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Abstract

Wildberger gave a method to construct a finite hermitian hyper-
group from a random walk on a certain kind of finite graphs. In this
thesis, we formulate his method and reveal that his method is appli-
cable to a random walk on a certain kind of infinite graphs. We also
make some observations of finite or infinite graphs on which a random
walk produces a hermitian discrete hypergroup. This thesis shows sev-
eral kinds of examples of graphs on which a random walk produces a
discrete hypergroup.
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1 Introduction

1.1 Hypergroups

A hypergroup is a locally compact space on which the space of finite reg-
ular Borel measures has a convolution structure preserving the probability
measures. It is said that the first appearance of a hypergroup was seen in
Frobenius’s work on group theory around 1900. Axiomatic investigations of
hypergroups were begun in 1970s by Dunkl [5], Jewett [7] and Spector [12].
Subsequently many authors developed harmonic analysis and representation
theory on hypergroups as well as those on locally compact groups.

Structures of hypergroups appear in spaces of double cosets, spaces of
conjugacy classes arising from certain classes of locally compact groups, dual
spaces of compact groups etc. In physics, interpreting elementary particles
as irreducible representations of groups, irreducible decompositions of their
tensor products correspond to convolutions in hypergroups. Thus hyper-
groups can be used to describe the phenomena in which another particle
appears in a certain probability when particles collide. On the other hand,
a hypergroup theoretic approach to the 2-dimensional Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
+ u = 0

is introduced in Jewett’s article [7].
To state the definition of hypergroups in a general form, we prepare a

certain topology and some notations. Let X be a locally compact Hausdorff
space.

• Let C (X) denote the space of nonempty compact subsets of X. For
subsets A, B of X, we let

CA(B) = {C ∈ C (X) ; C ∩A ̸= ∅, C ⊂ B} .

The topology on C (X) generated by the subbasis

{CU (V ) ; U and V are open subsets of X}

is called Michael topology.

• Let Cc(X) be the algebra of the continuous functions f : X → C with
compact support. A (complex) Radon measure on X is a continuous
linear functional µ : Cc(X) → C. The C-vector space consisting of the
Radon measures on X is denoted by M(X).

• We define the norm ∥·∥ on M(X) by

∥µ∥ = sup {|µ(f)| ; f ∈ Cc(X), ∥f∥∞ ≤ 1} ,
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where ∥f∥∞ = supx∈X |f(x)|. This norm introduces a distance and a
topology to M(X). Let

M b(X) = {µ ∈ M(X) ; ∥µ∥ < ∞} ,
M1(X) = {µ ∈ M(X) ; µ ≥ 0, ∥µ∥ = 1} .

We call an element in M1(X) a probability measure.

Definition 1.1. Let K be a nonempty locally compact Hausdorff space.
We call K a hypergroup if the following seven conditions are fulfilled.

(i) A binary operation

◦ : M b(K)×M b(K) ∋ (µ, ν) 7→ µ ◦ ν ∈ M b(K)

called a convolution is defined and (M b(K), ◦) forms an algebra. (Note
that a canonical vector space structure is introduced to M b(K).)

(ii) For x, y ∈ K, εx ◦ εy ∈ M1(K) and supp (εx ◦ εy) is compact, where
εx denotes the point measure supported at {x}.

(iii) The mapping

K ×K ∋ (x, y) 7→ εx ◦ εy ∈ M1(K)

is continuous.

(iv) The mapping

K ×K ∋ (x, y) 7→ supp (εx ◦ εy) ∈ C (K)

is continuous.

(v) There exists an element e ∈ K such that

εe ◦ εx = εx ◦ εe = εx

for all x ∈ K.

(vi) An involution map
∗ : K ∋ x 7→ x∗ ∈ K

is defined and satisfies the following conditions (via) and (vib):

(via) The involution map ∗ is a homeomorphism of K onto itself and
satisfies x∗∗ = x for each x ∈ K.

(vib) For x, y ∈ K,
(εx ◦ εy)∗ = εy∗ ◦ εx∗ ,

where µ∗ denotes the image of µ under the involution.

(vii) For x, y ∈ K, e ∈ supp (εx ◦ εy) if and only if y = x∗.
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1.2 Discrete hypergroups

Discrete hypergroups, including finite hypergroups, are the main objects in
this thesis. We can state the definition of discrete hypergroups without any
terms of measure theory and it will be stated in Section 2.1.

Recently, it was shown byWildberger [15] that finite commutative hyper-
groups have some connections with number theory, conformal field theory,
subfactor theory and other fields.

One of the problems on discrete hypergroups is determining the struc-
tures of them. Structures of finite hypergroups of order two and three are
completely determined. Indeed, those of order two are classically known,
and those of order three were investigated by Wildberger [16]. However, few
examples of finite hypergroups of order four or greater were known; It is
known that there exist non-commutative hypergroups of order four, and a
recent result by Matsuzawa, Ohno, Suzuki, Tsurii and Yamanaka [11] gives
some examples of non-commutative hypergroups of order five.

A significant problem to study the structures of hypergroups is the ex-
tension problem. The extension problem is to find hypergroups K which
make the sequence of hypergroup homomorphisms

1 → H → K → L → 1

exact when H and L are given. A significant role is played by the “signed
action” to solve the extension problem.

1.3 Motivation and main results

Wildberger [14], [15] gave a way to construct a finite commutative hyper-
group from a random walk on a certain kind of finite graphs. By his method,
we have some examples of hypergroups of large order, but they are all con-
tained in a category of “polynomial hypergroups.”

It is known that not all finite graphs produce hypergroups. Wildberger
mentioned that a random walk on any strong regular graph and on any
distance transitive graph produces a hypergroup and suggested that a ran-
dom walk on any distance-regular graphs produces a finite hypergroup. (We
do not discuss on distance transitive graphs in this thesis, but it is known
that distance transitive graphs are always distance-regular.) It is a natural
problem that on what kind of graphs a random walk produces a (finite) hy-
pergroup. First the authors verify that a random walk on a distance-regular
graph certainly produces a finite hypergroup.

Distance-regular graphs can be defined by using terms of association
schemes. Wildberger [15] gave a way to construct a finite hypergroup from
the Bose-Mesner algebra of an association scheme without using any graph
theoretical terms, so that we have two ways to construct hypergroups from a
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distance-regular graph. The authors also verify that these two ways produce
the same hypergroup, which is proved in Section 3.1.

The authors discovered that Wildberger’s method also works for some
infinite graphs, and a random walk on such a graph produces a countably
infinite but discrete hypergroup. This thesis is the first attempt to con-
struct infinite hypergroups from random walks on graphs. In Section 3.2
and Section 4.2, we give several examples of infinite regular graphs on which
a random walk produces a discrete hypergroup. The following theorem is
one of the main results and gives examples of infinite regular graphs on
which a random walk produces a discrete hypergroup.

Theorem 1.2. (a) For any k ∈ N with k ≥ 2, a random walk on the
infinite k-regular tree produces a discrete hypergroup.

(b) A random walk on the Cayley graph Cay
(
Z⊕ (Z/2Z), {(±1, 0), (0, 1)}

)
produces a discrete hypergroup. (The symbols 0 and 1 denote the
residue classes of 0 and 1 modulo 2, respectively.)

The definitions of the infinite k-regular tree and Cayley graphs will be
given in Section 3.2.

In addition, another infinite graph named “linked-triangle graph” is dis-
covered to be an example on which a random walk produces a discrete
hypergroup.

It is a graph theoretical problem to decide whether a random walk on
a given graph produces a discrete hypergroup. The purpose of this thesis
is to formulate Wildberger’s construction as a graph theoretical problem in
the above sense and to establish a fundamental theory on that problem.

1.4 Contents of the thesis

This thesis is based on the author’s article [6].
Contents of this thesis are as follows: Section 2 of this thesis is devoted

to definitions, notations and basic facts on discrete hypergroups, graphs
and association schemes. Definition 2.1 and Example 2.3 are added to the
contents of [6]. Contents of Section 2 are all classically known but some of
them are slightly modified to make them suitable for this thesis.

In Section 3, we recall Wildberger’s construction of a discrete hypergroup
from a random walk on a graph in an extended form including the case when
the graph is infinite. Section 3.1 gathers some fundamental propositions
to formulate our problems and provides a proof that a random walk on a
distance-regular graph always produces a discrete hypergroup. Section 3.2
furnishes two kinds of examples of finite distance-regular graphs (complete
graphs and platonic solids) and two kinds of examples of infinite ones (infi-
nite regular trees and the “linked-triangle graph”). The distance-regularity
of finite graphs is a classical concept, and it is already known that random
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walks on complete graphs and platonic solids produce discrete hypergroups.
However, the distance-regularity of infinite graphs has not been discussed
even in graph theory. The authors of [6] proved that the two kinds of infi-
nite graphs are certainly distance-regular and the claim (a) of Theorem 1.2,
and proofs of them will be given in that section. In particular, the “linked-
triangle graph,” constructed in that section, was an unexpected example on
which a random walk produce a discrete hypergroup. The author found an
error in the proof of Lemma 3.11 and [6] and revised it into Lemma 3.11 in
this thesis.

We will consider non-distance-regular graphs in Section 4. In Section
4.1, further observations than those in Section 3.1 will be made. One can
meet some examples of non-distance-regular graphs (prisms, complete bi-
partite graphs, the infinite ladder graph and some intriguing finite graphs)
in Section 4.2. These are new examples on which random walks produce
discrete hypergroups. We will mention the essence of a proof of Theorem
1.2 (b) in the same section.

Contents of Section 3 and 4 are quoted from the author’s article [6] and
revised.
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2 Preliminaries

Let N be the set of positive integers, N0 = N∪{0}, Z be the ring of rational
integers, R be the field of real numbers, R× be the multiplicative group of
non-zero real numbers, R+ be the set of non-negative real numbers and C
be the field of complex numbers, respectively.

As preliminaries to arguments in the following sections, we will give some
definitions, notations and fundamental propositions from hypergroup theory
and graph theory in this section.

First, we provide some notations used in the following arguments.

• For a set X, we let |X| denote the number of elements in X. For an
infinite set X, we just say |X| = ∞ and do not consider its cardinality.

• We are to use the convention that ∞ > n for any n ∈ N0.

• Let X be an arbitrary nonempty set and A be a commutative ring.
A map φ : X ×X → A is identified with an A-valued X ×X matrix
Aφ = (φ(x, y))x,y∈X . The set of A-valued X ×X matrices is denoted
by MatX (A).

The sum and the product of two matrices A = (Ax,y)x,y∈X , B =
(Bx,y)x,y∈X ∈ MatX (A) is defined in a usual way like

A+B = (Ax,y +Bx,y)x,y∈X .

On the other hand, note that the product of two matricesA = (Ax,y)x,y∈X ,
B = (Bx,y)x,y∈X ∈ MatX (A) can be defined in a usual way like

AB =

(∑
z∈X

Ax,zBz,y

)
x,y∈X

.

only if all of the entries of AB take finite values. In particular, when
A has finitely many non-zero entries in each rows and each columns,
we can define the n-th power An of A with n ∈ N0. (As usual, A0

is defined as the identity matrix E = (δx,y)x,y∈X , where δx,y is the
Kronecker delta.)

2.1 Discrete Hypergroups

We treat only “discrete hypergroups” in this thesis. In general, hypergroups
are equipped with some topologies and require several complicated condi-
tions. Such conditions for hypergroups with the discrete topologies can be
simplified. For a general definition, see Definition 1.1.

First, we give the definition of an involution map on a C-algebra.
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Definition 2.1. Let A be a C-algebra with the unit 1A and ∗ : A ∋ x 7→
x∗ ∈ A be a map. We say ∗ to be an involution map if the following four
conditions are all satisfied.

(i) For any x, y ∈ A, (x+ y)∗ = x∗ + y∗.

(ii) For any x, y ∈ A, (xy)∗ = y∗x∗.

(iii) For any x ∈ A and α ∈ C, (αx)∗ = αx∗.

(iv) For any x ∈ A, x∗∗ = x.

It is easily seen from uniqueness of the unit that 1∗A = 1A.
Let K be an arbitrary set and consider the free vector space

CK =
⊕
x∈K

Cx =

{
n∑

i=1

aixi ; n ∈ N, a1, · · · , an ∈ C, x1, · · · , xn ∈ K

}
,

generated by K. We note that the ℓ1-norm ∥·∥1 : CK → R+ such that

∥µ∥1 =
∑
x∈K

|µ(x)| (µ ∈ CK),

where µ(x) denotes the coefficient of x as µ is expressed by a linear com-
bination of elements of K, induces a normed space structure into CK. For
µ ∈ CK, we define the support of µ, denoted by supp (µ), as

supp (µ) = {x ∈ K ; µ(x) ̸= 0} .

Here is the definition of discrete hypergroups.

Definition 2.2. We call a nonempty set K a discrete hypergroup if the
following four conditions are fulfilled.

(i) A binary operation

◦ : CK × CK ∋ (µ, ν) 7→ µ ◦ ν ∈ CK,

called a convolution, and a map

∗ : CK ∋ µ 7→ µ∗ ∈ CK

are defined, and (CK, ◦, ∗) forms an associative ∗-algebra (i.e. C-
algebra equipped with an involution map) with the neutral element
e ∈ K.

(ii) The convolution x ◦ y of two elements x, y ∈ K satisfies the following
conditions (iia) and (iib):
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(iia) For all x, y, z ∈ K, (x ◦ y)(z) ∈ R+.

(iib) For all x, y ∈ K, ∥x ◦ y∥1 = 1.

(iii) The involution ∗ maps K onto K itself.

(iv) For x, y ∈ K, the neutral element e belongs to supp (x ◦ y) if and only
if y = x∗.

A discrete hypergroup K is said to be finite if K is a finite set, to be
commutative if (CK, ◦) is a commutative algebra and to be hermitian if the
restriction of the involution ∗|K is the identity map on K.

It can be easily verified that a hermitian discrete hypergroup must be
commutative.

The structure of a discrete hypergroup K can be determined by results
of the operations ◦ and ∗ for elements of K. In particular, under the as-
sumption that K is a hermitian discrete hypergroup, we can compute a
convolution of arbitrary two elements in CK if we know the results of com-
putations of x ◦ y for all x, y ∈ K since the convolution ◦ is bilinear. In
other words, if the convolution of two elements x, y ∈ K is expressed as

x ◦ y =
∑
z∈K

P z
x,yz (2.1)

with some P z
x,y ∈ R+, we can express the convolution of any two elements

of CK as a linear combination of elements of K by using the coefficients
P z
x,y. In this thesis, the identities such as (2.1), defining convolutions of two

elements of K, are called the structure identities of K.

Example 2.3. (i) A discrete group G can be regarded as a discrete hy-
pergroup. More precisely, defining a convolution on CG as the bilinear
extension of the multiplication G × G ∋ (g, h) 7→ gh ∈ G and the
involution on CG as the conjugate-linear extension of the inversion
G ∋ g 7→ g−1 ∈ G, one can check that G satisfies the conditions (i)-
(iv) in Definition 2.2. These operations are the same as those of the
group algebra C[G]. This is the reason why the concept of discrete
hypergroups is a generalization of the concept of discrete groups.

(ii) This example is quoted from Wildberger’s article [15].

Let G be a finite group with conjugacy classes C0 = {1G}, C1, · · · ,
Cn and consider formal sums Xi =

∑
g∈Ci

g ∈ CG for i = 0, 1, · · · , n.
There exist non-negative integers Nk

i,j for any i, j, k ∈ {0, 1, · · · , n}
such that

XiXj =

n∑
k=0

Nk
i,jXk.
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We let xi = |Ci|−1Xi and x∗i = |Ci|−1∑
g∈Ci

g−1 for i = 0, 1, · · · , n.
Then {x0, x1, · · · , xn} becomes a discrete hypergroup with the struc-
ture identities

xi ◦ xj := xixj =

n∑
k=0

Nk
i,j |Ck|

|Ci| |Cj |
xk.

This is called the class hypergroup of G.

(iii) This example is quoted from Lasser’s article [9].

Given sequences {an}n∈N0 ⊂ R×, {bn}n∈N0 ⊂ R and {cn}n∈N ⊂ R× of
real numbers satisfying

a0 + b0 = 1,

an + bn + cn = 1 (n ≥ 1),

consider a sequence {Rn}n∈N0 of one variable polynomials given by

R0(x) = 1,

R1(x) =
1

a0
(x− b0),

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x) (n ≥ 1).

Then we have

Rm(x)Rn(x) =

m+n∑
k=|m−n|

g(m,n; k)Rk(x)

for all m, n ∈ N0 where g(m,n; k)’s are suitable real numbers with∑m+n
k=|m−n| g(m,n; k) = 1. If all of g(m,n; k)’s are non-negative, {Rn}n∈N0

becomes a hermitian discrete hypergroup under the convolution Rm ◦
Rn := RmRn. This hypergroup is called a polynomial hypergroup on
N0.

2.2 Distance-regular Graphs

In our context, all graphs are supposed to be undirected and to have neither
any loops nor any multiple edges (i.e. to be simple graphs). We consider
only connected graphs, in which, for any two vertices v, w, there exists a
path from v to w, but we will handle both finite graphs and infinite graphs.

Let X = (V,E) be a graph with the vertex set V and the edge set E.
For two vertices v, w ∈ V , the distance d (v, w) between v and w is defined
as the length of the shortest paths from v to w. Note that the distance
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function d : V ×V → N0 allows V to be a metric space, that is, the function
d (·, ·) satisfies the following three properties:

d (v, w) = 0 ⇐⇒ v = w (v, w ∈ V ), (2.2)

d (v, w) = d (w, v) (v, w ∈ V ), (2.3)

d (v, w) ≤ d (v, u) + d (u,w) (u, v, w ∈ V ). (2.4)

It is clear that two vertices v and w are adjacent if and only if d (v, w) = 1.
A path in X is called a geodesic if its length equals to the distance between
the initial vertex and the terminal vertex. The eccentricity e(v) ∈ N0∪{∞}
of v ∈ V is defined as

e(v) = sup {d (v, w) ; w ∈ V } . (2.5)

If the set {d (v, w) ; w ∈ V } is unbounded above, then we define e(v) = ∞.
This happens only if X is infinite. The radius rad(X) ∈ N0 ∪ {∞} and the
diameter diam(X) ∈ N0 ∪ {∞} of X are defined as

rad(X) = inf {e(v) ; v ∈ V } ,
diam(X) = sup {e(v) ; v ∈ V } .

Clearly, that rad(X) = ∞ implies that diam(X) = ∞. A complete
graph, in which distinct vertices are mutually adjacent, is of diameter one,
and a non-complete graph is of diameter two or greater. We say X to be
self-centered if X is finite and every v ∈ V satisfies that e(v) = rad(X). For
each i ∈ N0 and v ∈ V , let Γi(v) denote the set

Γi(v) = {w ∈ V ; d (v, w) = i} .

It immediately follows that Γi(v) = ∅ if i > diam(X). The number of
elements in Γ1(v) is called the degree of v. The graph X is said to be k-
regular for some k ∈ N if every vertex v ∈ V is of degree k. We are going to
deal with graphs of which every vertex has a finite degree in this thesis.

An automorphism of a graph X = (V,E) is a bijection φ : V → V such
that, for any two vertices v, w ∈ V , φ(v) and φ(w) are adjacent in X if and
only if v and w are adjacent in X. A graph X is said to be vertex-transitive
if, for any two vertices v, w ∈ V , there exists an automorphism φ of X such
that φ(v) = w.

The “distance-regular graphs” play a key role in the following part. Here
we recall the definition of such graphs, and some examples will appear in
Section 3.2.

Definition 2.4. A (finite or infinite) connected graph X = (V,E) is said
to be distance-regular if the following three conditions are fulfilled.

(i) There exists b0 ∈ N such that |Γ1(v)| = b0 for any v ∈ V .
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(ii) For each integer i with 1 ≤ i < diam(X), there exist bi ∈ N and ci ∈ N
such that |Γi+1(v) ∩ Γ1(w)| = bi and |Γi−1(v) ∩ Γ1(w)| = ci for any v,
w ∈ V with d (v, w) = i.

(iii) If s = diam(X) < ∞, there exists cs ∈ N such that |Γs−1(v) ∩ Γ1(w)| =
cs for any v, w ∈ V with d (v, w) = s.

For a distance-regular graphX, the sequence (b0, b1, b2, · · · ; c1, c2, c3, · · · )
of integers is called the intersection array of X.

Note that a distance-regular graph is b0-regular.

2.3 Association Schemes

Distance-regular graphs are important in combinatorics: Its vertex set has
a structure of an “association scheme.” The concept of association schemes
is one of the most important concepts in algebraic combinatorics. They are
useful for the unification of graph theory, coding theory and the theory of
combinatorial designs.

Definition 2.5. Let Y be a set and R = {Ri}i∈I be a partition of Y × Y
(i.e. Ri’s are mutually disjoint subsets of Y × Y and Y × Y =

∪
i∈I Ri),

which consists of countably many non-empty sets. The pair (Y,R) is called
a (symmetric) association scheme if the following conditions are all satisfied.

(i) The diagonal set {(y, y) ; y ∈ Y } of Y × Y is an entry of R.

(ii) If (x, y) ∈ Ri, then (y, x) ∈ Ri.

(iii) For any i, j, k ∈ I, there exists pki,j ∈ N0 such that

|{z ∈ Y ; (x, z) ∈ Ri, (z, y) ∈ Rj}| = pki,j

for each pair (x, y) ∈ Rk.

The numbers pki,j in the condition (iii) are called the intersection numbers
of (Y,R).

Given a connected graph X = (V,E), we can find a canonical partition
of V × V ; Let

I =

{
{0, 1, · · · ,diam(X)} (diam(X) ∈ N),
N0 (diam(X) = ∞),

(2.6)

Ri = {(v, w) ∈ V × V ; d (v, w) = i} (i ∈ I) (2.7)

and R(X) = {Ri}i∈I . If every vertex of X has a finite degree, then Ri’s are
all non-empty sets and R(X) forms a partition of V × V (see Proposition
3.1). Furthermore, we find that, by (2.2),

R0 = {(v, v) ; v ∈ V }
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and that, by (2.3),
(v, w) ∈ Ri =⇒ (w, v) ∈ Ri

for any i ∈ I.
We prove that distance-regular graphs can be characterized by the con-

dition (iii) in Definition 2.5. This is a classical result in the finite graph case,
so that a proof of the following proposition for the case when X is a finite
graph is introduced in [1]. Even if X is infinite, the same method as that
on [1] works.

Proposition 2.6. LetX = (V,E) be a connected graph and s = diam(X) ∈
N0 ∪ {∞}. Then the following statements are equivalent.

(a) The graph X is distance-regular.

(b) The pair (V,R(X)) forms an association scheme.

Proof. First, suppose that X satisfies the condition (b). Then, for two
vertices v, w ∈ V , that d (v, w) = k is equivalent to that (v, w) ∈ Rk, and
we have

Γj(v) ∩ Γ1(w) = {u ∈ V ; (v, u) ∈ Rj , (u,w) ∈ R1} .

Hence we can find that X is a distance-regular graph with the intersection
array (p01,1, p

1
2,1, · · · , p

i−1
i,1 , · · · ; p10,1, p21,1, · · · , pii−1,1, · · · ) (the i-th entry of the

former array is pi−1
i,1 , and that of the latter array is pii−1,1).

Conversely, suppose that X is a distance-regular graph with the inter-
section array (b0, b1, b2, · · · ; c1, c2, c3, · · · ). Since the conditions (i) and (ii)
in Definition 2.5 hold, we now check that the condition (iii) holds.

Consider the family of matrices {A(i)}i∈I ⊂ MatV (Z) whose entries A(i)
v,w

are defined as

A(i)
v,w =

{
1 ((v, w) ∈ Ri),

0 ((v, w) /∈ Ri).
(2.8)

Then, we find that

A(i)A(1) = bi−1A
(i−1) + (b0 − bi − ci)A

(i) + ci+1A
(i+1) (2.9)

for any i ∈ I since(
A(i)A(1)

)
v,w

= |{u ∈ V ; (v, u) ∈ Ri, (u,w) ∈ R1}|

= |Γi(v) ∩ Γ1(w)|

=


bi−1 ((v, w) ∈ Ri−1),

b0 − bi − ci ((v, w) ∈ Ri),

ci+1 ((v, w) ∈ Ri+1),

0 (otherwise).
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Here, we use the convention that b−1 = bs = 0 and c0 = cs+1 = 0. The
equation (2.9) implies that (A(1))n can be written as a linear combination
of A(k)’s for any n ∈ N.

On the other hand, from (2.9), we can verify by induction on i that
each A(i) can be expressed as a polynomial of A(1) with rational number
coefficients. Therefore, it turns out that the product A(i)A(j) of two matrices
can be written as a linear combination of A(k)’s. Moreover, the coefficients in
the linear combination expressing A(i)A(j) must be all non-negative integers.

Let pki,j ∈ N0 denote the coefficient of A(k) in the linear combination

expressing A(i)A(j). (Note that A(k)’s are linearly independent over C.)
Then, for any (v, w) ∈ Rk, we obtain that

|{u ∈ V ; (v, u) ∈ Ri, (u,w) ∈ Rj}|

=
(
A(i)A(j)

)
v,w

=
∑
l∈I

pli,jA
(l)
v,w

=pki,j (2.10)

since

A(l)
v,w =

{
1 (l = k),

0 (l ̸= k).

The calculations (2.10) warrant that (V,R(X)) satisfies the condition (iii)
in Definition 2.5 and that (V,R(X)) forms an association scheme.

In general, it is difficult to express pki,j ’s in terms of entries bi’s and ci’s
of the intersection array.

Here are several useful formulas on intersection numbers pki,j of an asso-
ciation scheme. Those are known as classical results, and one can find the
same formulas on some textbooks, [4] etc. Nevertheless, the author could
not find any proofs of the following identities except for (e), which is writ-
ten in [4]. The proofs of the following identities consist of only elementary
calculus in combinatorics.

Proposition 2.7. Let (Y,R = {Ri}i∈I) be an association scheme and R0 ∈
R be the diagonal set of Y × Y . Then, for any i, j, k, m ∈ I, the following
identities hold.

(a) pk0,j = δj,k.

(b) p0i,j = δi,jp
0
j,j .

(c) pki,j = pkj,i.

(d)
∑

j∈I p
k
i,j = p0i,i.

15



(e)
∑

l∈I p
l
i,jp

m
l,k =

∑
l∈I p

l
j,kp

m
i,l.

(f) pki,jp
0
k,k = pji,kp

0
j,j .

Proof. For the identity (a), take (x, y) ∈ Rk. Then, we have

pk0,j = |{z ∈ Y ; (x, z) ∈ R0, (z, y) ∈ Rj}| .

The set of which we are counting elements is empty when j ̸= k and equals
to {x} when j = k, so that we obtain (a).

For the identity (b), take (x, x) ∈ R0. (The set R0 is the diagonal set of
Y × Y .) Then, we have

p0i,j = |{z ∈ Y ; (x, z) ∈ Ri, (z, x) ∈ Rj}| .

The desired identity is derived from the condition (ii) in Definition 2.5.
The identity (c) is also derived from the condition (ii) in Definition 2.5.
For the identity (d), take (x, y) ∈ Rk. Since R is a partition of Y × Y ,

we have ∑
j∈I

pki,j

=
∑
j∈I

|{z ∈ Y ; (x, z) ∈ Ri, (z, y) ∈ Rj}|

= |{z ∈ Y ; (x, z) ∈ Ri}|
=p0i,i.

To verify the identity (e), take (x, y) ∈ Rm and count elements in the
set

S = {(z, u) ∈ Y × Y ; (x, z) ∈ Ri, (z, u) ∈ Rj , (u, y) ∈ Rk} .

One can see that

pli,jp
m
l,k = |{(z, u) ∈ Y × Y ; (x, u) ∈ Rl, (u, y) ∈ Rk, (x, z) ∈ Ri, (z, u) ∈ Rj}| ,

and it follows that
∑

l∈I p
l
i,jp

m
l,k = |S|. On the other hand, one finds that

plj,kp
m
i,l = |{(z, u) ∈ Y × Y ; (x, z) ∈ Ri, (z, y) ∈ Rl, (z, u) ∈ Rj , (u, y) ∈ Rk}|

holds, and it follows that
∑

l∈I p
l
j,kp

m
i,l = |S|. Combining these results, we

obtain the desired identity.
We can substitute m = 0 into the identity (e) and use (b) and (c) to get

the identity (f).

Finally, we recall the definition of “strongly regular graphs,” a special
class of distance-regular graphs.
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Definition 2.8. A strongly regular graph is a distance-regular graph with
diameter two.

Strongly regular graphs are represented by four parameters (n, k, λ, µ),
where n = |V |, k = b0 = p01,1, λ = p11,1 and µ = c2 = p21,1. Hence the strongly
regular graph with parameters (n, k, λ, µ) is called “(n, k, λ, µ)-strongly reg-
ular graph.” (In this thesis, we regard complete graphs as not strongly
regular since the parameter µ is not well-defined for complete graphs.)
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3 Hermitian discrete hypergroups derived from distance-
regular graphs

3.1 Wildberger’s construction

Wildberger [15] gave a way to construct finite hermitian discrete hyper-
groups from a certain class of finite graphs. Coefficients appearing in the
structure identities of such a discrete hypergroup are given by certain prob-
abilities coming from a random walk on a corresponding graph. Actually,
his method is applicable to some infinite graphs, so that we formulate his
method in a general form. Here, we recall Wildberger’s construction of a
hermitian discrete hypergroup from a random walk on a graph.

Given a finite or infinite connected graph X = (V,E), all of whose
vertices have finite degree, and given a vertex v0 ∈ V as a “base point,”
we consider the canonical partition R(X) = {Ri}i∈I of V × V defined as
(2.6) - (2.7).

Now, we define a convolution ◦ = ◦v0 : CR(X)× CR(X) → CR(X) for
the base point v0. We let P k

i,j for i, j, k ∈ I denote the following probability:
Consider a ‘jump’ to a random vertex w ∈ Γj(v) after a ‘jump’ to a random
vertex v ∈ Γi(v0). Let P

k
i,j denote the probability that w belongs to Γk(v0).

These probabilities P k
i,j are explicitly given by

P k
i,j =

1

|Γi(v0)|
∑

v∈Γi(v0)

|Γj(v) ∩ Γk(v0)|
|Γj(v)|

. (3.1)

In general, the probabilities P k
i,j depend on the choice of the base point v0.

We note that the denominators |Γi(v0)| and |Γj(v)| can be zero so that
P k
i,j ’s are not necessarily well-defined, but we can determine when P k

i,j are
well-defined.

Proposition 3.1. LetX = (V,E) be a connected graph all of whose vertices
have finite degrees and the base point v0 ∈ V be arbitrarily given.

(a) When X is infinite, P k
i,j are all well-defined.

(b) Suppose that X is finite. Then, P k
i,j are all well-defined if and only if

X is a self-centered graph.

Proof. First, we suppose thatX is infinite. It suffices to show that Γj(v) ̸= ∅
for any v ∈ V and any j ∈ I.

If Γj(v) = ∅ for some v ∈ V and some j ∈ I, we would find that
Γj′(v) = ∅ for any j′ ∈ I such that j′ ≥ j. Indeed, a geodesic v = v0 →
v1 → · · · → vj′−1 → vj′ = w from v to w ∈ Γj′(v) should pass through a

vertex vj ∈ Γj(v) when j′ ≥ j. Then, we would have V =
∪j−1

l=0 Γl(v).
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On the other hand, by our assumption that all vertices of X have fi-
nite degrees, we could find that Γl(v) must be a finite set for every l ∈
{0, 1, · · · , j − 1}. We had that the vertex set V , a union of finitely many
finite sets, should be a finite set, but this is a contradiction to the assump-
tion that V is an infinite set, so that the claim (a) of the proposition has
been proved.

Next, we suppose that X is finite and P k
i,j are all well-defined. We will

show that e(v) = diam(X) for every v ∈ V .
If there would exist a vertex v ∈ V such that e(v) < diam(X), we had

Γdiam(X)(v) = ∅. Then, setting d (v0, v) = i and diam(X) = s, we would
find that

P k
i,s =

1

|Γi(v0)|
∑

w∈Γi(v0)

|Γs(w) ∩ Γk(v0)|
|Γs(w)|

cannot be well-defined since v ∈ Γi(v0) and |Γs(v)| = 0. Accordingly, we
find that e(v) = diam(X) for every v ∈ V . This means that all of e(v)
coincide one another and we obtain that e(v) = rad(X) for every v ∈ V .

Conversely, suppose that X is finite and self-centered. A similar argu-
ment to the above one yields that e(v) = diam(X) for every v ∈ V . Then,
we have that Γj(v) ̸= ∅ for every v ∈ V and j ∈ I. Indeed, a geodesic
starting from v ∈ V of the length equal to diam(X) passes through a vertex
belonging to Γj(v) for each j ∈ I. This implies that the denominators of
fractions in (3.1) never vanish.

When P k
i,j are all well-defined, we define a bilinear convolution ◦ = ◦v0

on CR(X) by the following identities:

Ri ◦v0 Rj =
∑
k∈I

P k
i,jRk (i, j ∈ I).

Equipped with a convolution, CR(X) becomes a unital C-algebra which is
not necessarily associative or commutative. (The existence of the neutral
element will be shown below.) In addition, we define a conjugate-linear
map ∗ : CR(X) → CR(X) by ∗|R(X) = idR(X), which is expected to be an
involution on CR(X). This map ∗ becomes an involution on CR(X) if and
only if CR(X) is associative and commutative.

It can be easily verified that

P k
i,0 = δi,k =

{
1 (k = i),

0 (k ̸= i),
P k
0,j = δj,k =

{
1 (k = j),

0 (k ̸= j),

so that R0 ∈ R(X) should be the neutral element with respect to the con-
volution ◦v0 on CR(X). One can also verify the following statements.

Proposition 3.2. LetX = (V,E) be a connected graph all of whose vertices
have finite degrees and the base point v0 ∈ V be arbitrarily given. Suppose
that P k

i,j are well-defined for all i, j, k ∈ I.

19



(a) For any i, j ∈ I, we have that Ri◦v0Rj ∈ CR(X) satisfies the following
statements:

(Ri ◦v0 Rj)(Rk) ∈ R+ for all k ∈ I, (3.2)

∥Ri ◦v0 Rj∥1 = 1, (3.3)

supp (Ri ◦v0 Rj) ⊂
{
R|i−j|, R|i−j|+1, · · · , Ri+j

}
. (3.4)

(b) For i, j ∈ I, the neutral element R0 belongs to supp (Ri ◦v0 Rj) if and
only if i = j.

Proof. The first assertion (3.2) immediately follows from (3.1), the definition
of P k

i,j .

Next, we show the third assertion. When P k
i,j > 0, we can find a vertex

v ∈ Γi(v0) such that Γj(v) ∩ Γk(v0) ̸= ∅. Then, any w ∈ Γj(v) ∩ Γk(v0)
should satisfy that

|i− j| = |d (v0, v)− d (w, v)|
≤ k = d (v0, w)

≤ d (v0, v) + d (v, w) = i+ j.

This means that supp (Ri ◦v0 Rj) ⊂ {R|i−j|, R|i−j|+1, · · · , Ri+j}.
Since {Γj(v)∩Γk(v0) ; k ∈ I} forms a partition of Γj(v), we can compute

∥Ri ◦v0 Rj∥1 to be

∥Ri ◦v0 Rj∥1 =
i+j∑

k=|i−j|

P k
i,j

=

i+j∑
k=|i−j|

1

|Γi(v0)|
∑

v∈Γi(v0)

|Γj(v) ∩ Γk(v0)|
|Γj(v)|

=
∑

v∈Γi(v0)

1

|Γi(v0)| · |Γj(v)|

i+j∑
k=|i−j|

|Γj(v) ∩ Γk(v0)|

= 1.

We have shown the claim (a) in the above arguments.
Now, we prove the claim (b). If i = j, the base point v0 belongs to

Γi(v) ∩ Γ0(v0) for every v ∈ Γi(v0), so we have that P 0
i,i > 0. Next, we

suppose that R0 ∈ supp (Ri ◦v0 Rj). Then, P 0
i,j > 0 holds, and this yields

that there exists a vertex v ∈ Γi(v0) such that Γj(v) ∩ Γ0(v0) ̸= ∅. This
causes v0 to lie in Γj(v). Therefore, we have that i = d (v, v0) = j.

Appealing to Proposition 3.2, one finds that R(X) becomes a hermitian
discrete hypergroup if and only if the convolution ◦v0 is associative and

20



commutative. The convolution ◦v0 is not always associative or commutative,
and it is a problem when ◦v0 is both associative and commutative.

An answer to this problem was given by Wildberger [15]; If X is a
strongly regular graph, thenR(X) becomes a hermitian discrete hypergroup.
Let X = (V,E) be an (n, k, λ, µ)-strongly regular graph. Then the structure
identities of R(X) = {R0, R1, R2} are given by

R1 ◦R1 =
1

k
R0 +

λ

k
R1 +

k − λ− 1

k
R2, (3.5)

R1 ◦R2 = R2 ◦R1 =
µ

k
R1 +

k − µ

k
R2, (3.6)

R2 ◦R2 =
1

n− k − 1
R0 +

k − µ

n− k − 1
R1 +

n+ µ− 2k − 2

n− k − 1
R2, (3.7)

which are independent of a choice of the base point v0. (Since R0 is the
neutral element of CR(X), we omit the identities for R0.) The commuta-
tivity immediately follows from (3.5) – (3.7), and the associativity can be
revealed by direct calculations. (Using Proposition 4.4 curtails necessary
calculations.)

Similarly, if X is distance-regular, we find that R(X) becomes a hermi-
tian discrete hypergroup, whose structure is independent of v0. Since

|Γj(v) ∩ Γk(v0)| = |{w ∈ V ; d (v, w) = j, d (v, v0) = k}|
= |{w ∈ V ; (v, w) ∈ Rj , (w, v0) ∈ Rk}|
= pij,k

when d (v, v0) = i, we can compute P k
i,j to be

P k
i,j =

1

|Γi(v0)|
∑

v∈Γi(v0)

|Γj(v) ∩ Γk(v0)|
|Γj(v)|

=
pij,k
p0j,j

. (3.8)

(Pay attention to the subscripts in the numerator of the last member.) These
constants are determined independently of a choice of v0. Now, we show
that the convolution ◦ is commutative and associative. The commutativity
is deduced from the identities (c) and (f) in Proposition 2.7; Since

pij,kp
0
i,i = pkj,ip

0
k,k = pki,jp

0
k,k = pji,kp

0
j,j ,

we obtain that

P k
i,j =

pij,k
p0j,j

=
pji,k
p0i,i

= P k
j,i.

This implies that Ri ◦ Rj = Rj ◦ Ri. For the associativity (Rh ◦ Ri) ◦ Rj =
Rh ◦ (Ri ◦ Rj), we use the identities (c), (e) and (f) in Proposition 2.7. By
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direct calculations, we find that

(Rh ◦Ri) ◦Rj =
∑
k∈I

(∑
l∈I

P l
h,iP

k
l,j

)
Rk,

Rh ◦ (Ri ◦Rj) =
∑
k∈I

(∑
l∈I

P l
i,jP

k
h,l

)
Rk,

so it suffices to show that
∑

l∈I P
l
h,iP

k
l,j =

∑
l∈I P

l
i,jP

k
h,l hold for all k ∈ I.

In fact, for any k ∈ I, computations proceed as follows:∑
l∈I

P l
h,iP

k
l,j =

1

p0i,ip
0
j,j

∑
l∈I

plj,kp
h
i,l

=
1

p0i,ip
0
j,j

∑
l∈I

pli,jp
h
l,k

=
1

p0i,ip
0
j,j

∑
l∈I

plj,ip
h
l,k

=
1

p0i,ip
0
j,j

∑
l∈I

pij,lp
0
i,i

p0l,l
· phl,k

=
∑
l∈I

pij,l
p0j,j

·
phl,k
p0l,l

=
∑
l∈I

P l
i,jP

k
h,l.

The above arguments provides the following theorem.

Theorem 3.3. Let X = (V,E) be a distance-regular graph and v0 ∈ V
the base point. Then, R(X) becomes a hermitian discrete hypergroup.
Moreover, the hypergroup structure of R(X) is independent of v0.

There is another way to construct a hermitian discrete hypergroup from a
distance-regular graph, which was also introduced by Wildberger [15]. This
method is based on the “Bose–Mesner algebra,” which is associated to an
association scheme. Let (Y,R) be an association scheme, whereR = {Ri}i∈I
with an index set I. We define matrices A(i) = (A

(i)
x,y)x,y∈Y ∈ MatY (Z) for

each i ∈ I as

A(i)
x,y =

{
1 ((x, y) ∈ Ri),

0 ((x, y) /∈ Ri),

like (2.8). Then, a product A(i)A(j) of two matrices can be written in a
linear combination of A(k)’s as

A(i)A(j) =
∑
k∈I

pki,jA
(k),
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where pki,j = 0 except for finitely many k ∈ I. Moreover, it can be verified

that, for any i, j ∈ I, A(i)A(j) = A(j)A(i) from the identity (c) in Proposi-
tion 2.7. Hence we have that the C-vector space

⊕
k∈I CA(k) turns into an

associative and commutative C-algebra with respect to the ordinary addi-
tion and multiplication of matrices. This C-algebra is called Bose–Mesner
algebra. Setting C(i) = (p0i,i)

−1A(i) for each i ∈ I, we have

C(i)C(j) =
∑
k∈I

pki,jp
0
k,k

p0i,ip
0
j,j

C(k)

=
∑
k∈I

pij,k
p0j,j

C(k) (3.9)

from (c) and (f) in Proposition 2.7. When (Y,R) = (V,R(X)) for some
distance-regular graph X = (V,E), comparing (3.8) and (3.9) yields that
{C(i)}i∈I has the same structure of a hermitian discrete hypergroup as that
of R(X).

3.2 Examples of distance-regular graphs

Let us now see examples of distance-regular graphs. It seems that graph
theorists usually consider only finite ones so that there are known many
examples of finite distance-regular graphs. Some elementary examples and
infinite ones will be introduced in this section. For more examples, see e.g.
[4].

(i) Complete graphs

One of the simplest examples of distance-regular graphs are complete
graphs. For n ∈ N with n ≥ 2, let Kn denote the complete graph with n
vertices. Then, diam(Kn) = 1 and the intersection array of Kn is (n− 1; 1).
The canonical partition of V (Kn)×V (Kn), where V (Kn) denotes the vertex
set of Kn, consists of two sets, the diagonal set R0 and its complement R1.
The intersection numbers pki,j of (V (Kn),R(Kn)) are given by

p00,0 = 1, p10,0 = 0,

p00,1 = p01,0 = 0, p10,1 = p11,0 = 1,

p01,1 = n− 1, p11,1 = n− 2,

so that we can compute the coefficients P k
i,j = pij,k/p

0
j,j to be

P 0
0,0 = 1, P 1

0,0 = 0,

P 0
0,1 = P 0

1,0 = 0, P 1
0,1 = P 1

1,0 = 1,

P 0
1,1 =

1

n− 1
, P 1

1,1 =
n− 2

n− 1
.
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Figure 1: Infinite 2-regular tree

Figure 2: Infinite 3-regular tree

By these computations, the structure identity of R(Kn) turns out that

R1 ◦R1 =
1

n− 1
R0 +

n− 2

n− 1
R1.

This hypergroup R(Kn) is isomorphic to a special case of Zq(2), which
is called the “q-deformation of Z/2Z.” For details of q-deformation hyper-
groups, see [8], [13] for example.

(ii) Platonic solids

Consider the platonic solid with n faces (of course we only consider the
cases when n = 4, 6, 8, 12, 20). Let Vn be the set of its vertices and En the
set of its edges. The graph Sn = (Vn, En) is known to be distance-regular.
As for the structure identities of R(Sn), we refer to Wildberger’s article [14].

(iii) Infinite regular trees

For each n ∈ N with n ≥ 2, there exists a unique, but except for iso-
morphic ones, infinite n-regular connected graph without any cycles. (A
cycle means a path from a vertex to itself which does not pass through the
same vertex twice except for the initial and the terminal vertex.) We call
such a graph the infinite n-regular tree. (The term “tree” means a graph
without any cycles.) For example, the infinite 2-regular tree, 3-regular tree
and 4-regular tree are partially drawn as in Figures 1, 2 and 3, respectively.
Let Tn = (Vn, En) denote the infinite n-regular tree and take an arbitrary
vertex v0 ∈ Vn as the base point.
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Figure 3: Infinite 4-regular tree

We remark that Tn can be realized as a “Cayley graph” when n is even.
Some Cayley graphs appear here and in the following sections, so we recall
the definition.

Definition 3.4. Let G be a group and Ω be a subset of G \ {1G} satisfying

g ∈ Ω ⇒ g−1 ∈ Ω. (3.10)

We define a graph X = (V,E) as follows:

• V = G.

• E =
{
{g, h} ; g, h ∈ G, g−1h ∈ Ω

}
.

This graph X is called the Cayley graph and denoted by Cay (G,Ω).

A Cayley graph Cay (G,Ω) must be |Ω|-regular and vertex-transitive. It
becomes connected if and only if Ω generates G.

For m ∈ N, we let Fm be the free group generated by m symbols
g1, g2, · · · , gm and Ωm = {g±1

1 , g±1
2 , · · · , g±1

m } ⊂ Fm. The Cayley graph
Cay (Fm,Ωm) is classically known to be isomorphic to the infinite 2m-regular
tree T2m.

Now, we show that Tn is a distance-regular graph to prove the claim (a) of
Theorem 1.2. It will be proved in Proposition 3.6. Lemma 3.5, Proposition
3.6, 3.7 and Corollary 3.8 are new results obtained in [6]. The following
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lemma gives some significant properties of the infinite regular trees and is
useful before we prove that Tn is a distance-regular graph.

Lemma 3.5. Let X = (V,E) be an infinite connected graph all of whose
vertices have finite degrees.

(a) For every v ∈ V , we have e(v) = ∞.

(b) Suppose that X has no cycles. Then, for any v, w ∈ V , there exists a
unique geodesic from v to w.

Proof. The claim (a) follows from the proof of Proposition 3.1.
We now give a proof of the claim (b). This is clear when v = w, so

that we may assume that d (v, w) > 0. Suppose that there would exist two
distinct geodesics

v = v0 → v1 → · · · → vi−1 → vi = w,

v = w0 → w1 → · · · → wi−1 → wi = w

from v to w, where i = d (v, w). (There exist at least one geodesics from v to
w sinceX is connected.) Then, we could find at least one j ∈ {1, 2, · · · , i−1}
such that vj ̸= wj . Letting k∗ = max {k ∈ {0, 1, · · · , j − 1} ; vk = wk} and
k∗∗ = min {k ∈ {j + 1, j + 2, · · · , i} ; vk = wk} for this j, we would obtain
a cycle

vk∗ → vk∗+1 → · · · → vk∗∗−1 → vk∗∗ = wk∗∗

→ wk∗∗−1 → · · · → wk∗+1 → wk∗ = vk∗ ,

which contradicts the assumption that X has no cycles.

By using this lemma, we can prove that Tn is distance-regular.

Proposition 3.6. Let n ∈ N with n ≥ 2. Then the infinite n-regular tree
Tn is a distance-regular graph with the intersection array (n, n−1, n−1, n−
1, · · · ; 1, 1, 1, 1, · · · ) (i.e. b0 = n, b1 = b2 = b3 = · · · = n− 1, c1 = c2 = c3 =
· · · = 1).

Proof. We calculate the entries bi’s and ci’s of the intersection array of Tn.
Since Tn is n-regular, we have b0 = n.

Now we take arbitrary two vertices v, w ∈ Vn of distance i ≥ 1. We are
going to show that |Γi+1(v) ∩ Γ1(w)| = n− 1 and |Γi−1(v) ∩ Γ1(w)| = 1.

By Lemma 3.5 (b), there exists a unique geodesic v = v0 → v1 →
· · · → vi−1 → vi = w from v to w. Since vi−1 ∈ Γi−1(v) ∩ Γ1(w), we have
|Γi−1(v) ∩ Γ1(w)| ≥ 1. If Γi−1(v)∩Γ1(w) would possess another vertex wi−1,
there would exist the second geodesic v = w0 → w1 → · · · → wi−1 → wi = w
from v to w. This contradicts the uniqueness of the geodesic from v to w,
so we find that |Γi−1(v) ∩ Γ1(w)| = 1.
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Next, we check that Γi(v) ∩ Γ1(w) = ∅. If there would exist a vertex
u ∈ Γi(v) ∩ Γ1(w), we would find a geodesic v = u0 → u1 → · · · → ui−1 →
ui = u from v to u and a geodesic v = v0 → v1 → · · · → vi−1 → vi = w
from v to w. Letting k∗ = max{k ∈ {0, 1, · · · , i − 1} ; uk = vk}, we would
obtain a cycle

uk∗ → uk∗+1 → · · · → ui−1 → ui = u

→ w = vi → vi−1 → · · · → vk∗+1 → vk∗ = uk∗ ,

which contradicts that Tn has no cycles. Therefore, it turns out that Γi(v)∩
Γ1(w) = ∅.

We find that Γ1(w) is partitioned into mutually disjoint three subsets,
that is,

Γ1(w) = (Γi−1(v) ∩ Γ1(w)) ⊔ (Γi(v) ∩ Γ1(w)) ⊔ (Γi+1(v) ∩ Γ1(w)) .

Hence we have

|Γi+1(v) ∩ Γ1(w)| = |Γ1(w)| − |Γi−1(v) ∩ Γ1(w)| − |Γi(v) ∩ Γ1(w)|
= n− 1.

These computations work for any v and w with d (v, w) = i, so that we
obtain that bi = n− 1 and ci = 1.

To obtain the structure identities of R(Tn), we have to compute the
intersection numbers pki,j .

Proposition 3.7. Let n ∈ N with n ≥ 2 and pki,j be the intersection numbers
of the association scheme (Vn,R(Tn)).

(a) For any i ∈ N, we have p0i,i = n(n− 1)i−1.

(b) For any i, j, k ∈ N, we can get the following:

pki,j =


(n− 1)i (j = i+ k),

(n− 2)(n− 1)i−h−1 (j = i+ k − 2h, 0 < h < min{i, k}),
(n− 1)i−min{i,k} (j = |i− k|),
0 (otherwise).

(3.11)

Proof. Take an arbitrary vertex v0 ∈ Vn as a base point. First, we compute
p0i,i.

We have p01,1 = |Γ1(v0)| = deg(v0) = n, so the desired counting is ob-

tained when i = 1. Now, we show that p0i,i = n(n − 1)i−1 by induction

on i ∈ N. We assume that p0i−1,i−1 = n(n − 1)i−2 for some i ≥ 2. Take
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w ∈ Γi−1(v0) arbitrarily. Then, by Proposition 3.6, just one vertex belongs
to Γi−2(v0) among n vertices adjacent to w, and the other n − 1 vertices
belong to Γi(v0). Thus we get |Γi(v0) ∩ Γ1(w)| = n− 1. If we take another
vertex w′ ∈ Γi−1(v0), it turns out that Γi(v0) ∩ Γ1(w) and Γi(v0) ∩ Γ1(w

′)
must be disjoint. Hence we obtain

p0i,i = |Γi(v0)| =

∣∣∣∣∣∣Γi(v0) ∩
∪

w∈Γi−1(v0)

Γ1(w)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∪

w∈Γi−1(v0)

(Γi(v0) ∩ Γ1(w))

∣∣∣∣∣∣
=

∑
w∈Γi−1(v0)

|Γi(v0) ∩ Γ1(w)|

= |Γi(v0) ∩ Γ1(w)| · p0i−1,i−1

=n(n− 1)i−1

from the induction hypothesis.
Secondly, we show (3.11). We now determine the cases when pki,j =

|Γi(v) ∩ Γj(v0)| = 0 for v ∈ Γk(v0). We note that there exists a one-to-one
correspondence between Vn and the set of all geodesics on Tn starting at
v0, which is derived from Lemma 3.5 (b). Suppose that w ∈ Γi(v) ∩ Γj(v0).
Then, we can take the unique geodesic

v = u0 → u1 → · · · → uk−1 → uk = v0

from v to v0 and also the unique geodesic

v = w0 → w1 → · · · → wi−1 → wi = w

from v to w.
If u0 = w0, u1 = w1, · · · , uh = wh and uh+1 ̸= wh+1 hold for some

0 ≤ h < min{i, k}, then the path

v0 = uk → uk−1 → · · · → uh+1 → uh = wh

→ wh+1 → · · · → wi−1 → wi = w

must be the geodesic from v0 to w. In these cases, we have j = d (v0, w) =
i+ k − 2h. (Remark that we always have u0 = w0 = v.)

Similarly, if u0 = w0, u1 = w1, · · · , umin{i,k} = wmin{i,k}, then the path

v0 = uk → uk−1 → · · · → umin{i,k}+1 → umin{i,k} = wmin{i,k}

→ wmin{i,k}+1 → · · · → wi−1 → wi = w
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must be the geodesic from v0 to w, and we get j = d (v0, w) = i + k −
2min{i, k} = |i− k|. Therefore, we find that w ∈ Γi(v) ∩ Γj(v0) for v ∈
Γk(v0) only if j = i+ k − 2h for some h ∈ N0 such that 0 ≤ h ≤ min{i, k}.
In other words, when v ∈ Γk(v0), we obtain that pki,j = |Γi(v) ∩ Γj(v0)| = 0
unless j = i+ k − 2h for some h ∈ N0 such that 0 ≤ h ≤ min{i, k}.

Next, we calculate |Γi(v) ∩ Γi+k−2h(v0)| for h = 0, 1, · · · , min{i, k}. Let
the path

v = u0 → u1 → · · · → uk−1 → uk = v0

be the unique geodesic from v to v0. Then, by the above argument, we find
that |Γi(v) ∩ Γi+k−2h(v0)| is equal to the number of geodesics

v = w0 → w1 → · · · → wi−1 → wi = w (3.12)

with (u0 = w0,) u1 = w1, · · · , uh = wh and uh+1 ̸= wh+1 when h <
min{i, k}.

When 0 < h < min{i, k}, each of such geodesics satisfies neither wh+1 =
uh+1 nor wh+1 = wh−1. (It requires the latter condition that the path (3.12)
is a geodesic. Since d (v, uh+1) = h + 1 ̸= h − 1 = d (v, wh−1), we remark
that uh+1 ̸= wh−1.) Thus the number of possible vertices as wh+1 is equal to
n− 2. Furthermore, each of wh+2, · · · , wi(= w) can be chosen from exactly
n − 1 candidates. (The candidates of wh+2, · · · , wi exclude a vertex which
coincides with wh, · · · , wi−2, respectively.) These observations yield that

|Γi(v) ∩ Γi+k−2h(v0)|

=
∣∣∣{(wh+1, · · · , wi) ∈ V i−h

n ; wh+1 ̸= uh+1, wh+1 ̸= wh−1, wh+2 ̸= wh, · · · , wi ̸= wi−2

}∣∣∣
=(n− 2)(n− 1)i−h−1

for 0 < h < min{i, k}.
When h = 0, the number of candidates of w1 changes into n − 1 since

we can arbitrarily take w1 ∈ Γ1(w0) except for u1. Thus we obtain that

|Γi(v) ∩ Γi+k(v0)|
=
∣∣{(w1, · · · , wi) ∈ V i

n ; w1 ̸= u1, w2 ̸= w0, · · · , wi ̸= wi−2

}∣∣
=(n− 1)i.

When i ≤ k and h = min{i, k} = i, all of w1, w2, · · · , wi are uniquely
determined, and we have that∣∣Γi(v) ∩ Γ|i−k|(v0)

∣∣ = 1 = (n− 1)i−min{i,k}.

When i > k and h = min{i, k} = k, the first k vertices w1, w2, · · · , wk are
uniquely determined and each of wk+1, · · · , wi can be chosen from exactly
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Figure 4: Construction of X1

Figure 5: Construction of X2

n − 1 candidates. (The candidates of wk+1, · · · , wi exclude a vertex which
coincides with wk−1, · · · , wi−2, respectively.) Thus we obtain that∣∣Γi(v) ∩ Γ|i−k|(v0)

∣∣
=
∣∣∣{(wk+1, · · · , wi) ∈ V i−k

n ; wk+1 ̸= wk−1, wk+2 ̸= wk, · · · , wi ̸= wi−2

}∣∣∣
=(n− 1)i−k

=(n− 1)i−min{i,k}.

The coefficients P k
i,j of the structure identities of R(Tn) can be easily

computed from Proposition 3.6, so that we obtain the following.

Corollary 3.8. Let n ∈ N with n ≥ 2, i, j ∈ N and k ∈ N0. Then, the
coefficients P k

i,j of structure identities of R(Tn) are given by

P k
i,j =


(n− 1)/n (k = i+ j),

(n− 2)/n(n− 1)k (k = i+ j − 2h, 0 < h < min {i, j}),
1/n(n− 1)min{i,j}−1 (k = |i− j|),
0 (otherwise).

(iv) Linked triangles

Here, we see an example of infinite distance-regular graphs with cycles;
Such an example can be constructed by linking triangular graphs inductively.

As the beginning step, we let X0 = K3 = (V0, E0). We make three
copies of K3 “linked” to X0 to share distinct vertices. Then, we have a
graph with nine vertices and nine edges. (See Figure 4.) Let it be denoted
by X1. Next, we make copies of K3 linked to each vertex of X1 = (V1, E1)
that is not yet linked with another triangle. We need six copies of K3 in
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this step to obtain the graph X2 = (V2, E2) with twenty-one vertices and
thirty edges. (See Figure 5.) Repeating this process, we have an ascending
sequence {Xn = (Vn, En)}n∈N0 of finite graphs. We let an infinite graph
X∞ = (V∞, E∞) be defined by the union of all of Xn: It consists of the
vertex set V∞ =

∪
n∈N0

Vn and the edge set E∞ =
∪

n∈N0
En. In this thesis,

we call the graph X∞ the “linked-triangle graph.”
We shall show that X∞ is a distance-regular graph. Preparatory to the

proof, we label each element of V∞ with a three-letter word. Consider the
set W of non-empty words of finite length composed of the three letters a,
b and c, in which every two consequent letters differ. We regard W as a
vertex set, and two words v = l1l2 · · · lm, w = l′1l

′
2 · · · l′n ∈ W , where l1, l2,

· · · , lm, l′1, l
′
2, · · · , l′n ∈ {a, b, c}, are said to be adjacent if and only if one of

the following is satisfied:

• It holds that |m− n| = 1 and that l1 = l′1, l2 = l′2, · · · , lmin{m,n} =
l′min{m,n}.

• It holds that m = n and that l1 = l′1, l2 = l′2, · · · , lm−1 = l′m−1,
lm ̸= l′m.

Then, we have an infinite graph isomorphic to X∞, so that we regard every
vertex of X∞ as labeled by an element of W . We identify the vertex set V∞
and the word set W in the following arguments. In what follows, we use the
notation ℓ(v) for the length of the word v ∈ W = V∞.

To show that X∞ is distance-regular, we have to grasp the basic prop-
erties of X∞ in the following lemma. This lemma is a new result obtained
in [6].

Lemma 3.9. (a) The linked-triangle graphX∞ admits no cycles of length
four or greater.

(b) The linked-triangle graph X∞ is connected, and the geodesic from v
to w in X∞ is unique for any v, w ∈ V∞.

Proof. To prove the claim (a), we suppose that X∞ would contain a cycle

v0 → v1 → v2 → · · · → vL−1 → v0

of length L ≥ 4 with v0 = l1l2 · · · ln, where n ∈ N and l1, l2, · · · , ln ∈ {a, b, c}.
Changing the initial vertex if necessary, we may assume that ℓ(v0) ≥ ℓ(vi)
for i = 1, 2, · · · , L− 1. If n = 1, then all of vi’s are distinct and belong to
{a, b, c}, but this is impossible. If n ≥ 2, then, since both v1 and vL−1 are
adjacent to v0, we find that one of them should be l1l2 · · · ln−1 and that the
other l1l2 · · · ln−1l

′
n for l′n ̸= ln, ln−1. Changing the direction of the cycle if

necessary, we may assume that v1 = l1l2 · · · ln−1 and vL−1 = l1l2 · · · ln−1l
′
n.

Since vL−1 is adjacent to v0, v1 and vL−2, and vL−2 ̸= v0, v1, we would
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obtain that ℓ(vL−2) = ℓ(vL−1) + 1 > ℓ(v0). This is a contradiction to the
maximality of ℓ(v0), so that we obtain the claim (a).

To show the claim (b), we let the word representations of v and w be
denoted by v = l1l2 · · · lm and w = l′1l

′
2 · · · l′n, respectively, where m, n ∈ N,

and l1, l2, · · · , lm, l′1, l
′
2, · · · , l′n ∈ {a, b, c}. In addition, set

k∗ =

{
min {1 ≤ k ≤ min {m,n} ; lk ̸= l′k} (lk ̸= l′k for some 1 ≤ k ≤ min {m,n}),
min {m,n}+ 1 (lk = l′k for 1 ≤ k ≤ min {m,n}).

When k∗ = 1, one can take a path

v = l1l2 · · · lm → l1l2 · · · lm−1 → · · · → l1l2 → l1

→ l′1 → l′1l
′
2 → · · · → l′1l

′
2 · · · l′n−1 → l′1l

′
2 · · · l′n = w

from v to w, and when k∗ ≥ 2, one can take a path

v = l1l2 · · · lm → l1l2 · · · lm−1 → · · · → l1l2 · · · lk∗ → l1l2 · · · lk∗−1

= l′1l
′
2 · · · l′k∗−1 → l′1l

′
2 · · · l′k∗ → · · · → l′1l

′
2 · · · l′n−1 → l′1l

′
2 · · · l′n = w

from v to w. Therefore, X∞ is connected, so that there exists at least one
geodesic from v to w.

Two distinct geodesics from v to w would allow us to find a cycle of
length four or greater, whose existence contradicts to the claim (a) of Lemma
3.9.

We can prove that X∞ is distance-regular by an argument similar to
that for Lemma 3.5. This proposition is a new result obtained in [6].

Proposition 3.10. The linked-triangle graph X∞ is a distance-regular
graph with the intersection array (4, 2, 2, 2, · · · ; 1, 1, 1, 1, · · · ) (i.e. b0 = 4,
b1 = b2 = b3 = · · · = 2, c1 = c2 = c3 = · · · = 1).

Proof. Since every vertex in V∞ possesses exactly four neighborhoods, we
have b0 = 4.

We show that ci = 1 for any i ∈ N. Take an i ∈ N and two vertices v,
w ∈ V∞ with d (v, w) = i arbitrarily. Then, there exists a unique geodesic

v = v0 → v1 → · · · → vi−1 → vi = w

from v to w. Noting that vi−1 ∈ Γi−1(v)∩Γ1(w), we find that |Γi−1(v) ∩ Γ1(w)| ≥
1. On the other hand, the uniqueness of the geodesic ensures that |Γi−1(v) ∩ Γ1(w)| ≤
1, so we have |Γi−1(v) ∩ Γ1(w)| = 1. This means that ci = 1.

Next, we shall compute |Γi+1(v) ∩ Γ1(w)| for i ∈ N and v, w ∈ V∞ with
d (v, w) = i. Take the unique geodesic

v = v0 → v1 → · · · → vi−1 → vi = w
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from v to w. It follows that vi−1 /∈ Γi+1(v)∩ Γ1(w) from the previous argu-
ment. Noting that vi−1 and w are adjacent and that there exists just one
3-cycle containing vi−1 and w, we find by considering the word representa-
tions that there exists exactly one vertex w′ that is adjacent to both vi−1

and w. The path v → v1 → · · · → vi−1 → w′ should be the geodesic from v
to w′, so that w′ belongs to Γi(v)∩ Γ1(w). The other two neighborhoods of
w belong to neither Γi−1(v) nor Γi(v), hence we find that they must belong
to Γi+1(v) ∩ Γ1(w) and |Γi+1(v) ∩ Γ1(w)| = 2. This implies that bi = 2.

Let us determine the coefficients of the structure identities of R(X∞).
We can use the word representations to calculate the distance between two
vertices of X∞. This Lemma 3.11, the following Proposition 3.12 and Corol-
lary 3.13 are new results obtained in [6].

Lemma 3.11. Let v, w ∈ V∞ and v = l1l2 · · · lm and w = l′1l
′
2 · · · l′n be

their word representations, where m, n ∈ N and l1, l2, · · · , lm, l′1, l
′
2, · · · ,

l′n ∈ {a, b, c}. Then,

d (v, w) =

{
m+ n− 2k∗ + 1 (li ̸= l′i for some 1 ≤ i ≤ min {m,n}),
|m− n| (li = l′i for 1 ≤ i ≤ min {m,n}),

(3.13)
where k∗ = min{1 ≤ k ≤ min{m,n} ; lk ̸= l′k} in the case when li ̸= l′i for
some 1 ≤ i ≤ min{m,n}.
Proof. It is obvious that (3.13) holds when v = w, so we may assume that
v ̸= w. The unique geodesic from v to w is given by

v = l1l2 · · · lm → l1l2 · · · lm−1 → · · · → l1l2 · · · lk∗−1lk∗ = l′1l
′
2 · · · l′k∗−1lk∗

→ l′1l
′
2 · · · l′k∗−1l

′
k∗ → · · · → l′1l

′
2 · · · l′n−1 → l′1l

′
2 · · · l′n = w

if li ̸= l′i for some 1 ≤ i ≤ min {m,n} and by

v = l1l2 · · · lm → l1l2 · · · lm−1 → · · · → l1l2 · · · ln = l′1l
′
2 · · · l′n = w

if li = l′i for i = 1, · · · , min {m,n}. The desired evaluations are obtained
from these observations.

Proposition 3.12. Let pki,j be the intersection numbers of the association
scheme (V∞,R(X∞)).

(a) For any i ∈ N, we have p0i,i = 2i+1.

(b) For i, j, k ∈ N, we can get the following:

pki,j =


2max{i−k,0} (j = |i− k|),
2max{i−k,0}+h−1 (j = |i− k|+ 2h− 1, 1 ≤ h ≤ min {i, k}),
2i (j = i+ k),

0 (otherwise).

(3.14)
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Proof. We note that p0i,i = |Γi(a)|. There are two ways to get a vertex in
Γi(a); The first one is to add i letters l1, · · · , li to the tail of a. The second
one is to add i− 1 letters to the tail after changing a into another letter, b
or c. The numbers of vertices provided by each way are both 2i. Thus we
have p0i,i = 2i + 2i = 2i+1.

To show the assertion (b), take two vertices v, w ∈ V∞ with d (v, w) = k.
Since X∞ is a distance-regular graph, we may assume that the word repre-
sentations of v and w are given by v = al1l2 · · · lk and w = a, respectively,
where l1, l2, · · · , lk ∈ {a, b, c}.

We now classify the vertices belonging to Γi(v) by distance from w = a.
We implicitly use Lemma 3.11 in the following arguments.

First, we consider the case when i ≤ k. There are three ways to get a
vertex in Γi(v); The first one is to delete the last i letters lk, · · · , lk−i+1

from v. The second one is to add i letters l′k+1, · · · , l′k+i to the tail of v.
The third one is, for 1 ≤ h ≤ i, to add h− 1 letters l′k−i+h+1, · · · , l′k−i+2h−1

to the tail after deleting the last i − h letters lk, · · · , lk−i+h+1 from v and
changing the last letter lk−i+h of the remaining word into the other letter
l′k−i+h. The number of vertices provided by each way are found to be 1, 2i

and 2h−1, and the distances between a and a vertex provided by each way
are k − i, k + i and k − i+ 2h− 1, respectively.

Next, we consider the case when i > k. In this case, there are three ways
to get a vertex in Γi(v) given as follows; The first one is to add i − k − 1
letters l′1, · · · , l′i−k−1 to the tail of v after deleting the last k letters lk, · · · ,
l1 from v and changing the remaining letter a into the other letter l′0. The
second one is to add i letters l′k+1, · · · , l′k+i to the tail of v. The third one
is, for 1 ≤ h ≤ k, to add i − k + h − 1 letters l′h+1, · · · , l′i−k+2h−1 to the
tail after deleting the last k−h letters lk, · · · , lh+1 from v and changing the
last letter lh of the remaining word into the other letter l′h. The numbers of
vertices provided by each way are found to be 2i−k, 2i and 2i−k+h−1 (note
that there are two candidates for l′0 in the explanation of the first way), and
the distances between a and a vertex provided by each way are i− k, i+ k
and i− k+2h− 1, respectively. The conclusion (3.14) can be deduced from
these observations.

By Proposition 3.12, we can compute the structure identities of R(X∞).

Corollary 3.13. Let i, j ∈ N and k ∈ N0. Then, the coefficients P k
i,j of

structure identities of R(X∞) are given by

P k
i,j =


1/2 (k = i+ j),

1/2min{i,j}−h+2 (k = |i− j|+ 2h− 1, 1 ≤ h ≤ min{i, j}),
1/2min{i,j}+1 (k = |i− j|),
0 (otherwise).
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4 Non-distance-regular graphs producing a hyper-
group

In the previous section, we certified that a random walk on any distance-
regular graph produces a hermitian discrete hypergroup. However, we should
note that a random walk on a certain non-distance-regular graph produces
a hermitian discrete hypergroup. We are going to see several examples of
non-distance-regular graphs on which a random walk produces a hermitian
discrete hypergroup. It is a (graph theoretical) problem to determine pairs
of a graph X = (V,E) and a base point v0 ∈ V which make (R(X), ◦v0) a
hermitian discrete hypergroup.

4.1 Fundamental observations

For simplicity, we set some jargons for graphs.

Definition 4.1. Let X = (V,E) be a connected graph all of whose vertices
have finite degrees and v0 ∈ V .

(a) The given graph X is said to satisfy the self-centered condition if X is
either infinite or self-centered.

(b) The pair (X, v0) is said to be hypergroup productive if R(X) becomes a
hermitian discrete hypergroup with respect to the convolution ◦v0 . The
graph X is said to be hypergroup productive if (X, v0) is hypergroup
productive pair for any v0 ∈ V .

It immediately follows from Proposition 3.1 that the convolution ◦v0 on
R(X) is well-defined if and only if X satisfies the self-centered condition.
We proved in Section 3.1 that every distance-regular graph is a hypergroup
productive graph.

When X = (V,E) is a distance-regular graph, structure identities of
(R(X), ◦v0) are independent of a choice of the base point v0. On the other
hand, structure identities of (R(X), ◦v0) sometimes depend on a choice of
the base point v0 when X is not distance-regular (see Section 4.2). The
following proposition shows a sufficient condition for that two choices of the
base point give the same convolution on R(X).

Proposition 4.2. Let X = (V,E) be a graph satisfying the self-centered
condition and v0, v1 ∈ V . Suppose that there exists an automorphism φ
of X such that φ(v0) = v1. Then, ◦v0 = ◦v1 , that is, S ◦v0 S′ = S ◦v1 S′

holds for any S, S′ ∈ CR(X). In particular, if X is vertex-transitive, then
◦v0 = ◦v1 holds for any v0, v1 ∈ V .

Proof. Since the convolutions ◦v0 and ◦v1 are bilinear, it suffices to show
that Ri ◦v0 Rj = Ri ◦v1 Rj for every i, j ∈ I.
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Let Ri ◦v0 Rj =
∑

k∈I P
k
i,jRk and Ri ◦v1 Rj =

∑
k∈I Q

k
i,jRk for given i,

j ∈ I. Since the automorphism φ of X preserves the distance on X, that is,
d (φ(v), φ(w)) = d (v, w) holds for any v, w ∈ V , we have

Qk
i,j =

1

|Γi(v1)|
∑

v∈Γi(v1)

|Γj(v) ∩ Γk(v1)|
|Γj(v)|

=
1

|Γi(φ(v0))|
∑

w∈Γi(v0)

|Γj(φ(w)) ∩ Γk(φ(v0))|
|Γj(φ(w))|

=
1

|Γi(v0)|
∑

w∈Γi(v0)

|Γj(w) ∩ Γk(v0)|
|Γj(w)|

= P k
i,j .

It immediately follows from Proposition 4.2 that the hypergroup pro-
ductivity is preserved by an automorphism in the sense of the following.

Corollary 4.3. Let X = (V,E) be a graph satisfying the self-centered
condition and v0, v1 ∈ V . Suppose that there exists an automorphism φ of
X such that φ(v0) = v1. Then, (X, v0) is a hypergroup productive pair if
and only if so is (X, v1).

A Cayley graph is vertex-transitive, so it turns to a hypergroup pro-
ductive graph if it admits a hypergroup productive pair. Moreover, in our
context, at most one hypergroup structure can be introduced to the canon-
ical partition of a Cayley graph.

To show that a given pair (X, v0) is hypergroup productive, where X
is a graph satisfying the self-centered condition and v0 ∈ V , we have to
show the commutativity and the associativity of the convolution ◦v0 , as we
saw in Section 3.1. In particular, the associativity (Rh ◦v0 Ri) ◦v0 Rj =
Rh ◦v0 (Ri ◦v0 Rj) should be certificated for every h, i, j ∈ I, but it can be
reduced to an easier case.

Proposition 4.4. Let X = (V,E) be a graph satisfying the self-centered
condition and v0 ∈ V . Assume that the convolution ◦v0 satisfies the following
two identities for any i, j ∈ I:

Ri ◦v0 Rj = Rj ◦v0 Ri,

(R1 ◦v0 Ri) ◦v0 Rj = R1 ◦v0 (Ri ◦v0 Rj).

Then, ◦v0 is commutative and associative on CR(X), so that (X, v0) is a
hypergroup productive pair.

Proof. In this proof, we simply write ◦ instead of ◦v0 .
Since the convolution ◦ is commutative on R(X)×R(X) and bilinear on

CR(X)×CR(X), the commutativity extends to the whole CR(X)×CR(X).
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We will check the associativity of ◦. If the given convolution ◦ is asso-
ciative on R(X), that is, (Rh ◦ Ri) ◦ Rj = Rh ◦ (Ri ◦ Rj) holds for any h,
i, j ∈ I, then the associativity of ◦ extends to the whole CR(X) from the
bilinearity of ◦. Hence what we have to show is that

(Rh ◦Ri) ◦Rj = Rh ◦ (Ri ◦Rj) (4.1)

for any h, i, j ∈ I.
When h = 0, (4.1) is immediately obtained from the fact that R0 is

the neutral element of CR(X). Thus, by our assumption, we have the
conclusion when diam(X) = 1. We assume that diam(X) ≥ 2. To show
(4.1) by induction on h, suppose that h ∈ I with h ≥ 2 and the claim is true
in the cases up to h− 1. By (3.4), we find that

Rh =
1

P h
1,h−1

(
R1 ◦Rh−1 − P h−2

1,h−1Rh−2 − P h−1
1,h−1Rh−1

)
.

(Note that it follows that P h
1,h−1 > 0 from the connectivity of X.) By using

this identity, we get

(Rh ◦Ri) ◦Rj

=
1

P h
1,h−1

[((R1 ◦Rh−1) ◦Ri) ◦Rj ]

−
P h−2
1,h−1

P h
1,h−1

[(Rh−2 ◦Ri) ◦Rj ]−
P h−1
1,h−1

P h
1,h−1

[(Rh−1 ◦Ri) ◦Rj ] .

The induction hypothesis gives that

(Rh−1 ◦Ri) ◦Rj = Rh−1 ◦ (Ri ◦Rj), (4.2)

(Rh−2 ◦Ri) ◦Rj = Rh−2 ◦ (Ri ◦Rj), (4.3)

and the induction basis gives that

(R1 ◦Rh−1) ◦Ri = R1 ◦ (Rh−1 ◦Ri).

Therefore, appealing to the induction basis, the induction hypothesis and
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the bilinearity of ◦, we have that

((R1 ◦Rh−1) ◦Ri) ◦Rj

=(R1 ◦ (Rh−1 ◦Ri)) ◦Rj

=

h+i−1∑
k=0

P k
h−1,i((R1 ◦Rk) ◦Rj)

=

h+i−1∑
k=0

P k
h−1,i(R1 ◦ (Rk ◦Rj))

=R1 ◦ ((Rh−1 ◦Ri) ◦Rj)

=R1 ◦ (Rh−1 ◦ (Ri ◦Rj))

=

i+j∑
k=0

P k
i,j(R1 ◦ (Rh−1 ◦Rk))

=

i+j∑
k=0

P k
i,j((R1 ◦Rh−1) ◦Rk)

=(R1 ◦Rh−1) ◦ (Ri ◦Rj). (4.4)

These identities (4.2), (4.3) and (4.4) make the end of the proof with

1

P h
1,h−1

[((R1 ◦Rh−1) ◦Ri) ◦Rj ]

−
P h−2
1,h−1

P h
1,h−1

[(Rh−2 ◦Ri) ◦Rj ]−
P h−1
1,h−1

P h
1,h−1

[(Rh−1 ◦Ri) ◦Rj ]

=
1

P h
1,h−1

[(R1 ◦Rh−1) ◦ (Ri ◦Rj)]

−
P h−2
1,h−1

P h
1,h−1

[Rh−2 ◦ (Ri ◦Rj)]−
P h−1
1,h−1

P h
1,h−1

[Rh−1 ◦ (Ri ◦Rj)]

=

[
1

P h
1,h−1

(R1 ◦Rh−1 − P h−2
1,h−1Rh−2 − P h−1

1,h−1Rh−1)

]
◦ (Ri ◦Rj)

=Rh ◦ (Ri ◦Rj).

4.2 Examples of hypergroup productive graphs

We see some examples of non-distance-regular hypergroup productive graphs
in this section. One can check the associativity by direct calculations for
each case, so we shall only give the structure identities and omit the proof
of associativity.
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(i) Prisms

The prism graphs are the simplest examples of non-distance-regular
graphs, on which a random walk produces a hermitian discrete hypergroup.
Consider the n-gonal prism for n ≥ 3 and let Vn denote the set of its vertices
and En the set of its edges. The graph Pn = (Vn, En) is distance-regular if
and only if n = 4 (P4

∼= S6), but any n ≥ 3 allows Pn to produce a hermitian
discrete hypergroup.

The n-gonal prism graph Pn can be realized as a Cayley graph; Pn =
Cay

(
Z/nZ⊕ Z/2Z, {(±1, 0), (0, 1)}

)
, where a denotes the residue class of

a ∈ Z. Hence, by Proposition 4.2, the hypergroup structure (R(Pn), ◦v0) is
independent of a choice of the base point v0.

It is the first attempt to reveal the structure identities of R(Pn) in a
general form. The structure identities of R(Pn) are computed to be, if
n = 2m+ 1 with m ≥ 2,

R1 ◦Rj = Rj ◦R1

=
3− δj,1 + δj,m+1

6
Rj−1 +

δj,m
6

Rj +
3 + δj,1 − δj,m − δj,m+1

6
Rj+1

(1 ≤ j ≤ m+ 1),

Ri ◦Rj = Rj ◦Ri

=
3− δi,j

8
R|i−j| +

1 + δi,j
8

R|i−j|+2 +
1

8
Ri+j−2 +

3

8
Ri+j

(2 ≤ i, j ≤ m− 1, i+ j ≤ m), (4.5)

Ri ◦Rj = Rj ◦Ri

=
3− δi,j

8
R|i−j| +

1 + δi,j
8

R|i−j|+2 +
1

8
Rm−1 +

1

8
Rm +

1

4
Rm+1

(2 ≤ i, j ≤ m− 1,m+ 1 ≤ i+ j ≤ m+ 2), (4.6)

Ri ◦Rj = Rj ◦Ri

=
3− δi,j

8
R|i−j| +

1 + δi,j
8

R|i−j|+2 +
1

8
R2m−i−j+1 +

3

8
R2m−i−j+3

(2 ≤ i, j ≤ m− 1, i+ j ≥ m+ 3), (4.7)
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Ri ◦Rm = Rm ◦Ri

=
3

8
Rm−i +

1

8
Rm−i+1 +

1 + δi,2
8

Rm−i+2 +
3− δi,2

8
Rm−i+3

(2 ≤ i ≤ m− 1), (4.8)

Rm ◦Rm =
1

4
R0 +

1

8
R1 +

2 + δm,2

8
R2 +

3− δm,2

8
R3,

Ri ◦Rm+1 = Rm+1 ◦Ri =
3 + δi,1

6
Rm−i+1 +

3− δi,1
6

Rm−i+2

(1 ≤ i ≤ m+ 1),

and to be, if n = 2m with m ≥ 2,

R1 ◦Rj = Rj ◦R1

=
3− δj,1 + δj,m + 3δj,m+1

6
Rj−1 +

3 + δj,1 − δj,m − 3δj,m+1

6
Rj+1

(1 ≤ j ≤ m+ 1),

Ri ◦Rj = Rj ◦Ri

=
3− δi,j

8
R|i−j|+

1 + δi,j
8

R|i−j|+2+
1 + δi+j,m+1

8
Ri+j−2+

3− δi+j,m+1

8
Ri+j

(2 ≤ i, j ≤ m− 1, i+ j ≤ m+ 1), (4.9)

Ri ◦Rj = Rj ◦Ri

=
3− δi,j

8
R|i−j| +

1 + δi,j
8

R|i−j|+2 +
1

8
R2m−i−j +

3

8
R2m−i−j+2

(2 ≤ i, j ≤ m− 1, i+ j ≤ m+ 2), (4.10)

Ri ◦Rm = Rm ◦Ri =
1

2
Rm−i +

1

2
Rm−i+2 (2 ≤ i ≤ m− 1), (4.11)

Rm ◦Rm =
1

3
R0 +

2

3
R2

Ri ◦Rm+1 = Rm+1 ◦Ri = Rm−i+1 (1 ≤ i ≤ m+ 1),
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The identities for Ri ◦Rj with 2 ≤ i ≤ m− 1 or with 2 ≤ j ≤ m− 1 in the
above (i.e. (4.5) – (4.8) and (4.9) – (4.11)) should be omitted when m = 2.
If n = 3, the structure identities of R(P3), given as follows, are slightly
different from the above ones;

R1 ◦R1 =
1

3
R0 +

2

9
R1 +

4

9
R2,

R1 ◦R2 = R2 ◦R1 =
2

3
R1 +

1

3
R2,

R2 ◦R2 =
1

2
R0 +

1

2
R1.

We note that there can be constructed a finite hermitian discrete hyper-
group of arbitrarily large order from a prism graph.

(ii) Finite regular graphs producing two kinds of structure identities

Thus far every example of hypergroup productive graphs have induced a
single structure of hermitian discrete hypergroups in its canonical partition,
whereas there exist hypergroup productive graphs which may produce two
(or more) structures of hermitian discrete hypergroups. Here, we see two
such graphs, which are drawn as in Figures 6 and 7. The latter one can be
realized as the line graph of the triangular prism P3. (The definition of the
line graph refers to [2] etc.) Both of two graphs are of diameter two, and
neither one is found to be vertex-transitive from Proposition 4.2.

Let the graph drawn in Figure 6 be denoted by X1 and the other one
X2. The structure identities of R(X1) are given by

R1 ◦v0 R1 =
1

4
R0 +

1

4
R1 +

1

2
R2,

R1 ◦v0 R2 = R2 ◦v0 R1 = R1,

R2 ◦v0 R2 =
1

2
R0 +

1

2
R2

if the base point v0 is chosen from filled vertices in Figure 6 and

R1 ◦v0 R1 =
1

4
R0 +

3

8
R1 +

3

8
R2,

R1 ◦v0 R2 = R2 ◦v0 R1 =
3

4
R1 +

1

4
R2,

R2 ◦v0 R2 =
1

2
R0 +

1

2
R1

if the base point v0 is chosen from blank vertices in the same figure. On the
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Figure 6: A 4-regular graph which
produces two kinds of structure iden-
tities

Figure 7: The line graph of P3

other hand, the structure identities of R(X2) are computed to be

R1 ◦v0 R1 =
1

4
R0 +

3

8
R1 +

3

8
R2,

R1 ◦v0 R2 = R2 ◦v0 R1 =
3

8
R1 +

5

8
R2,

R2 ◦v0 R2 =
1

4
R0 +

5

8
R1 +

1

8
R2

if the base point v0 chosen from filled vertices in Figure 7 and

R1 ◦v0 R1 =
1

4
R0 +

1

4
R1 +

1

2
R2,

R1 ◦v0 R2 = R2 ◦v0 R1 =
1

2
R1 +

1

2
R2,

R2 ◦v0 R2 =
1

4
R0 +

1

2
R1 +

1

4
R2

if the base point v0 chosen from blank vertices in the same figure.
These facts are new results obtained in [6].

(iii) Complete bipartite graphs

Let m, n ∈ N with m, n ≥ 2. The complete bipartite graph Km,n =
(Vm,n, Em,n) is defined as follows:

• Vm,n = {u1, u2, · · · , um, w1, w2, · · · , wn} (|Vm,n| = m+ n).

• Em,n = {{uα, wβ} ; 1 ≤ α ≤ m, 1 ≤ β ≤ n}.
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The complete bipartite graph Km,n is distance-regular if and only if m =
n and is of diameter two. We here meet an intriguing example, which is a
non-regular hypergroup productive graph. This is a new example introduced
in [6].

We can compute the structure identities of R(Km,n) to be

R1 ◦v0 R1 =
1

m
R0 +

m− 1

m
R2,

R1 ◦v0 R2 = R2 ◦v0 R1 = R1,

R2 ◦v0 R2 =
1

m− 1
R0 +

m− 2

m− 1
R2

if the base point v0 is chosen from uα’s and to be

R1 ◦v0 R1 =
1

n
R0 +

n− 1

n
R2,

R1 ◦v0 R2 = R2 ◦v0 R1 = R1,

R2 ◦v0 R2 =
1

n− 1
R0 +

n− 2

n− 1
R2

if the base point v0 is chosen from wβ’s. Needless to say, these identities
completely coincide when m = n.

(iv) Infinite ladder graph

Here an example of infinite hypergroup productive graphs, which can be
drawn like a ladder as in Figure 8 will be introduced. This is a new example
of hypergroup productive graph obtained in [6]. More precisely, we consider
the Cayley graph L = Cay

(
Z⊕ (Z/2Z), {(±1, 0), (0, 1)}

)
in this part. (As

mentioned in Theorem 1.2, the symbols 0 and 1 denote the residue classes of
0 and 1 modulo 2, respectively.) Since Cayley graphs are vertex-transitive,
Proposition 4.2 allows one to assume that v0 = (0, 0) is the base point. The
structure identities of R(L) can be computed to be

R1 ◦R1 =
1

3
R0 +

2

3
R2,

R1 ◦Ri = Ri ◦R1 =
1

2
Ri−1 +

1

2
Ri+1 (i ≥ 2),

Ri ◦Ri =
1

4
R0 +

1

4
R2 +

1

8
R2i−2 +

3

8
R2i (i ≥ 2),

Ri ◦Rj =
3

8
R|i−j| +

1

8
R|i−j|+2 +

1

8
Ri+j−2 +

3

8
Ri+j (i, j ≥ 2, i ̸= j).

To prove the claim (b) of Theorem 1.2, the associativity remains to be
checked. It can be shown by elementary calculations (and Proposition 4.4).
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Figure 8: Infinite ladder graph

Remark. One can find that the Cayley graph Cay
(
Z⊕ (Z/nZ), {(±1, 0), (0,±1)}

)
admits no hypergroup productive pairs when n ≥ 3. In addition, it turns
out that the Cayley graph Cay (Z⊕ Z, {(±1, 0), (0,±1)}), which is actually
expected to be hypergroup productive, also admits no hypergroup produc-
tive pairs. (This graph can be drawn as the square lattice in the Euclidean
plane.) There are no known examples of graphs that admit a hypergroup
productive pair but fail to be hypergroup productive graphs.

Remark. Hypergroups derived from a random walk on an infinite graph can
be realized as polynomial hypergroups since supp (R1 ◦Ri) ⊂ {i−1, i, i+1}.

In particular, the hypergroup derived from a random walk on T2 co-
incides with the hypergroup which can be constructed by the Chebyshev
polynomials of the first kind, so that the hypergroup R(T2) is called the
Chebyshev hypergroup of the first kind. Tsurii [13] elucidated several prop-
erties of the Chebyshev hypergroup of the first kind. (He also investigated
the Chebyshev hypergroup of the second kind in [13].)

For details of the polynomial hypergroups, see [3, Chapter 3] or [10] for
example.
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