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Preface

Classical representation theory of finite-dimensional algebras has a principle that we can under-

stand algebras by studying modules over them. In this branch of representation theory, it has

been investigated what properties modules have, and how restrictions on modules control the

structure of a ring.

During the 1960s and 70s, splendid successes in this area were done by many researchers, such

as P. Gabriel, M. Auslander, I. Reiten, Y. Drozd, and others, and a potent way was adumbrated

to develop the representation theory of commutative rings. Among them, the paper of Gabriel

[56] introduced the representations of quivers and his theorem on representation type of quivers

is as follows.

Theorem A ([56]). Let Q be a finite connected quiver without loops. The path algebra k[Q]

of Q over a field k is of finite representation type if and only if the underlying graph of Q is a

Dynkin diagram An, Dn, E6, E7, or E8.

Here we say that an associative ring A has finite representation type if there are only finitely

many isomorphism classes of finitely generated indecomposable modules over A.

Dealing with all finitely generated modules, the works of Drozd [46], Ringel [123] and

Klingler–Levy [93] tell us that it is hopeless to classify all finitely generated modules except

special cases. Therefore it is reasonable to focus on some special class of modules. From this

perspective, the works of Drozd–Rŏıter [48], Jacobinski [90] and Green–Reiner [67] are remark-

able. They introduced the conditions, which is nowadays called “Drozd–Rŏıter conditions”, to

clarify which commutative rings have only finitely many torsion-free modules; see [39, 108, 149]

for instance.

A Cohen-Macaulay ring was originally defined to be a commutative ring satisfying the “un-

mixed theorem”, namely, it satisfies certain good property on heights of ideals. By use of

homological methods in commutative algebra, the notion of a Cohen-Macaulay ring has been

developed with valuable applications in algebraic combinatorics. Over a Cohen–Macaulay ring,

maximal Cohen–Macaulay modules are well-behaved. For example, these modules are torsion-

free modules, the theory of Auslander–Reiten sequence is worked well for them, and any module

can be approximated by them (Auslander–Buchweitz theory [8]); see [108, 149] for details.

Gorenstein rings are special class of Cohen-Macaulay rings. Typical examples of Gorenstein

rings are complete intersections, including regular local rings and hypersurfaces. The behavior

of maximal Cohen–Macaulay modules over a Gorenstein ring is quite interesting. For instance,

a celebrated theorem of Buchweitz [20] shows that if R is a Gorenstein ring, then the stable

category of Cohen-Macaulay R-modules is triangle equivalent to the singularity category of R.
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During the 1970s and 80s, the representation theory of maximal Cohen–Macaulay modules

began and grew quickly, inspired by the studies on finite-dimensional algebras. In this the-

ory, maximal Cohen–Macaulay modules over Cohen–Macaulay rings are mainly focused on. A

classification of Cohen–Macaulay local rings of finite CM-representation type (i.e. having only

finitely many isomorphism classes of indecomposable maximal Cohen–Macaulay modules) of

Krull dimension two is given by Auslander [6] and Esnault [53] (see also [108, Chapter 6,7]).

In the higher-dimensional case, the full classification of rings of finite CM-representation type

is still not known. However, a classification for Gorenstein local ring of finite CM-representation

type is provided by the result of Herzog [73], Buchweitz–Greuel–Schreyer [21] and Knörrer [101].

Theorem B ([73], [21], [101]). Let R be a d-dimensional Gorenstein complete local ring with an

algebraically closed coefficient field k of characteristic zero. Then R has finite CM-representation

type if and only if it is isomorphic to a ring of the form k[[x, y, z2, . . . , zd]]/(f), where f is one

of the following forms:

(An) : x2 + yn+1 + z22 + · · ·+ z2d, n ≥ 1

(Dn) : x2y + yn−1 + z22 + · · ·+ z2d, n ≥ 4

(E6) : x3 + y4 + z22 + · · ·+ z2d

(E7) : x3 + xy3 + z22 + · · ·+ z2d

(E8) : x3 + y5 + z22 + · · ·+ z2d

Tensor product is an important tool in the study of modules. In general, the tensor product

of two maximal Cohen–Macaulay modules may not be maximal Cohen–Macaulay, and this is a

difference between rings of Krull-dimension zero and higher-dimensional rings. It is interesting

to understand what it means when the tensor product of two finitely generated modules over

a local ring is maximal Cohen–Macaulay. Huneke and Wiegand [87] approached this problem

by extending the rigidity theorem of Auslander [5] and Lichtenbaum [109]. They solved the

probrem for local hypersurfaces, but the general situation is still misterious, even in the case of

one-dimensiocal Gorenstein local rings. In order to explore further, they posed a conjecture on

the torsion-freeness of modules of the form M ⊗RHomR(M,R); see Conjecture 1.1.1 for details.

It should be remarked that a complete answer for this conjecture is also not yet known even for

the ideal case.

In this thesis, we discuss various problems on the representation theory of Cohen–Macaulay

rings. We mainly deal with the local case.

In Chapter 1, we give a partial answer to the conjecture of Huneke and Wiegand with

consideration on the middle terms of the Auslander–Reiten sequences (Theorem 1.1.2). The key

tool of this chapter is some technical lemmas which are generalizations of Roy’s results [127].

Another type of an attempt to solve the conjecture was done by Lindo [110]. She verified that

the conjecture holds true for any module isomorphic to a trace ideal. After this, she and Pande

[111] asked for which ring every ideal is isomorphic to a trace ideal. In Chapter 2, we discuss

this question and give several answers. In particular, a complete answer is given in the local case

2.1.4. Note that a relationship between Lindo and Pande’s question and stable rings is found by

Goto-Isobe-Kumashiro [58]. Our result is proved by one of applications of the technique of finite
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birational extensions (see Section 2.2). This technique also plays an important role in Chapters

3, 4 and 5.

As it is valuable to focus on torsion-free modules, good restrictions on modules are useful

in the representation theory of algebras. We explore suitable restrictions on maximal Cohen–

Macaulay modules to develop the representation theory of Cohen–Macaulay rings in Chapter 3,

4, and 5.

In Chapter 3, we turn our attention to maximal Cohen–Macaulay modules that are not

locally free on the punctured spectrum. These modules always appear when the ground ring

has a non-isolated singularity, for example a local hypersurface of countable CM-representation

type (i.e. having only countably but infinitely many isomorphism classes of indecomposable

maximal Cohen–Macaulay modules). The starting point of our research in this chapter is the

result of Araya, Iima and Takahashi [3]. They observed that local hypersurfaces of countable

CM-representation type have only finitely many maximal Cohen–Macaulay modules that are not

locally free on the punctured spectrum. Our purpose of this chapter is to clarify whether the

converse of this holds true or not. In Theorem 3.5.1, we verify it for Gorenstein local rings of

dimension one. As one of the keys to prove this theorem, we use a finite birational extension in

order to construct infinitely many indecomposable modules with the desired properties (see the

proof of Theorem 3.5.5).

In Chapter 4, we consider two special classes of modules, syzygies of a maximal Cohen–

Macaulay module and Ulrich module. When and only when the considering ring is Gorenstein,

every maximal Cohen–Macaulay module is a syzygy of some maximal Cohen–Macaulay module.

So our motivation is to analyze non-Gorenstein Cohen–Macaulay rings by using such modules.

In the one-dimensional case, reflexive modules are syzygies of some maximal Cohen–Macaulay

modules, and the converse also holds under some assumption (Lemma 4.1.6). And H. Bass [14]

made an observation on reflexive modules below.

Theorem C (cf. [108]). Let (R,m) be a Cohen–Macaulay local ring of dimension one, and

B := EndR(m) be the endomorphism ring of m over R. If M is a reflexive R-module having no

free summands, then M has an B-module structure that extends the action of R on M .

Note that more general result, called the ”rejection lemma of Drozd-Kirichenko”, is also

known; see [47, 77]. We try to extend the observation of Bass and our main result can be said as

follows. Let (R,m) be a Cohen–Macaulay local ring of dimension one with a canonical module

and an infinite residue field, and B be the endomorphism ring EndR(m) of m over R. Denote

by CM(B) and ΩCM×(R) be the categories of maximal Cohen–Macaulay B-modules and of first

syzygies of maximal Cohen–Macaulay R-modules without free summands, respectively.

Theorem D (Theorem 4.0.3). The natural inclusion R→ B induces an equivalence CM(B) ∼=
ΩCM×(R) of categories if and only if R is almost Gorenstein.

Here the class of almost Gorenstein rings are introduced by Barucci–Fröberg [15] and Goto–

Matsuoka–Phuong [62], as one of the candidates for a class of rings having sufficiently good

property next to the Gorenstein rings in dimension one. Later, the theory of almost Gorenstein

rings in all dimensions are founded by Goto, Takahashi and Taniguchi [65]. In general, little

is known about the category ΩCM×(R), except the case that R is a two-dimensional rational
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singularity ([40]). Using the above theorem, we can understand ΩCM×(R) by more simpler

category CM(B) when R is an almost Gorenstein ring of dimension one.

In the higher-dimensional case, we compare syzygies of maximal Cohen–Macaulay modules

and Ulrich modules. Ulrich modules, which are also called maximally generated maximal Cohen–

Macaulay modules, are of some interest in that if the residue field is infinite such modules are

liftings of direct sums of copies of the residue field. Let Ul(R) be the category of Ulrich modules

over a local ring R. If R is a local Cohen–Macaulay ring having minimal multiplicity, then

we check that the containment ΩCM×(R) ⊆ Ul(R) holds, as subcategories of the category of

R-modules (Proposition 4.1.7). Moreover, we give conditions on rings R to have the equality

ΩCM×(R) = Ul(R) in terms of the typical R-module Ωdk, the d-th syzygy of the residue field

k of R (Theorem 4.3.9 and 4.4.13). This equalty is also considered for cyclic quotient surface

singularities by Nakajama and Yoshida [115], while we treat it for rings not have cyclic quotient

surface singularity.

In Chapter 5, we return to the case of dimension one, and study the endomorphism rings

of the maximal ideals of Gorenstein local rings. The motivation to take case of such rings is

the observation (Theorem C) of Bass; over a Gorenstein local ring (R,m) of dimension one, a

maximal Cohen–Macaulay module with no free summands can be regarded as a maximal Cohen–

Macaulay module over the endomorphism ring B of m, and hence studying maximal Cohen–

Macaulay modules over B is essential to understand the maximal Cohen–Macaulay modules

over R. So our aim in this chapter is to find basic properties of the endomorphism rings of the

maximal ideals of Gorenstein local rings of dimension one. We give several characterizations of

local rings which appear as the endomorphism rings of the maximal ideals of Gorenstein local

rings (Theorem 5.1.4). We also find connections between such rings and almost Gorenstein rings

(Corollary 5.1.5).

One of the outcomes in Chapter 6 is a result on classification of subcategories. The classi-

fication problem of subcategories has been studied by many researchers; see [55, 79, 117, 140]

for instance. One of the motivations of the problem is to understand the category of modules

regardless of the representation type. We begin Chapter 6 with introducing the notion of Burch

rings. The definition of Burch rings is very simple and it is easy to see that many examples

of rings including hypersurfaces and Cohen–Macaulay local rings with minimal multiplingicity

are Burch. We see that they have a good property which allows us to classify some resolving

subcategories of the category of finitely generated modules over them (Section 6.7). It means

that we provide a new class of rings to which the technical machinery of classifying subcategories
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developed in [103, 140, 141] can be applied.
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Convention

In the rest of this thesis, unless otherwise specified, we adopt the following convention. Rings

are commutative and noetherian, and modules are finitely generated. Subcategories are full and

strict (i.e., closed under isomorphism). An identity matrix of suitable size is denoted by E.

Subscripts and superscripts are often omitted unless there is a risk of confusion.

Definition 0.0.1. Let R be a ring.

(1) An R-module M is maximal Cohen–Macaulay if the inequality depthMp ≥ dimRp holds for

all p ∈ SpecR. Hence, by definition, the zero module is maximal Cohen–Macaulay.

(2) We denote by modR the category of (finitely generated) R-modules, and by CM(R) the

subcategory ofmodR consisting of maximal Cohen–Macaulay R-modules. For a subcategory

X of modR, we denote by indX the set of isomorphism classes of indecomposable R-modules

in X , and by addR X the additive closure of X , that is, the subcategory of modR consisting

of direct summands of finite direct sums of objects in X .

(3) A subset S of SpecR is called specialization-closed if V(p) ⊆ S for all p ∈ S. This is

equivalent to saying that S is a union of closed subsets of SpecR in the Zariski topology.

(4) Let S be a subset of SpecR. Then it is easy to see that

sup{dimR/p | p ∈ S} ≥ sup{n ≥ 0 | there exists a chain p0 ⊊ p1 ⊊ · · · ⊊ pn in S},

and the equality holds if S is specialization-closed. The (Krull) dimension of a specialization-

closed subset S of SpecR is defined as this common number and denoted by dimS.
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(5) The singular locus of R, denoted by SingR, is by definition the set of prime ideals p of R

such that Rp is not a regular local ring. It is clear that SingR is a specialization-closed

subset of SpecR. If R is excellent, then by definition SingR is a closed subset of SpecR in

the Zariski topology.

(6) For an m × n matrix A over R, we denote by Is(A) the ideal of R generated by all the

s-minors of A. For a linear map ϕ of free R-modules, we define Ii(ϕ) as the ideal Ii(A),

where A is a presentation matrix of ϕ.

Definition 0.0.2. Let (R,m, k) be a local ring.

(1) For an R-module M , we denote by νR(M) the minimal number of generators of M , that is,

νR(M) = dimk(M ⊗R k).

(2) Let M an R-module and n ≥ 0 an integer. We denote by Ωn
RM (or simply ΩnM) the n-th

syzygy of M , i.e., the image of the n-th differential map in the minimal free resolution of M .

This is uniquely determined up to isomorphism. In particular, we simply denote by ΩM the

first syzygy of M unless otherwise specified.

(3) We denote by edimR the embedding dimension of R, and by codepthR the codepth of R,

i.e., codepthR = edimR− depthR. We say that R is a hypersurface if codepthR ≤ 1.

(4) The punctured spectrum Spec0R of R is the subset SpecR \ {m} of SpecR. By CM0(R) we

denote the subcategory of CM(R) consisting of modules that are locally free on Spec0R.

(5) Whenever R is Cohen–Macaulay and admits a canonical module ω, we denote by (−)† the

canonical dual functor HomR(−, ω).

8



Chapter 1

The Huneke–Wiegand conjecture
and middle terms of almost split
sequences

1.1 Introduction

The contents of this chapter is based on [96].

In this chapter, we study the following conjecture of Huneke and Wiegand; see [87, the

discussion following the proof of 5.2].

Conjecture 1.1.1 (Huneke andWiegand [87]). LetR be a Gorenstein local domain of dimension

one. Let M be a maximal Cohen–Macaulay R-module. If M ⊗R HomR(M,R) is torsion-free,

then M is free.

Huneke and Wiegand [87] showed that this conjecture is true for hypersurfaces. Many other

partial answers are known [27, 28, 59, 66, 80, 127], but, the conjecture is still open in general. Let

R be a Gorenstein local domain of dimension one. A finitely generated R-module is torsion-free if

and only if it is reflexive if and only if it is maximal Cohen–Macaulay. Therefore Conjecture 1.1.1

implies the Auslander–Reiten conjecture for Gorenstein local domains ([30, Proposition 5.10]).

Assume that M is a torsion-free R-module. Then it is remarkable that the torsion-freeness of

M ⊗R HomR(M,R) is equivalent to saying that Ext1R(M,M) is zero; see [81, Theorem 5.9].

The main result of this chapter is the following.

Theorem 1.1.2. Let (R,m) be a Gorenstein local domain of dimension one. Let M be a nonfree

indecomposable torsion-free R-module. Assume that the number of indecomposable summand in

the middle term of the almost split sequence ending in M is greater than one. Then one has

Ext1R(M,M) ̸= 0. Hence, Conjecture 1.1.1 holds true for M .

Remark that Roy [127] showed that for one-dimensional graded complete intersections R

satisfying some condition on the a-invariant, the assertion of Theorem 1.1.2 holds. Our result

is local (not graded), and we do not assume that the ring is a complete intersection.

In section 2, we give some preliminaries. In section 3, the proof of Theorem 1.1.2 is given.
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1.2 Irreducible homomorphisms and almost split sequences

In this section, we prove lemmas needed to prove the main theorem. In the rest of this chapter,

let (R,m) be a commutative Gorenstein henselian local ring.

For R-modules M and N , let HomR(M,N) denote the quotient of HomR(M,N) by the set

of homomorphisms from M to N factoring through a free R-module. Since R is Gorenstein, the

stable category CM0(R) of CM0(R) is a triangulated category. Its morphism set is equal to the

stable homset HomR(−,−) and its shift functor is the functor taking Ω; see [69, Chapter 1] for

instance. Hence we obtain the following lemma.

Lemma 1.2.1. Let M,N be R-modules in CM0(R). Then we have the following isomorphisms.

(1) HomR(ΩM,N) ∼= Ext1R(M,N), (2) Ext1R(M,N) ∼= Ext1R(ΩM,ΩN),

(3) HomR(M,N) ∼= HomR(ΩM,ΩN).

On the set HomR(M,N), we also use the following lemma.

Lemma 1.2.2. Let M,N be R-modules having no free summands and f : M → N be a homo-

morphism factoring through a free R-module. Then the image Im f of f is contained in mN .

Proof. Write f = hg where g : M → F and h : F → N are homomorphisms with a free R-module

F . Since M has no free summands, Im g is contained in mF . Hence Im f ⊆ h(mF ) ⊆ mN . ■

Recall that a homomorphism f : X → Y of R-modules is said to be irreducible if it is neither

a split monomorphism nor a split epimorphism, and for any pair of morphisms g and h such

that f = gh, either g is a split epimorphism or h a split monomorphism.

Lemma 1.2.3. Let M,N be R-modules having no free summands and f, g : M → N be homo-

morphisms. Assume that g factors through a free R-module. Then

(1) f is an isomorphism if and only if so is f + g.

(2) f is a split epimorphism if and only if so is f + g.

(3) f is a split monomorphism if and only if so is f + g.

(4) f is irreducible if and only if so is f + g.

Proof. We only need to show one direction; we can view f as (f + g)− g.

(1): Assume that f is an isomorphism with an inverse homomorphism h : N → M . Then

the composite homomorphisms gh factor through some free R-modules. It follows from Lemma

1.2.2 that there are inclusions Im gh ⊆ mM . By Nakayama’s lemma, we see that (f + g)h is a

surjective endomorphism of M , and hence are automorphisms. Since h is an isomorphism, it

follows that f + g is an isomorphism.

(2): Assume that there exists a homomorphism s : N → M such that fs = idN . We may

apply (1) to the homomorphism fs+gs to see that (f +g)s is also an isomorphism. This means

that f + g is a split epimorphism. The item (3) can be checked in the same way.

(4): Assume that f is irreducible. According to the previous part, f + g is neither a split

monomorphism nor a split epimorphism. By the assumption, g is a composite ba of homo-

morphisms a : M → F and b : F → N with a free R-module F . If there is a factorization
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f + g = dc for some homomorphisms c : M → X and d : X → N , then they induce a de-

composition M
t[a,c]−−−→ F ⊕ X

[−b,d]−−−→ N of f . By the irreducibility of f , either t[a, c] is a split

monomorphism or [−b, d] is a split epimorphism. In the former case, we can take a homomor-

phism [p, q] : F ⊕X → N such that the composite pa+ qc = [p, q] ◦ t[a, c] is equal to the identity

map of N . Using (1), qc is also an isomorphism. This yields that c is a split monomorphism. In

the latter case, we can see that d is a split epimorphism by similar arguments. Thus we conclude

that f + g is an irreducible homomorphism. ■

Let M be a nonfree indecomposable module in CM0(R). Then there exists an almost split

sequence ending in M . Namely, there is a nonsplit short exact sequence

0→ τM
f−→ EM

g−→M → 0

in CM0(R) such that N is indecomposable and for any maximal Cohen–Macaulay R-module L

and a homomorphism h : L → M which is not a split epimorphism, h factors through g; see

[149, Chapter 2,3] for details. Note that an almost split sequence ending in M is unique up to

isomorphisms of short exact sequences. In particular, for any nonfree indecomposable R-module

M in CM0(R), the R-modules τM and EM are unique up to isomorphism.

Lemma 1.2.4. Let M be a nonfree indecomposable module in CM0(R). Consider the almost

split sequences

0→ τM
f−→ EM

g−→M → 0, 0→ τ(ΩM)→ EΩM → ΩM → 0

ending in M and ΩM . Then Ω(EM ) is isomorphic to EΩM up to free summands.

Proof. By the horseshoe lemma, there exists a short exact sequence s : 0→ Ω(τM)
f ′
−→ ΩEM ⊕

P
g′−→ ΩM → 0 with some free R-module P . Here, the class g′ ∈ HomR(ΩEM ,ΩM) of g′

coincides with the image Ω(g) of the class g of g under the isomorphism Ω: HomR(EM ,M)→
HomR(ΩEM ,ΩM) in Lemma 1.2.1. We want to show that the sequence s is an almost split

sequence ending in ΩM . By Lemma 1.2.3 (2), we see that g′ is a split epimorphism if and only if

g′h = id for some h in the category CM0(R). In view of the equivalence Ω: CM0(R)→ CM0(R),

g′ as well as g is not a split surjection. This means that s is not a split exact sequence.

We fix a homomorphism h′ : X → ΩM which is not a split epimorphism. We can use

the equivalence Ω: CM0(R) → CM0(R) again to obtain an equality h′ = g′p + rq with some

homomorphism p : X → ΩEM , q : X → F , r : F → ΩM , where F is a free module. As g′ is an

epimorphism and F is free, r factors through g. This shows that h′ = g′t for some t : X → ΩEM .

Consequently, s is an almost split sequence ending in ΩM . ■

Consider the almost split sequence

0→ τ(M)→ EM →M → 0

ended in M . We define a number α(M) to be the number of nonfree indecomposable summand

of EM .

Lemma 1.2.5. Let M be a nonfree indecomposable module in CM0(R). Then α(M) = α(ΩiM)

for all i ≥ 0.
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Proof. This is a direct consequence of Lemma 1.2.4. ■

The following two lemmas play key roles in the next section. See [126, Lemma 4.1.8] for

details of the lemma below.

Lemma 1.2.6. Let f : M → N be an irreducible homomorphism such that M and N are

indecomposable in CM0(R). Assume that dimR = 1. Then f is either injective or surjective.

Recall that an R-module M has constant rank n if one has an isomorphism Mp
∼= R⊕n

p for

all associated primes p of R.

Lemma 1.2.7. Let M,N be nonfree indecomposable modules in CM0(R) having same constant

rank. Let f : M → N be an irreducible monomorphism. Assume that dimR = 1. Then Cok f is

isomorphic to R/m.

Proof. By the assumption that f is an irreducible monomorphism, f is not surjective. Hence we

can take a maximal proper submodule X of N containing Im f . Remark that the quotient N/X

is isomorphic to R/m and hence X and N has same constant rank. Since dimR = 1, X is an

R-module contained in CM0(R). Thus we have a factorization M → X → N of f in CM0(R).

By the irreducibility of f , it follows that either M → X is a split monomorphism or X → N is a

split epimorphism. As X is proper submodule of N , the later case cannot occur. Therefore, we

obtain a split monomorphism g : M → X. Then, by the equalities rankM = rankN = rankX,

g is an isomorphism. This implies the desired isomorphisms Cok f ∼= N/X ∼= R/m. ■

1.3 Proof of the main theorem

In this section, we give a proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. Since R is a Gorenstein local ring of dimension one, τ(N) is isomorphic

to ΩN for any nonfree indecomposable R-module N in CM0(R). We assume that M is a

nonfree indecomposable R-module in CM0(R) satisfying Ext1R(M,M) = 0 and want to show

that α(M) = 1. We see from Lemma 1.2.1 that the isomorphisms

Ext1R(Ω
i+1M,Ωi+1M) ∼= Ext1R(M,M) = 0

hold for all i ≥ 0. If EΩiM has a free summand, then τ(ΩiM) = Ωi+1M has an irreducible

homomorphism into R. Hence Ωi+1M is a direct summand of the maximal ideal m. Since R is

a domain, this means that Ωi+1M is isomorphic to m. It follows that Ext1R(m,m) is zero, and so

R should be regular. Therefore, we may assume that EΩiM has no free summands for all i ≥ 0.

By lemma 1.2.5, it is enough to show that α(ΩiM) = 1 for some i ≥ 0. Thus by replacing M

with ΩiM , we may assume that rankM is minimal in the set {rankΩiM | i ≥ 0}.
Decompose EM = E1 ⊕ · · · ⊕ En as a direct sum of indecomposable modules and consider

the almost split sequence

0→ ΩM
f=t(f1,...,fn)−−−−−−−−→ E1 ⊕ · · · ⊕ En

g=(g1,...,gn)−−−−−−−→M → 0

ended in M , where fp : ΩM → Ep and gp : Ep → N are irreducible homomorphisms and n =

α(M). Lemma 1.2.6 guarantees that each of f1, . . . , fn and g1, . . . , gn is either injective or

surjective.
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Claim 1. There is a number p such that fp is injective.

Proof of Claim 1. Suppose that all of the f1, . . . , fn are surjective. Then we get equalities

Im g =
∑

i Im gi =
∑

i Im gifi. Since HomR(ΩM,M) = 0 (Lemma 1.2.1), it follows from Lemma

1.2.2 that Im gifi ⊆ mM for all i = 1, . . . , n. This yields that Im g ⊆ mM , which contradicts to

that g is surjective. □

Claim 2. If there is a number p such that fp is injective and gp is surjective, then α(M) = 1.

Proof of Claim 2. Suppose that fp is injective and gp is surjective. Since HomR(ΩM,M) = 0,

there is a free R-module F and homomorphisms a : ΩM → F and b : F →M such that gpfp = ba.

Since F is free and gp is surjective, we have a factorization b = gpc with some homomorphism

c : F → Ep. So we get an equality gp(fp − ca) = 0. In particular, fp − ca factors through

the kernel Ker gp of gp, i.e. fp − ca = ed with a homomorphism d : ΩM → Ker gp and the

natural inclusion e : Ker gp → Ep. By Lemma 1.2.3 (2), the homomorphism fp − ca : M → Ep

is also irreducible. Hence either e is a split epimorphism or d is a split monomorphism. In the

former case, the equality Ker gp = Ep follows. It means that the map gp is zero. This is a

contradiction to the irreducibility of gp. So it follows that d is a split monomorphism. Then one

has rankΩM ≤ rankKer gp = rankEp − rankM . This forces that n = 1. □
By Claim 1, we already have an integer p such that fp is a monomorphism. If gp is surjective,

then by Claim 2 it follows that α(M) = 1. Therefore, we may suppose that gp is injective. Then

the inequalities rankΩM ≤ rankEp ≤ rankM hold. By the minimality of rankM , we have

rankΩM = rankEp = rankM . In this case, we see isomorphisms Cok fp ∼= R/m ∼= Cok gp
by Lemma 1.2.7. Therefore, equalities ℓ(M/ Im(fpgp)) = ℓ(Cok fp) + ℓ(Cok gp) = 2 hold (here,

ℓ(X) denotes the length for an R-module X). By Lemma 1.2.2, Im(fpgp) ⊆ mM . So it follows

that ℓ(M/mM) ≤ 2. In other words, M is generated by two elements as an R-module. Since

M is nonfree, one has rankM = 1 and HomR(M,R) ∼= ΩM . As rankΩM = rankM = 1, we

can apply the same argument above for ΩM to see that ΩM is also generated by two elements.

Then by [72, Theorem 3.2], one can see that Ext1R(M,M) ̸= 0, a contradiction. ■

Chapter 2

Rings whose ideals are isomorphic to
trace ideals

2.1 Introduction

The contents of this chapter is based on author’s parer [100] with R. Takahashi.
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This chapter deals with trace ideals of commutative noetherian rings. The notion of trace

ideals is classical and fundamental; a lot of studies on this notion have been done in various

situations. Many references on trace ideals can be found in [106, 111]. Other than them,

for instance, trace ideals play an important role in the proof of a main result of Huneke and

Leuschke [84] on the Auslander–Reiten conjecture. Recently, Goto, Isobe and Kumashiro [58]

study correspondences of trace ideals with stable ideals and finite birational extensions.

The main purpose of this chapter is to consider a question on trace ideals raised by Lindo

and Pande [111]. They prove as their main result that a local ring is an artinian Gorenstein

ring if and only if every ideal is a trace ideal, and ask for which ring every ideal is isomorphic to

some trace ideal. This question originates the celebrated Huneke–Wiegand conjecture: Lindo

[110] shows that for such a Gorenstein domain the conjecture holds. In this chapter, we begin

with answering the question for rings with full of zerodivisors, which complements the result of

Lindo and Pande.

Theorem 2.1.1. Let R be a commutative noetherian ring all of whose nonunits are zerodivisors

(e.g. a local ring of depth 0). Then the following are equivalent.

(1) R is an artinian Gorenstein ring.

(2) Every ideal of R is a trace ideal.

(3) Every principal ideal of R is a trace ideal.

(4) Every ideal of R is isomorphic to a trace ideal.

(5) Every principal ideal of R is isomorphic to a trace ideal.

Next we investigate the question of Lindo and Pande in the case of a local ring of depth

one. We prove the following theorem, which states that such a ring as in the question is nothing

but a hypersurface singularity of type (An), under some mild assumptions. This theorem also

removes the assumption of a Gorenstein domain from Lindo’s result mentioned above.

Theorem 2.1.2. Let R be a commutative noetherian local ring of depth 1. Consider the condi-

tions:

(1) Every ideal of R is isomorphic to a trace ideal,

(2) R is a hypersurface with Krull dimension 1 and multiplicity at most 2,

(3) The completion R̂ of R is an (An)-singularity of Krull dimension 1 for some 0 ≤ n ≤ ∞.

Then the implications (1)⇔(2) ⇐ (3) hold. If the residue field of R is algebraically closed and

has characteristic 0, then all the three conditions are equivalent.

Finally, we explore the question of Lindo and Pande in the higher-dimensional case. It turns

out that the condition in the question is closely related to factoriality of the ring.

Theorem 2.1.3. Let R be a commutative noetherian ring. Assume that all maximal ideals of

R have height at least 2. Then the following are equivalent.
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(1) Every ideal of R is isomorphic to a trace ideal.

(2) R is a product of factorial rings (i.e., unique factorization domains).

In particular, when R is local, every ideal of R is isomorphic to a trace ideal if and only if R is

factorial.

Combining all the above three theorems, we obtain the following characterization of the local

rings whose ideals are isomorphic to trace ideals, which gives a complete answer to the question

of Lindo and Pande for local rings.

Corollary 2.1.4. Let R be a commutative noetherian local ring. Then the following are equiv-

alent.

(1) Every ideal of R is isomorphic to a trace ideal.

(2) The ring R satisfies one of the following conditions.

(a) R is an artinian Gorenstein ring.

(b) R is a hypersurface of Krull dimension 1 and multiplicity at most 2.

(c) R is a unique factorization domain.

This chapter is organized as follows. In Section 2, we give a brief survey on finite birational

extensions. The tools we mention in this section will be used commonly in the following sections

and chapters. In Section 3, we recall the definition of trace ideals and their several basic

properties. We also give a couple of observations on the Lindo–Pande condition. In Section 4,

we consider characterizing rings that satisfy the Lindo–Pande condition. We state and prove

our main results including the theorems introduced above.

2.2 Properties of finite birational extensions

In this section, we collect some basic facts on finite birational extensions, in order to prepare

the following sections. Let R be a ring with total quotient ring Q = Q(R). We denote by (−)∗

the R-dual functor HomR(−, R). We use e(R) to denote the multiplicity of R.

We start by remarking an elementary fact, which will be used several times later.

Remark 2.2.1. LetM be anR-submodule ofQ. IfM is finitely generated, thenM is isomorphic

to an ideal of R, which can be taken to contain a non-zerodivisor of R if so does M .

Recall that a finitely generated R-module M is called reflexive if the natural map M →
HomA(HomA(M,A), A) is an isomorphism. We denote by Ref(A) the subcategory of reflexive

A-modules. In the proofs of our results, it is essential to investigate R-submodules of Q and

their colons in Q.

Lemma 2.2.2. Let M be an R-submodule of Q containing a nonzero divisor c.

(1) Let N be an R-submodule of Q. The assignment (x 7→ αx) ← [ α make an isomorphism

ΦM,N : N : M ∼= HomR(M,N) of R-modules, where the inverse is given by the assignment

f 7→ 1
cf(c).
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(2) Suppose that M is finitely generated. Then M is reflexive if and only if there is an equality

M = R : (R : M) in Q.

Proof. (1) One can show that the equality f(c)x = cf(x) in Q holds for each x ∈M by describing

x as an element of Q. It is now easy to verify that the two assignments define mutually inverse

bijections.

(2) By Remark 2.2.1 we see that R : M contains a non-zerodivisor of R. Applying (1)

twice, we have isomorphisms M∗∗ = (M∗)∗ ∼= (R : M)∗ ∼= R : (R : M). Composition with

the canonical homomorphism M → M∗∗ gives a homomorphism M → R : (R : M), which we

observe is nothing but the inclusion map. The assertion immediately follows from this. ■

Remark 2.2.3. In view of Lemma 2.2.2 (1), the endomorphism ring EndR(M) of a submodule

M of Q is identified with the R-subalgebra M : M of Q. Suppose that M is finitely generated.

Then the R-module HomR(M,M) is finitely generated, and hence the extension R ⊆M : M is

module-finite. Hence M : M is contained in the integral closure R of R in Q. Moreover M : M

is semilocal if R is semilocal.

Remark 2.2.4. Let S be a ring extension of R in Q. Let M and N be S-modules such that N

is torsion-free as an R-module. Then HomS(M,N) = HomR(M,N).

Proof. Let f : M → N be an R-homomorphism. Take a ∈ S and x ∈ M . What we want to

show is that f(ax) = af(x). Write a = b
c as an element of Q. We have c(f(ax) − af(x)) =

cf(ax)− caf(x) = f(cax)− caf(x) = f(bx)− bf(x) = 0. Since N is torsion-free over R, we get

f(ax)− af(x) = 0. ■

If (R,m) is local and depthR > 0, then a subring m : m of Q is semilocal and a module-finite

extension of R (Remark 2.2.3). The inclusions R ⊆ m : m ⊆ Q show that m : m is a birational

extension of R. We give some lemmas on m : m.

Lemma 2.2.5. Let (R,m) be a local ring and M be an R-module without free summands. Then

the natural inclustion HomR(M,m)→ HomR(M,R) is an equality.

Proof. Since R is local, for any homomorphism f : M → R the image of f is contained in m

(otherwise it would produce a non-trivial free summand of M). ■

The following lemma is observed by Bass [14]. For the proof, see [108, Lemma 4.9].

Lemma 2.2.6. Let (R,m) be a local ring and M be a reflexive R-module without free summands.

Then M has an m : m-module structure which is compatible with the action of R on M .

If R is Cohen–Macaulay of dimension one, we can obtain the following lemma.

Lemma 2.2.7. Let (R,m) be a Cohen–Macaulay local ring of dimension one. Assume R is not

a discrete valuation ring. Then

(a) m has no R-free summands.

(b) m : m = R : m

(c) ℓR(m : m/R) is equal to r(R). In particular, R is properly contained in m : m.
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(d) m is reflexive as an R-module.

(e) m : m is reflexive as an R-module and has no R-free summands.

Proof. (a) By [9, Corollary 5.7], m has no free summand. (b) Combining Lemma 2.2.2, Lemma

2.2.5 and (a), the assertion follows. (c) We look at the long exact sequence

0→ HomR(R/m, R)→ HomR(R,R)
f−→ HomR(m, R)→ Ext1R(R/m, R)→ Ext1R(R,R) = 0

induced by the short exact sequence 0→ m→ R→ R/m→ 0.

The length of the R-module Ext1R(R/m, R) is exactly equal to the type r(R) of R. On the

other hand, one can directly check that the natural inclusion g : R→ m : m = R : m satisfies the

equality ΦR,m◦g = f◦ΦR,R, where ΦR,m : R : m→ HomR(m, R) and ΦR,R : R : R→ HomR(R,R)

are isomophirms as in Lemma 2.2.2. It follows that the cokernel m : m/R of g is isomorphic to

Ext1R(R/m, R), the cokernel of f . In particular, both two R-module have same length. We thus

obtain the equality ℓR(m : m/R) = r(R).

(d) By (c), we see that m : m = R(m : m) ̸= R. This means that R ̸⊆ R : (m : m). On the

other hand, the inclusion R ⊂ m : m induces an inclusion R : (m : m) ⊆ R : R = R. Additionaly,

the containment m(m : m) ⊆ m ⊆ R shows that m ⊆ R : (m : m). Thus we have an equality

m = R : (m : m). By (b), this is equlity m R : (R : m). Thus by Lemma 2.2.2, m is reflexive.

(e) Combining (b) and (d), we can see that R : (R : (m : m)) = m : m. Thus by Lemma 2.2.2,

m : m is reflexive. If m : m has a free summand, then its R-dual m is also has a free summand.

By (a), this is a contradiction. Therefore m : m has no free summands. ■

2.3 Trace ideals and the Lindo–Pande condition

We begin with recalling the definition of a trace ideal.

Definition 2.3.1. Let M be an R-module. The trace of M is defined as the ideal

trR M = (f(x) | f ∈M∗, x ∈M)

of R, that is, each element has the form
∑n

i=1 fi(xi) with fi ∈ M∗ and xi ∈ M . Define the

R-linear map

λR
M : M∗ ⊗R M → R, f ⊗ x 7→ f(x).

Then trR M is nothing but the image of λR
M . Using this, one can check that if M,N are R-

modules with M ∼= N , then trR M = trR N . An ideal I of R is called an trace ideal if I = trM

for some R-module M .

Proof. Let x1, . . . , xn generate M . Write xi =
yi
zi

as an element of Q, and put z = z1 · · · zn. Then
zM is an ideal of R. As z is a non-zerodivisor of R, the module M is isomorphic to zM . If M

contains a non-zerodivisor r of R, then zM contains the element zr, which is a non-zerodivisor

of R. ■

For R-submodules M,N of Q we denote by MN the R-submodule ⟨xy | x ∈ M, y ∈ N⟩ of
Q, which consists of the sums of elements of the form xy with x ∈ M and y ∈ N . Here are

several fundamental properties of trace ideals, which will be used throughout the paper.
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Proposition 2.3.2. Let M be an R-submodule of Q containing a non-zerodivisor c of R.

(1) There is an equality trM = (R : M)M in Q.

(2) The equality M = trM holds in Q if and only if the equality M : M = R : M holds in Q.

Proof. (1) We can directly check the assertion by using the isomorphism in (1).

(2) By (1) we have only to show that M = (R : M)M if and only if M : M = R : M . It is

obvious that M ⊇ (R : M)M if and only if M : M ⊇ R : M . The implications

M ⊆ (R : M)M ⇒M ⊆ R⇒M : M ⊆ R : M ⇒ 1 ∈ R : M ⇒M ⊆ (R : M)M

hold, which shows that M ⊆ (R : M)M if and only if M : M ⊆ R : M . ■

Lindo and Pande [111] raise the question asking when each ideal of a given ring is isomorphic

to a trace ideal. To consider this question effectively, we give a name to the condition in it.

Definition 2.3.3. We define the Lindo–Pande condition (LP) by the following.

(LP) Every ideal of R is isomorphic to some trace ideal of R.

Question 2.3.4 (Lindo–Pande). When does R satisfy (LP)?

Let us give several remarks related to the condition (LP).

Remark 2.3.5. (1) Let M,N be R-modules. If M ∼= trN , then M ∼= trM . Therefore, (LP) is

equivalent to saying that each ideal I of R isomorphic to its trace: I ∼= tr I.

(2) When R satisfies (LP), any finitely generated R-submodule M of Q admits an isomorphism

M ∼= trM .

(3) If R satisfies (LP), then so does RS for each multiplicatively closed subset S of R. When R

is local, if the completion R̂ satisfies (LP), then so does R.

Proof. (1) Taking the traces of both sides of the isomorphism M ∼= trN , we have trM =

tr(trN). The latter trace coincides with trN by [110, Proposition 2.8(iv)]. Hence trM =

trN ∼= M .

(2) The assertion follows from Remark 2.2.1 and (1).

(3) The assertion on localization is shown by using (1) and [110, Proposition 2.8(viii)]. For

the assertion on completion, apply (1) and [50, Exercise 7.5]. ■

Now we recall that an invertible R-module is by definition a finitely generated R-module

M such that Mp
∼= Rp for every prime ideal p of R. The isomorphism classes of invertible

R-modules form an abelian group with multiplication ⊗R and identity [R], which is called the

Picard group PicR of R. The condition (LP) implies the triviality of this group.

Proposition 2.3.6. If R satisfies (LP), then PicR = 0.

Proof. Let M be an invertible R-module. By [50, Theorem 11.6b] the R-module M is isomorphic

to an R-submodule of Q, and we get M ∼= trR M by Remark 2.3.5(2). By [50, Theorem 11.6a]

the map λR
M : M∗ ⊗R M → R is an isomorphism, which implies trR M = R. Hence we obtain

an isomorphism M ∼= R, and consequently, the Picard group of R is trivial. ■
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Recall that a Dedekind domain is by definition an integral domain whose nonzero ideals are

invertible, or equivalently, a noetherian normal domain of Krull dimension at most one. The

above proposition yields a characterization of the Dedekind domains satisfying the Lindo–Pande

condition.

Corollary 2.3.7. A Dedekind domain satisfies (LP) if and only if it is a principal ideal domain.

Proof. Fix a nonzero ideal I of R. If R is a Dedekind domain satisfying (LP), then Proposition

2.3.6 implies I ∼= R. Conversely, if I ∼= R, then tr I = trR = R ∼= I. The assertion now

follows. ■

2.4 Characterization of rings satisfying the Lindo–Pande condi-
tion

We first consider the Lindo–Pande condition for (not necessarily local) rings whose nonunits are

zerodivisors. For this, we need to extend a theorem of Lindo and Pande to non-local rings; the

assertion of the following proposition is nothing but [111, Theorem 3.5] in the case where R is

local.

Proposition 2.4.1. The following are equivalent.

(1) R is artinian and Gorenstein.

(2) Every ideal of R is a trace ideal of R.

(3) Every principal ideal of R is a trace ideal of R.

Proof. Let I be an ideal of R. Then I is a trace ideal if and only if I = trR I by [110, Proposition

2.8(iv)]. In general, I is contained in trR I by [110, Proposition 2.8(iv)] again, which enables us

to define the quotient (trR I)/I. Using [110, Proposition 2.8(viii)], we see that

I = trR I ⇔ (trR I)/I = 0⇔ ((trR I)/I)p = 0 for all p ∈ SpecR

⇔ (trRp Ip)/Ip = 0 for all p ∈ SpecR⇔ Ip = trRp Ip for all p ∈ SpecR.

Thus we can reduce to the local case and apply [111, Theorem 3.5] to deduce the proposition. ■

Using the above proposition, we obtain the following theorem including a criterion for a ring

with full of zerodivisors to satisfy the Lindo–Pande condition. Note that in the case where R is

local the assumption of the theorem is equivalent to the condition that R has depth zero.

Theorem 2.4.2. Assume that all non-zerodivisors of R are units. Then the following are

equivalent.

(1) R is artinian and Gorenstein.

(2) Every ideal of R is a trace ideal of R.

(3) Every principal ideal of R is a trace ideal of R.

(4) Every ideal of R is isomorphic to a trace ideal of R, that is, R satisfies (LP).
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(5) Every principal ideal of R is isomorphic to a trace ideal of R.

Proof. The equivalences (1)⇔(2)⇔(3) follow from Proposition 2.4.1, while the implications

(2)⇒(4)⇒(5) are obvious. It suffices to show the implication (5)⇒(3).

Assume that (3) does not hold, namely, that there exists a principal ideal (x) of R which

is not a trace ideal. Then, in particular, x is nonzero. It follows from (5), Remark 2.3.5(1)

and [111, Lemma 2.5] that (x) ∼= tr(x) = Ann(Ann(x)). Let ϕ : Ann(Ann(x)) → (x) be the

isomorphism, and θ : (x)→ Ann(Ann(x)) the inclusion map. The endomorphism ϕθ : (x)→ (x)

corresponds to an endomorphism R/Ann(x) → R/Ann(x), which is a multiplication map by

some element a ∈ R/Ann(x). Then ϕθ is the multiplication map by the element a ∈ R. Since

ϕθ is injective, a is a non-zerodivisor on (x). Hence grade((a), (x)) is positive, or in other

words, HomR(R/(a), (x)) = 0. Taking the R-dual of the isomorphism (x) ∼= R/Ann(x) yields

an isomorphism (x)∗ ∼= Ann(Ann(x)), and hence (x) ∼= (x)∗. There are isomorphisms

0 = HomR(R/(a), (x)) ∼= HomR(R/(a), (x)∗)

∼= (R/(a)⊗R (x))∗ = (R/(a) + Ann(x))∗ ∼= Ann((a) + Ann(x)),

which show that the ideal (a) + Ann(x) contains a non-zerodivisor of R, which is a unit by the

assumption of the theorem. Therefore, 1 = ab + c for some b ∈ R and c ∈ Ann(x). We have

ϕ(x) = ϕθ(x) = ax and x = (ab+c)x = abx = bϕ(x). Take any element y ∈ Ann(Ann(x)). There

exists an element d ∈ R such that ϕ(y) = dx. Then ϕ(y) = dbϕ(x) = ϕ(dbx), which implies

y = dbx as ϕ is injective. Thus y belongs to (x). Consequently, we obtain (x) = Ann(Ann(x)) =

tr(x). This contradicts our assumption that (x) is not a trace ideal. We now conclude that (5)

implies (3). ■

Next, we study the Lindo–Pande condition for local rings of depth one. We start by showing

a lemma on Gorenstein local rings of dimension one. Recall that a local ring R is called a

hypersurface if R has codepth at most one, i.e., edimR − depthR ≤ 1. This is equivalent

to saying that the completion of R is isomorphic to the quotient of a regular local ring by a

principal ideal. A Cohen–Macaulay local ring is said to have minimal multiplicity if the equality

e(R) = edimR− dimR+ 1 holds; see [19, Exercise 4.6.14].

Lemma 2.4.3. Let R be a 1-dimensional Gorenstein local ring with maximal ideal m. If m ∼= m2,

then R is a hypersurface with e(R) ≤ 2.

Proof. Put s = edimR. Note that m ∼= m2 ∼= m3 ∼= · · · . Hence ν(mi) = s for all i > 0, and

ℓ(R/mn+1) =
∑n

i=0 ℓ(m
i/mi+1) =

∑n
i=0 ν(m

i) = (n+1)s. Therefore e(R) = limn→∞
1
nℓ(R/mn+1) =

s. As R has dimension one, it has minimal multiplicity. Since R is Gorenstein, it satisfies s ≤ 2

(see [130, Corollary 3.2]) and so it is a hypersurface. ■

We need one more lemma for our next goal.

Lemma 2.4.4. Let I be a reflexive ideal of R containing a non-zerodivisor of R, and set S = I :

I. Assume that the equality I = trR I holds. Then one has an equality I = trR S. In particular,

if there is an isomorphism S ∼= trR S of R-modules, then one has an isomorphism I ∼= S of

S-modules.
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Proof. First of all, note that I is an S-module. We apply Proposition 2.3.2 several times. We

have S = I : I = R : I and I = R : (R : I) = R : S. Hence trR S = (R : S)S = IS = I(I : I) = I.

Therefore, if S ∼= trR S, then there is an R-isomorphism I ∼= S, and it is an S-isomorphism by

Remark 2.2.4. ■

For each n ∈ Z≥0 ∪ {∞}, a 1-dimensional hypersurface singularity of type (An) (or (An)-

singularity for short) is by definition a ring that is isomorphic to the quotient

Rn = k[[x, y]]/(x2 + yn+1)

of a formal power series ring over a field k, where we set R0 = k[[x]] and R∞ = k[[x, y]]/(x2).

It is known that a 1-dimensional (An)-singularity has finite (resp. countable) Cohen–Macaulay

representation type for n ∈ Z≥0 (resp. n = ∞); see [149, Corollary (9.3) and Example (6.5)].

Hence, there exist only at most countably many indecomposable torsion-free modules over such

a ring.

Now we can achieve our second purpose of this section, which is to give a characterization

of the local rings of depth one that satisfy the Lindo–Pande condition.

Theorem 2.4.5. Let (R,m, k) be a local ring with depthR = 1. Consider the following condi-

tions.

(1) The ring R satisfies (LP).

(2) The completion R̂ satisfies (LP).

(3) The ring R is a hypersurface with dimR = 1 and e(R) ≤ 2.

(4) The completion R̂ is a 1-dimensional (An)-singularity for some n ∈ Z≥0 ∪ {∞}.

Then the implications (1)⇔(2)⇔(3)⇐ (4) hold. If k is algebraically closed and has characteristic

0, then all the four conditions are equivalent.

Proof. (4)⇒(3): Since R̂ is a hypersurface, so is R. We see directly from the definition of an

(An)-singularity that e(R̂) ≤ 2. As the equality e(R) = e(R̂) holds in general, we have e(R) ≤ 2.

(3)⇒(2): As e(R̂) = e(R), dim R̂ = dimR and depth R̂ = depthR, we may assume that R

is complete. Take any ideal I of R. The goal is to prove I ∼= tr I.

We begin with the case where I is an m-primary ideal. Set S = I : I. Then S is an

intermediate ring of R and Q which is finitely generated as an R-module, and I is also an ideal

of S. The proof of Remark 2.2.1 says zS ⊆ R for some non-zerodivisor z of R. By [58, Theorem

3.11], the ring S is Gorenstein. Using Proposition 2.3.2(1) and Remark 2.2.4, we have an S-

isomorphism S = I : I → HomR(I, I) = HomS(I, I) given by s 7→ (i 7→ si). Hence I is a closed

ideal of S in the sense of [18]. It follows from [18, Corollary 3.2] that I is an invertible ideal of

S. As S/mS is artinian and all maximal ideals of S contain mS, the ring S is semilocal. We

observe I ∼= S by [19, Lemma 1.4.4]. Thus it is enough to check that S is isomorphic to its trace

as an R-module. Using Proposition 2.3.2, we obtain trR S = (R : S)S = R : S ∼= S∗. Since

R is henselian, S is a product of local rings: we have S ∼= S1 × · · · × Sr, where Si is local for

1 ≤ i ≤ r. Each Si is a localization of S, so it is Gorenstein. Hence (Si)
∗ ∼= ωSi

∼= Si for each i,

and therefore S∗ ∼= S. Consequently, we obtain S ∼= trR S as desired.
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Next we consider the case where I is not an m-primary ideal. Then I is contained in some

minimal prime p of R. When I = 0, we have I = tr I and are done. So we assume I ̸= 0, which

forces R not to be a domain. By Cohen’s structure theorem and the assumption that e(R) ≤ 2,

we can identify R with the ring S/(f), where (S, n) is a 2-dimensional regular local ring and f is

a reducible element in n2 \n3. Write f = gh with g, h ∈ n\n2. Then g, h are irreducible, and we

see that MinR = {gR, hR} (possibly gR = hR). Hence p is equal to either gR or hR. We also

observe Ann(gR) = hR ∼= R/gR and Ann(hR) = gR ∼= R/hR. As both R/gR and R/hR are

discrete valuation rings, any nonzero submodule of p is isomorphic to p, and therefore we have

only to show that p ∼= tr p. Thanks to [111, Corollary 2.9], we obtain tr p = Ann(Ann p) = p,

which particularly says p ∼= tr p.

(2)⇒(1): This implication immediately follows from Remark 2.3.5(3).

(1)⇒(3): We have m ⊆ trm ⊆ R (see [110, Proposition 2.8(iv)]), and m ∼= trm by Remark

2.3.5(1). If trm = R, then m ∼= R, which means that R is a discrete valuation ring, and we are

done. Thus we may assume m = trm. Put S = m : m. Proposition 2.3.2(3) implies S = R : m.

Applying (−)∗ to the exact sequence 0 → m → R → k → 0 gives rise to an exact sequence

0 → R
ϕ−→ m∗ → Ext1R(k,R) → 0. Note that Ext1R(k,R) ̸= 0 as depthR = 1. By Proposition

2.3.2(1), the map ϕ can be identified with the inclusion R ⊆ S and so we have R ̸= S. Choose

an element x ∈ S \R and set X = R+Rx ⊆ S. Since mX ⊆ mS ⊆ R, we have m ⊆ R : X and

m = mR ⊆ mX ⊆ (R : X)X = trR X ⊆ R,

where the second equality follows from Proposition 2.3.2(2). Hence trR X coincides with either

m or R. By Remark 2.3.5(2) we have X ∼= trR X.

Assume trR X = R. Then X ∼= R, and we find an element y ∈ X such that X = Ry. As

1 ∈ X, we have 1 = ay for some a ∈ R. Since y ∈ S, we get my ⊆ m, which shows a /∈ m. Hence

a is a unit of R, and we observe y ∈ R. Therefore X = R, and x is in R, which contradicts the

choice of x.

Thus we have to have trR X = m, and get an R-isomorphism X ∼= m. This implies that m is

generated by at most two elements as an R-module. Hence

1 = depthR ≤ dimR ≤ edimR ≤ 2.

If dimR = 2, then the equality dimR = edimR holds, which means that R is a regular local

ring. In particular, R is Cohen–Macaulay, and it follows that 1 = depthR = dimR = 2, which is

a contradiction. Thus dimR = 1, and we have edimR−dimR ≤ 1, namely, R is a hypersurface.

It remains to prove that R has multiplicity at most 2. According to Lemma 2.4.3, it suffices

to show that m ∼= m2. The R-module S is isomorphic to trR S by Remark 2.3.5(2). It follows

from Lemma 2.4.4 that m ∼= S = R : m. Using Proposition 2.3.2(2), we obtain m = trR m = (R :

m)m ∼= mm = m2, as desired. (In general, if a module X is isomorphic to a module Y , then AX

is isomorphic to AY for an ideal A.)

(3)⇒(4) (under the assumption that k is algebraically closed and has characteristic 0): Again,

we have e(R̂) ≤ 2. Cohen’s structure theorem implies that R̂ is isomorphic to a hypersurface

of the form k[[x, y]]/(f) with f ∈ (x, y) \ (x, y)3. Changing variables, we can reduce to the case

where f = x or f = x2 or f = x2 + yt with t ∈ Z>0; see (i) of [149, Proof of (8.5)] and its

preceding part. ■
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Remark 2.4.6. Let R be a ring satisfying Theorem 2.4.5(4). Then each ideal of R is a maxi-

mal Cohen–Macaulay R-module. The isomorphism classes of indecomposable maximal Cohen–

Macaulay R-modules are completely classified; see [149, Proposition (5.11), (9.9) and Example

(6.5)]. The implication (4)⇒(1) in Theorem 2.4.5 can also be proved by using this classification

(although it is rather complicated).

Combining our Theorems 2.4.2 and 2.4.5, we obtain a remarkable result.

Corollary 2.4.7. The Lindo–Pande condition (LP) implies Serre’s condition (S2).

Proof. Suppose that R satisfies (LP). Let p be a prime ideal of R. The localization Rp also

satisfies (LP) by Remark 2.3.5(3). We see from Theorems 2.4.2 and 2.4.5 that Rp is Cohen–

Macaulay when depthRp ≤ 1. It is easy to observe from this that R satisfies (S2). ■

One of the original motivation of the condition (LP) is to seek a new class of rings which

Conjecture 1.1.1 holds for. After Theorem 2.4.5, we can check that Conjecture 1.1.1 holds for

rings satisfies (LP), by trivial application of [87, Theorem 3.1].

Corollary 2.4.8. Let R is a local ring of depth one, and suppose that R satisfies (LP). Let

M be an R-module having a rank. If M ⊗R M∗ is torsion-free, then M is free. In particular,

Conjecture 1.1.1 holds for a ring satisfying (LP).

Proof. Theorem 2.4.5 implies that R is a 1-dimensional hypersurface. By [87, Theorem 3.1],

both M and M∗ are torsion-free, and either of them is free. If M∗ is free, then so is M by [28,

Lemma 2.13]. ■

Our next goal is to study the Lindo–Pande condition for rings having Krull dimension at

least two. The following proposition characterize the ideals of normal rings that are isomorphic

to trace ideals.

Proposition 2.4.9. Let M be a finitely generated R-submodule of Q containing a non-zerodivisor

of R. Consider the following conditions.

(1) M is isomorphic to a trace ideal of R.

(2) M∗ is isomorphic to R.

(3) M is isomorphic to an ideal I of R with grade I ≥ 2 (i.e. ExtiR(R/I,R) = 0 for i < 2).

Then the implications (1) ⇐= (2) ⇐⇒ (3) hold. All the three conditions are equivalent if R is

normal.

Proof. In view of Remark 2.2.1, we can replace M with an ideal J of R containing a non-

zerodivisor.

(3)⇒(2): Dualizing the natural short exact sequence 0 → I → R → R/I → 0 by R induces

I∗ ∼= R.

(2)⇒(1): Using Proposition 2.3.2(1)(2), we have R : J ∼= J∗ ∼= R, and tr J = (R : J)J ∼=
RJ = J .

(2)⇒(3): If J = R, then we have grade J = ∞ ≥ 2 and are done. Let J ̸= R. Then

(R/J)∗ = 0, and dualizing the natural exact sequence 0 → J → R → R/J → 0 gives an exact
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sequence 0 → R → J∗ → Ext1R(R/J,R) → 0. Combining this with the isomorphism J∗ ∼= R,

we find a non-zerodivisor x1 of R such that Ext1R(R/J,R) ∼= R/(x1). As J annihilates the Ext

module, it is contained in the ideal (x1). Hence we find an ideal J1 of R such that J = x1J1. It

is easy to see that J1 also contains a non-zerodivisor of R. As J1 is isomorphic to J , we have

J∗
1
∼= R. Thus the argument for J applies to J1. If J1 = R, then we are done. If J1 ̸= R, then we

find an ideal J2 and a non-zerodivisor x2 with J1 = x2J2. Iterate this procedure, and consider

the case where we get ideals Ji and non-zerodivisors xi such that Ji = xi+1Ji+1 for all i ≥ 0. In

this case, there is a filtration of ideals of R:

J =: J0 ⊆ J1 ⊆ J2 ⊆ J3 ⊆ · · · .

As R is noetherian, this stabilizes: there exists an integer t ≥ 0 such that Jt = Jt+1. Hence

Jt+1 = xt+1Jt+1, and Nakayama’s lemma gives rise to an element r ∈ R such that 1− r ∈ (xt+1)

and rJt+1 = 0. The fact that Jt+1 contains a non-zerodivisor forces r to be zero, and xt+1 is a

unit of R. Therefore Ext1R(R/Jt, R) ∼= R/(xt+1) = 0, and thus grade Jt ≥ 2. It remains to note

that J is isomorphic to Jt.

Finally, we prove the implication (1)⇒(2) under the additional assumption that R is normal.

By Remark 2.3.5(1) the ideal J is isomorphic to its trace I := tr J . As J ⊆ I by [110, Proposition

2.8(iv)], the ideal I contains a non-zerodivisor of R. We have tr I = tr(tr J) = tr J = I by [110,

Proposition 2.8(iv)] again. Using (1) and (3) of Proposition 2.3.2, we get I∗ ∼= R : I = I : I.

The ring I : I is a module-finite extension of R in Q, and hence it is integral over R. Since R is

normal, we have I : I = R. We thus obtain J∗ ∼= I∗ ∼= I : I = R. ■

The above proposition yields a characterization of the normal domains that satisfy the Lindo–

Pande condition. For a normal domain R we denote by Cl(R) the divisor class group of R.

Corollary 2.4.10. A ring R is a normal domain satisfying (LP) if and only if it is factorial.

Proof. Let R be a normal domain. Then it follows from [54, Proposition 6.1] that R is factorial

if and only if Cl(R) = 0. The zero ideal is a trace ideal as 0 = tr 0. Applying Proposition 2.4.9,

we observe that R satisfies (LP) if and only if I∗ ∼= R for all ideals I ̸= 0. Therefore we have

only to show the following two statements (see [132, 2.10]).

(a) Suppose that I∗ is isomorphic to R for every nonzero ideal I of R. Let M be a finitely

generated reflexive R-module of rank one. Then [M ] = 0 in Cl(R).

(b) Let I be a nonzero ideal of R. Then I∗ is a reflexive module of rank one.

(a): As M has rank 1 and is torsion-free, it is isomorphic to an ideal I ̸= 0 of R. Then I∗ is

isomorphic to R by assumption, and we get isomorphisms M ∼= M∗∗ ∼= I∗∗ ∼= R∗ ∼= R. Hence

[M ] = 0 in Cl(R).

(b): The module I has rank 1, and so does I∗. For each R-module X, denote by ρ(X) the

canonical homomorphism X → X∗∗. We can directly verify that the composition (ρ(I))∗ ◦ρ(I∗)
is the identity map of I∗. Hence I∗∗∗ ∼= I∗⊕E for some R-module E. Comparing the ranks, we

see that E is torsion. As E is isomorphic to a submodule of the torsion-free module I∗∗∗, it is

zero. Therefore I∗ is reflexive. ■
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What we want to do next is to remove from the above corollary the assumption that R is a

normal domain. For this, we need to investigate the Lindo–Pande condition for a finite product

of rings.

Lemma 2.4.11. Let R1, . . . Rn be rings. Then the product ring R1 × · · · × Rn satisfies (LP) if

and only if Ri satisfies (LP) for all 1 ≤ i ≤ n.

Proof. The assignment (M1, . . . ,Mn) 7→M1 × · · · ×Mn gives an equivalence∏n
i=1(ModRi) ∼= Mod(

∏n
i=1Ri)

as tensor abelian categories, where for a ring A we denote by ModA the category of arbitrary

A-modules. In particular, we can do the identification∏
HomRi(Mi, Ni) = Hom∏

Ri
(
∏

Mi,
∏

Ni),
∏
(Mi ⊗Ri Ni) =

∏
Mi ⊗∏

Ri

∏
Ni.

Now it is easy to see that for all ideals Ii of Ri with 1 ≤ i ≤ n, one has

tr∏Ri
(
∏

Ii) =
∏

trRi Ii. (2.4.11.1)

The “if” part of the lemma directly follows from (2.4.11.1) (see Remark 2.3.5(1)). Applying

(2.4.11.1) to the ideal 0× · · · × 0× Ii × 0× · · · × 0 of
∏

Ri shows the “only if” part. ■

Now we have reached our third (final) goal of this section, which is to give a criterion for a

certain class of rings with Krull dimension at least two to satisfy the Lindo–Pande condition.

Theorem 2.4.12. Assume that all maximal ideals of R have height at least 2. Then R satisfies

(LP) if and only if R is a product of factorial rings. In particular, when R is a local ring or an

integral domain, it satisfies (LP) if and only if it is factorial.

Proof. The “if” part follows from Corollary 2.4.10 and Lemma 2.4.11. To prove the “only if”

part, it suffices to show that R is normal. Indeed, suppose that it is done. Then R is a product

R1 × · · · ×Rn of normal domains; see [114, Page 64, Remark]. By Lemma 2.4.11 and Corollary

2.4.10, each Ri is factorial, and the proof is completed.

So let us show that R is normal. As R satisfies (S2) by Corollary 2.4.7, it is enough to verify

that R satisfies (R1). Fix a prime ideal p of R with ht p ≤ 1. What we want to show is that

Rp is a regular local ring. By assumption, p is not a maximal ideal, and we find a prime ideal q

containing p with ht q/p = 1.

(i) We begin with considering the case where ht p = 1. In this case, ht q ≥ 2. Note that

(S2) localizes, and so does (LP) by Remark 2.3.5(3). Replacing R with Rq, we may assume

that (R,m) is a local ring with dimR = htm ≥ 2 and dimR/p = htm/p = 1. Then R/p is a

1-dimensional Cohen–Macaulay local ring. Since R satisfies (S2), we have depthR ≥ 2 and p

contains a non-zerodivisor of R; see [19, Proposition 1.2.10(a)]. To show that Rp is regular, it

suffices to prove that Rp has embedding dimension at most one.

Let us consider the case tr p = R. Then p contains a nonzero free summand; see [110,

Proposition 2.8(iii)]. We find a non-zerodivisor x of R in p and a subideal I of p such that

p = (x) ⊕ I. Since (x) ∩ I = 0, we have xI = 0, and I = 0 as x is a non-zerodivisor. Thus
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p = (x). In particular, we have edimRp ≤ 1, which is what we want. Consequently, we may

assume that tr p is a proper ideal of R.

We claim p = tr p. Indeed, tr p contains p by [110, Proposition 2.8(iv)]. Suppose that the

containment is strict. Then tr p is m-primary as htm/p = 1. Apply the depth lemma to the

natural exact sequences

0→ p→ R→ R/p→ 0, 0→ tr p→ R→ R/ tr p→ 0.

We observe depth p = 2 and depth(tr p) = 1. Our assumption that R satisfies (LP) and Remark

2.3.5(1) imply that p ∼= tr p, which gives a contradiction. Thus the claim follows.

Next, we claim that p is reflexive. In fact, let P be a prime ideal of R. According to [19,

Proposition 1.4.1], it is enough to check the following.

(a) If depthRP ≤ 1, then pRP is a reflexive RP -module.

(b) If depthRP ≥ 2, then depth pRP ≥ 2.

If P does not contain p, then pRP = RP . If P contains p, then P coincides with p or m as

htm/p = 1. Recall that depthR ≥ 2 and depth p = 2. The fact that R satisfies (S2) especially

says depthRp = 1. Theorem 2.4.5 and Remark 2.3.5(3) imply that Rp is a Gorenstein local ring

of dimension 1, whence pRp is a reflexive Rp-module. We now easily see that (a) and (b) hold,

and the claim follows.

Set S = p : p. Then S = R : p by the above first claim and Proposition 2.3.2(3). It

follows from the condition (LP), Remark 2.3.5(2), Lemma 2.4.4 and the above two claims that

S ∼= trR S = p. Thus we obtain an S-isomorphism p ∼= S; see Remark 2.2.4. The ideal p contains

a non-zerodivisor x of S such that p = xS. Note that x is also a non-zerodivisor of R. If p = xR,

then edimRp ≤ 1 and we are done.

Now, let us suppose that p ̸= xR, and derive a contradiction. Krull’s intersection theorem

shows
∩

i>0(m
i + xR) = xR, which implies p ⊈ mt + xR for some t > 0. Put I = p∩ (mt + xR).

Notice that I contains the non-zerodivisor x of R and is strictly contained in p.

We claim that p = tr I. Indeed, we have

tr I = (R : I)I = (R : p)I ⊆ (R : p)p = tr p = p = xS = (R : p)x ⊆ (R : p)I = tr I.

Here, the first and third equalities follow from Proposition 2.3.2(2). Consider the exact sequence

0 → I
f−→ p → p/I → 0, where f is the inclusion map. Note that p/I has finite length. As

depthR ≥ 2, the map f∗ : p∗ → I∗ is an isomorphism. It is observed from this and Proposition

2.3.2(1) that the equality (R : I)I = (R : p)I appearing above holds.

This claim, the condition (LP) and Remark 2.3.5(1) imply p ∼= I. Applying the depth

lemma to the exact sequence 0→ I → p→ p/I → 0 shows that I has depth 1 as an R-module.

However, the R-module p has depth 2, and we obtain a desired contradiction. Thus, the proof

is completed in the case ht p = 1.

(ii) Now we consider the case where ht p = 0. We have ht q ≥ 1. If ht q = 1, then Rq is

regular by (i), and so is Rp = (Rq)pRq , which is what we want. Assume ht q ≥ 2, and let us

derive a contradiction. As in (i), replacing R with Rq, we may assume that (R,m) is a local ring

with depthR ≥ 2 and R/p is a Cohen–Macaulay local ring of dimension 1. Choosing an element
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y ∈ m\p, we get an exact sequence 0→ R/p
y−→ R/p→ R/p+(y)→ 0. Since R/p+(y) has finite

length and R has depth at least two, taking the R-dual yields the isomorphism (R/p)∗
y−→ (R/p)∗.

Nakayama’s lemma implies (R/p)∗ = 0. Hence p has positive grade, but this contradicts the

fact that p is a minimal prime. ■

As an application of the above theorem, we observe that the Lindo–Pande condition does

not necessarily ascend along the completion map R→ R̂ for a local ring R.

Corollary 2.4.13. Let R be a local ring. If R̂ satisfies (LP), then so does R. The converse also

holds if depthR ≤ 1, but does not necessarily hold if depthR ≥ 2.

Proof. The descent of (LP) is included in Remark 2.3.5(3), while the ascent for depthR ≤ 1 is

observed from Theorems 2.4.2 and 2.4.5. There exists a factorial local ring R of depth 2 whose

completion is not factorial. In fact, Ogoma’s famous example [119] of a 2-dimensional factorial

local ring without a canonical module is such a ring by [19, Corollaries 3.3.8 and 3.3.19]; see also

[118, Example 6.1] and [19, Page 145]. Theorem 2.4.12 implies that this ring R satisfies (LP)

but R̂ does not. ■

Chapter 3

Maximal Cohen–Macaulay modules
that are not locally free on the
punctured spectrum

3.1 Introduction

The contents of this chapter is based on author’s work [98] with J. Lyle and R. Takahashi.

Cohen–Macaulay representation theory has been studied widely and deeply for more than

four decades. As we stated in Preface, the theorems of Herzog [73] in the 1970s and of Buchweitz,

Greuel and Schreyer [21] in the 1980s are recognized as one of the most crucial results in this long

history of Cohen–Macaulay representation theory. Both are concerned with Cohen–Macaulay

local rings of finite CM-representation type, that is, Cohen–Macaulay local rings possessing

finitely many nonisomorphic indecomposable maximal Cohen–Macaulay modules. Buchweitz,

Greuel and Schreyer also proved that the local hypersurfaces of countable CM-representation

type are precisely the local hypersurfaces of type (A∞) and (D∞).

At the beginning of this century, Huneke and Leuschke [82] proved that Cohen–Macaulay

local rings of finite CM-representation type have isolated singularities. However, there are ample
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examples of Cohen–Macaulay local rings not having isolated singularities, including the local

hypersurfaces of type (A∞) and (D∞) appearing above. Cohen–Macaulay representation theory

for non-isolated singularities has been studied by many authors so far; see [4, 22, 77, 88] for

instance. It should be remarked that a Cohen–Macaulay local ring with a non-isolated singularity

always admits maximal Cohen–Macaulay modules that are not locally free on the punctured

spectrum. Focusing on these modules, Araya, Iima and Takahashi [3] found out that the local

hypersurfaces of type (A∞) and (D∞) have finite CM+-representation type, that is, there exist

only finitely many isomorphism classes of indecomposable maximal Cohen–Macaulay modules

that are not locally free on the punctured spectrum.

In this chapter, we investigate Cohen–Macaulay local rings of finite CM+-representation

type from various viewpoints. Our basic landmark is the following conjecture, which includes

the converse of the result of Araya, Iima and Takahashi stated above. We shall give positive

results to this conjecture.

Conjecture 3.1.1. Let R be a complete local Gorenstein ring of dimension d not having an

isolated singularity. Suppose that R has uncountable algebraically closed coefficient field of

characteristic not two. Then the following two conditions are equivalent.

(1) The ring R has finite CM+-representation type.

(2) There exist a complete regular local ring S and a regular system of parameters x0, . . . , xd
such that R is isomorphic to

S/(x20 + x22 + · · ·+ x2d) or S/(x20x1 + x22 + · · ·+ x2d).

The implication (2) ⇒ (1) holds by [3, Proposition 2.1]. Also, (2) implies that R has

countable CM-representation type by [108, Proof of (iii)⇒(i) of Theorem 14.16]. Combining the

result of Buchweitz, Greuel and Schreyer, this conjecture says that, under the assumption of the

conjecture, finite CM+-representation type is equivalent to countable CM-representation type.

From now on, we state our main results and the organization of this chapter. Section 3.2

presents some conjectures and questions on finite/countable CM-representation type. Our results

are stated in the later sections. In what follows, let R be a Cohen–Macaulay local ring.

In Section 3.3, we consider the (Zariski-)closedness and (Krull) dimension of the singular

locus SingR of R in connection with the works of Huneke and Leuschke [82, 83]. As we state

above, they proved in [82] that if R has finite CM-representation type, then it has an isolated

singularity, i.e., SingR has dimension at most zero. Also, they showed in [83] that if R is

complete or has uncountable residue field, and has countable CM-representation type, then

SingR has dimension at most one. In relation to these results, we prove the following theorem,

whose second assertion extends the result of Huneke and Leuschke [83] from countable CM-

representation type to countable CM+-representation type (i.e., having infinitely but countably

many nonisomorphic indecomposable maximal Cohen–Macaulay modules that are not locally

free on the punctured spectrum).

Theorem 3.1.2 (Theorem 3.3.2 and Corollary 3.3.3). Let (R,m, k) be a Cohen–Macaulay local

ring.
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(1) Suppose that R has finite CM+-representation type. Then the singular locus SingR is a finite

set. Equivalently, it is a closed subset of SpecR with dimension at most one.

(2) Suppose that R has countable CM+-representation type. Then the set SingR is at most

countable. It has dimension at most one if R is either complete or k is uncountable.

Furthermore, Huneke and Leuschke [83] proved that if R admits a canonical module and has

countable CM-representation type, then the localization Rp at each prime ideal p of R has at

most countable CM-representation type as well. We prove a result on finite CM+-representation

type in the same context.

Theorem 3.1.3 (Theorem 3.3.7). Let (R,m) be a Cohen–Macaulay local ring with a canon-

ical module. Suppose that R has finite CM+-representation type. Then Rp has finite CM-

representation type for all p ∈ SpecR \ {m}. In particular, Rp has finite CM+-representation

type for all p ∈ SpecR.

In Section 3.4 we provide various necessary conditions for a given Cohen–Macaulay local

ring to have finite CM+-representation type.

Theorem 3.1.4 (Theorem 3.4.5). Let (R,m) be a Cohen–Macaulay local ring of dimension

d > 0. Let I be an ideal of R such that R/I is maximal Cohen–Macaulay over R. Then R has

infinite CM+-representation type in each of the following cases.

(1) The ring R/I has infinite CM+-representation type.

(2) The set V(I) is contained in V(0 : I), and either R/I has infinite CM-representation type

or d ≥ 2.

(3) The ideal I +(0 : I) is not m-primary, R/I has infinite CM-representation type, and R/I is

either Gorenstein, a domain, or analytically unramified with d = 1.

This theorem may look technical, but it actually gives rise to a lot of restrictions which

having finite CM+-representation type produces, and is used in the later sections. Here we

introduce one of the applications of the above theorem.

Theorem 3.1.5 (Theorem 3.4.8). Let R be a Cohen–Macaulay local ring of dimension d > 0.

Let I be an ideal of R with V(I) ⊆ V(0 : I) such that R/I is maximal Cohen–Macaulay over

R. Suppose that R has finite CM+-representation type. Then one must have d = 1. If In = 0

for some integer n > 0, then CM(R) has dimension at most n − 1 in the sense of [43]. If R is

Gorenstein, then R is a hypersurface and Dsg(R) has dimension at most n − 1 in the sense of

[125].

There are folklore conjectures that a Gorenstein local ring of countable CM-representation

type is a hypersurface, and that, for a Cohen–Macaulay local ringR of countable CM-representation

type, CM(R) has dimension at most one. The above theorem gives partial answers to the variants

of these folklore conjectures for finite CM+-representation type.

In Section 3.5, we give a complete answer to Conjecture 3.1.1 in dimension one without the

assumption of the conjecture on the coefficient field.
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Theorem 3.1.6 (Theorem 3.5.1). Let R be a homomorphic image of a regular local ring. Sup-

pose that R does not have an isolated singularity but is Gorenstein. If dimR = 1, the following

are equivalent.

(1) The ring R has finite CM+-representation type.

(2) There exist a regular local ring S and a regular system of parameters x, y such that R is

isomorphic to S/(x2) or S/(x2y).

When either of these two conditions holds, the ring R has countable CM-representation type.

In Section 3.6, we explore the higher-dimensional case, that is, we try to understand the

Cohen–Macaulay local rings R of finite CM+-representation type in the case where dimR ≥ 2.

We prove the following two results in this section.

Theorem 3.1.7 (Corollary 3.6.8). Let R be a complete local hypersurface of dimension d ≥ 2

which is not an integral domain. Suppose that R has finite CM+-representation type. Then one

has d = 2, and there exist a regular local ring S and elements x, y ∈ S with R ∼= S/(xy) such

that S/(x) and S/(y) have finite CM-representation type and S/(x, y) is an integral domain of

dimension 1.

Theorem 3.1.8 (Corollaries 3.6.10 and 3.6.11). Let R be a 2-dimensional non-normal Cohen–

Macaulay complete local domain. Suppose that R has finite CM+-representation type. Then

the integral closure R of R has finite CM-representation type. If R is Gorenstein, then R is a

hypersurface.

The former theorem gives a strong restriction of the structure of a hypersurface of finite CM+-

representation type which is not an integral domain. The latter theorem supports the conjecture

that a Gorenstein local ring of finite CM+-representation type is a hypersurface. Note that, under

the assumption of the theorem plus the assumption that R is equicharacteristic zero, the integral

closure R is a quotient surface singularity by the theorem of Auslander [6] and Esnault [53].

3.2 Conjectures and questions

In this section, we present several conjectures and questions which we deal with in later sections.

First of all, let us give several definitions of representation types, including that of finite CM+-

representation type, which is the main subject of this chapter.

Definition 3.2.1. Let R be a Cohen–Macaulay ring. Set

CM+(R) := CM(R) \ CM0(R).1

For each X ∈ {CM,CM0,CM+} we say that R has finite (resp. countable) X-representation type if

there exist only finitely (resp. countably) many isomorphism classes of indecomposable modules

in X(R). We say that R has infinite (resp. uncountable) X-representation type if R does not have

finite (resp. countable) X-representation type. Also, R is said to have bounded X-representation

1The index 0 (resp. +) in CM0(R) (resp. CM+(R)) means that it consists of modules whose nonfree loci have
zero (resp. positive) dimension.
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type if there exists an upper bound of the multiplicities of indecomposable modules in X(R),

and said to have unbounded X-representation type if R does not have bounded X-representation

type.

Let R be a complete local hypersurface with uncountable algebraically closed coefficient

field of characteristic not two. Buchweitz, Greuel and Schreyer [21, Theorem B] (see also [108,

Theorem 14.16]) prove that R has countable CM-representation type if and only if it is either an

(A∞)-singularity or a (D∞)-singularity. Moreover, when this is the case, they give a complete

classification of the indecomposable maximal Cohen–Macaulay R-modules. Using this result,

Araya, Iima and Takahashi [3, Theorem 1.1 and Corollary 1.3] prove the following theorem

(see [43, Proposition 3.5(3)]), which provides examples of a Cohen–Macaulay local ring of finite

CM+-representation type.

Theorem 3.2.2 (Araya–Iima–Takahashi). Let R be a complete local hypersurface with un-

countable algebraically closed coefficient field of characteristic not two. If R has countable CM-

representation type, then the following statements hold.

(1) The ring R has finite CM+-representation type.

(2) There is an inequality dimCM(R) ≤ 1.

By definition, there is a strong connection between finite CM+-representation type and finite

CM-representation type. The first assertion of Theorem 3.2.2 suggests to us that finite CM+-

representation type should also be closely related to countable CM-representation type. Several

conjectures have been presented so far concerning finite/countable CM-representation type, and

we set the following proposal.

Proposal 3.2.3. One should consider the conjectures on finite/countable CM-representation

type for finite CM+-representation type.

There has been a folklore conjecture on countable CM-representation type probably since

the 1980s. Recently, this conjecture has been studied by Stone [134].

Conjecture 3.2.4. A Gorenstein local ring R of countable CM-representation type is a hyper-

surface.

This conjecture holds true if R has finite CM-representation type; see [149, Theorem (8.15)].

Also, the conjecture holds if R is a complete intersection with algebraically closed uncountable

residue field; see [12, Existence Theorem 7.8]. The following example shows that the assumption

in the conjecture that R is Gorenstein is necessary.

Example 3.2.5. Let S = C[[x, y, z]]/(xy). Then S is an (A∞)-singularity of dimension 2, and

has countable CM-representation type by [21, Theorem B]. Let R be the second Veronese subring

of S, that is, R = C[[x2, xy, xz, y2, yz, z2]] ⊆ S. Then R is a Cohen–Macaulay non-Gorenstein

local ring of dimension 2. We claim that R has countable CM-representation type. Indeed, let

N1, N2, . . . be the non-isomorphic indecomposable maximal Cohen–Macaulay S-modules. Let

M be an indecomposable maximal Cohen–Macaulay R-module. Then N = HomR(S,M) is a

maximal Cohen–Macaulay S-module, and one can write N ∼= N⊕b1
a1 ⊕ · · · ⊕N⊕bt

at . Since R is a

direct summand of S, the module M is a direct summand of N , and hence it is a direct summand

of Nai for some i. The claim follows from this.
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Combining Conjecture 3.2.4 with Proposal 3.2.3 gives rise to the following question.

Question 3.2.6. Let R be a Gorenstein local ring which is not an isolated singularity. Suppose

that R has finite CM+-representation type. Then is R a hypersurface?

Here, the assumption that R is not an isolated singularity is necessary. Indeed, if R is an

isolated singularity, then # ind CM+(R) = 0 < ∞. Obviously, if Conjecture 3.1.1 holds, then

this question is affirmative under the assumption of the conjecture. We shall give answers to

Question 3.2.6 in Sections 3.4 and 3.6.

Theorem 3.2.2(2) leads us to the following conjecture.

Conjecture 3.2.7. Let R be a Cohen–Macaulay local ring R of countable CM-representation

type. Then there is an inequality dimCM(R) ≤ 1.

This conjecture holds true if R has finite CM-representation type; see [43, Proposition 3.7(1)].

Let R be a Gorenstein local ring. Then the stable category CM(R) of CM(R) is a triangulated

category, and one can consider the (Rouquier) dimension dimCM(R) of CM(R); we refer the

reader to [125] for the details. One has dimCM(R) ≤ dimCM(R) with equality if R is a hyper-

surface; see [43, Proposition 3.5]. There seems to be a folklore conjecture asserting that every

(noncommutative) selfinjective algebra Λ of tame representation type satisfies the inequality

dim(modΛ) ≤ 1. So Conjecture 3.2.7 is thought of as a Cohen–Macaulay version of this folklore

conjecture. Combining Conjecture 3.2.7 with Proposal 3.2.3 leads us to the following question.

Question 3.2.8. Let R be a Cohen–Macaulay local ring of finite CM+-representation type.

Then does one have dimCM(R) ≤ 1?

If Conjecture 3.1.1 holds true, then Question 3.2.8 is affirmative for a Gorenstein local ring

satisfying the assumption of the conjecture by [21, Theorem B] and Theorem 3.2.2. We shall

give other answers to this question in Section 3.4.

Huneke and Leuschke ([83, Theorem 1.3]) prove the following theorem, which solves a con-

jecture of Schreyer [133, Conjecture 7.2.3] presented in the 1980s.

Theorem 3.2.9 (Huneke–Leuschke). Let (R,m, k) be an excellent Cohen–Macaulay local ring.

Assume that R is complete or k is uncountable. If R has countable CM-representation type, then

dimSingR ≤ 1.

Indeed, the assumption that R is excellent is unnecessary; see [137, Theorem 2.4]. This

result naturally makes us have the following question.

Question 3.2.10. Let R be a Cohen–Macaulay local ring. Suppose that R has finite CM+-

representation type. Then does SingR have dimension at most one?

We shall give a complete answer to this question in the next Section 3.3. In fact, we can

even prove a stronger statement.
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3.3 The closedness and dimension of the singular locus

In this section, we discuss the structure of the singular locus of a Cohen–Macaulay local ring

of finite CM+-representation type. First, we consider what the finiteness of the singular locus

means.

Lemma 3.3.1. Let R be a local ring with maximal ideal m. The following are equivalent.

(1) SingR is a finite set.

(2) SingR is a closed subset of SpecR in the Zariski topology, and has dimension at most one.

Proof. (2)⇒(1): We find an ideal I of R such that SingR = V(I). As SingR has dimension at

most one, so does the local ring R/I. Hence SpecR/I = MinR/I ∪ {m/I}, and this is a finite

set.

(1)⇒(2): Write SingR = {p1, . . . , pn}. As SingR is specialization-closed, it coincides with

the finite union V(p1) ∪ · · · ∪V(pn) of closed subsets of SpecR. Hence SingR is closed.

To show the other assertion, we claim (or recall) that a local ring R of dimension at least two

possesses infinitely many prime ideals of height one. Indeed, for any x ∈ m we have ht(x) ≤ 1

by Krull’s principal ideal theorem, that is, (x) is contained in some prime ideal p with ht p ≤ 1.

This argument shows that m =
∪

p∈SpecR, ht p≤1 p. Now suppose that there exist only finitely

many prime ideals of R having height one. Then, since the number of the minimal primes is

finite, so is the number of prime ideals of height at most one. Therefore the above union is

finite, and by prime avoidance m is contained in some p ∈ SpecR with ht p ≤ 1. This implies

dimR ≤ 1, which is a contradiction. Thus the claim follows.

Now, assume that SingR has dimension at least 2. Then dimR/p ≥ 2 for some p ∈ SingR.

The above claim shows that the ring R/p has infinitely many prime ideals of height one, which

have the form q/p with q ∈ V(p). Then q is also in SingR, and hence SingR contains infinitely

many prime ideals. This contradiction shows that the dimension of SingR is at most 1. ■

The following theorem clarifies a close relationship between finite/countable CM+-representation

type and finiteness/countablity of the singular locus.

Theorem 3.3.2. If R is a Cohen–Macaulay local ring of finite (resp. countable) CM+-representation

type, then SingR is a finite (resp. countable) set.

Proof. First, let us consider the case where R has finite CM+-representation type. Write

ind CM+(R) = {G1, . . . , Gt}, and pick p ∈ SingR \ {m}. Set C = Ωd
R(R/p). We claim that

p = AnnR TorR1 (C,C). Indeed, TorR1 (C,C) is isomorphic to T := TorR1+2d(R/p, R/p), which is

killed by p. Hence p is contained in the annihilator. Also, Tp is isomorphic to Tor
Rp

1+2d(κ(p), κ(p)),

which does not vanish as p belongs to the singular locus. Hence p is in the support of T , and

contains the annihilator. Now the claim follows.

Note that Cp is stably isomorphic to Ωd
Rp

(κ(p)), which is not Rp-free since Rp is singular.

This means that C belongs to CM+(R), and we get an isomorphism C ∼= G⊕a1
l1
⊕ · · ·⊕G⊕as

ls
⊕H

with s ≥ 1 and 1 ≤ l1 < · · · < ls ≤ t and a1, . . . , as ≥ 1 and H ∈ CM0(R). It is easy to see that

p =
(∩

1≤i,j≤sAnnR TorR1 (Gli , Glj )
)
∩AnnR TorR1 (H,M)
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for some R-module M . Since a prime ideal is irreducible in general, p coincides with one of the

annihilators in the right-hand side. The module H is locally free on the punctured spectrum,

and AnnR TorR1 (H,M) contains a power of m. As p is a nonmaximal prime ideal, it cannot

coincide with AnnR TorR1 (H,M). We thus have p = AnnR TorR1 (Glp , Glq) for some p, q. This

shows that we have only finitely many such prime ideals p. Consequently, SingR\{m} is a finite

set, and so is SingR.

We can analogously deal with the case where R has countable CM+-representation type. In

this case, we can write ind CM+(R) = {G1, G2, G3, . . . }, and for each p ∈ SingR \ {m} there

exist p, q such that p = AnnR TorR1 (Glp , Glq). ■

Theorem 3.3.2 yields the following corollary, which gives a complete answer to Question

3.2.10. We should remark that the second assertion of the corollary highly refines Theorem

3.2.9 due to Huneke and Leuschke.

Corollary 3.3.3. Let R be a Cohen–Macaulay local ring.

(1) If R has finite CM+-representation type, then SingR is closed and has dimension at most

one.

(2) Suppose that R has countable CM+-representation type.

(a) If k is uncountable, then SingR has dimension at most one.

(b) If R is complete, then SingR is closed and has dimension at most one.

Proof. (1) The assertion follows from Theorem 3.3.2 and Lemma 3.3.1.

(2) Theorem 3.3.2 implies that SingR is a countable set. Note that SingR is specialization-

closed. If R is complete or k is uncountable, then we can apply [137, Lemma 2.2] to deduce

that dimR/p ≤ 1 for all p ∈ SingR. In case R is complete, SingR is closed as well since R is

excellent. ■

Next we investigate the relationship of finite CM+-representation type with localization of

the base ring at a prime ideal. For this, we establish two lemmas.

Lemma 3.3.4. Let R be a local ring. Let M,N,C be R-modules. Suppose that the endomor-

phism ring EndR(C) is isomorphic to R, and that C is not a direct summand of M or N . If

M ⊕ C⊕a ∼= N ⊕ C⊕b for some a, b ≥ 0, then M ∼= N and a = b.

Proof. Without loss of generality, we can assume a ≥ b. Taking the completions, we get isomor-

phisms M̂ ⊕ Ĉ⊕a ∼= N̂ ⊕ Ĉ⊕b and End
R̂
(Ĉ) ∼= R̂. Since R̂ is a local ring, Ĉ is an indecomposable

R̂-module. Write M̂ = X⊕Ĉ⊕c and N̂ = Y ⊕Ĉ⊕d with c, d ≥ 0 integers and X,Y not containing

Ĉ as a direct summand. Then X ⊕ Ĉ⊕(c+a) ∼= Y ⊕ Ĉ⊕(d+b). Since R̂ is henselian, we can apply

the Krull-Schmidt theorem to deduce that X ∼= Y and c+ a = d+ b. Hence d = c+(a− b), and

we obtain

N̂ = Y ⊕ Ĉ⊕d ∼= X ⊕ Ĉ⊕(c+(a−b)) = M̂ ⊕ Ĉ⊕(a−b) ∼= L̂,

where L := M ⊕ C⊕(a−b). It follows from [50, Exercise 7.5] that N is isomorphic to L. As C is

not a direct summand of N , we must have a = b, and therefore M = L ∼= N . ■
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Lemma 3.3.5. Let R be a local ring. Let M,N be R-modules.

(1) If R is a direct summand of M ⊕N , then R is a direct summand of either M or N .

(2) Assume that R,M,N are maximal Cohen–Macaulay, and that R admits a canonical module

ω. If ω is a direct summand of M ⊕N , then ω is a direct summand of either M or N .

Proof. (1) There exists a surjective homomorphism (f, g) : M ⊕N → R. Then we find elements

x ∈ M and y ∈ N such that f(x) + g(y) = 1 in R. Since R is a local ring, either f(x) or g(y)

is a unit of R. If f(x) is a unit, then f : M → R is surjective, which implies that R is a direct

summand of M . Similarly, if g(y) is a unit, then R is a direct summand of N .

(2) WriteM⊕N = ω⊕L in modR. Applying the canonical dual functor (−)† = HomR(−, ω),
we get an isomorphism M † ⊕N † ∼= R ⊕ L†. It follows from (1) that R is a direct summand of

either M † or N †. Hence ω is a direct summand of either M †† = M or N †† = N . ■

Remark 3.3.6. Recall that an R-module C is semidualizing if the natural map R→ EndR(C)

is an isomorphism and ExtiR(C,C) = 0 for all i > 0. Lemma 3.3.5(2) can be extended to

semidualizing modules, that is, the following statement holds: Let R be a Cohen–Macaulay

local ring and M,N maximal Cohen–Macaulay R-modules. If a semidualizing R-module C is a

direct summand of M ⊕N , then C is a direct summand of either M or N . This is shown just

by replacing ω with C in the proof of Lemma 3.3.5(2).

Now we can prove the following theorem, which says that finite CM+-representation type

implies finite CM-representation type on the punctured spectrum. This especially shows that

finite CM+-representation type localizes, which should be compared with the result of Huneke

and Leuschke [83, Theorem 2.1] asserting that countable CM-representation type localizes under

the same assumption as in this theorem. This is also connected with the conjecture that a

Cohen–Macaulay local ring with an isolated singularity having countable CM-representation

type has finite CM-representation type [83, Page 3006].

Theorem 3.3.7. Let (R,m) be a Cohen–Macaulay local ring with a canonical module ω. Suppose

that R has finite CM+-representation type. Then Rp has finite CM-representation type for all

p ∈ SpecR \ {m}.

Proof. Assume that there exists a prime ideal p ̸= m such that Rp has infinite CM-representation

type. Then the set ind CM(Rp) \ {ωp} is infinite, and we can take an infinite subset N =

{N1, N2, N3, . . . }.
Fix a module N ∈ N . Then we can choose an R-module L such that N ∼= Lp. Take a

maximal Cohen–Macaulay approximation of L over R, that is, a short exact sequence

σ : 0→ Y → X → L→ 0

of R-modules such that X is maximal Cohen–Macaulay and Y has finite injective dimension;

see [7, Theorem 1.1]. Localization gives an exact sequence σp : 0 → Yp → Xp → N → 0. As

N is maximal Cohen–Macaulay, Yp is a maximal Cohen–Macaulay Rp-module of finite injective

dimension. It follows from [19, Exercise 3.3.28(a)] that Yp ∼= ω⊕n
p for some n ≥ 0. The exact

sequence σp splits, and we get an isomorphismXp
∼= N⊕ω⊕n

p . Note that ωp is an indecomposable

Rp-module.
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Let X = X1 ⊕ · · · ⊕ Xm be a decomposition of X into indecomposable R-modules. Then

there is an isomorphism (X1)p ⊕ · · · ⊕ (Xm)p ∼= N ⊕ ω⊕n
p . For each i write (Xi)p = Zi ⊕ ω⊕li

p

with li ≥ 0 an integer and Zi not containing ωp as a direct summand; then Zi is a maximal

Cohen–Macaulay Rp-module. We get an isomorphism

Z1 ⊕ · · · ⊕ Zm ⊕ ω
⊕(l1+···+lm)
p

∼= N ⊕ ω⊕n
p .

The module Z1⊕· · ·⊕Zm does not contain ωp as a direct summand by Lemma 3.3.5(2), whileN is

an indecomposable Rp-module with N ≇ ωp. Using Lemma 3.3.4, we see that Z1⊕· · ·⊕Zm
∼= N

and l1 + · · · + lm = n. We may assume that Z1
∼= N and Z2 = · · · = Zm = 0. It holds that

(X1)p ∼= N ⊕ ω⊕l1
p .

Suppose that (X1)p is Rp-free. Then so are N and ωp, and we have N ∼= Rp
∼= ωp, which

contradicts the choice of N . Hence (X1)p is not Rp-free, which implies that X1 ∈ CM+(R).

Thus we have shown that for each integer i ≥ 1 there exist an integer ni ≥ 0 and a module

Ci ∈ ind CM+(R) such that (Ci)p ∼= Ni ⊕ ω⊕ni
p . Assume that Ci

∼= Cj for some i ̸= j. Then

Ni⊕ω⊕ni
p
∼= Nj⊕ω

⊕nj
p , and by Lemma 3.3.4 we see that Ni

∼= Nj (and ni = nj), contrary to the

choice ofN . Hence Ci ≇ Cj for all i ̸= j, and we conclude that R has infinite CM+-representation

type. This contradiction completes the proof of the theorem. ■

Remark 3.3.8. In Corollary 3.3.3(1) we proved that the singular locus of a Cohen–Macaulay

local ring of finite CM+-representation type has dimension at most one. As an application of

Theorem 3.3.7, we can get another proof of this statement under the assumption that R admits

a canonical module.

Let R be a d-dimensional Cohen–Macaulay local ring with a canonical module, and suppose

that R has finite CM+-representation type. Then Rp has finite CM-representation type for all

nonmaximal prime ideals p of R by Theorem 3.3.7. In particular, Rp has an isolated singularity

for all such p by [82, Corollary 2]. This implies that Rq is a regular local ring in codimension

d− 2, and therefore dimSingR ≤ 1.

3.4 Necessary conditions for finite CM+-representation type

In this section, we explore necessary conditions for a Cohen–Macaulay local ring to have finite

CM+-representation type. For this purpose we begin with stating and showing a couple of

lemmas.

Lemma 3.4.1. Let R be a local ring.

(1) The subcategory of modR consisting of periodic modules is closed under finite direct sums:

if the R-modules M1, . . . ,Mn are periodic, then so is M1 ⊕ · · · ⊕Mn.

(2) Let 0 → M1 → · · · → Mn → 0 be an exact sequence in modR. Let r ≥ 0 and 1 ≤ t ≤ n be

integers. If cxR(Mi) ≤ r for all 1 ≤ i ≤ n with i ̸= t, then cxR(Mt) ≤ r.

Proof. (1) We have only to show the assertion for n = 2. Let M1, N2 be periodic R-modules,

so ΩaM1
∼= M1 and ΩbM2

∼= M2 for some a, b > 0. Let l be the least common multiple of a, b.

Then ΩlM1
∼= M1 and ΩlM2

∼= M2. Hence Ωl(M1 ⊕M2) ∼= ΩlM1 ⊕ ΩlM2
∼= M1 ⊕M2.
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(2) It suffices to show the statement when n = 3. Suppose that M2,M3 have complexity

at most r. Then we find p, q ∈ R>0 such that βR
j (M2) ≤ pjr−1 and βR

j (M3) ≤ qjr−1 for

j ≫ 0. The induced exact sequence TorRj+1(M3, k) → TorRj (M1, k) → TorRj (M2, k) shows that

βR
j (M1) ≤ βR

j (M2) + βR
j+1(M3) ≤ (p + qr)jr−1 for j ≫ 0. Therefore we obtain cxR(M3) ≤ r.

The other cases are handled similarly. ■

Let R be a local ring. A subcategory X of modR is called resolving if X contains R and

closed under

• direct summands: if X ∈ X and M ∈ modR is a direct summand of X, then M ∈ X ;

• extensions: for an exact sequence 0 → L → M → N → 0 in modR, if L,N ∈ X , then
M ∈ X ;

• syzygies: if X ∈ X , then ΩRX ∈ X .

Typical examples of resolving subcategories of modR are CM(R) and CM0(R).

The subcategory CM+(R) of modR is stable under syzygies.

Lemma 3.4.2. Let R be a local ring. Let 0 → N → F → M → 0 be an exact sequence in

modR such that F is free and M is maximal Cohen–Macaulay. Then M belongs to CM+(R) if

and only if so does N .

Proof. Note that all the modules N,F,M are maximal Cohen–Macaulay. Hence the assertion is

equivalent to saying that M belongs to CM0(R) if and only if so does N . The “if” part follows

from the fact that CM0(R) is resolving. To show the “only if” part, assume that N is in CM0(R).

Let p be a nonmaximal prime ideal of R. Then Np is Rp-free, and we see that the Rp-module

Mp has projective dimension at most 1. Note that Mp is maximal Cohen–Macaulay over Rp.

The Auslander–Buchsbaum formula implies that Mp is free. Hence M is in CM0(R). ■

We state some containments among indecomposable maximal Cohen–Macaulay modules over

Cohen–Macaulay local rings, one of which is a homomorphic image of the other.

Proposition 3.4.3. Let R be a Cohen–Macaulay local ring of dimension d. Let I be an ideal of

R such that R/I is a maximal Cohen–Macaulay R-module. Then the following statements hold.

(1) ind CM(R/I) is contained in ind CM(R).

(2) ind CM+(R/I) is contained in ind CM+(R).

(3) ind CM(R/I) is contained in ind CM+(R), if V(I) ⊆ V(0 : I).

Proof. Let M be an indecomposable maximal Cohen–Macaulay R/I-module. The definition

of indecomposability says M ̸= 0. The equalities depthM = dimR/I = dimR imply M is a

maximal Cohen–Macaulay R-module. It is directly checked that M is indecomposable as an

R-module. Now (1) follows.

Let p be a prime ideal of R such that Mp
∼= (Rp)

⊕n for some n ≥ 0. If n = 0, then Mp = 0.

If n > 0, then IRp = 0 since IM = 0, and hence Mp
∼= R⊕n

p = (R/I)⊕n
p .
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Let us consider the case where M is in CM+(R/I). Then there is a prime ideal q of R with

I ⊆ q ̸= m such that Mq is not (R/I)q-free. Letting p := q in the above argument, we observe

that Mq is not Rq-free (note that the zero module is free). Thus M is in CM+(R), and (2)

follows.

Next we consider the case where M is in CM0(R). As dimM = dimR/I = d > 0, there is

a nonmaximal prime ideal r of R such that Mr ̸= 0. Letting p := r in the above argument, we

have IRr = 0. Hence r is not in the support of the R-module I, which is equivalent to saying

that r does not contain (0 : I). On the other hand, r is in the support of the R-module M ,

which implies that r contains I. Thus V(I) is not contained in V(0 : I). We now observe that

(3) holds. ■

The lemma below says finite CM-representation type is equivalent to finite CM0-representation

type.

Lemma 3.4.4. Let R be a Cohen–Macaulay local ring. If R has infinite CM-representation

type, then R has infinite CM0-representation type.

Proof. Suppose that R has finite CM0-representation type. Then by [43, Corollary 1.2] it is an

isolated singularity. Hence CM(R) = CM0(R), and we have ind CM(R/I) = ind CM0(R/I), which

is a finite set. This contradicts the assumption that R has infinite CM-representation type. ■

Now we can prove the first main result of this section, which gives various necessary condi-

tions for a Cohen–Macaulay local ring to have finite CM+-representation type.

Theorem 3.4.5. Let R be a Cohen–Macaulay local ring of dimension d > 0. Let I be an

ideal of R, and assume that R/I is a maximal Cohen–Macaulay R-module. Then R has infinite

CM+-representation type in each of the following cases.

(1) R/I has infinite CM+-representation type.

(2) V(I) ⊆ V(0 : I) and

(a) R/I has infinite CM-representation type, or

(b) d ≥ 2.

(3) ht(I + (0 : I)) < d, R/I has infinite CM-representation type, and

(a) R/I is a Gorenstein ring, or

(b) R/I is a domain, or

(c) d = 1 and R/I is analytically unramified, or

(d) d = 1, k is infinite, and R/I is equicharacteristic and reduced.

Proof. (1)&(2a) These assertions immediately follow from (2) and (3) of Proposition 3.4.3,

respectively.

(2b) In view of (2a), we may assume that R/I has finite CM-representation type. It follows

from [82, Corollary 2] that R/I is an isolated singularity. As d ≥ 2, the ring R/I is a (normal)

domain. Hence p := I is a prime ideal of R. As dimR/p = d, the prime ideal p is minimal.
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The assumption V(p) ⊆ V(0 : p) implies (0 :R p) ⊆ p. Localizing this inclusion at p, we get an

inclusion (0 :Rp pRp) ⊆ pRp, which particularly says that Rp is not a field. Therefore p belongs

to SingR.

Suppose that R has finite CM+-representation type. Then Corollary 3.3.3(1) implies that

SingR has dimension at most one. In particular, we obtain d = dimR/p ≤ 1, which is a

contradiction. Consequently, R has infinite CM+-representation type.

(3) We find a nonmaximal prime ideal p of R that contains the ideal I + (0 : I). Then, as p

contains I, the prime ideal p/I of R/I is defined, which is not maximal. Also, since p contains

(0 : I) as well, we see that IRp is a nonzero proper ideal of Rp.

We establish several claims.

Claim 3. Let M ∈ ind CM0(R/I) with Mp ̸= 0. Then M ∈ ind CM+(R).

Proof of Claim. Proposition 3.4.3(1) implies M ∈ ind CM(R). There exists an integer n ≥ 0

such that

Mp = Mp/I
∼= (R/I)⊕n

p/I = (R/I)⊕n
p = (Rp/IRp)

⊕n.

Since Mp is nonzero, we have to have n > 0. Since IRp is a nonzero proper ideal of Rp, we have

that Mp is not a free Rp-module. We now conclude that M belongs to ind CM+(R). □

Claim 4. When R/I be Gorenstein, for each M ∈ ind CM0(R/I), either M or ΩR/IM is in

ind CM+(R).

Proof of Claim. If Mp ̸= 0, then M ∈ ind CM+(R) by Claim 3. Let Mp = 0. There is an exact

sequence 0 → N → (R/I)⊕n → M → 0, where we set N := ΩR/IM and n := νR/I(M) > 0.

Localization at p gives an isomorphism Np
∼= (Rp/IRp)

⊕n. As n > 0 and IRp is a proper ideal,

the module Np is nonzero. Since R/I is Gorenstein and CM0(R/I) is a resolving subcategory of

modR/I, the module N also belongs to ind CM0(R/I); see [149, Lemma (8.17)]. Using Claim 3

again, we obtain N ∈ ind CM+(R). □

Claim 5. There is an inclusion

{M ∈ ind CM0(R/I) |M has a rank as an R/I-module} ⊆ ind CM+(R).

Proof of Claim. Take M from the left-hand side. Since the R/I-module M is maximal Cohen–

Macaulay, its annihilator has grade 0. Hence M has positive rank, and we see that SuppR/I M =

SpecR/I. Therefore Mp = Mp/I is nonzero. It follows from Claim 3 that M belongs to

ind CM+(R). □

(3a) Suppose that R has finite CM+-representation type, namely, ind CM+(R) is a finite set.

Lemma 3.4.4 guarantees that the set ind CM0(R/I) is infinite, and hence the set difference

S := ind CM0(R/I) \ ind CM+(R)

is infinite as well. Thus we can choose a (countably) infinite subset {M1,M2,M3, . . . } of S. By
Claim 4 we see that ΩR/IMi belongs to ind CM+(R) for all i. Note that ΩR/IMi ̸∼= ΩR/IMj

for all distinct i, j since R/I is Gorenstein and Mi,Mj are maximal Cohen–Macaulay over R/I.
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It follows that ind CM+(R) is an infinite set, which is a contradiction. Thus R has infinite

CM+-representation type.

(3b) Since R/I is a domain, every R/I-module has a rank. Claim 5 implies that ind CM0(R/I)

is contained in ind CM+(R), while ind CM0(R/I) is an infinite set by Lemma 3.4.4. It follows

that R has infinite CM+-representation type.

(3c) Note that CM(R/I) = CM0(R/I). Since R/I is analytically unramified, it follows from

[108, Theorem 4.10] that the left-hand side of the inclusion in Claim 5 is infinite, and so is the

right-hand side ind CM+(R), that is, R has infinite CM+-represenation type.

(3d) Since k is infinite and R/I is equicharacteristic, we can apply [108, Theorem 17.10]

to deduce that if R/I has unbounded CM-representation type, then the left-hand side of the

inclusion in Claim 5 is infinite (as R/I is reduced), and we are done. Hence we may assume that

R/I has bounded CM-representation type. By [108, Theorems 10.1 and 17.10] the completion

R̂/I has infinite and bounded CM-representation type. According to [108, Theorem 17.9], the

ring R̂/I is isomorphic to one of the following three rings.

k[[x, y]]/(x2), k[[x, y]]/(x2y), k[[x, y, z]]/(yz, x2 − xz, xz − z2).

The indecomposable maximal Cohen–Macaulay modules over these rings are classified; one can

find complete lists of those modules in [21, Propositions 4.1 and 4.2] and [108, Example 14.23].

We can check by hand that each of these rings has an infinite family of nonisomorphic indecom-

posable maximal Cohen–Macaulay modules of rank 1. This family of modules is extended from

a family of R/I-modules by [107, Corollary 2.2], and these are nonisomorphic indecomposable

maximal Cohen–Macaulay R/I-modules of rank 1. Again, the left-hand side of the inclusion in

Claim 5 is infinite, and the proof is completed. ■

Two irreducible elements p, q of an integral domain R are said to be distinct if pR ̸= qR.

Applying our Theorem 3.4.5, we can obtain the following corollary, which is a basis in the next

Section 3.5 to obtain a stronger result (Theorem 3.5.1).

Corollary 3.4.6. Let (S, n) be a regular local ring of dimension two. Take an element 0 ̸=
f ∈ n and set R = S/(f). Suppose that R is not an isolated singularity but has finite CM+-

representation type. Then f has one of the following forms:

f =


p2qr where p, q, r are distinct irreducibles

with S/(pqr) having finite CM-representation type,

p2q where p ̸= q are irreducibles with S/(pq) having finite CM-representation type,

p2 where p is an irreducible with S/(p) having finite CM-representation type.

Proof. As S is factorial, we can write f = pa11 · · · pann , where p1, . . . , pn are distinct irreducible

elements and n, a1, . . . , an are positive integers. If a1 = · · · = an = 1, then R is reduced, and

hence it is an isolated singularity, which is a contradiction. Thus we may assume a1 ≥ 2.

Put x := p1 · · · pn ∈ R. We have

(x) + (0 : x) = (p1 · · · pn, pa1−1
1 pa2−1

2 · · · pan−1
n ) ⊆ (p1),

and hence ht((x) + (0 : x)) = 0 < 1. Taking advantage of Theorem 3.4.5(3a), we observe that

R/(x) has finite CM-representation type. Also, R/(x) = S/(p1 · · · pn) has multiplicity at least

n. By [108, Theorem 4.2 and Proposition 4.3] we see that n ≤ 3.

40



Assume either a1 ≥ 3 or al ≥ 2 for some l ≥ 2, say l = 2. Then put x := p21p2 · · · pn ∈ R.

We have

(x) + (0 : x) = (p21p2 · · · pn, p
a1−2
1 pa2−1

2 · · · pan−1
n ) ⊆

{
(p1) (if a1 ≥ 3),

(p2) (if a2 ≥ 2)

and hence ht((x)+(0 : x)) = 0 < 1. The ring R/(x) = S/(p21p2 · · · pn) is not reduced, so it is not

an isolated singularity. By [82, Corollary 2], it has infinite CM-representation type. Theorem

3.4.5(3a) implies that R has infinite CM+-representation type, which is a contradiction. Thus

a1 = 2 and a2 = · · · = an = 1.

Getting toghther all the above arguments completes the proof of the corollary. ■

To give applications of Theorem 3.4.5, we establish a lemma.

Lemma 3.4.7. Let R be a Gorenstein local ring of finite CM+-representation type. Then for all

M ∈ ind CM+(R) one has cxR M = 1.

Proof. As R is Gorenstein, ΩiM ∈ ind CM+(R) for all i ≥ 0 by Lemma 3.4.2 and [149, Lemma

8.17]. Since ind CM+(R) is a finite set, ΩtM is periodic for some t ≥ 0. Hence M has complexity

at most one. As M is in CM+(R), it has to have infinite projective dimension. Thus the

complexity of M is equal to one. ■

Let R be a ring. We denote by Dsg(R) the singularity category of R, that is, the Verdier

quotient of the bounded derived category of finitely generated R-modules by perfect complexes.

For an R-module M , we denote by NFR(M) the nonfree locus of M , that is, the set of prime

ideals p of R such that Mp is nonfree as an Rp-module. Now we prove the following result by

using Theorem 3.4.5.

Theorem 3.4.8. Let R be a Cohen–Macaulay local ring of dimension d > 0. Let I be an ideal

of R with V(I) ⊆ V(0 : I), and assume that R/I is a maximal Cohen–Macaulay R-module.

Suppose that R has finite CM+-representation type. Then:

(1) One has d = 1.

(2) If In = 0, then dimCM(R) ≤ n− 1.

(3) If R is Gorenstein, then R is a hypersurface and dimDsg(R) ≤ n− 1.

Proof. (1) This is a direct consequence of Theorem 3.4.5(2b).

(2) It follows from Theorem 3.4.5(2a) that R/I has finite CM-representation type. Hence

there exists a maximal Cohen–Macaulay R/I-module G such that CM(R/I) = addR/I G. Take

any maximal Cohen–Macaulay R-module M and put M0 := M . For each integer 0 ≤ i ≤ n− 1

we have an exact sequence 0→ (0 :Mi I)
fi−→Mi →Mi+1 → 0, where fi is the inclusion map.

Let us show that for all 0 ≤ i ≤ n − 1 the R-module Mi is maximal Cohen–Macaulay and

annihilated by In−i. We use induction on i. It clearly holds in the case i = 0, so let i ≥ 1.

Applying the functor HomR(−,Mi−1) to the natural exact sequence 0 → I → R → R/I → 0

induces an exact sequence 0 → (0 :Mi−1 I)
fi−1−−−→ Mi−1 → HomR(I,Mi−1), and hence Mi is

identified with a submodule of HomR(I,Mi−1). The induction hypothesis implies that Mi−1
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is maximal Cohen–Macaulay and In−i−1Mi−1 = 0. Then HomR(I,Mi−1) has positive depth

(see [19, Exercise 1.4.19]), and so does Mi. Since d = 1 by (1), the R-module Mi is maximal

Cohen–Macaulay. Also, In−iMi−1 is contained in (0 :Mi−1 I), which implies that In−i annihilates

Mi−1/(0 :Mi−1 I) = Mi.

Thus, for each 0 ≤ i ≤ n−1 the submodule (0 :Mi I) of Mi is also maximal Cohen–Macaulay

(as d = 1 again). Since it is killed by I, it is a maximal Cohen–Macaulay R/I-module. Therefore

(0 :Mi I) belongs to addR G = [G]1 for all 0 ≤ i ≤ n − 1. Using that fact that M0 = M and

Mn = 0, we easily observe that M belongs to [G]n. It is concluded that CM(R) = [G]n, which

means that dimCM(R) ≤ n− 1.

(3) We claim that the R-module R/I has complexity at most one. Indeed, we have

NFR(R/I) = V(I + (0 : I)) = V(I) ∩V(0 : I) = V(I),

where the first equality follows from [140, Proposition 1.15(4)]. As I is not m-primary, NFR(R/I)

contains a nonmaximal prime ideal of R. Hence R/I is in CM+(R). Since R/I is a local ring, it

is an indecomposable R-module, and therefore R/I ∈ ind CM+(R). It is seen from Lemma 3.4.7

that R/I has complexity at most one as an R-module. Now the claim follows.

Let X be an indecomposable R/I-module which is a direct summand of C := Ωd
R/Ik. Propo-

sition 3.4.3(3) implies that X belongs to ind CM+(R). As in the proof of the first claim, Ωi
RX

belongs to ind CM+(R) for all i ≥ 0, and Ωn
RX is periodic for some n ≥ 0. Therefore, we find an

integer m ≥ 0 such that Ωm
RC is periodic; see Lemma 3.4.1. This implies that C has complexity

at most one. There is an exact sequence

0→ C → (R/I)⊕rm−1 → · · · → (R/I)⊕r2 → (R/I)⊕r1 → R/I → k → 0.

As cxR C ≤ 1 and cxR(R/I) ≤ 1, we get cxR k ≤ 1. By [10, Theorem 8.1.2] the ring R

is a hypersurface. The last assertion follows from [20, Theorem 4.4.1] and [43, Proposition

3.5(3)]. ■

The above theorem gives rise to the two corollaries below. Note that the theorem and the

two corollaries all give answers to Questions 3.2.6 and 3.2.8.

Corollary 3.4.9. Let R be a Cohen–Macaulay local ring of dimension d > 0 possessing an

element x ∈ R with (0 : x) = (x). Suppose that R has finite CM+-representation type. Then

d = 1 and dimCM(R) ≤ 1. If R is Gorenstein, then R is a hypersurface and dimDsg(R) ≤ 1.

Proof. We have x2 = 0. The sequence · · · x−→ R
x−→ R

x−→ · · · is exact, which implies that R/(x)

is a maximal Cohen–Macaulay R-module. The assertions follow from Theorem 3.4.8. ■

Corollary 3.4.10. Let R be a Gorenstein non-reduced local ring of dimension one. If R has

finite CM+-representation type, then R is a hypersurface.

Proof. Since R does not have an isolated singularity, SingR contains a nonmaximal prime ideal

p. It is easy to see that (R/p)p = κ(p) is not Rp-free, and we also have V(p) = {p,m} ⊆
SuppR(p) = V(0 : p) as pRp ̸= 0. Lemma 3.4.7 implies that the R-module R/p has complexity

at most 1, and the local ring R is a hypersurface by virtue of Theorem 3.4.8(3). ■
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3.5 The one-dimensional hypersurfaces of finite CM+-representation
type

The purpose of this section is to prove the following theorem.

Theorem 3.5.1. Let R be a homomorphic image of a regular local ring. Suppose that R does not

have an isolated singularity but is Gorenstein. If dimR = 1, then the following are equivalent.

(1) The ring R has finite CM+-representation type.

(2) There exist a regular local ring S and a regular system of parameters x, y such that R is

isomorphic to S/(x2) or S/(x2y).

When either of these two conditions holds, the ring R has countable CM-representation type.

In fact, the last assertion and the implication (2) ⇒ (1) follow from [21, Propositions 4.1

and 4.2] and [3, Proposition 2.1], respectively. The implication (1) ⇒ (2) is an immediate

consequence of the combination of Corollaries 3.4.6, 3.4.10 with Theorems 3.5.5, 3.5.11, 3.5.12

shown in this section. Note by Theorem 3.2.2 that the above theorem guarantees that under

the assumption that R is a complete Gorenstein local ring of dimension one, Question 3.2.8 has

an affirmative answer.

We establish three subsections, whose purposes are to prove Theorems 3.5.5, 3.5.11 and

3.5.12, respectively.

3.5.1 The hypersurface S/(p2)

For a ring A we denote by NZD(A) the set of non-zerodivisors of A, and by Q(A) the total

quotient ring ANZD(A) of A. A ring extension A ⊆ B is called birational if B ⊆ Q(A).

Lemma 3.5.2. Let A ⊆ B be a birational extension. Let M be a B-module which is torsion-

free as an A-module. If M is indecomposable as a B-module, then M is indecomposable as an

A-module as well.

Proof. The assertion follows by Remark 2.2.4. ■

Let A be a ring and M an A-module. We denote by EndA(M) the quotient of EndA(M)

by the endomorphisms factoring through projective A-modules. For a flat A-algebra B one has

EndA(M)⊗A B ∼= EndB(M ⊗A B); this can be shown by using [149, Lemma 3.9].

Lemma 3.5.3. Let A ⊆ B be a finite birational extension of 1-dimensional Cohen–Macaulay

local rings. Then ind CM+(B) is contained in ind CM+(A).

Proof. LetM ∈ ind CM+(B). Then depthAM = depthB M > 0, which shows thatM is maximal

Cohen–Macaulay as an A-module. Lemma 3.5.2 impliesM ∈ ind CM(A). SetQ = Q(A) = Q(B).

Applying the functor Q⊗A − to the inclusions A ⊆ B ⊆ Q yields B ⊗A Q = Q. Hence we have

M ⊗B Q = M ⊗B (B⊗AQ) = M ⊗AQ, EndA(M)⊗AQ ∼= EndQ(M ⊗AQ) ∼= EndQ(M ⊗B Q).

Since M is in CM+(B), there is a minimal prime P of B such that MP is not BP -free. Note

that MP = (M ⊗B Q) ⊗Q QP and QP = BP . Hence M ⊗B Q is not Q-projective, and we
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obtain EndQ(M ⊗B Q) ̸= 0. Therefore EndA(M) ⊗A Q is nonzero, which means that the A-

module EndA(M) is not torsion. Thus SuppA(EndA(M)) contains a minimal prime of A, which

implies that M belongs to CM+(A). Consequently, we obtain M ∈ ind CM+(A), and the lemma

follows. ■

The following lemma is a consequence of [149, Corollary 7.6], which is used not only now

but also later.

Lemma 3.5.4. Let (S, n) be a regular local ring and x ∈ n, and set R = S/(x). Then

{M ∈ CM(R) |M is cyclic}/∼= = {R/yR | y ∈ S with x ∈ yS}/∼=.

In particular, there exist only finitely many nonisomorphic indecomposable cyclic maximal Cohen–

Macaulay R-modules.

Now we can achieve the purpose of this subsection.

Theorem 3.5.5. Let (S, n) be a regular local ring of dimension two, and let p ∈ n2 be an

irreducible element. Then R = S/(p2) has infinite CM+-representation type.

Proof. Take any element t ∈ n that is regular on R. We consider the S-algebra T = S[z]/(tz −
p, z2), where z is an indeterminate over S. We establish two claims.

Claim 1. The ring T is a local complete intersection of dimension 1 and codimension 2 with t

being a system of parameters.

Proof of Claim. It is clear that T = S[[z]]/(tz − p, z2), which shows that T is a local ring, and

dimT = dimS[[z]] − ht(tz − p, z2) ≥ 3 − 2 = 1 by Krull’s Hauptidealsatz. We have T/tT =

S[[z]]/(t, p, z2) = (S/(t, p))[[z]]/(z2). As S/(t, p) is artinian, so is T/tT . Hence dimT = 1 and t is a

system of parameters of T , and thus T is a complete intersection (the equalities dimS[[z]] = 3 and

dimT = 1 imply ht(tz−p, z2) = 2, whence tz−p, z2 is a regular sequence). As (tz−p, z2) ⊆ n2,

the local ring T has codimension 2. □

Claim 2. The ring R is naturally embedded in T , and this embedding is a finite birational

extension.

Proof of Claim. Let ϕ : S → T be the natural map and put I = Kerϕ. As p2 = t2z2 = 0

in T , we have (p2) ⊆ I. Hence the map ϕ factors as S ↠ R ↠ S/I ↪→ T . It is seen that

T is an R-module generated by 1, z and S/I is an R-submodule of T . Since T has positive

depth by Claim 1, so does S/I. Thus S/I is a maximal Cohen–Macaulay cyclic module over the

hypersurface R, and Lemma 3.5.4 implies that I coincides with either (p) or (p2). If I = (p),

then T = T/pT = S[z]/(tz, p, z2), which contradicts the fact following from Claim 1 that t is

T -regular. We get I = (p2), which means the map R→ T is injective.

Let C be the cokernel of the injection R ↪→ T . Then C is generated by z as an R-module.

Note that tz = p = 0 in C. Hence C is a torsion R-module, which means C ⊗R Q(R) = 0.

Thus (Q(R) → T ⊗R Q(R)) = (R ↪→ T ) ⊗R Q(R) is an isomorphism, while the natural map

T → T ⊗R Q(R) is injective as T is maximal Cohen–Macaulay over R by Claim 1. Thus the

embedding R ↪→ T is birational. □
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By Claim 1, the ring T is a complete intersection, which implies that the element z2 is

regular on the ring S[z]/(tz − p) and so is z. It is easy to check that (0 :T z) = zT . Claim

1 also guarantees that T is not a hypersurface. It follows from Corollary 3.4.9 that T has

infinite CM+-representation type. Combining Claim 2 with Lemma 3.5.3, we obtain the inclusion

ind CM+(T ) ⊆ ind CM+(R). We now conclude that R has infinite CM+-representation type, and

the proof of the theorem is completed. ■

3.5.2 The hypersurface S/(p2qr)

Setup 3.5.6. Throughout this subsection, let (S, n) be a 2-dimensional regular local ring and

p, q, r pairwise distinct irreducible elements of S. Let R = S/(p2qr) be a local hypersurface of

dimension 1. Setting p = pR, q = qR, R = rR and m = nR, one has SpecR = {p, q,R,m}. For
each i ≥ 1 we define matrices

Ai =

p 0 ri

0 pq p
0 0 pr

 , Bi =

pqr 0 −qri
0 pr −p
0 0 pq


over S. Put Mi = CokS Ai and Ni = CokS Bi.

Lemma 3.5.7. (1) For every i ≥ 1 it holds that Mi, Ni ∈ CM+(R), ΩRMi = Ni and ΩRNi =

Mi.

(2) For all positive integers i ̸= j, one has Mi ≇ Mj and Ni ≇ Nj as R-modules.

Proof. (1) It is clear that AiBi = BiAi = p2qrE. Hence Ai, Bi give a matrix factorization of

p2qr over S, and we have Mi, Ni ∈ CM(R), ΩRMi = Ni and ΩRNi = Mi; see [149, Chapter 7].

Note that q, r are units and p2 = 0 in Rp = S(p)/p
2S(p). There are isomorphisms

(Mi)p ∼= Cok

(
p 0 ri

0 p p
0 0 p

)
∼= Cok

(
p 0 1
0 p 0
0 0 p

)
∼= Cok

(
0 0 1
0 p 0

−p2 0 p

)
∼= Cok

(
0 0 1
0 p 0
0 0 0

)
∼= Cok

(
p 0
0 0

) ∼= Rp⊕κ(p),

where all the cokernels are over Rp. Therefore Mi ∈ CM+(R), and we get Ni ∈ CM+(R) by

Lemma 3.4.2.

(2) Suppose that there is an R-isomorphism Mi
∼= Mj . It then holds that Fitt2(Mi) =

Fitt2(Mj), which means (p, ri)R = (p, rj)R. This implies that (ri) = (rj) in the integral domain

R/p = S/(p). Since r ̸= 0 in this ring, we get i = j. If Ni
∼= Nj , then Mi

∼= ΩRNi
∼= ΩRNj

∼= Mj

by (1), and we get i = j. ■

Lemma 3.5.8. There is an equality

{M ∈ CM+(R) |M is cyclic}/∼= = {R/(p), R/(pq), R/(pr), R/(pqr)}/∼=.

Proof. Let M be a cyclic R-module with M ∈ CM+(R). It follows from Lemma 3.5.4 that M

is isomorphic to R/fR for some element f ∈ S which divides p2qr in S. The localizations

Rq, Rr are fields, and hence Mp is not Rp-free. As p2 = 0 in Rp = S(p)/p
2S(p), it is observed

that f ∈ pS \ p2S. Thus f ∈ {p, pq, pr, pqr}. Conversely, for any g ∈ {p, pq, pr, pqr} we have

(R/gR)p ∼= κ(p) and get R/gR ∈ CM+(R). ■
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Lemma 3.5.9. Let i ≥ 1 be an integer. Then neither CokS/(pq)

(
p ri

0 p

)
nor CokS/(pr)

(
p
qri

)
contains S/(p) as a direct summand.

Proof. (1) Set T = S/(pq) and C = CokT

(
p ri

0 p

)
. Consider the sequence

T⊕2

(
p ri

0 p

)
←−−−−− T⊕2 ( q0 )←−− T

of homomorphisms of free T -modules. Clearly, this is a complex. Let ( ab ) ∈ T⊕2 be such that(
p ri

0 p

)
( ab ) = ( 00 ). In S we have pa+ rib = pqc and pb = pqd for some c, d ∈ S, and get b = qd

and pa + riqd = pqc. Hence pa ∈ qS ∈ SpecS and a ∈ qS; we find e ∈ S with a = qe. Then

pqe + riqd = pqc, and pe + rid = pc. Therefore rid ∈ pS ∈ SpecS, and d ∈ pS; we find f ∈ S

with d = pf and get b = qpf . In T⊕2 we have ( ab ) =
( qe
pqf

)
= ( qe0 ) = ( q0 ) (e). It follows that the

above sequence is exact, and the sequence

· · · p−→ T
q−→ T

p−→ T
( q0 )−−→ T⊕2

(
p ri

0 p

)
−−−−−→ T⊕2 → C → 0

gives a minimal free resolution of the T -module C.

Now, assume that S/(p) = T/pT is a direct summand of C. Then C ∼= T/pT ⊕T/I for some

ideal I of T . There are equalities of Betti numbers

2 = βT
1 (C) = βT

1 (T/pT ⊕ T/I) = βT
1 (T/pT ) + βT

1 (T/I) = 1 + βT
1 (T/I),

and we get βT
1 (T/I) = 1. This means I is a nonzero proper principal ideal of T ; we write

I = gT where g is a nonzero nonunit of T . The uniqueness of a minimal free resolution yields a

commutative diagram

· · · p
// T

∼= u3

��

q
// T

∼= u2

��

p
// T

∼= u1

��

( q0 ) // T⊕2

∼=
(
t1 t2
t3 t4

)
=:t

��

(
p 0
0 g

)
// T⊕2

∼= ( s1 s2
s3 s4 )=:s

��

// C // 0

· · · p
// T q

// T p
// T

( q0 )
// T⊕2 (

p ri

0 p

) // T⊕2 // C // 0

whose vertical maps are isomorphisms. As s, t are isomorphisms, their determinants s1s4− s2s3
and t1t4 − t2t3 are units of T . The commutativity of the diagram shows s3p = pt3 and t3q = 0

in T , which imply s3 − t3 ∈ (0 :T p) = qT and t3 ∈ (0 :T q) = pT . Hence s3 is a nonunit of

T , and therefore s1, s4 are units of T . Again from the commutativity of the diagram we get

s4g = pt4 and s2g = pt2+ rit4 in T , which give p(s2s
−1
4 t4− t2) = rit4. Hence rit4 ∈ pT ∈ SpecT

and t4 ∈ pT . We now get t1t4 − t2t3 is in pT , which contradicts the fact that it is a unit of T .

Consequently, S/(p) is not a direct summand of C.

(2) Put T = S/(pr) and C = CokT

(
p
qri

)
. We have SpecT = {pT, rT, nT}. Since (p, qri)T

is not contained in pT or rT , it is nT -primary and has positive grade. Hence the sequence

0→ T

( p
qri

)
−−−−→ T⊕2 → C → 0
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is exact, which gives a minimal free resolution of the T -module C. This implies pdR C = 1.

Suppose that S/(p) = T/pT is a direct summand of C. Then T/pT has projective dimension

at most one, which contradicts the fact that its minimal free resolution is · · · p−→ T
q−→ T

p−→ T →
T/pT → 0. It follows that S/(p) is not a direct summand of C. ■

Lemma 3.5.10. (1) The ring S/(p, q) is artinian, and hence the number ℓℓ(S/(p, q)) is finite.

(2) Let n ≥ ℓℓ(S/(p, q)) be a positive integer.

(i) If X ∈ CM+(R) is a cyclic direct summand of Mn, then X is isomorphic to R/(pqr).

(ii) If Y ∈ CM+(R) is a cyclic direct summand of Nn, then Y is isomorphic to R/(pqr).

Proof. (1) The factoriality of S shows that pS is a prime ideal of S. As pS ̸= qS, we have

ht(p, q)S > ht pS = 1. Since S has dimension two, the ideal (p, q)S is n-primary. Thus S/(p, q)S

is an artinian ring.

(2i) There is an R-module Z such that Mn
∼= X ⊕ Z. According to Lemma 3.5.8, it holds

that X ∼= R/(f) for some f ∈ {p, pq, pr, pqr}. There are isomorphisms

R/(f, r)⊕ Z/rZ ∼= Mn/rMn
∼= CokR/(r)

( p 0 0
0 pq p
0 0 0

)
∼= CokR/(r)

( p 0 0
0 0 p
0 0 0

)
∼= (R/(p, r))⊕2 ⊕R/(r).

Taking the completions and using the Krull–Schmidt property and [50, Exercise 7.5], we observe

that the ideal (f, r)R coincides with either (p, r)R or rR. Hence f ̸= pq. Similarly, there are

isomorphisms

R/(f, q)⊕ Z/qZ ∼= Mn/qMn
∼= CokR/(q)

(
p 0 rn

0 0 p
0 0 pr

)
∼= CokR/(q)

(
p 0 rn

0 0 p
0 0 0

)
∼= R/(q)⊕ CokR/(q)

(
p rn

0 p

)
.

The assumption n ≥ ℓℓ(S/(p, q)) implies rn ∈ nn ⊆ (p, q)S. We observe from this that

CokR/(q)

(
p rn

0 p

)
∼= CokR/(q)

(
p 0
0 p

)
, and obtain an isomorphism R/(f, q) ⊕ Z/qZ ∼= R/(q) ⊕

(R/(p, q))⊕2. It follows that (f, q)R coincides with either qR or (p, q)R, which implies f ̸= pr.

Finally, consider the isomorphisms

R/(f, pq)⊕ Z/pqZ ∼= Mn/pqMn
∼= CokR/(pq)

(
p 0 rn

0 0 p
0 0 pr

)
∼= CokR/(pq)

(
p 0 rn

0 0 p
0 0 0

)
∼= R/(pq)⊕ CokR/(pq)

(
p rn

0 p

)
.

If f = p, then R/(f, pq) = R/(p) and we see that this is a direct summand of CokR/(pq)

(
p rn

0 p

)
,

which contradicts Lemma 3.5.9. Thus f ̸= p, and we conclude that f = pqr.

(2ii) We go along the same lines as the proof of (2i). We haveNn
∼= Y⊕Z for some Z ∈ modR,

and get Y ∼= R/(f) for some f ∈ {p, pq, pr, pqr} by Lemma 3.5.8. The isomorphisms

R/(f, r)⊕ Z/rZ ∼= Nn/rNn
∼= CokR/(r)

( 0 0 0
0 0 p
0 0 pq

)
∼= CokR/(r)

(
0 0 0
0 0 p
0 0 0

)
∼= R/(p, r)⊕ (R/(r))⊕2,

R/(f, q)⊕ Z/qZ ∼= Nn/qNn
∼= CokR/(q)

(
0 0 0
0 pr p
0 0 0

)
∼= CokR/(q)

(
0 0 0
0 0 p
0 0 0

)
∼= R/(p, q)⊕ (R/(q))⊕2
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show that (f, q) (resp. (f, r)) coincides with either (p, q) or (q) (resp. either (p, r) or (r)), which

implies f ̸= pq, pr. We also have isomorphisms

R/(f, pr)⊕ Z/prZ ∼= Nn/prNn
∼= CokR/(pr)

(
0 0 qrn

0 0 p
0 0 pq

)
∼= CokR/(pr)

(
0 0 qrn

0 0 p
0 0 0

)
∼= CokR/(pr)

( p
qrn

)
⊕R/(pr).

Using Lemma 3.5.9, we see that f ̸= p, and obtain f = pqr. ■

The purpose of this subsection is now fulfilled.

Theorem 3.5.11. Let S be a regular local ring of dimension two. Let p, q, r be distinct irreducible

elements of S. Then R = S/(p2qr) has infinite CM+-representation type.

Proof. We assume that R has finite CM+-representation type, and derive a contradiction. It

follows from Lemma 3.5.7(1) that there exists an integer a ≥ 1 such that both Mi and Ni are

decomposable for all i ≥ a; we write Mi
∼= Xi ⊕ Yi for some R-modules Xi, Yi with ν(Xi) = 1

and ν(Yi) = 2. In view of Lemmas 3.5.4 and 3.5.7(2), we see that there exists an integer b ≥ a

such that Yh is indecomposable for all h ≥ b and that Yi ≇ Yj for all i, j ≥ b with i ̸= j. Then,

we have to have Yi ∈ CM0(R) for all i ≥ b, and hence Xi ∈ CM+(R) for all i ≥ b (by Lemma

3.5.7(1)). Putting c = max{b, ℓℓ(S/(p, q))} and applying Lemma 3.5.10(2i), we obtain that Xi

is isomorphic to R/(pqr) for all i ≥ c. There are isomorphisms

Ni
∼= ΩRMi

∼= ΩRXi ⊕ ΩRYi ∼= ΩR(R/(pqr))⊕ ΩRYi ∼= R/(p)⊕ ΩRYi,

where the first isomorphism follows from Lemma 3.5.7(1). Since R/(p) is in CM+(R), it follows

from Lemma 3.5.10(2ii) that R/(p) ∼= R/(pqr), which is absurd. ■

3.5.3 The hypersurface S/(p2q)

The goal of this subsection is to prove the following theorem.

Theorem 3.5.12. Let (S, n) be a 2-dimensional regular local ring. Let p, q be distinct irreducible

elements of S. Suppose that R = S/(p2q) has finite CM+-representation type. Then p, q /∈ n2.

Note that the rings R and R/p2R are local hypersurfaces of dimension one. If p ∈ n2, then

R/p2R = S/(p2) has infinite CM+-representation type by Theorem 3.5.5, and so does R by

Theorem 3.4.5(1), which contradicts the assumption of the theorem. Hence p /∈ n2, and p is a

member of a regular system of parameters of S. Thus we establish the following setting.

Setup 3.5.13. Throughout the remainder of this subsection, let (S, n) be a regular local ring of

dimension two. Let x, y be a regular system of parameters of S, namely, n = (x, y). Let h ∈ n2

be an irreducible element, and write h = x2s+xyt+ y2u with s, t, u ∈ S. Let R = S/(x2h) be a

local hypersurface of dimension one. One has SpecR = {p, q,m}, where we set p = xR, q = hR

and m = nR. For each integer i ≥ 1 we define matrices

Ai =

x 0 yi

0 xy x
0 xh 0

 , Bi =

xh −yih yi+1

0 0 x
0 xh −xy


over S. We put Mi = CokS Ai and Ni = CokS Bi.
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In what follows, we argue along similar lines as in the previous subsection.

Lemma 3.5.14 (cf. Lemma 3.5.7). (1) Let i ≥ 1 be an integer. The modules Mi and Ni belong

to CM+(R), and it holds that ΩRMi = Ni and ΩRNi = Mi.

(2) Let i, j ≥ 1 be integers with i ̸= j. One then have Mi ≇ Mj and Ni ≇ Nj as R-modules.

Proof. (1) We have AiBi = BiAi = x2hE. The matrices Ai, Bi give a matrix factorization of

x2h over S. We have that Mi, Ni are maximal Cohen–Macaulay R-modules with ΩRMi = Ni

and ΩRNi = Mi. Note that y, h are units and x2 = 0 in Rp = S(x)/x
2S(x). We have

(Mi)p ∼= CokRp

(
x 0 yi

0 xy x
0 x 0

)
∼= CokRp

(
x 0 yi

0 0 x
0 x 0

)
∼= CokRp

(
x 0 1
0 0 x
0 x 0

)
∼= CokRp

(
0 0 1

−x2 0 x
0 x 0

)
= CokRp

(
0 0 1
0 0 x
0 x 0

)
∼= CokRp

(
0 0 1
0 0 0
0 x 0

)
∼= CokRp (

0 0
0 x )
∼= Rp ⊕ κ(p),

which shows that Mi ∈ CM+(R), and Lemma 3.4.2 implies Ni ∈ CM+(R) as well.

(2) If Mi
∼= Mj , then (x, yi)R = Fitt2(Mi) = Fitt2(Mj) = (x, yj)R, and (yi) = (yj) in the

discrete valuation ring R/xR = S/(x) with y a uniformizer, which implies i = j. As Ni, Nj are

the first syzygies of Mi,Mj by (1), we see that if Ni
∼= Nj , then i = j. ■

Lemma 3.5.15 (cf. Lemma 3.5.8). It holds that

{M ∈ CM+(R) |M is cyclic}/∼= = {R/(x), R/(xh)}/∼=.

Proof. It is easy to see that neither (R/(x))p nor (R/(xh))p is Rp-free. Let M ∈ CM+(R) be

cyclic. As Rq is a field, Mp is not Rp-free. Using Lemma 3.5.4, we get M ∼= R/fR for some

f ∈ S with f | x2h, x | f and x2 ∤ f . Hence, either f = x or f = xh holds. ■

Lemma 3.5.16 (cf. Lemma 3.5.10). Let i ≥ 1 be an integer. Let C be a cyclic R-module with

C ∈ CM+(R). If C is a direct summand of either Mi or Ni, then C is isomorphic to R/(xh).

Proof. (1) First, consider the case where C is a direct summand of Mi. Assume that C is

not isomorphic to R/(xh). Then C ∼= R/(x) by Lemma 3.5.15. Application of the functor

−⊗R R/(xy) shows that C/xyC = C ∼= R/(x) is a direct summand of

Mi/xyMi = CokR/(xy)

(
x 0 yi

0 0 x
0 xh 0

)
∼= CokR/(xy)

(
x yi 0
0 x 0
0 0 xh

)
∼= CokR/(xy)

(
x yi

0 x

)
⊕R/(xy, xh).

As (x) ̸= (xy, xh), we have R/(x) ≇ R/(xy, xh) and hence R/(x) is a direct summand of

CokR/(xy)

(
x yi

0 x

)
. Note that R/(xy) = S/(x2h, xy) = S/(x2(x2s+xyt+y2u), xy) = S/(x4s, xy).

Put T := R/(xy, x4) = S/(x4, xy). Applying the functor − ⊗R R/(x4), we see that T/(x) =

R/(x) is a direct summand of L := CokT

(
x yi

0 x

)
. Write L = T/(x)⊕D with D ∈ modT . It is

easy to verify that the sequence

0← L← T⊕2

(
x yi

0 x

)
←−−−− T⊕2

(
y x3 0
0 0 x3

)
←−−−−−−− T⊕3
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is exact, and we observe D ∼= T/(v) for some v ∈ T . Uniqueness of a minimal free resolution

gives rise to a commutative diagram

0 Loo

∼=
��

T⊕2oo

∼= ( a1 a2
a3 a4 )

��

T⊕2

(
x yi

0 x

)
oo

∼=
(
b1 b2
b3 b4

)
��

T⊕3

(
y x3 0
0 0 x3

)
oo

0 T/(x)⊕ T/(v)oo T⊕2oo T⊕2

(x 0
0 v )

oo

with vertical maps being isomorphisms. The elements a1a4 − a2a3 and b1b4 − b2b3 are units of

T . We have a1y
i + a2x = xb2 and a1x = xb1 in T . Hence a1y

i ∈ (x) ∈ SpecT , which implies

a1 ∈ (x). Also, a1 − b1 ∈ (0 : x) = (x3, y), which implies b1 ∈ (x, y). It follows that a2, a3, b2, b3
are units of T . The equality a3x = vb3 implies that (x) = (v) in T . We obtain isomorphisms

T/(x3, y)⊕ T/(x3) ∼= CokT

(
y x3 0
0 0 x3

)
∼= ΩTL ∼= (x)⊕ (v) ∼= (x)⊕2 ∼= (T/(x3, y))⊕2.

It follows that (x3) = (x3, y) in T , which is a contradiction. Consequently, C is isomorphic to

R/(xh).

(2) Next we consider the case where C is a direct summand of Ni. The proof is analogous

to that of (1). Again, assume C ≇ R/(xh). Then C ∼= R/(x) by Lemma 3.5.15. Set T :=

R/(xh) = S/(xh). Applying −⊗R T , we see that R/(x) = T/(x) is a direct summand of

Ni/xhNi = CokT

(
0 −yih yi+1

0 0 x
0 0 −xy

)
∼= CokT

(
0 −yih yi+1

0 0 x
0 0 0

)
∼= T ⊕ CokT

(
yih yi+1

0 x

)
,

which implies that T/(x) is a direct summand of L := CokT

(
yih yi+1

0 x

)
. There are an isomor-

phism L ∼= T/(x)⊕ T/(v) with v ∈ T and a commutative diagram:

0 Loo

∼=
��

T⊕2oo

∼= ( a1 a2
a3 a4 )

��

T⊕2

(
yih yi+1

0 x

)
oo

∼=
(
b1 b2
b3 b4

)
��

0 T/(x)⊕ T/(v)oo T⊕2oo T⊕2

(x 0
0 v )

oo

Note that SpecT = {(x), (h), nT}. We have (h) ∋ a1y
ih = xb1 ∈ (x), which implies a1 ∈ (x) and

b1 ∈ (h). As a1a4−a2a3 and b1b4−b2b3 are units, so are a2, a3, b2, b3. The equalities a3y
ih = vb3

and a3y
i+1+a4x = vb4 imply a3y

i(b−1
3 hb4−y) = a4x ∈ (x), which gives b−1

3 hb4−y ∈ (x). Hence

y ∈ (x, h) = (x, x2s+xyt+y2u) = (x, y2u) in T , which is a contradiction. Thus C ∼= R/(xh). ■

Lemma 3.5.17 (cf. Theorem 3.5.11). The ring R has infinite CM+-representation type.

Proof. Assume contrarily that R has finite CM+-representation type. Then, by (1) and (2) of

Lemma 3.5.14, there exists an integer a ≥ 1 such that Mi is decomposable for all integers i ≥ a.

Suppose that for some i ≥ 1 the module Mi has a cyclic direct summand C ∈ CM+(R).

Then C is isomorphic to R/(xh) by Lemma 3.5.16, and ΩRC = R/(x) is a direct summand

of ΩRMi = Ni by Lemma 3.5.14(1). Applying Lemma 3.5.16 again, we have to have R/(x) ∼=
R/(xh), which is a contradiction.
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Thus Mi has no cyclic direct summand belonging to CM+(R) for all i ≥ 1. This means

that for every i ≥ a the R-module Mi has an indecomposable direct summand Yi ∈ CM+(R)

with ν(Yi) = 2. This, in turn, contradicts the assumption that R has finite CM+-representation

type. ■

Now the purpose of this subsection is readily accomplished:

Proof of Theorem 3.5.12. The theorem is an immediate consequence of Lemma 3.5.17 and what

we state just after the theorem. ■

3.6 On the higher-dimensional case

In this section, we explore the higher-dimensional case: we consider Cohen–Macaulay local rings

R with dimR ≥ 2 and having finite CM+-representation type. In particular, we give various

results supporting Conjecture 3.1.1. We begin with presenting an example by using a result

obtained in Section 4.

Example 3.6.1. Let S be a regular local ring with a regular system of parameters x, y, z. Then

R = S/(xyz) has infinite CM+-representation type.

Proof. Let I = (xy) be an ideal of R. Then (0 : I) = (z) in R, and ht(I + (0 : I)) = ht(xy, z) =

1 < 2 = dimR. The ring R/I = S/(xy) is a 2-dimensional hypersurface which does not have an

isolated singularity. We see by [82, Corollary 2] that R/I has infinite CM-representation type.

It follows from Theorem 3.4.5(3a) that R has infinite CM+-representation type. ■

We consider constructing from a given hypersurface of infinite CM+-representation type

another hypersurface of infinite CM+-representation type. For this we establish the following

lemma, which provides a version of Knörrer’s periodicity theorem for CM+(R).

Lemma 3.6.2. Let (S, n) be a regular local ring, and let f, g ∈ S. Let R = S/(f) and R♯ =

S[[x]]/(f +x2g) be hypersurfaces with x an indeterminate over S. Then the following statements

hold.

(1) There is an additive functor

Φ : CM+(R)→ CM+(R
♯), Cok(A,B) 7→ Cok

((
A −xE

xgE B

)
,
(

B xE
−xgE A

))
.

(2) Let M ∈ ind CM+(R) and put N = Φ(M). Then one has either N ∈ ind CM+(R
♯) or

N ∼= X ⊕ Y for some X,Y ∈ ind CM+(R
♯).

Proof. (1) It holds that
(

A −xE
xgE B

) (
B xE

−xgE A

)
=

(
B xE

−xgE A

) (
A −xE

xgE B

)
= (f + x2g)E. If

(V,W ) : (A,B)→ (A′, B′) is a morphism of matrix factorizations of f over S, then
((

V 0
0 W

)
,
(
W 0
0 V

))
:((

A −xE
xgE B

)
,
(

B xE
−xgE A

))
→

((
A′ −xE
xgE B′

)
,
(

B′ xE
−xgE A′

))
is a morphism of matrix factorizations

of f + x2g over S[[x]]. We observe that Φ defines an additive functor from CM(R) to CM(R♯).

Fix M ∈ CM+(R). Let (A,B) be the corresponding matrix factorization. Set N to be the

corresponding module CokS[[x]]

(
A −xE

xgE B

)
via Φ. There is a nonmaximal prime ideal p of S such
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that Mp is not Rp-free. Put q = pS[[x]] + xS[[x]]. We see that q is a nonmaximal prime ideal of

S[[x]]. Suppose that Nq
∼= (R♯)⊕n

q for some n. Then

R⊕n
p
∼= ((R♯/xR♯)⊕n)q ∼= Nq/xNq

∼= CokS[[x]]q
(
A 0
0 B

) ∼= CokSp A⊕ CokSp B
∼= Mp ⊕ (ΩRM)p,

which implies that Mp is Rp-free, a contradiction. Therefore Nq is not (R
♯)q-free, and we obtain

N ∈ CM+(R
♯). Thus Φ induces an additive functor from CM+(R) to CM+(R

♯).

(2) Let (A,B) be the matrix factorization which gives M . Then N = CokS[[x]]

(
A −xE

xgE B

)
.

Suppose that N is decomposable. Then N ∼= X ⊕ Y for some nonzero modules X,Y ∈ CM(R♯).

It holds that

X/xX ⊕ Y/xY ∼= N/xN ∼= CokS
(
A 0
0 B

) ∼= CokS A⊕ CokS B ∼= M ⊕ ΩRM.

Since R is Gorenstein, not only M but also ΩRM is indecomposable; see [149, Lemma 8.17].

Nakayama’s lemma guarantees that X/xX and Y/xY are nonzero, and both X and Y have to

be indecomposable. We may assume that M ∼= X/xX and ΩRM ∼= Y/xY . Take a nonmaximal

prime ideal p of S such that Mp is not Rp-free. Then q := pS[[x]]+xS[[x]] is a nonmaximal prime

ideal of S[[x]] as in the proof of (1). We easily see that the Rp-module (ΩRM)p is not free. Now

it follows that neither Xq nor Yq is free over (R♯)q, which shows that X,Y ∈ CM+(R
♯). ■

Infinite CM+-representation type ascends from R to R♯.

Proposition 3.6.3. Let (S, n) be a regular local ring and f, g ∈ S. Let R = S/(f) and R♯ =

S[[x]]/(f + x2g) be hypersurfaces with x an indeterminate. If R has infinite CM+-representation

type, then so does R♯.

Proof. Pick any M1 ∈ ind CM+(R). The set ind CM+(R)\{M1,ΩM1} is infinite, and we pick any

M2 in this set. The set ind CM+(R) \ {M1,ΩM1,M2,ΩM2} is infinite, and we pick any M3 in it.

Iterating this procedure, we obtain modules M1,M2,M3, . . . in ind CM+(R) such that Mi ≇ Mj

and Mi
∼= ΩMj for all i ̸= j. We put Ni = ΦMi for each i, where Φ is the functor defined in

Lemma 3.6.2. Then by the lemma Ni is either in ind CM+(R
♯) or isomorphic to Xi⊕Yi for some

Xi, Yi ∈ ind CM+(R
♯).

Assume Ni
∼= Nj for some i ̸= j. Then, as we saw in the proof of the lemma, there are

isomorphisms Mi⊕ΩMi
∼= Ni/xNi

∼= Nj/xNj
∼= Mj⊕ΩMj and the modules Mi,ΩMi,Mj ,ΩMj

are indecomposable. This contradicts the choice of these modules. Hence we have Ni ≇ Nj for

all i ̸= j.

Suppose that there are only a finite number, say n, of indecomposable modules in CM+(R).

Then it is seen that the set {N1, N2, N3, . . . }/∼= has cardinality at most n +
(
n+1
2

)
, which is a

contradiction. We now conclude that R♯ has infinite CM+-representation type, and the proof of

the proposition is completed. ■

Here is an application of Proposition 3.6.3.

Corollary 3.6.4. Let R be a 2-dimensional complete local hypersurface with algebraically closed

residue field k of characteristic 0 and not having an isolated singularity. Suppose that R has

multiplicity at most 2. If R has finite CM+-representation type, then R ∼= k[[x, y, z]]/(f) with

f = x2 + y2 or f = x2 + y2z, and hence R has countable CM-representation type.
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Proof. If e(R) = 1, then R is regular, which contradicts the assumption that R does not have

an isolated singularity. Hence e(R) = 2, and the combination of Cohen’s structure theorem and

the Weierstrass preparation theorem shows R ∼= k[[x, y, z]]/(x2+g) for some g ∈ k[[y, z]]; see [149,

Proof of Theorem 8.8]. It follows from Proposition 3.6.3 that the 1-dimensional hypersurface

S := k[[y, z]]/(g) has finite CM+-representation type. By virtue of Theorem 3.5.1, we obtain

g = y2 or g = y2z after changing variables (i.e., after applying a k-algebra automorphism of

k[[y, z]]). We observe that R is isomorphic to either k[[x, y, z]]/(x2 + y2) or k[[x, y, z]]/(x2 + y2z).

It follows from [108, Propositions 14.17 and 14.19] that R has countable CM-representation

type. ■

Proposition 3.6.3 can provide a lot of examples of hypersurfaces of infinite CM+-representation

type of higher dimension. The following example is not covered by this proposition or any other

general result given in this chapter.

Example 3.6.5. Let S be a regular local ring with a regular system of parameters x, y, z. Let

f = xn + x2ya+ y2b

be an irreducible element of S with n ≥ 4 and a, b ∈ S. Then the hypersurface R = S/(f) has

infinite CM+-representation type.

Proof. Putting g = x2a + yb, we have f = xn + yg. For each integer i ≥ 0 we define a pair of

matrices Ai =
(

x2 xzi

0 −x2

)
and Bi =

(
xn−2 xn−3zi

0 −xn−2

)
, which gives a matrix factorization of xn over

S and S/(y). Define another pair of matrices A♯
i =

(
Ai −yE
gE Bi

)
and B♯

i =
(

Bi yE
−gE Ai

)
. These form

a matrix factorization of f over S, and hence Mi := CokS(A
♯
i) is a maximal Cohen–Macaulay

R-module. There are equalities

FittS3 (Mi) = I1(A
♯
i) = (x2, xzi, xn−2, xn−3zi, y, g)S = (x2, xzi, y)S

of ideals of S, where we use n ≥ 4.

Suppose that Mi
∼= Mj for some i < j. Then (x2, xzi, y)S = (x2, xzj , y)S and (x2, xzi)S =

(x2, xzj)S, where S := S/(y) is a regular local ring having the regular system of parameters

x, z. Hence zi ∈ (x, zj)S and zi ∈ zjS̃ where S̃ := S/xS is a discrete valuation ring with z a

uniformizer. This gives a contradiction, and we see that Mi ≇ Mj for all i ̸= j.

Let p = (x, y)S ∈ SpecS, and fix an integer i ≥ 0. Note that all the entries of Ai, Bi are

in p since n ≥ 4. It follows from [149, Remark 7.5] that the Rp-module (Mi)p does not have a

nonzero free summand. Since f is assumed to be irreducible, R is an integral domain. Hence

each nonzero direct summand X of the maximal Cohen–Macaulay R-module Mi has positive

rank, and hence has full support. Therefore Xp ̸= 0, and thus all the indecomposable direct

summands of Mi belong to ind CM+(R). Since all the Mi are generated by four elements, it is

observed that ind CM+(R) is an infinite set. ■

To prove our next result, we prepare a lemma on unique factorization domains.

Lemma 3.6.6. Let R be a Cohen–Macaulay factorial local ring with dimR ≥ 3. Let I be an

ideal of R generated by two elements. Then depthR/I > 0.
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Proof. We write I = (x, y)R and put g = gcd{x, y}. Then x = gx′ and y = gy′ for some

x′, y′ ∈ R, and we set I ′ = (x′, y′)R. There is an exact sequence 0→ R/I ′
g−→ R/I → R/gR→ 0

of R-modules. As R is Cohen–Macaulay, we have depthR ≥ 3 and ht I ′ = grade I ′. Since R is a

domain and g ̸= 0, we have depthR/gR = depthR− 1 ≥ 2. If ht I ′ = 1, then I ′ is contained in

a principal prime ideal, which contradicts the fact that x′, y′ are coprime. Hence ht I ′ = 2, and

the sequence x′, y′ is R-regular. It follows that depthR/I ′ = depthR − 2 ≥ 1, and the depth

lemma implies depthR/I ≥ 1. ■

Now we can prove the following theorem, which provides the shape of a hypersurface of

infinite CM+-representation type.

Theorem 3.6.7. Let (S, n) be a regular local ring and x, y ∈ n. Suppose that the ideal (x, y) of

S is neither prime nor n-primary. Then R = S/(xy) has infinite CM+-representation type.

Proof. Lemma 3.6.6 guarantees that there exists an S/(x, y)-regular element a ∈ n. Take a

minimal prime p of (x, y). Since (x, y) is not prime, we can choose an element b ∈ p \ (x, y).
Set zn = anb for each n. The matrices An =

( x zn
0 −y

)
and Bn =

( y zn
0 −x

)
with n ≥ 1 form a

matrix factorization of xy over S, and Mn = CokS An is a maximal Cohen–Macaulay R-module.

Put In := I1(An) = (x, y, zn) ⊆ S. Since the In are pairwise distinct, the Mn are pairwise

nonisomorphic. If Mn is decomposable, it decomposes into two cyclic R-modules, while Lemma

3.5.4 says that there are only finitely many such cyclic modules up to isomorphism. Thus we

find infinitely many n such that Mn is indecomposable. Since (x, y, zn) is contained in p, each

(Mn)p has no nonzero free summand by [149, (7.5.1)]. In particular, we have Mn ∈ CM+(R).

Now it is seen that R has infinite CM+-representation type. ■

Applying the above theorem, we can obtain a couple of restrictions for a hypersurface of

dimension at least 2 which is not an integral domain but has finite CM+-representation type.

Corollary 3.6.8. Let R be a complete local hypersurface of dimension d ≥ 2 which is not a

domain. Suppose that R has finite CM+-representation type. Then one has d = 2, and there

exist a complete regular local ring S of dimension 3 and elements x, y ∈ S satisfying the following

conditions.

(1) R is isomorphic to S/(xy).

(2) S/(x) and S/(y) have finite CM-representation type.

(3) S/(x, y) is a domain of dimension 1.

Proof. Corollary 3.3.3(1) says that R satisfies Serre’s condition (Rd−2). Suppose d ≥ 3. Then R

satisfies (R1), and hence it is normal. In particular, R is a domain, contrary to our assumption.

Therefore, we have to have d = 2. Cohen’s structure theorem yields R ∼= S/fS for some 3-

dimensional complete regular local ring (S, n) and f ∈ n \ n2. As R is not a domain, there are

elements x, y ∈ S with f = xy. Since dimS = 3, the ideal (x, y)S is not n-primary. Hence

dimS/(x, y)S = 1, and S/(x, y)S is a domain by Theorem 3.6.7. We have dimR = dimR/xR =

2, (0 :R x) = yR and ht(xR + (0 :R x)) < 2. It follows from Theorem 3.4.5(3a) that S/xS has

finite CM-representation type, and similarly so does S/yS. ■
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Proposition 3.6.3 gives an ascent property of infinite CM+-representation type. Now we

presents a descent property of infinite CM+-representation type.

Theorem 3.6.9. Let ϕ : (R,m, k)→ (S, n, l) be a finite local homomorphism of Cohen–Macaulay

local rings of dimension d such that S is a domain. Set p = Kerϕ and assume the following.

(a) The induced embedding R/p ↪→ S is birational.

(b) There exists q ∈ V(p) \ {m} such that Rq is not a direct summand of Sq.

If S has infinite CM-representation type, then R has infinite CM+-representation type.

Proof. We prove the theorem by establishing several claims.

Claim 1. Let X ̸= 0 be an R-submodule of a maximal Cohen–Macaulay S-module M . Then

Xq ̸= 0.

Proof of Claim. Assume Xq = 0. Then there exists an element s ∈ AnnR X such that s /∈ q.

As p ⊆ q, we have s /∈ p, which means ϕ(s) ̸= 0. Choose a nonzero element x ∈ X. Since s

annihilates X, we have 0 = s · x = ϕ(s)x in M . This contradicts the fact that M is torsion-free

over the domain S. □

Claim 2. Let M ∈ CM0(S). Let X be an indecomposable R-module which is a direct summand

of M . Then X ∈ ind CM+(R).

Proof of Claim. As depthR M = depthS M ≥ d, we haveM ∈ CM(R) and henceX ∈ ind CM(R).

To show the claim, it suffices to verify that Xq is not Rq-free.

Take an exact sequence σ : 0→ ΩSM → S⊕n → Mq → 0. Since M belongs to CM0(S), the

S-module E := Ext1S(M,ΩSM) has finite length. The induced field extension k ↪→ l is finite

because so is the homomorphism ϕ, and hence E also has finite length as an R-module. As q is

a nonmaximal prime ideal of R, we have 0 = Eq = Ext1Sq
(Mq, (ΩSM)q), and the exact sequence

σq : 0 → (ΩSM)q → S⊕n
q → Mq → 0 corresponds to an element in this Ext module. Hence

σq has to split, and Mq is a direct summand of S⊕n
q as an Sq-module. (Note that Sq is not

necessarily a local ring.) The Sq-module Xq is a direct summand of Mq, which is nonzero by

Claim 2.

Suppose that Xq is Rq-free. Then Rq is a direct summand of S⊕n
q in modRq. As Rq is a

local ring, we can apply Lemma 3.3.5(1) to deduce that Rq is a direct summand of Sq. This

contradicts the assumption of the theorem, and thus Xq is not Rq-free. □

Claim 3. One has the inclusion ind CM0(S) ⊆ ind CM+(R).

Proof of Claim. Take M ∈ ind CM0(S). Lemma 3.5.2 implies that M is indecomposable as an

R/p-module, and it is indecomposable as an R-module. Taking X := M in Claim 2, we have

M ∈ ind CM+(R). □

It follows from Lemma 3.4.4 that S has infinite CM0-representation type. Claim 3 implies

that R has infinite CM+-representation type, and the proof of the theorem is completed. ■
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We obtain an application of the above theorem, which gives an answer to Question 3.2.6. For

a ring R we denote by R the integral closure of R. Recall that a typical example of a henselian

Nagata ring is a complete local ring.

Corollary 3.6.10. Let R be a 2-dimensional henselian Nagata Cohen–Macaulay non-normal

local ring. Suppose that R has finite CM+-representation type. Then the following statements

hold.

(1) There exists a minimal prime p of R such that the integral closure R/p has finite CM-

representation type. In particular, if R is a domain, then R has finite CM-representation

type.

(2) If R is Gorenstein, then R is a hypersurface.

Proof. By Corollary 3.3.3(1) the singular locus of R has dimension at most one, so that R

satisfies Serre’s condition (R0). As R is Cohen–Macaulay, it is reduced. Let S = R be the

integral closure of R. We have a decomposition S = R/p1 ⊕ · · · ⊕ R/pn as R-modules, where

MinR = {p1, . . . , pn} (see [85, Corollary 2.1.13]). Since R is Nagata, the extension R ⊆ S is

finite. The ring S is normal and has dimension two, so it is Cohen–Macaulay.

We claim that if p is a nonmaximal prime ideal of R such that Sp is Rp-free, then Rp is

a regular local ring. In fact, if ht p = 0, then Rp is a field. Let ht p = 1. The induced map

SpecS → SpecR is surjective, and we find a prime ideal P of S such that P ∩ R = p. We

easily see htP = 1. As S is normal, SP is regular. The induced map Rp → SP factors as

Rp
a−→ Sp

b−→ SP , where a is a finite free extension, and b is flat since SP = (Sp)PSp . Hence

Rp → SP is a flat local homomorphism. As SP is regular, so is Rp.

Since R does not have an isolated singularity, there exists a nonmaximal prime ideal p of

R such that Rp is not regular. The claim implies that Sp is not Rp-free, whence S ∈ CM+(R).

There exists an integer 1 ≤ l ≤ n such that T := R/pl belongs to CM+(R).

Put p := pl ∈ MinR. The ring R/p is also Nagata, and the extension R/p ⊆ T is finite

and birational. The ring T is a 2-dimensional henselian normal local domain, whence it is a

Cohen–Macaulay. Choose a nonmaximal prime ideal q of R such that Tq is not Rq-free. If p

is not contained in q, then (R/p)q = κ(p)q = 0 and Tq = 0, which particularly says that Tq is

Rq-free, a contradiction. Hence p ⊆ q.

Suppose that Rq is a direct summand of Tq. Then there is an isomorphism Tq
∼= Rq ⊕ X

of Rq-modules. Since Tq is annihilated by p, so is Rq. We have ring extensions Rq = (R/p)q ⊆
Tq ⊆ κ(p), which especially says that Rq is a domain and that Tq has rank one as an Rq-module.

Hence the Rq-module X has rank zero, and it is easy to see that X = 0. We get Tq
∼= Rq, which

contradicts the choice of q. Consequently, Tq does not have a direct summand isomorphic to Rq.

Now, application of Theorem 3.6.9 proves the assertion (1). To show (2), we consider the

T -module U = Ω2
T (T/mT ). Fix any nonzero direct summand X of U or T in modR. Note that

T = R/p is a torsion-free module over R/p. Since U is a submodule of a nonzero free T -module,

U is also torsion-free over R/p, and so is X. We easily see from this that Xq ̸= 0. The module

Xq is a direct summand of Uq
∼= T⊕ edimR−1

q . As Rq is not a direct summand of Tq, it is not

a direct summand of Xq. In particular, X belongs to CM+(R). Thus, all the indecomposable

direct summands of U and of T in modR belong to ind CM+(R), and it follows from Lemma
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3.4.7 that they have complexity at most one. Hence U and T have complexity at most one over

R, and so does T/mT . We obtain cxR k ≤ 1, and R is a hypersurface by [10, Theorem 8.1.2]. ■

The above result yields a strong restriction for finite CM+-representation type in dimension

two.

Corollary 3.6.11. Let R be a 2-dimensional non-normal Gorenstein complete local ring. If R

has finite CM+-representation type, then the integral closure R of R has finite CM-representation

type.

Proof. If R is a domain, then the assertion follows from Corollary 3.6.10(1). Hence let us

assume that R is not a domain. By Corollary 3.6.10(2) the ring R is a hypersurface. We can

apply Corollary 3.6.8 to see that there exists a 3-dimensional regular local ring S and elements

x, y ∈ S such that R is isomorphic to S/(xy) and S/(x), S/(y) have finite CM-representation

type. Note by [82, Corollary 2] that S/(x), S/(y) are normal. As in the beginning of the proof

of Corollary 3.6.10, the ring R is reduced. Hence (x) ̸= (y), and we have an isomorphism

R ∼= S/(x) × S/(y) = S/(x) × S/(y); see [85, Corollary 2.1.13]. There is a natural category

equivalence modR ∼= modS/(x) × modS/(y), which induces a category equivalence CM(R) ∼=
CM(S/(x))×CM(S/(y)). It is observed from this that R has finite CM-representation type. ■

The converse of Corollary 3.6.11 does not necessarily hold, as the following example says.

Example 3.6.12. Let R = k[[x, y, z]]/(x4 − y3z) be a quotient of the formal power series ring

k[[x, y, z]] over a field k. Then R is a 2-dimensional complete non-normal local hypersurface.

The assignment x 7→ s3t, y 7→ s4, z 7→ t4 gives an isomorphism from R to the subring S =

k[[s4, s3t, t4]] of the formal power series ring T = k[[s, t]]. The integral closure of S is the fourth

Veronese subring k[[s4, s3t, s2t2, st3, t4]] of T , which has finite CM-representation type by [108,

Theorem 6.3]. Hence R has finite CM-representation type. However, as x4 − y3z = x4 + x2y ·
0 + y2(−yz), the ring R does not have finite CM+-representation type by Example 3.6.5.

Remark 3.6.13. The integral closure has to actually be regular (under the assumptions of

Corollary 3.6.11) provided that our conjecture that countable CM-representation type is equiv-

alent to finite CM+-representation type holds true in this setting.

Chapter 4

Ulrich modules over
Cohen–Macaulay local rings
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with minimal multiplicity

Introduction

The contents of this chapter is based on author’s work [95] and author’s paper [99] with R.

Takahashi.

The notion of an Ulrich module, which is also called amaximally generated (maximal) Cohen–

Macaulay module, has first been studied by Ulrich [144], and widely investigated in both commu-

tative algebra and algebraic geometry; see [17, 26, 37, 63, 64, 76, 92, 115] for example. In [144]

the natural question is posed to ask whether Ulrich modules exist over any Cohen–Macaulay

local ring R. A lot of partial affirmative answers to this question have been obtained so far. One

of them states that the conjecture holds whenever R has minimal multiplicity ([17]). Thus, in

this paper, mainly assuming that R has minimal multiplicity, we are interested in what we can

say about the structure of Ulrich R-modules.

We begin with exploring the number and generation of Ulrich modules. The following theo-

rem is a special case of our main results in this direction (Ω denotes the first syzygy).

Theorem 4.0.1. Let (R,m, k) be a d-dimensional complete Cohen–Macaulay local ring.

(1) Assume that R is normal with d = 2 and k = C and has minimal multiplicity. If R does

not have a rational singularity, then there exist infinitely many indecomposable Ulrich R-

modules.

(2) Suppose that R has an isolated singularity. Let M,N be maximal Cohen–Macaulay R-

modules with ExtiR(M,N) = 0 for all 1 ≤ i ≤ d− 1. If either M or N is Ulrich, then so is

HomR(M,N).

(3) Let x = x1, . . . , xd be a system of parameters of R such that m2 = xm. If M is an Ulrich

R-module, then so is Ω(M/xiM) for all 1 ≤ i ≤ d. If one chooses M to be indecomposable

and not to be a direct summand of Ωdk, then one finds an indecomposable Ulrich R-module

not isomorphic to M among the direct summands of the modules Ω(M/xiM).

Next, we relate the Ulrich modules with the syzygies of maximal Cohen–Macaulay mod-

ules. To state our result, we fix some notation. Let R be a Cohen–Macaulay local ring with

canonical module ω. We denote by modR the category of finitely generated R-modules, and

by Ul(R) and ΩCM×(R) the full subcategories of Ulrich modules and first syzygies of maximal

Cohen–Macaulay modules without free summands, respectively. Denote by (−)† the canonical

dual HomR(−, ω). Then Ul(R) is closed under (−)†, and contains ΩCM×(R) if R has minimal

multiplicity. The module Ωdk belongs to ΩCM×(R), and hence Ωdk, (Ωdk)† belong to Ul(R).

Thus it is natural to ask when the conditions in the theorem below hold, and we actually answer

this.

Theorem 4.0.2. Let R be a d-dimensional singular Cohen–Macaulay local ring with residue

field k and canonical module ω, and assume that R has minimal multiplicity. Consider the

following conditions.
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(1) The equality Ul(R) = ΩCM×(R) holds.

(2) The category ΩCM×(R) is closed under (−)†.

(3) The module (Ωdk)† belongs to ΩCM×(R).

(4) There is an isomorphism Ωdk ∼= (Ωdk)†.

(5) The local ring R is almost Gorenstein (see Definition 4.3.8).

Then (1)–(3) are equivalent and (4) implies (1). If d > 0 and k is infinite, then (1) implies (5).

If d = 1 and k is infinite, then (1)–(5) are equivalent. If R is complete normal with d = 2 and

k = C, then (1)–(4) are equivalent unless R has a cyclic quotient singularity.

As the first step to prove this theorem, we give the following theorem. This is a one-

dimensional version of the theorem above, but we don’t assume that the ring has minimal

multiplicity.

Theorem 4.0.3. Let B be the endomorphism ring EndR(m) of m over R. Assume that d = 1,

R has a canonical module, and k is infinite. Then the followings are equivalent.

(1) the natural inclusion R→ B induces an equivalence CM(B) ∼= ΩCM×(R) of categories.

(2) R is almost Gorenstein.

(3) B ∼= m† as R-modules.

Finally, we study the structure of the category Ul(R) of UlrichR-modules as an exact category

in the sense of Quillen [122]. We prove that if R has minimal multiplicity, then Ul(R) admits

an exact structure with enough projective/injective objects.

Theorem 4.0.4. Let R be a d-dimensional Cohen–Macaulay local ring with residue field k and

canonical module, and assume that R has minimal multiplicity. Let S be the class of short exact

sequences 0→ L→M → N → 0 of R-modules with L,M,N Ulrich. Then (Ul(R),S) is an exact

category having enough projective objects and enough injective objects with projUl(R) = addΩdk

and injUl(R) = add(Ωdk)†.

The organization of this paper is as follows. In Section 4.1, we deal with a question of Cuong

on the number of indecomposable Ulrich modules. We prove the first assertion of Theorem

4.0.1 to answer this question in the negative. In Section 4.2, we consider how to generate Ulrich

modules from given ones, and prove the second and third assertions of Theorem 4.0.1. In Section

4.3, we compare Ulrich modules with syzygies of maximal Cohen–Macaulay modules, and prove

Theorem 4.0.2; in fact, we obtain more equivalent and related conditions. The final Section 4.4

is devoted to giving applications of the results obtained in Section 4.3. In this section we study

the cases of dimension one and two, and exact structures of Ulrich modules, and prove the rest

assertions of Theorem 4.0.2 and Theorem 4.0.4.
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4.1 A question of Cuong

In the rest of this chapter, let (R,m, k) be a Cohen–Macaulay local ring of Krull dimension d. In

this section, we consider a question raised by Cuong [27] on the number of Ulrich modules over

Cohen–Macaulay local rings with minimal multiplicity. First of all, let us recall the definitions

of an Ulrich module and minimal multiplicity.

Definition 4.1.1. (1) An R-module M is called Ulrich if M is Cohen–Macaulay with e(M) =

µ(M).

(2) The ring R is said to have minimal multiplicity if e(R) = edimR− dimR+ 1.

An Ulrich module is also called a maximally generated (maximal) Cohen–Macaulay module.

There is always an inequality e(R) ≥ edimR − dimR + 1, from which the name of minimal

multiplicity comes. If k is infinite, then R has minimal multiplicity if and only if m2 = Qm for

some parameter ideal Q of R. See [19, Exercise 4.6.14] for details of minimal multiplicity.

The following question has been raised by Cuong [27].

Question 4.1.2 (Cuong). If R is non-Gorenstein and has minimal multiplicity, then are there

only finitely many indecomposable Ulrich R-modules?

To explore this question, we start by introducing notation, which is used throughout the

paper.

Notation 4.1.3. We denote by modR the category of finitely generated R-modules. We use

the following subcategories of modR:

Ul(R) = {M ∈ CM(R) |M is Ulrich},

ΩCM(R) =

{
M ∈ CM(R)

∣∣∣∣ M is the kernel of an epimorphism from a
free module to a maximal Cohen–Macaulay module

}
,

ΩCM×(R) = {M ∈ ΩCM(R) |M does not have a (nonzero) free summand}.

Remark 4.1.4. (1) The subcategories CM(R),Ul(R),ΩCM(R),ΩCM×(R) of modR are closed

under finite direct sums and direct summands.

(2) One has ΩCM(R) ∪ Ul(R) ⊆ CM(R) ⊆ modR.

Here we make a remark to reduce to the case where the residue field is infinite.

Remark 4.1.5. Consider the faithfully flat extension S := R[t]mR[t] of R. Then we observe

that:

(1) If X is a module in ΩCM×(R), then X ⊗R S is in ΩCM×(S).

(2) A module Y is in Ul(R) if and only if Y ⊗R S is in Ul(S) (see [85, Lemma 6.4.2]).

The converse of (1) also holds true; we prove this in Corollary 4.3.4.

For any finitely generated R-module M , we denote by TrM the Auslander transpose of M .

For an integer n ≥ 1, we define Fn(R) = {M | ExtiR(TrM,R) = 0 for i = 1, . . . , n} as a full

subcategory of mod(R). A module M in Fn is called n-torsionfree.

We have the following characterization of modules in CM(R), ΩCM(R), or Ref(R).
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Lemma 4.1.6. (1) One has Ref(R) = F2(R).

(2) Assume that Rp is Gorenstein for every prime ideal p of R with ht p being at most d − 1.

Then Fd(R) = CM(R) and Fd+1(R) = ΩCM(R).

(3) Assume d = 1 and R is generically Gorenstein (i.e. Rp is Gorenstein for any minimal prime

p of R). Then Ref(R) = ΩCM(R).

Proof. (1) See [108, Proposition 12.5] for instance. (2) See [51, Theorems 3.6 and 3.8] to prove

the equality Fd(A) = CM(A) holds. The proof of [88, Proposition 2.4] shows that the equality

Fd+1(A) = ΩCM(A) holds. (3) This is a combination of (1) and (2). ■

If R has minimal multiplicity, then all syzygies of maximal Cohen–Macaulay modules are

Ulrich:

Proposition 4.1.7. Suppose that R has minimal multiplicity. Then ΩCM×(R) is contained in

Ul(R).

Proof. By Remark 4.1.5 we may assume that k is infinite. Since R has minimal multiplicity,

we have m2 = Qm for some parameter ideal Q of R. Let M be a Cohen–Macaulay R-module.

There is a short exact sequence 0 → ΩM → R⊕n → M → 0, where n is the minimal number

of generators of M . Since M is Cohen–Macaulay, taking the functor R/Q ⊗R − preserves the

exactness; we get a short exact sequence

0→ ΩM/QΩM
f−→ (R/Q)⊕n →M/QM → 0.

The map f factors through the inclusion map X := m(R/Q)⊕n → (R/Q)⊕n, and hence there

is an injection ΩM/QΩM → X. As X is annihilated by m, so is ΩM/QΩM . Therefore

mΩM = QΩM , which implies that ΩM is Ulrich. ■

As a direct consequence of [40, Corollary 3.3], we obtain the following proposition.

Proposition 4.1.8. Let R be a 2-dimensional normal excellent henselian local ring with alge-

braically closed residue field of characteristic 0. Then there exist only finitely many indecompos-

able modules in ΩCM(R) if and only if R has a rational singularity.

Combining the above propositions yields the following result.

Corollary 4.1.9. Let R be a 2-dimensional normal excellent henselian local ring with alge-

braically closed residue field of characteristic 0. Suppose that R has minimal multiplicity and

does not have a rational singularity. Then there exist infinitely many indecomposable Ulrich

R-modules. In particular, Quenstion 4.1.2 has a negative answer.

Proof. Proposition 4.1.8 implies that ΩCM(R) contains infinitely many indecomposable modules,

and so does Ul(R) by Proposition 4.1.7. ■

Here is an example of a non-Gorenstein ring satisfying the assumption of Corollary 4.1.9,

which concludes that the question of Cuong is negative.
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Example 4.1.10. Let B = C[x, y, z, t] be a polynomial ring with deg x = deg t = 3, deg y = 5

and deg z = 7. Consider the 2 × 3-matrix M =
(

x y z
y z x3−t3

)
over B, and let I be the ideal

of B generated by 2 × 2-minors of M . Set A = B/I. Then A is a nonnegatively graded C-
algebra as I is homogeneous. By virtue of the Hilbert–Burch theorem ([19, Theorem 1.4.17]),

A is a 2-dimensional Cohen–Macaulay ring, and x, t is a homogeneous system of parameters of

A. Directly calculating the Jacobian ideal J of A, we can verify that A/J is Artinian. The

Jacobian criterion implies that A is a normal domain. The quotient ring A/tA is isomorphic

to the numerical semigroup ring C[H] with H = ⟨3, 5, 7⟩. Since this ring is not Gorenstein (as

H is not symmetric), neither is A. Let a(A) and F (H) stand for the a-invariant of A and the

Frobenius number of H, respectively. Then

a(A) + 3 = a(A) + deg(t) = a(A/tA) = F (H) = 4,

where the third equality follows from [129, Theorem 3.1]. Therefore we get a(A) = 1 ̸< 0, and

A does not have a rational singularity by the Flenner–Watanabe criterion (see [108, Page 98]).

Let A′ be the localization of A at A+, and let R be the completion of the local ring A′.

Then R is a 2-dimensional complete (hence excellent and henselian) normal non-Gorenstein

local domain with residue field C. The maximal ideal m of R satisfies m2 = (x, t)m, and thus R

has minimal multiplicity. Having a rational singularity is preserved by localization since A has

an isolated singularity, while it is also preserved by completion. Therefore R does not have a

rational singularity.

We have seen that Question 4.1.2 is not true in general. However, in view of Corollary 4.1.9,

we wonder if having a rational singularity is essential. Thus, we pose a modified question.

Question 4.1.11. Let R be a 2-dimensional normal local ring with a rational singularity. Then

does R have only finitely many indecomposable Ulrich modules?

Proposition 4.1.8 leads us to an even stronger question:

Question 4.1.12. If ΩCM(R) contains only finitely many indecomposable modules, then does

Ul(R) so?

4.2 Generating Ulrich modules

In this section, we study how to generate Ulrich modules from given ones. First of all, we

consider using the Hom functor to do it.

Proposition 4.2.1. Let M,N be Cohen–Macaulay R-modules such that ExtiR(M,N) = 0 for

all 1 ≤ i ≤ d− 1. If either M or N is Ulrich, then so is HomR(M,N).

Proof. Take a free resolution

· · · → Fd+1 → Fd → Fd−1 → · · · → F1 → F0 →M → 0

of the R-module M . Dualizing this by N and using the assumption on Ext, we get an exact

sequence

0→ HomR(M,N)→ HomR(F0, N)→ HomR(F1, N)→ · · · → HomR(Fd−1, N)→ HomR(Fd, N).
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The depth lemma implies that HomR(M,N) is a Cohen–Macaulay R-module.

We may assume that k is infinite by Remark 4.1.5(2), so that we can find a reduction Q of

m which is a parameter ideal of R. Write Q = (x1, . . . , xd).

We show the assertion by induction on d. Let us consider the case d = 1. There are exact

sequences

0→ N
x1−→ N → N/QN → 0, 0→M

x1−→M →M/QM → 0,

which induce injections

HomR(M,N)/QHomR(M,N) ↪→ HomR(M,N/QN),

HomR(M,N)/QHomR(M,N) ↪→ Ext1R(M/QM,N).

IfN (resp. M) is Ulrich, thenN/QN (resp. M/QM) is annihilated bym, and so is HomR(M,N/QN)

(resp. Ext1R(M/QM,N)). In either case, the quotient module HomR(M,N)/QHomR(M,N) is

annihilated by m, which shows that HomR(M,N) is an Ulrich R-module.

Next we consider the case d ≥ 2. Clearly, M/x1M and N/x1N are Cohen–Macaulay R/(x1)-

modules. There are isomorphisms

ExtiR/(x1)
(M/x1M,N/x1N) ∼= Exti+1

R (M/x1M,N)

∼=

{
0 (1 ≤ i ≤ d− 2),

HomR(M,N)/x1HomR(M,N) (i = 0),

where the first isomorphism follows from [19, Lemma 3.1.16], and the second isomorphism

is shown by using the exact sequence 0 → M
x1−→ M → M/x1M → 0 and our assump-

tion on Ext. Furthermore, it is easily observed that if M (resp. N) is an Ulrich R-module,

then M/x1M (resp. N/x1N) is an Ulrich R/(x1)-module. The induction hypothesis im-

plies that HomR/(x1)(M/x1M,N/x1N) is an Ulrich R/(x1)-module, which is isomorphic to

HomR(M,N)/x1HomR(M,N). Now it is deduced that HomR(M,N) is an Ulrich R-module. ■

As an immediate consequence of Proposition 4.2.1, we obtain the following corollary, which

is a special case of [63, Theorem 5.1].

Corollary 4.2.2. Suppose that R admits a canonical module. If M ∈ Ul(R), then M † ∈ Ul(R).

Next, we consider taking extensions of given Ulrich modules to obtain a new one.

Proposition 4.2.3. Let Q be a parameter ideal of R which is a reduction of m. Let M,N be

Ulrich R-modules, and take any element a ∈ Q. Let σ : 0 → M → E → N → 0 be an exact

sequence, and consider the multiplication aσ : 0 → M → X → N → 0 as an element of the

R-module Ext1R(N,M). Then X is an Ulrich R-module.

Proof. It follows from [132, Theorem 1.1] that the exact sequence

aσ ⊗R R/aR : 0→M/aM → X/aX → N/aN → 0

splits; we have an isomorphism X/aX ∼= M/aM ⊕ N/aN . Applying the functor − ⊗R/aR

R/Q, we get an isomorphism X/QX ∼= M/QM ⊕N/QN . Since M,N are Ulrich, the modules

M/QM,N/QN are k-vector spaces, and so is X/QX. Hence X is also Ulrich. ■
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As an application of the above proposition, we give a way to make an Ulrich module over a

Cohen–Macaulay local ring with minimal multiplicity.

Corollary 4.2.4. Let Q be a parameter ideal of R such that m2 = Qm. Let M be an Ulrich

R-module. Then for each R-regular element a ∈ Q, the syzygy Ω(M/aM) is also an Ulrich

R-module.

Proof. There is an exact sequence σ : 0→ ΩM → R⊕n →M → 0, where n is a minimal number

of generators of M . We have a commutative diagram

0 0

M/aM

OO

M/aM

OO

σ : 0 // ΩM // R⊕n //

OO

M //

OO

0

aσ : 0 // ΩM // X //

OO

M //

a
OO

0

0

OO

0

OO

with exact rows and columns. Since the minimal number of generators of M/aM is equal to n,

the middle column shows X ∼= Ω(M/aM). Propositions 4.1.2 and 4.2.3 show that X is Ulrich,

and we are done. ■

Remark 4.2.5. In Corollary 4.2.4, if the parameter idealQ annihilates theR-module Ext1R(M,ΩM),

then we have aσ = 0, and Ω(M/aM) ∼= M ⊕ ΩM . Hence, in this case, the operation M 7→
Ω(M/aM) does not produce an essentially new Ulrich module.

Next, we investigate the annihilators of Tor and Ext modules.

Proposition 4.2.6. For an R-module M one has

AnnR Ext1R(M,ΩM) =
∩

i>0, N∈modR AnnR ExtiR(M,N)

= AnnR TorR1 (M,TrM) =
∩

i>0, N∈modR AnnR TorRi (M,N).

Proof. It is clear that

I :=
∩

i>0, N∈modR AnnR ExtiR(M,N) ⊆ AnnR Ext1R(M,ΩM)

J :=
∩

i>0, N∈modR AnnR TorRi (M,N) ⊆ AnnR TorR1 (M,TrM).

It is enough to show that AnnExt1(M,ΩM) ∪AnnTor1(M,TrM) is contained in I ∩ J .

(1) Take any element a ∈ AnnR Ext1R(M,ΩM). The proof of [89, Lemma 2.14] shows that

the multiplication map (M
a−→ M) factors through a free module, that is, (M

a−→ M) = (M
f−→

F
π−→M) with F free. Hence, for all i > 0 and N ∈ modR we have commutative diagrams:

Tori(M,N)
a //

Tori(f,N) &&NN
NNN

N
Tori(M,N)

Tori(F,N)
Tori(π,N)

88pppppp

Exti(M,N)
a //

Exti(π,N) &&MM
MMM

Exti(M,N)

Exti(F,N)
Exti(f,N)

88qqqqq

64



As Tori(F,N) = Exti(F,N) = 0, the element a is in I ∩ J .

(2) Let b ∈ AnnR TorR1 (M,TrM). By [149, Lemma (3.9)], the element b annihilates HomR(M,M).

Hence the map b · idM , which is nothing but the multiplication map (M
b−→M), factors through

a free R-module. Similarly to (1), we get b is in I ∩ J . ■

Definition 4.2.7. We denote by AM the ideal in the above proposition.

Note that AM = R if and only if M is a free R-module.

For an R-module M we denote by addM the subcategory of modR consisting of direct

summands of finite direct sums of copies of M .

With the notation of Remark 4.2.5, we are interested in when the operation M 7→ Ω(M/aM)

actually gives rise to an essentially new Ulrich module. The following result presents a possible

way: if we choose an indecomposable Ulrich module M that is not a direct summand of Ωdk,

then we find an indecomposable Ulrich module not isomorphic toM among the direct summands

of the modules Ω(M/xiM).

Proposition 4.2.8. Suppose that R is henselian. Let Q = (x1, . . . , xd) be a parameter ideal of

R which is a reduction of m. Let M be an indecomposable Ulrich R-module. If M is a direct

summand of Ω(M/xiM) for all 1 ≤ i ≤ d, then M is a direct summand of Ωdk.

Proof. For all integer 1 ≤ i ≤ d the module Ext1R(M,ΩM) is a direct summand of Ext1R(Ω(M/xiM),ΩM).

The latter module is annihilated by xi since it is isomorphic to Ext2R(M/xiM,ΩM). Hence Q is

contained in AnnR Ext1R(M,ΩM) = AM , and therefore QExt>0
R (M,N) = 0 for all N ∈ modR.

It follows from [142, Corollary 3.2(1)] that M is a direct summand of Ωd(M/QM). As M is

Ulrich, the module M/QM is a k-vector space, and Ωd(M/QM) belongs to add(Ωdk), whence

so does M . Since R is henselian and M is indecomposable, the Krull–Schmidt theorem implies

that M is a direct summand of Ωdk. ■

4.3 Comparison of Ul(R) with ΩCM×(R)

In this section, we study the relationship of the Ulrich R-modules with the syzygies of Cohen–

Macaulay R-modules. We begin with giving equivalent conditions for a given maximal Cohen–

Macaulay module to be a syzygy of a maximal Cohen–Macaulay module, after stating an ele-

mentary lemma.

Lemma 4.3.1. Let M,N be R-modules. The evaluation map ev : M ⊗R HomR(M,N)→ N is

surjective if and only if there exists an epimorphism (f1, . . . , fn) : M
⊕n → N .

Proof. The “only if” part follows by taking an epimorphism R⊕n → HomR(M,N) and tensoring

M . To show the “if” part, pick any element y ∈ N . Then we have y = f1(x1) + · · ·+ fn(xn) for

some x1, . . . , xn ∈M . Therefore y = ev(
∑n

i=1 xi ⊗ fi)), and we are done. ■

Proposition 4.3.2. Let R be a Cohen–Macaulay local ring with canonical module ω. Then the

following are equivalent for a Cohen–Macaulay R-module M .

(1) M ∈ ΩCM(R).

(2) HomR(M,ω) = 0.
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(3) There exists a surjective homomorphism ω⊕n → HomR(M,ω).

(4) The natural homomorphism Φ : ω ⊗R HomR(ω,HomR(M,ω))→ HomR(M,ω) is surjective.

(5) M is torsionless and TrΩTrM is Cohen–Macaulay.

(6) Ext1R(TrM,R) = Ext1R(TrΩTrM,ω) = 0.

(7) TorR1 (TrM,ω) = 0.

Proof. (1) ⇒ (2): By the assumption, there is an exact sequence 0 → M → F → N → 0 such

that N is Cohen–Macaulay and F is free. Take f ∈ HomR(M,ω). There is a commutative

diagram

0 // M
f
��

// F

��

// N // 0

0 // ω // W // N // 0

with exact rows. Since N is Cohen–Macaulay, we have Ext1R(N,ω) = 0. Hence the second row

splits, and f factors through F . This shows HomR(M,ω) = 0.

(2) ⇒ (1): There is an exact sequence 0 → M
f−→ ω⊕m → N → 0 such that N is Cohen–

Macaulay. Since HomR(M,ω⊕m) = HomR(M,ω)⊕m = 0, there are a free R-module F , homo-

morphisms g : M → F and h : F → ω⊕m such that f = hg. We get a commutative diagram

0 // M
g

// F
h��

// L

��

// 0

0 // M
f

// ω⊕m // N // 0

with exact rows. The secound square is a pullback-pushout diagram, which gives an exact

sequence 0 → F → L ⊕ ω⊕m → N → 0. This shows that L is Cohen–Macaulay, and hence

M ∈ ΩCM(R).

(2) ⇔ (7): This equivalence follows from [149, Lemma (3.9)].

(1) ⇒ (3): Let 0→M → R⊕n → N → 0 be an exact sequence with F free. Applying (−)†,
we have an exact sequence 0→ N † → ω⊕n →M † → 0.

(3) ⇒ (1): There is an exact sequence 0 → K → ω⊕n → M † → 0. It is seen that K is

Cohen–Macaulay. Taking (−)† gives an exact sequence 0→M → R⊕n → K† → 0, which shows

M ∈ ΩCM(R).

(3) ⇔ (4): This follows from Lemma 4.3.1.

(5) ⇔ (6): The module TrΩTrM is Cohen–Macaulay if and only if ExtiR(TrΩTrM,ω) = 0

for all i > 0. One has Ext1R(TrM,R) = 0 if and only if M is torsionless, if and only if

M ∼= ΩTrΩTrM up to free summands; see [8, Theorem (2.17)]. Hence ExtiR(TrΩTrM,ω) =

Exti−1
R (M,ω) = 0 for all i > 1.

(1) ⇔ (5): This equivalence follows from a similar argument in the proof of [88, Proposition

2.4]. ■

Remark 4.3.3. The equivalence (1) ⇔ (5) in Proposition 4.3.2 holds without the assumption

that R admits a canonical module. Indeed, its proof does not use the existence of a canonical

module.
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The property of being a syzygy of a maximal Cohen–Macaulay module (without free sum-

mand) is preserved under faithfully flat extension.

Corollary 4.3.4. Let R→ S be a faithfully flat homomorphism of Cohen–Macaulay local rings.

Let M be a Cohen–Macaulay R-module. Then M ∈ ΩCM×(R) if and only if M⊗RS ∈ ΩCM×(S).

Proof. Using Remark 4.3.3, we see that M ∈ ΩCM(R) if and only if Ext1R(TrR M,R) = 0

and TrR ΩR TrR M is Cohen–Macaulay. Also, M has a nonzero R-free summand if and only if

the evaluation map M ⊗R HomR(M,R) → R is surjective by Lemma 4.3.1. Since the latter

conditions are both preserved under faithfully flat extension, they are equivalent to saying that

M ⊗R S ∈ ΩCM(S) and that M ⊗R S has a nonzero S-free summand, respectively. Now the

assertion follows. ■

Next we state and prove a couple of lemmas. The first one concerns Ulrich modules and

syzygies of maximal Cohen–Macaulay modules with respect to short exact sequences.

Lemma 4.3.5. Let 0→ L→M → N → 0 be an exact sequence of R-modules.

(1) If L,M,N are in Ul(R), then the equality µ(M) = µ(L) + µ(N) holds.

(2) Suppose that L,M,N are in CM(R). Then:

(a) If M is in Ul(R), then so are L and N . (b) If M is in ΩCM×(R), then so is L.

Proof. (1) We have µ(M) = e(M) = e(L) + e(N) = µ(L) + µ(N).

(2) Assertion (a) follows by [17, Proposition (1.4)]. Let us show (b). As M is in ΩCM×(R),

there is an exact sequence 0 → M
β−→ R⊕a γ−→ C → 0 with C Cohen–Macaulay. As M has no

free summand, γ is a minimal homomorphism. In particular, µ(C) = a. The pushout of β and

γ gives a commutative diagram

0

��

0

��

0 // L // M
β��

// N

��

// 0

0 // L // R⊕a

γ
��

δ // D

��

// 0

C

��

C

��

0 0

with exact rows and columns. We see that a = µ(C) ≤ µ(D) ≤ a, which implies that δ is a

minimal homomorphism. Hence L = ΩD ∈ ΩCM×(R). ■

The following lemma is used to reduce to the case of a lower dimensional ring.

Lemma 4.3.6. Let Q = (x1, . . . , xd) be a parameter ideal of R that is a reduction of m. Let M

be a Cohen–Macaulay R-module. Then M is an Ulrich R-module if and only if M/xiM is an

Ulrich R/xiR-module.

Proof. Note thatQ/xiR is a reduction ofm/xiR. We see that (m/xiR)(M/xiM) = (Q/xiR)(M/xiM)

if and only if mM = QM . Thus the assertion holds. ■
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Now we explore syzygies of the residue field of a Cohen–Macaulay local ring with minimal

multiplicity.

Lemma 4.3.7. Assume that R is singular and has minimal multiplicity.

(1) One has Ωd
Rk ∈ ΩCM×(R). In particular, Ωd

Rk is an Ulrich R-module.

(2) There is an isomorphism Ωd+1
R k ∼= (Ωd

Rk)
⊕n for some n ≥ 0.

(3) Let Q = (x1, . . . , xd) be a parameter ideal of R with m2 = Qm, and suppose that d ≥ 1.

Then Ω1
R(Ω

i
R/(x1)

k) ∼= Ωi+1
R k for all i ≥ 0. In particular, Ω1

R(Ω
d−1
R/(x1)

k) ∼= Ωd
Rk.

(4) For each M ∈ Ul(R) there exists a surjective homomorphism (Ωd
Rk)

⊕n →M for some n ≥ 0.

Proof. (1)(2) We may assume that k is infinite; see Remark 4.1.5. So we find a parameter ideal

Q = (x1, . . . , xd) of R with m2 = Qm. The module m/Q is a k-vector space, and there is an

exact sequence 0→ k⊕n → R/Q→ k → 0. Taking the dth syzygies gives an exact sequence

0→ (Ωdk)⊕n → R⊕t → Ωdk → 0.

Since Ωdk has no free summand by [136, Theorem 1.1], we obtain Ωdk ∈ ΩCM×(R) and

(Ωdk)⊕n ∼= Ωd+1k. The last assertion of (1) follows from this and Proposition 4.1.7.

(3) Set x = x1. We show that Ω(Ωi
R/xRk)

∼= Ωi+1k for all i ≥ 0. We may assume i ≥ 1;

note then that x is Ωik-regular. By [136, Corollary 5.3] we have an isomorphism Ωik/xΩik ∼=
Ωi
R/xRk ⊕ Ωi−1

R/xRk. Hence

Ωik ⊕ Ωi+1k ∼= Ω(Ωik/xΩik) ∼= Ω(Ωi
R/xRk)⊕ Ω(Ωi−1

R/xRk), (4.3.7.1)

where the first isomorphism follows from the proof of Corollary 4.2.4. There is an exact sequence

0 → Ωi
R/xRk → (R/xR)⊕ai−1 → · · · → (R/xR)⊕a0 → k → 0 of R/xR-modules, which gives an

exact sequence

0→ Ω(Ωi
R/xRk)→ R⊕bi−1 → · · · → R⊕b0 → Ωk → 0

of R-modules. This shows Ω(Ωi
R/xRk)

∼= Ωi+1k⊕R⊕u for some u ≥ 0, and similarly we have an

isomorphism Ω(Ωi−1
R/xRk)

∼= Ωik ⊕ R⊕v for some v ≥ 0. Substituting these in (4.3.7.1), we see

u = v = 0 and obtain an isomorphism Ω(Ωi
R/xRk)

∼= Ωi+1k.

(4) According to Lemma 4.3.1 and Remark 4.1.5, we may assume that k is infinite. Take

a parameter ideal Q = (x1, . . . , xd) of R with m2 = Qm. We prove this by induction on d. If

d = 0, then M is a k-vector space, and there is nothing to show. Assume d ≥ 1 and set x = x1.

Clearly, R/xR has minimal multiplicity. By Lemma 4.3.6, M/xM is an Ulrich R/xR-module.

The induction hypothesis gives an exact sequence 0 → L → (Ωd−1
R/xRk)

⊕n → M/xM → 0 of

R/xR-modules. Lemma 4.3.5(2) shows that L is also an Ulrich R/xR-module, while Lemma

4.3.5(1) implies

µR/xR(L) + µR/xR(M/xM) = µR/xR((Ω
d−1
R/xRk)

⊕n).

Note that µR(X) = µR/xR(X) for an R/xR-module X. Thus, taking the first syzygies over R,

we get an exact sequence of R-modules:

0→ ΩL→ Ω(Ωd−1
R/xRk)

⊕n → Ω(M/xM)→ 0.
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From the proof of Corollary 4.2.4 we see that there is an exact sequence 0→ ΩM → Ω(M/xM)→
M → 0, while Ω(Ωd−1

R/xRk) is isomorphic to Ωdk by (3). Consequently, we obtain a surjection

(Ωdk)⊕n →M . ■

Here we recall the definition of an almost Gorenstein local ring, which is introduced in [65].

Definition 4.3.8. Let R be a Cohen–Macaulay local ring of dimension d with canonical module

ω. Then R is called almost Gorenstein if there exists an exact sequence

0→ R→ ω → C → 0

of finitely generated R-modules such that e(C) = µ(C).

We have reached the stage to state and prove the main result of this section.

Theorem 4.3.9. Let R be a d-dimensional Cohen–Macaulay local ring with residue field k and

canonical module ω. Suppose that R has minimal multiplicity. Then the following are equivalent.

(1) The equality ΩCM×(R) = Ul(R) holds.

(2) For an exact sequence M → N → 0 in CM(R), if M ∈ ΩCM×(R), then N ∈ ΩCM×(R).

(3) The category ΩCM×(R) is closed under (−)†.

(4) The module (Ωdk)† belongs to ΩCM×(R). (4’) The module (Ωdk)† belongs to ΩCM(R).

(5) One has HomR((Ω
dk)†, ω) = 0.

(6) One has TorR1 (Tr((Ω
dk)†), ω) = 0.

(7) One has Extd+1
R (Tr((Ωdk)†), R) = 0 and R is locally Gorenstein on the punctured spectrum.

(8) The natural homomorphism ω ⊗R HomR(ω,Ω
dk)→ Ωdk is surjective.

(9) There exists a surjective homomorphism ω⊕n → Ωdk.

If d is positive, k is infinite and one of the above nine conditions holds, then R is almost

Gorenstein.

Proof of the equivalence of (1)–(9). (1) ⇒ (2): This follows from Lemma 4.3.5(2).

(2)⇒ (3): Let M be an R-module in ΩCM×(R). Then M ∈ Ul(R) by Proposition 4.1.7, and

hence M † ∈ Ul(R) by Corollary 4.2.2. It follows from Lemma 4.3.7(4) that there is a surjection

(Ωdk)⊕n → M †. Since (Ωdk)⊕n is in ΩCM×(R) by Lemma 4.3.7(1), the module M † is also in

ΩCM×(R).

(3) ⇒ (4): Lemma 4.3.7(1) says that Ωdk is in ΩCM×(R), and so is (Ωdk)† by assumption.

(4) ⇒ (1): The inclusion ΩCM×(R) ⊆ Ul(R) follows from Proposition 4.1.7. Take any

module M in Ul(R). Then M † is also in Ul(R) by Corollary 4.2.2. Using Lemma 4.3.7(4), we

get an exact sequence 0 → X → (Ωdk)⊕n → M † → 0 of maximal Cohen–Macaulay modules,

which induces an exact sequence 0→M → (Ωdk)†⊕n → X† → 0. The assumption and Lemma

4.3.5(2) imply that M is in ΩCM×(R).
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(4) ⇔ (4’): As R is singular, by [136, Corollary 4.4] the module (Ωdk)† does not have a free

summand.

(4’) ⇔ (5) ⇔ (6) ⇔ (8) ⇔ (9): These equivalences follow from Proposition 4.3.2.

(4’) ⇔ (7): We claim that, under the assumption that R is locally Gorenstein on the punc-

tured spectrum, (Ωdk)† ∈ ΩCM(R) if and only if Extd+1
R (Tr((Ωdk)†), R) = 0. In fact, since

(Ωdk)† is Cohen–Macaulay, it satisfies Serre’s condition (Sd). Therefore it is d-torsionfree, that is,

ExtiR(Tr((Ω
dk)†), R) = 0 for all 1 ≤ i ≤ d; see [113, Theorem 2.3]. Hence, Extd+1

R (Tr((Ωdk)†), R) =

0 if and only if (Ωdk)† is (d+1)-torsionfree, if and only if it belongs to ΩCM(R) by [113, Theorem

2.3] again. Thus the claim follows.

According to this claim, it suffices to prove that if (4’) holds, then R is locally Gorenstein

on the punctured spectrum. For this, pick any nonmaximal prime ideal p of R. There are exact

sequences

0→ Ωdk → R⊕ad−1 → · · · → R⊕a0 → k → 0, 0→ (Ωdk)p → R
⊕ad−1
p → · · · → R⊕a0

p → 0.

We observe that (Ωdk)p is a freeRp-module with rankRp((Ω
dk)p) =

∑d−1
i=0 (−1)iad−1−i = rankR(Ω

dk).

The module Ωdk has positive rank as it is torsionfree, and we see that (Ωdk)p is a nonzero free

Rp-module. Since we have already shown that (4’) implies (9), there is a surjection ω⊕n → Ωdk.

Localizing this at p, we see that ω⊕n
p has an Rp-free summand, which implies that the Rp-module

Rp has finite injective dimension. Thus Rp is Gorenstein.

So far we have proved the equivalence of the conditions (1)–(9). It remains to prove that R

is almost Gorenstein under the assumption that d is positive, k is infinite and (1)–(9) all hold.

We prove this assertion after the proof of Theorem 4.0.3; see section 4.4.1. ■

Remark 4.3.10. When d ≥ 2, it holds that

Extd+1
R (Tr((Ωdk)†), R) ∼= Extd−1

R (HomR(ω,Ω
dk), R).

Thus Theorem 4.3.9(7) can be replaced with the condition that Extd−1
R (HomR(ω,Ω

dk), R) = 0.

Indeed, using the Hom-⊗ adjointness twice, we get isomorphisms

HomR(ω,Ω
dk) ∼= HomR(ω, (Ω

dk)††) ∼= HomR((Ω
dk)† ⊗R ω, ω) ∼= HomR((Ω

dk)†, ω†) ∼= (Ωdk)†∗,

and (Ωdk)†∗ is isomorphic to Ω2Tr((Ωdk)†) up to free summand.

We have several more conditions related to the equality ΩCM×(R) = Ul(R).

Corollary 4.3.11. Let R be as in Theorem 4.3.9. Consider the following conditions:

(1) (Ωdk)† ∼= Ωdk, (2) (Ωdk)† ∈ add(Ωdk), (3) A(Ωdk)† = m, (4) ΩCM×(R) = Ul(R).

It then holds that (1) =⇒ (2) ⇐⇒ (3) =⇒ (4).

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious. The proof of Proposition 4.2.8 shows

that if an Ulrich R-module M satisfies AM = m, then M is in add(Ωdk). This shows (3) ⇒ (2).

Proposition 4.3.7(1) says that Ωdk is in ΩCM×(R), and so is (Ωdk)† by assumption. Theorem

4.3.9 shows (2) ⇒ (4). ■

We close this section by constructing an example by applying the above corollary.
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Example 4.3.12. Let S = C[[x, y, z]] be a formal power series ring. Let G be the cyclic

group 1
2(1, 1, 1), and let R = SG be the invariant (i.e. the second Veronese) subring of S.

Then ΩCM×(R) = Ul(R). In fact, by [149, Proposition (16.10)], the modules R, ω, Ωω are

the nonisomorphic indecomposable Cohen–Macaulay R-modules and (Ωω)† ∼= Ωω. By [136,

Theorem 4.3] the module Ω2C does not have a nonzero free or canonical summand. Hence Ω2C
is a direct sum of copies of Ωω, and thus (Ω2C)† ∼= Ω2C. The equality ΩCM×(R) = Ul(R) follows

from Corollary 4.3.11.

4.4 Applications

This section is devoted to stating applications of our main theorems obtained in the previous

section.

4.4.1 The case of dimension one

We begin with studying the case where R has dimension 1.

Let B be the endomorphism ring EndR(m) of m. By Remark 2.2.3, B is identified with m : m,

a subring of Q(R). Furthermore, B is Cohen–Macaulay of Krull dimension one, semilocal, and

module-finite over R. Note that CM(B) can be considered as a subcategory of CM(R) via the

inclusion R→ B.

If ω exists, then we can give an equivalent condition to the equality CM(B) = ΩCM×(R) by

using the canonical dual (−)†.
We prepare the following three lemmas about ΩCM(R). The first lemma follows from [148,

Lemma 2.1].

Lemma 4.4.1. Let M be a Cohen–Macaulay R-module. Then ΩM has no free summand.

Lemma 4.4.2. Let M be an R-module in ΩCM×(R). Then there is an exact sequence

0→M → m⊕n → N → 0

of modules in CM(B).

Proof. As M is in ΩCM(R), we have an exact sequence 0→M
α−→ R⊕n → N ′ → 0 with a max-

imal Cohen–Macaulay R-module N . Since M has no free summand, there is a homomorphism

β : M → m such that α = i ◦ β, where i is the natural inclusion m⊕n → R⊕n. Let N be the

cokernel of β. We have the following commutative diagram with exact rows and columns.

0 // M
α // R⊕n // N ′ // 0

0 // M
β

// m⊕n

i

OO

// N

OO

// 0

0

OO

0

OO

Since β ∈ HomR(M,m) = HomB(M,m), N is an B-module. The exactness of 0 → N → N ′

implies that N is maximal Cohen–Macaulay over R. Thus N is in CM(B). ■
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Lemma 4.4.3. Assume that R has a canonical module ω. Then the equality CM(B) = ΩCM×(R)

holds if and only if B† ∈ ΩCM×(R).

Proof. Since B† = HomR(B,ω) is an B-module contained in CM(B), The “only if” part is clear.

Now we assume B† ∈ ΩCMP(R). Let M be in CM(B). Taking a free cover of M † over B, we get

an exact sequence 0 → N → B⊕n → M † → 0 with some B-module N . Since M †, B ∈ CM(R),

N is also in CM(R) by the depth lemma. Applying (−)† to this sequence, we have an exact

sequence 0 → M → (B†)⊕n → N † → 0. Using Lemma 4.3.5, M is in ΩCM×(R). This shows

that CM(B) = ΩCM×(R). ■

If the completion R̂ of R is generically Gorenstein, then R has a canonical module by [62,

Proposition 2.7]. In this situation, we see in the next lemma that the condition CM(B) =

ΩCM×(R) is stable under flat local extension.

Corollary 4.4.4. Let φ : (R,m)→ (R′,m′) be a flat local homomorphism such that mR′ = m′.

Assume that the completion R̂ of R is generically Gorenstein. Then CM(B) = ΩCM×(R) if and

only if CM(EndR′(m′)) = ΩCM×(R′).

Proof. Let B′ = EndR′(m′). Note that R̂′ is also generically Gorenstein by [62, Proposition 2.12].

In addition, ω⊗RR
′ is a canonical module ofR′. Therefore, by Lemma 4.4.3, CM(B) = ΩCM×(R)

if and only if B† ∈ ΩCM×(R), and CM(B′) = ΩCM×(R′) if and only if HomR′(B′, ω ⊗R R′) ∈
ΩCM×(R). Here B′ = B⊗R R′ and hence HomR′(B′, ω⊗R R′) = (B†)⊗R R′. Thus the asertion

follows by Corollary 4.3.4. ■

Using the above lemma, we can replace R with the completion R̂. We have one more

equivalent condition to being CM(B) = ΩCM×(R).

Lemma 4.4.5. Assume that the completion R̂ of R is generically Gorenstein. Then B† ∈
ΩCMs(R) if and only if B† ∼= m.

Proof. Thanks to Corollary 4.4.4, we can assume that R is complete. If B† ∼= m, then we have

B† ∈ ΩCMP(R). Conversely, we assume B† ∈ ΩCM×(R). Using Lemma 4.4.2, we get an exact

sequence

0→ B† α−→ m⊕m → N → 0 (4.4.5.1)

of modules in CM(B). By the Krull–Schmidt theorem for R, we have a unique decomposition

m = m1⊕ · · ·⊕mn, where mi are indecomposable R-modules. Then we obtain B = EndR(m1)×
· · · × EndR(mn) as an R-algebra. The components Bi = EndR(mi) of B are local rings because

of the indecomposability of mi. Set ni the maximal ideal of B corresponding to the maximal

ideal of Bi. Note that the localization (B†)ni = (HomR(B,ω))ni is the canonical module of Bi

and the localization mni is equal to (mi)ni . Thus, after localizing at ni, the sequence (4.4.5.1)

becomes split exact and (B†)ni is a direct summand of (mi)
⊕m
ni . The modules (B†)ni and (mi)ni

are both indecomposable. Hence we obtain an isomorphism (B†)ni
∼= (mi)ni by the Krull-

Schmidt theorem. The homomorphism α is a split injection, since it becomes a split injection

after localizing at ni for all i = 1, . . . , n. Therefore B† is isomorphic a direct summand of m⊕m.

Set B† ∼= m⊕a1
1 ⊕ · · · ⊕ m⊕an

n . Then the localization at ni shows that ai = 1. Consequently,

B† ∼= m1 ⊕ · · · ⊕mn = m. ■
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The following lemma will be used to prove Theorem 4.0.3.

Lemma 4.4.6. Let A be a ring with total quotient ring T , A be the integral closure of A in

T , and X be an A-submodule of A containing A. If there is an isomorphism ϕ : A → X of

A-modules, then X = A.

Proof. Let i : A→ X be the inclusion homomorphism. Then ϕ−1◦i : A→ A is an endomorphism

of A. Hence it is a multiplication map by r for some r ∈ A. Since r = ϕ−1◦i : A→ A is injective,

1/r is in T . We have 1 = i(1) = ϕ(r) = rϕ(1) in A and hence 1/r = ϕ(1) ∈ A. It means that

1/r is integral over A. Therefore we have an equation of integral dependence

(1/r)n + a1(1/r)
n−1 + · · ·+ an = 0,

where ai ∈ A for all i = 1, . . . , n. Multiplying rn, we get 1 + r(a1 + · · · + anr
n−1) = 0. This

equation yields that r is a unit of A. Thus the endomorphism r = ϕ−1 ◦ i : A → A is an

automorphism, i is an isomorphism, and A = X. ■

Assume that R is complete and has a infinite residue field. Then there is an R-submodule

K of Q(R) such that R ⊂ K ⊂ R, and as an R-module, K is a canonical module of R; see [62,

Corollary 2.9]. Using this module K, we can give a proof of Theorem 4.0.3.

Proof of Theorem 4.0.3. (1) ⇔ (3): This can be shown by Lemma 4.4.3 and Lemma 4.4.5.

(3) ⇒ (2): We may assume that R is not Gorenstein. Then R : m ⊆ K : m ⊆ R[K] ⊆ R

by [62, Corollary 3.8]. On the other hand, m† = K : m is isomorphic to B = R : m by the

assumption. Applying Lemma 4.4.6 to X = K : m and A = B, we obtain K : m = B. Thus

we see that m = K : (K : m) = K : B. This yields that m : K = (K : B) : K = (K : K) :

B = R : B = m. In particular, we have inclusions mK ⊂ m ⊂ R. This implies that R is almost

Gorenstein by [62, Theorem 3.11].

(2) ⇒ (3): We may assume that R is not Gorenstein again. [62, Theorem 3.16] says that

(B =)m : m = K : m. Then we can check that m = K : (K : m) = K : B. In particular, m ∼= B†.

Taking the canonical duals, we get an isomorphism m† ∼= B. ■

The remaining part of the proof of Theorem 4.3.9. It remains to prove that R is almost Goren-

stein under the assumption that d is positive, k is infinite and (1)–(9) all hold. We use induction

on d. Let d = 1. Let Q be the total quotient ring of R, and set B = EndR(m). Let K be an

R-module with K ∼= ω and R ⊆ K ⊆ R in Q, where R is the integral closure of R. Using [121,

Proposition 2.5], we have:

m ∼= HomR(m, R) = B and m† ∼= HomR(m,K) ∼= (K :Q m). (4.4.6.1)

By (4) the module m† belongs to ΩCM×(R). It follows from Theorem 4.0.3 that R is almost

Gorenstein; note that the completion of R also has Gorenstein punctured spectrum by (4’).

Let d > 1. Since (Ωdk)† ∈ ΩCM(R), there is an exact sequence 0→ (Ωdk)† → R⊕m → N → 0

for some m ≥ 0 and N ∈ CM(R). Choose a parameter ideal Q = (x1, . . . , xd) of R satisfying the

equality m2 = Qm, and set (−) = (−)⊗R R/(x1). An exact sequence

0→ (Ωdk)† → R
⊕m → N → 0
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is induced, which shows that (Ωdk)† is in ΩCM(R). Applying (−)† to the exact sequence 0 →
Ωdk

x−→ Ωdk → Ωdk → 0 and using [19, Lemma 3.1.16], we obtain isomorphisms

(Ωdk)† ∼= Ext1R(Ω
dk, ω) ∼= HomR(Ω

dk, ω).

The module Ωd−1
R

k is a direct summand of Ωdk by [136, Corollary 5.3], and hence HomR(Ω
d−1
R

k, ω)

is a direct summand of HomR(Ω
dk, ω). Summarizing these, we observe that HomR(Ω

d−1
R

k, ω)

belongs to ΩCM(R). Since R has minimal multiplicity, we can apply the induction hypothesis

to R to conclude that R is almost Gorenstein, and so is R by [65, Theorem 3.7]. ■

Corollary 4.4.7. Let (R,m, k) be a 1-dimensional Cohen–Macaulay local ring with k infinite

and canonical module ω. Suppose that R has minimal multiplicity, and set (−)† = HomR(−, ω).
Then

ΩCM×(R) = Ul(R) ⇐⇒ m† ∈ ΩCM×(R) ⇐⇒ m† ∼= m ⇐⇒ R is almost Gorenstein.

Proof. Call the four conditions (i)–(iv) from left to right. The implications (i) ⇔ (ii) ⇒ (iv)

are shown by Theorem 4.3.9, while (iii) ⇔ (iv) by Theorem 4.0.3 and (4.4.6.1). Lemma 4.3.7(1)

shows (iii) ⇒ (ii). ■

Now we pose a question related to Question 4.1.2.

Question 4.4.8. Can we classify 1-dimensional Cohen–Macaulay local rings R with minimal

multiplicity (and infinite residue field) satisfying the condition # indUl(R) <∞?

If R has finite Cohen–Macaulay representation type (that is, if # ind CM(R) < ∞), then

of course this question is affirmative. However, we do not have any partial answer other than

this. The reader may wonder if the condition # indUl(R) <∞ implies the equality ΩCM×(R) =

Ul(R). Using the above theorem, we observe that this does not necessarily hold:

Example 4.4.9. Let R = k[[t3, t7, t8]] be (the completion of) a numerical semigroup ring, where

k is an algebraically closed field of characteristic zero. Then R is a Cohen–Macaulay local ring of

dimension 1 with minimal multiplicity. It follows from [76, Theorem A.3] that # indUl(R) <∞.

On the other hand, R is not almost-Gorenstein by [62, Example 4.3], so ΩCM×(R) ̸= Ul(R) by

Corollary 4.4.7.

4.4.2 The case of dimension two

From now on, we consider the case where R has dimension 2. We recall the definition of a

Cohen–Macaulay approximation. Let R be a Cohen–Macaulay local ring with canonical module.

A homomorphism f : X →M of R-modules is called a Cohen–Macaulay approximation (of M)

if X is Cohen–Macaulay and any homomorphism f ′ : X ′ →M with X ′ being Cohen–Macaulay

factors through f . It is known that f is a (resp. minimal) Cohen–Macaulay approximation if

and only if there exists an exact sequence

0→ Y
g−→ X

f−→M → 0
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of R-modules such that X is Cohen–Macaulay and Y has finite injective dimension (resp. and

that X,Y have no common direct summand along g). For details of Cohen–Macaulay approxi-

mations, we refer the reader to [108, Chapter 11].

The module E appearing in the following remark is called the fundamental module of R.

Remark 4.4.10. Let (R,m, k) be a 2-dimensional Cohen–Macaulay local ring with canonical

module ω.

(1) There exists a nonsplit exact sequence

0→ ω → E → m→ 0 (4.4.10.1)

which is unique up to isomorphism. This is because Ext1R(m, ω) ∼= Ext2R(k, ω)
∼= k.

(2) The module E is Cohen–Macaulay and uniquely determined up to isomorphism.

(3) The sequence (4.4.10.1) gives a minimal Cohen–Macaulay approximation of m.

(4) There is an isomorphism E ∼= E†. In fact, applying (−)† to (4.4.10.1) induces an exact

sequence

0→ m† → E† → R→ Ext1R(m, ω)→ Ext1R(E,ω) = 0.

Applying (−)† to the natural exact sequence 0 → m → R → k → 0 yields m† ∼= ω, while

Ext1R(m, ω) ∼= k. We get an exact sequence 0 → ω → E† → m → 0, and the uniqueness of

(4.4.10.1) shows E† ∼= E.

To prove the main result of this section, we prepare two lemmas. The first one relates the

fundamental module of a 2-dimensional Cohen–Macaulay local ring R with Ul(R) and ΩCM×(R).

Lemma 4.4.11. Let (R,m, k) be a 2-dimensional Cohen–Macaulay local ring with canonical

module ω and fundamental module E.

(1) Assume that R has minimal multiplicity. Then E is an Ulrich R-module.

(2) For each module M ∈ ΩCM×(R) there exists an exact sequence 0 → M → E⊕n → N → 0

of R-modules such that N is Cohen–Macaulay.

Proof. (1) We may assume that k is infinite by Remark 4.1.5(2). Let Q = (x, y) be a parameter

ideal of R with m2 = Qm. We have m/xm ∼= m/(x) ⊕ k; see [136, Corollary 5.3]. Note that

(m/(x))2 = y(m/(x)). By [148, Corollary 2.5] the minimal Cohen–Macaulay approximation

of m/xm as an R/(x)-module is E/xE. In view of the proof of [108, Proposition 11.15], the

minimal Cohen–Macaulay approximations of m/(x) and k as R/(x)-modules are m/(x) and

HomR/(x)(m/(x), ω/xω), respectively. Thus we get an isomorphism

E/xE ∼= m/(x)⊕HomR/(x)(m/(x), ω/xω).

In particular, E/xE is an Ulrich R/(x)-module by Lemma 4.3.7(1) and Corollary 4.2.2. It

follows from Lemma 4.3.6 that E is an Ulrich R-module.

(2) Take an exact sequence 0→M
f−→ R⊕n e−→ L→ 0 such that L is Cohen–Macaulay. As M

has no free summand, the homomorphism e is minimal. This means that f factors through the
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natural inclusion i : m⊕n → R⊕n, that is, f = ig for some g ∈ HomR(M,m⊕n). The direct sum

p : E⊕n → m⊕n of copies of the surjection E → m (given by (4.4.10.1)) is a Cohen–Macaulay

approximation. Hence there is a homomorphism h : M → E⊕n such that g = ph. We get a

commutative diagram

0 // M
f

// R⊕n // L // 0

0 // M
h // E⊕n //

ip
OO

N //

OO

0

with exact rows. This induces an exact sequence 0→ E⊕n → R⊕n⊕N → L→ 0, and therefore

N is a Cohen–Macaulay R-module. ■

A short exact sequence of Ulrich modules is preserved by certain functors:

Lemma 4.4.12. Let 0→ X → Y → Z → 0 be an exact sequence of modules in Ul(R). Then it

induces exact sequences of R-modules

(a) 0→ X ⊗R k → Y ⊗R k → Z ⊗R k → 0,

(b) 0→ HomR(Z, k)→ HomR(Y, k)→ HomR(X, k)→ 0, and

(c) 0→ HomR(Z, (Ω
dk)†)→ HomR(Y, (Ω

dk)†)→ HomR(X, (Ωdk)†)→ 0.

Proof. The sequence X ⊗R k → Y ⊗R k → Z ⊗R k → 0 is exact and the first map is injective by

Lemma 4.3.5(1). Hence (a) is exact, and so is (b) by a dual argument. In what follows, we show

that (c) is exact. We first note that (Ωdk)† is a minimal Cohen–Macaulay approximation of k; see

the proof of [108, Proposition 11.15]. Thus there is an exact sequence 0→ I → (Ωdk)† → k → 0

such that I has finite injective dimension. As Ul(R) ⊆ CM(R), we have Ext1R(M, I) = 0 for all

M ∈ {X,Y, Z}. We obtain a commutative diagram

0 // HomR(Y, I)

α����

// HomR(Y, (Ω
dk)†)

β��

// HomR(Y, k)
γ
��

// 0

0 // HomR(X, I) // HomR(X, (Ωdk)†) // HomR(X, k) // 0

with exact rows, where α is surjective. The exactness of (b) implies that γ is surjective. By the

snake lemma β is also surjective, and therefore (c) is exact. ■

Now we can state and show our main result in this section.

Theorem 4.4.13. Let R be a 2-dimensional complete singular normal local ring with residue

field C and having minimal multiplicity. Suppose that R does not have a cyclic quotient singu-

larity. Then:

(Ωdk)† ∼= Ωdk ⇐⇒ (Ωdk)† ∈ add(Ωdk) ⇐⇒ A(Ωdk)† = m ⇐⇒ ΩCM×(R) = Ul(R).

Proof. In view of Corollary 4.3.11, it suffices to show that if R does not have a cyclic quotient

singularity, then the fourth condition implies the first one. By virtue of [149, Theorem 11.12]

the fundamental module E is indecomposable. Applying Lemma 4.4.11(2) to (Ωdk)†, we have

an exact sequence 0 → (Ωdk)†
α−→ E⊕n → N → 0 such that N is Cohen–Macaulay. Since E is
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Ulrich by Lemma 4.4.11(1), so are all the three modules in this sequence by Lemma 4.3.5(2).

Thus we can apply Lemma 4.4.12 to see that the induced map

HomR(α, (Ω
dk)†) : HomR(E

⊕n, (Ωdk)†)→ HomR((Ω
dk)†, (Ωdk)†)

is surjective. This implies that α is a split monomorphism, and (Ωdk)† is isomorphic to a direct

summand of E⊕n. Since E is indecomposable, it folllows that (Ωdk)† is isomorphic to E⊕m for

some m. We obtain

(Ωdk)† ∼= E⊕m ∼= (E†)⊕m ∼= (Ωdk)†† ∼= Ωdk,

where the second isomorphism follows by Remark 4.4.10(4). ■

Remark 4.4.14. Let R be a cyclic quotient surface singularity over C. Nakajima and Yoshida

[115, Theorem 4.5] give a necessary and sufficient condition for R to be such that the number

of nonisomorphic indecomposable Ulrich R-modules is equal to the number of nonisomorphic

nonfree indecomposable special Cohen–Macaulay R-modules. By [88, Corollary 2.9], the latter is

equal to the number of isomorphism classes of indecomposable modules in ΩCM×(R). Therefore,

they actually gives a necessary and sufficient condition for R to satisfy ΩCM×(R) = Ul(R).

Using our Theorem 4.4.13, we give some examples of a quotient surface singularity over C to

consider Ulrich modules over them.

Example 4.4.15. (1) Let S = C[[x, y]] be a formal power series ring. Let G be the cyclic

group 1
3(1, 1), and let R = SG be the invariant (i.e. the third Veronese) subring of S. Then

ΩCM×(R) = Ul(R). This follows from [115, Theorem 4.5] and Remark 4.4.14, but we can also

show it by direct caluculation: we have

Cl(R) = {[R], [ω], [p]} ∼= Z/3Z,

where ω = (x3, x2y)R is a canonical ideal of R, and p = (x3, x2y, xy2)R is a prime ideal of height

1 with [ω] = 2[p]. Since the second Betti number of C over R is 9, we see Ω2C ∼= p⊕3. As [p†] =

[ω]− [p] = [p], we have p† ∼= p and (Ω2C)† ∼= Ω2C. Theorem 4.4.13 shows ΩCM×(R) = Ul(R).

(2) Let S = C[[x, y]] be a formal power series ring. Let G be the cyclic group 1
8(1, 5), and

let R = SG be the invariant subring of S. With the notation of [115], the Hirzebruch-Jung

continued fraction of this group is [2, 3, 2]. It follows from [115, Theorem 4.5] and Remark 4.4.14

that ΩCM×(R) ̸= Ul(R).

4.4.3 An exact structure of the category of Ulrich modules

Finally, we consider realization of the additive category Ul(R) as an exact category in the sense of

Quillen [122]. We begin with recalling the definition of an exact category given in [91, Appendix

A].

Definition 4.4.16. Let A be an additive category. A pair (i, d) of composable morphisms

X
i−→ Y

d−→ Z

is exact if i is the kernel of d and d is the cokernel of i. Let E be a class of exact pairs closed under

isomorphism. The pair (A, E) is called an exact category if the following axioms hold. Here, for

each (i, d) ∈ E the morphisms i and d are called an inflation and a deflation, respectively.
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(Ex0) 1 : 0→ 0 is a deflation.

(Ex1) The composition of deflations is a deflation.

(Ex2) For each morphism f : Z ′ → Z and each deflation d : Y → Z, there is a pullback diagram

as in the left below, where d′ is a deflation.

(Ex2op) For each morphism f : X → X ′ and each inflation i : X → Y , there is a pushout diagram

as in the right below, where i′ is an inflation.

Y ′

��

d′ // Z ′

f��

Y
d // Z

X
i //

f ��

Y

��

X ′ i′ // Y ′

We can equip a structure of an exact category with our Ul(R) as follows.

Theorem 4.4.17. Let R be a d-dimensional Cohen–Macaulay local ring with residue field k

and canonical module, and assume that R has minimal multiplicity. Let S be the class of exact

sequences 0→ L→M → N → 0 of R-modules with L,M,N Ulrich. Then Ul(R) = (Ul(R),S) is
an exact category having enough projective objects and enough injective objects with projUl(R) =

add(Ωdk) and injUl(R) = add((Ωdk)†).

Proof. We verify the axioms in Definition 4.4.16.

(Ex0): This is clear.

(Ex1): Let d : Y → Z and d′ : Z → W be deflations. Then there is an exact sequence

0→ X → Y
d′d−−→W → 0 of R-modules. Since Y is in Ul(R) and X,W ∈ CM(R), it follows from

that X ∈ Ul(R). Thus this sequence belongs to S, and d′d is a deflation.

(Ex2): Let f : Z ′ → Z be a homomorphism in Ul(R) and d : Y → Z a deflation in S. Then we

get an exact sequence 0→ Y ′ → Y ⊕Z ′ (d,f)−−−→ Z → 0. Since Y ⊕Z ′ ∈ Ul(R) and Y ′, Z ∈ CM(R),

Lemma 4.3.5(2) implies Y ′ ∈ Ul(R). Make an exact sequence 0 → X ′ → Y ′ d′−→ Z ′ → 0. As

Y ′ ∈ Ul(R) and X ′, Z ′ ∈ CM(R), the module Z ′ is in Ul(R) by Lemma 4.3.5(2) again. Thus d′

is a deflation.

(Ex2op): We can check this axiom by the opposite argument to (Ex2).

Now we conclude that (Ul(R),S) is an exact category. Let us prove the remaining assertions.

Lemma 4.4.12(c) yields the injectivity of (Ωdk)†. Since (−)† gives an exact duality of (Ul(R),S),
the module Ωdk is a projective object. We also observe from Lemma 4.3.7 and Corollary 4.2.2

that (Ul(R),S) has enough projective objects with projUl(R) = add(Ωdk), and has enough

injective objects with injUl(R) = add((Ωdk)†) by the duality (−)†. ■

Remark 4.4.18. Let (R,m) be 1-dimensional Cohen–Macaulay local ring with infinite residue

field. Let (t) be a minimal reduction of m. Then Ul(R) = CM
(
R
[
m
t

])
by [76, Proposition A.1].

This equality actually gives an equivalence Ul(R) ∼= CM(R[mt ]) of categories, since Hom-sets do

not change; see [108, Proposition 4.14]. Thus the usual exact structure on CM(R[mt ]) coincides

with the exact structure on Ul(R) given above via this equivalence.
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Chapter 5

Local rings with self-dual maximal
ideal

5.1 Introduction

The contents of this chapter is based on author’s work [97].

Let R be a Cohen-Macaulay local ring with a canonical module ω. For an R-module M , we

denote by M † the R-module HomR(M,ω). The R-module M is called self-dual if there exists an

isomorphism M
∼=−→ M † of R-modules. Note that the self-duality of R-modules is independent

of the choice of ω.

Let R and S be artinian local rings such that S maps onto R. Denote by cS(R) the colength

ℓS(S) − ℓS(R). In the case that S is Gorenstein, the integer cS(R) is used to estimate homo-

logical properties of R, for example, see [105, Theorem 7.5]. Ananthnarayan [1] introduced the

Gorenstein colength g(R) of an artinian local ring (R,m, k) to be the following integer

g(R) := min{cS(R) | S is a Gorenstein artinian local ring mapping onto R}.

The number g(R) measures how close R is to a Gorenstein ring. Clearly, g(R) is zero if

and only if R is Gorenstein. One can see that g(R) = 1 if and only if R is non-Gorenstein and

R ∼= S/soc(S) for an artinian Gorenstein ring S. These rings are called Teter rings. On Teter

rings, the following characterization is known, which is an improvement of Teter’s result [143].

This was proved by Huneke-Vraciu [86] under the assumption that 1/2 ∈ R and soc(R) ⊆ m2,

and later Ananthnarayan-Avramov-Moore [2] removed the assumption soc(R) ⊆ m2. See also

the result of Elias-Takatsuji [52].

Theorem 5.1.1 (Huneke-Vraciu, Ananthnarayan-Avramov-Moore, Elias-Takatuji). Let (R,m, k)

be an artinian local ring such that either R contains 1/2 or R is equicharacteristic with soc(R) ⊆
m2. Then the following are equivalent.

(1) g(R) ≤ 1.

(2) Either R is Gorenstein or m ∼= m†.

(3) Either R is Gorenstein or there exists a surjective homomorphism ω → m.

Moreover, Ananthnarayan [1] extended this theorem to the case g(R) ≤ 2 as follows.
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Theorem 5.1.2 (Ananthnarayan). Let (R,m) be an artinian local ring. Write R ∼= T/I where

(T,mT ) is a regular local ring and I is an ideal of T . Suppose I ⊆ m6
T and 1/2 ∈ R. Then the

following are equivalent.

(1) g(R) ≤ 2.

(2) There exists a self-dual ideal a ⊆ R such that l(R/a) ≤ 2.

In this paper, we try to extend the notion of Gorenstein colengths and the above results to

the case that R is a one-dimensional Cohen-Macaulay local ring.

For a local ring (R,m), we denote by Q(R) the total quotient ring of R. An extension S ⊆ R

of local rings is called birational if R ⊆ Q(S). In this case, R and S have same total quotient

ring.

Let (S, n) ⊆ (R,m) be an extension of local rings. Suppose n = m ∩ S. Then S ⊆ R

is called residually rational if there is an isomorphism S/n ∼= R/m induced by the natural

inclusion S → R. For example, if S ⊆ R is module-finite and S/n is algebraically closed, then

it automatically follows that S ⊆ R is residually rational. We introduce an invariant bg(R) for

local rings R as follows, which is the infimum of Gorenstein colengths in birational maps.

Definition 5.1.3. For a local ring R, we define

bg(R) := inf

{
ℓS(R/S)

∣∣∣∣ S is Gorenstein and S ⊆ R is a module-finite
residually rational birational map of local rings

}
.

We will state the main results of this paper by using this invariant. The first one is the

following theorem, which gives a one-dimensional analogue of Theorem 5.1.1.

Theorem 5.1.4. Let (R,m) be a one-dimensional Cohen-Macaulay local ring having a canonical

module ω. Consider the following conditions.

(1) bg(R) ≤ 1.

(2) Either R is Gorenstein or there exists a Gorenstein local ring (S, n) of dimension one such

that R ∼= EndS(n).

(3) Either R is Gorenstein or m ∼= m†.

(4) Either R is Gorenstein or there is a short exact sequence 0→ ω → m→ k → 0.

(5) There is an ideal I of R such that I ∼= ω (i.e. I is a canonical ideal of R) and l(R/I) ≤ 2.

Then the implications (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇔ (5) hold. The direction (5) ⇒ (1) also holds

if R contains an infinite field k as a subalgebra which is isomorphic to R/m via the projection

R→ R/m, i.e. R has an infinite coefficient field k ⊆ R.

The existence of a canonical ideal I of R with ℓR(R/I) = 2 is considered by Dibaei-Rahimi

[48]. Using their notion, the condition (5) above is equivalent to the condition that min(SCR
) ≤ 2.

We also remark that Bass’s idea [14] tells us the importance of the endomorpshism ring

EndS(n) of the maximal ideal n of a Gorenstein local ring S of dimension one. He shew that

any torsion-free S-module without non-zero free summand can be regarded as a module over
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EndS(n). So we can analyze Cohen-Macaulay representations of R via the ring EndS(n) (see

also [108, Chapter 4]).

As a corollary, we can characterize Cohen-Macaulay local rings R of dimension one having

minimal multiplicity and satisfying bg(R) ≤ 1. To give the statement of our corollary, we

recall some definitions. For a local ring R, we denote by e(R) the multiplicity of R, r(R) the

Cohen–Macaulay type, and by edimR the embedding dimension of R. According to Goto-

Matsuoka-Phuong [62], a local ring R is called almost Gorenstein, if R posseses a canonical ideal

I of R such that e1(I) ≤ r(R), where e1(I) is the first Hilbert coefficient of I. A Gorenstein ring

of dimension one satisfying e(S) = edimS+1 are called a ring of almost minimal multiplicity or

a Gorenstein ring of minimal multiplicity, and studied by J. D. Sally [130]. The invariant ρ(R)

is the canonical index of R, introduced by Ghezzi-Goto-Hong-Vasconcelos [57].

Corollary 5.1.5. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. Consider the

following conditions.

(1) bg(R) ≤ 1 and R has minimal multiplicity.

(2) Either e(R) ≤ 2 or R is almost Gorenstein with bg(R) = 1.

(3) m ∼= m† and R is almost Gorenstein.

(4) m ∼= m† and R has minimal multiplicity.

(5) R is almost Gorenstein and has minimal multiplicity.

(6) There exists a Gorenstein local ring (S, n) of dimension one such that e(S) ≤ edimS + 1

and R ∼= EndS(n).

(7) m ∼= m† and ρ(R) ≤ 2.

Then (1) ⇔ (2) ⇒ (3) ⇔ (4) ⇔ (5) holds. If R/m is infinite, then (5) ⇔ (7) and (6) ⇒ (4)

hold. If R has an infinite coefficient field k ⊆ R, then all the conditions are equivalent.

The second main theorem of this paper is the following, which is a one-dimensional analogue

of Theorem 5.1.2.

Theorem 5.1.6. Let (R,m) be a complete one-dimensional Cohen-Macaulay local ring. Con-

sider the following conditions.

(1) bg(R) ≤ 2.

(2) There exists a self-dual ideal a ⊆ R such that ℓR(R/a) ≤ 2.

Then (1) implies (2). The implication (2) ⇒ (1) also holds if R has an infinite coefficient field

k ⊆ R.

In the view of Theorem 5.1.4, local rings with self-dual maximal ideal are naturally con-

structed from Gorenstein local rings, and so their ubiquity is certified. It is interesting to

consider what good properties they have compared to Gorenstein rings. In section 3, we have an

observation that a Cohen-Macaulay local ring (R,m) is nearly Gorenstein (see Definition 5.3.4
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for the definition) if m is self-dual. The converse of this is not true in general, however, we have

the following result. Here m : m is a subring of Q(R) consisting of the elements a satisfying

am ⊆ m.

Theorem 5.1.7. Let (R,m, k) be a Cohen-Macaulay local ring of dimension one. Put B = m :

m. Assume k is infinite.

(1) If B is local with Cohen-Macaulay type two and R is nearly Gorenstein, then R is almost

Gorenstein and does not satisfy m ∼= m†.

(2) If B is local with Cohen-Macaulay type three and R is nearly Gorenstein, then either R is

almost Gorenstein or m ∼= m†.

We will provide a proof of Theorem 5.1.7 in section 3. One should compare this theorem

with the following result of Goto-Matsuoka-Phuong [62, Theorem 5.1].

Theorem 5.1.8 (Goto-Matsuoka-Phuong). Let (R,m, k) be a Cohen-Macaulay local ring of

dimension one. Put B = m : m. Then B is Gorenstein if and only if R is almost Gorenstein

and has minimal multiplicity.

In section 4, we deal with numerical semigroup rings having self-dual maximal ideal. The

definition of UESY-semigroups was given by [124]. These numerical semigroups are exactly the

semigroups obtained by adding one element to a symmetric numerical semigroup. We will show

that a numerical semigroup ring has self-dual maximal ideal if and only if the corresponding

numerical semigroup is UESY. After that, we also prove that the rings of UESY-numerical

semigroup have quasi-decomposable maximal ideal. According to [116], an ideal I of R is

called quasi-decomposable if there exists a regular sequence x = x1, . . . , xt such that I/(x)

is decomposable as an R-module. Local rings with quasi-decomposable maximal ideal have

some interesting properties; we can classify thich subcategories of the singularity category with

some assumption on the punctured spectrum ([116, Theorem 4.5]), and we have results on the

vanishings of Ext and Tor ([116, Section 6]).

In section 5, we characterize the endomorphism ring of a local hypersurface of dimension

one, using Theorem 5.1.4.

5.2 Proof of Theorem 5.1.4 and 5.1.6

In this section, we prove Theorem 5.1.4 and 5.1.6. Let (R,m) be a Noetherian local ring with

total quotient ring Q(R). Denote by R̃ the integral closure of R in Q(R). By Remark 2.2.3,

EndR(m) is identified with m : m, which is a subring of R̃. Furthermore, m : m is semilocal and

module-finite over R.

We give the following lemma in order to use in the proof of Theorem 5.1.4.

Lemma 5.2.1. Let (S, n) ⊊ (R,m) be a module-finite birational extension of one-dimensional

local rings. Assume R is reflexive as an S-module. Then we have birational extensions S ⊊ n :

n ⊆ R.
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Proof. Note that S is not a discrete valuation ring, and so S is properly contained in n : n

(Lemma 2.2.7). By the assumption, R = S : (S : R).

We use the following claim.

Claim 4. The S-modules R and S : R have no nonzero S-free summands.

Proof of Claim 4. First consider the case when R has a S-free summand, that is, R ∼= S ⊕ X

for some S-module X. Then R⊗S Q(S) ∼= Q(S)⊕X ⊗S Q(S). Since S ⊆ R is finite birational,

R⊗SQ(S) ∼= Q(R) = Q(S). Therefore, we obtain that Q(S) is isomorphic to Q(S)⊕X⊗SQ(S).

Since Q(S) is artinian, we may use the Krull–Schmidt theorem for Q(S) to show that X⊗SQ(S).

In particular, X is a torsion S-module. Howeber, X is a submodule of torsionfree S-module R,

and hence X itself is torsionfree. Thus X should be a zero module. This shows that R ∼= S. As

R is a finite module over S, the ring-extension R ⊆ S is integral. Thus R is contained in the

integral closure of S in Q(S). By Lemma 4.4.6, it follows that R = S. This is a contradiction.

Now suppose that S : R has an S-free summand. Since R = S : (S : R) ∼= HomS(S : R,S),

it follows that R has an S-free summand, too. This is a contradiction. ■

By Claim 4 and Lemma 2.2.6, R has an n : n-module structure compatible with the action

of S. Therefore, we get equalities R = (n : n)R and (n : n) ⊆ (n : n)R ⊆ R. ■

Now we can explain the proof of the direction 5.1.4 (1)⇒ (2)⇒ (3)⇔ (4)⇔ (5) of Theorem

5.1.4.

Proof of Theorem 5.1.4 (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇔ (5). (1)⇒ (2): Assume bg(R) ≤ 1. If bg(R) =

0, then R is Gorenstein, and there is nothing to prove. We may assume bg(R) = 1. Then there

is a Gorenstein local ring (S, n) and module-finite residually rational birational extension S ⊊ R

with ℓS(R/S) = 1. Since S is Gorenstein and R is maximal Cohen–Macaulay over S, R is

reflexive as an S-module (see [19, Theorem 3.3.10] for instance). By the previous lemma, we

have S ⊊ n : n ⊆ R. Therefore, it should follows that ℓS(R/n : n) = 0, in other words,

R = n : n = n : S.

(2) ⇒ (3): We may assume S is not a discrete valuation ring， (otherwise R ∼= S and hence

R is Gorenstein). Identify R with n : n. By Lemma 2.2.7, one has ℓS(R/S) = 1. Hence we have

that the colength ℓS(m/n) of the inclusion n ⊆ m is less than or equal to 1. it is easy to check

that m/n is an R-module. And we have a calculation ℓR(m/n)× ℓS(R/m) = ℓS(m/n) = 1. Thus

it follows that m/n has dimension one as a vector space over R/m. Fix a preimage t ∈ R of a

basis t of m/n. Then m = n+Rt and m2 = n2+mt ⊆ n. This means m ⊆ S : m. We have another

inclusion S : m ⊆ S : n. Using Lemma 2.2.5, we see that R = n : n = S : n. It also holds that

Rt ̸⊂ S (otherwise m = n + Rt ⊆ S). These observation yield that S : m = m. The fractional

ideal S : m is isomorphic to HomS(m, S) ∼= HomR(m,HomS(R,S)). Now as S is Gorenstein

and S ⊆ R is a local homomorphism which makes R a finite S-module, ω is isomorphic to

HomR(R,S) [19, Theorem 3.3.7 (b)]. Thus S : m is isomorphic to HomR(m, ω) = m†. We

conclude that m ∼= m†.

(3) ⇒ (4): Applying the functor (−)† to the short exact sequence 0→ m→ R→ k → 0, we

see that the resulting exact sequence is 0 → ω → m† → Ext1R(k, ω)
∼= k → 0. Replacing m† by

m, using the assumption m ∼= m†, we get the desired exact sequence.
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(4) ⇒ (3): Applying the functor (−)† to the short exact sequence 0→ ω → m→ k → 0, we

get an exact sequence 0 → m† → R → Ext1R(k, ω)
∼= k → 0. Then, the image of m† in R must

be equal to m and hence one has an isomorphism m† ∼= m.

(4) ⇒ (5): The exact sequence 0 → ω → m → k → 0 yields that there is an ideal I ∼= ω

such that the colength ℓR(m/I) is one. The equality ℓR(R/I) = 2 immediately follows from the

above.

(5) ⇒ (4): Take an ideal I ∼= ω such that l(R/I) ≤ 2. If I = R, then R is Gorenstein and

there is nothing to prove. So we may suppose that I ⊆ m. If I = m, then m ∼= ω. Take a regular

element x ∈ m \m2 of R. Then ω/xω ∼= m/xm, and m/xm is isomorphic to k⊕m/(x) (see [145,

Lemma 2] for instance). On the other hand, ω/xω is a canonical module of R/(x). Thus ω/xω

is indecomposable. This implies that m/(x) = 0, i.e. m = (x). In particular, R is a discrete

valuation ring. Now we deal with an assumption that I ⊊ m. The inequality l(R/I) ≤ 2 implies

that the equality l(m/I) = 1. Thus the exact sequence 0→ I → m→ k → 0 is induced. ■

All that remains is to show the direction (5) ⇒ (1). Let (R,m) be a Noetherian local ring

containing a coefficient field k ∼= R/m. Let I ⊂ R be a fractional ideal such that ℓR(R/I) <∞.

Put k+I := {a+b | a ∈ k, b ∈ I} ⊆ R, which is a k-subalgebra of R. Then, since dimk R/(k+I) ≤
ℓR(R/I) <∞, R is finitely generated as a k+I-module and hence k+I is Noetherian by Hilbert

basis theorem. By the lying over property of k+ I ⊆ R (see [50, Proposition 4.15] for instance),

any maximal ideal of k + I is contained in m. Therefore (k + I) ∩m = I is the unique maximal

ideal of k + I. It also holds that k + I contains a regular element in its maximal ideal I. Since

we have inequalities

ℓk+I(R/(k + I)) = ℓk+I(R/I)− ℓk+I((k + I)/I)

= ℓk+I(R/I)− 1

= ℓR(R/I)ℓk+I(R/m) <∞,

R/(k + I) is torsion k + I-module. Thus R/(k + I) ⊗k+I Q(k + I) = 0. This implies that

R ⊗k+I Q(k + I) = Q(k + I), equivalently Q(R) = Q(k + I). Consequently the ring extension

k + I ⊆ R is module-finite residually rational and birational.

Lemma 5.2.2. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. Assume R has a

canonical ideal I ∼= ω such that l(R/I) = 2. Put S = k + I. Then S is Gorenstein, and the

colength ℓS(R/S) is equal to 1.

Proof. S is local with a maximal ideal n = I. The extension S ⊆ R is module-finite, residually

rational and birational. Since I is a canonical ideal, we have I : I = R. Equivalently, n : n = R.

In particular, the colength ℓS(R/S) is equal to the Cohen-Macaulay type of S (Lemma 2.2.7).

Since R and S have same residue field k, we can see the equalities ℓS(R/S) = lS(m/n) = ℓR(m/I).

On the other hand, we have

ℓR(m/I) = ℓR(R/I)− ℓR(R/m) = 2− 1 = 1.

It follows that S has Cohen-Macaulay type 1, that is, S is Gorenstein. Moreover, the colength

ℓS(R/S) is equal to ℓR(m/I) = 1. ■
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Proof of Theorem 5.1.4 (5) ⇒ (1). Assume there is a canonical ideal I such that ℓR(R/I) ≤ 2.

If ℓR(R/I) ≤ 1, then I = R or m. In both of these cases, R should be Gorenstein (in the case

of I = m, see the proof of Theorem 1.4 (5)⇒ (4)).

Thus we only need to consider the case ℓR(R/I) = 2. By previous lemma, the ring S := k+I

is Gorenstein and the colength ℓS(R/S) is 1. This shows bg(R) ≤ 1. ■

We put the following lemma here, which will be used in the proof of Corollary 5.1.5.

Lemma 5.2.3. Let (R,m) be a Cohen-Macaulay generically Gorenstien local ring of dimension

one having a canonical module. Assume R is not a discrete valuation ring. Then

(1) R has minimal multiplicity if and only if m ∼= m : m.

(2) R is almost Gorenstein in the sense of [62] if and only if m† ∼= m : m.

Proof. See [121, Proposition 2.5] and Theorem 4.0.3 respectively. ■

We give a proof of Corollary 5.1.5 as follows.

Proof of Corollary 5.1.5. The implications (3) ⇔ (4) ⇔ (5) follow immediately from Lemma

5.2.3.

(1) ⇔ (2): In the case bg(R) = 0, R is Gorenstein and has minimal multiplicity, and thus

e(R) ≤ 2 (see [130, 3.2. Corollary]). The converse also holds. Now suppose bg(R) = 1. Then by

Theorem 5.1.4, m is isomorphic to m†. Therefore, R has minimal multiplicity if and only if R is

almost Gorenstein.

(1) ⇒ (3): Clear.

Now assume the residue field R/m is infinite.

(6) ⇒ (4): Obviously, S/n is also infinite. If e(S) ≤ edimS, then e(S) ≤ 2. Using [108,

Theorem A.29 (iii)], we see that

e(R) = max{ℓR(X/m) | R ⊆ is a finite birational extension}
≤ max{ℓS(X/n) | S ⊆ is a finite birational extension} = e(S),

and so we have an inequality e(R) ≤ 2. This says that R is Gorenstein and has minimal

multiplicity. So we may assume e(S) = edimS + 1.

Take a minimal reduction (t) of n and a preimage δ ∈ n2 of a generator of the socle of

S/(t).Then n3 = tn2, ℓS(n
2/tn) = 1 (see [130, Proof of (3.4)]) and (t) :S n = (t) + Sδ. The

equality ℓS(n
2/tn) = 1 implies n2 = tn+ Sδ.

Now we claim the following.

Claim 5. EndS(n) ∼= (t) :S n/t.

Proof of the claim. Recall that EndS(n) is isomorphic to n : n. We want to show the equality

n : n = (t) :S n/t as subsets of Q(S). The containment ((t) :S n)n ⊆ (t) shows that ((t) :S n)/t

is contained in S : n. By Lemma 2.2.7, S : n coincides with n : n. In particular, the inclusion

”⊇” holds.

Since t is in n, we have t(n : n) ⊆ n ⊂ S. Thus the inequality t(n : n)n ⊆ tn ⊆ (t) shows that

the inclusion ”⊆”. ■
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Therefore

R ∼= EndS(n) ∼= (t) :S n/t = S + S(δ/t).

Identify R with S + S(δ/t). Since R is local and δ2 ∈ n4 = t2n2, (δ/t) cannot be a unit of R.

This shows m = n+ S(δ/t). By this equality, we also have an isomorphism R/m ∼= S/n induced

by S ⊆ R. Observe the following equalities

tm = tn+ Sδ = n2

and

m2 = (n+ S(δ/t))2 = n2 + n(δ/t) + S(δ/t)2.

Then δ2 ∈ n4 = t2n2 implies S(δ/t)2 ⊆ n2, and nδ ⊆ n3 = tn2 implies n(δ/t) ⊆ n2. So

m2 = n2 = tm. This means that R has minimal multiplicity.

It remains to show that m ∼= m†. By Theorem 5.1.4, it holds that either R is Gorenstein or

m ∼= m†. In the case that R is Gorenstein, it holds that e(R) ≤ 2 and so m is self-dual by [121,

Theorem 2.6].

(5) ⇒ (7): Assume R is almost Gorenstein and has minimal multiplicity. Then we already

saw that m is self-dual (Lemma 5.2.3). It follows from [62, Theorem 3.16] that ρ(R) ≤ 2.

(7)⇒ (5): Recall that ρ(R) is the reduction number of a canonical ideal of R ([57, Definition

4.2]). So if ρ(R) ≤ 1, then R is Gorenstein ([62, Theorem 3.7]). It means that R ∼= ω. We may

assume that R is not a discrete valuation ring. Therefore m : m = R : m by Lemma 2.2.7, and

so we have m : m ∼= HomR(m, R) ∼= HomR(m, ω) = m†. Since m is self-dual, this yields that

m : m ∼= m. Using Lemma 5.2.3, we deduce that R has minimal multiplicity.

Assume ρ(R) = 2. Combining [45, Theorem 3.5 (b), Proposition 3.8] and Theorem 5.1.4, we

obtain that R is almost Gorenstein and has minimal multiplicity.

Finally, we deal with the assumption that R contains a infinite field k isomorphic to R/m

via R→ R/m.

(4) ⇒ (1): This follows directly from Theorem 5.1.4.

(1) ⇒ (6): First we consider the case that R is Gorenstein (i.e. bg(R) = 0). In this case,

e(R) ≤ 2 and edimR ≤ 2 by the assumption. Take a minimal reduction Rt of m. Then m2 = tm.

In particular, ℓR(m/I) = ℓR(m/I+m2) ≤ 1. Put I = Rt and S = k+I. Then the ring-extension

S ⊆ R is module-finite, residually rational and birational. Since I : I = R and ℓR(m/I) ≤ 1, we

can see that S is Gorenstein and EndS(I) ∼= R by the similar argument in the proof of 5.1.4 (3)

⇒ (1). Furthermore, one has an equality tI = I2, which particularly show that S has minimal

multiplicity, that is, e(S) = edimS.

Now consider the case that bg(R) = 1. Repeating the proof of Theorem 5.1.4 (3)⇒ (1), there

is a canonical ideal I such that if we let S = k+ I, then S is Gorenstein local and R ∼= EndS(n),

where n is the maximal ideal of S. Since R is Almost Gorenstein, it was shown in [62, Theorem

3.16] that there is a minimal reduction Q = (t) ⊆ I of I in R such that ℓR(I
2/QI) ≤ 1 and

QI2 = I3. Then it follows that ℓS(I
2/QI) ≤ 1. Using [130, Proposition 3.3], the equality

e(S) = edimS + 1 holds. ■

We give here an example of a ring R with bg(R) = 1.

Example 5.2.4. Let R = k[[t3, t4, t5]] and S = k[[t3, t4]] be numerical semigroup rings, where k

is a field. Then the natural inclusion S ⊆ R is a module-finite birational extension of local rings
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with the same coefficient field. The colength ℓS(R/S) is equal to 1. Since R is non-Gorenstein

and S is Gorenstein, we have bg(R) = 1.

We now turn to estimate the invariant bg(R) in general. Suppose there exists a self-dual

fractional ideal of R. Then we have an upper bound of bg(R) as follows.

Lemma 5.2.5. Let (R,m) be a complete one-dimensional Cohen-Macaulay local ring. Assume

R contains an infinite coefficient field k ∼= R/m. Let I ⊆ R be a fractional ideal of R. If I is

self-dual, then we have bg(R) ≤ l(R/I). In other words, the following inequality holds

bg(R) ≤ inf{ℓR(R/I) | I ∼= I†}.

Proof. In the case I = R, the self-duality of I implies R is Gorenstein. So we may assume

I ⊆ m. Take a non-zero divisor t ∈ I, and Put B = k + I. Then B ⊆ R is a module-finite

extension and I is the maximal ideal of local ring B. Remark that B is also complete, and so a

canonical module ωB of B exists. Since B ⊆ R is birational, the R-isomorphism I → I† is also a

B-isomorphism. We also have an isomorphism HomB(R,ωB) ∼= ωR, which yields isomorphisms

HomB(I, ωB) ∼= HomB(I ⊗R R,ωB) ∼= HomR(I,HomB(R,ωB)) ∼= HomR(I, ωR) ∼= I†.

This says that I† is isomorphic to the canonical dual of I over B. By Theorem 5.1.4,

bg(B) ≤ 1, that is, there is a Gorenstein ring S and module-finite birational extension S ⊆ B.

Then S ⊆ R is also a module-finite birational extension. The calculation

ℓS(R/S) = ℓS(R/B) + ℓS(B/S) = ℓR(m/I) + 1 = ℓR(R/I)

shows that bg(R) ≤ ℓR(R/I). ■

As a corollary of this, we can see the finiteness of bg(R) in the analytically unramified case.

Corollary 5.2.6. Let (R,m) be a complete one-dimensional local ring. Assume R contains

an infinite coefficient field. If there exists a module-finite birational extension R ⊆ T with a

Gorenstein ring T , Then bg(R) ≤ l(R/aT ) for any non-zero divisor a ∈ T : R of T . Moreover,

if R is analytically unramified, then bg(R) ≤ l(R/R : R̃) < ∞, where R̃ is the integral closure

of R in Q(R).

Proof. Since T is Gorenstein, the R-module aT ∼= T is self-dual. So we can apply Lemma

5.2.5 for I = aT . If R is analytically unramified, R̃ of R in Q(R) is Gorenstein, and R ⊆ R̃

is finite birational. The conductor R : R̃ is a nonzero and satisfies R : R̃ ⊗R Q(R) = Q(R).

Thus R : R̃ has constant rank one and contains a non-zero divisor of R. In particular, R : R̂

is torsion-free over R̃. As R̃ is reduced and integrally closed in its total ring of quotients, its

localization at any maximal ideal p is a discrete valuation ring. Therefore (R : R̃)p is a free

module of rank one for any p. Since R̃ is semilocal, it follows that R : R̃ is free of rank one over

R̃. This means that R : R̃ ∼= R̃. Applying Lemma 5.2.5 for I = R : R̃, we have an inequality

bg(R) ≤ l(R/R : R̃) <∞. ■

Remark 5.2.7. Ananthnarayan [1] shows the following inequalities hold for an artinian local

ring R.
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ℓR(R/ω∗(ω)) ≤ min{ℓR(R/I) | I ∼= I†} ≤ g(R). (5.2.7.1)

Here ω∗(ω) is the trace ideal of ω; see Definition 5.3.4.

As analogies of these inequalities, the followings are natural questions.

Question 5.2.8. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. Does an inequal-

ity

bg(R) ≥ inf{ℓR(R/I) | I ∼= I†}

hold true?

Question 5.2.9. Let (R,m) be a one-dimensional generically Gorenstein local ring. Does an

inequality ℓR(R/ω∗(ω)) ≤ bg(R) hold true?

By our main theorems 5.1.4 and 5.1.6, Question 5.2.8 is affirmative for R with bg(R) ≤ 2.

Question 5.2.9 has positive answer given in Proposition 5.3.6 if bg(R) ≤ 1.

We now return to prove the Theorem 5.1.6.

Proof of Theorem 5.1.6. (2) ⇒ (1): This is a consequence of Lemma 5.2.5 by letting I = a.

(1) ⇒ (2): In the case bg(R) ≤ 1, assertion follows by Theorem 5.1.4. So we may assume

bg(R) = 2. Take a Gorenstein local ring (S, n) and module-finite residually rational birational

extension S ⊂ R satisfying ℓS(R/S) = 2. Note that, since S is Gorenstein and R is a maximal

Cohen–Macaulay S-module, R is reflexive.

Let B be the ring n : n. By Lemma 5.2.1 and Lemma 2.2.7, we have ℓS(B/S) = 1 and

S ⊊ B ⊆ R. Therefore ℓB(R/B) = 1. As in the paragraph before Lemma 5.2.2, the lying over

property of the exntension B ⊆ R shows that B is local. Let mB be the maximal ideal of B

and fix a preimage t ∈ R of a basis t of the one-dimensional vector space R/B over B/mB. By

the relation mBt ⊆ B yields that t ∈ B : mB = mB : mB. Therefore R = B + Bt ⊆ mB : mB.

In particular, RmB ⊆ mB. This says that mB is an ideal of R. Since bg(B) = 1, mB is a

self-dual ideal of B by Theorem 5.1.4. Fix a canonical module ωB of B. Then HomB(B,ωB) is

a canonical module of R.

HomB(mB, ωB) ∼= HomB(mB ⊗R R,ωB) ∼= HomR(mB,HomB(R,ωB)) ∼= HomR(mB, ωR).

Thus, it is also self-dual as R-module. One can also have equalities

ℓR(R/mB) = ℓB(R/B) + ℓB(B/mB) = 2.

■

Remark 5.2.10. Let (R,m) be a one-dimensional local ring. Assume R is complete, equichar-

acteristic and bg(R) = n < ∞. If there exists a Cohen-Macaulay local ring (B,mB) with

bg(B) = 1 and module-finite residually rational birational extensions B ⊆ R ⊆ mB : mB such

that ℓB(R/B) + 1 ≤ n. Then, by the same argument of proof of Theorem 5.1.6, it follows that

mB is a self-dual ideal of R satisfying ℓR(R/mB) ≤ n. In this case, Question 5.2.8 is affirmative

for R.
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5.3 The self-duality of the maximal ideal

In this section, we collect some properties of local rings (R,m) with m ∼= m†.

Lemma 5.3.1. Let (R,m) be a Cohen-Macaulay local ring with a canonical module. Assume

m ∼= m†. Then

(1) dimR ≤ 1.

(2) Let x ∈ m \m2 be a non-zero divisor of R. Then R/(x) also has self-dual maximal ideal.

(3) edim(R) = r(R) + dimR.

Proof. (1) Suppose dimR ≥ 2 and ω is a canonical module of R. Applying (−)† to the exact

sequence 0→ m→ R→ k → 0, we get an exact sequence

0→ HomR(k, ω)→ ω → m† → Ext1R(k, ω).

By the assumption dimR ≥ 2 yields that HomR(k, ω) = 0 = Ext1R(k, ω) and hence m† ∼= ω.

From the isomorphism m ∼= m†, it follows that m ∼= R, i. e. m is a principal ideal. This

shows that dimR ≤ 1, which is a contradiction. Thus, it must be dimR ≤ 1.

(2) Applying the functor HomR(−, ω) to the exact sequence 0→ m
x−→ m→ m/xm→ 0, we

get an exact sequence

0→ HomR(m/xm, ω)→ mdag
x−→ m† → Ext1R(m/xm, ω)→ Ext1R(m, ω).

Since dimR is less than or equal to 1 by (1), and x ∈ m is a non-zero divisor, it follows

that dimR = 1. Thus m is a maximal Cohen–Macaulay R-module, which yields the equality

Ext1R(m, ω) = 0. The equalities HomR(m/xm, ω) = 0 and Ext1R(m/xm, ω) ∼= HomR/(x)(m/xm, ω/xω)

also hold (see [19, Lemma 1.2.4]). Thus we get an isomorphismm†/xm† ∼= HomR/(x)(m/xm, ω/xω).

From this isomorphism and m ∼= m†, isomorphisms m/xm ∼= m†/xm† ∼= HomR /(x)(m/xm, ω/xω)

are induced. By [145, Lemma 2], we have an isomorphism m/xm ∼= R/m⊕m/(x). Therefore we

obtain isomorphisms

R/m⊕m/(x) ∼= HomR/(x)(R/m⊕m/(x), ω/xω) ∼= HomR/(x)(R/m,ω/xω)⊕HomR/(x)(m/(x), ω/xω).

Remark that ω/xω is a canonical module of R/(x) (see [19, Theorem 3.3.5]). Thus we have

HomR /(x)(R/m,ω/xω) ∼= R/m. Then it follows that

R/m⊕m/(x) ∼= R/m⊕HomR /(x)(m/(x), ω/xω).

By the Krull–Schmidt theorem for R/(x), this yields that m/(x) ∼= HomR /(x)(m/(x), ω/xω),

which means the self-duality of the maximal ideal m/(x) of R/(x).

(3) Suppose that dimR = 0. Then by m ∼= m† and [19, Proposition 3.3.11], µ(m) = µ(m†) =

r(m). Here for an R-module X, µR(X) denotes the minimal number of generators of X. Since

dimm = dimR = 0, r(m) (resp. r(R)) is equal to dimR/m(socm) (resp. dimR/m(socR)), and so

the equality socm = socR implies that r(m) = r(R). Thus we have edimR = µ(m) = r(m) =

r(R) + dimR.
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Now suppose that dimR > 0. Then (1) shows that dimR = 1. Since R is Cohen–Macaulay,

we can take a non-zero divisor x ∈ m \ m2 of R. Then, by (2), R/(x) has self-dual maximal

ideal. Since dimR/(x) = 0, it follows that edimR/(x) = r(R/(x)). Note that r(R/(x)) = r(R)

and edimR/(x) = µR/(x)m/(x) = µR(m)− 1. Thus we have equalities

edimR = µ(m) = edimR/(x) + 1 = r(R) + 1

. ■

When dimR ≥ 2, the maximal ideal m cannot be self-dual. However, we suggest the following

generalization of the self-duality of the maximal ideal in higher dimensional case.

Proposition 5.3.2. (R,m) be a non-Gorenstein Cohen-Macaulay local ring of dimension d > 0

having an infinite residue field. Assume R has a canonical ideal I satisfying e(R/I) = 2. Then

there is a regular sequence x = x1, . . . , xd−1 such that R/(x) has self-dual maximal ideal.

Proof. Since R/I is Cohen-Macaulay of dimension d − 1 ([108, Proposition 11.6]), we can take

a minimal reduction y = y1, . . . , yd−1 of the maximal ideal m/I in R/I. Then the length

ℓ((R/I)/(y)) is equal to e(R/I)(≤ 2). Let x = x1, . . . , xd−1 be a preimage of y in R. As I is

unmixed, we can take x as a regular sequence in R. The tensor product I ′ = I⊗R/(x) is naturally

isomorphic a canonical ideal of R′ = R/(x). The quotient R′/I ′ has length l(R/(I + x)) =

l((R/I)/(y)) ≤ 2. Therefore R′ has self-dual maximal ideal by Theorem 5.1.4. ■

Example 5.3.3. Let R = k[[x3, x2y, xy2, y3]] be the third Veronese subring of k[[x, y]]. Then

I = (x3, x2y)R is a canonical ideal of R. The quotient ring R/I is isomorphic to k[[s, t]]/(s2),

and hence e(R/I) = 2.

Go back to the subject on self-duality of the maximal ideal. Recall the notion of trace ideal

of an R-module and nearly Gorensteiness of local rings (see [74]).

Definition 5.3.4. Let R be a commutative ring. For an R-module M , the trace ideal M∗(M)

of M in R is defined to be the ideal
∑

f∈HomR(M,R) Im f ⊆ R.

A Cohen-Macaulay local ring (R,m) with a canonical module ω is called nearly Gorenstein

if ω∗(ω) ⊇ m.

Lemma 5.3.5. Let (R,m) be a Cohen-Macaulay local ring with a canonical module. The fol-

lowing are equivalent.

(1) R is nearly Gorenstein.

(2) there is a surjective homomorphism ω⊕n → m for some n.

Moreover, if dimR ≤ 1, then we can add the following conditions.

(3) there is a short exact sequence 0 → m† → R⊕n → M → 0 for some n and maximal

Cohen-Macaulay module M .

(4) there is a short exact sequence 0 → m† → m⊕n → M → 0 for some n and maximal

Cohen-Macaulay module M .
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Proof. (1) ⇔ (2): By the definition of trace ideals, there is a surjection ω⊕n → ω∗(ω) for some

n. So the equivalence immediately follows.

Now assume dimR ≤ 1. Then the maximal ideal m is maximal Cohen-Macaulay as an R-

module. So the condition (2) is equivalent to that there is a short exact sequence 0 → M →
ω⊕n → m → 0 for some n and maximal Cohen-Macaulay module M . Taking the canonical

duals, the equivalence of (2) and (3) follows.

We turn the equivalence of (3) and (4). We may assume R is not a discrete valuation ring,

and hence both m and m† are not free R-modules. Assume that (3) holds. The condition (3)

means that m† is a syzygy of a maximal Cohen–Macaulay module. Thus by Lemma 4.4.2, there

is a short exact sequence 0 → mdag → m⊕n → M ′ → 0 with some maximal Cohen–Macaulay

R-module M ′. This shows the implication (3) ⇒ (4).

Conversely, suppose that (4) holds. Then we may use Lemma 4.3.5 to show that (3) holds,

since m is a syzygy of a maximal Cohen–Macaulay module by Lemma 2.2.7. ■

Proposition 5.3.6. Let (R,m) be a Cohen-Macaulay local ring with a canonical module. As-

sume m ∼= m†. Then

(1) R is nearly Gorenstein.

(2) If R is non-Gorenstein and 2 is invertible in R, then R is G-regular.

Proof. We already saw that dimR ≤ 1 from Lemma 5.3.5.

(1) In the case of dimR = 0, we have a short exact sequence 0 → m → R → k → 0 and

hence we can apply Lemma 5.3.5 (3) ⇒ (1).

In the case of dimR = 1, we may assume R is not a ，. Applying Lemma 5.3.5 to the short

exact sequence in Theorem 5.1.4 (4), it follows that R is nearly Gorenstein.

(2) In the case that dimR = 0, the statement is proved in [135, Corollary 3.4]. So we may

assume dimR = 1. Take x ∈ m \ m2 a non-zero divisor. Thanks to Lemma 3.1, the maximal

ideal of R/(x) is self-dual. Then R/(x) is G-regular by [135, Corollary 3.4]. It follows from [138,

Proposition 4.2] that R is also G-regular.

■

Example 5.3.7. Let R = k[[t4, t5, t7]]. Then R is almost Gorenstein local ring of dimension

one. Therefore, R is G-regular and nearly Gorenstein. On the other hand, R does not have

minimal multiplicity, and hence m is not self-dual. This shows that the converse of Proposition

5.3.6 doesn’t hold true in general.

Example 5.3.8. The associated graded ring grm(R) of a local ring (R,m) with self-dual maximal

ideal need not be Cohen-Macaulay, for example, R = k[[t4, t5, t11]].

We use the notion of minimal faithful modules. The definition of them is given in below.

Definition 5.3.9. Let R be a commutative ring. An R-module M is called minimal faithful if

it is faithful and no proper submodule or quotient module is faithful.

Example 5.3.10. For an artinian local ring R, the R-module R and a canonical module ω of

R (i.e. injective hull of the residue field) are minimal faithful.
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The following is proved by Bergman [16, Corollary 2].

Lemma 5.3.11 (Bergman). Let A,B and C be finite-dimensional vector spaces over a field k.

and f : A×B → C be a bilinear map. Assume the following conditions.

(1) any nonzero element a of A induces a nonzero map f(−, a) : B → C

(2) For any proper submodule i : B′ → B, there is a nonzero element a ∈ A such that f(i(−), a) : B′ →
C is a zero map.

(3) For any proper quotient module p : C → C ′ there is a nonzero element a ∈ A such that the

map p ◦ f(−, a) : B → C ′ is a zero map.

Then dimk A ≥ dimk B + dimk C − 1.

To have an application of Lemma for modules, we need the following lemmas.

Lemma 5.3.12. Let R be a commutative ring, n be a positive integer, M,N be R-modules and

f = [f1, . . . , fn]
t : N → M⊕n be an R-homomorphism. Assume that N is Artinian. Then f is

injective if and only if for any nonzero element a ∈ soc(N), there exists i such that fi(a) ̸= 0.

Proof. We can see that Ker f = Ker f1 ∩ · · · ∩Ker fn. Thus f is injective if and only if Ker f1 ∩
· · ·∩Ker fn = 0. Since N is Artinian, the latter condition is equivalent to that soc(N)∩Ker f1∩
· · · ∩Ker fn = 0. ■

Lemma 5.3.13. Let (R,m, k) be an artinian local ring and M,N be finitely generated R-

modules. Assume M is minimal faithful and N is Artinian. If n is the smallest positive integer

such that exists an injective homomorphism f = [f1, . . . , fn] : N →M⊕n, then the k-subspace B

of HomR(N,M) ⊗R k generated by the image of f1, . . . , fn has a dimension exactly equal to n

over k.

Proof. We only need to show dimk B ≥ n. Assume there is a equation f1 = a1f2+ · · ·+anfn+g

for some a2, . . . , an ∈ R and g ∈ mHomR(N,M). Then for any element a ∈ soc(N), g(a) = 0.

So n ≥ 2 and f(a) ̸= 0 implies there exists i ≥ 2 such that fi(a) ̸= 0. This particular says

that the homomorphism [f2, . . . , fn] : N →M⊕n−1 also an injection by Lemma 5.3.12, which is

a contradiction to our assumption on n. ■

The following lemma is a generalization of the result of Gulliksen [68, Lemma 2].

Lemma 5.3.14. Let (R,m, k) be an artinian local ring and M,N be finitely generated faithful R-

modules. Assume M is minimal faithful. If there exists an injective homomorphism N →M⊕n

for some n, then dimk soc(M) ≤ dimk soc(N) and equality holds if and only if N ∼= M .

Proof. Let n be the minimal integer such that there is an injective map N → M⊕n. Take

a injective map N
[f1,...,fn]t−−−−−−→ M⊕n and set B the k-subspace of HomR(N,M) ⊗R k generated

by the image of f1, . . . , fn. Then dimk B = n by Lemma 5.3.13. By letting A = soc(N) and

C = soc(M), we have a bilinear map A × B → C over k satisfying the assumption (1) and

(2) of Lemma 5.3 in view of Lemma 5.3.12 and 5.3.13. We also verify the condition (3) of

Lemma as follows. Assume (3) is not satisfied. Then there is a subspace C ′ of C such that any
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nonzero element a of A induces a nonzero map p ◦ f(−, a) : B → C/C ′, where p : C → C/C ′

is the natural surjection. Since C/C ′ ⊆ M/C ′ as an R-module, we obtain an injective map

g : N
q◦f1,...,q◦fn−−−−−−−→ (M/C ′)⊕n, where q : M → M/C ′ is also the natural surjection. Since N is

faithful, there is an injective map h from R to some copies N⊕m of N . Taking a composition of

h and g⊕m, one has an injective map from R to (M/C ′)⊕mn. In particular, M/C ′ is a faithful

R-module, which contradicts the assumption that M is minimal faithful.

Therefore, we can apply Lemma 5.3 and get an equality dimA ≥ dimB + dimC − 1. It

follows that dim soc(N)− dim soc(M) ≥ n− 1 ≥ 0. If the equalities hold, then n = 1 and N is

isomorphic to a submodule of M . By the minimality of M , one has N ∼= M . ■

We also give some basic properties of minimal faithful modules.

Lemma 5.3.15. Let (R,m, k) be an artinian local ring. Then

(1) Any minimal faithful R-module is indecomposable.

(2) Assume R has Cohen-Macaulay type at most three. Then ℓR(R) ≤ ℓR(M) for all faithful

R-module M . In particular, a faithful R-module M is minimal faithful if ℓR(M) = ℓR(R).

Proof. (1): Let M be a minimal faithful R-module, and assume that M decomposes as direct

sum M = M1 ⊕M2 of R-modules. the faithfulness of M yields that Ann(M1) ∩ Ann(M2) = 0.

Take minimal generators x1, . . . , xn of M1 and y1, . . . , ym of M2. Without loss of generality,

we may assume n ≤ m. Then the submodule N of M = M1 ⊕M2 generated by the elements

x1 + y1, . . . , xn + yn, 0 + yn+1, . . . , 0 + ym is proper and faithful. This contradicts that M is

minimal faithful. (2): This follows by [68, Theorem 1]. ■

Definition 5.3.16. Let (R,m, k) be a commutative ring. A fractional ideal I of R is called

closed [18] if the natural homomorphism R→ HomR(I, I) is an isomorphism.

Example 5.3.17. Let (R,m, k) be a one-dimensional Cohen-Macaulay local ring. Set B = m :

m. Then m is closed as a fractional ideal of B.

Lemma 5.3.18. Let (R,m, k) be a one-dimensional Cohen-Macaulay local ring having a canon-

ical module and I be a fractional ideal of R. Then the following are equivalent.

(1) I is closed.

(2) I† is closed.

(3) There is a surjective homomorphism I⊕n → ω for some n.

(4) There is a short exact sequence 0 → R → I⊕n → M → 0 for some n and maximal

Cohen-Macaulay R-module M .

Proof. See [18, Proposition 2.1]. Note that (4) follows by the canonical dual of (3), since I is

maximal Cohen-Macaulay as an R-module. ■
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Proof of Theorem 1.7. Take a minimal reduction (t) of mB. The assumption that R is nearly

Gorenstein implies that any localization of ωR at a non-maximal prime ideal is free of rank one

([74, Proposition 2.3]). This yields that ωR⊗RQ(R) = Q(R). On the other hand, m⊗B Q(B) =

m⊗R Q(R) = Q(R) = Q(B) since m contains a regular element. Thus one has

m† ⊗B Q(B) = HomR(m, ωR)⊗B Q(B) = HomR(m, ωR)⊗R Q(R)

= HomQ(R)(m⊗R Q(R), ωR ⊗R Q(R))

= HomQ(R)(Q(R), Q(R)) = Q(R) = Q(B).

This shows that m and m† has constant rank one as a B-module. In particular, we have

equalities ℓB(B/tB) = e(B) = ℓB(m/tm) = ℓB(m
†/tm†). Note that m/tm and m†/tm† are

faithful over B/tB (see [18, Proposition 3.3]). As B/tB has Cohen-Macaulay type less than

or equal to three in both case (1) and (2), Lemma 5.3.15 ensures that m/tm and m†/tm† are

minimal faithful over B/tB. Consider the exact sequence

0→ m† ϕ−→ m⊕n →M → 0

as in Lemma 5.3.5. Then ϕ ∈ HomR(m
†,m⊕n) = HomB(m

†,m⊕n). Therefore M = Cokϕ is also

a B-module and it is torsion-free over B as well as over R. Moreover, the above sequence is

an exact sequence of B-modules and B-homomorphisms. Tensoring B/tB to this sequence, we

have a short exact sequence

0→ m†/tm† ϕ⊗B/tB−−−−−→ (m/tm)⊕n →M/tM → 0 (5.3.18.1)

of B/tB-modules.

(1): Applying Lemma 5.3.14 to the sequence (5.3.18.1) and using [68, Lemma 2], we obtain

the inequalities

1 ≤ dimk soc(m/tm) ≤ dimk soc(m
†/tm†) ≤ rB(B) = 2.

So one has either soc(m/tm) = 1 or soc(m†/tm†) = 2. In the former case, m† must be a cyclic

B-module and hence m† ∼= B. R is almost Gorenstein. So one has either dimk soc(m/tm) = 1

or dimk dimk soc(m/tm) = dimk soc(m
†/tm†) = 2. In the former case, we have 1 = rB(m) =

µB(m
†), which shows that m† must be a cyclic B-module. Thus m† ∼= B. This yields that R is

almost Gorenstein by Lemma 5.2.3. Suppose that dimk soc(m/tm) = dimk soc(m
†/tm†) = 2.

Take a system of minimal generator a1, . . . , am of m/tm over B/tB, and for each i = 1, . . .m

we set a homomorphism fi : B/tB → m/tm, which sends 1 to ai. Since m/tm is faithful over

B/tB, The homomorphism B/tB
[f1,...,fm]t−−−−−−→ (m/tm)⊕m is injective. Then by Lemma 5.3.14,

the equality dimk soc(m/tm) = 2 = dimk soc(B/tB) induces an isomorphism m/tm ∼= B/tB.

This shows that m is a cyclic B-module. Thus we have m ∼= B. Similar argument shows that

dimk soc(m
†/tm†) = 2 = dimk soc(B/tB) implies that m† ∼= B. Then R is almost Gorenstein

and has minimal multiplicity by Lemma 5.2.3, and so B has type one by Theorem 5.1.8, a

contradiction.

(2): Applying Lemma 5.3.14 to the sequence (5.3.18.1), we obtain the inequalities

1 ≤ dimk soc(m/tm) ≤ dimk soc(m
†/tm†) ≤ rB(B) = 3.
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In the case that dimk soc(m/tm) = 1 or dimk soc(m
†/tm†) = 3 = dimk soc(B/tB), it follows by

same argument as in (1) that m† ∼= B and R is almost Gorenstein. So we only need to consider

the case dimk soc(m/tm) = dimk soc(m
†/tm†) = 2. In this case, m/tm should be isomorphic

to m†/tm† by lemma 5.3.14. Put ϕ = [ϕ1, . . . , ϕn]
t : m† → m⊕n and so ϕ ⊗ B/tB = [ϕ1 ⊗

B/tB, . . . , ϕn⊗B/tB]t. Consider the canonical dual (ϕ⊗B/tB)† : (m/tm)†⊕n → (m/tm), which is

surjective. Since m/tm is indecomposable (Lemma 5.3.15), the Nakayama’s lemma indicates that

jac(End(m/tm)) · (m/tm) ̸= m/tm. Therefore, one of the endomorphism (ϕ1⊗B/tB)†, . . . , (ϕn⊗
B/tB)† of m/tm must be not contained in jac(End(m/tm)), otherwise (ϕ ⊗ B/tB) cannot be

surjective. This means that one of the ϕ1 ⊗ B/tB, . . . , ϕn ⊗ B/tB is an isomorphism. Say

ϕi ⊗B/tB is an isomorphism. Then the B-homomorphism ϕi : m
† → m is also surjective. Both

m and m† have constant rank, ϕi must be an isomorphism. This shows that m ∼= m†. ■

Corollary 5.3.19. Let (R,m, k) be a complete Cohen-Macaulay local ring of dimension one

with a canonical module. Assume B := m : m is local and k is infinite. If R is nearly Gorenstein

with multiplicity e(R) ≤ 4, then either R is almost Gorenstein or m ∼= m†.

Proof. Take a minimal reduction (t) of R. We have that B ⊗R Q(R) = Q(R), this means that

B has a constant rank as an R-module. Then the multiplicity e(m, B) = ℓR(B/tB) of B as an

R-module is equal to 4. If B is a discrete valuation ring, then the statement follows by Theorem

5.1.8. So we may assume that B/tB is not a field. Deduce that

4 = ℓR(B/tB) ≥ ℓB(B/tB) > dimk soc(B/tB) = r(B).

Now we can apply Theorem 5.1.7 and attain the desired statement. ■

Example 5.3.20. Let R = k[[t5, t6, t7]]. Then R is nealy Gorenstein and has multiplicity 5,

however, neither R is almost Gorenstein nor m ∼= m†.

5.4 Numerical semigroup rings

In this section, we deal with the numerical semigroup rings (R,m) having an isomorphism

m ∼= m†. We begin the section with recalling preliminaries on numerical semigroup. Let H ⊊ N
be a numerical semigroup. The set of pseudo-Frobenius numbers PF(H) of H is consisting of

integers a ∈ N \H such that a + b ∈ H for any b ∈ H \ {0}. Then the maximal element F(H)

of PF(H) is the Frobenius number of H. Set H ′ = H ∪ {F(H)}. Then H ′ is also a numerical

semigroup. A numerical semigroup of the form H ′ = H ∪ {F(H)} for some symmtric numerical

semigroup H (see [104] for the definition of symmtric numerical semigroups) is called UESY-

semigroup (unitary extension of a symmetric semigroup), which is introduced in [124]. Note

that F(H) is a minimal generator of H ′ = H ∪{F(H)}. For a numerical semigoup H and a field

k, the numerical semigoup ring of H over k is the subring k[[{ta | a ∈ H}]] of k[[t]], where t is

an indeterminate.

Lemma 5.4.1. Let H be a numerical semigroup, k is an infinite field and (R,m) is the numerical

semigroup ring k[[H]]. Then the following are equivalent.

(1) m is self-dual.
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(2) H is a UESY-semigroup.

Proof. (1) ⇒ (2): In the case that H is symmetric, or equivalently R is Gorenstein (see [104]),

it follows by Corollary 1.5 (3)⇒ (2) that e(R) ≤ 2. Then there is an odd integer a such that

H = ⟨2, a⟩. It can be checked that the subsemigroup H ′ = ⟨2, a + 2⟩ of H is symmetric, and

H \H ′ = {a}. Thus H is UESY.

We may assume that H is not symmetric. By Theorem 5.1.4, there is a Gorenstein local

subring (S, n) of R such that R = n : n. Take a value semigroup v(S) of S, where v is the

normalized valuation of k[[t]], that is, v takes t to 1 ∈ Z. Then H = v(R), and v(S) is symmetric

by the result of Kunz [104]. Since Rn ⊂ n, v(R) \ v(S) is contained in PF(v(S)). Since v(S) is

symmetric, PF(v(S)) = {F (v(S))}. Thus one has v(S) ⊆ H ⊆ v(S) ∪ {F (v(S))}. Therefore, H
should be equal to v(S) ∪ {F (v(S))}. In particular, H is UESY.

(2) ⇒ (1): Describe H as H = H ′ ∪ {F(H ′)} with a symmtric numerical semigoup H ′. Set

S = k[[H ′]]. Then EndS(mS) is isomorphic to

m : m = (ta | a ∈ Z such that for any b ∈ H ′ \ {0}, a+ b ∈ H ′)S

= (ta | a ∈ H ′ ∪ PF (H ′))S = (ta | a ∈ H)S = R.

Thus by our theorem (Theorem 5.1.4), the maximal ideal m of R is self-dual. ■

Proposition 5.4.2. Let H = ⟨a1, . . . , an⟩ be a symmetric numerical semigroup minimally gen-

erated by {ai} with 2 < a1 < a2 < · · · < an and H ′ := H ∪ {F(H)}. Put S = k[[H]] over an

infinite field k and R = k[[H ′]]. Then the maximal ideal of R is quasi-decomposable.

Proof. Denote by mR the maximal ideal of R. We will prove that the maximal ideal mR/(t
a1)

of R/(ta1) has a direct summand I generated by the image of tF(H), and I ∼= k as an R-module.

Since tF(H) is a minimal generator of mR, it is enough to show that mRt
F(H) ⊆ ta1R. So what

we need to show is that F(H) + ai − a1 ∈ H for all i ̸= 1 and 2F(H) − a1 ∈ H. These follow

by the fact that F(H) is the largest number in N \ H and the inequalities ai − ai > 0 and

F(H)− a1 > 0. ■

5.5 Further characterizations

The goal of this section is to give characterizations of local rings R such that there exists a

one-dimensional local hypersurface (S, n) such that R ∼= EndS(n).

Proposition 5.5.1. Let (R,m) be a Cohen-Macaulay local ring of dimension one. Assume that

R has a canonical module and infinite coefficient field k. Then the followings are equivalent.

(1) There is a local hypersurface (S, n) such that R ∼= EndS(n).

(2) e(R) ≤ 2, or R has type 2 and a canonical ideal I such that I2 = mI and ℓR(R/I) = 2.

(3) e(R) ≤ 2, or R has embedding dimension 3, and a canonical ideal I such that I2 = m2.

Proof. (1)⇒(2): Assume e(R) > 2 and R satisfies (1). Then R is not Gorenstein, and I := n

is a canonical ideal of R. Since S is a hypersurface and not a ，, ℓR(I/I
2) = ℓS(n/n

2) = 2. It

forces the equality I2 = mI, since I is not a principal ideal.
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(2)⇒(1): Consider the case that e(R) ≤ 2. Then by the proof of Corollary 5.1.5 (1) ⇒ (6),

there is a Gorenstein local ring (S, n) such that R ∼= EndS(n) and e(S) = edimS. In particular,

e(S) ≤ 2 and S is a hypersurface. Now consider the case that R has type 2 and a canonical

ideal I such that I2 = mI and ℓR(R/I) = 2. One has equalities ℓR(I/I
2) = ℓR(I/mI) = 2. Put

S := k + I. Then S is Gorenstein local with a maximal ideal n := I, and R ∼= EndS(n) (Lemma

5.2.2). We can compute the embedding dimension edimS as follows:

edimS = ℓS(n/n
2) = ℓR(I/I

2) = 2.

Therefore, S should be a hypersurface. (2)⇒ (3): We may assume R has type 2. By the

implication (2)⇒(1), we can calculate the embedding dimension of R as edimR ≤ edimS+1 = 3,

where (S, n) is a hypersurface with R ∼= EndS(n). Since R is not Gorenstein, edimR should be

equal to 3. This means ℓR(m/m2) = 3. On the other hand, one has

ℓR(m/I2) = ℓR(m/I) + ℓR(I/I
2) = 1 + ℓR(I/mI) = 1 + 2 = 3.

So the inclusion I2 ⊆ m2 yields that I2 = m2. The direction (3)⇒(2) also follows by similar

calculations. ■

Question 5.5.2. For a Cohen-Macaulay local ring (R,m) of dimension one, when is there a

local complete intersection (S, n) with an isomorphism R ∼= EndS(n)?

Chapter 6

Burch ideals and Burch rings

6.1 Introduction

The contents of this chapter is based on author’s work [41] with H. Dao and R. Takahashi.

This chapter introduces and studies a class of ideals and their affiliated rings which we call

Burch ideals and Burch rings. While their definitions are quite simple, our investigation shows

that they enjoy remarkable ideal-theoretic and homological properties. These properties allow

us to link them to many classes of ideals and rings in the literature, and consequently strengthen

numerous old results as well as establish new ones.

Let us make a brief remark on our motivation and historical context. The project originated

from our effort to understand a beautiful result by Burch on homological properties of ideals

below ([23, Theorem 5(ii) and Corollary 1(ii)]).

Theorem 6.1.1 (Burch). Let (R,m) be a local ring. Let I be an ideal of R with mI ̸= m(I :R m).
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(1) Let M be a finitely generated R-module. If TorRn (R/I,M) = TorRn+1(R/I,M) = 0 for some

positive integer n, then M has projective dimension at most n.

(2) If I has finite projective dimension, then R is regular.

Lindsay Burch1 was a PhD student of David Rees, and she wrote several (short) papers

that have had a sizable impact on two active corners of commutative algebra: homological

theory and integral closure of ideals. Perhaps most researchers in the field know of her work via

the frequently used Hilbert–Burch Theorem ([23]), her construction of ideals with only three-

generators while possessing arbitrarily complicated homological behavior ([24]), and the Burch

inequality on analytic spreads ([25]). The ideas of Burch’s particular result above, while less

well-known, have resurfaced in the work of several authors which also motivated our work, see

[34, 36, 102, 105, 135]. However, it has appeared to us that what was known previously is just

the tip of an iceberg, and led us to formally make the following definitions.

Let (R,m) be a local ring. We define an ideal I of R to be a Burch ideal if mI ̸= m(I :R m).

We also define Burch rings of depth zero to be those local rings whose completions are quotients

of regular local rings by Burch ideals. Then we further define Burch rings of positive depth as

local rings which “deform” to Burch rings of depth zero; see Section 6.2 for the precise definitions.

It is not hard to see that the class of Burch ideals contains other well-studied classes: inte-

grally closed ideals of codepth zero (under mild conditions), m-full ideals, weakly m-full ideals,

etc.

One of our main results characterizes Burch ideals and Burch rings of depth zero:

Theorem 6.1.2 (Theorem 6.4.1). Let (R,m, k) be a local ring and I ̸= m an ideal of R. Then I

is Burch if and only if the second syzygy Ω2
R/Ik of k over R/I contains k as a direct summand.

From this, we can quickly deduce a characterization of Gorenstein Burch ideals, which ex-

tends results on integrally closed or m-full ideals in [60, 61]. In fact, our proofs allow us to

completely characterized modules over Burch rings of depth zero whose some higher syzygies

contain the residue field as a direct summand, as follows:

Theorem 6.1.3 (Theorem 6.4.5). Let (R,m, k) be a Burch ring of depth zero. Let M be a

finitely generated R-module. The following are equivalent:

(1) The ideal I(M) generated by all entries of the matrices ∂i, i > 0 in a minimal free resolution

(F, ∂) of M is equal to m.

(2) The R-module k is a direct summand of Ωr
RM for some r ≥ 2.

1We are grateful to Rodney Sharp and Edmund Robertson for providing us with the following brief biography
of Burch: Lindsay Burch was born in 1939. She did her first degree at Girton College, Cambridge from 1958 to
1961. She then went to Exeter University to study for a Ph.D. advised by David Rees. She was appointed to
Queen’s College, Dundee in 1964 before the award of her Ph.D. which wasn’t until 1967 for her thesis “Homological
algebra in local rings”. At the time she was appointed to Queen’s College it was a college of the University of St
Andrews but later, in 1967, it became a separate university, the University of Dundee. Burch continued to work
in the Mathematics Department of the University of Dundee until at least 1978. She then took up computing and
moved to a computing position at Keele University near Stafford in the north of England. She remained there
until she retired and she still lives near Keele University.
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Our work reveals some interesting connections between Burch ideals/rings and concepts

studied by other authors in quite different contexts. For instance, we show that in codimension

two, artinian almost Gorenstein rings as introduced by Huneke–Vraciu [86] (also studied in

[135]) are Burch; see Proposition 6.6.10. Over a regular local ring, the “Burchness” of an ideal

I imposes a strong condition on the matrix at the end of a minimal free resolution of I, a

condition that also appeared in the work of Corso–Goto–Huneke–Polini–Ulrich [34] on iterated

socles. That connection led us to obtain a refinement of their result in Theorem 6.6.2.

We also study Burch rings of higher depth, especially their homological and categorical

aspects. We completely classify Burch rings which are fibre products in Proposition 6.6.15. The

Cohen–Macaulay rings of minimal multiplicity are Burch. Non-Gorenstein Burch rings turn out

to be G-regular in Theorem 6.7.7, in the sense that all the totally reflexive modules are free.

Moreover, we show an explicit result on vanishing behavior of Tor for any pair of modules.

Theorem 6.1.4 (Corollary 6.7.13). Let R be a Burch ring of depth t. Let M,N be finitely gener-

ated R-modules. Assume that there exists an integer l ≥ max{3, t+1} such that TorRi (M,N) = 0

for all l + t ≤ i ≤ l + 2t+ 1. Then either M or N has finite projective dimension.

To state our last main result in this introduction, recall that the singularity category Dsg(R)

is by definition the triangulated category given as the Verdier quotient of the bounded derived

category of finitely generated R-modules by perfect complexes. Under some assumptions, one

can classify all the thick subcategories of Dsg(R) for a Burch ring R.

Theorem 6.1.5 (Theorem 6.7.10). Let R be a singular Cohen–Macaulay Burch ring. Suppose

that on the punctured spectrum R is either locally a hypersurface or locally has minimal mul-

tiplicity. Then there is a one-to-one correspondence between the thick subcategories of Dsg(R)

and the specialization-closed subsets of SingR.

Next we describe the structure of the chaper as well as other notable results. In Section 6.2 we

state our convention, basic definitions and preliminary results. Section 6.3 is devoted to giving

a sufficient condition for a module to have a second syzygy having a cyclic direct summand

(Proposition 6.3.4). This is a generalization of [105, Lemma 4.1], and has an application to

provide an exact pair of zero divisors (Corollary 6.3.6). These materials are used in Section 6.4

and are perhaps of independent interest.

In Section 6.5, we focus on the study of Burch rings of positive depth. We verify that the

class of Gorenstein Burch rings coincides with that of hypersurfaces (Proposition 6.5.1). Cohen–

Macaulay local rings of minimal multiplicity with infinite residue field are Burch (Proposition

6.5.2). Quotients of polynomial rings by perfect ideals with linear resolution are Burch (Propo-

sition 6.5.6). We also consider the subtle question of whether the Burch property is preserved by

cutting down by any regular sequence consisting of minimal generators of m. Remarkably, this

holds for Cohen–Macaulay local rings of dimension one with minimal multiplicity (Proposition

6.5.5). However, the answer turns out to be negative in general (Example 6.5.8).

In Section 6.6 we focus more deeply on Burch ideals in a regular local ring. We give a

complete characterization in dimension two and link Burch rings and Burch ideals to various

other concepts. Moreover, we give a characterization of the Burch local rings (R,m, k) with

m3 = 0 in terms of a Betti number of k, the embedding dimension and type of R (Theorem
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6.6.12). We also characterize the Burch monomial ideals of regular local rings (Proposition

6.6.4).

In Section 6.7, we explore the homological and categorical aspects of Burch rings. We find

out the significant property of Burch rings that every module of infinite projective dimension

contains a high syzygy of the residue field in its resolving closure (Proposition 6.7.6). We apply

this and make an analogous argument as in [116] to classify various subcategories.

6.2 Definitions and basic properties of Burch ideals and rings

For a local ring (R,m, k), we denote by r(R) the (Cohen–Macaulay) type of R, and by KR the

Koszul complex of R, i.e., the Koszul complex of a minimal system of generators of m. We set

KR = 0 when R is a field.

The remaining of this section deals with the formal notion of Burch ideals and Burch rings

and their basic properties.

Definition 6.2.1. Let (R,m) be a local ring. We define a Burch ideal as an ideal I with

mI ̸= m(I :R m). Note by definition that any Burch ideal I of R satisfies depthR/I = 0.

Here are some quick examples of Burch ideals. Many more examples will follow from our

results later.

Example 6.2.2. (1) Let (R, xR) be a discrete valuation ring. Then (xn) is a Burch ideal of R

for all n ≥ 1, since x(xn) = (xn+1) ̸= (xn) = x(xn−1) = x((xn) :R (x)).

(2) Let I be an ideal of a local ring (R,m). Put J = mI and suppose J ̸= 0. Then m(J :R m) =

J ̸= mJ , so J is a Burch ideal of R.

(3) By the previous item, if (R,m) has positive depth then I = mt is Burch for any t ≥ 1. More

generally, if mt+1 ⊆ I ⊆ mt, then I is Burch if and only if I : m ̸= mt and Im ̸= mt+1.

Using this one can show that the set of Burch ideals is Zariski-open in Grassk(r,m
t/mt+1),

for each r = dimk I/m
t+1.

(4) Let (R,m) be a local ring of positive depth. Let I be an integrally closed ideal of R. Then

mI :R m = I by the determinantal trick, so it is Burch. See Proposition 6.2.3 below.

The following proposition gives some basic characterizations of Burch ideals.

Proposition 6.2.3. Let (R,m) be a local ring and I an ideal of R. The following are equivalent.

(1) I is a Burch ideal. (2) (I :R m) ̸= (mI :R m). (3) Soc(R/I) ·m/Im ̸= 0.

(4) depthR/I = 0 and r(R/mI) ̸= r(R/I) + µ(I).

(5) IR̂ is a Burch ideal of R̂, where R̂ is the completion of R.

Proof. (1) ⇔ (2): If (I :R m) = (mI :R m), then m(I :R m) = m(mI :R m) = mI. Conversely, if

mI = m(I :R m), then (mI :R m) = (m(I :R m) :R m) = (I :R m).

(1) ⇔ (3): As SocR/I = (I :R m)/I, we have SocR/I ·m/Im = 0 if and only if m(I :R m) =

mI.

(2) ⇔ (4): There are inclusions mI ⊆ I ⊆ (mI :R m) ⊆ (I :R m), which especially says

that (mI :R m) ̸= (I :R m) implies depthR/I = 0. We have ℓ((I :R m)/mI) = ℓ((I :R m)/I) +
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ℓ(I/mI) = r(R/I) + µ(I) if depthR/I = 0, and ℓ((mI :R m)/mI) = r(R/mI). Thus, under the

assumption depthR/I = 0, the equalities (I :R m) = (mI :R m) and r(R/mI) = r(R/I) + µ(I)

are equivalent.

(1) ⇔ (5): It is clear that mI = m(I :R m) if and only if m̂I = m̂(I :
R̂
m̂). ■

Recall that an ideal I of a local ring (R,m) is m-full (resp. weakly m-full) if (mI :R x) = I

for some x ∈ m (resp. (mI :R m) = I). Clearly, every m-full ideal is weakly m-full. The notion

of m-full ideals has been studied by many authors so far; see [33, 60, 61, 146, 147] for instance.

Notably, it is fundamental to figure out the connections between m-full ideals and another class

of ideals. For example, m-primary integrally closed ideals are m-full or equal to the nilradical of

R under the assumption that the residue field k is infinite; see [60, Theorem (2.4)]. There are

many related classes of ideals, such as ideals satisfying the Rees property, contracted ideals and

basically full ideals. See [78, 128] for the hierarchy of these classes. The notion of weakly m-full

ideals is introduced in [29, Definition 3.7]. The class of weakly m-full ideals coincide with that

of basically full ideals if they are m-primary; see [70, Theorem 2.12]. The following corollary is

immediate from the implication (2) ⇒ (1) in the above proposition.

Corollary 6.2.4. Let (R,m) be a local ring. Let I be an ideal of R such that depthR/I = 0. If

I is weakly m-full, then it is Burch.

Let f : (S, n, k)→ (R,m, k) be a surjective homomorphism of local rings, and set I = Ker f .

Choi [31] defines the invariant

cR(S, f) = dimk(n(I :S n)/nI).

Clearly, an ideal I of a local ring (S, n) is Burch if and only if Choi’s invariant cS/I(S, π) is

positive, where π is the canonical surjection S → S/I. We give a description of Choi’s invariant

for a regular local ring.

Proposition 6.2.5. Let (R,m, k) be a local ring, (S, n, k) a regular local ring, and f : S → R a

surjective homomorphism with kernel I. Then

cR(S, f) =

{
dimk SocR+ dimk H1(K

R)− edimR− dimk H1(K
R′
) + edimR′ (if I ̸= n),

dimk n/n
2 (if I = n),

where R′ = R/SocR.

Proof. Put J = (I :S n). We may assume I ̸= n, and hence J ̸= S. Then there are equalities

cR(S, f) = dimk nJ/nI = ℓ(J/I) + (ℓ(I/nI)− ℓ(n/n2))− (ℓ(J/nJ)− ℓ(n/n2))

= dimk SocR+ (dimk H1(K
R)− edimR)− (dimk H1(K

R′
)− edimR′).

Now the proof of the proposition is completed. ■

The above result especially says that in the case where I ̸= n the number cR(S, f) is deter-

mined by the target R of the surjection f . Thus the following result is immediately obtained.
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Corollary 6.2.6 (cf. [31, Theorem 2.4]). Let R be a local ring that is not a field. Let (S1, n1)

and (S2, n2) be regular local rings, and fi : Si → R surjective homomorphisms for i = 1, 2. Then

the equality cR(S1, f1) = cR(S2, f2) holds. In particular, Ker f1 is Burch if and only if so is

Ker f2.

We are now ready to define Burch rings.

Definition 6.2.7. Let (R,m) be a local ring of depth t. Denote by R̂ the m-adic completion of

R. We say that R is Burch if there exist a maximal R̂-regular sequence x = x1, . . . , xt in R̂, a

regular local ring S and a Burch ideal I of S such that R̂/(x) ∼= S/I.

Remark 6.2.8. If I is a Burch ideal of a local ring (R,m), then R/I is a Burch ring of depth

zero. Indeed, IR̂ is a Burch ideal of R̂ by Proposition 6.2.3. Take a Cohen presentation R̂ ∼= S/J ,

where (S, n) is a regular local ring. Let I ′ be the ideal of S such that I ′ ⊇ J and I ′/J = IR̂.

Then one can easily verify that nI ′ ̸= n(I ′ :S n), that is, I ′ is a Burch ideal of S. Note that the

completion of the local ring R/I is isomorphic to S/I ′. Hence R/I is a Burch ring of depth zero.

Let R be a local ring. The codimension and codepth of R are defined by

codimR = edimR− dimR, codepthR = edimR− depthR.

Then R is said to be a hypersurface if codepthR ≤ 1. This is equivalent to saying that the

completion R̂ of R is isomorphic to S/(f) for some regular local ring S and some element f ∈ S.

Example 6.2.9. If R is a hypersurface, then it is a Burch ring. Indeed, take a regular sequence

x in R̂ such that R̂/(x) is an artinian local ring with edim R̂/(x) ≤ 1. Then R̂/(x) is isomorphic

to the quotient ring of a discrete valuation ring S by a nonzero ideal I. By Example 6.2.2(1),

the ideal I of S is Burch.

We define the invariant cR of a local ring (R,m, k) by

cR = dimk SocR+ dimk H1(K
R)− edimR− dimk H1(K

R′
) + edimR′.

Here, we set R′ = R/ SocR, and adopt the convention that dimk H1(K
R′
) = 0 = edimR′ in the

case where R′ = 0 (i.e. R is a field). Then we can characterize the Burch rings of depth zero:

Lemma 6.2.10. Let (R,m, k) be a local ring. Then cR = c
R̂
, and the following are equivalent.

(1) R is a Burch ring and depthR = 0. (3) cR ̸= 0.

(2) R̂ is a Burch ring and depthR = 0. (4) cR > 0.

Moreover, if R is not a field but a Burch ring of depth zero and isomorphic to S/I for some

regular local ring (S, n) and some ideal I of S, then I is a Burch ideal of S.

Proof. The numbers dimk SocR, dimk H1(K
R), edimR, dimk H1(K

R′
), edimR′ are preserved by

the completion of R. In particular, one has cR = c
R̂
. Furthermore, take a Cohen presentation

R̂ ∼= S/I with a complete regular local ring S. Letting π : S → S/I be the natural surjection, we

have c
R̂
= cR(S, π). This especially shows that cR is nonnegative. Now we show the equivalence

of (1)–(4). It is obvious that (1) and (3) are equivalent to (2) and (4), respectively. The

equivalence of (2) and (3) follows from Proposition 6.2.5. Finally, we show the last assertion.
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Suppose that R is Burch of depth zero and that R ∼= S/I, where S is a regular local ring and

I is an ideal of S. Then R̂ ∼= T/J for some regular local ring T and a Burch ideal J of T .

There are surjections from the regular local rings Ŝ (the completion of S) and T to the local

ring Ŝ/IŜ ∼= R̂ ∼= T/J , and the kernel of the latter is the Burch ideal J . Corollary 6.2.6 implies

that IŜ is a Burch ideal of Ŝ, and I is a Burch ideal of S by Proposition 6.2.3. ■

We end this section by proving an useful characterization of Burch ideals when depthR > 1.

The only if direction is known for m-full ideals; see [147, Corollary 7].

Lemma 6.2.11. Let (R,m) be a local ring of depth > 1. An ideal I of R is Burch if and only if

there exists a non-zerodivisor a ∈ m such that R/m is a direct summand of the R-module I/aI.

Proof. Assume that I is Burch. Then there exist a ∈ m and b ∈ (I :R m) such that ab ∈ I \mI.

We have a ̸∈ m2, since otherwise ab ∈ m2(I :R m) = mI. As bm ⊆ I, it holds that abm ⊆ aI. We

can define an R-homomorphism f : R/m→ I/aI by f(1) = ab. As ab ̸∈ mI, the element ab is a

part of a minimal system of generators of I/aI, and hence f is a split monomorphism.

Conversely, assume that there is a split monomorphism f : R/m → I/aI, where a ∈ R is

a non-zerodivisor. Let c ∈ I be the preimage of f(1) ∈ I/aI. Then cm ⊆ aI ⊆ (a). The

assumption depthR > 1 implies depthR/(a) > 0. Hence c has to be in (a), that is, there exists

b ∈ R with c = ab. Observe abm = cm ⊆ aI. Then a being non-zerodivisor yields bm ∈ I. In

other words, b ∈ (I :R m). The image of ab = c is a part of a minimal system of generators of

I/aI, and we have ab ̸∈ mI. Thus m(I :R m) ̸= mI, which means that I is a Burch ideal. ■

Remark 6.2.12. It is worth noting that Lemma 6.2.11 can be used to give a quick proof of

Theorem 6.1.1 when depthR > 1 and n > 1. Namely, if TorRn (R/I,M) = TorRn+1(R/I,M) = 0

then it follows that TorRn (I/aI,M) = 0, which implies that TorRn (k,M) = 0.

6.3 Cyclic direct summands of second syzygies

The main purpose of this section is to study sufficient conditions for an R-module to have a

cyclic direct summand in its second syzygy. They will be used in the proofs of Section 6.4 and

are perhaps of independent interest. In fact, some of our proofs were motivated by the work of

Kustin-Vraciu ([105]) and Striuli-Vraciu ([135]) which focused on different but related problems.

We start by some simple criteria for a homomorphism f : R → M to be a split monomor-

phism.

Lemma 6.3.1. Let (R,m) be a local ring of depth zero. Let f : R→M be a homomorphism of

R-modules. Assume one of the following conditions holds.

(a) R is Gorenstein. (b) M is free. (c) M is a syzygy (i.e., a submodule of a free module).

Then the followings are equivalent.

(1) f is a split monomorphism. (2) f is a monomorphism. (3) f(SocR) ̸= 0.

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. To show (3) ⇒ (1), put C = Cok f .

(a) As R is Gorenstein, we have SocR ∼= R/m. The equality f(SocR) ̸= 0 implies Ker f ∩
SocR = 0. Hence Ker f = 0, and f is injective. As Ext1R(C,R) = 0, the map f is split injective.
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(b) If f is not split injective, then Im f is contained in mM by the assumption that M is

free. This yields that the inclusions Ker f ⊇ Ann(mM) ⊇ SocR hold.

(c) Let g : M → F be a monomorphism with F free. The composition gf : R → F satisfies

gf(SocR) ̸= 0. By the previous argument, gf is split injective. There is a retraction r : F → R

with rgf = idR. We see that rg : M → R is a retraction of f . Therefore f is split injective. ■

Next we consider R-homomorphisms from a cyclic R-module to an R-module.

Lemma 6.3.2. Let R be a ring, I an ideal of R and M an R-module. Consider an R-

homomorphism f : R/I → M . Then f is split injective if and only if the composition map

pf : R/I →M/IM is split injective, where p : M →M/IM is the natural surjection.

Proof. Suppose f is split injective. Then there is an R-homomorphism g : M → R/I such

that gf = idR/I . On the other hand, g factor through p : M → M/IM , that is g = g′p for

some g′ : M/IM → R/I. So we see that g′ is a retraction of pf . Next, suppose pf is split

injective. Then there is an R-homomorphism h : R/I → M/IM such that hpf = idR/I . Thus

hp : M → R/I is a retraction of f . ■

The following lemma is well-known; we state it for the convenience of the reader.

Lemma 6.3.3. Let Rn d−→ Rm →M → 0 be exact. If I1(d) ⊆ I, then M/IM is R/I-free.

Proof. The tensored sequence (R/I)n
d⊗R/I−−−−→ (R/I)m → M/IM → 0 is exact. Since I1(d) is

contained in I, we see that d⊗R/I = 0, and hence M ∼= (R/I)m. ■

We generalize [105, Lemma 4.1] as follows.

Proposition 6.3.4. Let (S, n, k) be a local ring and I ⊆ J ideals of S. Set R = S/I. Let

· · · → Rq C−→ Rp B−→ Rn A−→ Rm → M → 0 be a minimal R-free resolution of an R-module M ,

where A,B,C, . . . are matrices over S. Assume that J satisfies either of the following conditions.

(a) J ⊇ I1(A) + I1(C). (b) J ⊇ I1(A) and S/J is Gorenstein.

If (I :S J) ̸⊆ (IJ :S (J :S n) I1(A)), then S/J is a direct summand of Ω2
RM .

Proof. For each integer i, let Ji be the ideal of S generated by the entries of the ith column

of A. Then I1(A) = J1 + · · · + Jn, and (I :S J) ̸⊆ (IJ :S (J :S n) I1(A)) = (IJ :S (J :S
n)J1) ∩ · · · ∩ (IJ :S (J :S n)Jn). Hence (I :S J) ̸⊆ (IJ :S (J :S n)Js) for some s. Choose an

element u ∈ (I :S J) \ (IJ :S (J :S n)Js) and let v ∈ Rn be the image of u · es, where es is the

sth unit vector of Sn. Since Ju ⊆ I and I1(A) ⊆ J , v is in KerA = Ω2
RM =: X. We can define

an R-homomorphism f : S/J → X by f(1) = v.

Now we want to show f is split injective. By Lemma 6.3.2, it is enough to verify so is

the induced map f ′ = pf : S/J → X/JX. By Lemmas 6.3.1 and 6.3.3, it suffices to check

f ′(SocS/J) ̸= 0.

Since u ̸∈ ((IJ) :S (J :S n)Js), we can choose an element a ∈ (J :S n) such that auJs ̸⊆ IJ .

Remark that a ̸∈ J , otherwise one has au ∈ I, which forces auJS to be contained in IJ . Let

a be the image of a in S/J . We have that 0 ̸= a ∈ SocS/J . If f ′(a) ̸= 0, then av ∈ JX.

Then there exist elements x ∈ JRp and y ∈ IRn such that aues = Bx + y. Observe that

auAes = ABx + Ay ∈ IJRm. So we obtain the inclusion auJs ⊆ IJ , which is contradiction.

Thus f ′(a) = 0 and we conclude that f is split injective. ■
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As a corollary, we have the following restatement of [105, Lemma 4.1].

Corollary 6.3.5. Let (S, n, k) be a local ring and I an ideal of S. Set R = S/I and consider

a minimal R-free presentation Rn A−→ Rm → M → 0 of an R-module M , where A is an m × n

matrix over S and A is the corresponding matrix over R. If (I :S n) ⊈ (nI :S I1(A)), then k is

a direct summand of Ω2
RM .

Recall that a module M over a ring R is called totally reflexive if the natural map M →M∗∗

is an isomorphism and ExtiR(M,R) = ExtiR(M
∗, R) = 0 for all i > 0, where (−)∗ = HomR(−, R).

Over a Cohen–Macaulay local ring, a totally reflexive module is a maximal Cohen–Macaulay

module, and the converse holds as well over a Gorenstein local ring.

Also, recall that a pair (x, y) of elements of a ring R is called an exact pair of zerodivisors

if the equalities (0 :R x) = yR and (0 :R y) = xR hold. This is equivalent to saying that the

sequence · · · x−→ R
y−→ R

x−→ R
y−→ · · · is exact. It is easy to see that for each exact pair of

zerodivisors (x, y) the R-modules R/xR and R/yR are totally reflexive.

The following result is another application of Proposition 6.3.4.

Corollary 6.3.6. Let (S, n, k) be a local ring and I ⊆ J be n-primary ideals of S. Assume that

S/I, S/J are Gorenstein and that (I :S J) ⊈ (IJ) :S ((J :S n)J). Then there exist elements

a, b ∈ S such that J = I + (a), (I :S J) = I + (b), and (a, b) is an exact pair of zerodivisors of

S/I.

Proof. Put R = S/I. Consider a minimal R-free resolution · · · → Rn A−→ R → S/J → 0 of the

R-module S/J . Clearly, the equality I1(A)+ I = J holds. We can derive from Proposition 6.3.4

that the R-module Ω2
R(S/J) has a direct summand isomorphic to S/J . Since R is Gorenstein

and the R-module S/J is indecomposable, Ω2
R(S/J) is also indecomposable. This implies that

Ω2
R(S/J)

∼= S/J , that is, the sequence 0 → S/J → Rn → R → S/J → 0 is exact. We have

ℓ(Rn) + ℓ(S/J) = ℓ(R) + ℓ(S/J), which yields n = 1. Thus the ideal J/I of R is principal, and

we find a ∈ R with J/I = aR. As (0 :R a) = Ω1
R(J/I)

∼= S/J , the ideal (0 :R a) of R is also

principal. Taking a generator b of (0 :R a), we get an exact pair of zerodivisors (a, b) of R. ■

6.4 Proof of Theorem 6.4.1 and some applications

This section concerns with a surprising characterization of Burch rings of depth zero below, and

some applications.

Theorem 6.4.1. Let (R,m, k) be a local ring that is not a field. Then R is a Burch ring of

depth zero if and only if k is isomorphic to a direct summand of its second syzygy Ω2
Rk.

We shall delay the proof until the end of this section. First, note that we can interpret

Corollary 6.3.5 in terms of Burch rings as follows. Here we use the notation I1(M) for an R-

module M to be the ideal I1(A) where A is a matrix in a minimal free presentation F
A−→ G→

M → 0 of M . Remark that I1(M) is independent of the choice of A (see [19, page 21] for

instance).
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Proposition 6.4.2. Let (R,m, k) be a Burch ring of depth zero that is not a field. Let M be an

R-module with I1(M) = m. Then k is a direct summand of Ω2
RM . In particular, k is a direct

summand of Ω2
Rk.

Proof. By [108, Corollary 1.15], the module Ω2
RM contains k as a direct summand if and only if

so does Ω2
RM ⊗R R̂ ∼= Ω2

R̂
(M ⊗R R̂). Hence we may assume that R is complete, and then there

is a regular local ring (S, n) and a Burch ideal I ⊂ n2 such that R ∼= S/I. Consider a minimal

R-free presentation Rn A−→ Rm → M → 0 of an R-module M , where A is a matrix over S and

A is A modulo I. Then we see that I1(A) = I1(M) = m, which implies that I1(A) = n. Hence

(I :S n) ̸⊆ (nI :S I1(A)), and thus k is a direct summand of Ω2
RM by Corollary 6.3.5. ■

Here is an immediate consequence of the above proposition.

Corollary 6.4.3. Let (R,m, k) be an artinian Burch ring. Then there exists an element x ∈
m \m2 such that k is a direct summand of the ideal (0 :R x) of R.

Proof. Let x1, . . . , xn be a minimal system of generators of m. There is an exact sequence

0→
n⊕

i=1

(0 :R xi)→ Rn ∂−→ Rn →
n⊕

i=1

R/(xi)→ 0 with ∂ =

(
x1

x2
...

xn

)
.

This shows I1(∂) = m and Ω2(
⊕n

i=1R/(xi)) =
⊕n

i=1(0 :R xi). Proposition 6.4.2 implies that k

is a direct summand of
⊕n

i=1(0 :R xi). Since R is artinian, it is henselian. The Krull–Schmidt

theorem shows that k is a direct summand of (0 :R xi) for some i. ■

The following theorem classifies m-primary Gorenstein Burch ideals.

Theorem 6.4.4. Let (R,m) be a local ring and I an m-primary ideal. The following are equiv-

alent.

(1) I is a Burch ideal of R and R/I is Gorenstein.

(2) I is weakly m-full and R/I is Gorenstein. (3) I is m-full and R/I is Gorenstein.

(4) I = (xr1, x2, . . . , xn) with x1, . . . , xn a minimal system of generators of m and n, r > 0.

Proof. It follows from [61, Proposition (2.4)] that (3) is equivalent to (4), while it is obvious

that (3) implies (2) and (2) implies (1). Assume (1) to deduce (4). Remark 6.2.8 shows that

R/I is a Burch ring. Proposition 6.4.2 implies that k is a direct summand of Ω2
R/Ik. As Ω2

R/Ik

is indecomposable (see [149, Lemma (8.17)] for instance),, we get k ∼= Ω2
R/Ik, whence R/I is

a hypersurface. Thus m/I is cyclic. Choose an element x1 ∈ m such that x1 is a minimal

generator of m/I. Then x1 is a minimal generator of m, and m = I + (x1). There is a unique

integer r > 0 with xr1 ∈ I and xr−1
1 /∈ I. Choose x2, . . . , xn ∈ I so that x2, . . . , xn is a minimal

system of generators of I(R/(x1)) = m/(x1). We see that x1, x2, . . . , xn is a minimal system of

generators of m. Clearly, I contains J := (x2, . . . , xn). Note that every m/J-primary ideal is a

power of m/J = ((x1) + J)/J . As xr1 ∈ I and xr−1
1 /∈ I, we get I/J = ((xr1) + J)/J . This shows

I = (xr1, x2, . . . , xn). ■

We now characterize the modules over a Burch ring having the residue field as a direct

summand of some high syzygy.
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Theorem 6.4.5. Let (R,m, k) be a Burch local ring of depth zero which is not a field. Let M

be an R-module. Take a minimal free resolution (F, ∂) of M . The following are equivalent.

(1) One has
∑

i>0 I1(∂i) = m. (2) k is a direct summand of Ωr
RM for some r ≥ 2.

In particular, if
∑

i>0 I1(∂i) = m, then there exists an integer i ≥ 3 such that I1(∂i) = m.

Proof. (2) ⇒ (1): The minimal presentation matrix A of Ωr
RM is equivalent to

(
B 0
0 C

)
, where

B and C are the minimal presentation matrices of k and N , respectively. Hence I1(∂r+1) =

I1(A) = I1(B) + I1(C) = m+ I1(C) = m, which shows
∑

i>0 I1(∂i) = m.

(1) ⇒ (2): We may assume that R is complete, and hence there is a regular local ring (S, n)

and a Burch ideal I ⊆ S with R ∼= S/I. For each i > 0 we identify ∂i with a matrix over R, and

let di be a matrix over S lifting ∂i. Then n =
∑

i>0 I1(di) + I. The noetherian property shows

n = I1(d1)+ · · ·+I1(dn)+ I for some n > 0. Hence (nI :R n) = (nI :R I1(d1)+ · · ·+I1(dn)+ I) =

(nI :R I1(d1)) ∩ · · · ∩ (nI :R I1(dn)) ∩ (nI : I). Since I is Burch, we have (I :R n) ⊈ (nI :R n)

by Proposition 6.2.3. In particular I is nonzero, and we see that (I :R n) ⊆ n = (nI :R I). We

obtain (I :R n) ⊈ (nI :R I1(dt)) for some 1 ≤ t ≤ n. It follows from Corollary 6.3.5 that k is a

direct summand of the cokernel of ∂t, which is Ωt+1
R M . ■

Let k be a field. A local ring R is said to be a fibre product (over k) provided that it is of

the form

R ∼= S ×k T = {(s, t) ∈ S × T | πS(s) = πT (t)},

where (S,mS) and (T,mT ) are local rings with common residue field k, and πS : S → k and

πT : T → k are the natural surjections. The set S ×k T is a local ring with maximal ideal

mS×kT = mS ⊕ mT and residue field k. Conversely, a local ring R with decomposable maximal

ideal mR = I ⊕ J is a fibre product since R ∼= (R/I) ×k (R/J). These observations are due to

Ogoma [120, Lemma 3.1].

We can now complete the proof of Theorem 6.4.1.

Proof of Theorem 6.4.1. The “only if” part is a direct consequence of Proposition 6.4.2.

We consider the “if” part. Again we may assume that R is complete. Take a Cohen pre-

sentation R ∼= S/I, where (S, n) is a regular local ring and I is an ideal of S contained in n2.

If (I :S n) ⊈ n2, then there is an element x ∈ (m ∩ SocR) \ m2. One has a decomposition

m = J ⊕ (x), which means that R is of the form S ×k T with edimT = 1. Then R is Burch by

Example 6.2.9 and Proposition 6.6.14. Thus we may assume that (I :S n) ⊆ n2. Suppose that

I is not Burch, so that n(I :S n) = nI. We aim to show that SocΩ2
Rk ⊆ mΩ2

Rk. Take minimal
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generators x1, . . . , xe of n. There is a commutative diagram

0

��

0

��

Ω2
Sk

��

// Ω2
Rk

��

0 // Ie

��

// Se

��

// Re

��

// 0

0 // I

��

// n

��

// m

��

// 0

I/nI

��

0 0

0

of S-modules with exact rows and columns. Applying the snake lemma, we get an exact sequence

Ω2
Sk → Ω2

Rk
δ−→ I/nI → 0, (6.4.5.1)

where δ sends each element a ∈ Ω2
Rk whose preimage in Se is t(a1, . . . , ae) to the image of

∑
i xiai

in I/nI. Now consider element a ∈ SocΩ2
Rk. This means that the preimage t(a1, . . . , ae) ∈ Se

of a satisfies ai ∈ (I :S n) for all i. Therefore, the element
∑

i xiai ∈ S is contained in n(I :S
n) = nI. This yields that δ(a) = 0. By the exact sequence (6.4.5.1), we can take the preimage

(a1, . . . , ae) ∈ Se of a to be contained in Ω2
Sk. We already have t(a1, . . . , ae) ∈ (I :S n)Se ⊆ n2Se.

It follows that t(a1, . . . , ae) ∈ Ω2
Sk∩ n2Se ⊆ nΩ2

Sk, see [75, Theorems 3.7 and 4.1] for the second

containment. Consequently, the element a is contained in mΩ2
Rk. This allows us to conclude

that if SocΩ2
Rk ̸⊆ mΩ2

Rk then I is a Burch ideal, and hence R is a Burch ring. ■

In view of Theorem 6.4.1, one may wonder if an artinian local ring R is Burch if the residue

field k is a direct summand of Ωnk for some n ≥ 3. This is not true in general:

Example 6.4.6. Let k be a field, and consider the ring R = k[[x, y]]/I, where I = (x4, x2y2, y4).

The minimal free resolution of k is

0← k ← R
(x y )←−−− R2

(
−y xy2 x3 0
x 0 0 y3

)
←−−−−−−−−−−− R4

xy2 0 x3 0 0 y3 0 0
y x 0 0 0 0 y2 0
0 0 y x 0 0 0 y2

0 0 0 0 y −x 0 0


←−−−−−−−−−−−−−−−−− R8 ← · · · .

We have SocΩ3k = SocR4 = (x3y, xy3)R4. The column vector z := t(x3y, 0, 0, 0) = y ·
t(x3, 0, y, 0)− t(0, 0, y2, 0) is in SocΩ3k \mΩ3k. The assignment 1 7→ z makes a split monomor-

phism k → Ω3k, and k is a direct summand of Ω3k. However, R is not Burch as one can easily

check the equality m(I :R m) = mI.
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6.5 Burch rings of positive depth

In this section, we study Burch rings of positive depth. First of all, let us investigate what

Gorenstein Burch rings are.

Proposition 6.5.1. A local ring is Burch and Gorenstein if and only if it is a hypersurface.

Proof. Let R be a local ring of dimension d. If R is hypersurface, then R is clearly Gorenstein,

and it is also Burch by Example 6.2.9. Conversely, suppose thatR is Burch and Gorenstein. Then

there exists a system of parameters x = x1, . . . , xd such that R̂/(x) is an artinian Gorenstein

Burch local ring. By definition, there exist a regular local ring (S, n) and a Burch ideal I of S

such that R̂/(x) ∼= S/I. By Theorem 6.4.4, there are a minimal system of generators y1, . . . , yn
of n with n > 0 and an integer r > 0 such that I = (yr1, y2, . . . , yn). In particular, S/I ∼= R̂/(x)

is a hypersurface, and so is R. ■

A Cohen–Macaulay local ring R is said to have minimal multiplicity if e(R) = codimR+ 1.

Proposition 6.5.2. Let (R,m, k) be a Cohen–Macaulay local ring with minimal multiplicity,

assume that k is infinite. Then R is Burch.

Proof. We can find a general system of parameters x such that A = R/(x) is artinian and still

has minimal multiplicity. This simply means that m2
A = 0, so the first syzygy of k is a k-vector

space. Thus A is Burch by 6.4.1 and so is R. ■

Remark 6.5.3. A Cohen–Macaulay local ring with minimal multplicity is a typical example of

a Golod local ring. In view of Proposition 6.5.2, the reader may wonder if a Golod local ring is

Burch. This is not true in general; the ring R given in Example 6.4.6 is not Burch but Golod by

[11, 1.4.3 and 2.1]. Also the converse doesn’t holds in general. Indeed, let R = k[x, y, z, w]/mJ ,

where m = (x, y, z, w) and J = (x2, y2, z2, w2) in k[x, y, z, w]. This is the example of non-Golod

ring R given in [44, Example 2.1]. However, It is Burch by Exmaple 6.2.2 (2).

We establish a lemma to prove our next result on Burch rings.

Lemma 6.5.4. Let (R,m, k) be a 1-dimensional Cohen–Macaulay local ring with minimal mul-

tiplicity. Then there exists an isomorphism m∗ ∼= m, where (−)∗ = HomR(−, R).

Proof. If R is a discrete valuation ring, then m ∼= R, and hence m∗ ∼= m. So we assume that R

is not a discrete valuation ring. Since R has minimal multiplicity, by [112, Lemma 1.11], there

is an R-regular element x ∈ m such that m2 = xm. Let Q be the total quotient ring of R. We

have

m∗ = HomR(m, R) ∼= HomR(m, xR) ∼= (xR :Q m) ⊇ m,

where the second isomorphism follows from [100, Proposition 2.4(1)] for instance. For each

element a
s ∈ (xR :Q m), we have ax ∈ am ⊆ sxR, which implies a ∈ sR as x is R-regular, and

hence a
s ∈ R. Therefore (xR :Q m) is an ideal of R containing m. Since R is not a discrete

valuation ring, it is a proper ideal. We get (xR :Q m) = m, and consequently m∗ ∼= m. ■

Cohen–Macaulay rings of dimension 1 with minimal multiplicity have a remarkable property.
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Proposition 6.5.5. Let (R,m, k) be a 1-dimensional Cohen–Macaulay local ring with minimal

multiplicity. Then the quotient artinian ring R/(x) is a Burch ring for any parameter x ∈ m\m2.

Proof. If R is regular, then it is a discrete valuation ring, and x is a uniformizer. Hence R/(x)

is a field, and it is Burch. Thus we assume that R is singular. Applying (−)∗ = HomR(−, R)

to the natural exact sequence 0→ m→ R→ k → 0, we get an exact sequence 0→ R→ m∗ →
k⊕r → 0, where r is the type of R. Making the pullback diagram of the map m∗ → k⊕r and the

natural surjection R⊕r → k⊕r, we obtain an exact sequence 0 → m⊕r → R⊕(r+1) → m∗ → 0.

As R is singular, m⊕r does not have a nonzero free summand by [49, Corollary 1.3]. We get an

isomorphism m⊕r ∼= Ω(m∗). Combining this with Lemma 6.5.4 yields m⊕r ∼= Ωm ∼= Ω2k. Since x

is an R-regular element in m \m2, there is a split exact sequence 0→ k → m/xm→ m/(x)→ 0,

which induces m/xm ∼= k ⊕m/(x). We obtain isomorphisms of R/(x)-modules

k⊕r ⊕ (m/(x))⊕r ∼= (m/xm)⊕r ∼= Ω2k/xΩ2k

∼= ΩR/(x)(m/xm) ∼= ΩR/(x)k ⊕ ΩR/(x)(m/(x)) ∼= ΩR/(x)k ⊕ Ω2
R/(x)k,

where the third isomorphism holds since there is an exact sequence 0→ Ω2k → R⊕n → m→ 0

with n = edimR, which induces an exact sequence 0→ Ω2k/xΩ2k → (R/(x))⊕n → m/xm→ 0.

As R/(x) is an artinian local ring, it is henselian. The Krull–Schmidt theorem implies that k is

a direct summand of either ΩR/(x)k or Ω2
R/(x)k. In the former case, applying ΩR/(x)(−) shows

that k is a direct summand of Ω2
R/(x)k. Theorem 6.4.1 concludes that R/(x) is a Burch ring. ■

Proposition 6.5.6. Let S = k[x1, . . . , xn] be a polynomial ring over an infinite field and I ⊂ S

is a homogenous ideal such that S/I is Cohen-Macaulay and I has a linear resolution. Then

R = (S/I)m is Burch where m = (x1, . . . , xn).

Proof. Let A = S/I and (l1, . . . , ld) be a general linear system of parameters on A. We write

A/(l1, . . . , ld)A as T/J where T is a polynomial ring in n − d variables over k and J is a zero-

dimensional ideal. Then J still has linear resolution. Assume I (and J) are generated in degree

t, then the regularity of J is t, but since J is zero-dimensional, the socle degree of J is t − 1.

Thus J = nt where n is the irrelevant ideal of T , and so R is Burch by definition and Example

6.2.2. ■

Example 6.5.7. There are many examples satisfying the conditions of Proposition 6.5.6. For

example, let m ≥ n and let I = In ⊂ k[xij ] = S be the ideal generated by maximal minors in

a m by n matrix of indeterminates. Then it is well-known that S/I is Cohen-Macaulay with

dimS/I = (m+1)(n− 1) and the a-invariant of S/I is −m(n− 1) (see [19]). It follows that the

regularity of I is n, so it has linear resolution.

Another source of examples are Stanley-Reisner rings of “facet constructible” or “stacked”

simplicial complexes, see [42, Theorem 4.1 and 4.4].

We will show in Corollary 6.7.9 that if x is a regular element of a local ring (R,m) such that

R/(x) is Burch, then x ̸∈ m2. It is natural to ask whether the quotient ring R/Q of a Burch

ring R is again Burch for any ideal Q generated by regular sequence consisting of elements in

m \m2. This is true if R is either a hypersurface or a Cohen–Macaulay local ring of dimension

one with minimal multiplicity, as we saw in Propositions 6.5.1 and 6.5.5. The example below

says that the question is not always affirmative.
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Example 6.5.8. Let k be a field, and let R = k[[x, y, z]]/ I2

(
x2 y z2

y z2 x2

)
. The Hilbert–Burch

theorem implies that R is a Cohen–Macaulay local ring of dimension 1. The ring R is a Burch

ring since so is the artinian quotient ring R/(x) = k[[y, z]]/(y2, yz2, z4). However, the artinian

ring R/(y) = k[[x, z]]/(x4, x2z2, z4) is not Burch. By Theorem 6.4.1, the R-module k is a direct

summand of Ω2
R/(x)k, but not a direct summand of Ω2

R/(y)k. Incidentally, the module k is a

direct summand of Ω3
R/(y)k by Example 6.4.6.

To show our next result on Burch rings, we prepare a lemma on cancellation of free sum-

mands.

Lemma 6.5.9. Let R be a local ring. Let M,N be R-modules having no nonzero free summand.

If M ⊕R⊕a ∼= N ⊕R⊕b for some a, b ≥ 0, then M ∼= N and a = b.

Proof. Wemay assume a ≥ b. Taking the completions, we get isomorphisms M̂⊕R̂⊕a ∼= N̂⊕R̂⊕b.

Write M̂ = X ⊕ R̂⊕c and N̂ = Y ⊕ R̂⊕d with c, d ≥ 0 integers and X,Y having no nonzero

free summand. Then X ⊕ R̂⊕(c+a) ∼= Y ⊕ R̂⊕(d+b). As R̂ is henselian, we can apply the Krull-

Schmidt theorem to deduce X ∼= Y and c + a = d + b. Hence d = c + (a − b), and we get

N̂ = Y ⊕ R̂⊕d ∼= X ⊕ R̂⊕(c+(a−b)) = M̂ ⊕ R̂⊕(a−b) ∼= L̂, where L := M ⊕ R⊕(a−b). It follows

from [108, Corollary 1.15] that N is isomorphic to L. Since N has no nonzero free summand,

we must have a = b, and therefore M = L ∼= N . ■

The following result is a higher-dimensional version of the “only if” part of Theorem 6.4.1.

Proposition 6.5.10. Let (R,m, k) be a singular Burch ring of depth t, Then Ωtk is a direct

summand of Ωt+2k.

Proof. We prove the proposition by induction on t. The case t = 0 follows from Lemma 6.2.10,

so let t ≥ 1. There is an R-sequence x = x1, . . . , xt such that R/(x) is a Burch ring of depth

zero. Hence R/(x1) is a Burch ring of dimension d − 1. The induction hypothesis implies that

Ωt−1
R/(x1)

k is a direct summand of Ωt+1
R/(x1)

k. Taking the syzygy over R, we see that ΩRΩ
t−1
R/(x1)

k

is a direct summand of ΩRΩ
t+1
R/(x1)

k. For each n ≥ 0 there is an exact sequence 0→ Ωn
R/(x1)

k →
Pn−1 → · · · → P1 → P0 → k → 0 with each Pi being a direct sum of copies of R/(x1), which

gives rise to an exact sequence

0→ ΩRΩ
n
R/(x1)

k → ΩRPn−1 ⊕R⊕en−1 → · · · → ΩRP1 ⊕R⊕e1 → ΩRP0 ⊕R⊕e0 → ΩRk → 0

with ei ≥ 0 for 0 ≤ i ≤ n − 1. Note that each ΩRPi is a free R-module. The above sequence

shows that Ωn+1
R k = Ωn

R(ΩRk) is isomorphic to ΩRΩ
n
R/(x1)

k up to free R-summands. We obtain

an R-isomorphism Ωn+1
R k ⊕ R⊕e ∼= ΩRΩ

n
R/(x1)

k with e ≥ 0. Thus, for some a, b ≥ 0 we have

that Ωt
Rk ⊕ R⊕a is a direct summand of Ωt+2

R k ⊕ R⊕b. Since R is singular, it follows from [49,

Corollary 1.3] that Ωi
Rk has no nonzero free summand for all i ≥ 0. Applying Lemma 6.5.9, we

observe that Ωt
Rk is a direct summand of Ωt+2

R k. ■

We pose a question asking whether or not the converse of Proposition 6.5.10 holds true.

Question 6.5.11. Does there exist a non-Burch local ring (R,m, k) of depth t such that Ωtk is

a direct summand of Ωt+2k?
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6.6 Some classes of Burch ideals and rings

In this section, we study in a regular local ring and give a complete characterization in dimension

two. We also give a simple characterization of monomial Burch ideals. We compare Burch rings

to other classes of rings: radical cube zero, almost Gorenstein, nearly Gorenstein, and fibre

products.

Over a two-dimensional regular local ring (R,m), the Burch ideals I are characterized in

terms of the minimal numbers of generators of I and mI.

Lemma 6.6.1. Let (R,m) be a regular local ring of dimension two, and let I be an m-primary

ideal of R. Then I is a Burch ideal of R if and only if µ(mI) < 2µ(I).

Proof. It follows from the Hilbert–Burch theorem that µ(I) = r(R/I)+1 and µ(mI) = r(R/mI)+

1. The assertion follows from the equivalence (1) ⇔ (2) in Proposition 6.2.3. ■

Now we can show the following theorem, which particularly gives a characterization of the

Burch ideals of two-dimensional regular local rings in terms of minimal free resolutions. Compare

this theorem with the result of Corso, Huneke and Vasconcelos [35, Lemma 3.6].

Theorem 6.6.2. Let (R,m) be a regular local ring of dimension d. Let I be an m-primary ideal

of R. Take a minimal free resolution 0 → Fd
φd−→ Fd−1 → · · · → F1

φ1−→ F0 → R/I → 0 of the

R-module R/I. Consider the following conditions.

(1) The ideal I is Burch.

(2) There exist a regular system of parameters x1, . . . , xd and an integer r > 0 such that I1(φd) =

(xr1, x2, . . . , xd).

(3) One has (I :R m)2 ̸= I(I :R m).

Then the implication (1) ⇒ (2) holds. If R contains a field, then the implication (3) ⇒ (2)

holds. If d = 2, then the implication (2) ⇒ (1) holds as well.

Proof. We first show that (1) implies (2). We may assume d ≥ 2, so that R has depth greater

than 1. By Lemma 6.2.11 and its proof, there is a non-zerodivisor x1 ∈ m \ m2 such that

I/x1I contains the residue field R/m as a direct summand. Tensoring R/(x) with the complex

F = (0→ Fd → · · · → F0 → 0), we get a minimal free resolution

(0→ Fd/x1Fd
φd⊗S/(x1)−−−−−−−→ Fd−1/Fd−1 → · · · → F2/x1F2 → F1/x1F1 → 0)

of I/x1I over R/(x1). As R/m is a direct summand of I/x1I, a minimal R/(x1)-free resolution

G of R/m is a direct summand of the above complex. Since G is isomorphic to the Koszul

complex KR/(x1) of R/(x1), the ideal I1(φd ⊗ R/(x1)) of R/(x1) contains the maximal ideal

m/(x1). Therefore I1(φd) contains elements x2, . . . , xd such that x1, x2, . . . , xd form a regular

system of parameters of R. Since the radical of I1(φd) contains I, it is an m-primary ideal.

It follows that there is an integer r > 0 such that xr1 ∈ I1(φd) but xr−1
1 ̸∈ I1(φd). We obtain

I1(φd) = (xr1, x2, . . . , xd), and (2) follows.

Next, under the assumption that R contains a field, we prove that (3) implies (2). We use an

analogue of the proof of [34, Theorem 2.4]. After completion, we may assume that R is a formal
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power series ring over a field k. Suppose that (2) does not hold. Then d ≥ 2 and we can take an

ideal L containing I1(φd) such that there is a regular system of parameters x1, . . . , xd with L =

(x21, x1x2, x
2
2, x3, . . . , xd). By [34, Proposition 2.1], an isomorphism (I :R L)/I ∼= ωR/L⊗RFd and

its retraction (I :R m)/I ∼= ωR/m⊗R Fd are given. Note that the canonical module ωR/L of R/L

is isomorphic to (0 :ER(k) L). The module ER(k) is identified with k[x1, x
−1
1 , . . . , x−1

d ]/N , where

N is the subspace spaned by the monomials not in k[x−1
1 , . . . , x−1

d ]. Under this identification,

ωR/L = (0 :R L) is generated by the monomials x−1
1 and x−1

2 . Set M = {x−1
1 , x−1

2 }. Then

x1M = {1} = x2M generates ωR/m. Also, either x1w = 0 or x2w = 0 holds for all w ∈ M . We

may apply [34, Proposition 2.3] as in the proof of [34, Theorem 2.4] to get (I :R m)2 = I(I :R m),

contrary to (3). We have shown that (3) implies (2).

Finally, assuming d = 2, we prove (2) implies (1). As the entries of φ2 are contained in

m, we have an exact sequence 0 → F2
φ2−→ mF1 → mI → 0. This induces an exact sequence

F2/mF2
φ2⊗RR/m−−−−−−→ mF1/m

2F1 → mI/m2I → 0. Suppose that (2) holds. Then φ2 ⊗R R/m ̸=
0, and dimR/m(mI/m2I) < dimR/m(mF1/m

2F1). Note that dimR/m(mI/m2I) = µ(I) and

dimR/m(mF1/m
2F1) = 2µ(I). Lemma 6.6.1 shows that I is a Burch ideal, that is, (1) holds. ■

Example 6.6.3. (1) Let I = (x4, y4, z4, x2y, y2z, z2x) be an ideal of (R,m) = k[[x, y, z]]. Then

one can check that (I :R m) = (x4, x3z, x2y, xy3, xyz, xz2, y4, y2z, yz3, z4), and so (I :R
m)2 ̸= I(I :R m). However, I is not Burch. This gives a counterexample of the implication

(3) ⇒ (1) in Theorem 6.6.2.

(2) Let I = (x4, y4, x3y, xy3) be an ideal of (R,m) = k[[x, y]]. Then (I :R m) = (x3, x2y2, y3).

We see that (I :R m)2 = I(I :R m) and I is Burch. This shows that the implication (1) ⇒
(3) in Theorem 6.6.2 is not affirmative, even when R has dimension two.

We provide some characterizations of Burchness for monomial ideals of regular local rings.

Proposition 6.6.4. Let (R,m) be a regular local ring of dimension d. Let x1, . . . , xd be a regular

system of parameters of R, and let I be a monomial ideal (in the xis) of R. Then I is Burch if

and only if there exist a monomial m ∈ I \ mI and an integer 1 ≤ i ≤ d such that xi | m and

m(xj/xi) ∈ I for all 1 ≤ j ≤ d.

Proof. Since I is a Burch ideal, we have mI ̸= m(I :R m). Therefore, there is a monomial

m′ ∈ (I :R m) and an integer i such that xim
′ ̸∈ mI. It also holds that xjm

′ ∈ I for all

j = 1, . . . , d. So the element m := xim
′ satisfies m(xj/xi) ∈ I for all j = 1, . . . , d. ■

Corollary 6.6.5. Let (R,m) be a regular local ring of dimension 2 with a regular system of

parameters x, y. Let I = (xa1yb1 , xa2yb2 , . . . , xanybn) be a monomial ideal with a1 > a2 > · · · >
an and b1 < b2 < · · · < bn. Then I is a Burch ideal of R if and only if ai = ai+1 + 1 or

bi = bi+1 − 1 for some i = 1, . . . , n.

Proof. By Proposition 6.6.4, the ideal I is Burch if and only if xaiybi(y/x) ∈ I or xaiybi(x/y) ∈ I

for some i = 1, . . . , n. Equivalently, either xai−1ybi+1 ∈ I or xai+1ybi−1 ∈ I holds for some

i = 1, . . . , n. Since ai+1 ≤ ai− 1 < ai < ai +1 ≤ ai−1 and bi−1 ≤ bi− 1 < bi < bi +1 ≤ bi+1, the

condition is equivalent to saying that bi + 1 = bi+1 or ai + 1 = ai−1 for some i = 1, . . . , n. ■
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Next, we discuss the relationship between Burch rings and several classes of rings studied

previously in the literature.

The following notions are introduced in [74, 135].

Definition 6.6.6 (Herzog–Hibi–Stamate). Let (R,m) be a Cohen–Macaulay local ring with

canonical module ω. Then R is called nearly Gorenstein if trω contains m.

Definition 6.6.7 (Striuli–Vraciu). Let (R,m) be an artinian local ring. Then R is called almost

Gorenstein2 if (0 :R (0 :R I)) ⊆ (I :R m) for all ideals I of R.

It follows from [86, Proposition 1.1] that artinian nearly Gorenstein local rings are almost

Gorenstein.

We want to consider the relationship of Burchness with near Gorensteinness and almost

Gorensteinness. For this, we establish two lemmas.

Lemma 6.6.8. Let (R,m, k) be a non-Gorenstein artinian almost Gorenstein local ring. Let

Rn A−→ Rm → E → 0 be a minimal R-free presentation of the R-module E = ER(k). One then

has I1(A) = m.

Proof. Choose an artinian Gorenstein local ring (S, n) and an ideal I of S such that R ∼=
S/I. We identify E with (0 :S I) via the isomorphisms E ∼= HomS(R,S) ∼= (0 :S I). Let

x1, . . . , xm be a minimal system of generators of E. By [135, Lemma 1.2] we have n = ((x1) :S
(x2, . . . , xm))+((x2, . . . , xm) :S x1). We find a matrix B over S with m rows such that I1(B) = n

and ( x1 ··· xm )B = 0. We find a matrix C over R such that the matrix B over R corresponding

to B is equal to AC. We have m = I1(B) = I1(A ·C) ⊆ I1(A) ⊆ m, which implies I1(A) = m. ■

Lemma 6.6.9. Let (R,m) be a regular local ring of dimension d, and let I ⊆ m2 be an ideal

of R. Take a minimal free resolution 0 → Fd
φd−→ Fd−1 → · · · → F1

φ1−→ F0 → R/I → 0 of the

R-module R/I. If R/I is artinian, non-Gorenstein and almost Gorenstein, then I1(φd) = m.

Proof. Set A = R/I and E = EA(k). Then the sequence (Fd−1/IFd−1)
∗ (φd⊗A)∗−−−−−→ (Fd/IFd)

∗ →
E → 0 gives a minimal A-free presentation of E, where (−)∗ = HomA(−, A). Note that

rankA(Fd/IFd)
∗ = r(A) = µ(E). Lemma 6.6.8 implies I1((φd⊗A)∗) = m, which shows I1(φd)+

I = m. The desired result follows from Nakayama’s lemma. ■

We can show an artinian almost Gorenstein local ring of embedding dimension two is Burch.

Proposition 6.6.10. Let (R,m) be a regular local ring of dimension 2 and I an ideal of R.

Assume that R/I is a non-Gorenstein artinian almost Gorenstein ring. Then I is a Burch ideal

of R.

Proof. Take a minimal free resolution 0 → F2
φ2−→ F1

φ1−→ F0 → R/I → 0 of the R-module

R/I. It follows from Lemma 6.6.9 that I1(φ2) = m. Since R has dimension two, we can use the

implication (2)⇒(1) in Theorem 6.6.2 to have that I is Burch. ■

2There is another notion of an almost Gorenstein ring; see [65].
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Remark 6.6.11. One may hope a non-Gorenstein nearly Gorenstein local ring is Burch, but

this is not necessarily true. Indeed, let (R,m) be a 1-dimensional nearly Gorenstein local ring

(e.g. R = k[[t3, t4, t5]] ⊆ k[[t]] with k a field). Take a regular element x ∈ m2, and set A = R/(x).

Then A is nearly Gorenstein by [74, Proposition 2.3(b)], but A is not a Burch ring by Corollary

6.7.9.

Next, we deal with local rings the cube of whose maximal ideal is zero. The following gives

a characterization of Burchness for such rings.

Theorem 6.6.12. Let (R,m, k) be a local ring with m3 = 0. Then R is a Burch ring if and only

if there is an inequality β2(k) > (edimR)2 − r(R).

Proof. Put e = edimR and r = r(R). By Theorem 6.4.1, the ring R is Burch if and only

if k is a direct summand of Ω2k, if and only if SocΩ2k ̸⊆ mΩ2k. There is a short exact

sequence 0 → Ω2k → Re → m → 0, which gives an inclusion Ω2k ⊆ mRe and an equality

SocΩ2k = SocRe. Since m3 = 0, we have an inclusion mΩ2k ⊆ SocΩ2k. Thus R is Burch if and

only if ℓ(SocΩ2k) > ℓ(mΩ2k). There are equalities

β2(k) = ℓ(Ω2k)− ℓ(mΩ2k) = ℓ(Re)− ℓ(m)− ℓ(mΩ2k) = (e− 1)ℓ(m) + e− ℓ(mΩ2k)

= (e− 1)(e+ ℓ(m2)) + e− ℓ(mΩ2k) = e2 + (e− 1)ℓ(m2)− ℓ(mΩ2k).

On the other hand, there is an inclusion Ω2k ⊆ me, which induces an inclusion mΩ2k ⊆ (m2)e.

Thus one has ℓ(mΩ2k) ≤ eℓ(m2) ≤ er = ℓ(SocΩ2k). If ℓ(m2) < ℓ(SocR) = r, then we see that

ℓ(SocΩ2k) > ℓ(mΩ2k). The above equalities show that β2(k) ≥ e2 − ℓ(m2) > e2 − r. Therefore,

we may assume ℓ(m2) = r. We obtain β2(k) = e2− r+ er− ℓ(mΩ2k). It follows that β2 > e2− r

if and only if er− ℓ(mΩ2k) > 0. The latter condition is equivalent to ℓ(SocΩ2k) > ℓ(mΩ2k). ■

Let R be a local ring with maximal ideal m. An element x ∈ m is called a Conca generator

of m if x2 = 0 and m2 = xm. This notion has been introduced in [13]. Note that the condition

m3 = 0 is necessary for R to possess a Conca generator.

Corollary 6.6.13. Let (R,m, k) be a local ring with m3 = 0 and SocR ⊆ m2. If R is a Burch

ring, then R has no Conca generator.

Proof. If R has a Conca generator, then the Poincaré series Pk(t) =
∑

βit
i is of the form 1

1−et+rt2

by [13, Theorem 1.1]. In particular, β2(k) = e2−r. Thus R is not Burch by Theorem 6.6.12. ■

Next, we consider the Burchness of a fibre product.

Let S, T be local rings having common residue field k. We say that the fibre product S×k T

is nontrivial if S ̸= k ̸= T . It holds that depthS ×k T = min{depthS, depthT, 1}; see [106,

Remarque 3.3].

We consider the Burchness of the fibre product S ×k T . We compute some invariants.

Lemma 6.6.14. Let R = S ×k T be a nontrivial fibre product, where (S,mS , k) and (T,mT , k)

are local rings. Then the following equalities hold.

(1) edimR = edimS + edimT .

(2) dimk SocR = dimk SocS + dimk SocT .
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(3) dimk H1(K
R) = dimk H1(K

S) + dimk H1(K
T ) + edimS · edimT .

(4) cR = cS + cT + edimS · edimT − edim(S/ SocS) · edim(T/ SocT ).

Proof. (1)(2) These equalities can be checked directly.

(3) One has βR
2 (k) = βS

2 (k)+βT
2 (k)+2 edimS · edimT and dimk H1(K

R) = βR
2 (k)−

(
edimR

2

)
;

see [102] and [19, Theorem 2.3.2] for example. Thus there are equalities

dimk H1(K
R) = βR

2 (k)−
(
edimR

2

)
= βS

2 (k) + βT
2 (k) + 2 edimS · edimT −

(
edimR

2

)
= dimk H1(K

S)−
(
edimS

2

)
+ dimk H1(K

T )−
(
edimT

2

)
+ 2 edimS · edimT −

(
edimR

2

)
= dimk H1(K

R1) + dimk H1(K
R2) + edimS · edimT.

(4) Put R′ = R/SocR, S′ = S/ SocS and T ′ = T/ SocT . Then R′ ∼= S′ × T ′ unless S = k

or T = k. Using (1), (2) and (3), we can calculate cR as follows:

cR = dimk SocR+ dimH1(K
R)− edimR− dimH1(K

R′
) + edimR′

= dimk SocS + dimk SocT + dimk H1(K
S) + dimk H1(K

R2) + edimS · edimT

− edimS − edimT − dimk H1(K
S′
)− dimk H1(K

T ′
)− edimS′ · edimT ′ + edimS′ + edimT ′

= cS + cT + edimS · edimT − edimS′ · edimT ′. ■

Using the above lemma, we can characterize the Burch fibre products.

Proposition 6.6.15. Let R = S ×k T be a nontrivial fibre product, where (S,mS , k) and

(T,mT , k) are local rings. Then R is a Burch ring if and only if

(a) depthR > 0, or (b) depthR = 0 and either S or T is a Burch ring of depth zero.

Proof. First we deal with the case where depthR = 0. Lemma 6.2.10 shows that R is Burch if

and only if cR > 0. Note that the integers cS , cT and N := edimS · edimT − edim(S/ SocS) ·
edim(T/ SocT ) are always nonnegative. By Lemmas 6.6.14(4), the positivity of cS or cT implies

that R is Burch. Conversely, assume that R is Burch. Then by Lemma 6.6.14(4) again, one of the

three integers cS , cT , N is positive. If cS or cT is positive, then S or T is Burch. When N > 0,

either edimS > edimS/ SocS or edimT > edimT/ SocT holds. Without loss of generality,

we may assume that edimS > edimS/SocS. This inequality means that there is an element

x ∈ (mS ∩ SocS) \m2
S . Then mS = I ⊕ (x) for some ideal I. We see that S ∼= S/(x)×k S/I and

edimS/I ≤ 1. Example 6.2.9 implies that S/I is Burch, and so is S.

Next, we consider the case where depthR > 0. In this case, we have depthS > 0, depthT >

0 and depthR = 1. Take regular elements x ∈ mS \ m2
S and y ∈ mT \ m2

T . The element

x− y ∈ mR = mS ⊕mT is also a regular element of R. The equalities xmR = xmS = (x− y)mS

show that the image x ∈ R/(x− y) of x is in SocR/(x− y). We have mR/(x− y) = (x)⊕ I for

some ideal I of R/(x− y). Hence R/(x− y) is isomorphic to the fibre product U ×k V of local

rings over their common residue field k such that edimV ≤ 1. As V is Burch by Example 6.2.9,

it follows that so is R/(x− y), and hence so is R. ■

Example 6.6.16. Let R = k[x, y]/(xa, xy, yb) with k a field and a, b ≥ 1. Then R is a Burch

ring. In fact, R is isomorphic to the fibre product of k[x]/(xa) and k[y]/(yb) over k. By Example

6.2.9, the rings k[x]/(xa) and k[y]/(yb) are Burch, and so is R by Proposition 6.6.15.
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6.7 Homological and categorical properties of Burch rings

In this section, we explore some homological and categorical aspects of Burch rings. They come

in several flavors. We prove a classification theorem of subcategories over Burch rings. We also

prove that non-Gorenstein Burch rings are G-regular in the sense of [138], and that nontrivial

consecutive vanishings of Tor over Burch rings cannot happen. We begin with recalling the

definition of resolving subcategories.

Definition 6.7.1. Let R be a ring. A subcategory X of modR is resolving if the following hold.

(1) The projective R-modules belong to X .

(2) Let M be an R-module and N a direct summand of M . If M is in X , then so is N .

(3) For an exact sequence 0→ L→M → N → 0, if L and N are in X , then so is M .

(4) For an exact sequence 0→ L→M → N → 0, if M and N are in X , then so is L.

Note that (1) can be replaced by the condition that X contains R. Also, (4) can be replaced

by the condition that if M is an R-module in X , then so is ΩM . For an R-module C, we denote

by resR C the resolving closure of C, the smallest resolving subcategory of modR containing C.

We establish a couple of lemmas to prove Proposition 6.7.6. The first lemma is used as a

base result of this section, which is essentially shown in [139, Proposition 4.2]. For an R-module

M we denote by NF(M) the nonfree locus of M , that is, the set of prime ideals p of R such that

Mp is nonfree as an Rp-module.

Lemma 6.7.2. Let (R,m) be a local ring, M a nonfree R-module, and x an element in m.

(1) There exists a short exact sequence 0→ ΩM →M(x)→M → 0 such that x ∈ I1(M(x)) ⊆
m and pdR M(x) ≥ pdR M . In particular, M(x) belongs to resR M .

(2) For each p ∈ V(x)∩NF(M) one has V(p) ⊆ NF(M(x)) ⊆ NF(M) and D(x)∩NF(M(x)) = ∅.

Proof. (1) Let · · · d3−→ F2
d2−→ F1

d1−→ F0
π−→ M → 0 be a minimal free resolution of M . Taking

the mapping cone of the multiplication map of the complex F by x, we get an exact sequence

· · · → F3 ⊕ F2

(
d3 x
0 −d2

)
−−−−−−→ F2 ⊕ F1

(
d2 x
0 −d1

)
−−−−−−→ F1 ⊕ F0

(
d1 x
0 −π

)
−−−−−−→ F0 ⊕M

(π x )−−−→M → 0.

Set M(x) = Im
(
d1 x
0 −π

)
= Cok

(
d2 x
0 −d1

)
. The free resolution of M(x) given by truncating

the above sequence is minimal. We see that x ∈ I1(M(x)) ⊆ m as M is nonfree, and that

pdR M(x) ≥ pdR M . The following pullback diagram gives an exact sequence as in the assertion.

0 // ΩM
f

// F0
π // M // 0

0 // ΩM // M(x) //

OO

M //

x

OO

0
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(2) The module M(x) fits into the pushout diagram

0 // ΩM
f

//

x

��

F0
π //

��

M // 0

0 // ΩM // M(x) // M // 0.

Using the same argument as in the proof of [139, Proposition 4.2], we observe that V(p) ⊆
NF(M(x)) ⊆ NF(M) and D(x) ∩NF(M(x)) = ∅ hold. ■

Lemma 6.7.3. Let (R,m) be a local ring and M an R-module. Let W ⊆ NF(M) be a closed

subset of SpecR. Then there exists an R-module X such that pdR X ≥ pdR M and NF(X) = W .

Proof. The assertion follows from the proof of [139, Theorem 4.3] by replacing [139, Lemma 4.2]

used there with our Lemma 6.7.2. ■

Lemma 6.7.4. Let (R,m) be a local ring and M a nonfree R-module. Then there is an exact

sequence 0 → (ΩM)n → N → Mn → 0 with n ≥ 1, I1(N) = m and pdR N ≥ pdR M . In

particular, N ∈ resR M .

Proof. Let x1, . . . , xn be a minimal system of generators of m. According to Lemma 6.7.2, for

each i there exists an exact sequence 0→ ΩM →M(xi)→M → 0 such that xi ∈ I1(M(xi)) ⊆
m and pdR M(xi) ≥ pdR M . Putting N =

⊕n
i=1M(xi), we obtain an exact sequence 0 →

(ΩM)n → N →Mn → 0 with I1(N) =
∑n

i=1 I1(M(xi)) = m and pdR N ≥ pdR M . ■

Lemma 6.7.5. Let R be a local ring. Let M be an R-module that is locally free on the punctured

spectrum of R.

(1) For every X ∈ res
R̂
M̂ there exists Y ∈ resR M such that X is a direct summand of Ŷ .

(2) Let N be an R-module. If N̂ ∈ res
R̂
M̂ , then N ∈ resR M .

Proof. (1) Let C be the subcategory of mod R̂ consisting of direct summands of the completions

of modules in resR M . We claim that C is a resolving subcategory of mod R̂ containing M̂ .

Indeed, since R,M are in resR M , the completions R̂, M̂ are in C. For each E ∈ C, there exists

D ∈ resR M such that E is a direct summand of D̂. The module Ω
R̂
E is a direct summand

of Ω
R̂
D̂ = Ω̂RD. As ΩRD ∈ resR M , we have ΩRE ∈ C. Let 0 → A → B → C → 0 be an

exact sequence of R̂-modules with A,C ∈ C. Then A,C are direct summands of V̂ , Ŵ for some

V,W ∈ resR M , respectively. Writing A ⊕ A′ = V̂ and C ⊕ C ′ = Ŵ , we get an exact sequence

σ : 0 → V̂ → B′ → Ŵ → 0, where B′ = A′ ⊕ B ⊕ C ′. The exact sequence σ corresponds to

an element of Ext1
R̂
(Ŵ , V̂ ) = ̂Ext1R(W,V ). Since M is locally free on the punctured spectrum

of R, so are V and W . Hence Ext1R(W,V ) has finite length as an R-module, and is complete.

This implies that there exists an exact sequence τ : 0 → V → U → W → 0 of R-modules such

that τ̂ ∼= σ. Thereofore U is in resR M and B′ is isomorphic to Û . Thus B belongs to C, and
the claim follows. The claim shows that C contains res

R̂
M̂ . Hence X is in C, which shows the

assertion.

(2) By (1) there is an R-module Y ∈ resR M such that N̂ is a direct summand of Ŷ . Thanks

to [108, Corollary 1.15(i)], the module N is a direct summand of Y . Hence N belongs to

resR M . ■
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Now we can show the proposition below, which yields a significant property of Burch rings.

This is also used in the proofs of Theorem 6.7.7 and 6.7.10.

Proposition 6.7.6. Let R be a Burch local ring of depth t with residue field k. Let M be an

R-module of infinite projective dimension. Then Ωtk belongs to resR M .

Proof. We begin with proving the proposition when R is complete and t = 0. As M has infinite

projective dimension, Lemma 6.7.4 gives rise to an R-module N ∈ resR M with I1(N) = m.

Proposition 6.4.2 implies that k is a direct summand of Ω2
RN . As Ω2

RN is in resR M , so is k.

Now, let us consider the case where R is complete and t > 0. By definition, there is a maximal

regular sequence x of R such that R/(x) is a Burch ring of depth 0. Note that ΩtM ∈ resR M .

For all i > 0 we have TorRi (Ω
tM,R/(x)) = TorRi+t(M,R/(x)) = 0, which says that x is a regular

sequence on ΩtM . The R/(x)-module ΩtM/xΩtM has infinite projective dimension by [19,

Lemma 1.3.5]. The case t = 0 implies that k belongs to resR/(x)Ω
tM/xΩtM . It follows from

[140, Lemma 5.8] that Ωt
Rk ∈ resR ΩtM ⊆ resR M .

Finally, we consider the case where R is not complete. Lemma 6.7.3 gives an R-module

X ∈ resR M with pdR X = ∞ and NF(X) = {m}. As R̂ is Burch and pd
R̂
X̂ = pdR X = ∞,

the above argument yields Ωt
R̂
k ∈ res

R̂
X̂. Using Lemma 6.7.5, we see Ωtk ∈ resR X, and

Ωtk ∈ resR M . ■

Non-Gorenstein Burch rings admit only trivial totally reflexive modules. Recall that a local

ring R is called G-regular if every totally reflexive R-module is free.

Theorem 6.7.7. Let R be a non-Gorenstein Burch local ring. Then R is G-regular.

Proof. By taking the completion and using [138, Corollary 4.7], we may assume that R is

complete. Let G be the category of totally reflexiveR-modules. Then G is a resolving subcategory

of modR by [32, (1.1.10) and (1.1.11)]. If R is not G-regular, that is, there is a nonfree R-module

M in G, then Proposition 6.7.6 shows that G contains the R-module Ωdk, where d = dimR.

In other words, Ωdk is totally reflexive. This especially says that the R-module k has finite

G-dimension, and R is Gorenstein; see [32, (1.4.9)]. This contradiction shows that R is G-

regular. ■

Remark 6.7.8. The converse of Theorem 6.7.7 does not necessarily hold. In fact, the non-

trivial fibre product R = S ×k T of non-Burch local rings S, T is non-Burch. However, thanks

to [116, Lemma 4.4], the same argument of the proof of Theorem 6.7.7 works, and hence R is

G-regular.

As a corollary of Theorem 6.7.7, “embedded deformations” of Burch rings are never Burch.

Corollary 6.7.9. Let (R,m) be a singular local ring. Let x ∈ m2 be an R-regular element. Then

the local ring R/(x) is not Burch.

Proof. The proof of [138, Proposition 4.6] gives rise to an endomorphism δ : Rn → Rn such

that δ2 = x · idRn and Im δ ⊆ mRn. It is easy to see that δ is injective, and we have an

exact sequence 0 → Rn δ−→ Rn → C → 0 with xC = 0. This induces an exact sequence

· · · δ−→ (R/(x))n
δ−→ (R/(x))n

δ−→ (R/(x))n
δ−→ · · · of R/(x)-modules whose R/(x)-dual is exact as
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well. Since Im δ = C, the R/(x)-module C is totally reflexive. As Im δ ⊆ mRn, we see that C is

not R/(x)-free. Hence R/(x) is not G-regular.

Suppose that R/(x) is Burch. Then Theorem 6.7.7 implies that R/(x) is Gorenstein. By

Proposition 6.5.1, the ring R/(x) is a hypersurface. We have

1 ≥ codepthR/(x) = edimR/(x)− depthR/(x) = edimR− (dimR− 1) = codimR+ 1,

where the second equality follows from the assumption that x is not in m2. We get codimR = 0,

which means that R is regular, contrary to our assumption. ■

Let (R,m) be a local ring. We denote by Spec0R the punctured spectrum of R. For a

property P, we say that Spec0R satisfies P if Rp satisfies P for all p ∈ Spec0R. We denote

by CM(R) the subcategory of modR consisting of maximal Cohen–Macaulay modules. Also,

Db(R) stands for the bounded derived category of modR, and Dsg(R) the singularity category

of R, that is, the Verdier quotient of Db(R) by perfect complexes. Note that Db(R) and Dsg(R)

have the structure of a triangulated category. A thick subcategory of a triangulated category is

by definition a triangulated subcategory closed under direct summands. The following theorem

gives rise to classifications of several kinds of subcategories over Burch rings. For the unexplained

notations and terminologies appearing in the theorem, we refer to [116, §2].

Theorem 6.7.10. Let (R,m) be a singular Cohen–Macaulay Burch local ring.

(1) Suppose that Spec0R is either a hypersurface or has minimal multiplicity. Then there is a

commutative diagram of mutually inverse bijections:

{
Resolving subcategories of
modR contained in CM(R)

}
NF //

{
Specialization-closed
subsets of SingR

}
NF−1

CM

oo

IPD−1

��{
Thick subcategories of
CM(R) containing R

}
thickmodR //

thickDsg(R)

��

{
Thick subcategories of
modR containing R

}
restCM(R)

oo

IPD

OO

thick
Db(R)

��{
Thick subcategories of

Dsg(R)

}
π−1

//

restCM(R)

OO

{
Thick subcategories of
Db(R) containing R

}
π

oo

restmodR

OO

(2) Assume that R is excellent and admits a canonical module ω. Suppose that Spec0R has

finite CM-representation type. Then there is a commutative diagram of mutually inverse

bijections:
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
Resolving subcategories
of modR contained in

CM(R) and containing ω

 NF //


Specialization-closed
subsets of SingR
containing NGR

NF−1
CM

oo

IPD−1

��
Thick subcategories of
CM(R) containing

R and ω

thickmodR//

thickDsg(R)

��


Thick subcategories of
modR containing

R and ω

restCM(R)

oo

IPD

OO

thick
Db(R)

��{
Thick subcategories of
Dsg(R) containing ω

}
π−1

//

restCM(R)

OO


Thick subcategories of
Db(R) containing

R and ω

π
oo

restmodR

OO

Proof. The proof of [116, Theorem 4.5] uses [116, Lemma 4.4]. Replace this lemma with our

Proposition 6.7.6. Then the same argument works, and the theorem follows. ■

Example 6.7.11. We have the following list of examples of non-Gorenstein Cohen–Macaulay

local rings not having isolated singularities, where ◦ and × mean “Yes” and “No” respectively.

Spec0 R
[141, Example] R dimR Burch hypersurface min. mult. finite CM rep. type

7.1
k[[x, y, z]]

(x2, xz, yz)
1 ◦ ◦ ◦ ◦

7.2
k[[x, y, z]]

(x2, xy, y2)
1 ◦ × ◦ ×

7.3
k[[x, y, z]]

(xy, z2, zw,w3)
1 × × ◦ ×

7.4
k[[x, y, z]]

(x2 − yz, xy, y2)
1 ◦ ◦ × ◦

7.5
k[[x, y, z, w]]

(xy, xz, yz)
2 ◦ × ◦ ◦

The assertions are shown in [141, Examples 7.1–7.5], except those on the Burch property. As to

the first, second, fourth and fifth rings R are Burch since the quotient of a system of parameters

is isomorphic to k[x, y]/(x2, xy, y2), which is an artinian Burch ring by Example 6.6.16. As for

the third ring R, note that (x, y) is an exact pair of zerodivisors. Hence it is not G-regular, and

not Burch by Theorem 6.7.7.

Now we discuss the vanishing of Tor modules over Burch rings. The following result is a

simple consequence of Lemmas 6.2.10 and 6.7.4.

Proposition 6.7.12. Let (R,m, k) be a Burch ring of depth zero, and let M,N be R-modules.

If TorRl (M,N) = TorRl+1(M,N) = 0 for some l ≥ 3, then either M or N is a free R-module.

Proof. We may assume that R is complete. Assume that M is nonfree. Since depthR = 0, the

R-module M has infinite projective dimension. By Lemma 6.7.4, there is a short exact sequence

0 → (ΩM)n → X → Mn → 0, where X satisfies I1(X) = m. It induces an exact sequence
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0 → (Ω3M)n → Ω2X ⊕ F → (Ω2M)n → 0 with F free. We also have Torl−2(Ω
2M,N) =

Torl−2(Ω
3M,N) = 0, which implies that Torl−2(Ω

2X,N) = 0. Lemma 6.2.10 implies that k is

a direct summand of Ω2X, as R is Burch. We see that Torl−2(k,N) vanishes. This shows that

N has finite projective dimension, and so it is R-free. ■

We can prove the following by applying a similar argument as in the proof of [116, Corollary

6.5], where we use Proposition 6.7.12 instead of [116, Corollary 6.2].

Corollary 6.7.13. Let (R,m, k) be a Burch ring of depth t. Let M,N be R-modules. Assume

that there exists an integer l ≥ max{3, t+1} such that TorRi (M,N) = 0 for all l+t ≤ i ≤ l+2t+1.

Then either M or N has finite projective dimension.

Remark 6.7.14. Using an analogous argument as in the proof of [116, Corollary 6.6], one can

also prove a variant of Corollary 6.7.13 regarding Ext modules.

We state a remark on the ascent of Burchness along a flat local homomorphism.

Remark 6.7.15. Let (R,m)→ (S, n) be a flat local homomorphism of local rings. Even if the

rings R and S/mS are Burch, S is not necessarily Burch. In fact, consider the natural injection

ϕ : R = k[x, y]/(x2, xy, y2) ↪→ k[x, y, t]/(x2, xy, y2, t2) = S.

Then ϕ is a flat local homomorphism. The artinian local rings R and S/mS = k[t]/(t2) are

Burch by Examples 6.6.16 and 6.2.2(1). The ring S is not G-regular since (t, t) is an exact pair

of zerodivisors of S. Theorem 6.7.7 implies that S is not Burch.
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