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Introduction

We study graph embedding problems that are related to an optimization problem max-

imizing the first nonzero eigenvalue of the graph Laplacian.

An embedding of a finite graph associates a point in a Euclidean space to each vertex

of the graph. Then the whole geometric graph, in which all pairs of adjacent vertices

are joined by arcs, is realized in the same Euclidean space by joining the image points of

adjacent vertices by straight line segments. (Notice that though we use the terminology

“embedding”, we allow different vertices are associated with a common point of the

Euclidean space.) In the graph embedding problem introduced by Göring-Helmberg-

Wappler [10, 11], one looks for a graph embedding such that the image points of all

vertices are located in the Euclidean space as far apart to each other as possible, while

keeping their affine barycenter at the origin and the distances of adjacent vertices equal

to or less than 1 (or length parameters in the generalized problem).

If a semidefinite programming problem, referred to as a primal problem, is given, a

new semidefinite programming problem is derived from it as a dual problem by appro-

priately defining a Lagrange function. Interpreting an eigenvalue maximization problem

as a semidefinite programming problem, Göring-Helmberg-Wappler [10] derived the em-

bedding optimization problem mentioned above as a dual problem. For a finite weighted

graph G = (V,E,w), where w ∈ (R≥0)
|E| is an edge weight, let L(G,w) be the graph

Laplacian with respect to w. The first eigenvalue of L(G,w) is zero and the second

eigenvalue is positive, when the graph G is connected. Fiedler [7] focused on the second

eigenvalue λ2(G,w), which is related to graph connectivity, and introduced the following

optimization problem:

Problem 0.1.

maximize λ2(G,w)

subject to
∑

ij∈E wij = |E|,
w ∈ (R≥0)

|E|.

Let â(G) be the optimal value of this problem.

Fiedler called the optimal value â(G) the absolute algebraic connectivity of G [7]. This

problem is associated with the following embedding problem via Lagrange primal-dual

approach to semidefinite programming problems by Göring et al. as mentioned above.
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Problem 0.2 (Problem 4.3).

maximize
∑

i∈V ||vi||2

subject to ||
∑

i∈V vi||2 = 0,

||vi − vj|| ≤ 1, ∀ij ∈ E,

vi ∈ Rn, ∀i ∈ V.

Example 1. For a complete graph, a regular simplex with side length one is an optimal

solution for Problem 0.2. This embedding is a unique optimal solution by regarding

the embeddings which differ by a rotation around the origin as essentially the same

embeddings.

Let s = t(· · · , si, · · · ) ∈ (R≥0)
n be a vertex weight vector and l = t(· · · , lij, · · · ) ∈

(R≥0)
|E| be an edge length vector. When defining a Laplacian, we assume that the

components of the vertex weight vector s are all positive. The following is the generalized

embedding problem.

Problem 0.3 (Problem 9.1).

maximize
∑

i∈V si||vi||2

subject to ||
∑

i∈V sivi||2 = 0,

||vi − vj|| ≤ lij, ∀ij ∈ E,

vi ∈ Rn, ∀i ∈ V.

The rotational dimension is defined by maximizing, over all s and l, the minimum

dimension of an optimal embedding.

Definition 0.4 (rotational dimension, Göring-Helmberg-Wappler [11]).

rotdimG(s, l) := min{dim span{vi | i ∈ V } |
(vi)i∈V is an optimal solution for Problem 0.3},

rotdim(G) := max{rotdimG(s, l) | s ∈ (N ∪ {0})|V |, l ∈ (N ∪ {0})|E|}.

Here dim span{vi | i ∈ V } is the dimension of the linear subspace spanned by (vi)i∈V .

The value rotdim(G) is called the rotational dimension of G.

The rotational dimension is a minor-monotone graph invariant. Several other minor-

monotone invariants or optimal embeddings related to the multiplicity of the second

Laplacian eigenvalue are also known, such as the Colin de Verdière number and the

valid representation. Van der Holst-Lovász-Schrijver present a survey on the Colin de

Verdière number in [22]. The valid representation is the graph embedding introduced by

Van der Holst-Laurent-Schrijver in [21].
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The rotational dimension is bounded by other graph invariants. For any graph G

ω(G)− 1 ≤ rotdim(G) ≤ tw(G) + 1 (0.1)

holds [11], where ω(G) is the clique number of G and tw(G) is the tree-width of G.

In this thesis, we mainly study the following two problems.

(i): The rotational dimension of a graph containing a large complete graph.

The rotational dimension of the complete graph on n vertices is n − 1. Since the

rotational dimension is a minor-monotone graph invariant, for any n vertices graph G

we have rotdim(G) ≤ n − 1. One of the main results is the characterization of the

complete graph by its rotational dimension.

Theorem 0.5 (Theorem 6.3). If G is a graph on n vertices, then

rotdim(G) = n− 1 if and only if G = Kn.

For the valid representation invariant λ(G) a similar result is known [21]. LetKn\{e}
be a graph obtained by removing one edge e from the complete graph Kn. Since an

arbitrary graph on n vertices which is not complete is a minor of Kn \ {e}, Theorem 0.5

is proved by showing that the rotational dimension of Kn \ {e} equals to n− 2.

Theorem 0.6 (Theorem 6.5).

rotdim(Kn \ {e}) = n− 2.

For this graph the optimal embedding for Problem 0.2 is found uniquely, and the

vertices of a complete subgraph Km are located at the vertices of an (m−1)-regular sim-

plex. In general, for an optimal embedding of an arbitrary graph its complete subgraph

Km is not embedded as an (m − 1)-regular simplex, but this statement is true under a

certain natural assumption.

We study rotational dimensions of graphs including large cliques such as Kn \ {e}.
We consider a chordal graph. For a chordal graph the bounds of the rotational dimension

(0.1) are tight. In fact, if G is a chordal graph, then we have

ω(G)− 1 ≤ rotdim(G) ≤ ω(G).

Applying the properties of a chordal graph, we may make a chordal graph larger while

keeping the rotational dimension constant. For example, we can determine the rotational

dimension of the graph of order n + k in which n vertices form Kn and each of the

remaining k vertices is adjacent to all the vertices ofKn. Note that this graph generalizes

Kn−2 \ {e}.
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(ii): Another embedding problem.

In [9], we introduced an embedding optimization problem which is different from that

introduced by Göring-Helmberg-Wappler.

Problem 0.7 (Problem 8.1).

minimize

∥∥∥∥∥ 1∑
i∈V si

∑
i∈V

sivi

∥∥∥∥∥
2

subject to
1∑

i∈V si

∑
i∈V

si||vi||2 = 1,

||vi − vj|| ≤ lij, ∀ij ∈ E,

vi ∈ Rn, ∀i ∈ V.

This problem is also related to an optimization problem concerning the smallest

nonzero eigenvalue of the graph Laplacian. We establish a relation between the optimal

values of Problems 0.3 and 0.7. It then follows that the optimal value of Problem 0.7

can be computed explicitly in terms of the optimal value of the eigenvalue optimization

problem. Further, we show that our embedding problem is also dual to the eigenvalue

optimization problem.

Theorem 0.8. Problem 0.7 is dual to the eigenvalue optimization problem via the La-

grange approach to semidefinite programming problems.

We present examples of graphs isomorphic to the 1-skeletons of regular and semi-

regular polyhedra. These polyhedra arise as optimal embeddings of the 1-skeleton graphs

for Problem 0.2. The fullerene graph C60 that is isomorphic to the 1-skeleton of a

truncated icosahedron is one example. The graph C60 has 60 vertices and 90 edges, 60

of which are pentagonal edges and the remaining 30 of which are hexagonal ones. For

the parameter l ≡ 1, the truncated icosahedron with side length one is obtained as an

optimal embedding of C60. Further, if we consider the case that the parameter l is given

by

lij =

{
a if ij is a pentagonal edge,

b if ij is a hexagonal edge,

then the truncated icosahedron in which the ratio of the length of a pentagonal edge to

that of a hexagonal edge is a : b is obtained as an optimal embedding for Problem 0.3.
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About this thesis

This thesis is organized as follows. In Part 1 we introduce the basic notions and results.

In Part 2 we recall the work on the optimal dimensions of graphs by Göring-Helmberg-

Wappler. We derive the embedding problem dual to the optimization problem whose

optimal value is the absolute algebraic connectivity. In addition we describe the prop-

erties of the optimal dimensions of graphs. In Part 3 we consider a graph obtained by

removing one edge from a complete graph, and find the optimal embedding and the

optimal dimension of this graph. We study the rotational dimension of a chordal graph.

With a given chordal graph G, we present a way to construct a larger chordal graph

containing G as a minor without changing the rotational dimension. In the final part,

we define a new embedding problem which is different from the problem introduced by

Göring et al. We study the relation between the two embedding problems, and show that

our embedding problem is also dual to the eigenvalue optimization problem. We present

examples of graphs for which these optimization problems can be explicitly solved.
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Part I

Preliminaries

This part provides basic concepts and results used in this thesis.

1 Linear Algebra

For m× n matrices A = (aij) and B = (bij), let ⟨·, ·⟩ be an inner product given by

⟨A,B⟩ = tr(tBA) =
m∑
i=1

n∑
j=1

aijbij.

Symn denotes the set of all n × n symmetric matrices. If a symmetric matrix X is

positive semidefinite, this is denoted by X ⪰ 0. All eigenvalues of a semidefinite matrix

are nonnegative.

Proposition 1.1. For a symmetric matrix X, the following are equivalent.

(i) X ⪰ 0,

(ii) ⟨X,Y ⟩ ≥ 0, ∀Y ⪰ 0.

Proof. See, e.g. Corollary 7.5.4 in [20].

Proposition 1.2. For A,B ∈ Symn, let λi(A), λi(B) and λi(A+B) be the eigenvalues

of A, B and A + B, respectively, where they are ordered as λ1 ≤ · · · ≤ λn. Then for

i = 1, · · · , n,
λ1(A) + λi(B) ≤ λi(A+B) ≤ λn(A) + λi(B).

Proof. See, e.g. Corollary 4.3.7 in [20].

If X is represented as X = tV V by using a square matrix V , then X is called a Gram

matrix.

Proposition 1.3. A matrix is positive semidefinite if and only if it is a Gram matrix.

Proof. For an n × n matrix X let {λi | i = 1, · · · , n} be the set of its eigenvalues. We

assume X ⪰ 0. Then λi ≥ 0 for i = 1, · · · , n and X is represented by a diagonal matrix

and an orthogonal matrix P as follows:

X = P

λ1

. . .

λn

 tP.
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Now by letting

V =


√
λ1

. . .
√
λn

 tP,

it follows that X = tV V , that is, X is a Gram matrix.

On the other hand, let X be a Gram matrix of the form X = tAA, where A is some

n× n matrix. For an arbitrary x ∈ Rn we obtain

txXx = tx tAAx = ⟨Ax,Ax⟩ ≥ 0.

Thus X is positive semidefinite.

Proposition 1.4. For X,Y ⪰ 0, the equation ⟨X,Y ⟩ = 0 holds if and only if XY is the

zero matrix.

Proof. It is clear that ⟨X,Y ⟩ = 0 holds when XY = 0. For the converse, if X and Y are

positive semidefinite matrices, then they can be represented by X = tV V and Y = tUU

using some square matrices V and U . Thus we have

⟨X,Y ⟩ = tr(XY ) = tr
(
tV (V tUU)

)
= tr

(
(V tUU) tV

)
= tr

(
V tU t(V tU)

)
.

If ⟨X,Y ⟩ = 0, then V tU is the zero matrix. Then XY = tV V tUU = 0.

2 Graph Theory

Unless otherwise noted, we deal with undirected and simple graphs. LetG = (V,E,w) be

a finite graph, where V = {1, · · · , n} is the vertex set, E = {ij | i, j ∈ V, i is adjacent to j}
is the edge set, w = t(· · ·wij · · · ) ∈ (R≥0)

|E| is an edge weight vector. Let Eij be a sym-

metric n × n matrix whose ii and jj components are 1, ij and ji components are −1,

and all other components are zero. The Laplacian matrix of G with an edge weight w is

defined by

L(G,w) =
∑
ij∈E

wijEij.

The Laplacian L(G,w) is positive semidefinite, because for x = t(x1, · · · , xn), a quadratic

form is
txL(G,w)x =

1

2

∑
i,j

wij(xi − xj)
2. (2.1)

The Laplacian L(G,w) of G has the eigenvalue 0 with the eigenvector e in which all

components are 1. Thus eigenvalues of L(G,w) are ordered as 0 = λ1(L(G,w)) ≤
λ2(L(G,w)) ≤ · · · ≤ λn(L(G,w)). The eigenvalues of the Laplacian have information

about the connectivity of a graph.
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Proposition 2.1. If G is a connected graph, then the geometric multiplicity of eigenvalue

0 is one.

Proof. Let x ∈ Ker(L(G,w)). Then the right-hand side of the equation (2.1) equals zero

and so

xi = xj, ∀ij ∈ E.

This means that all xi are equal, because G is connected. Then the dimension of

Ker(L(G,w)) is one.

Corollary 2.2. The number of components of a graph is equal to the geometric multi-

plicity of eigenvalue 0 of the Laplacian.

Minors of graphs are also important in our discussion.

Definition 2.3 (minor). A graph G′ obtained from a graph G by repeating three op-

erations (i) deletion of an isolated vertex in G, (ii) deletion of an edge in G, (iii)

contraction of an edge in G, is called a minor of G. We write G ⪰ G′.

The graph minor theory began with Wagner’s theorem that characterizes a planar

graph by using graph minor.

Definition 2.4 (planar graph). A planar graph is a graph that can be drawn on a plane

in such a way that no edges cross each other.

Theorem 2.5 (Wagner [23]). A graph G is planar if and only if G does not contain the

complete graph K5 or the complete bipartite graph K3,3 as a minor.

For outer planar graphs we have a similar characterization.

Definition 2.6 (outer planar graph). An outer planar graph is a graph that can be

drawn on a plane such that every vertex lies on the outer face.

Theorem 2.7 (Chartrand and Harary [3]). A graph G is outer planar if and only if G

does not contain the complete graph K4 or the complete bipartite graph K2,3 as a minor.

There is a survey on the graph minor theory in [16].

Definition 2.8. A tree-decomposition of a graph G = (V,E) is a tree T whose vertex

set V (T ) is a family of subsets of V , satisfying the following properties.

(i) V = ∪
U∈V (T )

U,

(ii) for any edge e ∈ E there exists U ∈ V (T ) such that e ⊂ U,

(iii) If U1, U2, U3 ∈ V (T ) and the path between U1and U2 contains U3,

then U3 ⊃ U1 ∩ U2.
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The width of a tree-decomposition T is the cardinality of the largest size subset U ∈ V (T )

of V minus 1, and the tree-width tw(G) of a graph G is the minimum width of a tree-

decomposition of G.

Example 2. The tree-width of the complete graph on n vertices is n− 1.

The tree-width is a minor-monotone graph invariant.

Proposition 2.9. If G′ is a minor of G, then tw(G′) ≤ tw(G).

Proof. If H is subgraph of G, then clearly tw(H) ≤ tw(G). Let G′ be a graph obtained

by contracting an edge ij to a vertex i′ from G. For a tree-decomposition T of G

we replace every {i, j}(∈ U ∈ V (T )) with i′. Then the resulting graph T ′ is a tree-

decomposition of G′, and the width of T ′ is smaller than the width of T . Therefore we

obtain tw(G′) ≤ tw(G).

The tree-width is bounded below by the clique number.

Definition 2.10. The clique number ω(G) of a graph G is the number of vertices of a

largest complete subgraph in G.

Proposition 2.11. We have

tw(G) ≥ ω(G)− 1.

Proof. By Example 2 and Proposition 2.9 this proof is completed.

See, e.g. [1] for details about tree-decompositions and the tree-width.

3 Duality of semidefinite programming problems and

KKT-conditions

A semidefinite programming problem is a mathematical optimization problem over the

cone of positive semidefinite matrices. A semidefinite programming problem minimizes

or maximizes a linear function subject to linear equality and inequality constraints,

and additionally, positive semidefinite constraints. Although semidefinite programming

problems generalize linear programming problems which have only linear constraints,

they are not much harder to solve. Most interior-point methods for linear programming

problems are generalized to semidefinite programming problems. Semidefinite program-

ming problems are studied in a wide range of fields. There are details, applications and

computational methods of semidefinite programming problems in [13].
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In this section we will study the dual problem of a semidefinite programming problem

and the gap between the primal and dual problems.

For X ∈ Symn we define a linear operator A : Symn → Rm as

AX =

 ⟨A1, X⟩
...

⟨Am, X⟩

 ,

where A1, · · · , Am ∈ Symn. Also let tA : Rm → Symn be a linear operator that satisfies

⟨AX, y⟩ = ⟨X, tAy⟩, ∀X ∈ Symn,∀y ∈ Rm.

Then

tAy =
m∑
i=1

yiAi

holds. A semidefinite programming problem is an optimization problem that minimizes

⟨C,X⟩ subject to AX = b for X ⪰ 0, where C ∈ Symn and b ∈ Rm are constant. This

is expressed in the following form:

minimize ⟨C,X⟩
subject to AX = b,

X ⪰ 0.

(3.1)

In addition to this form, various variations of semidefinite programming problems that

have constraints including inequalities are also formulated.

Let X ∈ Symn and y ∈ Rm. We define the Lagrange function as follows:

L(X, y) = ⟨C,X⟩+ ⟨b−AX, y⟩.

It is easy to see that the following inequality holds.

inf
X⪰0

sup
y∈Rm

L(X, y) ≥ sup
y∈Rm

inf
X⪰0

L(X, y). (3.2)

The left-hand side of (3.2) is exactly the problem (3.1).

Proposition 3.1. The problem (3.1) is expressed as inf
X⪰0

sup
y∈Rm

L(X, y).

Proof. Since L(X, y) = ⟨C,X⟩+ ⟨b−AX, y⟩, observe that

sup
y∈Rm

L(X, y) =

{
⟨C,X⟩ if AX = b,

∞ if AX ̸= b.

Thus

inf
AX=b,
X⪰0

⟨C,X⟩ = inf
X⪰0

sup
y∈Rm

L(X, y).
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The right-hand side of the inequality (3.2) is the dual problem, which we will closely

look at now. First, L(X, y) is organized in terms of X as follows:

L(X, y) = ⟨b, y⟩+ ⟨C − tAy,X⟩.

The infimum of L(X, y) with respect to X ⪰ 0 is therefore

inf
X⪰0

L(X, y) = ⟨b, y⟩+ inf
X⪰0

⟨C − tAy,X⟩.

We show that

inf
X⪰0

L(X, y) =

{
⟨b, y⟩ if 0 ⪯ C − tAy,

−∞ otherwise.

We consider the following two cases.

Case (i) : 0 ⪯ C − tAy. By Proposition 1.1,

⟨C − tAy,X⟩ ≥ 0

for X ⪰ 0. Furthermore, the equality holds when X = 0. Hence, we obtain

inf
X⪰0

L(X, y) = ⟨b, y⟩.

Case (ii) : 0 ⪯/ C − tAy. By Proposition 1.1 there exists X̃ ⪰ 0 such that

⟨C − tAy, X̃⟩ < 0.

For a positive number a, the matrix aX̃ is positive semidefinite and

0 > a⟨C − tAy, X̃⟩ = ⟨C − tAy, aX̃⟩.

If a increases to infinity, then ⟨C − tAy, aX̃⟩ diverges to negative infinity. Thus we have

inf
X⪰0

L(X, y) = −∞.

As a result, the right-hand side of the inequality (3.2) boils down to

sup
y∈Rm

inf
X⪰0

L(X, y) = sup
0⪯C−tAy,

y∈Rm

⟨b, y⟩,

and the optimization is now

maximize ⟨b, y⟩
subject to 0 ⪯ C − tAy,

y ∈ Rm.
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Let p∗ be an optimal value of the primal problem and d∗ be an optimal value of the dual

problem. The inequality (3.2) is written as

p∗ ≥ d∗.

This property is called a weak duality. In general, the equality does not necessarily hold

for a semidefinite programming problem. The situation where the equality holds is called

a strong duality, or is said that there is no duality gap. The conditions for the equality

to occur are discussed in [13].

The Karush-Kuhn-Tucker(KKT)-conditions can be used to determine optimal solu-

tions. See [2] for the details of KKT-conditions. Now let X ∈ Symn and y ∈ Rm be

feasible solutions, that is, these solutions satisfy the constraints. Objective values of

primal and dual problem satisfy

⟨C,X⟩ ≥ ⟨b, y⟩.

By the Lagrange function the inequality becomes

⟨C − tAy,X⟩ − ⟨b−AX, y⟩ ≥ 0.

When there is no duality gap, feasible solutions X, y satisfy

⟨C − tAy,X⟩ = 0,

⟨b−AX, y⟩ = 0

if and only if these feasible solutions are optimal. These formulae are called KKT-

conditions. If there is no duality gap and one optimal solution is obtained, then for

the other unresolved problem a feasible solution that satisfies the KKT-conditions is

optimal.
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Part II

Second eigenvalue optimization and

graph embedding problem

4 Duality of the embedding problem of Göring-Helmberg-

Wappler

In this section we sketch the procedure deriving the dual problem from the Problem

0.1. First, Problem 0.1 is rewritten in a standard form of a semidefinite programming

problem. To see this we consider a new constraint L(G,w)+µe te−λI ⪰ 0, where µ ∈ R
and e is an n-column vector in which all components are 1. In this constraint µ shifts

the eigenvalue 0 to a sufficiently large value. Thus λ attains the second eigenvalue of

L(G,w). Then Problem 0.1 is rewritten as follows.

maximize λ

subject to L(G,w) + µe te− λI ⪰ 0,∑
ij∈E

wij = |E|,

w ∈ (R≥0)
|E|,

λ, µ ∈ R.

The optimal value of this problem is equal to â(G). Next we regard this problem as a

minimization of 1/λ. Let w̃ij = wij/λ and µ̃ = µ/λ. We are led to the following problem.

Problem 4.1.

(P) : minimize
∑
ij∈E

w̃ij

subject to
∑
ij∈E

w̃ijEij + µ̃e te− I ⪰ 0,

w̃ ∈ (R≥0)
|E|,

µ̃ ∈ R.

The optimal value of this problem is equal to |E|/â(G). We define the Lagrange

function with w̃ ∈ (R≥0)
|E|, µ̃ ∈ R and X ⪰ 0 as follows.

L(w̃, µ̃, X) :=
∑
ij∈E

w̃ij − ⟨
∑
ij∈E

w̃ijEij + µ̃e te− I,X⟩

=
∑
ij∈E

w̃ij(1− ⟨Eij, X⟩)− µ̃⟨e te,X⟩+ ⟨I,X⟩.
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It is straightforward to see that the following inequality holds.

|E|
â(G)

= inf
w̃∈(R≥0)

|E|,
µ̃∈R

sup
X⪰0

L(w̃, µ̃, X) ≥ sup
X⪰0

inf
w̃∈(R≥0)

|E|,
µ̃∈R

L(w̃, µ̃, X). (4.1)

The left-hand side is equal to the optimal value of the primal problem (P). The right-

hand side is the dual problem :

Problem 4.2.

(D) : maximize ⟨I,X⟩
subject to ⟨e te,X⟩ = 0,

⟨Eij, X⟩ ≤ 1, ∀ij ∈ E,

X ⪰ 0.

By the constraint X ⪰ 0, Proposition 1.3 implies that X = tV V using an n × n

matrix V = (v1 · · · vn). Then we can rewrite Problem 4.2 as a problem on vi’s :

Problem 4.3 (Problem 0.2).

maximize
∑

i∈V ||vi||2

subject to ||
∑

i∈V vi||2 = 0,

||vi − vj|| ≤ 1, ∀ij ∈ E,

vi ∈ Rn, ∀i ∈ V.

Since vi’s are regarded as position vectors of points in a Euclidean space, indexed by

the vertices of the graph, they can be identified with a mapping from the vertex set of

the graph into a Euclidean space.

Definition 4.4 (graph embedding). For a graph G = (V,E) on n vertices. A mapping

v : V → Rn is called an embedding of the graph G. If v(i) = vi for i ∈ V , the collection

of points (vi)i∈V is also called an embedding of G.

As mentioned in the introduction, it is not assumed that the mapping v is injective.

We determine optimal embeddings, that is, optimal solutions of Problem 4.3 for a star

graph.

Example 3 ([10]). K1,m denotes a complete bipartite graph with the vertex set V =

{0} ∪ {1, · · · ,m} and the edge set E = {0i | i = 1, · · · ,m} for m ≥ 2. K1,m is called

a star graph. We have one optimal embedding that the center vertex 0 is placed at the

origin and the others {1, · · · ,m} are arranged in the vertices of an (m−1)-regular simplex

whose circumscribed sphere has radius one. The objective value of this embedding is m.
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However, there are other solutions that are realized in lower dimensional space and have

the same objective value.

For even m ≥ 2 an optimal embedding in R1 is obtained by arranging the center

vertex 0 at the origin, half of the other vertices at +1 and the other half at −1. The

objective value of this embedding is also m. For odd m ≥ 3 the following solution (vi)i∈V

is an optimal embedding in R2 with the objective value m.

v0 = 0,

vi =


(
− 1

n−1
,
√

1−
(

1
n−1

)2)
if i ≥ 2 is even,(

− 1
n−1

,−
√

1−
(

1
n−1

)2)
if i is odd.

In [10], the authors show that there is no duality gap for Problems 4.1 and 4.2, that

is, the equality holds in the inequality (4.1). Thus the optimal value of Problem 4.2 is

equal to |E|/â(G).

For any parameters s ∈ (R>0)
n and l ∈ (R≥0)

|E|, the following problem is derived as

a dual problem of Problem 0.3 by similar discussion, and there is no duality gap.

Problem 4.5 (Problem 8.2).

maximize λ2(G, (s, w))

subject to
∑

ij∈E wijl
2
ij =

∑
ij∈E l2ij,

w ∈ (R≥0)
|E|,

Here λ2(G, (s, w)) is the first nonzero eigenvalue of the Laplacian DL(G,w)D, where

D = diag(s
−1/2
1 , · · · , s−1/2

n ).

In general, when there is no duality gap, both feasible solutions satisfy the KKT-

conditions if and only if these feasible solutions are optimal. In the present case, for

optimal w̃ and vi’s they are expressed as follows.
(i) w̃ij(1− ⟨Eij, X⟩) = 0, ∀ij ∈ E,

(ii) ⟨
∑
ij∈E

w̃ijEij − I,X⟩ = 0.
(4.2)

Conversely, if feasible solutions satisfy these conditions, then these solutions are optimal

and there is no duality gap.

In (i) when w̃ij > 0, ||(vi − vj)||2 = 1 should holds. This means that the distance of

vi and vj is maximized in the optimal embedding.
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The formula (ii) gives

vi =
∑
ij∈E

w̃ij(vi − vj), ∀i ∈ V. (4.3)

These are equivalent to 
tv1
...

tvn

 = L(G, w̃)


tv1
...

tvn

 .

This gives that vi’s are the eigenfunctions of the first nonzero eigenvalue of the Laplacian

L(G,w). Thus, the dimension of the linear subspace spanned by the optimal vi’s are less

than the multiplicity of the first nonzero eigenvalue of L(G,w).

5 Graph embedding problem and rotational dimen-

sion

In the previous section we showed that the dimension of the optimal embedding is

bounded by the multiplicity of the second eigenvalue. However, this bound is not nec-

essarily optimal, and better bounds were studied by Göring et al. [10].

A separator is a vertex subset whose removal divides a graph into two or more com-

ponents. The Separator-Shadow theorem is one of the ingredients that give a better

bound.

Theorem 5.1 (Separator-Shadow [10]). Let S be a separator that divides G = (V,E,w)

into two components C1 and C2 ⊂ V , and let (vi)i∈V be an optimal solution for Problem

0.3. Then at least one of C1 and C2, say C1, satisfies

conv{0, vi} ∩ conv{vs | s ∈ S} ̸= ∅, ∀i ∈ C1.

Here, conv{0, vi} is a line segment connecting the origin and vi, and conv{vs | s ∈ S}
is the convex hull of the set {vs | s ∈ S}.

If we regard the origin as a light source and the convex hull of the separator’s points

as a solid body, then all the vertices of either components are in the shadow of the

separator. By the Separator-Shadow theorem, the dimension of the subspace spanned

by S and one component which is not contained in the shadow of S attains the optimal

dimension for G. In the case when the convex hull of the separator contains the origin,

this theorem is not very effective, but even in that situation the dimension can still be

bounded [10].

Göring-Helmberg-Wappler gave the tree-width bound of the minimum dimension of

an optimal embedding.
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Theorem 5.2 ([10], [11]). For any graph G and any parameters s and l, there exists an

optimal embedding whose dimension is less than or equal to tw(G) + 1.

Note that the rotational dimension has the same bound. Next we describe some facts

about the rotational dimension.

Theorem 5.3 (minor monotonicity of rotational dimension [11]). If G′ is a minor of

G, then

rotdim(G) ≥ rotdim(G′).

In the definition of the rotational dimension we can replace s ∈ (N ∪ {0})|V |, l ∈
(N∪{0})|E| by s ∈ (R≥0)

|V |, l ∈ (R≥0)
|E| or s ∈ (R>0)

|V |, l ∈ (R>0)
|E| [11]. When a graph

G is disconnected, the rotational dimension of G is defined as

rotdim(G) := max{rotdim(C) | C is a component of G}.

Graphs having low rotational dimensions are classified as follows.

Theorem 5.4 ([11]).

• rotdim(G) = 0 if and only if G does not have edges.

• rotdim(G) ≤ 1 if and only if G is a union of paths.

• rotdim(G) ≤ 2 if and only if G is outer planar.
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Part III

The rotational dimension of a graph

containing a large complete graph

In this part, we study rotational dimensions of graphs containing a large complete sub-

graph. These are the main results of [8].

6 Rotational dimension of a complete graph

In this section we prove that the rotational dimension of graph on n vertices is bounded

above by n − 1 and the complete graph is the only n vertices graph whose rotational

dimension attains this upper bound.

Proposition 6.1. If G is a graph on n vertices, then

rotdim(G) ≤ n− 1.

Proof. For any parameters s, l and optimal solution (vi)i∈V we have dim span{vi | i ∈
V } ≤ n − 1, because the vectors vi’s are not linearly independent by the constraint

||
∑

i∈V sivi||2 = 0. Therefore rotdim(G) ≤ n− 1.

When each entry in the parameters s, l is one, a regular simplex is a unique optimal

solution of a complete graph. Here we regard the embeddings which differ by a rotation

around the origin as the same embeddings. Then rotdimKn(1, 1) = n− 1 (see Example

7 in [10]).

Proposition 6.2.

rotdim(Kn) = n− 1.

Proof. Since rotdim(Kn) ≥ rotdimKn(1, 1) = n − 1, we obtain rotdim(Kn) = n − 1 by

Proposition 6.1.

We can immediately see that rotdim(G) ≥ ω(G)−1 by this proposition and Theorem

5.3, where ω(G) is the clique number of G.

The following theorem is the main result in this section. We characterize the complete

graph by its rotational dimension.

Theorem 6.3 (Theorem 0.5). If G is a graph on n vertices, then
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rotdim(G) = n− 1 if and only if G = Kn.

A similar property for the valid representation invariant λ(G) is obtained by Van

der Holst-Laurent-Schrijver in [21]. In order to prove Theorem 6.3, we consider a graph

obtained by connecting complete graphs.

Definition 6.4. Let G1 and G2 be graphs with cliques of the same size. Let G be the

graph obtained by identifying the respective cliques in the disjoint union of G1 and G2.

This G is called the clique sum and denoted by G = G1 ⊕G2.

A graph obtained by removing one edge from the complete graph Kn is the clique

sum of two Kn−1’s. The rotational dimension of that graph is calculated as follows.

Theorem 6.5 (Theorem 0.6). Let e ∈ E. Then

rotdim(Kn \ {e}) = n− 2.

Proof. The fact rotdim(Kn \ {e}) ≥ n − 2 holds by Theorem 5.3 because Kn \ {e}
contains Kn−1 as a minor. Therefore we prove the other inequality. Let V be the

vertex set of Kn \ {e}, and s, l be parameters all of whose components are positive.

If rotdimKn\{e}(s, l) ≤ n − 2 is shown for such parameters, then we can obtain the

same inequality for parameters whose components are nonnegative. Let (vi)i∈V be an

optimal solution for Problem 0.3 that attains rotdimKn\{e}(s, l). We regard Kn \ {e}
as Kn−1 ⊕ Kn−1 with a common clique Kn−2 and let S be this common clique Kn−2.

Without loss of generality, let S = V \ {1, 2}.

Case (i) : 0 ̸∈ conv(S). Note that the dimension of the linear subspace span(S)

is n − 2 or less. By Theorem 5.1 we see that v1 ∈ span(S) or v2 ∈ span(S), say the

former. We also have v2 ∈ span(S) by the equilibrium constraint ||
∑

i∈V sivi||2 = 0.

Thus span(V ) ⊂ span(S), and dim span(V ) ≤ n− 2.

Case (ii) : 0 ∈ conv(S). Let v1 and v2 be vectors which are not included in the

common clique. Since 0 ∈ aff-span(S ∪ {v1}) holds, we also have dim span(S ∪ {v1}) ≤
n−2. By the equilibrium constraint we also have v2 ∈ span(S∪{v1}), and dim span(V ) ≤
n− 2.

Proof of Theorem 6.3. Since rotdim(Kn) = n− 1, it remains to verify that if G ̸= Kn,

then rotdim(G) ≤ n− 2. If G is an arbitrary graph on n vertices which is not complete,

then Kn \ {e} ⪰ G. By Theorems 5.3 and 6.5, we have n − 2 = rotdim(Kn \ {e}) ≥
rotdim(G).

Even if an optimal dimension can be calculated, it is generally difficult to find an

optimal embedding that attains the optimal dimension. However, for example, when all
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parameters are one, this is possible for Kn and Kn \{e}. The regular simplex is the only

optimal embedding of the complete graph. For a general graph its complete subgraph

may be embedded similarly.

Proposition 6.6. Let G = (V,E) be an n vertices graph. For a complete subgraph Km

of G and an optimal embedding (vi)i∈V of Problem 0.2, if ||vi − vj|| = 1 holds for every

ij ∈ E(Km) , then the vectors corresponding to the vertices of Km form an (m − 1)-

regular simplex with side length 1.

Proof. It is clear when m is 1 or 2. Assuming that the claim is satisfied up to m ≥ 2

vertices, we consider where a new vertex can be added. This new vertex may be placed

on a straight line which is orthogonal to the given (m − 1)-regular simplex with side

length 1 and passes through the center of mass of the simplex. Thus we obtain an

m-regular simplex with side length 1.

If we apply Proposition 6.6 to Kn \ {e}, the configuration of an optimal embedding

can be found.

Proposition 6.7. When s ≡ 1 and l ≡ 1, we have

rotdimKn\{e}(1, 1) = n− 2.

The optimal embedding that gives this dimension exists uniquely.

Proof. Let m = n − 2, {1, · · · ,m} be the vertex set of the common clique Km when

considered as Kn \ {e} = Kn−1 ⊕Kn−1, and let m+ 1, m+ 2 be the other vertices. We

will prove that the following embedding (6.1) is the only optimal embedding of Kn \{e}.

• The vertices of Km are mapped bijectively onto the vertices of

the (m− 1)-regular simplex S inscribed in the (m− 1)-sphere

of radius rm =
√

(m− 1)/2m.

• Two vertices m+ 1 and m+ 2 are placed on the straight line

that is orthogonal to S so that they are centrally symmetric.

(6.1)

Let (ṽi)i∈V be the embedding described above. Note that the second property implies

that ||ṽm+1|| = ||ṽm+2|| =
√
(m+ 1)/2m since ||ṽi − ṽj|| = 1 for i = 1, · · · ,m and

j = m+ 1,m+ 2.

First we verify that (ṽi)i∈V is optimal. This embedding is obviously feasible, and the

objective value is (m2 +m+ 2)/2m. On the other hand,

w̃ij =


1

m
− 2

m2
if 1 ≤ i, j ≤ m,

1

m
if 1 ≤ i ≤ m, j = m+ 1 or m+ 2

(6.2)
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is feasible solution for Problem 4.1, because

L(G, w̃) + µ̃e te− I =


2/m2 0

0 1/m

 ⪰ 0

is satisfied where µ̃ = 1/m. This solution is found as follows. Let

w̃ij =

 a if 1 ≤ i, j ≤ m,

b if 1 ≤ i ≤ m, j = m+ 1 or m+ 2

by taking the symmetry of the graph into account. By inserting this w̃ and (ṽi)i∈V into

the KKT-condition (4.3)

ṽi =
∑
ij∈E

w̃ij(ṽi − ṽj), ∀i ∈ V,

we obtain (6.2). For this edge weight the objective value is also (m2+m+2)/2m. Since

both objective values are equal, w̃ and (ṽi)i∈V are both optimal.

Next, we give an arbitrary optimal embedding (vi)i∈V . By inserting w̃ and (vi)i∈V

into the KKT-conditions (4.2), we obtain

||vi − vj|| = 1, ∀ij ∈ E,∑
1≤i≤m

vi = 0,

vm+1 + vm+2 = 0.

Thus, by Proposition 6.6 this embedding is exactly (6.1).

7 Rotational dimension of a chordal graph

In the Separator-Shadow Theorem the upper bound for the optimal dimension becomes

tight if the chosen separator has strong connectivity close to that of a clique. A chordal

graph has the required structure. A chordal graph is a graph in which all cycles of length

4 or more have a chord that is an edge connecting two nonadjacent vertices of this cycle.

The inequality tw(G) ≥ ω(G) − 1 holds for a general graph G by Proposition 2.11. In

fact, the equality holds for a chordal graph (see, e.g. [12]). For any graph G

ω(G)− 1 ≤ rotdim(G) ≤ tw(G) + 1 (7.1)
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holds by Theorems 5.2, 5.3 and Proposition 6.2. It turns out that those bounds are tight

for a chordal graph. In fact, if G is a chordal graph, then tw(G) ≥ ω(G)− 1 holds and

so (7.1) becomes

ω(G)− 1 ≤ rotdim(G) ≤ ω(G).

Example 4. Let G(n) = Kn+1 ⊕Kn+1 ⊕Kn+1 with the common clique Kn, that is, G(n)

is the graph of order n + 3 in which n vertices form Kn and each of the remaining 3

vertices is adjacent to all the vertices of Kn. Then for n ≥ 4 we have

rotdimG(n)(1, 1) = n+ 1.

Detailed calculation is given in [10].

Since G(n) is a chordal graph and ω(G(n)) = n+ 1, we conclude

rotdim(G(n)) = n+ 1, n ≥ 4.

Using this fact, we can calculate the rotational dimension of the graph G(n, k) = Kn+1⊕
Kn+1 ⊕ · · · ⊕Kn+1 which is the k-clique sum with the common clique Kn for n ≥ 4 and

k ≥ 3. Note that G(n, 1) = Kn+1, G(n, 2) = Kn+2 \ {e} and G(n, 3) = G(n). By

G(n) ⪯ G(n, k) and the evaluation by the clique number, we obtain

rotdim(G(n, k)) = n+ 1.

Rotational dimensions of G(n, k) for n ≥ 4 and k ≥ 1 are as follows.

rotdim(G(n, k)) =

{
n if k = 1, 2,

n+ 1 if k ≥ 3.

Applying the properties of a chordal graph, we calculate the rotational dimension of

some large graphs.

Theorem 7.1. Let G be a chordal graph that satisfies rotdim(G) = ω(G). Also, let Ĝ

be a chordal graph containing G as a subgraph. If ω(Ĝ) = ω(G), then

rotdim(Ĝ) = rotdim(G).

Proof. Since tw(Ĝ) = ω(Ĝ)−1 = ω(G)−1, we obtain rotdim(Ĝ) ≤ tw(Ĝ)+1 = ω(G) =

rotdim(G). On the other hand, rotdim(G) ≤ rotdim(Ĝ) by Theorem 5.3.

The technique in this theorem is used to obtain rotdim(G(n, k)) = n+ 1 for k ≥ 4.
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Part IV

Another embedding problem and

spectral gap of a finite graph

In this part, we study an embedding problem which is different from the problem derived

by Göring-Helmberg-Wappler. In [9], we introduced this embedding problem.

8 Another embedding problem

Set M :=
∑

i∈V si and L2 :=
∑

ij∈E l2ij, where s ∈ (R>0)
n and l ∈ (R≥0)

|E|. The affine

barycenter of v := (vi)i∈V , where vi ∈ Rn, is denoted by bar(v) = 1
M

∑
i∈V sivi. We

consider the following optimization problem.

Problem 8.1 (Problem 0.7).

minimize ∥ bar(v)∥2

subject to 1
M

∑
i∈V si||vi||2 = 1,

||vi − vj|| ≤ lij, ∀ij ∈ E,

vi ∈ Rn, ∀i ∈ V.

Let δ(G, s, l) be the optimal value of this problem.

The first nonzero eigenvalue of the Laplacian is called the spectral gap. Our first

observation is that this problem is related to an optimization problem regarding the

spectral gap of the Laplacian, which we now review. First, we reiterate the following

problem.

Problem 8.2 (Problem 4.5).

maximize λ2(G, (s, w))

subject to
∑

ij∈E wijl
2
ij = L2,

w ∈ (R≥0)
|E|.

Here λ2(G, (s, w)) is the first nonzero eigenvalue of the Laplacian ∆(s,w) := DL(G,w)D,

where D = diag(s
−1/2
1 , · · · , s−1/2

n ). Let σ(G, s, l) be the optimal value of this problem.

Remark 1. λ2(G, (s, w)) is characterized variationally as

λ2(G, (s, w)) = inf

∑
ij∈E wij||vi − vj||2∑

i∈V si||vi − bar(v)||2
,

where the infimum is taken over all non-constant maps v : V ∋ i 7→ vi ∈ Rn.
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Remark 2. When s ≡ 1 and l ≡ 1, note that the optimal value σ(G, s, l) is exactly

â(G), the absolute algebraic connectivity of G, studied by Fiedler [7] (discussed in In-

troduction).

The following proposition is the key to relate the two optimization problems.

Proposition 8.3. Let G = (V,E) be a finite connected graph equipped with a vertex

weight s and a length parameter l. For an edge weight w satisfying∑
ij∈E

wijl
2
ij = L2, (8.1)

we have

δ(G, s, l) ≥ 1− L2/M

λ2(G, (s, w))
. (8.2)

In (8.2), the equality holds if and only if there exists v satisfying

1

M

∑
i∈V

si||vi||2 = 1,

||vi − vj|| ≤ lij, ∀ij ∈ E,

(8.3)

such that

(i) wij(l
2
ij − ∥vi − vj∥2) = 0, ∀ij ∈ E,

(ii) ∆(s,w)vi = λ2(G, (s, w))(vi−bar(v)), that is, each component of the map vi−bar(v)

is an eigenvector of the eigenvalue λ2(G, (s, w)) of the Laplacian ∆(s,w).

Proof. Observe that

∥ bar(v)∥2 =
1

M

∑
i∈V

si∥vi∥2 −
1

M

∑
i∈V

si∥vi − bar(v)∥2

≥ 1

M

∑
i∈V

si∥vi∥2

− 1

M

1

λ2(G, (s, w))

∑
ij∈E

wij∥vi − vj∥2

≥ 1− 1

M

1

λ2(G, (s, w))

∑
ij∈E

wijl
2
ij

= 1− 1

M

L2

λ2(G, (s, w))
.

The assertion on the equality case is clear.

Since the left-hand side of (8.2) does not depend on w, we obtain the following.

27



Corollary 8.4. Let G = (V,E) be a finite connected graph equipped with a vertex weight

s and a length parameter l. Then we have

δ(G, s, l) ≥ 1− L2/M

σ(G, s, l)
. (8.4)

In (8.4), the equality holds if and only if there exist an edge weight w and v satisfying

(8.3) and the two conditions (i) and (ii) in Proposition 8.3.

Remark 3. The conditions for the equality case in Proposition 8.3 and Corollary 8.4

coincide with the so-called KTT-conditions associated with Problems 8.1 and 8.2 which

are shown to be dual to each other in Section 11.

Example 5. Let Gp be the incidence graph of the projective plane P2(Fp) over the field

Fp = Z/pZ, where p is a prime number. Since P2(Fp) has p
2 + p+1 lines and p2 + p+1

points with p + 1 points on every line and p + 1 lines through every point, Gp is a

(p + 1)-regular bipartite graph with 2(p2 + p + 1) vertices. Define weights s, w and a

length parameter l by

si = p+ 1, ∀i ∈ V,

wij = 1, lij = 1, ∀ij ∈ E,

so that the normalization (8.1) is satisfied and L2/M = 1/2. By a result of Feit and

Higman [6], we have λ2(Gp, (s, w)) = 1−
√
p

p+1
, and therefore

1− L2/M

λ2(Gp, (s, w))
=

p+ 1− 2
√
p

2(p+ 1−√
p)
.

On the other hand, Problem 8.1 for Gp is solved in [14], and the solution v satisfies

⟨vi, vj⟩ =


1
2

if dGp(u, v) = 1,
p−1−√

p

2p
if dGp(u, v) = 2,

p2−p−(p+1)
√
p

2p2
if dGp(u, v) = 3,

where dGp is the standard graph distance on V in the graph Gp. It follows that

δ(G, s, l) =

∥∥∥∥∥ 1

M

∑
i∈V

sivi

∥∥∥∥∥
2

=
p2 + 1− (p+ 1)

√
p

2(p2 + p+ 1)
=

p+ 1− 2
√
p

2(p+ 1−√
p)
.

Thus the equality holds in (8.2) (and hence in (8.4)). In particular, when the vertex

weight s ≡ p + 1 and the parameter l ≡ 1 are fixed, the choice of edge weight w ≡ 1

maximizes the spectral gap λ2(Gp, (s, w)) over all edge weights subject to the normal-

ization (8.1), and σ(G, s, l) = 1−
√
p

p+1
.
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9 Relation between optimization problems

In [10, 11] optimization problems similar to those in Section 8 are considered. Again, the

problems are concerned with graph embeddings and the spectral gap of the Laplacian,

and very importantly they are dual to each other. In this section, after reviewing this

duality, we discuss how our problems are related to those in [10, 11]. (In fact, our

problems 8.1 and 8.2 are also dual to each other. This will be discussed in Section 11.)

We first reiterate the embedding problem of Göring-Helmberg-Wappler.

Problem 9.1 (Problem 0.3).

maximize 1
M

∑
i∈V si||vi||2

subject to ||
∑

i∈V sivi||2 = 0,

||vi − vj|| ≤ lij, ∀ij ∈ E,

vi ∈ Rn, ∀i ∈ V.

Let ν(G, s, l) be the optimal value of this problem.

It is shown in [11] that Problem 9.1 is dual to Problem 8.2. By semidefinite duality

theory together with strict feasibility, they deduce that the optimal values of the two

problems (are attained and) coincide. We record this fact as follows.

Theorem 9.2 ([11]). For any finite connected graph G = (V,E) equipped with a vertex

weight s and a length parameter l, we have

ν(G, s, l) =
L2/M

σ(G, s, l)
. (9.1)

Remark 4. The inequality

ν(G, s, l) ≤ L2/M

σ(G, s, l)
(9.2)

is an analogue of (8.4) and can be proved by a similar argument. Indeed, if v satisfies

the constraints ∥∥∥∥∥∑
i∈V

sivi

∥∥∥∥∥
2

= 0,

||vi − vj|| ≤ lij, ∀ij ∈ E,

(9.3)

then ∑
i∈V

si∥vi∥2 =
∑
i∈V

si∥vi − bar(v)∥2 (9.4)

≤ 1

λ2(G, (s, w))

∑
ij∈E

wij∥vi − vj∥2

≤ L2

λ2(G, (s, w))
.
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Therefore, (9.2) follows.

Let w and v be optimal solutions for Problems 8.2 and 9.1, respectively. Then the

inequalities in (9.4) become equalities, and hence each component of v has to be an

eigenvector of the eigenvalue λ2(G, (s, w)) of ∆(s,w).

By combining (8.4) and (9.1), we obtain

δ(G, s, l) ≥ 1− L2/M

σ(G, s, l)
= 1− ν(G, s, l).

The following proposition gives a more precise relation between Problems 8.1 and 9.1

concerning optimal embeddings.

Proposition 9.3. For any finite connected graph G = (V,E) equipped with a vertex

weight s, we have

δ(G, s, l) = max {1− ν(G, s, l), 0} . (9.5)

Proof. Let v = (vi)i∈V be an optimal solution for Problem 8.1. Then (ui := vi −
bar(v))i∈V satisfies the constraints (9.3) of Problem 9.1. Since∑

i∈V

si∥ui∥2 =
∑
i∈V

si∥vi∥2 −M∥ bar(v)∥2

= M(1− δ(G, s, l)),

we obtain

ν(G, s, l) ≥ 1− δ(G, s, l), or δ(G, s, l) ≥ 1− ν(G, s, l).

The other way around, let v be an optimal solution for Problem 9.1. We treat the

following two cases separately: (i) ν(G, s, l) > 1, (ii) ν(G, s, l) ≤ 1. In case (i),

(u :=
√

1/ν(G, s, l) v)i∈V

satisfies the constraints (8.3) of Problem 8.1. Since∥∥∥∥∥ 1

M

∑
i∈V

siui

∥∥∥∥∥
2

=
1

M2ν(G, s, l)

∥∥∥∥∥∑
i∈V

sivi

∥∥∥∥∥
2

= 0,

we obtain δ(G, s, l) = 0. In case (ii), define ui’s by

ui = vi +
√
1− ν(G, s, l)) e, i ∈ V,

where e is any unit vector in R|V |. Then ui’s satisfy the constraints (8.3) of Problem 8.1,

and ∥∥∥∥∥ 1

M

∑
i∈V

siui

∥∥∥∥∥
2

= 1− ν(G, s, l).
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Therefore,

δ(G, s, l) ≤ 1− ν(G, s, l).

We may now conclude (9.5).

Remark 5. Combining Proposition 9.3 with Theorem 9.2, we obtain

δ(G, s, l) = max

{
1− L2/M

σ(G, s, l)
, 0

}
.

This improves the inequality (8.4) of Corollary 8.4.

10 Optimal embeddings of polyhedra

In this section, we consider highly-symmetric graphs isomorphic to the 1-skeletons of reg-

ular and semi-regular polyhedra, and decide their optimal embeddings for Problem 9.1.

For such a graph equipped with the parameters w ≡ 1, s ≡ 1 and l ≡ 1, Padrol-Sureda

and Pfeifle discuss in [18] that the arrangement of the vertices by the eigenfunctions of

the non-weighted Laplacian reproduces the polyhedron. For Problem 9.1, when the edge

parameter l is not uniform but has symmetry, a polyhedron whose edge set has similar

symmetry arises as an optimal solution. We confirm this for the fullerene graph C60.

10.1 Platonic solids

The Platonic solids are the five regular convex polyhedra: the regular tetrahedron, the

regular hexahedron, the regular octahedron, the regular dodecahedron and the regular

icosahedron. Let parameters s, l be uniform ones: s ≡ 1, l ≡ 1.

We discuss the dodecahedron in detail. The other polyhedra can be similarly handled.

Let C20 = (V,E) a graph isomorphic to the 1-skeleton of the dodecahedron which has

20 vertices and 30 edges. We verify that the optimal embedding of C20 realizes it as

the 1-skeleton of the regular dodecahedron. In fact, if we choose w uniform, that is,

w ≡ 1, then the first nonzero eigenvalue of the corresponding Laplacian is computed as

λ2(C20, (s, w)) = 3−
√
5.

On the other hand, for the regular dodecahedron with edge length one, the ra-

dius of its circumscribed sphere is (
√
15 +

√
3)/4. Therefore, this feasible solution has

30/[20((
√
15 +

√
3)/4)2] = 3 −

√
5, the same as above, as the objective value of the

embedding problem. Thus we conclude that the optimal embedding of C20 gives the

1-skeleton of the regular dodecahedron.

Similar results are obtained for the other four regular polyhedra. The optimal values

of Problem 8.2 for these polyhedra with the same choices of parameters are listed in

Table 1.
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Table 1: Maximum spectral gaps for the Platonic solids

Regular polyhedron Maximum spectral gap

Tetrahedron 4

Hexahedron 2

Octahedron 4

Dodecahedron 3−
√
5

Icosahedron 5−
√
5

10.2 Fullerene C60

Let C60 = (V,E) denote the graph isomorphic to the 1-skeleton of a truncated icosahe-

dron, also called a buckyball. The graph C60 has 60 vertices and 90 edges, 60 of which

are pentagonal edges and the remaining 30 of which are hexagonal ones. Here, an edge

is called pentagonal if it is on the boundary of a pentagonal face; otherwise, it is called

hexagonal. Let the vertex weight s be the uniform one: s ≡ 1. Choose the edge weight

w as

wij =

{
x if ij is a pentagonal edge,

y if ij is a hexagonal edge.

Then by a result of [4], the first nonzero eigenvalue of the Laplacian for the above

vertex and edge weights is

λ2(G, (s, w)) = (2x+ y)

−x

4

(
3 +

√
5 +

√
2

√
15− 5

√
5− 4t+ 4

√
5t+ 8t2

) ∣∣∣
t= y

x

.

We begin with the case that the edge parameter l is uniform: l ≡ 1. The circumscribed

sphere of the truncated icosahedron with edge length one has radius
√
58 + 18

√
5/4.

Therefore, the objective value of Problem 9.1 for this embedding is

60

(√
58 + 18

√
5

4

)2

=
15

2
(29 + 9

√
5).

On the other hand, the choice of w with

x =
1

218
(189 + 9

√
5), y =

1

109
(138− 9

√
5)

satisfies the constraint of the eigenvalue optimization problem Problem 8.2. The objec-

tive value for this feasible solution is (87− 27
√
5)/109, and

L2/M

(87− 27
√
5)/109

=
90

(87− 27
√
5)/109

=
15

2
(29 + 9

√
5).
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Therefore, the 1-skeleton of the truncated icosahedron is realized by an optimal embed-

ding.

We now consider the case that the parameter l is given by

lij =

{
a if ij is a pentagonal edge,

b if ij is a hexagonal edge.

It is reasonable to expect that the truncated icosahedron in which the ratio of the length

of a pentagonal edge to that of a hexagonal edge is a : b is obtained as an optimal

embedding. The barycenter of this truncated icosahedron is at the origin again, and the

objective value for this feasible solution is

15

2
a2
{
(5 +

√
5)s2 + (4

√
5 + 12)(s+ 1)

}
,

where s = b/a. (Note that this value coincides with the one in the previous case when

a = b = 1.)

A feasible solution for Problem 8.2 with the symmetric parameter l is found as

x =
(2a2 + b2)

(
(6 + 2

√
5)a+ (3 +

√
5)b
)

a
((
12 + 4

√
5
)
a2 +

(
12 + 4

√
5
)
ab+

(
5 +

√
5
)
b2
) ,

y =
(2a2 + b2)

(
(6 + 2

√
5)a+ (5 +

√
5)b
)

b
((
12 + 4

√
5
)
a2 +

(
12 + 4

√
5
)
ab+

(
5 +

√
5
)
b2
) .

The objective value for this feasible solution is

A :=
4(2a2 + b2)(

12 + 4
√
5
)
a2 +

(
12 + 4

√
5
)
ab+

(
5 +

√
5
)
b2
,

and
L2/M

A
=

15

2
a2
{
(5 +

√
5)s2 + (4

√
5 + 12)(s+ 1)

}
.

Since the objective values are equal, we get the expected result.

10.3 Other Archimedean solids

Archimedean solids are convex polyhedra all of whose faces are regular polygons, and

which have a symmetry group acting transitively on the vertices. (Note, however, that

the prisms, antiprisms and five Platonic solids are excluded.) Archimedean solids are

classified and identified by the vertex configuration which refers to polygons that meet

at any vertex. For example, a truncated icosahedron is denoted by (5, 6, 6).
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Let G be the 1-skeleton of a truncated icosidodecahedron (4, 6, 10), with an edge

weight w given by

wij =


x if ij separates 4-gon and 6-gon,

y if ij separates 4-gon and 10-gon,

z if ij separates 6-gon and 10-gon,

where x, y, z satisfy x + y + z = 1. In [15] the optimization problem minimizing the

second largest eigenvalue of the adjacency matrix over all edge weights w of the above

form is solved, and (179 + 24
√
5)/241 is obtained as the optimal value. By choosing

parameters s ≡ 1 and l ≡
√
3, the edge weight w satisfies the constraint in Problem 8.2.

Then we have

|E|
σ(G, s, l)

≤ 180

1− (179 + 24
√
5)/241

= 90(31 + 12
√
5).

For the truncated icosidodecahedron with side length
√
3 the radius of its circumscribed

sphere is
√

93 + 36
√
5/2, and thus the objective value is 120× (93+36

√
5)/4 = 90(31+

12
√
5). Therefore, the 1-skeleton of the truncated icosidodecahedron is realized by an

optimal embedding.

In the same way, the 1-skeletons of the truncated cuboctahedron (4, 6, 8) and the trun-

cated octahedron (4, 6, 6) are also realized by optimal embeddings of the corresponding

graphs.

11 Duality of our embedding problem

In [11] it is shown by using the Lagrange approach that Problem 8.2 is dual to Problem

9.1. In this section, we prove Theorem 0.8, namely, we show that Problem 8.2 is also

dual to Problem 8.1.

Let v = (vi)i∈V be an arbitrary collection of vectors vi ∈ Rn which are unconstrained,

and let w̃ ∈ (R≥0)
|E| and µ ∈ R be new variables. We define the Lagrange function by

L(w̃, µ,v) =
∑
ij∈E

w̃ij

(
||vi − vj||2 − l2ij

)
+µ
∑
i∈V

si
(
||vi||2 − 1

)
+

∥∥∥∥∥∑
i∈V

sivi

∥∥∥∥∥
2

. (11.1)

It is easy to see that the following inequality holds.

inf
v

sup
w̃,µ

L(w̃, µ,v) ≥ sup
w̃,µ

inf
v
L(w̃, µ,v).
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For any v we have

sup
w̃∈(R≥0)

|E|,
µ∈R

L(w̃, µ,v) =


∥∥∑

i∈V sivi
∥∥2 if ||vi − vj|| ≤ lij, ∀ij ∈ E

and
∑

i∈V si∥vi∥2 = M,

∞ otherwise.

Thus the optimization system of the left-hand side is the same as that of Problem 8.1,

that is,

M2 δ(G, s, l) = inf
v satisfying (8.3)

sup
w̃,µ

L(w̃, µ,v).

The right-hand side gives its dual problem, which we shall identify. To do so, we rewrite

the Lagrange function (11.1) as

L(w̃, µ,v) = −µM −
∑
ij∈E

l2ijw̃ij

+

∥∥∥∥∥∑
i∈V

sivi

∥∥∥∥∥
2

+ µ
∑
i∈V

si||vi||2

+
∑
ij∈E

w̃ij||vi − vj||2.

Let µ ∈ R and w̃ ∈ (R≥0)
|E|. If these parameters satisfy the inequality∥∥∥∥∥∑

i∈V

sivi

∥∥∥∥∥
2

+ µ
∑
i∈V

si||vi||2 +
∑
ij∈E

w̃ij||vi − vj||2 ≥ 0 (11.2)

for all v, then the minimum of L(w̃, µ,v) over v is attained when vi = 0 for all i ∈ V .

Otherwise, L(w̃, µ,v) diverges to negative infinity:

inf
v

L(w̃, µ,v) =

{
−µM −

∑
ij∈E l2ijw̃ij if v satisfies the inequality (11.2),

−∞ otherwise.

We derive λ2(G, (s, w̃)) from the inequality (11.2). If v satisfies v1 = · · · = vn, then the

inequality (11.2) becomes

0 ≤

∥∥∥∥∥∑
i∈V

sivi

∥∥∥∥∥
2

+ µ
∑
i∈V

si||vi||2

= (M + µ)
∑
i∈V

si||vi||2.

Thus we get M ≥ −µ.
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Next we assume vi’s are eigenfunctions of λ2(G, (s, w̃)). Then the inequality (11.2)

is

0 ≤ M2||bar(v)||2 + µ
∑
i∈V

si||vi||2

+λ2(G, (s, w̃))

(∑
i∈V

si||vi||2 −M ||bar(v)||2
)
.

By using bar(v) = 0 we get λ2(G, (s, w̃)) ≥ −µ. Therefore the dual problem is the

problem that maximizes

−µM −
∑
ij∈E

l2ijw̃ij

over all µ and w̃ subject to the constraints M ≥ −µ and λ2(G, (s, w̃)) ≥ −µ .

−µ can be replaced by µ. Introducing a new variable λ > 0, we may add a new con-

straint
∑

ij∈E l2ijw̃ij = 1/λ. Then the objective function is µM −1/λ, and all constraints

are listed as

M ≥ µ,

λ2(G, (s, w̃)) ≥ µ,∑
ij∈E l2ijw̃ij =

1
λ
.

If we set wij := L2λ w̃ij for ij ∈ E, then the constraints are

M ≥ µ,

− 1
λ
≤ − 1

λ2(G,(s,w))
µL2,∑

ij∈E l2ijwij = L2.

In this optimization process, we first optimize the objective function with respect to

the parameters µ and λ. Thus µ attains M and −1/λ attains −µL2/λ2(G, (s, w)), and

the problem reduces to the following.

maximize M2 − L2M

λ2(G, (s, w))

subject to
∑

ij∈E l2ijwij = L2,

w ∈ (R≥0)
|E|.

This problem is nothing but Problem 8.2 and the desired duality is established. In

particular, the inequality (8.4) in Corollary 8.4 is reproduced.
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12 Concluding remarks

We recall the characterization of a graph having the rotational dimension less than or

equal to 2:

rotdim(G) ≤ 2 if and only if G is outer planar.

There is a similar characterization for the Colin de Verdière number µ(G):

µ(G) ≤ 2 if and only if G is outer planar.

Moreover, graphs having the Colin de Verdière number less than or equal to 3 can be

characterized.

µ(G) ≤ 3 if and only if G is planar.

In the thesis by Wappler [24], the followings are conjectured.

• rotdim(G) ≤ µ(G).

• Graphs having these respective invariants less than or equal to 3 are characterized

by different graph properties.

The complete bipartite graph K3,3 is the minor-minimal non-planar graph, that is, this

is not planar, but all of its minor graphs are planar. If the rotational dimension of K3,3

is 4, then rotdim(G) is 3 or less if and only if G is planar. However, Wappler conjectures

rotdim(K3,3) = 3

and expects that K3,3 supports the second conjecture above. By investigating optimal

embeddings of K3,3, we have tried to determine the desired minimum dimension, but

this conjecture remains unresolved at this moment.
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