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1. Introduction

Various problems reduce to those of finding a fixed point of a map-

ping. For example, there are problems of approximation of distance

projection and minimization of functions. Such studies are common in

Hilbert space and Banach spaces. Recently, a similar problem has been

considered in the CAT(1) spaces. In this paper, we concentrate in the

problem of establishing approximation schemes assuming the existence

of at least one fixed point.

Let us begin with a historical explanation on Halpern schemes. In

1967, Halpern [7] considered an iterative method to find a fixed point

of a nonexpansive mapping from the unit ball of a real Hilbert space

into itself. In 1992, Wittmann [28] considered the following Halpern

type iteration scheme in a real Hilbert space H: Let C ⊂ H be a closed

convex subset, and u, x1 ∈ C be given. The iteration scheme is

xn+1 := αnu+ (1− αn)Txn

for all n ∈ N, where T is a nonexpansive mapping from C into itself

such that the set F (T ) of its fixed points is nonempty, and where

the real sequence {αn} satisfies limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and∑∞
n=1 |αn+1 − αn| < ∞. He showed that {xn} converges strongly to a

fixed point which is nearest to u in F (T ).
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In 1997, Shioji-Takahashi [23] extended Wittmann’s result to the

case where the Hilbert space H is replaced by a Banach space. In 1998,

motivated by results of Ishikawa [8] and Das-Debata [3], Atsushiba-

Takahashi [1] considered a variation of Halpern iteration using W -

mappings {Wn} defined by

Un,1 := αn,1T1 ⊕ (1− αn,1)I,

Un,2 := αn,2T2Un,1 ⊕ (1− αn,2)I,

· · ·

Un,r := αn,rTrUn,r−1 ⊕ (1− αn,r)I,

Wn := Un,r.

in a Banach space, where αn,1, αn,2, . . . , αn,r are given (see Definition

2.2). Let u, x1 are given and

xn+1 := βnu+ (1− βn)Wnxn

for all n ∈ N.
A CAT(0) space is a generalization of Hilbert space in a derecton

different from that of a Banach space. In 2011, Saejung [21] considered

the Halpern iteration using single nonexpansive mapping in a CAT(0)

space. In 2011, Phuengrattana-Suantai [20] considered the same itera-

tion scheme using W -mapping in a convex metric space. Remark that

a CAT(0) space is a convex metric space, so that their result covers

the case of CAT(0) space. In 2013, Kimura-Satô [16] considered the

Halpern iteration using single strongly quasinonexpansive mapping in

a CAT(1) space. Remark that a CAT(1) space is not necessarily a

convex metric space.

In this paper, we consider the Halpern iteration with W -mapping

generated by a finite family of quasinonexpansive mappings in a CAT(1)

space, that is, we showed the following theorem under the similar con-

dition in the result of Kimura-Satô:
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Theorem 1.1 (Theorem 3.1). Let X be a complete CAT(1) space such

that d(v, v′) < π/2 for every v, v′ ∈ X. Let T1, T2, . . . , Tr be a finite

number of quasinonexpansive and ∆-demiclosed mappings of X into it-

self such that F :=
∩r

i=1 F (Ti) ̸= ∅, and let αn,1, αn,2, . . . , αn,r be real

numbers for n ∈ N such that αn,i ∈ [a, 1 − a] for every i = 1, 2, . . . , r,

where 0 < a < 1/2. Let Wn be the W-mappings of X into itself gen-

erated by T1, T2, . . . , Tr and αn,1, αn,2, . . . , αn,r for n ∈ N. Let {βn}
be a sequence of real numbers such that 0 < βn < 1 for every n ∈
N, limn→∞ βn = 0 and

∑∞
n=1 βn = ∞. For given points u, x1 ∈ X, let

{xn} be a sequence in X generated by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;

(b) d(u, PFu) < π/4 and d(u, PFu) + d(x1, PFu) < π/2;

(c)
∑∞

n=1 β
2
n = ∞.

Then {xn} converges to PFu, where PF is the metric projection onto

F from X.

Next, let us begin with a historical explanation on CQ-projection

method and Shrinking projection method.

Let C be a nonempty closed convex subset of a real Hilbert space and

T a nonexpansive mapping from C onto itself such that fixed points set

F (T ) is nonempty. Let PC denote the metric projection to a nonempty

closed convex subset. In 2000, Solodov-Svaiter [24] introduced CQ

projection method and in 2003, Nakajo-Takahashi [18] considered the
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following iteration:

x1 := x ∈ C,

yn := αnxn + (1− αn)Txn,

Cn := {z ∈ C | ∥yn − z∥ ≤ ∥xn − z∥},

Qn := {z ∈ C | ⟨xn − z, x1 − xn⟩ ≥ 0},

xn+1 := PCn∩Qnx1,

where {αn} satisfies limn→∞ αn = 0 and
∑∞

n=1 |αn+1 − αn| < ∞ and

PCn∩Qn is the metric projection from C onto Cn∩Qn. Then they showed

{xn} is converget to PF (T )x1. In 2006, Nakajo-Shimoji-Takahashi [19]

used W -mapping generated to consider following iteration:

x1 := x ∈ C,

yn := Wnxn,

Cn := {z ∈ C | ∥yn − z∥ ≤ ∥xn − z∥},

Qn := {z ∈ C | ⟨xn − z, x1 − xn⟩ ≥ 0},

xn+1 := PCn∩Qnx1,

and showed {xn} is convergent to PFx1, where F is a common fixed

point set of generaters of W -mapping. In 2012, Kimura-Satô [13] con-

sidered similar iteration in real Hilbert sphere as following:

x1 := x ∈ C,

yn := Txn,

Cn := {z ∈ C | d(yn, z) ≤ d(xn, z)},

Qn := {z ∈ C | cos d(x1, xn) cos d(x0, xn) ≥ cos d(x1, z)},

xn+1 := PCn∩Qnx1
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On the other hand, Takahashi-Takeuchi-Kubota [27] introduced shrink-

ing projection method in real Hilbert space as the following iteration:

x1 := x ∈ C,

yn := αnxn + (1− αn)Txn,

Cn := {z ∈ C | ∥yn − z∥ ≤ ∥xn − z∥},

xn+1 := PCnx1,

where 0 ≤ αn < a < 1 for all n ∈ N. Then they showed {xn} con-

verges to PF (T ). In 2009, Kimura-Takahashi [17] considered shrinking

projection method in Banach space and Kimura [12] considered shrink-

ing projection method in a real Hilbert ball which is a example of a

Hadamard space, that is, a complete CAT(0) space.

In this paper, we consider CQ projection method and shrinking pro-

jection method for a finite family of nonexpansive mappings in a real

Hilbert sphere which is a example of a complete CAT(1) space, that is,

we show the following results:

Theorem 1.2 (Theorem 5.1). Let C be a closed convex subset in real

Hilbert sphere SH such that d(v, v′) ≤ π/2 for every v, v′ ∈ C. Let

αn,1, αn,2, . . . , αn,r be real numbers for n ∈ N such that αn,i ∈ [a, 1− a]

for every i = 1, 2, . . . , r where 0 < a < 1/2, and let T1, T2, . . . , Tr be

a finite number of nonexpansive mappings of C into itself such that

F :=
∩r

i=1 F (Ti) ̸= ∅. Let Wn be the W-mappings of X into itself

generated by T1, T2, . . . , Tr and αn,1, αn,2, . . . , αn,r for n ∈ N. For a

given point x1 ∈ C, let {xn} be a sequence in C generated by

yn := Wnxn,

Cn := {z ∈ C | d(yn, z) ≤ d(xn, z)},

Qn := {z ∈ C | cos d(x1, xn) cos d(xn, z) ≥ cos d(x1, z)},

xn+1 := PCn∩Qnx1
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for all n ∈ N. Then {xn} is well-defined and convergent to PFx1.

Theorem 1.3 (Theorem 5.2). Let C be a closed convex subset in real

Hilbert sphere SH such that d(v, v′) < π/2 for every v, v′ ∈ C. Let

αn,1, αn,2, . . . , αn,r be real numbers for n ∈ N such that αn,i ∈ [a, 1− a]

for every i = 1, 2, . . . , r where 0 < a < 1/2, and let T1, T2, . . . , Tr be

a finite number of nonexpansive mappings of C into itself such that

F :=
∩r

i=1 F (Ti) ̸= ∅. Let Wn be the W-mappings of X into itself

generated by T1, T2, . . . , Tr and αn,1, αn,2, . . . , αn,r for n ∈ N. For a

given point x1 ∈ C, let {xn} be a sequence in C generated by

x1 := x ∈ C,

yn := Wnxn,

Cn := {z ∈ C | d(yn, z) ≤ d(xn, z)} ∩ Cn−1,

xn+1 := PCnx1,

for all n ∈ N. Then {xn} is well defined and convergent to PFx1.

2. Preliminaries

Let (X, d) be a metric space. For x, y ∈ X, a mapping c : [0, l] → X

is a geodesic of x, y ∈ X if c(0) = x, c(l) = y and d(c(s), c(t)) = |s− t|
for all s, t ∈ [0, l]. For r > 0, if a geodesic exists for every x, y ∈ X with

d(x, y) < r, then X is called an r-geodesic metric space. If a geodesic

is unique for every x, y ∈ X, we define [x, y] := c([0, l]) and it is called

a geodesic segment of x, y ∈ X. In what follows, a metric space X

is always assumed to be π-geodesic and every geodesic is unique. For

x, y ∈ X, let c : [0, l] → X be a geodesic of joinning x, y ∈ X. For

t ∈ [0, l], we denote

tx⊕ (1− t)y := c((1− t)l).

In other words, z := tx ⊕ (1 − t)y satisfies d(x, z) = (1 − t)d(x, y).

Let X be a geodesic metric space. A geodesic triangle is defined by
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the union of segment △(x, y, z) := [x, y] ∪ [y, z] ∪ [z, x]. Let S2 be the

unit sphere of the Euclidean space R3 and dS2 is the spherical metric

on S2. Then, for x, y, z ∈ X satisfying d(x, y) + d(y, z) + d(z, x) < 2π,

there exist x, y, z ∈ S2 such that d(x, y) = dS2(x, y), d(y, z) = dS2(y, z)

and d(z, x) = dS2(z, x). A point p ∈ [x, y] is called a comparison

point for p ∈ [x, y] if dS2(x, p) = d(x, p). If every p, q on the triangle

△(x, y, z) with d(x, y) + d(y, z) + d(z, x) < 2π and their comparison

points p, q ∈ △(x, y, z) satisfy that

d(p, q) ≤ dS2(p, q),

X is called a CAT(1) space. In addition, if we take a compation triangle

△(x, y, z) in R2 and use Euclid metric dR2 , we can also define a CAT(0)

space.

Definition 2.1. Let (H, ⟨·, ·⟩) be a real Hilbert space and ∥ · ∥ be its

norm. A real Hilbert sphere SH is defined by SH := {x ∈ H | ∥x∥ = 1}
and we can define metric function of SH as d(x, y) := arccos⟨x, y⟩.

Then SH is an example of complete CAT(1) space, and thus a nonempty

closed convex subset of SH is a complete CAT(1) space (see [2]). It is

known that

{z ∈ SH | d(x, z) ≤ d(y, z)}

and

{z ∈ SH | cos d(x, y) cos d(y, z) ≥ cos d(x, z)}

are closed convex subsets of SH . If x ̸= y, these two subsets are hemi-

spheres of SH . We refer more details and examples of CAT(1) space

to [2].

Theorem 2.1. [15, p.5081, Lemma 2.1] Let x, y, z be points in CAT(1)

space such that d(x, y) + d(y, z) + d(z, x) < 2π. Let v := tx⊕ (1− t)y
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for some t ∈ [0, 1]. Then

cos d(v, z) sin d(x, y)

≥ cos d(x, z) sin(td(x, y)) + cos d(y, z) sin((1− t)d(x, y)).

Corollary 2.1. [16, p.4, Remark] Let x, y, z be points in CAT(1) space

such that d(x, y) + d(y, z) + d(z, x) < 2π. Let v := tx ⊕ (1 − t)y for

some t ∈ [0, 1]. Then

cos d(v, z) ≥ t cos d(x, z) + (1− t) cos d(y, z).

Let X be a complete CAT(1) space such that d(v, v′) < π/2 for all

v, v′ ∈ X, and let C be a nonempty closed convex subset of X. Then

for any x ∈ X, there exists a unique point PCx ∈ C such that

d(x, PCx) = inf
y∈C

d(x, y).

That is, using similar techniques to the cace of Hilbert space, we can

define metric projection PC from X onto C such that PCx is the nearest

point of C to x. Let X be a metric space and {xn} a bounded sequence

of X. The asymptotic center AC({xn}) of {xn} is defined by

AC({xn}) :=
{
z | lim sup

n→∞
d(z, xn) = inf

x∈X
lim sup
n→∞

d(x, xn)

}
.

We say that {xn} is ∆-convergent to a point z if for all subsequences

{xni
} of {xn}, its asympotic center consists only of z, that is, AC({xni

}) =
{z}. Let X be a metric space. Let T be a mapping of X into it-

self. Then, T is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y) for all

x, y ∈ X. Hereafter we denote by

F (T ) := {z | Tz = z}

the set of fixed points. Then T is said to be quasinonexpansive if

d(Tx, p) ≤ d(x, p) for all x ∈ X and p ∈ F (T ). Using similar techniques

to the case of Hilbert space, we can prove that F (T ) is a closed convex

subset ofX. T is said to be strongly quasinonexpansive if it is quasinon-

expansive, and for every p ∈ F (T ) and every sequence in X satisfying



10 T. EZAWA

that supn∈N d(xn, p) < π/2 and limn→∞(cos d(xn, p)/ cos d(Txn, p)) =

0, it follows that limn→∞ d(xn, Txn) = 0. T is said to be ∆-demiclosed

if for any ∆-convergent sequence {xn} in X, its ∆-limit belongs to

F (T ) whenever limn→∞ d(Txn, xn) = 0.

The notation ofW -mapping is originally proposed by Takahashi. We

use the same notation in the setting of geodesic space as following:

Definition 2.2 (Takahashi [25]). Let X be a geodesic metric space.

Let T1, T2, . . . , Tr be a finite number of mappings of X into itself and

α1, α2, . . . , αr be real numbers such that 0 ≤ αi ≤ 1 for every i =

1, 2, . . . , r. Then, we define a mapping W of X into itself as follows:

U1 := α1T1 ⊕ (1− α1)I,

U2 := α2T2U1 ⊕ (1− α2)I,

· · ·

Ur := αrTrUr−1 ⊕ (1− αr)I,

W := Ur.

Such a mapping W is called a W -mapping generated by T1, T2, . . . , Tr

and α1, α2, . . . , αr.

The following lemmas are important for our main result.

Lemma 2.1. [16, p.8, Lemma 4.4] Let T be a quasinonexpansive map-

ping defined on a CAT(1) space. For any real number α ∈ [0, 1], the

mapping αT ⊕ (1− α)I is quasinonexpansive.

The proof of Lemma 2.1 is essentially obtained in [16], so we omit

the proof.

Lemma 2.2. [16, p.8, Lemma 4.5] Let T be a nonexpansive mapping

on a CAT(1) space. For a any real number α ∈ (0, 1], the mapping

αT ⊕ (1− α)I is ∆-demiclosed.
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The following Lemma 2.3 is applied to show Theorem 3.1.

Lemma 2.3. [22, p.745, Lemma 2.6] Let {sn}, {tn} be sequences of real

numbers such that sn ≥ 0 for every n ∈ N. Let {γn} be a sequence in

(0, 1) such that
∑∞

n=0 γn = ∞. Suppose that sn+1 ≤ (1 − γn)sn + γntn

for every n ∈ N. If lim supj→∞ tnj
≤ 0 for every subsequence {nj} of

N satisfying lim infj→∞(snj+1 − snj
) ≥ 0, then limn→∞ sn = 0.

Lemma 2.4. [4, p.417, Proposition 4.4] Let X be a complete CAT(1)

space, and {xn} be a sequence in X. If there exists x ∈ X such that

lim supn→∞ d(xn, x) < π/2, then {xn} has a ∆-convergent subsequence.

Lemma 2.5. [9, p.447, Proposition 2.3] Let X be a complete CAT(1)

space and p ∈ X. If a sequence {xn} in X satisfies that lim supn→∞ d(xn, p) <

π/2 and that {xn} is ∆-convergent to x ∈ X, then d(x, p) ≤ lim infn→∞ d(xn, p).

Lemma 2.6. [16, p.3, Lemma 3.1] Let X be a CAT(1) space such that

d(v, v′) < π/2 for every v, v′ ∈ X. Let α ∈ [0, 1] and u, y, z ∈ X. Then

1− cos d(βu⊕ (1− β)y, z)

≤ (1− γ)(1− cos d(y, z))

+ γ

(
1− cos d(u, z)

sin d(u, y) tan(2−1βd(u, y)) + cos d(u, y)

)
,

where

γ :=

 1− sin((1− β)d(u, y))

sin(βd(u, y))
(u ̸= y),

β (u = y).

Lemma 2.7. [15, p.5082, Theorem 3.1] Let X be a complete CAT(1)

space such that d(v, v′) < π/2 for every v, v′ ∈ X and p ∈ X. If a

sequence {xn} in X is ∆-convergent to x ∈ X and limn→∞ d(xn, p) =

d(x, p). Then {xn} is convergent to x.
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Lemma 2.8. [13, p.951, Remark 2.2] If xn is included in some closed

convex subset of Hilbert sphere SH and is ∆-convergent to x ∈ SH , then

x ∈ C.

3. Halpern iteration

We begin this section with the following useful lemma.

Lemma 3.1. If δ ∈ [0, π/2] satisfies

sin δ ≥ sin(αδ) + sin((1− α)δ)

for some α ∈ (0, 1), then δ = 0.

Proof. It is obtained by an elementary calculation. □

Next we study the set of fixed points of a W -mapping.

Proposition 3.1. Let X be a CAT(1) space. Let T1, T2, . . . , Tr be

quasinonexpansive mappings of X into itself such that
∩r

i=1 F (Ti) ̸= ∅
and let α1, α2, . . . , αr be real numbers such that 0 < αi < 1 for every

i = 1, 2, . . . , r. Let W be the W -mappig of X into itself generated by

T1, T2, . . . , Tr and α1, α2, . . . , αr. Then, F (W ) =
∩r

i=1 F (Ti).

Proof. It is obvious that
∩r

i=1 F (Ti) ⊂ F (W ). So, we shall prove

F (W ) ⊂
∩r

i=1 F (Ti). Let z ∈ F (W ) and w ∈
∩r

i=1 F (Ti). Then it

follows that

0 = d(z, z) = d(Wz, z) = d(αrTrUr−1z⊕(1−αr)z, z) = αrd(z, TrUr−1z).

Since 0 < αr ≤ 1, we obtain z = TrUr−1z and hence

cos d(z, w) = cos d(TrUr−1z, w)

≥ cos d(Ur−1z, w)

= cos d(αr−1Tr−1Ur−2z ⊕ (1− αr−1)z, w)
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By Corollary 2.1,

≥ αr−1 cos d(Tr−1Ur−2z, w) + (1− αr−1) cos d(z, w)

and similary,

≥ αr−1 cos d(Ur−2z, w) + (1− αr−1) cos d(z, w)

≥ αr−1 cos d(αr−2Tr−2Ur−3z ⊕ (1− αr−2)z, w) + (1− αr−1) cos d(z, w)

≥ αr−1αr−2 cos d(Tr−2Ur−3z, w) + (1− αr−1αr−2) cos d(z, w)

≥ · · ·

≥ αr−1αr−2 · · ·α2 cos d(T2U1z, w) + (1− αr−1αr−2 · · ·α2) cos d(z, w)

≥ αr−1αr−2 · · ·α2 cos d(U1z, w) + (1− αr−1αr−2 · · ·α2) cos d(z, w)

≥ αr−1αr−2 · · ·α2 cos d(α1T1z ⊕ (1− α1)z, w)

+ (1− αr−1αr−2 · · ·α2) cos d(z, w)

≥ αr−1αr−2 · · ·α2α1 cos d(T1z, w) + (1− αr−1αr−2 · · ·α2α1) cos d(z, w)

≥ cos d(z, w).

Then it follows that

d(z, w) = cos d(T1z, w) = d(U1z, w) = d(α1T1z ⊕ (1− α1)z, w).

By Theorem 2.1,

cos d(α1T1z ⊕ (1− α1)z, w) sin d(T1z, z)

≥ cos d(T1z, w) sin(α1d(T1z, z)) + cos d(z, w) sin((1− α1)d(T1z, z)).

By, Lemma 3.1 d(T1z, z) = 0, Thus we obtain T1z = z. Similarly, we

have

d(z, w) = d(T2U1z, w) = d(U2z, w) = d(α2T2U1z ⊕ (1− α2)z, w).
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By Theorem 2.1,

cos d(α2T2U1z ⊕ (1− α2)z, w) sin d(T2U1z, z)

≥ cos d(T2U1z, w) sin(α2d(T2U1z, z))

+ cos d(z, w) sin((1− α2)d(T2U1z, z)).

By Lemma 3.1, we obtain T2U1z = z. Since U1z = z, we obtain

T2z = z. Using such techniques, we obtain Tiz = z and Uiz = z for

all i = 1, 2, . . . , r, and hence z ∈
∩r

i=1 F (Ti). This implies F (W ) ⊂∩r
i=1 F (Ti). Therefore we have F (W ) =

∩r
i=1 F (Ti). □

Remark 3.1. Let Wn be the W -mappings of X into itself generated

by T1, T2, . . . , Tr and αn,1, αn,2, . . . , αn,r for n ∈ N. By Proposition 3.1,

all the sets of fixed points {F (Wn)} is identical.

The following Lemma 3.2 is essentially given by Kasahara [11]. For

the sake of completeness, we give the proof.

Lemma 3.2. [11, p.8, Lemma 3.6] Let {Sn} be a sequence of quasinon-

expansive mappings of a CAT(1) space X into itself such that
∩∞

n=1 F (Sn) ̸=
∅. Then for given real numbers αn ∈ [a, 1 − a] ⊂ (0, 1) and p ∈∩∞

n=1 F (Sn), if {xn} satisfies that supn∈N d(xn, p) < π/2 and

lim
n→∞

cos d(xn, p)

cos d(αnSnxn ⊕ (1− αn)xn, p)
= 1,

then limn→∞ d(Snxn, xn) = 0.

Proof. Let δn := d(Snxn, xn). Assume that {xn} ⊂ X and p ∈
∩∞

n=1 F (Sn)

such that supn∈N d(xn, p) < π/2 and limn→∞(cos d(xn, p)/ cos d(αnSnxn⊕
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(1− αn)xn, p)) = 1. Then by Theorem 2.1, we have

cos d(αnSnxn ⊕ (1− αn)xn, p) sin d(Snxn, xn)

≥ cos d(Snxn, p) sin(αd(Snxn, xn)) + cos d(xn, p) sin((1− αn)d(Snxn, xn))

≥ min{cos d(Snxn, p), cos d(xn, p)}(sin(αnd(Snxn, xn))

+ sin((1− αn)d(Snxn, xn)))

= 2 cos d(xn, p) sin
d(Snxn, xn)

2
cos

(2αn − 1)d(Snxn, xn)

2
.

Hence

cos d(αnSnxn⊕(1−αn)xn, p) sin δn ≥ 2 cos d(xn, p) sin
δn
2
cos

(2αn − 1)δn
2

.

We assume that δn ̸= 0. Dividing above by 2 sin(δn/2), we have

cos d(αnSnxn ⊕ (1− αn)xn, p) cos
δn
2

≥ cos d(xn, p) cos
(2αn − 1)δn

2

≥ cos d(xn, p) cos
(1− 2a)δn

2
.

Moreover, dividing above by cos((1− 2a)δn/2), we have

cos d(xn, p) ≤ cos d(αSnxn ⊕ (1− αn)xn, p)
cos

δn
2

cos
(1− 2a)δn

2

.

Then

cos d(xn, p)

≤ cos d(αnSnxn ⊕ (1− αn)xn, p)
cos

(1− 2a)δn
2

cos(aδn)− sin
(1− 2a)δn

2
sin(aδn)

cos
(1− 2a)δn

2

≤ cos d(αnSnxn ⊕ (1− αn)xn, p) cos(aδn).

Thus we have that

cos d(aδn) ≥
cos d(xn, p)

cos d(αnSnxn ⊕ (1− αn)xn, p)
→ 1 (n → ∞),

which implies limn→∞ δn = 0, that is, limn→∞ d(Snxn, xn) = 0. □
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The following is a first result. It is essential to use a Lemma 2.3.

In order to show that assumptions of Lemma 2.3 are satisfied, we find

good approximate sequence {y(k)j }.

Theorem 3.1. Let X be a complete CAT(1) space such that d(v, v′) <

π/2 for every v, v′ ∈ X. Let T1, T2, . . . , Tr be a finite number of quasi-

nonexpansive and ∆-demiclosed mappings of X into itself such that

F :=
∩r

i=1 F (Ti) ̸= ∅, and let αn,1, an,2, . . . , αn,r be real numbers for

n ∈ N such that αn,i ∈ [a, 1 − a] for every i = 1, 2, . . . , r, where

0 < a < 1/2. Let Wn be the W-mappings of X into itself generated by

T1, T2, . . . , Tr and αn,1, αn,2, . . . , αn,r for n ∈ N. Let {βn} be a sequence

of real numbers such that 0 < βn < 1 for every n ∈ N, limn→∞ βn = 0

and
∑∞

n=1 βn = ∞. For a given points u, x1 ∈ X, let {xn} be a sequence

in X generated by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;

(b) d(u, PFu) < π/4 and d(u, PFu) + d(x1, PFu) < π/2;

(c)
∑∞

n=1 β
2
n = ∞.

Then {xn} converges to PFu.

Proof. Let p := PFu and let

sn := 1− cos d(xn, p),

tn := 1− cos d(u, p)

sin d(u,Wnxn) tan(2−1βnd(u,Wnxn)) + cos d(u,Wnxn)
,

γn :=

 1− sin((1− βn)d(u,Wnxn))

sin(βnd(u,Wnxn))
(u ̸= Wnxn),

βn (u = Wnxn)

for n ∈ N. If {sn}, {tn} and {γn} satisfy the conditions of Lemma 2.3,

then we will have limn→∞ sn = 0, that is, {xn} converges to p = PFu.
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Thus the proof of Theorem 3.1 will be completed. First, it is obvious

that sn ≥ 0. By Lemma 2.1, Wn is quasinonexpansive. Then, it follows

from Lemma 2.6 that

sn+1 ≤ (1− γn)(1− cos d(Wnxn, p)) + γntn ≤ (1− γn)sn + γntn

for every n ∈ N. Now, it is also obvious that {γn} is a sequence in

(0, 1). We show that
∑∞

n=1 γn = ∞ holds under each condition (a),(b)

and (c). We have

cos d(xn+1, p) = cos d(βnu⊕ (1− βn)Wnxn, p)

≥ βn cos d(u, p) + (1− βn) cos d(Wnxn, p)

≥ βn cos d(u, p) + (1− βn) cos d(xn, p)

≥ min{cos d(u, p), cos d(xn, p)}

for all n ∈ N. Thus we have

cos d(xn, p) ≥ min{cos d(u, p), cos d(x1, p)}

= cosmax{d(u, p), d(x1, p)}

> 0

for all n ∈ N and hence supn∈N d(xn, p) ≤ max{d(u, p), d(x1, p)} < π/2.

For the case of (a) and (b), let M = supn∈N d(u,Wnxn). Then we show

that M < π/2. For (a), it is trivial. For (b), since supn∈N d(xn, p) ≤
max{d(u, p), d(x1, p)}, we have

M = sup
n∈N

d(u,Wnxn)

≤ sup
n∈N

(d(u, p) + d(p,Wnxn))

≤ sup
n∈N

(d(u, p) + d(p, xn))

≤ max{2d(u, p), d(u, p) + d(x1, p)}

<
π

2
.
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Thus, in each case of (a) and (b), we have

γn ≥ 1− sin((1− βn)M)

sinM

=
2

sinM
sin

(
βn

2
M

)
cos

((
1− βn

2

)
M

)
≥ βn cosM.

Since
∑∞

n=1 βn = ∞, it follows that
∑∞

n=1 γn = ∞. For the case of (c),

we have

γn ≥ 1− sin
(1− βn)π

2
= 1− cos

βnπ

2
≥ β2

nπ
2

16

for every n ∈ N. Therefore, in the case of (c) we also have
∑∞

n=1 γn =

∞. Finally, we show that lim supj→∞ tnj
≤ 0 for any subsequence {nj}

of N with lim infj→∞(snj+1 − snj
) ≥ 0. Let {snj

} be a subsequence of

{sn} satisfying that lim infj→∞(snj+1 − snj
) ≥ 0, and put

α := min
k=1,...,r

(
inf
n∈N

αn,k

)
.

Then we have

0 ≤ lim inf
j→∞

(snj+1 − snj
)

= lim inf
j→∞

(cos d(xnj
, p)− cos d(xnj+1, p))

= lim inf
j→∞

(cos d(xnj
, p)− cos d(βnj

u⊕ (1− βnj
)Wnj

xnj
, p))

By Corollary 2.1,

≤ lim inf
j→∞

(cos d(xnj
, p)− (βnj

cos d(u, p) + (1− βnj
) cos d(Wnj

xnj
, p))

Since limn→∞ βn = 0,

= lim inf
j→∞

(cos d(xnj
, p)− cos d(Wnj

xnj
, p))
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By Definition 2.2,

= lim inf
j→∞

(cos d(xnj
, p)− cos d(αnj ,rTrUnj ,r−1xnj

⊕ (1− αnj ,r)xnj
, p))

By Corollary 2.1,

≤ lim inf
j→∞

(cos d(xnj
, p)− (αnj ,r cos d(TrUnj ,r−1xnj

, p) + (1− αnj ,r) cos d(xnj
, p)))

= lim inf
j→∞

(αnj ,r cos d(xnj
, p)− αnj ,r cos d(TrUnj ,r−1xnj

, p))

≤ α lim inf
j→∞

(cos d(xnj
, p)− cos d(TrUnj ,r−1xnj

, p))

Since Tr is quasinonexpansive,

≤ α lim inf
j→∞

(cos d(xnj
, p)− cos d(Unj ,r−1xnj

, p))

= α lim inf
j→∞

(cos d(xnj
, p)− cos d(αnj ,r−1Tr−1Unj ,r−2xnj

⊕ (1− αnj ,r−1)xnj
, p))

≤ α lim inf
j→∞

(cos d(xnj
, p)− (αnj ,r−1 cos d(Tr−1Unj ,r−2xnj

, p) + (1− αnj ,r−1) cos d(xnj
, p)))

= α lim inf
j→∞

(αnj ,r−1 cos d(xnj
, p)− αnj ,r−1 cos d(Tr−1Unj ,r−2xnj

, p))

≤ α2 lim inf
j→∞

(cos d(xnj
, p)− cos d(Tr−1Unj ,r−2xnj

, p))

≤ · · ·

≤ αr−1 lim inf
j→∞

(cos d(xnj
, p)− cos d(T2Unj ,1xnj

, p))

≤ αr−1 lim inf
j→∞

(cos d(xnj
, p)− cos d(Unj ,1xnj

, p))

= αr−1 lim inf
j→∞

(cos d(xnj
, p)− cos d(αnj ,1T1xnj

⊕ (1− αnj ,1)xnj
, p))

≤ αr−1 lim sup
j→∞

(cos d(xnj
, p)− cos d(αnj ,1T1xnj

⊕ (1− αnj ,1)xnj
, p))

≤ 0.

Thus we have

lim
j→∞

(cos d(xnj
, p)− cos d(αnj ,1T1xnj

⊕ (1− αnj ,1)xnj
, p)) = 0.
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Using the inequality supj∈N d(xnj
, p) < π/2, we also have

lim
j→∞

cos d(xnj
, p)

cos d(αnj ,1T1xnj
⊕ (1− αnj ,1)xnj

, p)
= 1.

By Lemma 3.2, it follows that

lim
j→∞

d(T1xnj
, xnj

) = 0.

Put

y
(k)
j := Unj ,kxnj

for k = 1, 2, . . . , r − 1. We show that

lim
j→∞

d(xnj
, y

(k)
j ) = 0, lim

j→∞
d(Tk+1y

(k)
j , y

(k)
j ) = 0

by induction on k = 1, 2, . . . , r − 1. First, we consider the case k = 1.

We have

lim
j→∞

d(xnj
, y

(1)
j ) = lim

j→∞
d(xnj

, Unj ,1xnj
)

= lim
j→∞

d(xnj
, αnj ,1T1xnj

⊕ (1− αnj ,1)xnj
)

= lim
j→∞

αnj
d(T1xnj

, xnj
)

= 0.

On the other hand, by the calculation above we have

0 ≤ lim inf
j→∞

(cos d(xnj
, p)− cos d(Unj ,2xnj

, p))

= lim inf
j→∞

(cos d(xnj
, p)− cos d(αnj ,2T2Unj ,1xnj

⊕ (1− αnj ,2)xnj
, p))

≤ lim sup
j→∞

(cos d(xnj
, p)− cos d(αnj ,2T2Unj ,1xnj

⊕ (1− αnj ,2)xnj
, p))

≤ 0.

Therefore

lim
j→∞

(cos d(xnj
, p)− cos d(αnj ,2T2Unj ,1xnj

⊕ (1− αnj ,2)xnj
, p)) = 0.

Using the inequality supj∈N d(xnj
, p) < π/2, we also have

lim
j→∞

cos d(xnj
, p)

cos d(αnj ,2T2Unj ,1xnj
⊕ (1− αnj ,2)xnj

, p)
= 1.
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By Lemma 3.2, and since limj→∞ d(xnj
, y

(1)
j ) = 0,

lim
j→∞

d(T2y
(1)
j , y

(1)
j ) ≤ lim

j→∞
(d(T2y

(1)
j , xnj

) + d(xnj
, y

(1)
j )) = 0.

Hence we have that case k = 1, that is,

lim
j→∞

d(xnj
, y

(1)
j ) = 0, lim

j→∞
d(T2y

(1)
j , y

(1)
j ) = 0.

holds. Next, assume the hypothesis with k = l, that is,

lim
j→∞

d(xnj
, y

(l)
j ) = 0, lim

j→∞
d(Tl+1y

(l)
j , y

(l)
j ) = 0

holds. Then by assumption, we have

lim
j→∞

d(xnj
, y

(l+1)
j ) = lim

j→∞
d(xnj

, Unj ,l+1xnj
)

= lim
j→∞

d(xnj
, αnj ,l+1Tl+1Unj ,lxnj

⊕ (1− αnj ,l+1)xnj
)

= lim
j→∞

d(xnj
, αnj ,l+1Tl+1y

(l)
j ⊕ (1− αnj ,l+1)xnj

)

= lim
j→∞

d(xnj
, αnj ,l+1y

(l)
j ⊕ (1− αnj ,l+1)xnj

)

= lim
j→∞

αnj ,l+1d(xnj
, y

(l)
j )

= 0

and

0 ≤ lim inf
j→∞

(cos d(xnj
, p)− cos d(Unj ,l+2xnj

, p))

= lim inf
j→∞

(cos d(xnj
, p)− cos d(αnj ,l+2Tl+2Unj ,l+1xnj

⊕ (1− αnj ,l+1)xnj
, p))

= lim sup
j→∞

(cos d(xnj
, p)− cos d(αnj ,l+2Tl+2Unj ,l+1xnj

⊕ (1− αnj ,l+1)xnj
, p))

≤ 0.

Therefore

lim
j→∞

(cos d(xnj
, p)−cos d(αnj ,l+2Tl+2Unj ,l+1xnj

⊕(1−αnj ,l+1)xnj
, p)) = 0.

Using inequality supj∈N d(xnj
p) < π/2, we have

lim
j→∞

cos d(xnj
, p)

cos d(αnj ,l+2Tl+2Unj ,l+1xnj
⊕ (1− αnj ,l+1)xnj

, p)
= 1.
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Since limj→∞ d(xnj
, y

(l+1)
j ) = 0 and by Lemma 3.2, we have

lim
j→∞

d(Tl+2y
(l+1)
j , y

(l+1)
j ) = lim

j→∞
d(Tl+2y

(l+1)
j , xnj

)

= lim
j→

d(Tl+2Unj ,l+1xnj
, xnj

) = 0.

So, we have the hypothesis k = l + 1, that is,

lim
j→∞

d(xnj
, y

(l+1)
j ) = 0, lim

j→∞
d(Tl+2y

(l+1)
j , y

(l+1)
j ) = 0

for k = 1, 2, . . . , r − 1. By induction, we obtain

lim
j→∞

d(xnj
, y

(k)
j ) = 0, lim

j→∞
d(Tk+1y

(k)
j , y

(k)
j ) = 0

for all k = 1, 2, . . . , r− 1. By Lemma 2.4, let {xnjk
} be a ∆-convergent

subsequence of {xnj
} with the ∆-limit z such that limk→∞ d(u, xnjk

) =

lim infj→∞ d(u, xnj
). Then, since T1 is ∆-demiclosed and limj→∞ d(xnj

, T1xnj
) =

0, the ∆-limit z of {xnjk
} belongs to F (T1). Similarly, since T2 is ∆-

demiclosed and limj→∞ d(xnj
, y

(1)
j ) = limj→∞ d(y

(1)
j , T2y

(1)
j ) = 0, {y(1)jk

}
is ∆-convergent to z and the ∆-limit z is belongs to F (T2). Using

such techniques, we obtain z ∈ F (Ti) for all i = 1, 2, . . . r, and hence

z ∈
∩r

i=1 F (Ti) = F . Using Lemma 2.5 and the definition of the metric

projection, we have

lim inf
j→∞

d(u,Wnj
xnj

) = lim inf
j→∞

d(u, αnj ,rTrUnj ,r−1xnj
⊕ (1− αnj

)xnj
)

= lim inf
j→∞

d(u, αnj ,rTry
(r−1)
j ⊕ (1− αnj

)xnj
)

= lim inf
j→∞

d(u, αnj ,ry
(r−1)
j ⊕ (1− αnj

)xnj
)

= lim inf
j→∞

d(u, αnj ,rxnj
⊕ (1− αnj

)xnj
)

= lim inf
j→∞

d(u, xnj
)

= lim
k→∞

d(u, xnjk
)

≥ d(u, z)

≥ d(u, PFu).

Therefore, we obtain
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lim sup
j→∞

tnj

= lim sup
j→∞

(
1− cos d(u, p)

sin d(u,Wnj
xnj

) tan(2−1βnj
d(u,Wnj

xnj
)) + cos d(u,Wnj

xnj
)

)
= lim sup

j→∞

(
1− cos d(u, p)

0 + cos d(u,Wnj
xnj

)

)
= 1− cos d(u, p)

cos(lim infj→∞ d(u,Wnj
xnj

))

≤ 1− cos d(u, p)

cos d(u, z)

≤ 0.

By Lemma 2.3, we have that limn→∞ sn = 0, that is, {xn} converges

to p = PFu, and we finish the proof. □

Remark 3.2. By Lemma 2.2, a nonexpansive mapping defined on

a CAT(1) space having a fixed point is quasinonexpansive and ∆-

demiclosed.

Remark 3.3. In general, even if T1, T2, . . . , Tr are nonexpansive, the

W -mapping generated by T1, T2, . . . , Tr and α1, α2, . . . , αr is not neces-

sarily nonexpansive.

4. Applications of Halpern iteration

Let us recall some basic notation about functions on metric space.

Let X be a geodesic metric space and let f be a function from X into

(−∞,∞]. We say f is lower semicontinuous if the set {x ∈ X | f(x) ≤
a} is closed for all a ∈ R. The function f is said to be proper if the set

{x ∈ X | f(x) ̸= ∞} is nonempty. We say f is convex if

f(tx⊕ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ X and t ∈ (0, 1). Let X be a complete CAT(1) space

such that d(v, v′) < π/2 for every v, v′ ∈ X. Let f be a proper lower
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semicontinuous convex function from X into (−∞,∞]. For f , we can

define a map Jf : X → X called a resolvent. One of resolvent of f is

defined by

Rfx := argmin
y∈X

{f(y) + tan d(y, x) sin d(y, x)} (4.1)

in [14]. Another type of a resolvent of f is defined by

Rfx := argmin
y∈X

{f(y)− log cos d(y, x)} (4.2)

in [10], where argminX f := {y ∈ X | f(y) = minX f} is a mini-

mizer set of f . Both resolvents are well-defined, quasinonexpansive,

∆-demiclosed, and satisfy F (Rf ) = argminX f ([14, 10]). So, we can

approximate a common minimizer of a finite number of functions by

the following theorem.

Theorem 4.1. Let X be a complete CAT(1) space such that d(v, v′) <

π/2 for every v, v′ ∈ X. Let f1, f2, . . . , fr be a finite number of convex

function from X into (−∞,∞] such that F :=
∩r

i=1 argminX fi ̸= ∅,
and let αn,1, an,2, . . . , αn,r be real numbers for n ∈ N such that αn,i ∈
[a, 1 − a] for every i = 1, 2, . . . , r, where 0 < a < 1/2. Let Rfi be one

of resolvent defined by either (4.1) or (4.2) for i = 1, 2, . . . , r. Let Wn

be the W-mappings of X into itself generated by Rf1 , Rf2 , . . . , Rfr and

αn,1, αn,2, . . . , αn,r for n ∈ N. Let {βn} be a sequence of real numbers

such that 0 < βn < 1 for every n ∈ N, limn→∞ βn = 0, and
∑∞

n=1 βn =

∞. For given points u, x1 ∈ X, let {xn} be a sequence in X generated

by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;

(b) d(u, PFu) < π/4 and d(u, PFu) + d(x1, PFu) < π/2;

(c)
∑∞

n=1 β
2
n = ∞.
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Then {xn} converges to PFu.

Let us consider a more specialized situation. For a closed convex

subset C of a complete CAT(1) space X, put

iC(x) :=

 0 (x ∈ C)

∞ (x /∈ C).

This function iC is a proper lower semicontinuous convex function.

Thus the resolvent RiC of iC is defined by either (4.1) or (4.2), and it is

quasinonexpansive and ∆-demiclosed. In fact, we know RiC = PC and

F (RiC ) = argmin iC = C for both definitions (4.1) and (4.2). Thus

we can apply Theorem 3.1 and have an approximation of the nearest

point in the intersection of finite family of closed convex subsets from

a given point by using corresponding metric projection of each subset

by the following theorem.

Theorem 4.2. Let X be a complete CAT(1) space such that d(v, v′) <

π/2 for every v, v′ ∈ X. Let C1, C2, . . . , Cr be a finite number of closed

convex subset of X such that C :=
∩r

i=1Ci ̸= ∅, and let αn,1, an,2, . . . , αn,r

be real numbers for n ∈ N such that αn,i ∈ [a, 1 − a] for every i =

1, 2, . . . , r, where 0 < a < 1/2. Let Wn be the W-mappings of X into

itself generated by PC1 , PC2 , . . . , PCr and αn,1, αn,2, . . . , αn,r for n ∈ N.
Let {βn} be a sequence of real numbers such that 0 < βn < 1 for ev-

ery n ∈ N, limn→∞ βn = 0 and
∑∞

n=1 βn = ∞. For a given points

u, x1 ∈ X, let {xn} be a sequence in X generated by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;

(b) d(u, PCu) < π/4 and d(u, PCu) + d(x1, PCu) < π/2;

(c)
∑∞

n=1 β
2
n = ∞.

Then {xn} converges to PCu.
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In the introduction we mentioned that there existed an example

which is quasinonexpansive but not strongly quasinonexpansive. The

following is such an example.

Example 4.1. A closed interval [−1, 1] is a complete CAT(1) space.

Let T : [−1, 1] → [−1, 1] be defined by Tx := −x. Then F (T ) = {0}.
It is easy to obtain that T is quasinonexpansive and ∆-demiclosed but

it is not strongly quasinonexpansive.

5. CQ projection method and Shrinking projection

method

In this section, we consider the CQ projection method and shrinking

projection method for a finite family of quasinonexpansive mappings

and then prove a strong convergence theorem to their common fixed

point in a real Hilbert sphere. A real Hilbert sphere is an nexample of

CAT(1) space. It is essential to show that limn→∞d(Tixn, xn) = 0 for

every i = 1, 2, . . . , r for both Theorems 5.1 and 5.2. For that we used

the Theorem 2.1. This idea is an original approach in this result.

Theorem 5.1. Let C be a closed convex subset in real Hilbert shpere

SH such that d(v, v′) < π/2 for every v, v′ ∈ C. Let αn,1, an,2, . . . , αn,r

be real numbers for n ∈ N such that αn,i ∈ [a, 1 − a] for every i =

1, 2, . . . , r where 0 < a < 1/2, and let T1, T2, . . . , Tr be a finite number of

nonexpansive mappings of C into itself such that F :=
∩r

i=1 F (Ti) ̸= ∅.
Let Wn be the W-mappings of X into itself generated by T1, T2, . . . , Tr

and αn,1, αn,2, . . . , αn,r for n ∈ N. For a given point x1 ∈ C, let {xn}
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be a sequence in C generated by

yn := Wnxn,

Cn := {z ∈ C | d(yn, z) ≤ d(xn, z)},

Qn := {z ∈ C | cos d(x1, xn) cos d(xn, z) ≥ cos d(x1, z)},

xn+1 := PCn∩Qnx1

for all n ∈ N. Then {xn} is well defined and convergent to PFx1.

Proof. First, we show that {xn} is well defined, that is, we show that

Cn ∩Qn is nonempty closed convex subset. By the definition, Cn and

Qn are closed subsets. Since Cn and Qn are hemisphere, Cn and Qn are

convex subsets. Thus Cn∩Qn is closed convex subset in C. In order to

show that it is nonempty, we show F ⊂ Cn∩Qn by induction for n ∈ N.
Since C1 = Q1 = C, we have F ⊂ C1 ∩ Q1, and C1 ∩ Q1 is nonempty

closed convex subset. We assume the induction hypothesis that F ⊂
Ck ∩Qk and show F ⊂ Ck+1 ∩Qk+1. For all z ∈ F , by Lemma 2.1, Wn

is quasinonexpansive. By Proposition 3.1, it follows d(Wk+1xk+1, z) ≤
d(xk+1, z) and thus z ∈ Ck+1. By induction hypothesis, z ∈ Ck ∩ Qk,

and therefore, for any t ∈ [0, 1], tz⊕(1−t)xk+1 = tz⊕(1−t)PCk∩Qk
x1 ∈

Ck ∩Qk. Then we have

2 cos d(x1, xk+1) cos

((
1− t

2

)
d(xk+1, z)

)
sin

(
t

2
d(xk+1, z)

)
= cos d(x1, xk+1)(sin d(xk+1, z)− sin((1− t)d(xk+1, z)))

= cos d(x1, PCk∩Qk
x1) sin d(xk+1, z)

− cos d(x1, xk+1) sin((1− t)d(xk+1, z))

≥ cos d(x1, tz ⊕ (1− t)xk+1) sin d(xk+1, z)

− cos d(x1, xk+1) sin((1− t)d(xk+1, z)).
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By Theorem 2.1, the last expression is estimated as

≥ cos d(x1, z) sin(td(z, xk+1)) + cos d(x1, xk+1) sin((1− t)d(z, xk+1))

− cos d(x1, xk+1) sin((1− t)d(z, xk+1))

= cos d(x1, z) sin(td(z, xk+1))

= 2 cos d(x1, z) sin

(
t

2
d(z, xk+1)

)
cos

(
t

2
d(z, xk+1)

)
.

If z = xk+1, by the definition of Qk, it is obvious that z ∈ Qk+1. So,

we assume that z ̸= xk+1. Dividing above by 2 sin(td(z, xk+1)/2) and

letting t → 0, we have

cos d(x1, xk+1) cos d(xk, z) ≥ cos d(x1, z)

and thus z ∈ Qk+1. From the above, we get z ∈ Ck+1 ∩ Qk+1 and

F ⊂ Ck+1 ∩ Qk+1. Therefore, Cn ∩ Qn is nonempty closed convex

subset and {xn} is well defined.

Next, we show that limn→∞ d(Tixn, xn) = 0 for all i = 1, 2, . . . , r to

get our result. By definition of metric projection, we have

d(x1, xn) = d(x1, PCn−1∩Qn−1x1) ≤ d(x1, PFx1) <
π

2

for all n ∈ N \ {1} and hence supn∈N d(x1, xn) ≤ d(x1, PFx1) < π/2.

By the definition of Qn, we have

d(x1, xn) = d(x1, PQnx1) ≤ d(x1, PCn∩Qnx1) = d(x1, xn+1).

Thus, {cos d(x1, xn)} is a monotonically non-increasing sequence of real

numbers. Then we can put

a := lim
n→∞

cos d(x1, xn) > cos
π

2
= 0

By the definition xn+1 = PCn∩Qnx1 ∈ Qn,

cos d(x1, xn) cos d(xn, xn+1) ≥ cos d(x1, xn+1)

for all n ∈ N, and letting n → ∞, we obtain

a lim inf
n→∞

cos d(xn, xn+1) ≥ a.
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It follow that

1 ≥ cos

(
lim sup
n→∞

d(xn, xn+1)

)
= lim inf

n→∞
cos d(xn, xn+1) ≥ 1,

we have that lim supn→∞ d(xn, xn+1) = 0. Hence limn→∞ d(xn, xn+1) =

0. By the definition Cn and xn+1, it follows that xn+1 ∈ Cn and then

d(Wnxn, xn+1) ≤ d(xn, xn+1).

We have that

0 ≤ αn,rd(TrUn,r−1xn, xn)

= d(αn,rTrUn,r−1xn ⊕ (1− αn,r)xn, xn)

= d(Wnxn, xn)

≤ d(Wnxn, xn+1) + d(xn+1, xn)

≤ d(xn, xn+1) + d(xn+1, xn)

= 2d(xn, xn+1) → 0 (n → ∞).

Since infn∈N αn,r > 0, we get

lim
n→∞

d(Tr, Un,r−1xn, xn) = 0.

Next we show

lim
n→∞

d(Tr−1Un,r−2xn, xn) = 0.

Since PCn∩Qn is quasinonexpansive and z ∈ F ⊂ Cn∩Qn, we have that

d(xn+1, z) = d(PCn∩Qnx1, z) ≤ d(x1, z) <
π

2
.

Thus we have that

inf
n∈N

cos d(xn, z) = cos

(
sup
n∈N

d(xn, z)

)
> cos

π

2
= 0.
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Put εn := d(TrUn,r−1xn, xn) and δn := d(Tr−1Un,r−2xn, xn). Then, we

have

cos d(xn, z) sin d(Tr−1Un,r−2xn, xn)

≥ cos(d(xn, TrUn,r−1xn) + d(TrUn,r−1xn, z)) sin d(Tr−1Un,r−2xn, xn)

= cos(εn + d(TrUn,r−1xn, z)) sin d(Tr−1Un,r−2xn, xn)

= {cos εn cos d(TrUn,r−1xn, z)

− sin εn sin d(TrUn,r−1xn, z)} sin d(Tr−1Un,r−2xn, xn)

= cos εn cos d(TrUn,r−1xn, z) sin d(Tr−1Un,r−2xn, xn)

− sin εn sin d(TrUn,r−1xn, z) sin d(Tr−1Un,r−2xn, xn).

Since Tr is nonexpansive,

≥ cos εn cos d(Un,r−1xn, z) sin d(Tr−1Un,r−2xn, xn)

− sin εn sin d(TrUn,r−1xn, z) sin δn.

By Theorem 2.1,

≥ cos εn{cos d(Tr−1Un,r−2xn, z) sin(αn,r−1d(Tr−1Un,r−2xn, xn))

+ cos d(xn, z) sin((1− αn,r−1)d(Tr−1Un,r−2xn, xn))}

− sin εn sin d(TrUn,r−1xn, z) sin δn

≥ cos εn{cos d(xn, z) sin(αn,r−1d(Tr−1Un,r−2xn, xn))

+ cos d(xn, z) sin((1− αn,r−1)d(Tr−1Un,r−2xn, xn))}

− sin εn sin d(TrUn,r−1xn, z) sin δn

= cos εn cos d(xn, z){sin(αn,r−1d(Tr−1Un,r−2xn, xn))

+ sin((1− αn,r−1)d(Tr−1Un,r−2xn, xn))}

− sin εn sin d(TrUn,r−1xn, z) sin δn
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and hence

cos d(xn, z) sin δn

≥ cos εn cos d(xn, z){sin(αn,r−1δn) + sin((1− αn,r−1)δn)}

− sin εn sin d(TrUn,r−1xn, z) sin δn.

Then dividing above by cos d(xn, z), we have

sin δn ≥ cos εn{sin(αn,r−1δn) + sin((1− αn,r−1)δn)}

− sin εn sin d(TrUn,r−1xn, z) sin δn
cos d(xn, z)

.

Let {δni
} be a convergent subsequence whose limit is δ ∈ [0, π/2].

There exists subsequence {αnij
,r−1} of {αni,r−1} and α ∈ (0, 1) such

that αnij
,r−1 → α as j → ∞. Then since εnij

→ 0 as j → ∞, we get

sin δ ≥ sin(αδ) + sin((1− α)δ).

By Lemma 3.1 δ = 0. Therefore {δn} converges to 0, that is,

lim
n→∞

d(Tr−1Un,r−1xn, xn) = 0.

Using a similar caluculation inductively, we have

lim
n→∞

d(TiUn,i−1xn, xn) = 0

for all i = 1, 2, . . . , r. Since

d(Tixn, xn) ≤ d(Tixn, TiUn,i−1xn) + d(TiUn,i−1xn, xn)

≤ d(xn, Un,i−1xn) + d(TiUn,i−1xn, xn)

= d(xn, αn,i−1Ti−1Un,i−2xn ⊕ (1− αn,i−1)xn)

+ d(TiUn,i−1xn, xn)

= αn,i−1d(Ti−1Un,i−2xn, xn) + d(TiUn,i−1xx, xn)

→ 0 (n → ∞),

we obtain limn→∞ d(Tixn, xn) = 0 for all i = 1, 2, . . . , r. Let {xni
}

be an arbitrary subsequence of {xn}. By inequality supj∈N d(x1, xnj
) ≤

supn∈N d(x1, xn) < π/2 and Lemma 2.4, there exists subsequence {xnij
}
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of {xni
} and w∞ such that {xnij

} is ∆-convergent to w∞. For the sake

of simplicity, we put wj := xnij
. Then we can show w∞ ∈

∩r
i=1 F (Ti).

For all i = 1, 2, . . . , r,

lim sup
j→∞

d(wj, Tiw∞) ≤ lim sup
j→∞

(d(wj, Tiwj) + d(Tiwj, Tiw∞))

≤ lim sup
j→∞

(d(wj, Tiwj) + d(wj, w∞))

= lim sup
j→∞

d(wj, w∞).

By the definition of ∆-convergence, we get Tiw∞ = w∞. Hence w∞ ∈∩r
i=1 F (Ti). Since

wj = xnij
= PCnij

−1∩Qnij
−1x1 ∈ Cnij

−1 ∩Qnij
−1,

F ⊂ Cnij
−1 ∩Qnij

−1 and Lemma 2.5,

d(x1, PFx1) ≤ d(x1, w∞) ≤ lim
j→∞

d(x1, wj) ≤ d(x1, PFx1).

Thus we get limj→∞ d(x1, wj) = d(x1, w∞) and by Lemma 2.7, {wj}
convergent to w∞. On the other hand, we get d(x1, PFx1) = d(x1, w∞)

and by definition of metric projection PF , we get w∞ = PFx1. From the

above, any subsequence {xni
} of {xn} has subsequence {xnij

} such that

{xnij
} is convergent to PFx1. Threfore {xn} convergent to PFx1. □

Next, we consider shrinking projection method using W -mapping on

a complete CAT(1) space.

Theorem 5.2. Let C be a closed convex subset in real Hilbert shpere

SH such that d(v, v′) < π/2 for every v, v′ ∈ C. Let αn,1, αn,2, . . . , αn,r

be real numbers for n ∈ N such that αn,i ∈ [a, 1 − a] for every i =

1, 2, . . . , r where 0 < a < 1/2, and let T1, T2, . . . , Tr be a finite number of

nonexpansive mappings of C into itself such that F :=
∩r

i=1 F (Ti) ̸= ∅.
Let Wn be the W-mappings of X into itself generated by T1, T2, . . . , Tr

and αn,1, αn,2, . . . , αn,r for n ∈ N. For a given point x1 ∈ C, let {xn}
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be a sequence in C generated by

x1 := x ∈ C,

yn := Wnxn,

Cn := {z ∈ C | d(yn, z) ≤ d(xn, z)} ∩ Cn−1,

xn+1 := PCnx1,

for all n ∈ N. Then {xn} is well defined and convergent to PFx1.

Proof. First, we show that {xn} is well defined, that is, we show that

Cn is nonempty closed convex subset of C. By the definition of Cn, we

have that Cn is a closed convex subset of C. So, we shall show Cn is

nonempty. Since T1, T2, . . . , Tr are nonexpansive, by Lemma 2.1, Wn is

quasinonexpansive. Then by Proposition 3.1, we have that F ⊂ {z ∈
C | d(yn, z) ≤ d(xn, z)}. Then by induction, we have that F ⊂ Cn for

all n ∈ N, that is, Cn is nonempty for all n ∈ N. Therefore, {xn} is

well defined.

Next, we show that {xn} is convergent to PFx1. Let {xni
} be an

arbitrary subsequence of {xn}. By the inequality

sup
j∈N

d(x1, xnj
) ≤ sup

n∈N
d(x1, xn) < π/2,

there exists subsequence {xnij
} of {xni

} and w∞ such that {xnij
} is

∆-convergent to w∞. For the sake of simplicity, we put wj := xnij
. For

all k ∈ N, there exists j0 ∈ N such that, for every j ≥ j0, wj ∈ Ck. By

Lemma 2.8, we get w∞ ∈ Ck. Thus we have that w∞ ∈
∩∞

k=1Ck, and

by Lemma 2.8,

d(x1, P∩∞
k=1 Ck

x1) ≤ d(x1, w∞) ≤ lim
j→∞

d(x1, wj)

= lim
j→∞

d(x1, PCnij
x1) ≤ d(x1, P∩∞

k=1 Ck
x1).

Thus we get d(x1, w∞) = limj→∞ d(x1, wj) and by Lemma 2.4, {wj}
convergent to w∞. On the other hand, we get d(x1, P∩∞

k=1 Ck
x1) =

d(x1, w∞) and by the definition of metric projection P∩∞
k=1 Ck

, we get
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w∞ = P∩∞
k=1 Ck

x1. From the above, for any subsequence {xni
} of {xn}

has subsequence {xnij
} such that {xnij

} convergent to P∩∞
k=1 Ck

x1. Since

P∩∞
k=1 Ck

x1 ∈
∩∞

k=1 Ck ⊂ Cn for all n ∈ N and the definition of Cn,

d(Wnxn, P∩∞
k=1 Ck

x1) ≤ d(xn, P∩∞
k=1 Ck

x1).

Thus

lim sup
n→∞

d(Wnxn, P∩∞
k=1 Ck

x1) ≤ lim
n→∞

d(xn, P∩∞
k=1 Ck

x1) = 0

holds. Hence {Wnxn} is convergent to P∩∞
k=1 Ck

x1. Therefore,

lim
n→∞

d(Wnxn, xn) = 0.

Then, as in the proof of Theorem 5.1, we have that limn→∞ d(Tixn, xn) =

0 for all i = 1, 2, . . . , r. Thus P∩∞
k=1 Ck

x1 ∈ F (Ti) for all r = 1, 2, . . . , r.

Thus P∩∞
k=1 Ck

x1 ∈
∩r

i=1 F (Ti). Since F ⊂
∩∞

k=1Ck and P∩∞
k=1 Ck

x1 ∈ F ,

d(x1, P∩∞
k=1 Ck

x1) ≤ d(x1, PFx1) ≤ d(x1, P∩∞
k=1 Ck

x1).

By the definition of metric projection, we have P∩∞
k=1 Ck

x1 = PFx1, that

is, {xn} is convergent to PFx1, and we finish the proof. □

Example 5.1. Let △ be a spherical equilateral triangle in S2. Let

T1, T2, T3 be reflection of vertical bisector of each edge of △. Then

T1, T2, T3 are nonexpansive and
∩3

i=1 F (Ti) is one point set which is the

intersection of vertical bisector of edges. By Theorem 5.1 and 5.2, a

sequence generated by CQ projection method or shrinking projection

method is convergent to the point
∩3

i=1 F (Ti).
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