizes under
the same assumption as in this theorem. This is also connected with the conjecture that a
Cohen—Macaulay local ring with an isolated singularity having countable CM-representation
type has finite CM-representation type [83, Page 3006].

Theorem 3.3.7. Let (R, m) be a Cohen—Macaulay local ring with a canonical module w. Suppose
that R has finite CM_-representation type. Then Ry has finite CM-representation type for all
p € Spec R\ {m}.

Proof. Assume that there exists a prime ideal p # m such that R, has infinite CM-representation
type. Then the set ind CM(Ry) \ {wp} is infinite, and we can take an infinite subset N' =
{Nl, NQ,Ng, Ce }

Fix a module N € N. Then we can choose an R-module L such that N = L,. Take a
mazximal Cohen—Macaulay approzimation of L over R, that is, a short exact sequence

c:0-Y—-X—L—>0

of R-modules such that X is maximal Cohen—Macaulay and Y has finite injective dimension;
see [7, Theorem 1.1]. Localization gives an exact sequence o, : 0 = Y, = X, = N — 0. As
N is maximal Cohen-Macaulay, Y}, is a maximal Cohen-Macaulay Rp-module of finite injective
dimension. It follows from [19, Exercise 3.3.28(a)] that Y, = wy™ for some n > 0. The exact
sequence oy, splits, and we get an isomorphism X, = N @w?”. Note that wy is an indecomposable
Ry-module.
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Let X = X1 ®---® X,, be a decomposition of X into indecomposable R-modules. Then
there is an isomorphism (X1)y @ -+ @ (Xon)p = N @ wy". For each i write (X;), = Z; ® w?li
with /; > 0 an integer and Z; not containing wy as a direct summand; then Z; is a maximal
Cohen-Macaulay Rp-module. We get an isomorphism

1@ @ Iy @ T = N g o,

The module Z1®- - -®Z,, does not contain wy as a direct summand by Lemma 3.3.5(2), while N is
an indecomposable Ry-module with N 2 w,. Using Lemma 3.3.4, we see that Z1®---® Z,, = N
and Iy + -+ 4+ l,, = n. We may assume that Z; =2 N and Zy = --- = Z,,, = 0. It holds that
(Xip=Na w;%.

Suppose that (X1), is Ry-free. Then so are N and wy, and we have N = R, = wy,, which
contradicts the choice of N. Hence (X1), is not Ry-free, which implies that X; € CM(R).

Thus we have shown that for each integer i > 1 there exist an integer n; > 0 and a module
C; € indCM, (R) such that (C;), = N; @ w;B”i. Assume that C; = C; for some ¢ # j. Then
Ni@w?m = N; @w;enj, and by Lemma 3.3.4 we see that N; = N; (and n; = n;), contrary to the
choice of M. Hence C; 2 Cj for all i # j, and we conclude that R has infinite CM -representation
type. This contradiction completes the proof of the theorem. |

Remark 3.3.8. In Corollary 3.3.3(1) we proved that the singular locus of a Cohen—Macaulay
local ring of finite CM -representation type has dimension at most one. As an application of
Theorem 3.3.7, we can get another proof of this statement under the assumption that R admits
a canonical module.

Let R be a d-dimensional Cohen—Macaulay local ring with a canonical module, and suppose
that R has finite CM_-representation type. Then R, has finite CM-representation type for all
nonmaximal prime ideals p of R by Theorem 3.3.7. In particular, R, has an isolated singularity
for all such p by [82, Corollary 2]. This implies that R, is a regular local ring in codimension
d — 2, and therefore dim Sing R < 1.

3.4 Necessary conditions for finite CM  -representation type

In this section, we explore necessary conditions for a Cohen—Macaulay local ring to have finite
CM_ -representation type. For this purpose we begin with stating and showing a couple of
lemmas.

Lemma 3.4.1. Let R be a local ring.

(1) The subcategory of mod R consisting of periodic modules is closed under finite direct sums:
if the R-modules M, ..., M, are periodic, then so is My @ --- ® M,,.

(2) Let 0 - My — -+ — M, — 0 be an ezxact sequence in mod R. Letr > 0 and 1 <t < n be
integers. If cxp(M;) < r for all 1 <i <n with i #t, then cxr(My;) < r.

Proof. (1) We have only to show the assertion for n = 2. Let M;, N2 be periodic R-modules,
so QoM =2 M, and QPMy = My for some a,b > 0. Let [ be the least common multiple of a, b.
Then Q'M; = My and Q' My = M. Hence Q' (M; © M) = Q' My @ Q'My = My & Mo.
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(2) Tt suffices to show the statement when n = 3. Suppose that My, M3 have complexity
at most r. Then we find p,q € Rs¢ such that ﬂjR(Mg) < pj"~! and Bf(Mg) < qj" ! for
j > 0. The induced exact sequence Torﬁrl(Mg, k) — Torf(Ml7 k) — Torf(Mg, k) shows that
ﬁjR(Ml) < BJR(MQ) + jRH(Mg) < (p+qr)j~—! for j > 0. Therefore we obtain cxr(Ms) < 7.
The other cases are handled similarly. |

Let R be a local ring. A subcategory X of mod R is called resolving if X contains R and
closed under

e direct summands: if X € X and M € mod R is a direct summand of X, then M € X;

e extensions: for an exact sequence 0 - L - M — N — 0 in mod R, if L, N € X, then
M e X,

e syzygies: if X € X, then QprX € X.

Typical examples of resolving subcategories of mod R are CM(R) and CMq(R).
The subcategory CM, (R) of mod R is stable under syzygies.

Lemma 3.4.2. Let R be a local ring. Let 0 - N — F — M — 0 be an exact sequence in
mod R such that F is free and M is mazimal Cohen—Macaulay. Then M belongs to CM, (R) if
and only if so does N.

Proof. Note that all the modules N, F', M are maximal Cohen—Macaulay. Hence the assertion is
equivalent to saying that M belongs to CMg(R) if and only if so does N. The “if” part follows
from the fact that CMg(R) is resolving. To show the “only if” part, assume that NV is in CMg(R).
Let p be a nonmaximal prime ideal of R. Then N, is Ry-free, and we see that the Ry-module
M, has projective dimension at most 1. Note that M, is maximal Cohen-Macaulay over R,.
The Auslander-Buchsbaum formula implies that M, is free. Hence M is in CMg(R). |

We state some containments among indecomposable maximal Cohen—Macaulay modules over
Cohen—Macaulay local rings, one of which is a homomorphic image of the other.

Proposition 3.4.3. Let R be a Cohen—Macaulay local ring of dimension d. Let I be an ideal of
R such that R/ is a mazimal Cohen—Macaulay R-module. Then the following statements hold.

(1) indCM(R/I) is contained in ind CM(R).
(2) indCM_(R/I) is contained in ind CM, (R).
(3) indCM(R/I) is contained in ind CM(R), if V(I) CV(0: I).

Proof. Let M be an indecomposable maximal Cohen-Macaulay R/I-module. The definition
of indecomposability says M # 0. The equalities depth M = dim R/I = dim R imply M is a
maximal Cohen—-Macaulay R-module. It is directly checked that M is indecomposable as an
R-module. Now (1) follows.

Let p be a prime ideal of R such that M, = (R,)®" for some n > 0. If n = 0, then M, = 0.
If n > 0, then IR, = 0 since IM = 0, and hence M, = R" = (R/I)J".
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Let us consider the case where M is in CM, (R/I). Then there is a prime ideal q of R with
I C q # m such that Mg is not (R/I)q-free. Letting p := q in the above argument, we observe
that My is not Rg-free (note that the zero module is free). Thus M is in CM4(R), and (2)
follows.

Next we consider the case where M is in CMy(R). As dimM = dim R/I = d > 0, there is
a nonmaximal prime ideal t of R such that M, # 0. Letting p := v in the above argument, we
have IR, = 0. Hence t is not in the support of the R-module I, which is equivalent to saying
that v does not contain (0 : I). On the other hand, v is in the support of the R-module M,
which implies that ¢ contains I. Thus V(I) is not contained in V(0 : I). We now observe that
(3) holds. [

The lemma below says finite CM-representation type is equivalent to finite CMg-representation
type.

Lemma 3.4.4. Let R be a Cohen—Macaulay local ring. If R has infinite CM-representation
type, then R has infinite CMg-representation type.

Proof. Suppose that R has finite CMy-representation type. Then by [43, Corollary 1.2] it is an
isolated singularity. Hence CM(R) = CM(R), and we have ind CM(R/I) = ind CMy(R/I), which
is a finite set. This contradicts the assumption that R has infinite CM-representation type. W

Now we can prove the first main result of this section, which gives various necessary condi-
tions for a Cohen—Macaulay local ring to have finite CM_ -representation type.

Theorem 3.4.5. Let R be a Cohen—-Macaulay local ring of dimension d > 0. Let I be an
ideal of R, and assume that R/I is a maximal Cohen—Macaulay R-module. Then R has infinite
CM, -representation type in each of the following cases.

(1) R/I has infinite CM ,-representation type.
(2) V(I) CV(0:1) and

(a) R/I has infinite CM-representation type, or
(b) d>2.

(3) ht(I 4+ (0:1)) < d, R/I has infinite CM-representation type, and

(a) R/I is a Gorenstein ring, or
(

)
b) R/I is a domain, or
(c)

(d)

d =1 and R/I is analytically unramified, or
d =1, k is infinite, and R/I is equicharacteristic and reduced.
Proof. (1)&(2a) These assertions immediately follow from (2) and (3) of Proposition 3.4.3,
respectively.

(2b) In view of (2a), we may assume that R/ has finite CM-representation type. It follows
from [82, Corollary 2] that R/I is an isolated singularity. As d > 2, the ring R/I is a (normal)
domain. Hence p := I is a prime ideal of R. As dim R/p = d, the prime ideal p is minimal.
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The assumption V(p) € V(0 : p) implies (0 :g p) C p. Localizing this inclusion at p, we get an
inclusion (0 :g, pRy) C pRy, which particularly says that R, is not a field. Therefore p belongs
to Sing R.

Suppose that R has finite CM,-representation type. Then Corollary 3.3.3(1) implies that
Sing R has dimension at most one. In particular, we obtain d = dimR/p < 1, which is a
contradiction. Consequently, R has infinite CM_-representation type.

(3) We find a nonmaximal prime ideal p of R that contains the ideal I + (0 : I). Then, as p
contains I, the prime ideal p/I of R/I is defined, which is not maximal. Also, since p contains
(0: 1) as well, we see that IR, is a nonzero proper ideal of Ry.

We establish several claims.

Claim 3. Let M € ind CMo(R/I) with M, # 0. Then M € ind CM,(R).
Proof of Claim. Proposition 3.4.3(1) implies M € ind CM(R). There exists an integer n > 0

such that
My = My = (R/1)), = (R/1))" = (Rp/1R,)®".

p/T
Since M, is nonzero, we have to have n > 0. Since IR, is a nonzero proper ideal of R, we have
that M, is not a free Ry-module. We now conclude that M belongs to ind CM_(R). O

Claim 4. When R/I be Gorenstein, for each M € ind CMo(R/I), either M or Qg M is in
ind CM,, (R).

Proof of Claim. If M, # 0, then M € ind CM(R) by Claim 3. Let M, = 0. There is an exact
sequence 0 — N — (R/I)®" — M — 0, where we set N := Qp/,;M and n := vg/; (M) > 0.
Localization at p gives an isomorphism N, & (Ry/IR,)®". As n > 0 and IR, is a proper ideal,
the module NV, is nonzero. Since R/I is Gorenstein and CMy(R/I) is a resolving subcategory of
mod R/I, the module N also belongs to ind CMy(R/I); see [149, Lemma (8.17)]. Using Claim 3
again, we obtain N € ind CM, (R). O

Claim 5. There is an inclusion
{M € indCMy(R/I) | M has a rank as an R/I-module} C ind CM_(R).

Proof of Claim. Take M from the left-hand side. Since the R/I-module M is maximal Cohen—
Macaulay, its annihilator has grade 0. Hence M has positive rank, and we see that Suppg,; M =
Spec R/I. Therefore M, = M,,; is nonzero. It follows from Claim 3 that M belongs to
ind CM,(R). O

(3a) Suppose that R has finite CM-representation type, namely, ind CM, (R) is a finite set.
Lemma 3.4.4 guarantees that the set ind CMq(R/I) is infinite, and hence the set difference

S :=ind CMo(R/I) \ ind CM, (R)

is infinite as well. Thus we can choose a (countably) infinite subset { M, Ma, M3, ...} of S. By
Claim 4 we see that Qg /;M; belongs to ind CM_(R) for all i. Note that Qp, M; 2 Qg M,
for all distinct 4, j since R/I is Gorenstein and M;, M; are maximal Cohen-Macaulay over R/1.
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It follows that ind CM,(R) is an infinite set, which is a contradiction. Thus R has infinite
CM -representation type.

(3b) Since R/I is a domain, every R/I-module has a rank. Claim 5 implies that ind CMo(R/)
is contained in ind CM, (R), while ind CMg(R/I) is an infinite set by Lemma 3.4.4. It follows
that R has infinite CM, -representation type.

(3c) Note that CM(R/I) = CMg(R/I). Since R/I is analytically unramified, it follows from
[108, Theorem 4.10] that the left-hand side of the inclusion in Claim 5 is infinite, and so is the
right-hand side ind CM_ (R), that is, R has infinite CM, -represenation type.

(3d) Since k is infinite and R/I is equicharacteristic, we can apply [108, Theorem 17.10]
to deduce that if R/I has unbounded CM-representation type, then the left-hand side of the
inclusion in Claim 5 is infinite (as R/I is reduced), and we are done. Hence we may assume that
R/I has bounded CM-representation type. By [108, Theorems 10.1 and 17.10] the completion
]?/\I has infinite and bounded CM-representation type. According to [108, Theorem 17.9], the
ring Jgﬁ is isomorphic to one of the following three rings.

Elz,y]/(2?), E[z,y]/(=%y), K[z, y, 2]/ (yz,2* — z2, 22 — 2°).

The indecomposable maximal Cohen—Macaulay modules over these rings are classified; one can
find complete lists of those modules in [21, Propositions 4.1 and 4.2] and [108, Example 14.23].
We can check by hand that each of these rings has an infinite family of nonisomorphic indecom-
posable maximal Cohen—Macaulay modules of rank 1. This family of modules is extended from
a family of R/I-modules by [107, Corollary 2.2], and these are nonisomorphic indecomposable
maximal Cohen-Macaulay R/I-modules of rank 1. Again, the left-hand side of the inclusion in
Claim 5 is infinite, and the proof is completed. |

Two irreducible elements p,q of an integral domain R are said to be distinct if pR # qR.
Applying our Theorem 3.4.5, we can obtain the following corollary, which is a basis in the next
Section 3.5 to obtain a stronger result (Theorem 3.5.1).

Corollary 3.4.6. Let (S,n) be a regular local ring of dimension two. Take an element 0 #
f €mnand set R = S/(f). Suppose that R is not an isolated singularity but has finite CM -
representation type. Then f has one of the following forms:

p2qr  where p,q,r are distinct irreducibles

with S/(pqr) having finite CM-representation type,

p?q  where p # q are irreducibles with S/(pq) having finite CM-representation type,

p? where p is an irreducible with S/(p) having finite CM-representation type.

Proof. As S is factorial, we can write f = p{'---p%", where pi,...,p, are distinct irreducible
elements and n,aq,...,a, are positive integers. If a; = --- = a, = 1, then R is reduced, and
hence it is an isolated singularity, which is a contradiction. Thus we may assume a; > 2.

Put ¢ :=p;---p, € R. We have

() + (0:2) = (p1-pn, pP P52 pin ) C (1),

and hence ht((x) + (0 : z)) = 0 < 1. Taking advantage of Theorem 3.4.5(3a), we observe that
R/(x) has finite CM-representation type. Also, R/(z) = S/(p1---pn) has multiplicity at least
n. By [108, Theorem 4.2 and Proposition 4.3] we see that n < 3.
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Assume either a; > 3 or a; > 2 for some [ > 2, say | = 2. Then put z := p%pg ---pp € R.
We have

a1—2 as— — (pl) (lf ap > 3)7
() + (0:x) = (pipa - - - pu, P2 2p2 L pin=ly C ,
' b (p2) (if az >2)

and hence ht((z)+ (0 : 2)) = 0 < 1. The ring R/(z) = S/(p?p2 - - - pn) is not reduced, so it is not
an isolated singularity. By [82, Corollary 2|, it has infinite CM-representation type. Theorem
3.4.5(3a) implies that R has infinite CM -representation type, which is a contradiction. Thus
ap=2and ay =---=a, = 1.

Getting toghther all the above arguments completes the proof of the corollary. |

To give applications of Theorem 3.4.5, we establish a lemma.

Lemma 3.4.7. Let R be a Gorenstein local ring of finite CM . -representation type. Then for all
M € indCM(R) one has cxp M = 1.

Proof. As R is Gorenstein, Q'M € ind CM,(R) for all i > 0 by Lemma 3.4.2 and [149, Lemma
8.17]. Since ind CM, (R) is a finite set, Q'M is periodic for some ¢t > 0. Hence M has complexity
at most one. As M is in CM_(R), it has to have infinite projective dimension. Thus the

complexity of M is equal to one. |

Let R be a ring. We denote by Dsg(R) the singularity category of R, that is, the Verdier
quotient of the bounded derived category of finitely generated R-modules by perfect complexes.
For an R-module M, we denote by NFr(M) the nonfree locus of M, that is, the set of prime
ideals p of R such that M, is nonfree as an Rj,-module. Now we prove the following result by
using Theorem 3.4.5.

Theorem 3.4.8. Let R be a Cohen—Macaulay local ring of dimension d > 0. Let I be an ideal
of R with V(I) C V(0 : I), and assume that R/I is a mazimal Cohen—Macaulay R-module.
Suppose that R has finite CM -representation type. Then:

(1) One hasd =1.
(2) If I =0, then dimCM(R) <n — 1.
(3) If R is Gorenstein, then R is a hypersurface and dim Dsg(R) < n — 1.

Proof. (1) This is a direct consequence of Theorem 3.4.5(2b).

(2) It follows from Theorem 3.4.5(2a) that R/I has finite CM-representation type. Hence
there exists a maximal Cohen-Macaulay R/I-module G such that CM(R/I) = addg/; G. Take
any maximal Cohen-Macaulay R-module M and put My := M. For each integer 0 <¢ <n —1
we have an exact sequence 0 — (0 :pz, I) ﬁ) M; — M;y1 — 0, where f; is the inclusion map.

Let us show that for all 0 < ¢ < n — 1 the R-module M; is maximal Cohen—Macaulay and
annihilated by I"~%. We use induction on i. It clearly holds in the case i = 0, so let i > 1.
Applying the functor Homp(—, M;—_1) to the natural exact sequence 0 — I — R — R/I — 0
induces an exact sequence 0 — (0 :p7,_, I) fl%l M;_1 — Hompg(I, M;_1), and hence M; is
identified with a submodule of Hompg(I, M;_1). The induction hypothesis implies that M;_;
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is maximal Cohen-Macaulay and I"~*"1M; ; = 0. Then Hompg(I, M;_1) has positive depth
(see [19, Exercise 1.4.19]), and so does M;. Since d = 1 by (1), the R-module M; is maximal
Cohen-Macaulay. Also, I"~*M;_1 is contained in (0 :pz,_, I), which implies that 1"~ annihilates
Ml',l/(() M4 I) = Mz

Thus, for each 0 < i < n—1 the submodule (0 :pz, I) of M; is also maximal Cohen-Macaulay
(as d = 1 again). Since it is killed by I, it is a maximal Cohen-Macaulay R/I-module. Therefore
(0 :pg; I) belongs to addr G = [G]; for all 0 < ¢ < n — 1. Using that fact that My = M and
M, = 0, we easily observe that M belongs to [G],. It is concluded that CM(R) = [G],,, which
means that dim CM(R) <n — 1.

(3) We claim that the R-module R/I has complexity at most one. Indeed, we have

n’

NFR(R/I)=V(I+(0:1)=V({I)NV(0:I)=V(I),

where the first equality follows from [140, Proposition 1.15(4)]. As I is not m-primary, NFz(R/I)
contains a nonmaximal prime ideal of R. Hence R/I is in CM, (R). Since R/I is a local ring, it
is an indecomposable R-module, and therefore R/I € ind CM_(R). It is seen from Lemma 3.4.7
that R/I has complexity at most one as an R-module. Now the claim follows.

Let X be an indecomposable R/I-module which is a direct summand of C := QdR / k. Propo-
sition 3.4.3(3) implies that X belongs to ind CM, (R). As in the proof of the first claim, QX
belongs to ind CM_ (R) for all i > 0, and Q%X is periodic for some n > 0. Therefore, we find an
integer m > 0 such that QY7 C is periodic; see Lemma 3.4.1. This implies that C' has complexity
at most one. There is an exact sequence

0—C— (R/%m1 — ... 5 (R/®2 = (R/1)® — R/T — k — 0.

As cxpC < 1 and cxp(R/I) < 1, we get cxgk < 1. By [10, Theorem 8.1.2] the ring R
is a hypersurface. The last assertion follows from [20, Theorem 4.4.1] and [43, Proposition
3.5(3)]. n

The above theorem gives rise to the two corollaries below. Note that the theorem and the
two corollaries all give answers to Questions 3.2.6 and 3.2.8.

Corollary 3.4.9. Let R be a Cohen—Macaulay local ring of dimension d > 0 possessing an
element x € R with (0 : x) = (z). Suppose that R has finite CM -representation type. Then
d=1 and dim CM(R) < 1. If R is Gorenstein, then R is a hypersurface and dim Dgg(R) < 1.

Proof. We have 2 = 0. The sequence --- = R = R % ... is exact, which implies that R/(z)
is a maximal Cohen—Macaulay R-module. The assertions follow from Theorem 3.4.8. |

Corollary 3.4.10. Let R be a Gorenstein non-reduced local ring of dimension one. If R has
finite CM -representation type, then R is a hypersurface.

Proof. Since R does not have an isolated singularity, Sing R contains a nonmaximal prime ideal
p. It is easy to see that (R/p), = k(p) is not Rp-free, and we also have V(p) = {p,m} C
Suppg(p) = V(0 : p) as pR, # 0. Lemma 3.4.7 implies that the R-module R/p has complexity
at most 1, and the local ring R is a hypersurface by virtue of Theorem 3.4.8(3). |
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3.5 The one-dimensional hypersurfaces of finite CM , -representation
type

The purpose of this section is to prove the following theorem.

Theorem 3.5.1. Let R be a homomorphic image of a reqular local ring. Suppose that R does not
have an isolated singularity but is Gorenstein. If dim R = 1, then the following are equivalent.

(1) The ring R has finite CM -representation type.

(2) There exist a regular local ring S and a regular system of parameters x,y such that R is
isomorphic to S/(z?) or S/(z%y).

When either of these two conditions holds, the ring R has countable CM-representation type.

In fact, the last assertion and the implication (2) = (1) follow from [21, Propositions 4.1
and 4.2] and [3, Proposition 2.1], respectively. The implication (1) = (2) is an immediate
consequence of the combination of Corollaries 3.4.6, 3.4.10 with Theorems 3.5.5, 3.5.11, 3.5.12
shown in this section. Note by Theorem 3.2.2 that the above theorem guarantees that under
the assumption that R is a complete Gorenstein local ring of dimension one, Question 3.2.8 has
an affirmative answer.

We establish three subsections, whose purposes are to prove Theorems 3.5.5, 3.5.11 and
3.5.12, respectively.

3.5.1 The hypersurface S/(p?)

For a ring A we denote by NZD(A) the set of non-zerodivisors of A, and by Q(A) the total
quotient ring Axzp(a) of A. A ring extension A C B is called birational if B C Q(A).

Lemma 3.5.2. Let A C B be a birational extension. Let M be a B-module which is torsion-
free as an A-module. If M is indecomposable as a B-module, then M is indecomposable as an
A-module as well.

Proof. The assertion follows by Remark 2.2.4. |

Let A be a ring and M an A-module. We denote by End 4(M) the quotient of End (M)
by the endomorphisms factoring through projective A-modules. For a flat A-algebra B one has
End,(M)®4 B = Endg(M ®4 B); this can be shown by using [149, Lemma 3.9].

Lemma 3.5.3. Let A C B be a finite birational extension of 1-dimensional Cohen—Macaulay
local rings. Then ind CM . (B) is contained in ind CM, (A).

Proof. Let M € ind CM, (B). Then depthy M = depthy M > 0, which shows that M is maximal
Cohen-Macaulay as an A-module. Lemma 3.5.2 implies M € ind CM(A). Set Q = Q(A) = Q(B).
Applying the functor QQ ® 4 — to the inclusions A C B C Q yields B®4 @) = Q. Hence we have

MepQ=M®ep(B®aQ)=M®4Q, End (M)®sQ =Endy(M®Q)=Endy(M®pQ).

Since M is in CM,(B), there is a minimal prime P of B such that Mp is not Bp-free. Note
that Mp = (M ®p Q) ®g Qp and Qp = Bp. Hence M ®p @ is not Q-projective, and we
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obtain End,(M ®p @) # 0. Therefore End 4 (M) ®4 @ is nonzero, which means that the A-
module End 4 (M) is not torsion. Thus Supp4(End 4(M)) contains a minimal prime of A, which
implies that M belongs to CM, (A4). Consequently, we obtain M € ind CM, (A4), and the lemma
follows. |

The following lemma is a consequence of [149, Corollary 7.6], which is used not only now
but also later.

Lemma 3.5.4. Let (S,n) be a regular local ring and x € n, and set R = S/(x). Then
{M € CM(R) | M is cyclic}/~ ={R/yR |y € S with x € yS}/=~.

In particular, there exist only finitely many nonisomorphic indecomposable cyclic maximal Cohen—
Macaulay R-modules.

Now we can achieve the purpose of this subsection.

Theorem 3.5.5. Let (S,n) be a reqular local ring of dimension two, and let p € n? be an
irreducible element. Then R = S/(p?) has infinite CM_-representation type.

Proof. Take any element ¢ € n that is regular on R. We consider the S-algebra T' = S[z]/(tz —
p, 22), where z is an indeterminate over S. We establish two claims.

Claim 1. The ring T is a local complete intersection of dimension 1 and codimension 2 with ¢
being a system of parameters.

Proof of Claim. It is clear that T = S[z]/(tz — p, 2%), which shows that T is a local ring, and
dim T = dim S[z] — ht(tz — p,2%) > 3 — 2 = 1 by Krull’s Hauptidealsatz. We have T/tT =
S[2]/(t,p, 2%) = (S/(t,p))[z]/(2?). As S/(t,p) is artinian, so is T//tT. Hence dimT = 1 and ¢ is a
system of parameters of 7', and thus 7" is a complete intersection (the equalities dim Sz] = 3 and
dim T = 1 imply ht(tz — p, 22) = 2, whence tz — p, 2% is a regular sequence). As (tz —p, z2) C n?,
the local ring T" has codimension 2. O

Claim 2. The ring R is naturally embedded in 7', and this embedding is a finite birational
extension.

Proof of Claim. Let ¢ : S — T be the natural map and put I = Ker¢. As p? = 222 = 0
in T, we have (p?) C I. Hence the map ¢ factors as S — R —» S/I < T. It is seen that
T is an R-module generated by 1,z and S/I is an R-submodule of 7. Since T has positive
depth by Claim 1, so does S/I. Thus S/I is a maximal Cohen—Macaulay cyclic module over the
hypersurface R, and Lemma 3.5.4 implies that I coincides with either (p) or (p?). If I = (p),
then T = T/pT = S[z]/(tz,p, 2?), which contradicts the fact following from Claim 1 that ¢ is
T-regular. We get I = (p?), which means the map R — T is injective.

Let C be the cokernel of the injection R < T'. Then C' is generated by z as an R-module.
Note that tz = p = 0 in C. Hence C is a torsion R-module, which means C @ Q(R) = 0.
Thus (Q(R) - T ®r Q(R)) = (R — T) ®r Q(R) is an isomorphism, while the natural map
T — T ®@r Q(R) is injective as T  is maximal Cohen—Macaulay over R by Claim 1. Thus the
embedding R < T is birational. O
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By Claim 1, the ring T is a complete intersection, which implies that the element 2? is
regular on the ring S[z]/(tz — p) and so is z. It is easy to check that (0 :p z) = 27. Claim
1 also guarantees that 17" is not a hypersurface. It follows from Corollary 3.4.9 that T has
infinite CM_-representation type. Combining Claim 2 with Lemma 3.5.3, we obtain the inclusion
ind CM,(T") C ind CM_ (R). We now conclude that R has infinite CM, -representation type, and
the proof of the theorem is completed. |

3.5.2 The hypersurface S/(p*qr)

Setup 3.5.6. Throughout this subsection, let (S,n) be a 2-dimensional regular local ring and
p, q,r pairwise distinct irreducible elements of S. Let R = S/(p?qr) be a local hypersurface of
dimension 1. Setting p = pR, q = ¢R, R = rR and m = nR, one has Spec R = {p, q, R, m}. For
each ¢ > 1 we define matrices

p 0 7 pgr 0 —qri
Ai=|(0 pg p |, Bi=1 0 pr -—p
0 0 pr 0 0 pq

over S. Put M; = Cokg A; and N; = Cokg B;.

Lemma 3.5.7. (1) For every i > 1 it holds that M;, N; € CM_(R), QrM; = N; and QrN; =
M;.

(2) For all positive integers i # j, one has M; 2 M; and N; 2 N; as R-modules.

Proof. (1) It is clear that A;B; = B;A; = p*qrE. Hence A;, B; give a matrix factorization of
p2qr over S, and we have M;, N; € CM(R), QgpM; = N; and QrN; = M;; see [149, Chapter 7).
Note that ¢, are units and p? = 0 in Ry, = S / pZS(p). There are isomorphisms

ri po1 0 01

p> %Cok(0p0> %Cok< 0 PO) §C0k<
p 00p -p° 0p

where all the cokernels are over R,. Therefore M; € CM,(R), and we get N; € CM,(R) by
Lemma 3.4.2.

(2) Suppose that there is an R-isomorphism M; = M;. It then holds that Fitte(M;) =
Fitta(M;), which means (p,r")R = (p,r/)R. This implies that (7*) = (7/) in the integral domain
R/p = S/(p). Since T # 0 in this ring, we get ¢ = j. If N; = Nj, then M; = QpN; = QrN; = M;
by (1), and we get ¢ = j. |

[N enlen]

01
i ok (§ §8) = Cok (8) = Ryt

o ©

Lemma 3.5.8. There is an equality

{M € CM,(R) | M is cyclict/~ ={R/(p), R/(pq), R/(pr), R/(pgr)}/=.

Proof. Let M be a cyclic R-module with M € CM_(R). It follows from Lemma 3.5.4 that M
is isomorphic to R/fR for some element f € S which divides p?qr in S. The localizations
Ry, R, are fields, and hence M, is not Ry-free. As p?> =0 in Ry = S/ pQS(p), it is observed
that f € pS\ p?S. Thus f € {p,pq,pr,pgr}. Conversely, for any g € {p,pq,pr,pqr} we have
(R/gR), = k(p) and get R/gR € CM,(R). [ |
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Lemma 3.5.9. Let © > 1 be an integer. Then neither Cokgy(,q) <8Z> nor Cokg/(pr) (qfi)

contains S/(p) as a direct summand.

Proof. (1) Set T'=5/(pq) and C = Coky <75 '; ) Consider the sequence

q
792 792 (©) T

of homomorphisms of free T-modules. Clearly, this is a complex. Let (¢) € T®2 be such that

(6”;) (%) =1(9). In S we have pa + r'b = pgc and pb = pqd for some c,d € S, and get b = qd

and pa + r'qd = pge. Hence pa € ¢S € Spec S and a € ¢S; we find e € S with a = ge. Then
pge + riqd = pgc, and pe + r'd = pc. Therefore r'd € pS € Spec S, and d € pS; we find f € S
with d = pf and get b = gpf. In T%% we have (§) = (,47) = (%) = (&) (e). It follows that the

paf
above sequence is exact, and the sequence
(), o0 (53)
B L By 20N @2 A T 792 050

gives a minimal free resolution of the T-module C.
Now, assume that S/(p) = T'/pT is a direct summand of C. Then C = T'/pT' & T /I for some
ideal I of T'. There are equalities of Betti numbers

2=p{(C) =B{ (T/pT ®T/I) = Y (T/pT) + B{ (T/I) = 1 + B{ (T/1),

and we get B?(T/ I) = 1. This means [ is a nonzero proper principal ideal of T'; we write
I = ¢gT where g is a nonzero nonunit of 7. The uniqueness of a minimal free resolution yields a
commutative diagram

(69)

T2 LT 792 792 C 0
%lws %Ju2 glul gl(% ii)::t %(g;} 52)=:s
T T — T — = T%? , T92 C 0
e 5

whose vertical maps are isomorphisms. As s, t are isomorphisms, their determinants s;54 — 253
and t1t4 — tot3 are units of T. The commutativity of the diagram shows s3p = pt3 and t3g = 0
in T, which imply s3 —t3 € (0 :p p) = ¢T and t3 € (0 :p q) = pT. Hence s3 is a nonunit of
T, and therefore s1,s4 are units of T. Again from the commutativity of the diagram we get
s49 = pts and sog = pta +r'ty in T, which give p(52521t4 —to) = r'ty. Hence 7'ty € pT € SpecT
and t4 € pT. We now get t1t4 — tots is in p1', which contradicts the fact that it is a unit of 7.
Consequently, S/(p) is not a direct summand of C'.

(2) Put T = S/(pr) and C = Cokyp (qfi). We have SpecT = {pT,rT,nT}. Since (p,qr’)T
is not contained in pT or rT, it is nT-primary and has positive grade. Hence the sequence

(qﬁl)

0T L5 T%2 50 =0
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is exact, which gives a minimal free resolution of the T-module C. This implies pdp C = 1.
Suppose that S/(p) = T/pT is a direct summand of C. Then T'/pT has projective dimension

at most one, which contradicts the fact that its minimal free resolution is - - - LN SN SN SN

T/pT — 0. Tt follows that S/(p) is not a direct summand of C. [

Lemma 3.5.10. (1) The ring S/(p,q) is artinian, and hence the number £(S/(p,q)) is finite.
(2) Letn > 0(S/(p,q)) be a positive integer.

(i) If X € CML(R) is a cyclic direct summand of My, then X is isomorphic to R/(pqr).
(ii)) If Y € CM_(R) is a cyclic direct summand of Ny, then Y is isomorphic to R/(pqr).

Proof. (1) The factoriality of S shows that pS is a prime ideal of S. As pS # ¢S, we have
ht(p, q)S > ht pS = 1. Since S has dimension two, the ideal (p, ¢)S is n-primary. Thus S/(p, q)S
is an artinian ring.

(2i) There is an R-module Z such that M, = X & Z. According to Lemma 3.5.8, it holds
that X = R/(f) for some f € {p, pq,pr,pqr}. There are isomorphisms

p 00 p00
R/(f, T’) &b Z/TZ = Mn/TMn =t COkR/(,,,) (8]3];8) = COkR/(r) (888) =~ (R/(p,T))@Q @R/(T)

Taking the completions and using the Krull-Schmidt property and [50, Exercise 7.5], we observe
that the ideal (f,r)R coincides with either (p,7)R or rR. Hence f # pq. Similarly, there are
isomorphisms

p0r? p0Or"
R/(f,q) ® Z/qZ = M, /qM, = Cokg/(,) <88 P) = Cokgy(g) (88 v >

The assumption n > €0(S/(p,q)) implies ™ € n™ C (p,q)S. We observe from this that
Cokp/(q) (87:) = Cokp/(q) <€2>, and obtain an isomorphism R/(f,q) ® Z/qZ = R/(q) ®
(R/(p,q))®2. Tt follows that (f,q)R coincides with either ¢R or (p,q)R, which implies f # pr.
Finally, consider the isomorphisms

T

p0Or® p 0™
R/(f7PQ) D Z/qu = Mn/qun = COkR/(pq) <881€") = COkR/(pq) <88 15 )

= R/(pq) & Cokny) (1 ) -

If f = p, then R/(f,pq) = R/(p) and we see that this is a direct summand of Cokpg(,q) (8 T; ),
which contradicts Lemma 3.5.9. Thus f # p, and we conclude that f = pqr.
(2ii) We go along the same lines as the proof of (2i). We have N,, = Y& Z for some Z € mod R,

and get Y = R/(f) for some f € {p,pq, pr,pqr} by Lemma 3.5.8. The isomorphisms

000 000

R/(f.r) ® Z/rZ 2 Ny /rNy = ok (80 » ) 2 Cokgyry (007 ) = B/ (pr) @ (R/()*,
000 000

R/(£,0) ® 2/aZ = NufaNo = Cokpyq) (0o 1) = Cokpyq) (009) = R/(p,a) @ (R/(a)**
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show that (f,q) (resp. (f,r)) coincides with either (p, q) or (q) (resp. either (p,r) or (1)), which
implies f # pq, pr. We also have isomorphisms

00 gr™ 00 grm

R/(f, ® Z/prZ = N, /prN, = Cokg/pm | 00 = Cokp/(pry | 00
/(f,pr) ® Z/pr /pr okR/(pr) (00 ;q) okR/(pr) (00 p >
b)) @

Using Lemma 3.5.9, we see that f # p, and obtain f = pgqr. |

The purpose of this subsection is now fulfilled.

Theorem 3.5.11. Let S be a regular local ring of dimension two. Let p,q,r be distinct irreducible
elements of S. Then R = S/(p*qr) has infinite CM_-representation type.

Proof. We assume that R has finite CM,-representation type, and derive a contradiction. It
follows from Lemma 3.5.7(1) that there exists an integer a > 1 such that both M; and N; are
decomposable for all i > a; we write M; = X; @Y, for some R-modules X;,Y; with v(X;) =1
and v(Y;) = 2. In view of Lemmas 3.5.4 and 3.5.7(2), we see that there exists an integer b > a
such that Y}, is indecomposable for all h > b and that Y; 2 Y; for all ¢,5 > b with ¢ # j. Then,
we have to have Y; € CMy(R) for all ¢ > b, and hence X; € CM_(R) for all ¢ > b (by Lemma
3.5.7(1)). Putting ¢ = max{b,€¢(S/(p,q))} and applying Lemma 3.5.10(2i), we obtain that X;
is isomorphic to R/(pgr) for all ¢ > ¢. There are isomorphisms

N; & QrM; = QrX,; ® QrY; = Qr(R/(pqr)) & QrY; = R/(p) ® QrY;,

where the first isomorphism follows from Lemma 3.5.7(1). Since R/(p) is in CM, (R), it follows
from Lemma 3.5.10(2ii) that R/(p) = R/(pqr), which is absurd. [

3.5.3 The hypersurface S/(p*q)
The goal of this subsection is to prove the following theorem.

Theorem 3.5.12. Let (S,n) be a 2-dimensional regular local ring. Let p, q be distinct irreducible
elements of S. Suppose that R = S/(p?q) has finite CM . -representation type. Then p,q ¢ n?.

Note that the rings R and R/p?R are local hypersurfaces of dimension one. If p € n?, then
R/p?R = S/(p?) has infinite CM,-representation type by Theorem 3.5.5, and so does R by
Theorem 3.4.5(1), which contradicts the assumption of the theorem. Hence p ¢ n?, and p is a
member of a regular system of parameters of S. Thus we establish the following setting.

Setup 3.5.13. Throughout the remainder of this subsection, let (S,n) be a regular local ring of
dimension two. Let x,y be a regular system of parameters of S, namely, n = (z,y). Let h € n?
be an irreducible element, and write h = z%s + zyt + y?u with s,t,u € S. Let R = S/(2?h) be a
local hypersurface of dimension one. One has Spec R = {p, q,m}, where we set p = zR, ¢ = hR
and m = nR. For each integer i > 1 we define matrices

x 0 9 zh —y'h yitt
Ai=10 zy =z |, B;,=1|0 0 x
0 zh 0 0 zh —xy

over S. We put M; = Cokg A; and N; = Cokg B;.
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In what follows, we argue along similar lines as in the previous subsection.

Lemma 3.5.14 (cf. Lemma 3.5.7). (1) Leti > 1 be an integer. The modules M; and N; belong
to CM,(R), and it holds that QrM; = N; and QrN; = M;.

(2) Leti,j > 1 be integers with i # j. One then have M; 2 M; and N; 2 N; as R-modules.

Proof. (1) We have A;B; = B;A; = x?hE. The matrices A;, B; give a matrix factorization of
22h over S. We have that M;, N; are maximal Cohen-Macaulay R-modules with QrM; = N;
and QgN; = M;. Note that y, h are units and 22 = 0 in Ry, = S(gc)/mQS(x). We have

z 0 y"\ z 0y \ 01\ 0 01
i 2 o, (3% ) = o, (§17) = o (1) = oo, (333
001Y ., 001Y ~
= Cokn, ({{85) = Cokn, (§3) = Cokn (32) = iy @ x(9)

which shows that M; € CM, (R), and Lemma 3.4.2 implies N; € CM_(R) as well.

(2) If M; = Mj, then (z,y")R = Fitta(M;) = Fitto(M;) = (2,3’)R, and (¥') = (7’) in the
discrete valuation ring R/xR = S/(x) with ¥ a uniformizer, which implies i = j. As N;, N; are
the first syzygies of M;, M; by (1), we see that if N; = N;, then i = j. |

Lemma 3.5.15 (cf. Lemma 3.5.8). It holds that
{M € CM_(R) | M is cyclic}/~ = {R/(z), R/(xh)}/=~.

Proof. 1t is easy to see that neither (R/(x)), nor (R/(xh)), is Ry-free. Let M € CM,(R) be
cyclic. As Ry is a field, M, is not Ry-free. Using Lemma 3.5.4, we get M = R/fR for some
f €8 with f|22h, | f and 22 { f. Hence, either f = x or f = zh holds. |

Lemma 3.5.16 (cf. Lemma 3.5.10). Let i > 1 be an integer. Let C' be a cyclic R-module with
C € CM,(R). If C is a direct summand of either M; or Nj, then C is isomorphic to R/(xh).

Proof. (1) First, consider the case where C is a direct summand of M;. Assume that C is
not isomorphic to R/(zh). Then C = R/(x) by Lemma 3.5.15. Application of the functor
— ®p R/(zy) shows that C'/zyC = C = R/(x) is a direct summand of

.

<

0
0

Mz/l‘yMl = COkR/(xy) <§ S

zy® 0 i
> = COkR/(my) (8% :(:Oh) = COkR/(xy) (g a) ® R/(xy,xh).

or

As (z) # (zy,xh), we have R/(z) 2 R/(zy,xh) and hence R/(x) is a direct summand of
Cokp/(ay) (3 ?i:) Note that R/(zy) = S/(z%h, xy) = S/(x*(x®s + xyt +y*u), vy) = S/ (xs, zy).
Put T := R/(wy,x*) = S/(z*,vy). Applying the functor — ®@r R/(x%), we see that T/(z) =

R/(x) is a direct summand of L := Cokyp (‘8 3;’;) Write L = T/(x) @ D with D € modT. It is

easy to verify that the sequence

0+ L« T%? 793
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is exact, and we observe D = T'/(v) for some v € T. Uniqueness of a minimal free resolution

(352)
00 23

gives rise to a commutative diagram

(%)

0 L TEBZ T@2 T@S
.| @ =)
0«—T/(x)®T/(v) T2 T2

with vertical maps being isomorphisms. The elements ajas — asas and biby — bobs are units of
T. We have a1y’ + asx = xby and a1z = xby in T. Hence a1y’ € (z) € SpecT, which implies
a1 € (x). Also, a; — by € (0: x) = (23,y), which implies by € (x,y). It follows that as,as, ba, bs
are units of T'. The equality azx = vbz implies that (z) = (v) in 7. We obtain isomorphisms

T/(a,y) © T/(a*) = Cokr (3% %) = 0rL = (2) @ (v) = () = (T (2", )

It follows that (23) = (23,y) in T, which is a contradiction. Consequently, C' is isomorphic to
R/(zh).

(2) Next we consider the case where C' is a direct summand of ;. The proof is analogous
to that of (1). Again, assume C' 2 R/(zh). Then C' = R/(xz) by Lemma 3.5.15. Set T :=
R/(zh) = S/(zh). Applying — @r T, we see that R/(x) = T/(z) is a direct summand of

0 —yih it i it P
Ni/thi:CokT<0 0 e )%CokT(g %hyx )%T@COkT(yherl),
0 0 —wy 0 0 0 0 =

0 =z
phism L = T/(x) & T/(v) with v € T and a commutative diagram:

which implies that T/(x) is a direct summand of L := Cokyp (yih y ! ) There are an isomor-

<yih yi+1)
0 I’ TH2 0 =z T®2
.| a0
0 T/(z) & T/(v) — T2 =D T®?
0v

Note that Spec T = {(z), (h),nT}. We have (h) > a1y’h = xb; € (z), which implies a; € (v) and
by € (h). As ajas—asas and biby — bobs are units, so are as, ag, bz, b3. The equalities azy’h = vbs
and azy"™ +asx = vby imply azy’(by 'hby—y) = asz € (2), which gives by 'hby —y € (x). Hence
y € (x,h) = (v, 2%s+ayt+y?u) = (z,y*u) in T, which is a contradiction. Thus C = R/(zh). B

Lemma 3.5.17 (cf. Theorem 3.5.11). The ring R has infinite CM ;. -representation type.

Proof. Assume contrarily that R has finite CM,-representation type. Then, by (1) and (2) of
Lemma 3.5.14, there exists an integer a > 1 such that M; is decomposable for all integers i > a.

Suppose that for some i > 1 the module M; has a cyclic direct summand C' € CM,(R).
Then C is isomorphic to R/(zh) by Lemma 3.5.16, and QrC = R/(x) is a direct summand
of QrM; = N; by Lemma 3.5.14(1). Applying Lemma 3.5.16 again, we have to have R/(z) =
R/(xh), which is a contradiction.
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Thus M; has no cyclic direct summand belonging to CM_(R) for all 4 > 1. This means
that for every ¢ > a the R-module M; has an indecomposable direct summand Y; € CM, (R)
with v(Y;) = 2. This, in turn, contradicts the assumption that R has finite CM_-representation
type. |

Now the purpose of this subsection is readily accomplished:

Proof of Theorem 8.5.12. The theorem is an immediate consequence of Lemma 3.5.17 and what
we state just after the theorem. |

3.6 On the higher-dimensional case

In this section, we explore the higher-dimensional case: we consider Cohen—Macaulay local rings
R with dim R > 2 and having finite CM, -representation type. In particular, we give various
results supporting Conjecture 3.1.1. We begin with presenting an example by using a result
obtained in Section 4.

Example 3.6.1. Let S be a regular local ring with a regular system of parameters x,y, z. Then
R = S/(xzyz) has infinite CM -representation type.

Proof. Let I = (zy) be an ideal of R. Then (0: 1) = (z) in R, and ht(I + (0: I)) = ht(xy, z) =
1 <2=dimR. The ring R/I = S/(zy) is a 2-dimensional hypersurface which does not have an
isolated singularity. We see by [82, Corollary 2] that R/I has infinite CM-representation type.
It follows from Theorem 3.4.5(3a) that R has infinite CM_ -representation type. [

We consider constructing from a given hypersurface of infinite CM_-representation type
another hypersurface of infinite CM, -representation type. For this we establish the following
lemma, which provides a version of Knorrer’s periodicity theorem for CM  (R).

Lemma 3.6.2. Let (S,n) be a regular local ring, and let f,g € S. Let R = S/(f) and R =
S[z]/(f +x2g) be hypersurfaces with x an indeterminate over S. Then the following statements
hold.

(1) There is an additive functor

$:CM,(R) — CM,(R!),  Cok(A, B) — Cok ((;;E —gE> (B %f)) .

(2) Let M € indCM_(R) and put N = ®(M). Then one has either N € ind CM,(R%) or
N=XaY for some X,Y € ind CM,(R?).

Proof. (1) It holds that (o5 57 ) (_L8zF) = (LEeF) (s &) = (f +%9)B. 1
(V,W): (A, B) — (4’, B') is a morphism of matrix factorizations of f over S, then ((} ), ('} &
((xﬁE 7]§E) , (_ng xf)) — ((I‘;‘;; 7§/E> , <7fg/E ”fﬁ)) is a morphism of matrix factorizations
of f 4+ x%g over S[z]. We observe that ® defines an additive functor from CM(R) to CM(RY).
Fix M € CM,(R). Let (A, B) be the corresponding matrix factorization. Set N to be the

corresponding module Cokgjyj < m?E’ _EE) via ®. There is a nonmaximal prime ideal p of S such
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that M, is not Rp-free. Put q = pS[z] + xS[x]. We see that q is a nonmaximal prime ideal of
S[x]. Suppose that Ny =2 (Rﬁ)?” for some n. Then

RI™ = (R /aR})®™)g & Ny/aNy = Cokgpy, (4 %) = Coks, A® Coks, B = M, & (QrM),,

which implies that M, is Ry-free, a contradiction. Therefore Ny is not (R¥)q-free, and we obtain
N € CM_(R"). Thus ® induces an additive functor from CM, (R) to CM, (R?).

(2) Let (A, B) be the matrix factorization which gives M. Then N = Cokgpyj ( m’;E —rE )
Suppose that N is decomposable. Then N = X &Y for some nonzero modules X,Y € CM(R?).
It holds that

X/z2X @Y/zY = N/zN = Cokg (4 ) = Cokg A® Cokg B~ M @ QpM.

Since R is Gorenstein, not only M but also QrM is indecomposable; see [149, Lemma 8.17].
Nakayama’s lemma guarantees that X/xX and Y/xY are nonzero, and both X and Y have to
be indecomposable. We may assume that M = X/zX and QrM = Y/2Y. Take a nonmaximal
prime ideal p of S such that M, is not Ry-free. Then q := pS[z]+ xS[z] is a nonmaximal prime
ideal of S[xz] as in the proof of (1). We easily see that the Ry,-module (2gM ), is not free. Now
it follows that neither X, nor Yj is free over (R*);, which shows that X,Y € CM, (R¥). [

Infinite CM, -representation type ascends from R to R¥.

Proposition 3.6.3. Let (S,n) be a regular local ring and f,g € S. Let R = S/(f) and R* =
S[z]/(f +x2g) be hypersurfaces with = an indeterminate. If R has infinite CM_-representation
type, then so does R!.

Proof. Pick any M; € ind CM_(R). The set ind CM(R)\ {M1,2M,} is infinite, and we pick any
My in this set. The set ind CM(R) \ { M1, QM7, M, QMy} is infinite, and we pick any Ms in it.
Iterating this procedure, we obtain modules My, My, M3, ... in ind CM4(R) such that M; 2 M;
and M; = QM; for all ¢ # j. We put N; = ®M; for each i, where ® is the functor defined in
Lemma 3.6.2. Then by the lemma N; is either in ind CM+(Rﬁ) or isomorphic to X; @Y; for some
X;,Y; € indCM_(RY).

Assume N; = N; for some i # j. Then, as we saw in the proof of the lemma, there are
isomorphisms M; ® QM; = N;/xN; = N;/xN; = M; ®QM; and the modules M;, QM;, M;, QM;
are indecomposable. This contradicts the choice of these modules. Hence we have N; 22 NN; for
all i # j.

Suppose that there are only a finite number, say n, of indecomposable modules in CM, (R).
Then it is seen that the set {N1, Na, N3, ... }/~ has cardinality at most n + (”;rl), which is a
contradiction. We now conclude that R has infinite CM_ -representation type, and the proof of
the proposition is completed. |

Here is an application of Proposition 3.6.3.

Corollary 3.6.4. Let R be a 2-dimensional complete local hypersurface with algebraically closed
residue field k of characteristic 0 and not having an isolated singularity. Suppose that R has
multiplicity at most 2. If R has finite CM, -representation type, then R = k[z,y,z]/(f) with
f=a2%+19% or f = 2% +y?z, and hence R has countable CM-representation type.
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Proof. 1f e(R) = 1, then R is regular, which contradicts the assumption that R does not have
an isolated singularity. Hence e(R) = 2, and the combination of Cohen’s structure theorem and
the Weierstrass preparation theorem shows R 2 k[x,y, 2] /(2% +g) for some g € k[y, z]; see [149,
Proof of Theorem 8.8]. It follows from Proposition 3.6.3 that the 1-dimensional hypersurface
S = k[y, z]/(g) has finite CM-representation type. By virtue of Theorem 3.5.1, we obtain
g = y? or g = y*2 after changing variables (i.e., after applying a k-algebra automorphism of
k[y, z]). We observe that R is isomorphic to either k[z,v, 2] /(2 + v?) or k[x,y, 2]/ (z? + 322).
It follows from [108, Propositions 14.17 and 14.19] that R has countable CM-representation
type. |

Proposition 3.6.3 can provide a lot of examples of hypersurfaces of infinite CM_ -representation
type of higher dimension. The following example is not covered by this proposition or any other
general result given in this chapter.

Example 3.6.5. Let S be a regular local ring with a regular system of parameters x,y, z. Let
f=a"+ z>ya + y?b

be an irreducible element of S with n > 4 and a,b € S. Then the hypersurface R = S/(f) has
infinite CM, -representation type.

Proof. Putting g = x%a + yb, we have f = 2™ + yg. For each integer i > 0 we define a pair of
matrices A; = %2 f;; and B; = 2’”0_2 ”f;;sf;

S and S/(y). Define another pair of matrices Ag = ( ;Ei _é’iE) and Bf = (5}% {’5 ) These form

), which gives a matrix factorization of z™ over

a matrix factorization of f over S, and hence M; := Coks(Ag) is a maximal Cohen—Macaulay
R-module. There are equalities

Fitt3 (M) = 11 (A}) = (a2, 22',2" 2, 2" 7321y, ) S = (a2, 27", y)$

of ideals of S, where we use n > 4.

Suppose that M; = M; for some i < j. Then (2%, 22%,y)S = (22,227,y)S and (22, 22%)S =
(22,227)S, where S := S/(y) is a regular local ring having the regular system of parameters
z,z. Hence z' € (z,29)S and z' € 295 where S := S/z3 is a discrete valuation ring with z a
uniformizer. This gives a contradiction, and we see that M; 2 M; for all i # j.

Let p = (z,y)S € SpecS, and fix an integer i« > 0. Note that all the entries of A;, B; are
in p since n > 4. It follows from [149, Remark 7.5] that the Ry,-module (M;), does not have a
nonzero free summand. Since f is assumed to be irreducible, R is an integral domain. Hence
each nonzero direct summand X of the maximal Cohen—Macaulay R-module M; has positive
rank, and hence has full support. Therefore X, # 0, and thus all the indecomposable direct
summands of M; belong to ind CM(R). Since all the M; are generated by four elements, it is
observed that ind CM_(R) is an infinite set. [

To prove our next result, we prepare a lemma on unique factorization domains.

Lemma 3.6.6. Let R be a Cohen—Macaulay factorial local ring with dim R > 3. Let I be an
ideal of R generated by two elements. Then depth R/I > 0.
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Proof. We write I = (z,y)R and put g = ged{x,y}. Then x = ga’ and y = gy’ for some
2,y € R, and we set I’ = (2, /) R. There is an exact sequence 0 — R/I’ 2 R/T — R/gR — 0
of R-modules. As R is Cohen—Macaulay, we have depth R > 3 and ht I’ = grade I’. Since R is a
domain and g # 0, we have depth R/gR = depth R — 1 > 2. If ht I’ = 1, then I’ is contained in
a principal prime ideal, which contradicts the fact that z’,4’ are coprime. Hence ht I’ = 2, and
the sequence 2’y is R-regular. It follows that depth R/I’ = depth R — 2 > 1, and the depth
lemma implies depth R/I > 1. |

Now we can prove the following theorem, which provides the shape of a hypersurface of
infinite CM_ -representation type.

Theorem 3.6.7. Let (S,n) be a regular local ring and x,y € n. Suppose that the ideal (z,y) of
S is neither prime nor n-primary. Then R = S/(xy) has infinite CM -representation type.

Proof. Lemma 3.6.6 guarantees that there exists an S/(z,y)-regular element a € n. Take a
minimal prime p of (z,y). Since (z,y) is not prime, we can choose an element b € p \ (z,y).
Set z, = a™b for each n. The matrices A, = (3 f@) and B, = (g f’;) with n > 1 form a
matrix factorization of xy over S, and M,, = Cokg A,, is a maximal Cohen—-Macaulay R-module.
Put I,, := I1(4,) = (z,y,2") C S. Since the I, are pairwise distinct, the M, are pairwise
nonisomorphic. If M, is decomposable, it decomposes into two cyclic R-modules, while Lemma
3.5.4 says that there are only finitely many such cyclic modules up to isomorphism. Thus we
find infinitely many n such that M, is indecomposable. Since (z,y, z,) is contained in p, each
(M), has no nonzero free summand by [149, (7.5.1)]. In particular, we have M, € CM(R).

Now it is seen that R has infinite CM_-representation type. |

Applying the above theorem, we can obtain a couple of restrictions for a hypersurface of
dimension at least 2 which is not an integral domain but has finite CM_-representation type.

Corollary 3.6.8. Let R be a complete local hypersurface of dimension d > 2 which is not a
domain. Suppose that R has finite CM_-representation type. Then one has d = 2, and there
exist a complete reqular local ring S of dimension 3 and elements x,y € S satisfying the following

conditions.

(1) R is isomorphic to S/(zy).

(2) S/(z) and S/(y) have finite CM-representation type.
(3) S/(x,y) is a domain of dimension 1.

Proof. Corollary 3.3.3(1) says that R satisfies Serre’s condition (R4—2). Suppose d > 3. Then R
satisfies (R1), and hence it is normal. In particular, R is a domain, contrary to our assumption.
Therefore, we have to have d = 2. Cohen’s structure theorem yields R = S/fS for some 3-
dimensional complete regular local ring (S,n) and f € n\ n?. As R is not a domain, there are
elements x,y € S with f = xy. Since dim S = 3, the ideal (z,y)S is not n-primary. Hence
dim S/(z,y)S = 1, and S/(z,y)S is a domain by Theorem 3.6.7. We have dim R = dim R/xR =
2, (0:g x) =yR and ht(zR + (0 :g z)) < 2. It follows from Theorem 3.4.5(3a) that S/xS has
finite CM-representation type, and similarly so does S/yS. |
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Proposition 3.6.3 gives an ascent property of infinite CM,-representation type. Now we
presents a descent property of infinite CM, -representation type.

Theorem 3.6.9. Let ¢ : (R,m, k) — (S,n,1) be a finite local homomorphism of Cohen—Macaulay
local rings of dimension d such that S is a domain. Set p = Ker ¢ and assume the following.

(a) The induced embedding R/p — S is birational.
(b) There exists q € V(p) \ {m} such that Ry is not a direct summand of Sy.
If S has infinite CM-representation type, then R has infinite CM, -representation type.

Proof. We prove the theorem by establishing several claims.

Claim 1. Let X # 0 be an R-submodule of a maximal Cohen-Macaulay S-module M. Then
Xq #0.
q

Proof of Claim. Assume Xy = 0. Then there exists an element s € Anng X such that s ¢ q.
As p C q, we have s ¢ p, which means ¢(s) # 0. Choose a nonzero element z € X. Since s
annihilates X, we have 0 = s -z = ¢(s)z in M. This contradicts the fact that M is torsion-free

over the domain S. O

Claim 2. Let M € CM(S). Let X be an indecomposable R-module which is a direct summand
of M. Then X € ind CM,(R).

Proof of Claim. Asdepthy M = depthg M > d, we have M € CM(R) and hence X € ind CM(R).
To show the claim, it suffices to verify that X is not Ry-free.

Take an exact sequence o : 0 — QgM — S9* — M, — 0. Since M belongs to CMg(S), the
S-module E := Exti(M,QgM) has finite length. The induced field extension & < [ is finite
because so is the homomorphism ¢, and hence E also has finite length as an R-module. As q is
a nonmaximal prime ideal of R, we have 0 = E; = Ext}gq (Mg, (2sM)q), and the exact sequence
oq:0—= (QsM)q — SSB” — Mgy — 0 corresponds to an element in this Ext module. Hence
oq has to split, and M, is a direct summand of S(?” as an Sg-module. (Note that Sy is not
necessarily a local ring.) The Sg-module X, is a direct summand of M, which is nonzero by
Claim 2.

Suppose that X is Ry-free. Then Ry is a direct summand of SSB” in mod Ry. As Ry is a
local ring, we can apply Lemma 3.3.5(1) to deduce that R, is a direct summand of Sy. This
contradicts the assumption of the theorem, and thus X is not Ry-free. ([l

Claim 3. One has the inclusion ind CMy(S) C ind CM,(R).

Proof of Claim. Take M € ind CMy(S). Lemma 3.5.2 implies that M is indecomposable as an
R/p-module, and it is indecomposable as an R-module. Taking X := M in Claim 2, we have
M € indCM . (R). O

It follows from Lemma 3.4.4 that S has infinite CMg-representation type. Claim 3 implies
that R has infinite CM, -representation type, and the proof of the theorem is completed. |
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We obtain an application of the above theorem, which gives an answer to Question 3.2.6. For
aring R we denote by R the integral closure of R. Recall that a typical example of a henselian
Nagata ring is a complete local ring.

Corollary 3.6.10. Let R be a 2-dimensional henselian Nagata Cohen—Macaulay non-normal
local ring. Suppose that R has finite CM_-representation type. Then the following statements
hold.

(1) There ezists a minimal prime p of R such that the integral closure R/p has finite CM-
representation type. In particular, if R is a domain, then R has finite CM-representation

type.
(2) If R is Gorenstein, then R is a hypersurface.

Proof. By Corollary 3.3.3(1) the singular locus of R has dimension at most one, so that R
satisfies Serre’s condition (Rg). As R is Cohen—Macaulay, it is reduced. Let S = R be the
integral closure of R. We have a decomposition S = % BB m as R-modules, where
Min R = {p1,...,pn} (see [85, Corollary 2.1.13]). Since R is Nagata, the extension R C § is
finite. The ring S is normal and has dimension two, so it is Cohen—Macaulay.

We claim that if p is a nonmaximal prime ideal of R such that S, is Rp-free, then R, is
a regular local ring. In fact, if htp = 0, then R, is a field. Let htp = 1. The induced map
Spec S — Spec R is surjective, and we find a prime ideal P of S such that PN R = p. We
easily see ht P = 1. As S is normal, Sp is regular. The induced map R, — Sp factors as

R, N Sp ﬁ) Sp, where a is a finite free extension, and b is flat since Sp = (Sp)psp. Hence
R, — Sp is a flat local homomorphism. As Sp is regular, so is R,.

Since R does not have an isolated singularity, there exists a nonmaximal prime ideal p of
R such that R, is not regular. The claim implies that S, is not Rp-free, whence S € CM_(R).
There exists an integer 1 < I < n such that T := R/p; belongs to CM(R).

Put p := p; € Min R. The ring R/p is also Nagata, and the extension R/p C T is finite
and birational. The ring T is a 2-dimensional henselian normal local domain, whence it is a
Cohen-Macaulay. Choose a nonmaximal prime ideal q of R such that Tj is not Rg-free. If p
is not contained in ¢, then (R/p)q = k(p)q = 0 and T; = 0, which particularly says that Ty is
Ry-free, a contradiction. Hence p C q.

Suppose that Ry is a direct summand of T;. Then there is an isomorphism Ty = Ry & X
of Rq-modules. Since Ty is annihilated by p, so is Ry. We have ring extensions Rq = (R/p)q C
Ty € k(p), which especially says that R, is a domain and that Tj has rank one as an Rq-module.
Hence the Ry-module X has rank zero, and it is easy to see that X = 0. We get Ty = Ry, which
contradicts the choice of q. Consequently, Ty does not have a direct summand isomorphic to Rj.

Now, application of Theorem 3.6.9 proves the assertion (1). To show (2), we consider the
T-module U = Q2(T/mT). Fix any nonzero direct summand X of U or T' in mod R. Note that
T = R/p is a torsion-free module over R/p. Since U is a submodule of a nonzero free T-module,
U is also torsion-free over R/p, and so is X. We easily see from this that Xy # 0. The module
X, is a direct summand of Uy = T, q@ edimR—1 ~ Ag R, is not a direct summand of Ty, it is not
a direct summand of X;. In particular, X belongs to CM;(R). Thus, all the indecomposable
direct summands of U and of T" in mod R belong to ind CM_(R), and it follows from Lemma
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3.4.7 that they have complexity at most one. Hence U and T have complexity at most one over
R, and so does T'/mT. We obtain cxp k < 1, and R is a hypersurface by [10, Theorem 8.1.2]. W

The above result yields a strong restriction for finite CM_ -representation type in dimension
two.

Corollary 3.6.11. Let R be a 2-dimensional non-normal Gorenstein complete local ring. If R
has finite CM -representation type, then the integral closure R of R has finite CM-representation

type.

Proof. If R is a domain, then the assertion follows from Corollary 3.6.10(1). Hence let us
assume that R is not a domain. By Corollary 3.6.10(2) the ring R is a hypersurface. We can
apply Corollary 3.6.8 to see that there exists a 3-dimensional regular local ring S and elements
x,y € S such that R is isomorphic to S/(xy) and S/(x),S/(y) have finite CM-representation
type. Note by [82, Corollary 2] that S/(z), S/(y) are normal. As in the beginning of the proof
of Corollary 3.6.10, the ring R is reduced. Hence () # (y), and we have an isomorphism
R = S/(x) x S/(y) = S/(x) x S/(y); see [85, Corollary 2.1.13]. There is a natural category

equivalence mod R = mod S/(x) x mod S/(y), which induces a category equivalence CM(R) =2
CM(S/(z)) x CM(S/(y)). Tt is observed from this that R has finite CM-representation type. M

The converse of Corollary 3.6.11 does not necessarily hold, as the following example says.

Example 3.6.12. Let R = k[z,vy, 2]/(z* — ¥32) be a quotient of the formal power series ring
k[z,y,z] over a field k. Then R is a 2-dimensional complete non-normal local hypersurface.

4 2 — t* gives an isomorphism from R to the subring S =

The assignment x + s3t, y > s
k[s*, s3t,t%] of the formal power series ring T' = k[s,¢]. The integral closure of S is the fourth
Veronese subring k[s*, s3t, s2t2, st3,t1] of T, which has finite CM-representation type by [108,
4

Theorem 6.3]. Hence R has finite CM-representation type. However, as ¢ — y32z = 2* + 22y -

0 + y?(—yz), the ring R does not have finite CM_-representation type by Example 3.6.5.

Remark 3.6.13. The integral closure has to actually be regular (under the assumptions of
Corollary 3.6.11) provided that our conjecture that countable CM-representation type is equiv-
alent to finite CM -representation type holds true in this setting.

Chapter 4

Ulrich modules over
Cohen—Macaulay local rings
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with minimal multiplicity

Introduction

The contents of this chapter is based on author’s work [95] and author’s paper [99] with R.
Takahashi.

The notion of an Ulrich module, which is also called a mazimally generated (mazimal) Cohen—
Macaulay module, has first been studied by Ulrich [144], and widely investigated in both commu-
tative algebra and algebraic geometry; see [17, 26, 37, 63, 64, 76, 92, 115] for example. In [144]
the natural question is posed to ask whether Ulrich modules exist over any Cohen—-Macaulay
local ring R. A lot of partial affirmative answers to this question have been obtained so far. One
of them states that the conjecture holds whenever R has minimal multiplicity ([17]). Thus, in
this paper, mainly assuming that R has minimal multiplicity, we are interested in what we can
say about the structure of Ulrich R-modules.

We begin with exploring the number and generation of Ulrich modules. The following theo-
rem is a special case of our main results in this direction (2 denotes the first syzygy).

Theorem 4.0.1. Let (R, m, k) be a d-dimensional complete Cohen—Macaulay local ring.

(1) Assume that R is normal with d = 2 and k = C and has minimal multiplicity. If R does
not have a rational singularity, then there exist infinitely many indecomposable Ulrich R-
modules.

(2) Suppose that R has an isolated singularity. Let M, N be mazimal Cohen—Macaulay R-
modules with Exts(M,N) =0 for all 1 <i <d— 1. If either M or N is Ulrich, then so is
Homp(M, N).

(3) Let ® = x1,...,2q be a system of parameters of R such that m?> = xzm. If M is an Ulrich
R-module, then so is Q(M/x; M) for all 1 <i < d. If one chooses M to be indecomposable
and not to be a direct summand of Q%%, then one finds an indecomposable Ulrich R-module
not isomorphic to M among the direct summands of the modules Q(M /x;M).

Next, we relate the Ulrich modules with the syzygies of maximal Cohen—-Macaulay mod-
ules. To state our result, we fix some notation. Let R be a Cohen—Macaulay local ring with
canonical module w. We denote by mod R the category of finitely generated R-modules, and
by UI(R) and QCM*(R) the full subcategories of Ulrich modules and first syzygies of maximal
Cohen-Macaulay modules without free summands, respectively. Denote by (—)' the canonical
dual Homp(—,w). Then UI(R) is closed under (—)', and contains QCM*(R) if R has minimal
multiplicity. The module Q% belongs to QCM*(R), and hence Q%, (29k)T belong to UI(R).
Thus it is natural to ask when the conditions in the theorem below hold, and we actually answer
this.

Theorem 4.0.2. Let R be a d-dimensional singular Cohen—Macaulay local ring with residue
field k and canonical module w, and assume that R has minimal multiplicity. Consider the
following conditions.

58



(1) The equality UI(R) = QCM*(R) holds.

(2) The category QCM*(R) is closed under (—)T.

(3) The module (2%k)T belongs to QCM*(R).

(4) There is an isomorphism Q%% = (Q%k)*.

(5) The local ring R is almost Gorenstein (see Definition 4.3.8).

Then (1)-(3) are equivalent and (4) implies (1). If d > 0 and k is infinite, then (1) implies (5).
If d =1 and k is infinite, then (1)-(5) are equivalent. If R is complete normal with d = 2 and
k = C, then (1)-(4) are equivalent unless R has a cyclic quotient singularity.

As the first step to prove this theorem, we give the following theorem. This is a one-
dimensional version of the theorem above, but we don’t assume that the ring has minimal

multiplicity.

Theorem 4.0.3. Let B be the endomorphism ring Endg(m) of m over R. Assume that d =1,

R has a canonical module, and k is infinite. Then the followings are equivalent.
(1) the natural inclusion R — B induces an equivalence CM(B) = QCM*(R) of categories.

(2) R is almost Gorenstein.
(3) B=m' as R-modules.

Finally, we study the structure of the category UI(R) of Ulrich R-modules as an exact category
in the sense of Quillen [122]. We prove that if R has minimal multiplicity, then UI(R) admits
an exact structure with enough projective/injective objects.

Theorem 4.0.4. Let R be a d-dimensional Cohen—Macaulay local ring with residue field k and
canonical module, and assume that R has minimal multiplicity. Let S be the class of short exact
sequences 0 — L — M — N — 0 of R-modules with L, M, N Ulrich. Then (UI(R),S) is an exact
category having enough projective objects and enough injective objects with proj UI(R) = add Q%
and inj UI(R) = add(Q%k)T.

The organization of this paper is as follows. In Section 4.1, we deal with a question of Cuong
on the number of indecomposable Ulrich modules. We prove the first assertion of Theorem
4.0.1 to answer this question in the negative. In Section 4.2, we consider how to generate Ulrich
modules from given ones, and prove the second and third assertions of Theorem 4.0.1. In Section
4.3, we compare Ulrich modules with syzygies of maximal Cohen—Macaulay modules, and prove
Theorem 4.0.2; in fact, we obtain more equivalent and related conditions. The final Section 4.4
is devoted to giving applications of the results obtained in Section 4.3. In this section we study
the cases of dimension one and two, and exact structures of Ulrich modules, and prove the rest
assertions of Theorem 4.0.2 and Theorem 4.0.4.
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4.1 A question of Cuong

In the rest of this chapter, let (R, m, k) be a Cohen—Macaulay local ring of Krull dimension d. In
this section, we consider a question raised by Cuong [27] on the number of Ulrich modules over
Cohen—Macaulay local rings with minimal multiplicity. First of all, let us recall the definitions
of an Ulrich module and minimal multiplicity.

Definition 4.1.1. (1) An R-module M is called Ulrich if M is Cohen-Macaulay with e(M) =
p(M).
(2) The ring R is said to have minimal multiplicity if e(R) = edim R — dim R + 1.
An Ulrich module is also called a mazimally generated (maximal) Cohen—Macaulay module.
There is always an inequality e(R) > edim R — dim R + 1, from which the name of minimal
multiplicity comes. If k is infinite, then R has minimal multiplicity if and only if m? = Qm for

some parameter ideal @ of R. See [19, Exercise 4.6.14] for details of minimal multiplicity.
The following question has been raised by Cuong [27].

Question 4.1.2 (Cuong). If R is non-Gorenstein and has minimal multiplicity, then are there
only finitely many indecomposable Ulrich R-modules?

To explore this question, we start by introducing notation, which is used throughout the
paper.

Notation 4.1.3. We denote by mod R the category of finitely generated R-modules. We use
the following subcategories of mod R:

UI(R) = {M € CM(R) | M is Ulrich},

QCM(R) = {M € CM(R)

M is the kernel of an epimorphism from a
free module to a maximal Cohen—Macaulay module [ ’

QCM*(R) = {M € QCM(R) | M does not have a (nonzero) free summand}.

Remark 4.1.4. (1) The subcategories CM(R), UI(R), QCM(R), QCM*(R) of mod R are closed
under finite direct sums and direct summands.

(2) One has QCM(R) U UI(R) € CM(R) C mod R.
Here we make a remark to reduce to the case where the residue field is infinite.

Remark 4.1.5. Consider the faithfully flat extension S := R[t]ygpy of R. Then we observe
that:

(1) If X is a module in QCM*(R), then X ®@p S is in QCM*(S).
(2) A module Y is in UI(R) if and only if Y ®p S is in UI(S) (see [85, Lemma 6.4.2]).
The converse of (1) also holds true; we prove this in Corollary 4.3.4.

For any finitely generated R-module M, we denote by Tr M the Auslander transpose of M.
For an integer n > 1, we define F,(R) = {M | Ext(Tr M,R) = 0 fori = 1,...,n} as a full
subcategory of mod(R). A module M in F, is called n-torsionfree.

We have the following characterization of modules in CM(R), QCM(R), or Ref(R).
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Lemma 4.1.6. (1) One has Ref(R) = Fa(R).

(2) Assume that R, is Gorenstein for every prime ideal p of R with htp being at most d — 1.
Then F4(R) = CM(R) and Fqy1(R) = QCM(R).

(3) Assumed =1 and R is generically Gorenstein (i.e. Ry is Gorenstein for any minimal prime

p of R). Then Ref(R) = QCM(R).

Proof. (1) See [108, Proposition 12.5] for instance. (2) See [51, Theorems 3.6 and 3.8] to prove
the equality Fy(A) = CM(A) holds. The proof of [88, Proposition 2.4] shows that the equality
Fir1(A) = QCM(A) holds. (3) This is a combination of (1) and (2). |

If R has minimal multiplicity, then all syzygies of maximal Cohen—Macaulay modules are
Ulrich:

Proposition 4.1.7. Suppose that R has minimal multiplicity. Then QCM*(R) is contained in
UI(R).

Proof. By Remark 4.1.5 we may assume that k is infinite. Since R has minimal multiplicity,
we have m? = Qm for some parameter ideal Q of R. Let M be a Cohen-Macaulay R-module.
There is a short exact sequence 0 — QM — R®" — M — 0, where n is the minimal number
of generators of M. Since M is Cohen—Macaulay, taking the functor R/Q ®r — preserves the
exactness; we get a short exact sequence

0= QM/QOM L5 (R/Q)®™ — M/QM — 0.

The map f factors through the inclusion map X := m(R/Q)®" — (R/Q)®", and hence there
is an injection QM/QQM — X. As X is annihilated by m, so is QM/QQM. Therefore
mOQM = QQM, which implies that QM is Ulrich. [ |

As a direct consequence of [40, Corollary 3.3], we obtain the following proposition.

Proposition 4.1.8. Let R be a 2-dimensional normal excellent henselian local ring with alge-
braically closed residue field of characteristic 0. Then there exist only finitely many indecompos-
able modules in QCM(R) if and only if R has a rational singularity.

Combining the above propositions yields the following result.

Corollary 4.1.9. Let R be a 2-dimensional normal excellent henselian local ring with alge-
braically closed residue field of characteristic 0. Suppose that R has minimal multiplicity and
does mot have a rational singularity. Then there exist infinitely many indecomposable Ulrich
R-modules. In particular, Quenstion 4.1.2 has a negative answer.

Proof. Proposition 4.1.8 implies that QCM(R) contains infinitely many indecomposable modules,
and so does UI(R) by Proposition 4.1.7. [ |

Here is an example of a non-Gorenstein ring satisfying the assumption of Corollary 4.1.9,
which concludes that the question of Cuong is negative.
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Example 4.1.10. Let B = Clz, y, z,t] be a polynomial ring with degz = degt = 3, degy = 5
and degz = 7. Consider the 2 x 3-matrix M = (; Y mgz_ts,) over B, and let I be the ideal
of B generated by 2 x 2-minors of M. Set A = B/I. Then A is a nonnegatively graded C-
algebra as I is homogeneous. By virtue of the Hilbert—-Burch theorem ([19, Theorem 1.4.17)),
A is a 2-dimensional Cohen—Macaulay ring, and z,t is a homogeneous system of parameters of
A. Directly calculating the Jacobian ideal J of A, we can verify that A/J is Artinian. The
Jacobian criterion implies that A is a normal domain. The quotient ring A/tA is isomorphic
to the numerical semigroup ring C[H] with H = (3,5,7). Since this ring is not Gorenstein (as
H is not symmetric), neither is A. Let a(A) and F(H) stand for the a-invariant of A and the
Frobenius number of H, respectively. Then

a(A) + 3 =a(A) + deg(t) = a(A/tA) = F(H) = 4,

where the third equality follows from [129, Theorem 3.1]. Therefore we get a(A) =1 £ 0, and
A does not have a rational singularity by the Flenner—Watanabe criterion (see [108, Page 98]).

Let A’ be the localization of A at Ay, and let R be the completion of the local ring A’.
Then R is a 2-dimensional complete (hence excellent and henselian) normal non-Gorenstein
local domain with residue field C. The maximal ideal m of R satisfies m? = (z,t)m, and thus R
has minimal multiplicity. Having a rational singularity is preserved by localization since A has
an isolated singularity, while it is also preserved by completion. Therefore R does not have a
rational singularity.

We have seen that Question 4.1.2 is not true in general. However, in view of Corollary 4.1.9,
we wonder if having a rational singularity is essential. Thus, we pose a modified question.

Question 4.1.11. Let R be a 2-dimensional normal local ring with a rational singularity. Then
does R have only finitely many indecomposable Ulrich modules?

Proposition 4.1.8 leads us to an even stronger question:

Question 4.1.12. If QCM(R) contains only finitely many indecomposable modules, then does
UI(R) so?

4.2 Generating Ulrich modules

In this section, we study how to generate Ulrich modules from given ones. First of all, we
consider using the Hom functor to do it.

Proposition 4.2.1. Let M, N be Cohen-Macaulay R-modules such that Extiy(M,N) = 0 for
all1 <i<d-—1. If either M or N is Ulrich, then so is Homp(M, N).

Proof. Take a free resolution
o=y Fg—>Fp == =2k —>M-—=0

of the R-module M. Dualizing this by N and using the assumption on Ext, we get an exact

sequence

0 — Homp(M, N) — Hompg(Fy, N) — Homp(F1,N) — --- — Hompg(F;_1,N) — Hompg(Fy, N).
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The depth lemma implies that Hompg (M, N) is a Cohen-Macaulay R-module.

We may assume that k is infinite by Remark 4.1.5(2), so that we can find a reduction @ of
m which is a parameter ideal of R. Write Q = (x1,...,zq).

We show the assertion by induction on d. Let us consider the case d = 1. There are exact

sequences
0N N N/QN -0, 0= M5 M— M/QM — 0,

which induce injections

Homp(M,N)/QHompg(M,N) — Hompgr(M,N/QN),
Homp(M, N)/QHompg(M, N) «— Exty(M/QM, N).

If N (resp. M) is Ulrich, then N/QN (resp. M/QM) is annihilated by m, and so is Homg (M, N/QN)
(resp. Ext}%(M/QM, N)). In either case, the quotient module Homp (M, N)/Q Homp(M, N) is
annihilated by m, which shows that Hompg(M, N) is an Ulrich R-module.

Next we consider the case d > 2. Clearly, M /x1M and N/x1 N are Cohen-Macaulay R/(z1)-
modules. There are isomorphisms

Extly/(py) (M/21M, N/21N) = Extiy ' (M /21 M, N)
N{o (1<i<d-2),

| Homg (M, N)/z1 Homg(M,N) (i =0),
where the first isomorphism follows from [19, Lemma 3.1.16], and the second isomorphism
is shown by using the exact sequence 0 — M =% M — M Jx1M — 0 and our assump-
tion on Ext. Furthermore, it is easily observed that if M (resp. N) is an Ulrich R-module,
then M/x1M (resp. N/x1N) is an Ulrich R/(x1)-module. The induction hypothesis im-
plies that Homp/, (M /21 M, N/z1N) is an Ulrich R/(x1)-module, which is isomorphic to
Homp(M, N)/z1 Homp(M, N). Now it is deduced that Hompg (M, N) is an Ulrich R-module. W

As an immediate consequence of Proposition 4.2.1, we obtain the following corollary, which
is a special case of [63, Theorem 5.1].

Corollary 4.2.2. Suppose that R admits a canonical module. If M € UI(R), then MT € UI(R).
Next, we consider taking extensions of given Ulrich modules to obtain a new one.

Proposition 4.2.3. Let QQ be a parameter ideal of R which is a reduction of m. Let M, N be
Ulrich R-modules, and take any element a € Q. Let 0 : 0 > M — E — N — 0 be an exact

sequence, and consider the multiplication ac : 0 - M — X — N — 0 as an element of the
R-module Exth(N, M). Then X is an Ulrich R-module.

Proof. 1t follows from [132, Theorem 1.1] that the exact sequence
ac @r R/aR: 0 = M/aM — X/aX — N/aN — 0

splits; we have an isomorphism X/aX = M/aM & N/aN. Applying the functor — ®p/.r
R/Q, we get an isomorphism X/QX = M/QM & N/QN. Since M, N are Ulrich, the modules
M/QM,N/QN are k-vector spaces, and so is X/QX. Hence X is also Ulrich. |
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As an application of the above proposition, we give a way to make an Ulrich module over a
Cohen—Macaulay local ring with minimal multiplicity.

Corollary 4.2.4. Let Q be a parameter ideal of R such that m?> = Qm. Let M be an Ulrich
R-module. Then for each R-regular element a € Q, the syzygy QUM /aM) is also an Ulrich
R-module.

Proof. There is an exact sequence o : 0 — QM — R®" — M — 0, where n is a minimal number
of generators of M. We have a commutative diagram

—
—

M/aM ——= M/aM
7 T
o 0 QM RO®n M 0
| T a]
ao : 0 QM X M 0
T 7
0 0

with exact rows and columns. Since the minimal number of generators of M/aM is equal to n,
the middle column shows X = Q(M/aM). Propositions 4.1.2 and 4.2.3 show that X is Ulrich,
and we are done. |

Remark 4.2.5. In Corollary 4.2.4, if the parameter ideal  annihilates the R-module Ext}%(M, QM),
then we have aoc = 0, and Q(M/aM) = M @& QM. Hence, in this case, the operation M
Q(M/aM) does not produce an essentially new Ulrich module.

Next, we investigate the annihilators of Tor and Ext modules.

Proposition 4.2.6. For an R-module M one has

Anng Exth(M,QM) = (i>0, Nemod R ARDR Ext% (M, N)
= Anng Torf (M, Tr M) = (i>0, Nemod R ADDR TorF (M, N).

Proof. 1t is clear that

I:=Ni0, Nemod g Anng Extiz (M, N) C Annp Extp(M, QM)
J = Nis0, Nemod R ANNR Torf¥ (M, N) C Anng Tor(M, Tr M).

It is enough to show that Ann Ext!(M, QM) U Ann Tor; (M, Tr M) is contained in I N J.

(1) Take any element a € Anng Exth(M,QM). The proof of [89, Lemma 2.14] shows that

the multiplication map (M % M) factors through a free module, that is, (M % M) = (M ERN

F I M) with F free. Hence, for all i > 0 and N € mod R we have commutative diagrams:

Tor; (M, N) —*—— Tor;(M, N) Ext!(M,N) —%—— Ext‘(M, N)

Tori(fym Tor; (m,N) Exti(mm 4 YN

Tor;(F, N) Ext!(F,N)
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As Tor;(F,N) = Ext!(F,N) = 0, the element a is in 1 N .J.

(2) Let b € Anng Tor®(M, Tr M). By [149, Lemma (3.9)], the element b annihilates Hom (M, M).
Hence the map b-idyy, which is nothing but the multiplication map (M b M ), factors through
a free R-module. Similarly to (1), we get bisin I NJ. [

Definition 4.2.7. We denote by AM the ideal in the above proposition.

Note that AM = R if and only if M is a free R-module.

For an R-module M we denote by add M the subcategory of mod R consisting of direct
summands of finite direct sums of copies of M.

With the notation of Remark 4.2.5, we are interested in when the operation M — Q(M/aM)
actually gives rise to an essentially new Ulrich module. The following result presents a possible
way: if we choose an indecomposable Ulrich module M that is not a direct summand of Q%k,

then we find an indecomposable Ulrich module not isomorphic to M among the direct summands
of the modules Q(M/x;M).

Proposition 4.2.8. Suppose that R is henselian. Let Q = (x1,...,24) be a parameter ideal of
R which is a reduction of m. Let M be an indecomposable Ulrich R-module. If M is a direct
summand of Q(M /z;M) for all 1 <i < d, then M is a direct summand of Q.

Proof. For all integer 1 < i < d the module Exth(M, QM) is a direct summand of Ext 5 (Q(M/xz; M), QM).
The latter module is annihilated by z; since it is isomorphic to Ext% (M /x; M, QM). Hence Q is
contained in Annpg Extp(M, QM) = AM, and therefore Q Ext7°(M, N) = 0 for all N € mod R.
It follows from [142, Corollary 3.2(1)] that M is a direct summand of Q¢(M/QM). As M is
Ulrich, the module M/QM is a k-vector space, and Q¢(M/QM) belongs to add(29k), whence
so does M. Since R is henselian and M is indecomposable, the Krull-Schmidt theorem implies
that M is a direct summand of Q9. [

4.3 Comparison of Ul(R) with QCM™*(R)

In this section, we study the relationship of the Ulrich R-modules with the syzygies of Cohen—
Macaulay R-modules. We begin with giving equivalent conditions for a given maximal Cohen—
Macaulay module to be a syzygy of a maximal Cohen—Macaulay module, after stating an ele-
mentary lemma.

Lemma 4.3.1. Let M, N be R-modules. The evaluation map ev : M @ Homp(M,N) — N is
surjective if and only if there exists an epimorphism (f1,..., fn): M®" — N.

Proof. The “only if” part follows by taking an epimorphism R®" — Hompg (M, N) and tensoring
M. To show the “if” part, pick any element y € N. Then we have y = fi(x1) + -+ fn(xy) for
some z1,...,&, € M. Therefore y = ev(} ;" 2; ® f;)), and we are done. [

Proposition 4.3.2. Let R be a Cohen—Macaulay local ring with canonical module w. Then the
following are equivalent for a Cohen—Macaulay R-module M.

(1) M € QCM(R).

(2) Homp(M,w) = 0.
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3) There exists a surjective homomorphism w®" — Hompg(M,w).

4) The natural homomorphism ® : w ® g Homp(w, Hompg(M,w)) — Hompg(M,w) is surjective.

3)
(4)
(5) M is torsionless and Tr Q Tr M is Cohen—Macaulay.
(6) Exth(Tr M, R) = Exth(TrQTr M,w) = 0.

(7)

7) Torf(Tr M,w) = 0.

Proof. (1) = (2): By the assumption, there is an exact sequence 0 — M — F' — N — 0 such
that N is Cohen-Macaulay and F is free. Take f € Homp(M,w). There is a commutative

diagram

0 M F N 0
o |
0 w w N 0

with exact rows. Since N is Cohen-Macaulay, we have Extk(N,w) = 0. Hence the second row
splits, and f factors through F. This shows Homp(M,w) = 0.

(2) = (1): There is an exact sequence 0 — M Iy w®™ 5 N = 0 such that N is Cohen-
Macaulay. Since Homp (M, w®™) = Homp(M,w)®™ = 0, there are a free R-module F', homo-
morphisms g : M — F and h : F — w®™ such that f = hg. We get a commutative diagram

g

F L 0
Lh !

00— M ——w%" —— N——0

0—— M
|

with exact rows. The secound square is a pullback-pushout diagram, which gives an exact
sequence 0 — F — L ® w¥™ — N — 0. This shows that L is Cohen—Macaulay, and hence
M € QCM(R).

(2) « (7): This equivalence follows from [149, Lemma (3.9)].

(1) = (3): Let 0 = M — R®" — N — 0 be an exact sequence with F' free. Applying ()T,
we have an exact sequence 0 — NT — w® — MT — 0.

(3) = (1): There is an exact sequence 0 — K — w® — MT — 0. Tt is seen that K is
Cohen-Macaulay. Taking (—)' gives an exact sequence 0 — M — R®" — KT — 0, which shows
M € QCM(R).

(3) < (4): This follows from Lemma 4.3.1.

(5) < (6): The module Tr 2 Tr M is Cohen—Macaulay if and only if Ext’(Tr Q Tr M,w) =0
for all i > 0. One has Exth(Tr M,R) = 0 if and only if M is torsionless, if and only if
M = QTrQTr M up to free summands; see [8, Theorem (2.17)]. Hence Ext’(TrQTr M, w) =
Ext’ (M, w) = 0 for all i > 1.

(1) & (5): This equivalence follows from a similar argument in the proof of [88, Proposition
2.4]. n

Remark 4.3.3. The equivalence (1) < (5) in Proposition 4.3.2 holds without the assumption
that R admits a canonical module. Indeed, its proof does not use the existence of a canonical

module.
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The property of being a syzygy of a maximal Cohen-Macaulay module (without free sum-

mand) is preserved under faithfully flat extension.

Corollary 4.3.4. Let R — S be a faithfully flat homomorphism of Cohen—Macaulay local rings.
Let M be a Cohen—Macaulay R-module. Then M € QCM*(R) if and only if M®gS € QCM*(S).

Proof. Using Remark 4.3.3, we see that M € QCM(R) if and only if Exth(Trgp M,R) = 0
and Trg Qg Trg M is Cohen—Macaulay. Also, M has a nonzero R-free summand if and only if
the evaluation map M ®r Hompg(M, R) — R is surjective by Lemma 4.3.1. Since the latter
conditions are both preserved under faithfully flat extension, they are equivalent to saying that
M ®pr S € QCM(S) and that M ®p S has a nonzero S-free summand, respectively. Now the

assertion follows. [ |

Next we state and prove a couple of lemmas. The first one concerns Ulrich modules and
syzygies of maximal Cohen—Macaulay modules with respect to short exact sequences.

Lemma 4.3.5. Let0 — L — M — N — 0 be an exact sequence of R-modules.
(1) If L, M,N are in UI(R), then the equality p(M) = p(L) + p(N) holds.

(2) Suppose that L, M, N are in CM(R). Then:
(a) If M is in UI(R), then so are L and N. (b) If M is in QCM*(R), then so is L.

Proof. (1) We have (M) =e(M) =e(L) +e(N) = pu(L) + p(N).

(2) Assertion (a) follows by [17, Proposition (1.4)]. Let us show (b). As M is in QCM*(R),
there is an exact sequence 0 — M By gee 2 0 0 with C Cohen—-Macaulay. As M has no
free summand, 7 is a minimal homomorphism. In particular, (C) = a. The pushout of 5 and

~ gives a commutative diagram

0
i

M
8
0 L R&a

IR

—

0

O—Q+—g+—=+o
]

o—Q

with exact rows and columns. We see that a = p(C) < p(D) < a, which implies that 0 is a
minimal homomorphism. Hence L = QD € QCM*(R). [

IN

The following lemma is used to reduce to the case of a lower dimensional ring.

Lemma 4.3.6. Let Q = (z1,...,24) be a parameter ideal of R that is a reduction of m. Let M
be a Cohen—Macaulay R-module. Then M is an Ulrich R-module if and only if M/x;M is an

Ulrich R/x; R-module.

Proof. Note that Q/z; R is a reduction of m/z; R. We see that (m/x;R)(M/x; M) = (Q/x;R)(M/x; M)
if and only if mM = QM. Thus the assertion holds. |
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Now we explore syzygies of the residue field of a Cohen—Macaulay local ring with minimal
multiplicity.

Lemma 4.3.7. Assume that R is singular and has minimal multiplicity.
(1) One has Q%k € QCM*(R). In particular, Q%k is an Ulrich R-module.
(2) There is an isomorphism Q% 'k = (Q%k)®™ for some n > 0.

(3) Let Q = (x1,...,2q) be a parameter ideal of R with m®> = Qm, and suppose that d > 1.

Then Qp(Qy (o k) = QU 'k for all i > 0. In particular, Q}%(ng—/(lxl)k) ~ Q4.

(4) For each M € UI(R) there exists a surjective homomorphism (Q%k)®™ — M for somen > 0.

Proof. (1)(2) We may assume that k is infinite; see Remark 4.1.5. So we find a parameter ideal
Q = (z1,...,79) of R with m®> = Qm. The module m/Q is a k-vector space, and there is an
exact sequence 0 — k" — R/Q — k — 0. Taking the dth syzygies gives an exact sequence

0 — (Q%%)®" — R®t - Q% — 0.

Since Q% has no free summand by [136, Theorem 1.1], we obtain Q%% € QCM*(R) and
(Q4k)®n = QI+1E. The last assertion of (1) follows from this and Proposition 4.1.7.

(3) Set x = x1. We show that Q(Q%MRI{) =~ Ok for all « > 0. We may assume i > 1;
note then that x is Q'k-regular. By [136, Corollary 5.3] we have an isomorphism Q'k/xQ'k =

i i—1
QR/ka ® QR/ka. Hence

k& O E = QOk/20'k) = QO ),5k) & Q(Q%Rk), (4.3.7.1)

where the first isomorphism follows from the proof of Corollary 4.2.4. There is an exact sequence
0— Qjé/ka: — (R/zR)®%-1 — ... — (R/zR)®* — k — 0 of R/xR-modules, which gives an
exact sequence

0= Qg pk) = B = oo = RF = Qk — 0

of R-modules. This shows Q(Q}, Jork) = QiFk @ R for some u > 0, and similarly we have an

isomorphism Q(QE&RM =~ 'k @ R for some v > 0. Substituting these in (4.3.7.1), we see
u = v = 0 and obtain an isomorphism Q(QE/IRI@‘) >~ QitlE,

(4) According to Lemma 4.3.1 and Remark 4.1.5, we may assume that k is infinite. Take
a parameter ideal Q = (z1,...,74) of R with m?> = Qm. We prove this by induction on d. If
d = 0, then M is a k-vector space, and there is nothing to show. Assume d > 1 and set = = x;.
Clearly, R/xR has minimal multiplicity. By Lemma 4.3.6, M /xM is an Ulrich R/zR-module.
The induction hypothesis gives an exact sequence 0 — L — (Q‘ZgiRk)@" — M/xzM — 0 of
R/xR-modules. Lemma 4.3.5(2) shows that L is also an Ulrich R/zR-module, while Lemma
4.3.5(1) implies

tr/zr(L) + pr/er(M/xM) = #R/xR((QdR_/iRk)EBn)-

Note that pr(X) = pr/pr(X) for an R/xR-module X. Thus, taking the first syzygies over R,
we get an exact sequence of R-modules:

0= QL = Q1 zk)®" = Q(M/zM) — 0.
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From the proof of Corollary 4.2.4 we see that there is an exact sequence 0 — QM — Q(M/xM) —
M — 0, while Q(Qgi k) is isomorphic to Q%% by (3). Consequently, we obtain a surjection
(k)" — M. u

Here we recall the definition of an almost Gorenstein local ring, which is introduced in [65].

Definition 4.3.8. Let R be a Cohen—Macaulay local ring of dimension d with canonical module
w. Then R is called almost Gorenstein if there exists an exact sequence

0O—-R—-w—C—=0

of finitely generated R-modules such that e(C) = u(C).
We have reached the stage to state and prove the main result of this section.

Theorem 4.3.9. Let R be a d-dimensional Cohen—Macaulay local ring with residue field k and
canonical module w. Suppose that R has minimal multiplicity. Then the following are equivalent.

The equality QCM* (R) = UI(R) holds.
For an ezxact sequence M — N — 0 in CM(R), if M € QCM*(R), then N € QCM*(R).
The category QCM*(R) is closed under (—)T.

The module (Q%)1 belongs to QCM*(R). (4") The module (Q%)' belongs to QCM(R).

One has Torf(Tr((Q9%)1),w) = 0.
One has ExtE™ (Tr((Q%%)1), R) = 0 and R is locally Gorenstein on the punctured spectrum.

The natural homomorphism w ®r Hompg(w, Q%) — Q% is surjective.

(1)
(2)
(3)
(4)
(5) One has Homp((Q7k)",w) = 0.
(6)
(7)
(8)
(9)

There exists a surjective homomorphism w®* — Q.

If d is positive, k is infinite and one of the above mine conditions holds, then R is almost
Gorenstein.

Proof of the equivalence of (1)-(9). (1) = (2): This follows from Lemma 4.3.5(2).

(2) = (3): Let M be an R-module in QCM*(R). Then M € UI(R) by Proposition 4.1.7, and
hence M1 € UI(R) by Corollary 4.2.2. It follows from Lemma 4.3.7(4) that there is a surjection
(Q4k)®" — MT. Since (2%)®" is in QCM*(R) by Lemma 4.3.7(1), the module MT is also in
QCM*(R).

(3) = (4): Lemma 4.3.7(1) says that Q% is in QCM*(R), and so is (Q%)T by assumption.

(4) = (1): The inclusion QCM*(R) C UI(R) follows from Proposition 4.1.7. Take any
module M in UI(R). Then MT is also in UI(R) by Corollary 4.2.2. Using Lemma 4.3.7(4), we
get an exact sequence 0 — X — (Q4)®" — MT — 0 of maximal Cohen-Macaulay modules,
which induces an exact sequence 0 — M — (Q%)"®" — XT — 0. The assumption and Lemma
4.3.5(2) imply that M is in QCM* (R).
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(4) & (4): As R is singular, by [136, Corollary 4.4] the module (%) does not have a free
summand.

(4) & (5) & (6) < (8)  (9): These equivalences follow from Proposition 4.3.2.

(4) & (7): We claim that, under the assumption that R is locally Gorenstein on the punc-
tured spectrum, (Q%)" € QCM(R) if and only if Extg ™ (Tr((Q%)f), R) = 0. In fact, since
(Q4k)T is Cohen—Macaulay, it satisfies Serre’s condition (Sg). Therefore it is d-torsionfree, that is,
Ext%(Tr((Q%)T), R) = 0forall 1 < i < d; see [113, Theorem 2.3]. Hence, Extjl;rl(T1r((Qdk:)Jf)7 R) =
0 if and only if (%) is (d+1)-torsionfree, if and only if it belongs to QCM(R) by [113, Theorem
2.3] again. Thus the claim follows.

According to this claim, it suffices to prove that if (4’) holds, then R is locally Gorenstein
on the punctured spectrum. For this, pick any nonmaximal prime ideal p of R. There are exact
sequences

0— Q% — R®%-1 ... 5 R0 k0, 0 (Qk), — Ry — - = BRI 0.

We observe that (%), is a free Rp-module with rankg, ((Q%k),) = Zf:_()l(—l)iad_l_i = rankg(Q%%).
The module Q% has positive rank as it is torsionfree, and we see that (%), is a nonzero free
Ry-module. Since we have already shown that (4’) implies (9), there is a surjection w®" — Q7.
Localizing this at p, we see that wf,B" has an Ry-free summand, which implies that the Ry-module
Ry, has finite injective dimension. Thus R, is Gorenstein.

So far we have proved the equivalence of the conditions (1)—(9). It remains to prove that R
is almost Gorenstein under the assumption that d is positive, k is infinite and (1)—(9) all hold.
We prove this assertion after the proof of Theorem 4.0.3; see section 4.4.1. |

Remark 4.3.10. When d > 2, it holds that
Ext& 1 (Te((Q%%)1), R) 2 Ext®! (Homp(w, k), R).

Thus Theorem 4.3.9(7) can be replaced with the condition that Ext% ' (Homp(w, Q%%), R) = 0.
Indeed, using the Hom-® adjointness twice, we get isomorphisms

Hom g(w, Q%) 22 Hompg(w, (%)) = Hompg((Q%) ®p w,w) = Hompz((Q%k)T, wh) = (Qk),
and (Q7%)™ is isomorphic to Q2 Tr((Q%)") up to free summand.
We have several more conditions related to the equality QCM*(R) = UI(R).

Corollary 4.3.11. Let R be as in Theorem 4.3.9. Consider the following conditions:
(1) (k)T = Q%, (2) (Q%)" € add(Q9k), (3) A(Q%k)T =m, (4) QCM*(R) = UI(R).
It then holds that (1) = (2) <= (3) = (4).

Proof. The implications (1) = (2) = (3) are obvious. The proof of Proposition 4.2.8 shows
that if an Ulrich R-module M satisfies AM = m, then M is in add(Q9k). This shows (3) = (2).
Proposition 4.3.7(1) says that Q% is in QCM*(R), and so is (Q2%)T by assumption. Theorem
4.3.9 shows (2) = (4). [

We close this section by constructing an example by applying the above corollary.
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Example 4.3.12. Let S = C[[z,y,z]] be a formal power series ring. Let G be the cyclic
group 1(1,1,1), and let R = SY be the invariant (i.e. the second Veronese) subring of S.
Then QCM*(R) = UI(R). In fact, by [149, Proposition (16.10)], the modules R, w, Qw are
the nonisomorphic indecomposable Cohen-Macaulay R-modules and (Qw)’ = Qw. By [136,
Theorem 4.3] the module Q2?C does not have a nonzero free or canonical summand. Hence Q2C
is a direct sum of copies of Qw, and thus (22C)" = Q2C. The equality QCM*(R) = UI(R) follows
from Corollary 4.3.11.

4.4 Applications

This section is devoted to stating applications of our main theorems obtained in the previous

section.

4.4.1 The case of dimension one

We begin with studying the case where R has dimension 1.

Let B be the endomorphism ring Endz(m) of m. By Remark 2.2.3, B is identified with m : m,
a subring of Q(R). Furthermore, B is Cohen-Macaulay of Krull dimension one, semilocal, and
module-finite over R. Note that CM(B) can be considered as a subcategory of CM(R) via the
inclusion R — B.

If w exists, then we can give an equivalent condition to the equality CM(B) = QCM*(R) by
using the canonical dual (—).

We prepare the following three lemmas about QCM(R). The first lemma follows from [148,
Lemma 2.1].

Lemma 4.4.1. Let M be a Cohen—Macaulay R-module. Then QM has no free summand.

Lemma 4.4.2. Let M be an R-module in QCM*(R). Then there is an exact sequence
0—-M—-m% 5 N =0

of modules in CM(B).

Proof. As M is in QCM(R), we have an exact sequence 0 — M % R®" — N’ — 0 with a max-
imal Cohen-Macaulay R-module N. Since M has no free summand, there is a homomorphism
B : M — m such that o = i o 8, where 4 is the natural inclusion m®" — R®". Let N be the
cokernel of 8. We have the following commutative diagram with exact rows and columns.

0 M —25 RO N’ 0
L]

0 M m N 0
0 0

Since 8 € Hompg(M,m) = Homp(M,m), N is an B-module. The exactness of 0 - N — N’
implies that N is maximal Cohen-Macaulay over R. Thus N is in CM(B). [
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Lemma 4.4.3. Assume that R has a canonical module w. Then the equality CM(B) = QCM*(R)
holds if and only if Bt € QCM*(R).

Proof. Since B = Homp(B,w) is an B-module contained in CM(B), The “only if” part is clear.
Now we assume B € QCMp(R). Let M be in CM(B). Taking a free cover of MT over B, we get
an exact sequence 0 — N — B®" — MT — 0 with some B-module N. Since MT, B € CM(R),
N is also in CM(R) by the depth lemma. Applying (—)' to this sequence, we have an exact
sequence 0 — M — (BNH®" — Nt — 0. Using Lemma 4.3.5, M is in QCM*(R). This shows
that CM(B) = QCM* (R). n

If the completion R of R is generically Gorenstein, then R has a canonical module by [62,
Proposition 2.7]. In this situation, we see in the next lemma that the condition CM(B) =
QCM*(R) is stable under flat local extension.

Corollary 4.4.4. Let ¢ : (R,m) — (R',w') be a flat local homomorphism such that mR' = w/'.
Assume that the completion R of R is generically Gorenstein. Then CM(B) = QCM*(R) if and
only if CM(End g/ (m’)) = QCM*(R').

Proof. Let B’ = Endg/(m’). Note that R is also generically Gorenstein by [62, Proposition 2.12].
In addition, w®p R’ is a canonical module of R'. Therefore, by Lemma 4.4.3, CM(B) = QCM*(R)
if and only if Bt € QCM*(R), and CM(B’) = QCM*(R') if and only if Homg/ (B',w ®g R') €
QCM*(R). Here B’ = B®p R’ and hence Homp/ (B',w ®r R') = (B") ®g R'. Thus the asertion
follows by Corollary 4.3.4. |

Using the above lemma, we can replace R with the completion R. We have one more
equivalent condition to being CM(B) = QCM*(R).

Lemma 4.4.5. Assume that the completion R of R is generically Gorenstein. Then B €
QCM,(R) if and only if Bf = m.

Proof. Thanks to Corollary 4.4.4, we can assume that R is complete. If Bt 2 m, then we have
Bt € QCMp(R). Conversely, we assume B € QCM*(R). Using Lemma 4.4.2, we get an exact
sequence

0— Bl Hm® 5 N0 (4.4.5.1)

of modules in CM(B). By the Krull-Schmidt theorem for R, we have a unique decomposition
m=my; ®---Hm,, where m; are indecomposable R-modules. Then we obtain B = Endg(m;) x
.-+ X Endg(m,,) as an R-algebra. The components B; = Endg(m;) of B are local rings because
of the indecomposability of m;. Set n; the maximal ideal of B corresponding to the maximal
ideal of B;. Note that the localization (B'),, = (Hompg(B,w))n, is the canonical module of B;
and the localization my,, is equal to (m;),,. Thus, after localizing at n;, the sequence (4.4.5.1)
becomes split exact and (BY)y, is a direct summand of (m;)™. The modules (B'),, and (m;)n,
are both indecomposable. Hence we obtain an isomorphism (Bf),, = (m;),, by the Krull-
Schmidt theorem. The homomorphism « is a split injection, since it becomes a split injection

after localizing at n; for all i = 1,...,n. Therefore Bt is isomorphic a direct summand of m®”.
Set Bt = m?“l @ - ®@mP. Then the localization at n; shows that a; = 1. Consequently,
BT%ml@...@mn:m, |
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The following lemma will be used to prove Theorem 4.0.3.

Lemma 4.4.6. Let A be a ring with total quotient ring T, A be the integral closure of A in
T, and X be an A-submodule of A containing A. If there is an isomorphism ¢ : A — X of
A-modules, then X = A.

Proof. Leti: A — X be the inclusion homomorphism. Then ¢~'oi: A — A is an endomorphism
of A. Hence it is a multiplication map by r for some r € A. Since r = ¢loi: A — A is injective,
1/risin T. We have 1 = i(1) = ¢(r) = r¢(1) in A and hence 1/r = ¢(1) € A. It means that
1/r is integral over A. Therefore we have an equation of integral dependence

(1/r)" + ar(1/r)" " -+ an =0,

where a; € A for all 4 = 1,...,n. Multiplying ", we get 1 + (a1 + --- + a,r" ') = 0. This
equation yields that r is a unit of A. Thus the endomorphism 7 = ¢~ ' oi : A — Ais an
automorphism, ¢ is an isomorphism, and A = X. |

Assume that R is complete and has a infinite residue field. Then there is an R-submodule
K of Q(R) such that R C K C R, and as an R-module, K is a canonical module of R; see [62,
Corollary 2.9]. Using this module K, we can give a proof of Theorem 4.0.3.

Proof of Theorem 4.0.3. (1) < (3): This can be shown by Lemma 4.4.3 and Lemma 4.4.5.

(3) = (2): We may assume that R is not Gorenstein. Then R : m C K :m C R[K] C R
by [62, Corollary 3.8]. On the other hand, m' = K : m is isomorphic to B = R : m by the
assumption. Applying Lemma 4.4.6 to X = K : m and A = B, we obtain K : m = B. Thus
we see that m = K : (K : m) = K : B. This yields that m: K = (K : B) : K = (K : K) :
B = R: B =m. In particular, we have inclusions mK C m C R. This implies that R is almost
Gorenstein by [62, Theorem 3.11].

(2) = (3): We may assume that R is not Gorenstein again. [62, Theorem 3.16] says that
(B=)m:m = K :m. Then we can check that m = K : (K : m) = K : B. In particular, m = BT,
Taking the canonical duals, we get an isomorphism m = B. |

The remaining part of the proof of Theorem 4.3.9. It remains to prove that R is almost Goren-
stein under the assumption that d is positive, k is infinite and (1)—(9) all hold. We use induction
on d. Let d = 1. Let @ be the total quotient ring of R, and set B = Endr(m). Let K be an
R-module with K 2w and R C K C R in Q, where R is the integral closure of R. Using [121,
Proposition 2.5], we have:

m = Hompg(m,R) = B and m! = Hompg(m, K) = (K :g m). (4.4.6.1)

By (4) the module m' belongs to QCM*(R). Tt follows from Theorem 4.0.3 that R is almost

Gorenstein; note that the completion of R also has Gorenstein punctured spectrum by (4).
Let d > 1. Since (Q%)" € QCM(R), there is an exact sequence 0 — (Q%)T — R®™ — N — 0

for some m > 0 and N € CM(R). Choose a parameter ideal ) = (z1,...,xq) of R satisfying the

equality m? = Qm, and set (—) = (—) ®g R/(z1). An exact sequence

0— (k)T 5 R 5N 50
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is induced, which shows that (k)" is in QCM(R). Applying (=) to the exact sequence 0 —
Q% 5 Q4% — Qdk — 0 and using [19, Lemma 3.1.16], we obtain isomorphisms

(k)T = Exth(Qdk,w) = Homy(Q%, ).

The module Qdﬁ_lk is a direct summand of Q7k by [136, Corollary 5.3], and hence Homﬁ(QdE_lk, )
is a direct summand of Homﬁ(m, w). Summarizing these, we observe that Homﬁ(QdE_lk,w)

belongs to QCM(R). Since R has minimal multiplicity, we can apply the induction hypothesis
to R to conclude that R is almost Gorenstein, and so is R by [65, Theorem 3.7]. |

Corollary 4.4.7. Let (R,m,k) be a 1-dimensional Cohen—Macaulay local ring with k infinite

and canonical module w. Suppose that R has minimal multiplicity, and set (=)' = Hompg(—,w).
Then

QCM*(R) = UI(R) <= m! € QCM*(R) <= m' = m <= R is almost Gorenstein.

Proof. Call the four conditions (i)—(iv) from left to right. The implications (i) < (ii) = (iv)
are shown by Theorem 4.3.9, while (iii) < (iv) by Theorem 4.0.3 and (4.4.6.1). Lemma 4.3.7(1)
shows (iii) = (ii). [

Now we pose a question related to Question 4.1.2.

Question 4.4.8. Can we classify 1-dimensional Cohen—Macaulay local rings R with minimal
multiplicity (and infinite residue field) satisfying the condition # ind Ul(R) < oo?

If R has finite Cohen—Macaulay representation type (that is, if #ind CM(R) < o0), then
of course this question is affirmative. However, we do not have any partial answer other than
this. The reader may wonder if the condition # ind UI(R) < oo implies the equality QCM* (R) =
UI(R). Using the above theorem, we observe that this does not necessarily hold:

Example 4.4.9. Let R = k[[t3,¢7,1%]] be (the completion of) a numerical semigroup ring, where
k is an algebraically closed field of characteristic zero. Then R is a Cohen—Macaulay local ring of
dimension 1 with minimal multiplicity. It follows from [76, Theorem A.3] that # ind UI(R) < oo.
On the other hand, R is not almost-Gorenstein by [62, Example 4.3], so QCM*(R) # UI(R) by
Corollary 4.4.7.

4.4.2 The case of dimension two

From now on, we consider the case where R has dimension 2. We recall the definition of a
Cohen—Macaulay approximation. Let R be a Cohen—Macaulay local ring with canonical module.
A homomorphism f : X — M of R-modules is called a Cohen—Macaulay approzimation (of M)
if X is Cohen—Macaulay and any homomorphism f’: X’ — M with X’ being Cohen—Macaulay
factors through f. It is known that f is a (resp. minimal) Cohen—Macaulay approximation if
and only if there exists an exact sequence

0ovSxhmoso
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of R-modules such that X is Cohen-Macaulay and Y has finite injective dimension (resp. and
that X, Y have no common direct summand along g). For details of Cohen-Macaulay approxi-
mations, we refer the reader to [108, Chapter 11].

The module E appearing in the following remark is called the fundamental module of R.

Remark 4.4.10. Let (R, m, k) be a 2-dimensional Cohen—-Macaulay local ring with canonical
module w.

(1) There exists a nonsplit exact sequence
0—-w—=E—-m—=0 (4.4.10.1)
which is unique up to isomorphism. This is because Exth(m,w) = Ext% (k,w) = k.
(2) The module E is Cohen-Macaulay and uniquely determined up to isomorphism.
(3) The sequence (4.4.10.1) gives a minimal Cohen-Macaulay approximation of m.

(4) There is an isomorphism E = Ef. In fact, applying (—)' to (4.4.10.1) induces an exact
sequence
0—ml = ET - R = BExth(m,w) = Exth(E,w) = 0.

Applying (=)' to the natural exact sequence 0 — m — R — k — 0 yields m' = w, while
Ext}{(m,w) =~ k. We get an exact sequence 0 — w — ET — m — 0, and the uniqueness of
(4.4.10.1) shows ET = E.

To prove the main result of this section, we prepare two lemmas. The first one relates the
fundamental module of a 2-dimensional Cohen—-Macaulay local ring R with UI(R) and QCM*(R).

Lemma 4.4.11. Let (R,m, k) be a 2-dimensional Cohen-Macaulay local ring with canonical
module w and fundamental module E.

(1) Assume that R has minimal multiplicity. Then E is an Ulrich R-module.

(2) For each module M € QCM*(R) there exists an exact sequence 0 — M — E®" — N — 0
of R-modules such that N is Cohen—Macaulay.

Proof. (1) We may assume that & is infinite by Remark 4.1.5(2). Let Q = (z,y) be a parameter
ideal of R with m?> = Qm. We have m/zm = m/(x) @ k; see [136, Corollary 5.3]. Note that
(m/(z))? = y(m/(x)). By [148, Corollary 2.5] the minimal Cohen-Macaulay approximation
of m/zm as an R/(z)-module is E/xE. In view of the proof of [108, Proposition 11.15], the
minimal Cohen-Macaulay approximations of m/(z) and k as R/(x)-modules are m/(x) and
Homp () (m/(x),w/rw), respectively. Thus we get an isomorphism

E/rE =wm/(x) ® Hompg/ ) (m/(z), w/rw).

In particular, E/zE is an Ulrich R/(x)-module by Lemma 4.3.7(1) and Corollary 4.2.2. It
follows from Lemma 4.3.6 that E is an Ulrich R-module.

(2) Take an exact sequence 0 — M Iy R & L - 0 such that L is Cohen-Macaulay. As M
has no free summand, the homomorphism e is minimal. This means that f factors through the
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natural inclusion i : m®" — R®" that is, f = ig for some g € Homp (M, m®"). The direct sum
p: EP" — m®" of copies of the surjection F — m (given by (4.4.10.1)) is a Cohen-Macaulay
approximation. Hence there is a homomorphism h : M — E®" such that g = ph. We get a
commutative diagram

0— M -—TsRem s 0

U 1

0—M-—"sgon N0
with exact rows. This induces an exact sequence 0 — E%" — R®" N — L — 0, and therefore
N is a Cohen—Macaulay R-module. |

A short exact sequence of Ulrich modules is preserved by certain functors:

Lemma 4.4.12. Let 0 - X — Y — Z — 0 be an exact sequence of modules in UI(R). Then it
induces exact sequences of R-modules

(a) 0 > X®rk—=>Y®rk—>ZRrk—0,
(b) 0 — Hompg(Z, k) — Hompg(Y, k) — Homp(X, k) — 0, and
(c) 0 — Hompg(Z, (2%%)") — Hompg(Y, (2%)") — Hompg(X, (2%)") — 0.

Proof. The sequence X @pk — Y @rk — Z®prk — 0 is exact and the first map is injective by
Lemma 4.3.5(1). Hence (a) is exact, and so is (b) by a dual argument. In what follows, we show
that (c) is exact. We first note that (k)" is a minimal Cohen-Macaulay approximation of k; see
the proof of [108, Proposition 11.15]. Thus there is an exact sequence 0 — I — (Q%k)f — &k — 0
such that I has finite injective dimension. As UI(R) C CM(R), we have Exth(M,I) = 0 for all
M € {X,Y,Z}. We obtain a commutative diagram

0 —— Hompg(Y, I) —— Hompg(Y, (29%)") —— Hompg(Y, k) —— 0

ia 18 J{W

0 —— Hompg (X, I) —— Hompg(X, (Q%)) —— Homp (X, k) —— 0

with exact rows, where « is surjective. The exactness of (b) implies that « is surjective. By the
snake lemma [ is also surjective, and therefore (c) is exact. |

Now we can state and show our main result in this section.

Theorem 4.4.13. Let R be a 2-dimensional complete singular normal local ring with residue
field C and having minimal multiplicity. Suppose that R does not have a cyclic quotient singu-
larity. Then:

Q) =k — Q%) € add(Q¥k) <= AQ%) =m < QCM*(R) = UI(R).

Proof. In view of Corollary 4.3.11, it suffices to show that if R does not have a cyclic quotient
singularity, then the fourth condition implies the first one. By virtue of [149, Theorem 11.12]
the fundamental module E is indecomposable. Applying Lemma 4.4.11(2) to (Q%%)T, we have
an exact sequence 0 — (k)" 2 E®" —» N — 0 such that N is Cohen-Macaulay. Since E is
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Ulrich by Lemma 4.4.11(1), so are all the three modules in this sequence by Lemma 4.3.5(2).
Thus we can apply Lemma 4.4.12 to see that the induced map

Hompg (o, (Q%)T) : Homg(E®", (Q%)T) — Homp((Q%)T, (k)T

is surjective. This implies that « is a split monomorphism, and (Qdk)T is isomorphic to a direct
summand of E®". Since E is indecomposable, it folllows that (Qdk:)Jr is isomorphic to E™ for
some m. We obtain

Q)T = pOm = (ET®m =~ (Qd)TT =~ Qi
where the second isomorphism follows by Remark 4.4.10(4). [

Remark 4.4.14. Let R be a cyclic quotient surface singularity over C. Nakajima and Yoshida
[115, Theorem 4.5] give a necessary and sufficient condition for R to be such that the number
of nonisomorphic indecomposable Ulrich R-modules is equal to the number of nonisomorphic
nonfree indecomposable special Cohen—-Macaulay R-modules. By [88, Corollary 2.9], the latter is
equal to the number of isomorphism classes of indecomposable modules in QCM* (R). Therefore,
they actually gives a necessary and sufficient condition for R to satisfy QCM*(R) = UI(R).

Using our Theorem 4.4.13, we give some examples of a quotient surface singularity over C to
consider Ulrich modules over them.

Example 4.4.15. (1) Let S = C[[z,y]] be a formal power series ring. Let G be the cyclic
group 1(1,1), and let R = SY be the invariant (i.e. the third Veronese) subring of S. Then
QCM* (R) = UI(R). This follows from [115, Theorem 4.5] and Remark 4.4.14, but we can also
show it by direct caluculation: we have

CI(R) = {[R], [w], [p]} = 2/3Z,

where w = (23, 22y) R is a canonical ideal of R, and p = (23, 22y, 24?) R is a prime ideal of height
1 with [w] = 2[p]. Since the second Betti number of C over R is 9, we see Q2C = p®3. As [pf] =
[w] — [p] = [p], we have p! = p and (Q2C)" = Q2C. Theorem 4.4.13 shows QCM*(R) = UI(R).

(2) Let S = C[[z,y]] be a formal power series ring. Let G be the cyclic group £(1,5), and
let R = S¢ be the invariant subring of S. With the notation of [115], the Hirzebruch-Jung
continued fraction of this group is [2, 3, 2]. It follows from [115, Theorem 4.5] and Remark 4.4.14
that QCM*(R) # UI(R).

4.4.3 An exact structure of the category of Ulrich modules

Finally, we consider realization of the additive category UI(R) as an exact category in the sense of
Quillen [122]. We begin with recalling the definition of an exact category given in [91, Appendix
Al.

Definition 4.4.16. Let A be an additive category. A pair (i,d) of composable morphisms
xLv4z

is exact if i is the kernel of d and d is the cokernel of i. Let £ be a class of exact pairs closed under
isomorphism. The pair (A, £) is called an exact category if the following axioms hold. Here, for
each (i,d) € £ the morphisms i and d are called an inflation and a deflation, respectively.
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(Ex0) 1:0 — 0 is a deflation.
(Ex1) The composition of deflations is a deflation.

(Ex2) For each morphism f : Z' — Z and each deflation d : Y — Z, there is a pullback diagram
as in the left below, where d’ is a deflation.

(Ex2°P) For each morphism f: X — X’ and each inflation i : X — Y, there is a pushout diagram
as in the right below, where 7 is an inflation.

y' L g Xy
L b b
y <257 X 25y

We can equip a structure of an exact category with our UI(R) as follows.

Theorem 4.4.17. Let R be a d-dimensional Cohen—Macaulay local ring with residue field k
and canonical module, and assume that R has minimal multiplicity. Let S be the class of exact
sequences 0 — L — M — N — 0 of R-modules with L, M, N Ulrich. Then UI(R) = (UI(R),S) is
an ezxact category having enough projective objects and enough injective objects with proj Ul(R) =
add(9k) and inj UI(R) = add((Q%)T).

Proof. We verify the axioms in Definition 4.4.16.
(Ex0): This is clear.
(Ex1): Let d : Y — Z and d' : Z — W be deflations. Then there is an exact sequence

0= X =Y L% W 5 0 of R-modules. Since Y is in UI(R) and X, W € CM(R), it follows from
that X € UI(R). Thus this sequence belongs to S, and d'd is a deflation.
(Ex2): Let f : Z — Z be a homomorphism in UI(R) and d : Y — Z a deflation in S. Then we

get an exact sequence 0 — V' — Y & Z’ WDy 7 0. Since Y B 7' € UI(R) and Y', Z € CM(R),

Lemma 4.3.5(2) implies Y’ € UI(R). Make an exact sequence 0 — X' — Y’ L7 5 0. As
Y’ € UI(R) and X', Z" € CM(R), the module Z’ is in Ul(R) by Lemma 4.3.5(2) again. Thus d’
is a deflation.

(Ex2°P): We can check this axiom by the opposite argument to (Ex2).

Now we conclude that (UI(R),S) is an exact category. Let us prove the remaining assertions.
Lemma 4.4.12(c) yields the injectivity of (Q%k)f. Since (=)' gives an exact duality of (UI(R),S),
the module Q% is a projective object. We also observe from Lemma 4.3.7 and Corollary 4.2.2
that (UI(R),S) has enough projective objects with projUI(R) = add(Q9k), and has enough
injective objects with inj UI(R) = add((Q%)") by the duality (=) [

Remark 4.4.18. Let (R, m) be 1-dimensional Cohen-Macaulay local ring with infinite residue
field. Let (¢) be a minimal reduction of m. Then UI(R) = CM (R [%]) by [76, Proposition A.1].

This equality actually gives an equivalence UI(R) = CM(R[7]) of categories, since Hom-sets do

not change; see [108, Proposition 4.14]. Thus the usual exact structure on CM(R[F]) coincides

with the exact structure on UI(R) given above via this equivalence.
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Chapter 5

Local rings with self-dual maximal
ideal

5.1 Introduction

The contents of this chapter is based on author’s work [97].

Let R be a Cohen-Macaulay local ring with a canonical module w. For an R-module M, we
denote by MT the R-module Homg(M,w). The R-module M is called self-dual if there exists an
isomorphism M =, M' of R-modules. Note that the self-duality of R-modules is independent
of the choice of w.

Let R and S be artinian local rings such that S maps onto R. Denote by cg(R) the colength
ls(S) — Lg(R). In the case that S is Gorenstein, the integer cg(R) is used to estimate homo-
logical properties of R, for example, see [105, Theorem 7.5]. Ananthnarayan [1] introduced the
Gorenstein colength g(R) of an artinian local ring (R, m, k) to be the following integer

g(R) == min{cg(R) | S is a Gorenstein artinian local ring mapping onto R}.

The number g(R) measures how close R is to a Gorenstein ring. Clearly, g(R) is zero if
and only if R is Gorenstein. One can see that g(R) = 1 if and only if R is non-Gorenstein and
R = S/soc(S) for an artinian Gorenstein ring S. These rings are called Teter rings. On Teter
rings, the following characterization is known, which is an improvement of Teter’s result [143].
This was proved by Huneke-Vraciu [86] under the assumption that 1/2 € R and soc(R) C m?,
and later Ananthnarayan-Avramov-Moore [2] removed the assumption soc(R) C m?. See also
the result of Elias-Takatsuji [52].

Theorem 5.1.1 (Huneke-Vraciu, Ananthnarayan-Avramov-Moore, Elias-Takatuji). Let (R, m, k)

be an artinian local ring such that either R contains 1/2 or R is equicharacteristic with soc(R) C

m2. Then the following are equivalent.

(1) 9(R) < 1.
(2) Either R is Gorenstein or m = m'.
(8) Either R is Gorenstein or there exists a surjective homomorphism w — m.

Moreover, Ananthnarayan [1] extended this theorem to the case g(R) < 2 as follows.
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Theorem 5.1.2 (Ananthnarayan). Let (R,m) be an artinian local ring. Write R = T /I where
(T, wr) is a regular local ring and I is an ideal of T. Suppose I C m& and 1/2 € R. Then the

following are equivalent.

(1) 9(R) <2.
(2) There exists a self-dual ideal a C R such that [(R/a) < 2.

In this paper, we try to extend the notion of Gorenstein colengths and the above results to
the case that R is a one-dimensional Cohen-Macaulay local ring.

For a local ring (R, m), we denote by Q(R) the total quotient ring of R. An extension S C R
of local rings is called birational if R C Q(S). In this case, R and S have same total quotient
ring.

Let (S,n) C (R,m) be an extension of local rings. Suppose n = m N S. Then S C R
is called residually rational if there is an isomorphism S/n = R/m induced by the natural
inclusion S — R. For example, if S C R is module-finite and S/n is algebraically closed, then
it automatically follows that S C R is residually rational. We introduce an invariant bg(R) for

local rings R as follows, which is the infimum of Gorenstein colengths in birational maps.

Definition 5.1.3. For a local ring R, we define

residually rational birational map of local rings

bg(R) := inf {ES(R/S')

S is Gorenstein and S C R is a module-finite }

We will state the main results of this paper by using this invariant. The first one is the
following theorem, which gives a one-dimensional analogue of Theorem 5.1.1.

Theorem 5.1.4. Let (R, m) be a one-dimensional Cohen-Macaulay local ring having a canonical

module w. Consider the following conditions.
(1) bg(R) < 1.

(2) Either R is Gorenstein or there exists a Gorenstein local ring (S,n) of dimension one such
that R = Endg(n).

(3) Either R is Gorenstein or m = m'.
(4) Either R is Gorenstein or there is a short exact sequence 0 — w — m — k — 0.
(5) There is an ideal I of R such that I = w (i.e. I is a canonical ideal of R) and I(R/T) < 2.

Then the implications (1) = (2) = (3) & (4) < (5) hold. The direction (5) = (1) also holds
if R contains an infinite field k as a subalgebra which is isomorphic to R/m wvia the projection
R — R/m, i.e. R has an infinite coefficient field k C R.

The existence of a canonical ideal I of R with {g(R/I) = 2 is considered by Dibaei-Rahimi
[48]. Using their notion, the condition (5) above is equivalent to the condition that min(Se,) < 2.
We also remark that Bass’s idea [14] tells us the importance of the endomorpshism ring
Endg(n) of the maximal ideal n of a Gorenstein local ring S of dimension one. He shew that
any torsion-free S-module without non-zero free summand can be regarded as a module over
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Endg(n). So we can analyze Cohen-Macaulay representations of R via the ring Endg(n) (see
also [108, Chapter 4]).

As a corollary, we can characterize Cohen-Macaulay local rings R of dimension one having
minimal multiplicity and satisfying bg(R) < 1. To give the statement of our corollary, we
recall some definitions. For a local ring R, we denote by e(R) the multiplicity of R, r(R) the
Cohen—Macaulay type, and by edim R the embedding dimension of R. According to Goto-
Matsuoka-Phuong [62], a local ring R is called almost Gorenstein, if R posseses a canonical ideal
I of R such that e1(I) < r(R), where e1([) is the first Hilbert coefficient of I. A Gorenstein ring
of dimension one satisfying e(S) = edim S+ 1 are called a ring of almost minimal multiplicity or
a Gorenstein ring of minimal multiplicity, and studied by J. D. Sally [130]. The invariant p(R)
is the canonical indez of R, introduced by Ghezzi-Goto-Hong-Vasconcelos [57].

Corollary 5.1.5. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. Consider the
following conditions.

(1) bg(R) <1 and R has minimal multiplicity.

(2) Either e(R) <2 or R is almost Gorenstein with bg(R) = 1.
(3) m=ml and R is almost Gorenstein.

(4) m=wm' and R has minimal multiplicity.

(5) R is almost Gorenstein and has minimal multiplicity.

(6) There exists a Gorenstein local ring (S,n) of dimension one such that e(S) < edim S + 1
and R = Endg(n).

(7) m=ml and p(R) < 2.

Then (1) < (2) = (3) & (4) & (5) holds. If R/m is infinite, then (5) < (7) and (6) = (4)
hold. If R has an infinite coefficient field k C R, then all the conditions are equivalent.

The second main theorem of this paper is the following, which is a one-dimensional analogue
of Theorem 5.1.2.

Theorem 5.1.6. Let (R, m) be a complete one-dimensional Cohen-Macaulay local ring. Con-
stder the following conditions.

(1) bg(R) < 2.
(2) There exists a self-dual ideal a C R such that {r(R/a) < 2.

Then (1) implies (2). The implication (2) = (1) also holds if R has an infinite coefficient field
kCR.

In the view of Theorem 5.1.4, local rings with self-dual maximal ideal are naturally con-
structed from Gorenstein local rings, and so their ubiquity is certified. It is interesting to
consider what good properties they have compared to Gorenstein rings. In section 3, we have an
observation that a Cohen-Macaulay local ring (R, m) is nearly Gorenstein (see Definition 5.3.4
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for the definition) if m is self-dual. The converse of this is not true in general, however, we have
the following result. Here m : m is a subring of Q(R) consisting of the elements a satisfying
am C m.

Theorem 5.1.7. Let (R,m, k) be a Cohen-Macaulay local ring of dimension one. Put B =m :
m. Assume k is infinite.

(1) If B is local with Cohen-Macaulay type two and R is nearly Gorenstein, then R is almost
Gorenstein and does not satisfy m =2 m',

(2) If B is local with Cohen-Macaulay type three and R is nearly Gorenstein, then either R is
almost Gorenstein or m = m'.

We will provide a proof of Theorem 5.1.7 in section 3. One should compare this theorem
with the following result of Goto-Matsuoka-Phuong [62, Theorem 5.1].

Theorem 5.1.8 (Goto-Matsuoka-Phuong). Let (R,m, k) be a Cohen-Macaulay local ring of
dimension one. Put B = m : m. Then B is Gorenstein if and only if R is almost Gorenstein
and has minimal multiplicity.

In section 4, we deal with numerical semigroup rings having self-dual maximal ideal. The
definition of UESY-semigroups was given by [124]. These numerical semigroups are exactly the
semigroups obtained by adding one element to a symmetric numerical semigroup. We will show
that a numerical semigroup ring has self-dual maximal ideal if and only if the corresponding
numerical semigroup is UESY. After that, we also prove that the rings of UESY-numerical
semigroup have quasi-decomposable maximal ideal. According to [116], an ideal I of R is
called quasi-decomposable if there exists a regular sequence z = xi,...,x¢ such that I/(z)
is decomposable as an R-module. Local rings with quasi-decomposable maximal ideal have
some interesting properties; we can classify thich subcategories of the singularity category with
some assumption on the punctured spectrum ([116, Theorem 4.5]), and we have results on the
vanishings of Ext and Tor ([116, Section 6]).

In section 5, we characterize the endomorphism ring of a local hypersurface of dimension
one, using Theorem 5.1.4.

5.2 Proof of Theorem 5.1.4 and 5.1.6

In this section, we prove Theorem 5.1.4 and 5.1.6. Let (R, m) be a Noetherian local ring with
total quotient ring Q(R). Denote by R the integral closure of R in Q(R). By Remark 2.2.3,
Endpg(m) is identified with m : m, which is a subring of R. Furthermore, m : m is semilocal and
module-finite over R.

We give the following lemma in order to use in the proof of Theorem 5.1.4.

Lemma 5.2.1. Let (S,n) C (R,m) be a module-finite birational extension of one-dimensional
local rings. Assume R is reflexive as an S-module. Then we have birational extensions S C n :
nC R.
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Proof. Note that S is not a discrete valuation ring, and so S is properly contained in n : n
(Lemma 2.2.7). By the assumption, R =5 : (S : R).
We use the following claim.

Claim 4. The S-modules R and S : R have no nonzero S-free summands.

Proof of Claim 4. First consider the case when R has a S-free summand, that is, R = S & X
for some S-module X. Then R®s Q(S) = Q(S) & X ®s Q(S5). Since S C R is finite birational,
R®sQ(S) = Q(R) = Q(S). Therefore, we obtain that Q(.5) is isomorphic to Q(S)® X ®gQ(S).
Since Q(S) is artinian, we may use the Krull-Schmidt theorem for Q(.S) to show that X ®5Q(.5).
In particular, X is a torsion S-module. Howeber, X is a submodule of torsionfree S-module R,
and hence X itself is torsionfree. Thus X should be a zero module. This shows that R = S. As
R is a finite module over S, the ring-extension R C S is integral. Thus R is contained in the
integral closure of S in Q(S). By Lemma 4.4.6, it follows that R = S. This is a contradiction.
Now suppose that S : R has an S-free summand. Since R = S : (S : R) =2 Homg(S : R, S),
it follows that R has an S-free summand, too. This is a contradiction. |

By Claim 4 and Lemma 2.2.6, R has an n : n-module structure compatible with the action
of S. Therefore, we get equalities R = (n:n)R and (n:n) C (n:n)R C R. [

Now we can explain the proof of the direction 5.1.4 (1) = (2) = (3) < (4) < (5) of Theorem
5.1.4.

Proof of Theorem 5.1.4 (1) = (2) = (3) < (4) < (5). (1) = (2): Assume bg(R) < 1. Ifbg(R)
0, then R is Gorenstein, and there is nothing to prove. We may assume bg(R) = 1. Then there
is a Gorenstein local ring (S5, n) and module-finite residually rational birational extension S C R
with ¢g(R/S) = 1. Since S is Gorenstein and R is maximal Cohen-Macaulay over S, R is
reflexive as an S-module (see [19, Theorem 3.3.10] for instance). By the previous lemma, we
have S C n : n C R. Therefore, it should follows that {g(R/n : n) = 0, in other words,
R=n:n=n:5.

(2) = (3): We may assume S is not a discrete valuation ring (otherwise R = S and hence
R is Gorenstein). Identify R with n:n. By Lemma 2.2.7, one has ¢g(R/S) = 1. Hence we have
that the colength fg(m/n) of the inclusion n C m is less than or equal to 1. it is easy to check
that m/n is an R-module. And we have a calculation r(m/n) x g(R/m) = £g(m/n) = 1. Thus
it follows that m/n has dimension one as a vector space over R/m. Fix a preimage t € R of a
basis ¢ of m/n. Then m = n+ Rt and m? = n?4+mt C n. This means m C S : m. We have another
inclusion S : m C § : n. Using Lemma 2.2.5, we see that R =n:n =5 :n. It also holds that
Rt ¢ S (otherwise m = n+ Rt C S). These observation yield that S : m = m. The fractional
ideal S : m is isomorphic to Homg(m, S) = Hompg(m, Homg(R,S)). Now as S is Gorenstein
and S C R is a local homomorphism which makes R a finite S-module, w is isomorphic to
Hompg(R, S) [19, Theorem 3.3.7 (b)]. Thus S : m is isomorphic to Hompg(m,w) = mf. We
conclude that m = mf,

(3) = (4): Applying the functor (—)' to the short exact sequence 0 — m — R — k — 0, we
see that the resulting exact sequence is 0 — w — ml — Exth(k,w) = k — 0. Replacing m' by
m, using the assumption m = m', we get the desired exact sequence.
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(4) = (3): Applying the functor (=)' to the short exact sequence 0 — w — m — k — 0, we
get an exact sequence 0 — mf — R — Ext}%(k,w) >~ k. — 0. Then, the image of m' in R must
be equal to m and hence one has an isomorphism mf 2 m.

(4) = (5): The exact sequence 0 — w — m — k — 0 yields that there is an ideal I = w
such that the colength ¢r(m/I) is one. The equality {g(R/I) = 2 immediately follows from the
above.

(5) = (4): Take an ideal I = w such that I(R/I) < 2. If I = R, then R is Gorenstein and
there is nothing to prove. So we may suppose that I C m. If I = m, then m = w. Take a regular
element z € m\ m? of R. Then w/rw = m/axm, and m/zm is isomorphic to k ® m/(x) (see [145,
Lemma 2| for instance). On the other hand, w/zw is a canonical module of R/(x). Thus w/zw
is indecomposable. This implies that m/(z) = 0, i.e. m = (z). In particular, R is a discrete
valuation ring. Now we deal with an assumption that I C m. The inequality [(R/I) < 2 implies
that the equality [(m/I) = 1. Thus the exact sequence 0 — I — m — k — 0 is induced. [

All that remains is to show the direction (5) = (1). Let (R, m) be a Noetherian local ring
containing a coefficient field k¥ = R/m. Let I C R be a fractional ideal such that {r(R/I) < co.
Put k41 := {a+b | a € k,b € I} C R, which is a k-subalgebra of R. Then, since dimy R/(k+1I) <
lr(R/I) < oo, R is finitely generated as a k+ I-module and hence k+ I is Noetherian by Hilbert
basis theorem. By the lying over property of k+ I C R (see [50, Proposition 4.15] for instance),
any maximal ideal of k 4 I is contained in m. Therefore (k + I) Nm = I is the unique maximal
ideal of k 4 I. It also holds that k + I contains a regular element in its maximal ideal I. Since
we have inequalities

bur1(R)(k + 1)) = Gy s (R/T) — s ((k + 1)/1)

— CR(R/ )y 1(R/m) < os,

R/(k + I) is torsion k + I-module. Thus R/(k + I) ®k+7 Q(k + I) = 0. This implies that
R®py1 Q(k+1) = Q(k + I), equivalently Q(R) = Q(k + I). Consequently the ring extension
k + I C R is module-finite residually rational and birational.

Lemma 5.2.2. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. Assume R has a
canonical ideal I = w such that I(R/I) = 2. Put S = k+ 1. Then S is Gorenstein, and the
colength €s(R/S) is equal to 1.

Proof. S is local with a maximal ideal n = I. The extension S C R is module-finite, residually
rational and birational. Since I is a canonical ideal, we have I : I = R. Equivalently, n: n = R.
In particular, the colength {g(R/S) is equal to the Cohen-Macaulay type of S (Lemma 2.2.7).
Since R and S have same residue field k, we can see the equalities £g(R/S) = lg(m/n) = Lr(m/I).
On the other hand, we have

ER(m/I) = ER(R/I) — ER(R/m) =2-1=1.
It follows that S has Cohen-Macaulay type 1, that is, S is Gorenstein. Moreover, the colength

ls(R/S) is equal to fr(m/I) = 1. [
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Proof of Theorem 5.1.4 (5) = (1). Assume there is a canonical ideal I such that {r(R/I) < 2.
If {r(R/I) <1, then I = R or m. In both of these cases, R should be Gorenstein (in the case
of I =m, see the proof of Theorem 1.4 (5)= (4)).

Thus we only need to consider the case {r(R/I) = 2. By previous lemma, the ring S := k+1
is Gorenstein and the colength ¢g(R/S) is 1. This shows bg(R) < 1. |

We put the following lemma here, which will be used in the proof of Corollary 5.1.5.

Lemma 5.2.3. Let (R, m) be a Cohen-Macaulay generically Gorenstien local ring of dimension
one having a canonical module. Assume R is not a discrete valuation ring. Then

(1) R has minimal multiplicity if and only if m = m : m.

(2) R is almost Gorenstein in the sense of [62] if and only if m! = m : m.

Proof. See [121, Proposition 2.5 and Theorem 4.0.3 respectively. |
We give a proof of Corollary 5.1.5 as follows.

Proof of Corollary 5.1.5. The implications (3) < (4) < (5) follow immediately from Lemma
5.2.3.

(1) & (2): In the case bg(R) = 0, R is Gorenstein and has minimal multiplicity, and thus
e(R) <2 (see [130, 3.2. Corollary]). The converse also holds. Now suppose bg(R) = 1. Then by
Theorem 5.1.4, m is isomorphic to mt. Therefore, R has minimal multiplicity if and only if R is
almost Gorenstein.

(1) = (3): Clear.

Now assume the residue field R/m is infinite.

(6) = (4): Obviously, S/n is also infinite. If e(S) < edim .S, then e(S) < 2. Using [108,
Theorem A.29 (iii)], we see that

e(R) = max{lgr(X/m) | R Cis a finite birational extension}
< max{lg(X/n) | S Cis a finite birational extension} = e(.5),

and so we have an inequality e(R) < 2. This says that R is Gorenstein and has minimal
multiplicity. So we may assume e(S) = edim S + 1.

Take a minimal reduction (¢) of n and a preimage § € n? of a generator of the socle of
S/(t). Then n® = tn?, fg(n?/tn) = 1 (see [130, Proof of (3.4)]) and (¢) :s n = (t) + S5. The
equality £g(n?/tn) = 1 implies n? = tn + S6.

Now we claim the following.

Claim 5. Endg(n) = (t) :s n/t.

Proof of the claim. Recall that Endg(n) is isomorphic to n : n. We want to show the equality
n:n=(t):gn/t as subsets of Q(S). The containment ((t) :g n)n C (¢) shows that ((t) :g n)/t
is contained in S : n. By Lemma 2.2.7, S : n coincides with n : n. In particular, the inclusion
727 holds.

Since t is in n, we have t(n : n) C n C S. Thus the inequality ¢(n : n)n C tn C (¢) shows that
the inclusion 7 C”. [ |
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Therefore
R~ Endg(n) = (t) :gn/t =S+ S(6/t).

Identify R with S + S(6/t). Since R is local and 6% € n* = t2n2, (§/t) cannot be a unit of R.
This shows m = n+ S(J/t). By this equality, we also have an isomorphism R/m = S/n induced
by S C R. Observe the following equalities

tm = tn+ 56 = n?

and

m? = (n4 S(6/t))* =n® +n(5/t) + S(6/t)%

Then 62 € n* = t*n? implies S(§/t)2 C n?, and né C n® = tn? implies n(§/t) C n% So
m? = n? = tm. This means that R has minimal multiplicity.

It remains to show that m = mf. By Theorem 5.1.4, it holds that either R is Gorenstein or
m = m!. In the case that R is Gorenstein, it holds that e(R) < 2 and so m is self-dual by [121,
Theorem 2.6].

(5) = (7): Assume R is almost Gorenstein and has minimal multiplicity. Then we already
saw that m is self-dual (Lemma 5.2.3). It follows from [62, Theorem 3.16] that p(R) < 2.

(7) = (5): Recall that p(R) is the reduction number of a canonical ideal of R ([57, Definition
4.2]). So if p(R) <1, then R is Gorenstein ([62, Theorem 3.7]). It means that R = w. We may
assume that R is not a discrete valuation ring. Therefore m : m = R : m by Lemma 2.2.7, and
so we have m : m = Hompg(m, R) = Homp(m,w) = mi. Since m is self-dual, this yields that
m:m = m. Using Lemma 5.2.3, we deduce that R has minimal multiplicity.

Assume p(R) = 2. Combining [45, Theorem 3.5 (b), Proposition 3.8] and Theorem 5.1.4, we
obtain that R is almost Gorenstein and has minimal multiplicity.

Finally, we deal with the assumption that R contains a infinite field k& isomorphic to R/m
via R — R/m.

(4) = (1): This follows directly from Theorem 5.1.4.

(1) = (6): First we consider the case that R is Gorenstein (i.e. bg(R) = 0). In this case,
e(R) < 2 and edim R < 2 by the assumption. Take a minimal reduction Rt of m. Then m? = tm.
In particular, £p(m/I) = fr(m/I+m?) < 1. Put [ = Rt and S = k+ 1. Then the ring-extension
S C R is module-finite, residually rational and birational. Since I : I = R and fr(m/I) < 1, we
can see that S is Gorenstein and Endg(I) = R by the similar argument in the proof of 5.1.4 (3)
= (1). Furthermore, one has an equality ¢t/ = I?, which particularly show that S has minimal
multiplicity, that is, e(S) = edim S.

Now consider the case that bg(R) = 1. Repeating the proof of Theorem 5.1.4 (3) = (1), there
is a canonical ideal I such that if we let S = k+1I, then S is Gorenstein local and R = Endg(n),
where n is the maximal ideal of S. Since R is Almost Gorenstein, it was shown in [62, Theorem
3.16] that there is a minimal reduction @ = (t) C I of I in R such that ¢r(1?/QI) < 1 and
QI? = I3. Then it follows that fs(I?/QI) < 1. Using [130, Proposition 3.3], the equality
e(S) = edim S + 1 holds. [

We give here an example of a ring R with bg(R) = 1.

Example 5.2.4. Let R = k[[t3,t*,£5]] and S = k[[t3,¢%]] be numerical semigroup rings, where k
is a field. Then the natural inclusion S C R is a module-finite birational extension of local rings
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with the same coefficient field. The colength ¢g(R/S) is equal to 1. Since R is non-Gorenstein
and S is Gorenstein, we have bg(R) = 1.

We now turn to estimate the invariant bg(R) in general. Suppose there exists a self-dual
fractional ideal of R. Then we have an upper bound of bg(R) as follows.

Lemma 5.2.5. Let (R,m) be a complete one-dimensional Cohen-Macaulay local ring. Assume
R contains an infinite coefficient field k = R/m. Let I C R be a fractional ideal of R. If I is
self-dual, then we have bg(R) < I(R/I). In other words, the following inequality holds

bg(R) < inf{lg(R/I) | I =1I'}.

Proof. In the case I = R, the self-duality of I implies R is Gorenstein. So we may assume
I C m. Take a non-zero divisor ¢t € I, and Put B = k 4+ I. Then B C R is a module-finite
extension and [ is the maximal ideal of local ring B. Remark that B is also complete, and so a
canonical module wp of B exists. Since B C R is birational, the R-isomorphism I — I is also a,
B-isomorphism. We also have an isomorphism Hompg(R,wp) = wg, which yields isomorphisms

Hompg(I,wp) 2 Homp(I ®r R,wp) = Homp (I, Homp(R,wp)) = Homg(I,wr) = It

This says that IT is isomorphic to the canonical dual of I over B. By Theorem 5.1.4,
bg(B) < 1, that is, there is a Gorenstein ring S and module-finite birational extension S C B.
Then S C R is also a module-finite birational extension. The calculation

ls(R/S) = ls(R/B) + Ls(B/S) = tr(m/I) + 1 = Lr(R/I)
shows that bg(R) < (r(R/I). |
As a corollary of this, we can see the finiteness of bg(R) in the analytically unramified case.

Corollary 5.2.6. Let (R,m) be a complete one-dimensional local ring. Assume R contains
an infinite coefficient field. If there exists a module-finite birational extension R C T with a
Gorenstein ring T', Then bg(R) < I(R/aT) for any non-zero divisor a € T : R of T. Moreover,
if R is analytically unramified, then bg(R) < I(R/R : R) < oo, where R is the integral closure

of R in Q(R).

Proof. Since T is Gorenstein, the R-module a1 = T is self-dual. So we can apply Lemma
5.2.5 for I = aT'. If R is analytically unramified, Rof Rin Q(R) is Gorenstein, and R C R
is finite birational. The conductor R : R is a nonzero and satisfies R : R ®p Q(R) = Q(R).
Thus R : R has constant rank one and contains a non-zero divisor of R. In particular, R : R
is torsion-free over R. As R is reduced and integrally closed in its total ring of quotients, its
localization at any maximal ideal p is a discrete valuation ring. Therefore (R : ]A?;)p is a free
module of rank one for any p. Since Ris semilocal, it follows that R : R is free of rank one over
R. This means that R : R = R. Applying Lemma 5.2.5 for I = R : é, we have an inequality
bg(R) < I(R/R: R) < cc. |

Remark 5.2.7. Ananthnarayan [1] shows the following inequalities hold for an artinian local
ring R.
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(r(R/w*(w)) < min{lr(R/I) | I = I} < g(R). (5.2.7.1)
Here w*(w) is the trace ideal of w; see Definition 5.3.4.
As analogies of these inequalities, the followings are natural questions.

Question 5.2.8. Let (R, m) be a one-dimensional Cohen-Macaulay local ring. Does an inequal-
ity
bg(R) > inf{lgr(R/I) | I =1}

hold true?

Question 5.2.9. Let (R, m) be a one-dimensional generically Gorenstein local ring. Does an
inequality {r(R/w*(w)) < bg(R) hold true?

By our main theorems 5.1.4 and 5.1.6, Question 5.2.8 is affirmative for R with bg(R) < 2.
Question 5.2.9 has positive answer given in Proposition 5.3.6 if bg(R) < 1.
We now return to prove the Theorem 5.1.6.

Proof of Theorem 5.1.6. (2) = (1): This is a consequence of Lemma 5.2.5 by letting I = a.

(1) = (2): In the case bg(R) < 1, assertion follows by Theorem 5.1.4. So we may assume
bg(R) = 2. Take a Gorenstein local ring (S,n) and module-finite residually rational birational
extension S C R satisfying ¢g(R/S) = 2. Note that, since S is Gorenstein and R is a maximal
Cohen—Macaulay S-module, R is reflexive.

Let B be the ring n : n. By Lemma 5.2.1 and Lemma 2.2.7, we have ¢s(B/S) = 1 and
S C B C R. Therefore /g(R/B) = 1. As in the paragraph before Lemma 5.2.2, the lying over
property of the exntension B C R shows that B is local. Let mp be the maximal ideal of B
and fix a preimage ¢t € R of a basis ¢ of the one-dimensional vector space R/B over B/mp. By
the relation mpt C B yields that t € B : mg = mp : mpg. Therefore R = B+ Bt C mp : mp.
In particular, Rmp C mp. This says that mp is an ideal of R. Since bg(B) = 1, mp is a
self-dual ideal of B by Theorem 5.1.4. Fix a canonical module wp of B. Then Homp(B,wp) is
a canonical module of R.

Homp(mp,wp) = Homp(mp @ R,wp) = Homg(mp, Homp(R,wp)) = Homp(mp, wr).
Thus, it is also self-dual as R-module. One can also have equalities
lr(R/mp) ={¢p(R/B)+ {p(B/mp) = 2.
[

Remark 5.2.10. Let (R, m) be a one-dimensional local ring. Assume R is complete, equichar-
acteristic and bg(R) = n < oco. If there exists a Cohen-Macaulay local ring (B, mp) with
bg(B) = 1 and module-finite residually rational birational extensions B C R C mp : mp such
that /g(R/B) 4+ 1 < n. Then, by the same argument of proof of Theorem 5.1.6, it follows that
mp is a self-dual ideal of R satisfying r(R/mp) < n. In this case, Question 5.2.8 is affirmative
for R.
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5.3 The self-duality of the maximal ideal

In this section, we collect some properties of local rings (R, m) with m = mf.

Lemma 5.3.1. Let (R,m) be a Cohen-Macaulay local ring with a canonical module. Assume
m=ml. Then

(1) dimR < 1.
(2) Let x € m\ m? be a non-zero divisor of R. Then R/(z) also has self-dual mazimal ideal.
(3) edim(R) = r(R) + dim R.

Proof. (1) Suppose dim R > 2 and w is a canonical module of R. Applying (=)' to the exact
sequence 0 - m — R — k — 0, we get an exact sequence

0 — Hompg(k,w) = w — m! = Bxth(k,w).

By the assumption dim R > 2 yields that Hompg(k,w) = 0 = Ext}(k,w) and hence m’ = w.
From the isomorphism m = m', it follows that m = R, i. e. m is a principal ideal. This
shows that dim R < 1, which is a contradiction. Thus, it must be dim R < 1.
(2) Applying the functor Hompg(—,w) to the exact sequence 0 — m 2 m — m/zm — 0, we
get an exact sequence

0 — Hompg(m/zm,w) — m?ag 5 m’ — Exth(m/zm,w) — Exth(m,w).

Since dim R is less than or equal to 1 by (1), and € m is a non-zero divisor, it follows
that dim R = 1. Thus m is a maximal Cohen—Macaulay R-module, which yields the equality
Exth(m,w) = 0. The equalities Homp(m/zm,w) = 0 and Exth(m/zm,w) = Homp/(z) (m/zm, w/zw)
also hold (see [19, Lemma 1.2.4]). Thus we get an isomorphism m'/zmf = Homp /() (m/zm,w/zw).
From this isomorphism and m 22 mf, isomorphisms m/zm = mf /zm! = Homp /(z)(m/zm, w/zw)
are induced. By [145, Lemma 2], we have an isomorphism m/zm = R/m @ m/(x). Therefore we
obtain isomorphisms

R/méwm/(x) = Hompg/(,)(R/m&m/(r),w/rw) = Hompg, ;) (R/m,w/2w)®Hompg ;) (m/(z), w/zw).

Remark that w/zw is a canonical module of R/(x) (see [19, Theorem 3.3.5]). Thus we have
Homp /(x)(R/m,w/rw) = R/m. Then it follows that

R/m@&wm/(z) = R/m & Hompg /(z)(m/(x),w/zw).

By the Krull-Schmidt theorem for R/(x), this yields that m/(z) = Hompg /(z)(m/(z),w/2w),
which means the self-duality of the maximal ideal m/(x) of R/(z).

(3) Suppose that dim R = 0. Then by m = m' and [19, Proposition 3.3.11], u(m) = u(m') =
r(m). Here for an R-module X, ur(X) denotes the minimal number of generators of X. Since
dimm = dim R = 0, r(m) (resp. r(R)) is equal to dimp y(socm) (resp. dimp/y(socR)), and so
the equality socm = socR implies that r(m) = r(R). Thus we have edim R = p(m) = r(m) =
r(R) + dim R.
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Now suppose that dim R > 0. Then (1) shows that dim R = 1. Since R is Cohen-Macaulay,
we can take a non-zero divisor x € m \ m? of R. Then, by (2), R/(z) has self-dual maximal
ideal. Since dim R/(z) = 0, it follows that edim R/(z) = r(R/(x)). Note that r(R/(x)) = r(R)
and edim R/(x) = pug/ym/(x) = pr(m) — 1. Thus we have equalities

edimR = p(m) =edimR/(x) + 1 =r(R) + 1
|

When dim R > 2, the maximal ideal m cannot be self-dual. However, we suggest the following
generalization of the self-duality of the maximal ideal in higher dimensional case.

Proposition 5.3.2. (R, m) be a non-Gorenstein Cohen-Macaulay local ring of dimension d > 0
having an infinite residue field. Assume R has a canonical ideal I satisfying e(R/I) = 2. Then

there is a reqular sequence x = x1,...,xq_1 such that R/(x) has self-dual mazimal ideal.

Proof. Since R/I is Cohen-Macaulay of dimension d — 1 ([108, Proposition 11.6]), we can take

a minimal reduction y = y1,...,y4-1 of the maximal ideal m/I in R/I. Then the length
(((R/I)/(y)) is equal to e(R/I)(< 2). Let x = x1,...,74-1 be a preimage of y in R. As I is
unmixed, we can take z as a regular sequence in R. The tensor product I’ = I® R/(x) is naturally
isomorphic a canonical ideal of R' = R/(z). The quotient R'/I" has length I(R/(I + z)) =

I((R/I)/(y)) < 2. Therefore R has self-dual maximal ideal by Theorem 5.1.4. [

Example 5.3.3. Let R = k[[z3, 2%y, xy?,y?]] be the third Veronese subring of k[[z,y]]. Then
I = (23,2%y)R is a canonical ideal of R. The quotient ring R/I is isomorphic to k[[s,t]]/(s%),
and hence e(R/I) = 2.

Go back to the subject on self-duality of the maximal ideal. Recall the notion of trace ideal
of an R-module and nearly Gorensteiness of local rings (see [74]).

Definition 5.3.4. Let R be a commutative ring. For an R-module M, the trace ideal M*(M)
of M in R is defined to be the ideal }_ rcpyop ,ar,r) Im f € R

A Cohen-Macaulay local ring (R, m) with a canonical module w is called nearly Gorenstein
if w*(w) DO m.

Lemma 5.3.5. Let (R,m) be a Cohen-Macaulay local ring with a canonical module. The fol-
lowing are equivalent.

(1) R is nearly Gorenstein.
(2) there is a surjective homomorphism w®™ — m for some n.
Moreover, if dim R < 1, then we can add the following conditions.

(3) there is a short exact sequence 0 — mi — R®" — M — 0 for some n and mazimal
Cohen-Macaulay module M.

(4) there is a short exact sequence 0 — mi — m®" — M — 0 for some n and mazimal
Cohen-Macaulay module M.
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Proof. (1) < (2): By the definition of trace ideals, there is a surjection w®" — w*(w) for some
n. So the equivalence immediately follows.

Now assume dim R < 1. Then the maximal ideal m is maximal Cohen-Macaulay as an R-
module. So the condition (2) is equivalent to that there is a short exact sequence 0 — M —
wP" — m — 0 for some n and maximal Cohen-Macaulay module M. Taking the canonical
duals, the equivalence of (2) and (3) follows.

We turn the equivalence of (3) and (4). We may assume R is not a discrete valuation ring,
and hence both m and m' are not free R-modules. Assume that (3) holds. The condition (3)
means that m' is a syzygy of a maximal Cohen-Macaulay module. Thus by Lemma 4.4.2, there
is a short exact sequence 0 — m?ag — m®” — M’ — 0 with some maximal Cohen-Macaulay
R-module M’. This shows the implication (3) = (4).

Conversely, suppose that (4) holds. Then we may use Lemma 4.3.5 to show that (3) holds,
since m is a syzygy of a maximal Cohen—Macaulay module by Lemma 2.2.7. |

Proposition 5.3.6. Let (R,m) be a Cohen-Macaulay local ring with a canonical module. As-
sume m = m'. Then

(1) R is nearly Gorenstein.
(2) If R is non-Gorenstein and 2 is invertible in R, then R is G-regular.

Proof. We already saw that dim R < 1 from Lemma 5.3.5.

(1) In the case of dim R = 0, we have a short exact sequence 0 - m — R — k — 0 and
hence we can apply Lemma 5.3.5 (3) = (1).

In the case of dim R = 1, we may assume R is not a 0. Applying Lemma 5.3.5 to the short
exact sequence in Theorem 5.1.4 (4), it follows that R is nearly Gorenstein.

(2) In the case that dim R = 0, the statement is proved in [135, Corollary 3.4]. So we may
assume dim R = 1. Take z € m \ m? a non-zero divisor. Thanks to Lemma 3.1, the maximal
ideal of R/(z) is self-dual. Then R/(z) is G-regular by [135, Corollary 3.4]. It follows from [138,
Proposition 4.2] that R is also G-regular.

[

Example 5.3.7. Let R = k[[t*,#5,¢7]]. Then R is almost Gorenstein local ring of dimension
one. Therefore, R is G-regular and nearly Gorenstein. On the other hand, R does not have
minimal multiplicity, and hence m is not self-dual. This shows that the converse of Proposition
5.3.6 doesn’t hold true in general.

Example 5.3.8. The associated graded ring gr,,(R) of a local ring (R, m) with self-dual maximal
ideal need not be Cohen-Macaulay, for example, R = k[[t4, 7, t!1]].

We use the notion of minimal faithful modules. The definition of them is given in below.

Definition 5.3.9. Let R be a commutative ring. An R-module M is called minimal faithful if
it is faithful and no proper submodule or quotient module is faithful.

Example 5.3.10. For an artinian local ring R, the R-module R and a canonical module w of
R (i.e. injective hull of the residue field) are minimal faithful.
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The following is proved by Bergman [16, Corollary 2].

Lemma 5.3.11 (Bergman). Let A, B and C be finite-dimensional vector spaces over a field k.
and f: Ax B — C be a bilinear map. Assume the following conditions.

(1) any nonzero element a of A induces a nonzero map f(—,a): B — C

(2) For any proper submodule i: B' — B, there is a nonzero element a € A such that f(i(—),a): B' —
C is a zero map.

(3) For any proper quotient module p: C — C’ there is a nonzero element a € A such that the
map po f(—,a): B — C' is a zero map.

Then dimg A > dimyg B + dimy, C' — 1.
To have an application of Lemma for modules, we need the following lemmas.

Lemma 5.3.12. Let R be a commutative ring, n be a positive integer, M, N be R-modules and
f=1ft,.-, fal': N = M®" be an R-homomorphism. Assume that N is Artinian. Then f is
injective if and only if for any nonzero element a € soc(N), there exists i such that f;(a) # 0.

Proof. We can see that Ker f = Ker fiN---NKer f,. Thus f is injective if and only if Ker f; N
---NKer f, = 0. Since N is Artinian, the latter condition is equivalent to that soc(/N) N Ker fiN
---NKer f, =0. [

Lemma 5.3.13. Let (R,m,k) be an artinian local ring and M, N be finitely generated R-
modules. Assume M is minimal faithful and N is Artinian. If n is the smallest positive integer
such that exists an injective homomorphism f = [f1,..., fu]: N — M®", then the k-subspace B
of Homp (N, M) ®g k generated by the image of fi,..., fn has a dimension exactly equal to n
over k.

Proof. We only need to show dimg B > n. Assume there is a equation fi = aifo+---+anfn+g
for some asg,...,a, € R and g € mHompg(N, M). Then for any element a € soc(N), g(a) = 0.
Son > 2 and f(a) # 0 implies there exists ¢ > 2 such that f;(a) # 0. This particular says
that the homomorphism [fa, ..., fu]: N — M®"~! also an injection by Lemma 5.3.12, which is
a contradiction to our assumption on n. |

The following lemma is a generalization of the result of Gulliksen [68, Lemma 2].

Lemma 5.3.14. Let (R, m, k) be an artinian local ring and M, N be finitely generated faithful R-
modules. Assume M is minimal faithful. If there exists an injective homomorphism N — M®™
for some n, then dimy soc(M) < dimy soc(N) and equality holds if and only if N = M.

Proof. Let n be the minimal integer such that there is an injective map N — M®". Take

a injective map N M M®" and set B the k-subspace of Hompg (N, M) ®g k generated
by the image of fi,..., fn. Then dimy B = n by Lemma 5.3.13. By letting A = soc(/N) and
C = soc(M), we have a bilinear map A x B — C over k satisfying the assumption (1) and
(2) of Lemma 5.3 in view of Lemma 5.3.12 and 5.3.13. We also verify the condition (3) of
Lemma as follows. Assume (3) is not satisfied. Then there is a subspace C’ of C such that any
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nonzero element a of A induces a nonzero map po f(—,a): B — C/C’, where p: C — C/C’
is the natural surjection. Since C'//C" C M/C" as an R-module, we obtain an injective map

g: N G0Nt 0Tn, (M/C")®" where q: M — M/C" is also the natural surjection. Since N is
faithful, there is an injective map h from R to some copies N9™ of N. Taking a composition of
h and g®™, one has an injective map from R to (M/C")®™". In particular, M/C" is a faithful
R-module, which contradicts the assumption that M is minimal faithful.

Therefore, we can apply Lemma 5.3 and get an equality dim A > dim B + dimC — 1. It
follows that dimsoc(N) — dimsoc(M) > n — 1 > 0. If the equalities hold, then n =1 and N is
isomorphic to a submodule of M. By the minimality of M, one has N = M. |

We also give some basic properties of minimal faithful modules.
Lemma 5.3.15. Let (R, m, k) be an artinian local ring. Then
(1) Any minimal faithful R-module is indecomposable.

(2) Assume R has Cohen-Macaulay type at most three. Then (r(R) < {r(M) for all faithful
R-module M. In particular, a faithful R-module M is minimal faithful if Lr(M) = g(R).

Proof. (1): Let M be a minimal faithful R-module, and assume that M decomposes as direct
sum M = M; @ My of R-modules. the faithfulness of M yields that Ann(M;) N Ann(Ms) = 0.
Take minimal generators x1,...,x, of My and yi,...,ymn of Ms. Without loss of generality,
we may assume n < m. Then the submodule N of M = M; ® M, generated by the elements
1+ Y1, -5 Tn + Yn, 0 + Ynt1,---,0 + Yy is proper and faithful. This contradicts that M is
minimal faithful. (2): This follows by [68, Theorem 1]. |

Definition 5.3.16. Let (R, m, k) be a commutative ring. A fractional ideal I of R is called
closed [18] if the natural homomorphism R — Hompg(7, ) is an isomorphism.

Example 5.3.17. Let (R, m, k) be a one-dimensional Cohen-Macaulay local ring. Set B = m :
m. Then m is closed as a fractional ideal of B.

Lemma 5.3.18. Let (R, m, k) be a one-dimensional Cohen-Macaulay local ring having a canon-
ical module and I be a fractional ideal of R. Then the following are equivalent.

(1) I is closed.
(2) It is closed.
(3) There is a surjective homomorphism %" — w for some n.

(4) There is a short exact sequence 0 — R — I®" — M — 0 for some n and mazimal
Cohen-Macaulay R-module M.

Proof. See [18, Proposition 2.1]. Note that (4) follows by the canonical dual of (3), since I is
maximal Cohen-Macaulay as an R-module. |
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Proof of Theorem 1.7. Take a minimal reduction (t) of mp. The assumption that R is nearly
Gorenstein implies that any localization of wg at a non-maximal prime ideal is free of rank one
([74, Proposition 2.3]). This yields that wg ® g Q(R) = Q(R). On the other hand, m®p Q(B) =
m®pr Q(R) = Q(R) = Q(B) since m contains a regular element. Thus one has

m' ®p Q(B) = Homp(m,wr) ®p Q(B) = Hompg(m,wg) @z Q(R)
= Homg(gy(m ®r Q(R),wr ®r Q(R))
= Homg(r)(Q(R), Q(R)) = Q(R) = Q(B).

This shows that m and m' has constant rank one as a B-module. In particular, we have
equalities /5(B/tB) = e(B) = fg(m/tm) = fg(mf/tm!). Note that m/tm and mf/tm! are
faithful over B/tB (see [18, Proposition 3.3]). As B/tB has Cohen-Macaulay type less than
or equal to three in both case (1) and (2), Lemma 5.3.15 ensures that m/tm and mf/tmf are
minimal faithful over B/tB. Consider the exact sequence

0o ml S m® M0

as in Lemma 5.3.5. Then ¢ € Homp(mf, m®") = Homp(m!, m®"). Therefore M = Cok ¢ is also
a B-module and it is torsion-free over B as well as over R. Moreover, the above sequence is
an exact sequence of B-modules and B-homomorphisms. Tensoring B/tB to this sequence, we
have a short exact sequence

0 = mt/tmt 2B, stm)®n S M/EM > 0 (5.3.18.1)
of B/tB-modules.
(1): Applying Lemma 5.3.14 to the sequence (5.3.18.1) and using [68, Lemma 2], we obtain
the inequalities
1 < dimy soc(m/tm) < dimy soc(m! /tm") < rp(B) = 2.

So one has either soc(m/tm) = 1 or soc(m'/tmf) = 2. In the former case, m’ must be a cyclic
B-module and hence m' & B. R is almost Gorenstein. So one has either dimy soc(m/tm) = 1
or dimy dimy soc(m/tm) = dimy soc(m'/tm’) = 2. In the former case, we have 1 = rp(m) =
pp(mh), which shows that m' must be a cyclic B-module. Thus m' 2 B. This yields that R is
almost Gorenstein by Lemma 5.2.3. Suppose that dimy, soc(m/tm) = dimy, soc(mf/tm') = 2.
Take a system of minimal generator ay, ..., a, of m/tm over B/tB, and for each i =1,...m

we set a homomorphism f;: B/tB — m/tm, which sends 1 to a;. Since m/tm is faithful over

t
B/tB, The homomorphism B/tB Wefml’, (m/tm)®™ is injective. Then by Lemma 5.3.14,

the equality dimy soc(m/tm) = 2 = dimy soc(B/tB) induces an isomorphism m/tm = B/tB.
This shows that m is a cyclic B-module. Thus we have m = B. Similar argument shows that
dimy, soc(mf/tm?) = 2 = dimy soc(B/tB) implies that m! = B. Then R is almost Gorenstein
and has minimal multiplicity by Lemma 5.2.3, and so B has type one by Theorem 5.1.8, a
contradiction.

(2): Applying Lemma 5.3.14 to the sequence (5.3.18.1), we obtain the inequalities

1 < dimy soc(m/tm) < dimy soc(mf /tm") < rg(B) = 3.
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In the case that dimysoc(m/tm) = 1 or dimy soc(mf/tm!) = 3 = dimy, soc(B/tB), it follows by
same argument as in (1) that m’ = B and R is almost Gorenstein. So we only need to consider
the case dimysoc(m/tm) = dimg soc(mf/tm) = 2. In this case, m/tm should be isomorphic
to mf /tm! by lemma 5.3.14. Put ¢ = [¢1,...,¢n): mI — m® and so ¢ ® B/tB = [¢1 ®
B/tB,...,¢,®B/tB]t. Consider the canonical dual (p®@B/tB)": (m/tm)!®" — (m/tm), which is
surjective. Since m/tm is indecomposable (Lemma 5.3.15), the Nakayama’s lemma indicates that
jac(End(m/tm)) - (m/tm) # m/tm. Therefore, one of the endomorphism (¢1 ® B/tB),..., (¢ ®
B/tB)! of m/tm must be not contained in jac(End(m/tm)), otherwise (¢ ® B/tB) cannot be
surjective. This means that one of the ¢; ® B/tB,...,¢, ® B/tB is an isomorphism. Say
¢; ® B/tB is an isomorphism. Then the B-homomorphism ¢;: m' — m is also surjective. Both
m and m' have constant rank, ¢; must be an isomorphism. This shows that m =2 mf. |

Corollary 5.3.19. Let (R,m,k) be a complete Cohen-Macaulay local ring of dimension one
with a canonical module. Assume B :=m : m is local and k is infinite. If R is nearly Gorenstein
with multiplicity e(R) < 4, then either R is almost Gorenstein or m = mf.

Proof. Take a minimal reduction (¢) of R. We have that B ®@r Q(R) = Q(R), this means that
B has a constant rank as an R-module. Then the multiplicity e(m, B) = ¢g(B/tB) of B as an
R-module is equal to 4. If B is a discrete valuation ring, then the statement follows by Theorem
5.1.8. So we may assume that B/tB is not a field. Deduce that

4 =(r(B/tB) > {p(B/tB) > dimy soc(B/tB) = r(B).
Now we can apply Theorem 5.1.7 and attain the desired statement. |

Example 5.3.20. Let R = k[[t,t%,t7]]. Then R is nealy Gorenstein and has multiplicity 5,
however, neither R is almost Gorenstein nor m 22 mf.

5.4 Numerical semigroup rings

In this section, we deal with the numerical semigroup rings (R, m) having an isomorphism
m = mf. We begin the section with recalling preliminaries on numerical semigroup. Let H C N
be a numerical semigroup. The set of pseudo-Frobenius numbers PF(H) of H is consisting of
integers a € N\ H such that a +b € H for any b € H \ {0}. Then the maximal element F(H)
of PF(H) is the Frobenius number of H. Set H' = H U{F(H)}. Then H’ is also a numerical
semigroup. A numerical semigroup of the form H' = H U {F(H)} for some symmtric numerical
semigroup H (see [104] for the definition of symmtric numerical semigroups) is called UESY-
semigroup (unitary extension of a symmetric semigroup), which is introduced in [124]. Note
that F(H) is a minimal generator of H' = H U{F(H)}. For a numerical semigoup H and a field
k, the numerical semigoup ring of H over k is the subring k[[{t* | a € H}]] of k[[t]], where ¢ is
an indeterminate.

Lemma 5.4.1. Let H be a numerical semigroup, k is an infinite field and (R, m) is the numerical
semigroup ring k[[H]]. Then the following are equivalent.

(1) m is self-dual.
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(2) H is a UESY-semigroup.

Proof. (1) = (2): In the case that H is symmetric, or equivalently R is Gorenstein (see [104]),
it follows by Corollary 1.5 (3)= (2) that e(R) < 2. Then there is an odd integer a such that
H = (2,a). Tt can be checked that the subsemigroup H' = (2,a + 2) of H is symmetric, and
H\ H' = {a}. Thus H is UESY.

We may assume that H is not symmetric. By Theorem 5.1.4, there is a Gorenstein local
subring (S,n) of R such that R = n : n. Take a value semigroup v(S) of S, where v is the
normalized valuation of k[[t]], that is, v takes ¢t to 1 € Z. Then H = v(R), and v(S) is symmetric
by the result of Kunz [104]. Since Rn C n, v(R) \ v(S) is contained in PF(v(S)). Since v(S) is
symmetric, PF(v(S)) = {F(v(S))}. Thus one has v(S) C H C v(S)U{F(v(S))}. Therefore, H
should be equal to v(S) U {F(v(S))}. In particular, H is UESY.

(2) = (1): Describe H as H = H' U{F(H’)} with a symmtric numerical semigoup H'. Set
S = k[[H']]. Then Endg(mg) is isomorphic to

m: m = (t | a € Z such that for any b € H'\ {0}, a+be€ H')S
=({t*|a€e HUPF(H")S = (t"|a€ H)S = R.
Thus by our theorem (Theorem 5.1.4), the maximal ideal m of R is self-dual. [
Proposition 5.4.2. Let H = (ay,...,a,) be a symmetric numerical semigroup minimally gen-

erated by {a;} with 2 < a1 < ag < --- < ap, and H' = HU{F(H)}. Put S = k[[H]] over an
infinite field k and R = k[[H']]. Then the mazimal ideal of R is quasi-decomposable.

Proof. Denote by mp the maximal ideal of R. We will prove that the maximal ideal mp/(t*)

(H)

of R/(t*) has a direct summand I generated by the image of t"() and I = k as an R-module.

Since t") is a minimal generator of mpg, it is enough to show that mptF#) C t%1 R. So what
we need to show is that F(H) + a; —a; € H for all i # 1 and 2F(H) — a; € H. These follow
by the fact that F(H) is the largest number in N\ H and the inequalities a; — a; > 0 and
F(H) —ay1 > 0. [ |

5.5 Further characterizations

The goal of this section is to give characterizations of local rings R such that there exists a
one-dimensional local hypersurface (S, n) such that R = Endg(n).

Proposition 5.5.1. Let (R,m) be a Cohen-Macaulay local ring of dimension one. Assume that
R has a canonical module and infinite coefficient field k. Then the followings are equivalent.

(1) There is a local hypersurface (S,n) such that R = Endg(n).
(2) e(R) <2, or R has type 2 and a canonical ideal I such that I? = mI and (r(R/I) = 2.
(3) e(R) <2, or R has embedding dimension 3, and a canonical ideal I such that I* = m?.

Proof. (1)=-(2): Assume e(R) > 2 and R satisfies (1). Then R is not Gorenstein, and I :=n
is a canonical ideal of R. Since S is a hypersurface and not a O, ¢g(I/I?) = ls(n/n?) = 2. It
forces the equality I? = mI, since I is not a principal ideal.
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(2)=-(1): Consider the case that e(R) < 2. Then by the proof of Corollary 5.1.5 (1) = (6),
there is a Gorenstein local ring (S, n) such that R = Endg(n) and e(S) = edim S. In particular,
e(S) < 2 and S is a hypersurface. Now consider the case that R has type 2 and a canonical
ideal I such that I? = mI and ¢r(R/I) = 2. One has equalities (g (I/I1?) = (r(I/mI) = 2. Put
S :=Fk+ 1. Then S is Gorenstein local with a maximal ideal n := I, and R = Endg(n) (Lemma
5.2.2). We can compute the embedding dimension edim S as follows:

edim S = £5(n/n?) = br(I/1%) = 2.

Therefore, S should be a hypersurface. (2)= (3): We may assume R has type 2. By the
implication (2)=>(1), we can calculate the embedding dimension of R as edim R < edim S+1 = 3,
where (S,n) is a hypersurface with R = Endg(n). Since R is not Gorenstein, edim R should be
equal to 3. This means ¢z(m/m?) = 3. On the other hand, one has

(r(m/I?) = Lp(m/I) + (r(I/T*) =1+ (g(I/mI) =1+2=3.

So the inclusion I? C m? yields that I? = m?. The direction (3)=-(2) also follows by similar
calculations. [

Question 5.5.2. For a Cohen-Macaulay local ring (R, m) of dimension one, when is there a
local complete intersection (.5, n) with an isomorphism R = Endg(n)?

Chapter 6

Burch ideals and Burch rings

6.1 Introduction

The contents of this chapter is based on author’s work [41] with H. Dao and R. Takahashi.

This chapter introduces and studies a class of ideals and their affiliated rings which we call
Burch ideals and Burch rings. While their definitions are quite simple, our investigation shows
that they enjoy remarkable ideal-theoretic and homological properties. These properties allow
us to link them to many classes of ideals and rings in the literature, and consequently strengthen
numerous old results as well as establish new ones.

Let us make a brief remark on our motivation and historical context. The project originated
from our effort to understand a beautiful result by Burch on homological properties of ideals
below ([23, Theorem 5(ii) and Corollary 1(ii)]).

Theorem 6.1.1 (Burch). Let (R, m) be a local ring. Let I be an ideal of R withmI # m(I :g m).
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(1) Let M be a finitely generated R-module. If TorZ(R/I, M) = Torf, | (R/I,M) =0 for some
positive integer n, then M has projective dimension at most n.

(2) If I has finite projective dimension, then R is regular.

Lindsay Burch! was a PhD student of David Rees, and she wrote several (short) papers
that have had a sizable impact on two active corners of commutative algebra: homological
theory and integral closure of ideals. Perhaps most researchers in the field know of her work via
the frequently used Hilbert—-Burch Theorem ([23]), her construction of ideals with only three-
generators while possessing arbitrarily complicated homological behavior ([24]), and the Burch
inequality on analytic spreads ([25]). The ideas of Burch’s particular result above, while less
well-known, have resurfaced in the work of several authors which also motivated our work, see
[34, 36, 102, 105, 135]. However, it has appeared to us that what was known previously is just
the tip of an iceberg, and led us to formally make the following definitions.

Let (R, m) be a local ring. We define an ideal I of R to be a Burch ideal if mI # m(I :p m).
We also define Burch rings of depth zero to be those local rings whose completions are quotients
of regular local rings by Burch ideals. Then we further define Burch rings of positive depth as
local rings which “deform” to Burch rings of depth zero; see Section 6.2 for the precise definitions.

It is not hard to see that the class of Burch ideals contains other well-studied classes: inte-
grally closed ideals of codepth zero (under mild conditions), m-full ideals, weakly m-full ideals,
etc.

One of our main results characterizes Burch ideals and Burch rings of depth zero:

Theorem 6.1.2 (Theorem 6.4.1). Let (R, m, k) be a local ring and I # m an ideal of R. Then I
is Burch if and only if the second syzygy Q%%/Ik of k over R/I contains k as a direct summand.

From this, we can quickly deduce a characterization of Gorenstein Burch ideals, which ex-
tends results on integrally closed or m-full ideals in [60, 61]. In fact, our proofs allow us to
completely characterized modules over Burch rings of depth zero whose some higher syzygies
contain the residue field as a direct summand, as follows:

Theorem 6.1.3 (Theorem 6.4.5). Let (R,m,k) be a Burch ring of depth zero. Let M be a
finitely generated R-module. The following are equivalent:

(1) The ideal I(M) generated by all entries of the matrices 0;, i > 0 in a minimal free resolution
(F,0) of M is equal to m.

(2) The R-module k is a direct summand of VM for some r > 2.

1We are grateful to Rodney Sharp and Edmund Robertson for providing us with the following brief biography
of Burch: Lindsay Burch was born in 1939. She did her first degree at Girton College, Cambridge from 1958 to
1961. She then went to Exeter University to study for a Ph.D. advised by David Rees. She was appointed to
Queen’s College, Dundee in 1964 before the award of her Ph.D. which wasn’t until 1967 for her thesis “Homological
algebra in local rings”. At the time she was appointed to Queen’s College it was a college of the University of St
Andrews but later, in 1967, it became a separate university, the University of Dundee. Burch continued to work
in the Mathematics Department of the University of Dundee until at least 1978. She then took up computing and
moved to a computing position at Keele University near Stafford in the north of England. She remained there
until she retired and she still lives near Keele University.
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Our work reveals some interesting connections between Burch ideals/rings and concepts
studied by other authors in quite different contexts. For instance, we show that in codimension
two, artinian almost Gorenstein rings as introduced by Huneke-Vraciu [86] (also studied in
[135]) are Burch; see Proposition 6.6.10. Over a regular local ring, the “Burchness” of an ideal
I imposes a strong condition on the matrix at the end of a minimal free resolution of I, a
condition that also appeared in the work of Corso-Goto—Huneke—Polini-Ulrich [34] on iterated
socles. That connection led us to obtain a refinement of their result in Theorem 6.6.2.

We also study Burch rings of higher depth, especially their homological and categorical
aspects. We completely classify Burch rings which are fibre products in Proposition 6.6.15. The
Cohen—Macaulay rings of minimal multiplicity are Burch. Non-Gorenstein Burch rings turn out
to be G-regular in Theorem 6.7.7, in the sense that all the totally reflexive modules are free.
Moreover, we show an explicit result on vanishing behavior of Tor for any pair of modules.

Theorem 6.1.4 (Corollary 6.7.13). Let R be a Burch ring of depth t. Let M, N be finitely gener-
ated R-modules. Assume that there exists an integer | > max{3,t+1} such that Tor®(M,N) = 0
foralll+t<i<Il+4+2t+ 1. Then either M or N has finite projective dimension.

To state our last main result in this introduction, recall that the singularity category Dsg(R)
is by definition the triangulated category given as the Verdier quotient of the bounded derived
category of finitely generated R-modules by perfect complexes. Under some assumptions, one
can classify all the thick subcategories of Deg(R) for a Burch ring R.

Theorem 6.1.5 (Theorem 6.7.10). Let R be a singular Cohen—Macaulay Burch ring. Suppose
that on the punctured spectrum R is either locally a hypersurface or locally has minimal mul-
tiplicity. Then there is a one-to-one correspondence between the thick subcategories of Dsg(R)
and the specialization-closed subsets of Sing R.

Next we describe the structure of the chaper as well as other notable results. In Section 6.2 we
state our convention, basic definitions and preliminary results. Section 6.3 is devoted to giving
a sufficient condition for a module to have a second syzygy having a cyclic direct summand
(Proposition 6.3.4). This is a generalization of [105, Lemma 4.1], and has an application to
provide an exact pair of zero divisors (Corollary 6.3.6). These materials are used in Section 6.4
and are perhaps of independent interest.

In Section 6.5, we focus on the study of Burch rings of positive depth. We verify that the
class of Gorenstein Burch rings coincides with that of hypersurfaces (Proposition 6.5.1). Cohen—
Macaulay local rings of minimal multiplicity with infinite residue field are Burch (Proposition
6.5.2). Quotients of polynomial rings by perfect ideals with linear resolution are Burch (Propo-
sition 6.5.6). We also consider the subtle question of whether the Burch property is preserved by
cutting down by any regular sequence consisting of minimal generators of m. Remarkably, this
holds for Cohen-Macaulay local rings of dimension one with minimal multiplicity (Proposition
6.5.5). However, the answer turns out to be negative in general (Example 6.5.8).

In Section 6.6 we focus more deeply on Burch ideals in a regular local ring. We give a
complete characterization in dimension two and link Burch rings and Burch ideals to various
other concepts. Moreover, we give a characterization of the Burch local rings (R, m, k) with
m3 = 0 in terms of a Betti number of k, the embedding dimension and type of R (Theorem
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6.6.12). We also characterize the Burch monomial ideals of regular local rings (Proposition
6.6.4).

In Section 6.7, we explore the homological and categorical aspects of Burch rings. We find
out the significant property of Burch rings that every module of infinite projective dimension
contains a high syzygy of the residue field in its resolving closure (Proposition 6.7.6). We apply
this and make an analogous argument as in [116] to classify various subcategories.

6.2 Definitions and basic properties of Burch ideals and rings

For a local ring (R, m, k), we denote by r(R) the (Cohen-Macaulay) type of R, and by K the
Koszul complex of R, i.e., the Koszul complex of a minimal system of generators of m. We set
K® = 0 when R is a field.

The remaining of this section deals with the formal notion of Burch ideals and Burch rings
and their basic properties.

Definition 6.2.1. Let (R,m) be a local ring. We define a Burch ideal as an ideal I with
ml # m(] :p m). Note by definition that any Burch ideal I of R satisfies depth R/I = 0.

Here are some quick examples of Burch ideals. Many more examples will follow from our

results later.

Example 6.2.2. (1) Let (R,zR) be a discrete valuation ring. Then (2") is a Burch ideal of R
for all n > 1, since x(2") = (2"*!) # (2") = (2" 1) = z((2") g ().

(2) Let I be an ideal of a local ring (R, m). Put J = m[ and suppose J # 0. Then m(J :g m) =
J #mJ, so J is a Burch ideal of R.

(3) By the previous item, if (R, m) has positive depth then I = m! is Burch for any ¢t > 1. More
generally, if m'*! C I C m!, then I is Burch if and only if I : m # m! and Im # m!TL
Using this one can show that the set of Burch ideals is Zariski-open in Grass(r, m*/m!*1),

for each r = dimy I/m!*L.

(4) Let (R,m) be a local ring of positive depth. Let I be an integrally closed ideal of R. Then
ml :g m = I by the determinantal trick, so it is Burch. See Proposition 6.2.3 below.

The following proposition gives some basic characterizations of Burch ideals.

Proposition 6.2.3. Let (R,m) be a local ring and I an ideal of R. The following are equivalent.
(1) I is a Burch ideal. (2) (I:gm)# (ml:gm). (3) Soc(R/I)-m/Im # 0.

(4) depth R/I =0 and r(R/mI) # r(R/I) + p(I).

(5) IR is a Burch ideal of R, where R is the completion of R.

Proof. (1) < (2): If (I :r m) = (mI :g m), then m( :p m) = m(m/ :p m) = m/. Conversely, if
ml =m(] :g m), then (m/ :gm) = (m(/ :gm):gm)=(I:gm).

(1) & (3): As SocR/I = (I :g m)/I, we have Soc R/I-m/Im = 0 if and only if m(I :p m) =
ml.

(2) & (4): There are inclusions mI C I C (m/ :p m) C (I :g m), which especially says
that (mI :gp m) # (I :g m) implies depth R/I = 0. We have ¢((I :g m)/mI) = £((I :g m)/I) +
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UI/mI)=r(R/I)+ p(I) if depth R/I =0, and ¢((m] :g m)/m[) = r(R/mI). Thus, under the
assumption depth R/I = 0, the equalities (I :g m) = (m[ :g m) and r(R/mI) = r(R/I) + p(I)
are equivalent.

(1) < (5): It is clear that m/ = m([ :g m) if and only if mI = m([ :5 m). [ |

Recall that an ideal I of a local ring (R, m) is m-full (resp. weakly m-full) if (m[ :gp z) =1
for some x € m (resp. (mI :gp m) = I). Clearly, every m-full ideal is weakly m-full. The notion
of m-full ideals has been studied by many authors so far; see [33, 60, 61, 146, 147] for instance.
Notably, it is fundamental to figure out the connections between m-full ideals and another class
of ideals. For example, m-primary integrally closed ideals are m-full or equal to the nilradical of
R under the assumption that the residue field % is infinite; see [60, Theorem (2.4)]. There are
many related classes of ideals, such as ideals satisfying the Rees property, contracted ideals and
basically full ideals. See [78, 128] for the hierarchy of these classes. The notion of weakly m-full
ideals is introduced in [29, Definition 3.7]. The class of weakly m-full ideals coincide with that
of basically full ideals if they are m-primary; see [70, Theorem 2.12]. The following corollary is
immediate from the implication (2) = (1) in the above proposition.

Corollary 6.2.4. Let (R,m) be a local ring. Let I be an ideal of R such that depth R/I = 0. If
1 is weakly m-full, then it is Burch.

Let f: (S,n,k) — (R,m, k) be a surjective homomorphism of local rings, and set I = Ker f.
Choi [31] defines the invariant

cr(S, f) = dimg(n(1 :g n)/nl).

Clearly, an ideal I of a local ring (S,n) is Burch if and only if Choi’s invariant cg/;(S, ) is
positive, where 7 is the canonical surjection S — S/I. We give a description of Choi’s invariant
for a regular local ring.

Proposition 6.2.5. Let (R, m, k) be a local ring, (S,n, k) a regular local ring, and f:S — R a
surjective homomorphism with kernel I. Then

dimy, Soc R + dimy Hy (K®) — edim R — dim Hy (K') + edim R’ (if I # n),
CR(Sv f) = . 2 .

dimg n/n (if I =n),
where R' = R/ Soc R.

Proof. Put J = (I :g n). We may assume I # n, and hence J # S. Then there are equalities

cr(S, f) = dimgnJ/nl = £(J/T) + (£(I/nl) — £(n/n?) — (£(J/nJ) — £(n/n?))
= dimy, Soc R + (dimy, Hy (K®) — edim R) — (dimy, Hy (K™) — edim R').

Now the proof of the proposition is completed. |

The above result especially says that in the case where I # n the number cg(S, f) is deter-
mined by the target R of the surjection f. Thus the following result is immediately obtained.
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Corollary 6.2.6 (cf.[31, Theorem 2.4]). Let R be a local ring that is not a field. Let (S1,n1)
and (Sa,n2) be regular local rings, and f; : S; — R surjective homomorphisms fori =1,2. Then
the equality cr(S1, f1) = cr(S2, f2) holds. In particular, Ker fi is Burch if and only if so is
Ker fo.

We are now ready to define Burch rings.

Definition 6.2.7. Let (R, m) be a local ring of depth t. Denote by R the m-adic completlon of
R. We say that R is Burch if there exist a maximal R—regular sequence £ = Ti,...,T¢ il R a
regular local ring S and a Burch ideal I of S such that R/(z) = S/I.

Remark 6.2.8. If [ is a Burch ideal of a local ring (R, m), then R/I is a Burch ring of depth
zero. Indeed, I R is a Burch ideal of R by Proposition 6.2.3. Take a Cohen presentation R~S /J,
where (S,n) is a regular local ring. Let I’ be the ideal of S such that I’ D J and I’/J = IR.
Then one can easily verify that nI’ # n(I’ :g n), that is, I’ is a Burch ideal of S. Note that the
completion of the local ring R/I is isomorphic to S/I’. Hence R/I is a Burch ring of depth zero.

Let R be a local ring. The codimension and codepth of R are defined by
codim R = edim R — dim R, codepth R = edim R — depth R.

Then R is said to be a hypersurface if codepth R < 1. This is equivalent to saying that the
completion R of R is isomorphic to S/(f) for some regular local ring S and some element f € S.

Example 6.2.9. If R is a hypersurface, then it is a Burch ring. Indeed, take a regular sequence
x in R such that R/(z) is an artinian local ring with edim R/(z) < 1. Then R/(x) is isomorphic
to the quotient ring of a discrete valuation ring S by a nonzero ideal I. By Example 6.2.2(1),
the ideal I of S is Burch.

We define the invariant cg of a local ring (R, m, k) by
¢ = dimy Soc R + dimy, Hy (K%) — edim R — dimy, H (K®) + edim R’

Here, we set R’ = R/ Soc R, and adopt the convention that dimy, Hy (K®') = 0 = edim R’ in the
case where R’ =0 (i.e. R is a field). Then we can characterize the Burch rings of depth zero:

Lemma 6.2.10. Let (R,m,k) be a local ring. Then cgr = cp, and the following are equivalent.
(1) R is a Burch ring and depth R = 0. (3) cr #0.
(2) R is a Burch ring and depth R = 0. (4) cr > 0.
Moreover, if R is not a field but a Burch ring of depth zero and isomorphic to S/I for some
regular local ring (S,n) and some ideal I of S, then I is a Burch ideal of S.

Proof. The numbers dimy, Soc R, dimg Hy(K*), edim R, dimy, Hl(KR,), edim R’ are preserved by
tAhe completion of R. In particular, one has cr = cp. Furthermore, take a Cohen presentation
R = S/I with a complete regular local ring S. Letting 7 : S — S/I be the natural surjection, we
have ci = cr(S,m). This especially shows that cg is nonnegative. Now we show the equivalence
of (1)-(4). It is obvious that (1) and (3) are equivalent to (2) and (4), respectively. The

equivalence of (2) and (3) follows from Proposition 6.2.5. Finally, we show the last assertion.
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Suppose that R is Burch of depth zero and that R = S/I, where S is a regular local ring and
I is an ideal of S. Then R = T/J for some regular local ring 7' and a Burch ideal J of T.
There are surjections from the regular local rings S (the completion of S) and T to the local
ring S /1 SeRx~T /J, and the kernel of the latter is the Burch ideal J. Corollary 6.2.6 implies
that IS is a Burch ideal of §, and [ is a Burch ideal of S by Proposition 6.2.3. |

We end this section by proving an useful characterization of Burch ideals when depth R > 1.
The only if direction is known for m-full ideals; see [147, Corollary 7].

Lemma 6.2.11. Let (R,m) be a local ring of depth > 1. An ideal I of R is Burch if and only if
there exists a non-zerodivisor a € m such that R/m is a direct summand of the R-module I/al.

Proof. Assume that I is Burch. Then there exist a € m and b € (I :g m) such that ab € I\ m/.
We have a ¢ m?, since otherwise ab € m?(I :zp m) = mI. As bm C I, it holds that abm C al. We
can define an R-homomorphism f : R/m — I/al by f(1) = ab. As ab & mI, the element ab is a
part of a minimal system of generators of I/al, and hence f is a split monomorphism.
Conversely, assume that there is a split monomorphism f : R/m — I/al, where a € R is
a non-zerodivisor. Let ¢ € I be the preimage of f(1) € I/al. Then em C al C (a). The
assumption depth R > 1 implies depth R/(a) > 0. Hence ¢ has to be in (a), that is, there exists
b € R with ¢ = ab. Observe abm = cm C al. Then a being non-zerodivisor yields bm € I. In
other words, b € (I :g m). The image of ab = ¢ is a part of a minimal system of generators of
I/al, and we have ab ¢ mI. Thus m([ :gp m) # m/I, which means that I is a Burch ideal. [

Remark 6.2.12. It is worth noting that Lemma 6.2.11 can be used to give a quick proof of
Theorem 6.1.1 when depth R > 1 and n > 1. Namely, if Tor?(R/I, M) = Tor? (R/I,M) =0
then it follows that TorZ(I/al, M) = 0, which implies that Tor*(k, M) = 0.

6.3 Cyclic direct summands of second syzygies

The main purpose of this section is to study sufficient conditions for an R-module to have a
cyclic direct summand in its second syzygy. They will be used in the proofs of Section 6.4 and
are perhaps of independent interest. In fact, some of our proofs were motivated by the work of
Kustin-Vraciu ([105]) and Striuli-Vraciu ([135]) which focused on different but related problems.

We start by some simple criteria for a homomorphism f : R — M to be a split monomor-
phism.

Lemma 6.3.1. Let (R, m) be a local ring of depth zero. Let f: R — M be a homomorphism of
R-modules. Assume one of the following conditions holds.

(a) R is Gorenstein. (b) M is free. (c) M is a syzygy (i.e., a submodule of a free module).
Then the followings are equivalent.

(1) f is a split monomorphism. (2) f is a monomorphism. (3) f(SocR) # 0.

Proof. The implications (1) = (2) = (3) are clear. To show (3) = (1), put C = Cok f.
(a) As R is Gorenstein, we have Soc R = R/m. The equality f(Soc R) # 0 implies Ker f N
Soc R = 0. Hence Ker f =0, and f is injective. As Ext}%(C', R) =0, the map f is split injective.
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(b) If f is not split injective, then Im f is contained in mM by the assumption that M is
free. This yields that the inclusions Ker f O Ann(mM ) O Soc R hold.

(c) Let g : M — F be a monomorphism with F' free. The composition gf : R — F satisfies
gf(Soc R) # 0. By the previous argument, gf is split injective. There is a retraction r : F' — R
with rgf = idr. We see that rg : M — R is a retraction of f. Therefore f is split injective. W

Next we consider R-homomorphisms from a cyclic R-module to an R-module.

Lemma 6.3.2. Let R be a ring, I an ideal of R and M an R-module. Consider an R-
homomorphism f : R/I — M. Then f is split injective if and only if the composition map
pf: R/I — M/IM is split injective, where p : M — M/IM is the natural surjection.

Proof. Suppose f is split injective. Then there is an R-homomorphism g : M — R/I such
that gf = idg/;. On the other hand, g factor through p : M — M/IM, that is g = g'p for
some ¢’ : M/IM — R/I. So we see that ¢’ is a retraction of pf. Next, suppose pf is split
injective. Then there is an R-homomorphism h : R/I — M/IM such that hpf = idg,;. Thus
hp: M — R/I is a retraction of f. |

The following lemma is well-known; we state it for the convenience of the reader.

Lemma 6.3.3. Let B" % R™ — M — 0 be ezact. If11(d) C I, then M/IM is R/I-free.

Proof. The tensored sequence (R/I)" ORI, (R/I)™ — M/IM — 0 is exact. Since I;(d) is

contained in I, we see that d ® R/I = 0, and hence M = (R/I)™. [

We generalize [105, Lemma 4.1] as follows.

Proposition 6.3.4. Let (S,n, k) be a local ring and I C J ideals of S. Set R = S/I. Let

RS R B R A R M 0 be a minimal R-free resolution of an R-module M,

where A, B, C, ... are matrices over S. Assume that J satisfies either of the following conditions.
(a) JOLi(A)+ 1, (C). (b) J D 11(A) and S/J is Gorenstein.

If (I:5J)Z (IJ:s (J:sn)11(A)), then S/J is a direct summand of Q%M.

Proof. For each integer i, let J; be the ideal of S generated by the entries of the ith column
of A. Then Il(A) =Ji+ -+ J,, and (I s J) 4 (IJ ‘g (J s n)Il(A)) = (IJ s (J s
n)Jy)N---N(IJ:g (J:gn)Jy,). Hence (I :5 J) L (IJ :5 (J :5 n)Js) for some s. Choose an
element u € (I :g J)\ (IJ :s (J :g n)Js) and let v € R™ be the image of u - e5, where ey is the
sth unit vector of S™. Since Ju C I and I;(A) C J, v is in Ker A = Q%M =: X. We can define
an R-homomorphism f : S/J — X by f(1) = v.

Now we want to show f is split injective. By Lemma 6.3.2, it is enough to verify so is
the induced map f' = pf : S/J — X/JX. By Lemmas 6.3.1 and 6.3.3, it suffices to check
1’ (SocS/J) # 0.

Since u & ((IJ) :s (J :5 n)Js), we can choose an element a € (J :g n) such that auJs € IJ.
Remark that a ¢ J, otherwise one has au € I, which forces auJg to be contained in IJ. Let
@ be the image of a in S/J. We have that 0 # @ € SocS/J. If f'(a) # 0, then av € JX.
Then there exist elements x € JRP and y € IR"™ such that aues; = Bz + y. Observe that
auAes = ABx + Ay € IJR™. So we obtain the inclusion auJs; C I.J, which is contradiction.
Thus f’(a) = 0 and we conclude that f is split injective. |
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As a corollary, we have the following restatement of [105, Lemma 4.1].

Corollary 6.3.5. Let (S,n, k) be a local ring and I an ideal of S. Set R = S/I and consider

a minimal R-free presentation R™ LR M0 of an R-module M, where A is an m X n
matriz over S and A is the corresponding matriz over R. If (I :gn) & (nI :5 I1(A)), then k is
a direct summand of Q%M.

Recall that a module M over a ring R is called totally reflexive if the natural map M — M**
is an isomorphism and Ext (M, R) = Ext(M*, R) = 0 for all i > 0, where (—)* = Hompg(—, R).
Over a Cohen—Macaulay local ring, a totally reflexive module is a maximal Cohen—Macaulay
module, and the converse holds as well over a Gorenstein local ring.

Also, recall that a pair (z,y) of elements of a ring R is called an ezact pair of zerodivisors
if the equalities (0 :g ) = yR and (0 :g y) = xR hold. This is equivalent to saying that the
sequence --- — R HRE RYL . is exact. Tt is easy to see that for each exact pair of
zerodivisors (x,y) the R-modules R/xR and R/yR are totally reflexive.

The following result is another application of Proposition 6.3.4.

Corollary 6.3.6. Let (S,n, k) be a local ring and I C J be n-primary ideals of S. Assume that
S/1,S/J are Gorenstein and that (I :g J) € (IJ) :s ((J :s n)J). Then there exist elements
a,b € S such that J = I+ (a), (I :5 J) = I+ (b), and (@,b) is an exact pair of zerodivisors of
S/1I.

Proof. Put R = S/I. Consider a minimal R-free resolution --- — R" LR S/J — 0 of the
R-module S/.J. Clearly, the equality Iy(A) + I = J holds. We can derive from Proposition 6.3.4
that the R-module Q%(S/J) has a direct summand isomorphic to S/J. Since R is Gorenstein
and the R-module S/.J is indecomposable, Q% (S/J) is also indecomposable. This implies that
0%(S/J) = S/J, that is, the sequence 0 — S/J — R"™ — R — S/J — 0 is exact. We have
U(R"™) 4+ £(S/J) =L(R) + £(S/J), which yields n = 1. Thus the ideal J/I of R is principal, and
we find a € R with J/I = aR. As (0 :g a) = QL(J/I) = S/J, the ideal (0 :g a) of R is also
principal. Taking a generator b of (0 :g a), we get an exact pair of zerodivisors (a,b) of R. N

6.4 Proof of Theorem 6.4.1 and some applications

This section concerns with a surprising characterization of Burch rings of depth zero below, and
some applications.

Theorem 6.4.1. Let (R,m,k) be a local ring that is not a field. Then R is a Burch ring of
depth zero if and only if k is isomorphic to a direct summand of its second syzyqgy Q%k.

We shall delay the proof until the end of this section. First, note that we can interpret
Corollary 6.3.5 in terms of Burch rings as follows. Here we use the notation I;(M) for an R-

module M to be the ideal I;(A) where A is a matrix in a minimal free presentation F 4G
M — 0 of M. Remark that I;(M) is independent of the choice of A (see [19, page 21] for
instance).

105



Proposition 6.4.2. Let (R, m, k) be a Burch ring of depth zero that is not a field. Let M be an
R-module with Iy(M) = m. Then k is a direct summand of Q%M. In particular, k is a direct

summand of Q%k

Proof. By [108, Corollary 1.15], the module (22 M contains k as a direct summand if and only if
so does Q%M ®g R~Q02% (M ®R R) Hence we may assume that R is complete, and then there
is a regular local ring (S n) and a Burch ideal I C n? such that R = S/I. Consider a minimal

R-free presentation R™ A R™ M — 0 of an R-module M , where A is a matrix over S and
Ais A modulo I. Then we see that I;(A) = I;(M) = m, which implies that I;(A) = n. Hence
(I:sn) Z (nl:511(A)), and thus k is a direct summand of Q%M by Corollary 6.3.5. |

Here is an immediate consequence of the above proposition.

Corollary 6.4.3. Let (R,m,k) be an artinian Burch ring. Then there exists an element x €
m\ m? such that k is a direct summand of the ideal (0 :g z) of R.

Proof. Let z1,...,x, be a minimal system of generators of m. There is an exact sequence

x1
O—>@ R%—)R”—>R”—>@R/xz—>0 with 0= ( 2 )

This shows I;(9) = m and Q*(D}_; R/(zi)) = D~ (0 :g x;). Proposition 6.4.2 implies that k
is a direct summand of @@ (0 :g x;). Since R is artinian, it is henselian. The Krull-Schmidt
theorem shows that k is a direct summand of (0 :g x;) for some . |

The following theorem classifies m-primary Gorenstein Burch ideals.

Theorem 6.4.4. Let (R, m) be a local ring and I an m-primary ideal. The following are equiv-
alent.

(1) I is a Burch ideal of R and R/I is Gorenstein.

(2) I is weakly m-full and R/I is Gorenstein. (3) I is m-full and R/I is Gorenstein.

(4) I = (zf,22,...,2n) with x1,...,x, a minimal system of generators of m and n,r > 0.

Proof. Tt follows from [61, Proposition (2.4)] that (3) is equivalent to (4), while it is obvious
that (3) implies (2) and (2) implies (1). Assume (1) to deduce (4). Remark 6.2.8 shows that
R/I is a Burch ring. Proposition 6.4.2 implies that k is a direct summand of Q2 R/ k. As 0?2 R/ ik
is indecomposable (see [149, Lemma (8.17)] for instance),, we get k = Q% sk, whence R/I is
a hypersurface. Thus m/I is cyclic. Choose an element x; € m such that Z7 is a minimal
generator of m/I. Then z; is a minimal generator of m, and m = I + (x1). There is a unique
integer 7 > 0 with 2] € I and xfl ¢ I. Choose xa,...,x, € I so that Tg,...,T, is a minimal
system of generators of I(R/(z1)) = m/(x1). We see that x1,x9,...,2, is a minimal system of
generators of m. Clearly, I contains J := (z2,...,2,). Note that every m/J-primary ideal is a
power of m/J = ((x1) +J)/J. As 2] € I and z] §Z I, we get I/J = ((z7)+ J)/J. This shows
I = (a7, 22,...,2p). [

We now characterize the modules over a Burch ring having the residue field as a direct
summand of some high syzygy.
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Theorem 6.4.5. Let (R,m, k) be a Burch local ring of depth zero which is not a field. Let M
be an R-module. Take a minimal free resolution (F,0) of M. The following are equivalent.

(1) One has ;. o11(0;) = m. (2) k is a direct summand of QM for some r > 2.
In particular, if ;. 411(0;) = m, then there exists an integer i > 3 such that 11(0;) = m.

Proof. (2) = (1): The minimal presentation matrix A of QM is equivalent to (5 %), where
B and C are the minimal presentation matrices of k and N, respectively. Hence I1(0,41) =
I1(A) =11(B) + 11(C) = m +1;(C) = m, which shows }_,_(11(0;) = m.

(1) = (2): We may assume that R is complete, and hence there is a regular local ring (.5, n)
and a Burch ideal I C S with R = S/I. For each i > 0 we identify 0; with a matrix over R, and
let d; be a matrix over S lifting d;. Then n = ). I:1(d;) + I. The noetherian property shows
n=1I(dy)+---+1i(dp)+ I for some n > 0. Hence (nI :gn) = (nl :g Li(d1)+---+11(dn)+1) =
(I :g Li(dy)) NN (nl :g Ii(dy)) N (nl : I). Since I is Burch, we have (I :g n) € (nf :g n)
by Proposition 6.2.3. In particular I is nonzero, and we see that (I :g n) Cn= (nl :g I). We
obtain (I :p n) € (nl :p Ii(dy)) for some 1 < ¢ < n. It follows from Corollary 6.3.5 that k is a
direct summand of the cokernel of d;, which is QEHM . |

Let k be a field. A local ring R is said to be a fibre product (over k) provided that it is of
the form
RESx,T= {(S,t) esSxT ’ 7T5(S) = FT(t)},

where (S,mg) and (7, my) are local rings with common residue field k, and 7wg: S — k and
wr: T — k are the natural surjections. The set S x; T is a local ring with maximal ideal
Mgy, 7 = mg @ m7 and residue field k. Conversely, a local ring R with decomposable maximal
ideal mp = I & J is a fibre product since R = (R/I) xj (R/J). These observations are due to
Ogoma [120, Lemma 3.1].

We can now complete the proof of Theorem 6.4.1.

Proof of Theorem 6.4.1. The “only if” part is a direct consequence of Proposition 6.4.2.

We consider the “if” part. Again we may assume that R is complete. Take a Cohen pre-
sentation R =2 S/I, where (S,n) is a regular local ring and I is an ideal of S contained in n.
If (I :5 n) & n? then there is an element z € (m N Soc R) \ m?. One has a decomposition
m = J @ (z), which means that R is of the form S x; T with edim7 = 1. Then R is Burch by
Example 6.2.9 and Proposition 6.6.14. Thus we may assume that (I :g n) C n?. Suppose that

I is not Burch, so that n(I :g n) = nI. We aim to show that Soc %k C mQ%k. Take minimal
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generators x1,...,T. of n. There is a commutative diagram

0 I¢ S¢ R° 0
0 1 n m 0
I/nl 0 0
0

of S-modules with exact rows and columns. Applying the snake lemma, we get an exact sequence

02k — Ok % I/nl — 0, (6.4.5.1)
where § sends each element a € Q%k: whose preimage in S€ is *(ay, . . ., a.) to the image of Y, z;a;
in I/nl. Now consider element a € Soc Q%%k:. This means that the preimage *(a1,...,a.) € S¢

of a satisfies a; € (I :g n) for all i. Therefore, the element ) . x;a; € S is contained in n(/ :g
n) = nl. This yields that d(a) = 0. By the exact sequence (6.4.5.1), we can take the preimage
(at,...,a.) € S°of a to be contained in Q%k. We already have (ay, ..., a.) € (I :5 n)S¢ C n2S°.
It follows that ®(ay,...,ac) € Q%kNn25¢ C nQ%k, see 75, Theorems 3.7 and 4.1] for the second
containment. Consequently, the element a is contained in mQ%k. This allows us to conclude
that if Soc Q%k z mQ%k then I is a Burch ideal, and hence R is a Burch ring. |

In view of Theorem 6.4.1, one may wonder if an artinian local ring R is Burch if the residue
field k is a direct summand of 2"k for some n > 3. This is not true in general:

Example 6.4.6. Let k be a field, and consider the ring R = k[z,y]/I, where I = (2%, 2%y%,y*).
The minimal free resolution of k is

—yay? 23 0
z 0 093

We have Soc %k = Soc R* = (z3y,ry3)R*. The column vector z := %(23y,0,0,0) = y -
Y(23,0,1,0) —¥(0,0,%2,0) is in Soc Q3k \ mQ3k. The assignment 1 — z makes a split monomor-
phism k& — Q3k, and k is a direct summand of Q3k. However, R is not Burch as one can easily
check the equality m(/ :p m) = m/.

(ry)

0+ k+ R R?
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6.5 Burch rings of positive depth

In this section, we study Burch rings of positive depth. First of all, let us investigate what
Gorenstein Burch rings are.

Proposition 6.5.1. A local ring is Burch and Gorenstein if and only if it is a hypersurface.

Proof. Let R be a local ring of dimension d. If R is hypersurface, then R is clearly Gorenstein,
and it is also Burch by Example 6.2.9. Conversely, suppose that R is Burch and Gorenstein. Then
there exists a system of parameters € = x1,..., 24 such that ﬁ/ (z) is an artinian Gorenstein
Burch local ring. By definition, there exist a regular local ring (S,n) and a Burch ideal I of S
such that R/(z) = S/I. By Theorem 6.4.4, there are a minimal system of generators yi, . . ., yn
of n with n > 0 and an integer r > 0 such that I = (y],y2,...,yn). In particular, S/I = R/(x)
is a hypersurface, and so is R. |

A Cohen—Macaulay local ring R is said to have minimal multiplicity if e(R) = codim R + 1.

Proposition 6.5.2. Let (R,m, k) be a Cohen—Macaulay local ring with minimal multiplicity,
assume that k is infinite. Then R is Burch.

Proof. We can find a general system of parameters z such that A = R/(z) is artinian and still
has minimal multiplicity. This simply means that m,%\ = 0, so the first syzygy of k is a k-vector
space. Thus A is Burch by 6.4.1 and so is R. |

Remark 6.5.3. A Cohen—Macaulay local ring with minimal multplicity is a typical example of
a Golod local ring. In view of Proposition 6.5.2, the reader may wonder if a Golod local ring is
Burch. This is not true in general; the ring R given in Example 6.4.6 is not Burch but Golod by
[11, 1.4.3 and 2.1]. Also the converse doesn’t holds in general. Indeed, let R = k[z,y, z, w]/mJ,
where m = (z,y, z,w) and J = (22, 4%, 22, w?) in k[x,y, z,w]. This is the example of non-Golod
ring R given in [44, Example 2.1]. However, It is Burch by Exmaple 6.2.2 (2).

We establish a lemma to prove our next result on Burch rings.

Lemma 6.5.4. Let (R, m, k) be a 1-dimensional Cohen-Macaulay local ring with minimal mul-
tiplicity. Then there exists an isomorphism m* = m, where (—)* = Hompg(—, R).

Proof. If R is a discrete valuation ring, then m = R, and hence m* = m. So we assume that R
is not a discrete valuation ring. Since R has minimal multiplicity, by [112, Lemma 1.11], there
is an R-regular element 2 € m such that m? = zm. Let @ be the total quotient ring of R. We
have

m* = Homp(m, R) = Homp(m,zR) = (zR :¢ m) O m,

where the second isomorphism follows from [100, Proposition 2.4(1)] for instance. For each
element ¢ € (xR :g m), we have axz € am C sxR, which implies a € sR as x is R-regular, and
hence ¢ € R. Therefore (R :g m) is an ideal of R containing m. Since R is not a discrete
valuation ring, it is a proper ideal. We get (zR :g m) = m, and consequently m* = m. |

Cohen—Macaulay rings of dimension 1 with minimal multiplicity have a remarkable property.

109



Proposition 6.5.5. Let (R, m, k) be a 1-dimensional Cohen—Macaulay local ring with minimal
multiplicity. Then the quotient artinian ring R/(x) is a Burch ring for any parameter x € m\m?.

Proof. 1If R is regular, then it is a discrete valuation ring, and x is a uniformizer. Hence R/(x)
is a field, and it is Burch. Thus we assume that R is singular. Applying (—)* = Hompg(—, R)
to the natural exact sequence 0 - m — R — k — 0, we get an exact sequence 0 - R — m* —
kE®" — 0, where r is the type of R. Making the pullback diagram of the map m* — k%" and the
natural surjection R®" — k%", we obtain an exact sequence 0 — m®" — R®(+1) _ m* — 0.
As R is singular, m®" does not have a nonzero free summand by [49, Corollary 1.3]. We get an
isomorphism m®” = Q(m*). Combining this with Lemma 6.5.4 yields m®" = QOm = O?k. Since z
is an R-regular element in m\ m?, there is a split exact sequence 0 — k — m/xm — m/(z) — 0,
which induces m/xm = k @ m/(x). We obtain isomorphisms of R/(x)-modules

P @ (m/(2)® = (m/zm)®" = Q%% /x0%k
> Qg (m/2m) = Qp )k © Qgye)(m/ (7)) = Qpjayk & O )k,

where the third isomorphism holds since there is an exact sequence 0 — Q%2k — R®" - m — 0
with n = edim R, which induces an exact sequence 0 — Q%k/xQ%k — (R/(z))®" — m/zm — 0.
As R/(z) is an artinian local ring, it is henselian. The Krull-Schmidt theorem implies that & is
a direct summand of either Qg )k or Q% /(m)k. In the former case, applying Qg /(,)(—) shows
that k is a direct summand of 3, J(z) k- Theorem 6.4.1 concludes that R/(z) is a Burch ring. W

Proposition 6.5.6. Let S = k[z1,...,xy,] be a polynomial ring over an infinite field and I C S
is a homogenous ideal such that S/I is Cohen-Macaulay and I has a linear resolution. Then
R = (S/I)m is Burch where m = (x1,...,x,).

Proof. Let A = S/I and (ly,...,lg) be a general linear system of parameters on A. We write
A/(l,...,lq)A as T'/J where T is a polynomial ring in n — d variables over k and J is a zero-
dimensional ideal. Then J still has linear resolution. Assume I (and J) are generated in degree
t, then the regularity of J is ¢, but since J is zero-dimensional, the socle degree of J is t — 1.
Thus J = n! where n is the irrelevant ideal of T, and so R is Burch by definition and Example
6.2.2. [

Example 6.5.7. There are many examples satisfying the conditions of Proposition 6.5.6. For
example, let m > n and let I = I,, C k[z;j] = S be the ideal generated by maximal minors in
a m by n matrix of indeterminates. Then it is well-known that S/I is Cohen-Macaulay with
dim S/I = (m+1)(n—1) and the a-invariant of S/I is —m(n — 1) (see [19]). It follows that the
regularity of I is n, so it has linear resolution.

Another source of examples are Stanley-Reisner rings of “facet constructible” or “stacked”
simplicial complexes, see [42, Theorem 4.1 and 4.4].

We will show in Corollary 6.7.9 that if z is a regular element of a local ring (R, m) such that
R/(z) is Burch, then x ¢ m?. It is natural to ask whether the quotient ring R/Q of a Burch
ring R is again Burch for any ideal () generated by regular sequence consisting of elements in
m \ m?. This is true if R is either a hypersurface or a Cohen-Macaulay local ring of dimension
one with minimal multiplicity, as we saw in Propositions 6.5.1 and 6.5.5. The example below
says that the question is not always affirmative.
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z
theorem implies that R is a Cohen—-Macaulay local ring of dimension 1. The ring R is a Burch

Example 6.5.8. Let k be a field, and let R = k[[x,y,z]]/lg(gj Y ;z) The Hilbert—Burch

ring since so is the artinian quotient ring R/(x) = k[y, 2]/(v?,y2?%, 2*). However, the artinian
ring R/(y) = k[, 2]/ (2, 2222, 2%) is not Burch. By Theorem 6.4.1, the R-module k is a direct
summand of QQR /(x)k, but not a direct summand of Q?% /(y)k:. Incidentally, the module k is a
direct summand of Q‘;’% /(y)k by Example 6.4.6.

To show our next result on Burch rings, we prepare a lemma on cancellation of free sum-
mands.

Lemma 6.5.9. Let R be a local ring. Let M, N be R-modules having no nonzero free summand.
If M & R®* = N & R®" for some a,b> 0, then M = N and a = b.

Proof. We may assume a > b. Taking the completions, we get isomorphisms M MeR® =~ NoReb.
Write M = X @ R® and N = Y @ R® with ¢,d > 0 ) integers and X,Y" having no nonzero
free summand. Then X @ R®(cta) o ¥ ¢ RO(4+0)  Ag R is henselian, we can apply the Krull-
Schmidt theorem to deduce X = Y and c+a=d + b. Hence d = ¢+ (a — b), and we get
N =Y @R = X @ RO(t@b) — N g R®@D) = [, where L := M & R®@. Tt follows
from [108, Corollary 1.15] that N is isomorphic to L. Since N has no nonzero free summand,
we must have a = b, and therefore M = L = N. [ |

The following result is a higher-dimensional version of the “only if” part of Theorem 6.4.1.

Proposition 6.5.10. Let (R,m, k) be a singular Burch ring of depth t, Then Q'k is a direct
summand of Q2k.

Proof. We prove the proposition by induction on ¢t. The case t = 0 follows from Lemma 6.2.10,
so let t > 1. There is an R-sequence & = z1,...,2; such that R/(x) is a Burch ring of depth
zero. Hence R/(x1) is a Burch ring of dimension d — 1. The induction hypothesis implies that
o /1( )k: is a direct summand of QH/I( )k Taking the syzygy over R, we see that QpQ% B /( )k
is a direct summand of {2 RQ';r/l(zl)k. For each n > 0 there is an exact sequence 0 — Q7 /(wl)k —
P,1— -+ — P, — Py — k — 0 with each P; being a direct sum of copies of R/(z1), which

gives rise to an exact sequence
0— QRQ?}%/(xl)k‘ — QpPo_1 @ R®1 5 ... 5 QpP, @ R — QrPy @ R — Qprk — 0

with e; > 0 for 0 < i < n — 1. Note that each QrP; is a free R-module. The above sequence
shows that Q"'Hk = O} (Qrk) is isomorphic to QRQR/( )k up to free R-summands. We obtain

an R-isomorphism Qnsz @ RY¢ ~ QrO% R/(z )k with e > 0. Thus, for some a,b > 0 we have

that QtRk ® R®* is a direct summand of Qt+2k @ R®®. Since R is singular, it follows from [49,
Corollary 1.3] that Q}ék: has no nonzero free summand for all 4 > 0. Applying Lemma 6.5.9, we
observe that Q}Lk‘ is a direct summand of Q?zk. |

We pose a question asking whether or not the converse of Proposition 6.5.10 holds true.

Question 6.5.11. Does there exist a non-Burch local ring (R, m, k) of depth ¢ such that Q'K is
a direct summand of Q/2k?
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6.6 Some classes of Burch ideals and rings

In this section, we study in a regular local ring and give a complete characterization in dimension
two. We also give a simple characterization of monomial Burch ideals. We compare Burch rings
to other classes of rings: radical cube zero, almost Gorenstein, nearly Gorenstein, and fibre
products.

Over a two-dimensional regular local ring (R, m), the Burch ideals I are characterized in
terms of the minimal numbers of generators of I and mI.

Lemma 6.6.1. Let (R,m) be a regular local ring of dimension two, and let I be an m-primary
ideal of R. Then I is a Burch ideal of R if and only if p(mI) < 2u(I).

Proof. Tt follows from the Hilbert—Burch theorem that u(I) = r(R/I)+1 and pu(mI) = r(R/mI)+
1. The assertion follows from the equivalence (1) < (2) in Proposition 6.2.3. [

Now we can show the following theorem, which particularly gives a characterization of the
Burch ideals of two-dimensional regular local rings in terms of minimal free resolutions. Compare
this theorem with the result of Corso, Huneke and Vasconcelos [35, Lemma 3.6].

Theorem 6.6.2. Let (R, m) be a regular local ring of dimension d. Let I be an m-primary ideal
of R. Take a minimal free resolution 0 — Fy R N S T R/I — 0 of the
R-module R/I. Consider the following conditions.

(1) The ideal I is Burch.

(2) There exist a reqular system of parameters x1, ..., xq and an integer r > 0 such that 11 (pq) =

(I‘q,xQ,...,fL‘d).
(3) One has (I :gm)? # I(I :gp m).

Then the implication (1) = (2) holds. If R contains a field, then the implication (3) = (2)
holds. If d = 2, then the implication (2) = (1) holds as well.

Proof. We first show that (1) implies (2). We may assume d > 2, so that R has depth greater
than 1. By Lemma 6.2.11 and its proof, there is a non-zerodivisor ;1 € m \ m? such that
I/x1I contains the residue field R/m as a direct summand. Tensoring R/(z) with the complex
F=(0—F;— - — Fy—0), we get a minimal free resolution

©a®5/(x1)

(0 = Fy/x1Fy Fo1/Fg_1 — - = Fy/e1Fy — Fi /o1 F) = 0)

of I/x1I over R/(z1). As R/m is a direct summand of [/x11, a minimal R/(z)-free resolution
G of R/m is a direct summand of the above complex. Since G is isomorphic to the Koszul
complex K®/(#) of R/(x1), the ideal Iy(pg ® R/(21)) of R/(x1) contains the maximal ideal
m/(x1). Therefore I1(¢4) contains elements xs,...,z4 such that x1,x9,...,z4 form a regular
system of parameters of R. Since the radical of I;(p4) contains I, it is an m-primary ideal.
It follows that there is an integer 7 > 0 such that o} € Ij(pg) but 27! & I (pg). We obtain
Li(pq) = (2], x2,...,24), and (2) follows.

Next, under the assumption that R contains a field, we prove that (3) implies (2). We use an
analogue of the proof of [34, Theorem 2.4]. After completion, we may assume that R is a formal
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power series ring over a field k. Suppose that (2) does not hold. Then d > 2 and we can take an
ideal L containing I;(p4) such that there is a regular system of parameters z1,...,zq with L =
(22, 2122,73, 23, ...,74). By [34, Proposition 2.1], an isomorphism (I :g L)/I = wr/, @R Fy and
its retraction (I :g m)/I = wr/m ®g Fy are given. Note that the canonical module wgy, of R/L
is isomorphic to (0 :g, ) L). The module Eg(k) is identified with k[z1, zit, ... 2;]/N, where
N is the subspace spaned by the monomials not in k[xl_l, .. ,x;l]. Under this identification,
wr/r, = (0 :r L) is generated by the monomials z7t and 23t Set M = {z;',z5'}. Then
x1M = {1} = xoM generates WR/m- Also, either z1w = 0 or zow = 0 holds for all w € M. We
may apply [34, Proposition 2.3] as in the proof of [34, Theorem 2.4] to get (I :g m)? = I(I :g m),
contrary to (3). We have shown that (3) implies (2).

Finally, assuming d = 2, we prove (2) implies (1). As the entries of 9 are contained in
m, we have an exact sequence 0 — Fj 22 mF, — ml — 0. This induces an exact sequence
Fo/mFy 228N B /m2F, = mI/m?I — 0. Suppose that (2) holds. Then @» ®p R/m #
0, and dimp/u(mI/m*I) < dimp/,(mFi/m?F;). Note that dimpy,(ml/m?I) = p(I) and
dimR/m(mFl/mQFl) = 2u(I). Lemma 6.6.1 shows that I is a Burch ideal, that is, (1) holds. W

Example 6.6.3. (1) Let I = (2%, 3%, 24 2%y,9°2, 22x) be an ideal of (R, m) = k[x,y, z]. Then
one can check that (I :xp m) = (2% 232, 2%y, 293, vyz, 222, %, y%2,y2>, 2%), and so (I :g
m)2 # I(I :gp m). However, I is not Burch. This gives a counterexample of the implication

(3) = (1) in Theorem 6.6.2.

(2) Let I = (2*,y* 23y, zy3) be an ideal of (R,m) = k[z,y]. Then (I :x m) = (23, 2292, 13).
We see that (I :g m)? = I(I :gp m) and I is Burch. This shows that the implication (1) =
(3) in Theorem 6.6.2 is not affirmative, even when R has dimension two.

We provide some characterizations of Burchness for monomial ideals of regular local rings.

Proposition 6.6.4. Let (R, m) be a reqular local ring of dimension d. Let z1,...,xq be a reqular
system of parameters of R, and let I be a monomial ideal (in the x;s) of R. Then I is Burch if
and only if there exist a monomial m € I\ mI and an integer 1 < i < d such that x; | m and
m(z;/x;) € I for all1 < j <d.

Proof. Since I is a Burch ideal, we have mI # m(I :gp m). Therefore, there is a monomial
m’ € (I :gp m) and an integer ¢ such that z;m’ ¢ mI. It also holds that z;m’ € I for all
Jj=1,...,d. So the element m := z;m’ satisfies m(z;/x;) € I forall j =1,...,d. |

Corollary 6.6.5. Let (R,m) be a regular local ring of dimension 2 with a regular system of
parameters x,y. Let T = (z® P, x%yb2 . 2%y be a monomial ideal with a; > ag > -+ >
an and by < be < --- < b,. Then I is a Burch ideal of R if and only if a; = a;41 + 1 or
bi =biy1 — 1 for somei=1,...,n.

Proof. By Proposition 6.6.4, the ideal I is Burch if and only if 2%y% (y/x) € I or 2%y (z/y) € I
for some i = 1,...,n. Equivalently, either 2% 1yb+l € I or 2%+1yb~1 ¢ I holds for some
i=1,...,n. Since ajy1 <a;—1<a;<a;+1<a;—1and bj_1 <b;—1<b; <b;+1<bjyq, the
condition is equivalent to saying that b; + 1 = b;41 or a; +1 = a;—1 for some i =1,...,n. |
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Next, we discuss the relationship between Burch rings and several classes of rings studied
previously in the literature.
The following notions are introduced in [74, 135].

Definition 6.6.6 (Herzog—Hibi-Stamate). Let (R,m) be a Cohen—Macaulay local ring with
canonical module w. Then R is called nearly Gorenstein if tr w contains m.

Definition 6.6.7 (Striuli-Vraciu). Let (R, m) be an artinian local ring. Then R is called almost
Gorenstein? if (0:5 (0:5 I)) C (I :g m) for all ideals I of R.

It follows from [86, Proposition 1.1] that artinian nearly Gorenstein local rings are almost
Gorenstein.

We want to consider the relationship of Burchness with near Gorensteinness and almost
Gorensteinness. For this, we establish two lemmas.

Lemma 6.6.8. Let (R,m,k) be a non-Gorenstein artinian almost Gorenstein local ring. Let
R* 2 R™ 5 E = 0 be a minimal R-free presentation of the R-module E = Eg(k). One then
has I;(A) = m.

Proof. Choose an artinian Gorenstein local ring (S,n) and an ideal I of S such that R =
S/I. We identify E with (0 :g I) via the isomorphisms E = Homg(R,S) = (0 :g I). Let
Z1,...,%m,m be a minimal system of generators of E. By [135, Lemma 1.2] we have n = ((z1) :g
(2, ..y xm))+((z2, ..., Tm) s x1). We find a matrix B over S with m rows such that I;(B) =n
and (=1 - @n ) B = 0. We find a matrix C over R such that the matrix B over R corresponding
to B is equal to AC. We have m = I;(B) = I;(A4-C) C I;(A) C m, which implies [;(A) =m. B

Lemma 6.6.9. Let (R, m) be a regular local ring of dimension d, and let I C m? be an ideal
of R. Take a minimal free resolution 0 — Fy ALN Fy 41— - —F RN Fy — R/I — 0 of the
R-module R/I. If R/I is artinian, non-Gorenstein and almost Gorenstein, then I1(pq) = m.

Proof. Set A= R/I and E = E4(k). Then the sequence (Fy_1/IFy1)* L2 (k1R)* —

E — 0 gives a minimal A-free presentation of F, where (—)* = Homyu(—, A). Note that
rank g (Fy/IFy)* = r(A) = u(E). Lemma 6.6.8 implies I; ((pg ® A)*) = m, which shows I (¢4) +
I = m. The desired result follows from Nakayama’s lemma. |

We can show an artinian almost Gorenstein local ring of embedding dimension two is Burch.

Proposition 6.6.10. Let (R,m) be a regular local ring of dimension 2 and I an ideal of R.
Assume that R/I is a non-Gorenstein artinian almost Gorenstein ring. Then I is a Burch ideal
of R.

Proof. Take a minimal free resolution 0 — Fb 2, Fi LEN Fy — R/I — 0 of the R-module
R/I. Tt follows from Lemma 6.6.9 that I;(p2) = m. Since R has dimension two, we can use the
implication (2)=-(1) in Theorem 6.6.2 to have that I is Burch. [

2There is another notion of an almost Gorenstein ring; see [65].
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Remark 6.6.11. One may hope a non-Gorenstein nearly Gorenstein local ring is Burch, but
this is not necessarily true. Indeed, let (R, m) be a 1-dimensional nearly Gorenstein local ring
(e.g. R = k[t3,t*t°] C k[t] with k a field). Take a regular element = € m?, and set A = R/(z).
Then A is nearly Gorenstein by [74, Proposition 2.3(b)], but A is not a Burch ring by Corollary
6.7.9.

Next, we deal with local rings the cube of whose maximal ideal is zero. The following gives
a characterization of Burchness for such rings.

Theorem 6.6.12. Let (R,m, k) be a local ring with m3 = 0. Then R is a Burch ring if and only
if there is an inequality Bo(k) > (edim R)? — r(R).

Proof. Put e = edim R and r = r(R). By Theorem 6.4.1, the ring R is Burch if and only
if k is a direct summand of Q%k, if and only if SocQ?k € mQ%k. There is a short exact
sequence 0 — Q%k — R® — m — 0, which gives an inclusion 2%k C mR® and an equality
Soc 2%k = Soc R¢. Since m® = 0, we have an inclusion mQ2k C Soc Q%k. Thus R is Burch if and
only if £(Soc Q?k) > £(mQ2k). There are equalities

Bo(k) = L(Q%K) — L(mQ%E) = £(R®) — {(m) — £(mQ%k) = (e — 1)l(m) + e — L(mQ%E)
= (e — 1)(e +£(m?) + e — L(mQ%k) = e + (e — 1)l(m?) — £(mQ2k).

On the other hand, there is an inclusion 2k C m®, which induces an inclusion mQ2k C (m?)°.
Thus one has /(mQ?k) < ef(m?) < er = £(Soc Q?k). If £(m?) < £(Soc R) = r, then we see that
£(Soc Q2k) > £(mQ2k). The above equalities show that Ba(k) > €2 — £(m?) > 2 — r. Therefore,
we may assume £(m?) = r. We obtain fa(k) = €2 —r + er — £(mQ?k). It follows that By > €% —7r
if and only if er — £(mQ2k) > 0. The latter condition is equivalent to £(Soc Q%k) > £(mQ%k). W

Let R be a local ring with maximal ideal m. An element x € m is called a Conca generator
of m if 22 = 0 and m? = zm. This notion has been introduced in [13]. Note that the condition
m3 = 0 is necessary for R to possess a Conca generator.

Corollary 6.6.13. Let (R, m, k) be a local ring with m® = 0 and Soc R C m?. If R is a Burch
ring, then R has no Conca generator.

Proof. If R has a Conca generator, then the Poincaré series Py (t) = > B;t' is of the form m
by [13, Theorem 1.1]. In particular, B2(k) = €2 —r. Thus R is not Burch by Theorem 6.6.12. M

Next, we consider the Burchness of a fibre product.

Let S, T be local rings having common residue field k. We say that the fibre product S x; T
is nontrivial if S # k # T. It holds that depth S x; T' = min{depth S,depth T, 1}; see [106,
Remarque 3.3].

We consider the Burchness of the fibre product S x; T'. We compute some invariants.

Lemma 6.6.14. Let R = S X, T be a nontrivial fibre product, where (S, mg, k) and (T, mp, k)
are local rings. Then the following equalities hold.

(1) edimR = edim S + edim 7.

(2) dimg Soc R = dimy Soc S + dimy, Soc T'.
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(3) dimy, Hy(K®) = dimy, H; (K®) + dimg, H; (KT) 4 edim S - edim 7.
(4) cr=cs+cr+edimS -edimT — edim(S/ Soc S) - edim(7T"/ SocT).

Proof. (1)(2) These equalities can be checked directly.
(3) One has S5 (k) = 85 (k) + 83 (k) +2edim S - edim T and dimy, Hy (K®) = g (k) — (¢4 5);
see [102] and [19, Theorem 2.3.2] for example. Thus there are equalities

dimg Hy (KF) = (k) — (“U0F) = 85 (k) + AL (k) + 2edim S - edim T — (U F)
= dimg Hy (K¥) — (*"*%) 4 dimy H; (KT) — (*UT) 4 2edim S - edim T — (“H5* F)
= dimy, Hy (K™) + dimy, H; (K®2) + edim S - edim 7.

(4) Put R' = R/SocR, S = 5/SocS and T" = T/SocT. Then R’ = 5" x T’ unless S = k
or T'= k. Using (1), (2) and (3), we can calculate cg as follows:

¢ = dimy, Soc R + dim H; (K®) — edim R — dim H, (K®) 4 edim R’
= dimy, Soc S + dimy, Soc T + dimy, Hy (K®) + dimy, H; (Kf2) + edim S - edim T
—edim S — edim T — dimy, Hy (K') — dimy, Hy (K”') — edim &’ - edim 7" + edim S’ + edim 7"
=cg+cr+edimS-edimT —edim S’ - edim7". [ |

Using the above lemma, we can characterize the Burch fibre products.

Proposition 6.6.15. Let R = S x; T be a nontrivial fibre product, where (S,mg,k) and
(T,mp, k) are local rings. Then R is a Burch ring if and only if
(a) depth R >0, or (b) depthR =0 and either S or T is a Burch ring of depth zero.

Proof. First we deal with the case where depth R = 0. Lemma 6.2.10 shows that R is Burch if
and only if cg > 0. Note that the integers cg,cr and N := edim S - edim T' — edim(.S/ Soc S) -
edim(7'/ SocT) are always nonnegative. By Lemmas 6.6.14(4), the positivity of ¢g or ep implies
that R is Burch. Conversely, assume that R is Burch. Then by Lemma 6.6.14(4) again, one of the
three integers cg, cr, N is positive. If ¢g or c¢r is positive, then S or T' is Burch. When N > 0,
either edim S > edim S/ SocS or edimT > edim 7/ SocT holds. Without loss of generality,
we may assume that edim S > edim S/ SocS. This inequality means that there is an element
z € (mgNSocS)\m%. Then mg = I & () for some ideal I. We see that S = S/(z) x) S/I and
edim S/I < 1. Example 6.2.9 implies that S/I is Burch, and so is S.

Next, we consider the case where depth R > 0. In this case, we have depth .S > 0, depthT" >
0 and depth R = 1. Take regular elements x € mg \ m% and y € mp \ m2T. The element
r—y € mp =mg @ my is also a regular element of R. The equalities zmp = amg = (x — y)mg
show that the image T € R/(xz — y) of x is in Soc R/(z — y). We have mg/(z —y) = (Z) ® I for
some ideal I of R/(xz —y). Hence R/(x — y) is isomorphic to the fibre product U xj V of local
rings over their common residue field k such that edim V' < 1. As V is Burch by Example 6.2.9,
it follows that so is R/(z — y), and hence so is R. [

Example 6.6.16. Let R = k[z,y]/(2% zy,3°) with k a field and a,b > 1. Then R is a Burch
ring. In fact, R is isomorphic to the fibre product of k[z]/(2%) and k[y]/(y®) over k. By Example
6.2.9, the rings k[z]/(z®) and k[y]/(y®) are Burch, and so is R by Proposition 6.6.15.
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6.7 Homological and categorical properties of Burch rings

In this section, we explore some homological and categorical aspects of Burch rings. They come
in several flavors. We prove a classification theorem of subcategories over Burch rings. We also
prove that non-Gorenstein Burch rings are G-regular in the sense of [138], and that nontrivial
consecutive vanishings of Tor over Burch rings cannot happen. We begin with recalling the
definition of resolving subcategories.

Definition 6.7.1. Let R be a ring. A subcategory X of mod R is resolving if the following hold.

1) The projective R-modules belong to X

3

(1)

(2) Let M be an R-module and N a direct summand of M. If M is in X, then so is N.
(3) For an exact sequence 0 = L — M — N — 0, if L and N are in X, then so is M.
(4)

4) For an exact sequence 0 - L - M — N — 0, if M and N are in X, then so is L.

Note that (1) can be replaced by the condition that X contains R. Also, (4) can be replaced
by the condition that if M is an R-module in X, then so is QM. For an R-module C, we denote
by resgr C' the resolving closure of C, the smallest resolving subcategory of mod R containing C'.

We establish a couple of lemmas to prove Proposition 6.7.6. The first lemma is used as a
base result of this section, which is essentially shown in [139, Proposition 4.2]. For an R-module
M we denote by NF(M) the nonfree locus of M, that is, the set of prime ideals p of R such that
M, is nonfree as an Ry-module.

Lemma 6.7.2. Let (R,m) be a local ring, M a nonfree R-module, and x an element in m.

(1) There exists a short exact sequence 0 — QM — M (x) — M — 0 such that x € I;(M(x)) C
m and pdr M (z) > pdr M. In particular, M (z) belongs to resg M.

(2) Foreachyp € V(z)NNF(M) one has V(p) C NF(M(z)) € NF(M) and D(x)NNF (M (x)) = 0.

Proof. (1) Let - -- Ny NN U Fy 5 M — 0 be a minimal free resolution of M. Taking

the mapping cone of the multiplication map of the complex F' by z, we get an exact sequence
d; d d

(03—922) (02—91611) (01 :UW) (mx)

> F3d Fy Fyd Fy Fi, @ Fy Fhbeo M — M — 0.

—T

Set M(z) = Im (% * ) = Cok (%2 —:Zh)' The free resolution of M (z) given by truncating
the above sequence is minimal. We see that z € I;(M(x)) C m as M is nonfree, and that
pdg M (z) > pdr M. The following pullback diagram gives an exact sequence as in the assertion.

0 oM —L BT M 0
0 OM M(z) —— M ——0
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(2) The module M (z) fits into the pushout diagram

0 oM — Fp—" M 0
0 QM M(z) —— M ——0.

Using the same argument as in the proof of [139, Proposition 4.2], we observe that V(p) C
NF(M(z)) C NF(M) and D(z) N NF(M (z)) = 0 hold. n

Lemma 6.7.3. Let (R,m) be a local ring and M an R-module. Let W C NF(M) be a closed
subset of Spec R. Then there exists an R-module X such that pdr X > pdp M and NF(X) =W.

Proof. The assertion follows from the proof of [139, Theorem 4.3] by replacing [139, Lemma 4.2]
used there with our Lemma 6.7.2. |

Lemma 6.7.4. Let (R,m) be a local ring and M a nonfree R-module. Then there is an exact
sequence 0 — (QM)" — N — M"™ — 0 withn > 1, 1(N) = m and pdp N > pdp M. In
particular, N € resg M.

Proof. Let x1,...,x, be a minimal system of generators of m. According to Lemma 6.7.2, for
each 7 there exists an exact sequence 0 — QM — M(z;) — M — 0 such that z; € Iy (M (z;)) C
m and pdp M(z;) > pdr M. Putting N = @ ; M(z;), we obtain an exact sequence 0 —
QM) = N — M" — 0 with I, (N) = S0, i (M(2;)) = m and pdgy N > pdp M. n

Lemma 6.7.5. Let R be a local ring. Let M be an R-module that is locally free on the punctured
spectrum of R.

(1) For every X € resg M there ezists Y € resg M such that X is a direct summand of Y.

(2) Let N be an R-module. IfN € resp M, then N € resg M.

Proof. (1) Let C be the subcategory of mod R consisting of direct summands of the completions
of modules in resg M. We claim that C is a resolving subcategory of mod R containing M.
Indeed, since R, M are in resg M, the completions ﬁ, M are in C. For each E € C , there exists
D € resg M such that F is a direct summand of D. The module #F is a direct summand
of Q5D = QpD. As QgD € resg M, we have QgE € C. Let 0 - A — B — C — 0 be an
exact sequence of R-modules with A,C €C. Then A, C are direct summands of ‘A/, W for some
V,W € resg M, respectively. Writing A @ A’ = Vand C & C = W, we get an exact sequence
c:0V B W =0, Wher/ei? = A" ® B @ C'. The exact sequence o corresponds to
an element of EXt}%(W, V) = Exth(W,V). Since M is locally free on the punctured spectrum
of R, so are V and W. Hence Ext}%(W, V') has finite length as an R-module, and is complete.
This implies that there exists an exact sequence 7 : 0 - V — U = W — 0 of R-modules such
that 7 = o. Thereofore U is in resg M and B’ is isomorphic to U. Thus B belongs to C, and
the claim follows. The claim shows that C contains resp M. Hence X is in C , which shows the
assertion.

(2) By (1) there is an R-module Y € resg M such that N is a direct summand of Y. Thanks
to [108, Corollary 1.15(i)], the module N is a direct summand of Y. Hence N belongs to
resp M. |
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Now we can show the proposition below, which yields a significant property of Burch rings.
This is also used in the proofs of Theorem 6.7.7 and 6.7.10.

Proposition 6.7.6. Let R be a Burch local ring of depth t with residue field k. Let M be an
R-module of infinite projective dimension. Then Qk belongs to resgp M.

Proof. We begin with proving the proposition when R is complete and ¢ = 0. As M has infinite
projective dimension, Lemma 6.7.4 gives rise to an R-module N € resg M with I; (V) = m.
Proposition 6.4.2 implies that k is a direct summand of Q%N . As Q%N is in resgp M, so is k.

Now, let us consider the case where R is complete and ¢ > 0. By definition, there is a maximal
regular sequence x of R such that R/(x) is a Burch ring of depth 0. Note that Q'M € resg M.
For all i > 0 we have Tor?(Q!M, R/(x)) = Torf ,(M, R/(x)) = 0, which says that x is a regular
sequence on QM. The R/(x)-module QM /xQ'M has infinite projective dimension by [19,
Lemma 1.3.5]. The case t = 0 implies that k belongs to resg/(s) QM /xQ!M. Tt follows from
(140, Lemma 5.8] that Q%k € resp Q' M C resp M.

Finally, we consider the case where R is not complete. Lemma 6.7.3 gives an R-module
X € resg M with pdp X = 0o and NF(X) = {m}. As R is Burch and pdz X = pdp X = oo,
the above argument yields Q%k: € resp X. Using Lemma 6.7.5, we see Ok € resg X, and
Ok € resp M. [ |

Non-Gorenstein Burch rings admit only trivial totally reflexive modules. Recall that a local
ring R is called G-regular if every totally reflexive R-module is free.

Theorem 6.7.7. Let R be a non-Gorenstein Burch local ring. Then R is G-regular.

Proof. By taking the completion and using [138, Corollary 4.7], we may assume that R is
complete. Let G be the category of totally reflexive R-modules. Then G is a resolving subcategory
of mod R by [32, (1.1.10) and (1.1.11)]. If R is not G-regular, that is, there is a nonfree R-module
M in G, then Proposition 6.7.6 shows that G contains the R-module Q%, where d = dim R.
In other words, Q% is totally reflexive. This especially says that the R-module k has finite
G-dimension, and R is Gorenstein; see [32, (1.4.9)]. This contradiction shows that R is G-
regular. |

Remark 6.7.8. The converse of Theorem 6.7.7 does not necessarily hold. In fact, the non-
trivial fibre product R = S X T of non-Burch local rings S, T is non-Burch. However, thanks
to [116, Lemma 4.4], the same argument of the proof of Theorem 6.7.7 works, and hence R is
G-regular.

As a corollary of Theorem 6.7.7, “embedded deformations” of Burch rings are never Burch.

Corollary 6.7.9. Let (R, m) be a singular local ring. Let x € m? be an R-regular element. Then
the local ring R/(x) is not Burch.

Proof. The proof of [138, Proposition 4.6] gives rise to an endomorphism ¢ : R" — R™ such
that 6> = z - idg» and Imd C mR"™. It is easy to see that ¢ is injective, and we have an
exact sequence 0 — R" % R" 5 O — 0 with 2C = 0. This induces an exact sequence

RN (R/(x))" 3, (R/(x))" 3, (R/(x))" S of R/(z)-modules whose R/(z)-dual is exact as
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well. Since Im § = C, the R/(z)-module C is totally reflexive. As Imé C mR", we see that C is
not R/(z)-free. Hence R/(x) is not G-regular.

Suppose that R/(z) is Burch. Then Theorem 6.7.7 implies that R/(z) is Gorenstein. By
Proposition 6.5.1, the ring R/(x) is a hypersurface. We have

1 > codepth R/(z) = edim R/(x) — depth R/(z) = edim R — (dim R — 1) = codim R + 1,

where the second equality follows from the assumption that z is not in m?. We get codim R = 0,

which means that R is regular, contrary to our assumption. |

Let (R, m) be a local ring. We denote by Spec’ R the punctured spectrum of R. For a
property P, we say that Spec’ R satisfies P if Ry, satisfies P for all p € Spec® R. We denote
by CM(R) the subcategory of mod R consisting of maximal Cohen-Macaulay modules. Also,
DP(R) stands for the bounded derived category of mod R, and Dy (R) the singularity category
of R, that is, the Verdier quotient of DP(R) by perfect complexes. Note that DP(R) and Deg(R)
have the structure of a triangulated category. A thick subcategory of a triangulated category is
by definition a triangulated subcategory closed under direct summands. The following theorem
gives rise to classifications of several kinds of subcategories over Burch rings. For the unexplained
notations and terminologies appearing in the theorem, we refer to [116, §2].

Theorem 6.7.10. Let (R,m) be a singular Cohen—Macaulay Burch local ring.

(1) Suppose that Spec® R is either a hypersurface or has minimal multiplicity. Then there is a
commutative diagram of mutually inverse bijections:

Resolving subcategories of NF Specialization-closed
mod R contained in CM(R) NF_ L subsets of Sing R

IPD||IPD !

Thick subcategories of | thickmed g [ Thick subcategories of
CM(R) containing R mod R containing R

«— 7
restCM(R>

restCM(R) TjthiCszg(R) reStmod R thiCka (R)

Thick subcategories of ! Thick subcategories of
{ Dsg(R) } { D®(R) containing R

™
(2) Assume that R is excellent and admits a canonical module w. Suppose that Spec® R has

finite CM-representation type. Then there is a commutative diagram of mutually inverse
bijections:
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Resolving subcategories N Specialization-closed
of mod R contained in » —— subsets of Sing R

CM(R) and containing w NFy containing NG R
IPDHIPD—1
Thick subcategories of) . . Thick subcategories of
CM(R) containing ) —— mod R containing
R and w restem(r) R and w
I‘OStCM(R) )H(thiCszg(R) restmod RTjthiCka(R)
L Thick subcategories of

Thick subcategories of| =~ b .
{ Dsg(R) containing w }<T D (R}% Z;?;timmg

Proof. The proof of [116, Theorem 4.5] uses [116, Lemma 4.4]. Replace this lemma with our
Proposition 6.7.6. Then the same argument works, and the theorem follows. |

Example 6.7.11. We have the following list of examples of non-Gorenstein Cohen—Macaulay
local rings not having isolated singularities, where o and x mean “Yes” and “No” respectively.

Spec’ R
[141, Example] R dim R | Burch | hypersurface | min. mult. [ finite CM rep. type
7.1 M 1 o o o o
(22, 22,y2)
7.2 M 1 ° « o %
(22, 2y, y?)
7.3 M 1 X X o X
(zy, 22, zw, w3)
74 M 1 o o X o
(wk_ Yz, 1Y,y )
75 Mrwzol 1y | < . .
(zy, v2,y2)

The assertions are shown in [141, Examples 7.1-7.5], except those on the Burch property. As to
the first, second, fourth and fifth rings R are Burch since the quotient of a system of parameters
is isomorphic to k[z,y]/(x?, zy,y?), which is an artinian Burch ring by Example 6.6.16. As for
the third ring R, note that (z,y) is an exact pair of zerodivisors. Hence it is not G-regular, and
not Burch by Theorem 6.7.7.

Now we discuss the vanishing of Tor modules over Burch rings. The following result is a
simple consequence of Lemmas 6.2.10 and 6.7.4.

Proposition 6.7.12. Let (R,m, k) be a Burch ring of depth zero, and let M, N be R-modules.
If Tor(M,N) = Torﬁl(M, N) =0 for some |l > 3, then either M or N is a free R-module.

Proof. We may assume that R is complete. Assume that M is nonfree. Since depth R = 0, the
R-module M has infinite projective dimension. By Lemma 6.7.4, there is a short exact sequence
0— (QM)" - X — M"™ — 0, where X satisfies I;(X) = m. It induces an exact sequence
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0 — (BM)" - PX @ F — (B2M)" — 0 with F free. We also have Tor; o(Q2M, N) =
Tor;_o(22M, N) = 0, which implies that Tor; (22X, N) = 0. Lemma 6.2.10 implies that k is
a direct summand of Q2X, as R is Burch. We see that Tor;_o(k, N) vanishes. This shows that
N has finite projective dimension, and so it is R-free. |

We can prove the following by applying a similar argument as in the proof of [116, Corollary
6.5], where we use Proposition 6.7.12 instead of [116, Corollary 6.2].

Corollary 6.7.13. Let (R,m,k) be a Burch ring of depth t. Let M, N be R-modules. Assume
that there exists an integer | > max{3,t+1} such that Tor®(M,N) = 0 for all I+t < i < [+2t+1.
Then either M or N has finite projective dimension.

Remark 6.7.14. Using an analogous argument as in the proof of [116, Corollary 6.6], one can
also prove a variant of Corollary 6.7.13 regarding Ext modules.

We state a remark on the ascent of Burchness along a flat local homomorphism.

Remark 6.7.15. Let (R,m) — (S,n) be a flat local homomorphism of local rings. Even if the
rings R and S/mS are Burch, S is not necessarily Burch. In fact, consider the natural injection

¢: R=klz,yl/ (2%, xy,y°) = klz,y, 1]/ (2%, zy,y*, 1*) = 5.

Then ¢ is a flat local homomorphism. The artinian local rings R and S/mS = k[t]/(t?) are
Burch by Examples 6.6.16 and 6.2.2(1). The ring S is not G-regular since (¢,t) is an exact pair
of zerodivisors of S. Theorem 6.7.7 implies that .S is not Burch.
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