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As the title says, in this thesis, we would like to build a bridge between two different
mathematical objects: the Bott-Virasoro group and the space of equicentroaffine curves.
The key will be the Korteweg-de Vries equation:
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where u : §' x B — R is a function of (z.t) € §' x B and a a positive constant.

In Chapter 1, we reviwed the Euler equation and applied it to the Bott-Virasoro group.
We saw that it amounts to the KdV equation (1). On the other hand, by making nuse of
a smooth Euler cocvele, we generalized the Bott-Virasoro group, and, as one of our main
results, obtained a generalized version of the KdV egaution:
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By setting u = v+ %rm and 4 =1, it leads to (1), which is nothing but the KdV equation.

In Chapter 2, we turned our attention to M, the connected component of the space of
equicentroaffine curves that contains the unit circle ¢. An element in M is a plain curve
7 : §' — B? satisfving

det{~,~4") = 1.

We reviewed two presymplectic forms wy and w; on M, as well as a Hamiltonian function
H on M, whose presvmplectic gradient Xy with respect to w,; satisfies

Xuly) = %H"‘s — &7,
where & : 8! = R is the equicentroaffine eurvature determined by ~. Given an integral
curve % of Xy, let & be its equicentroaffine eurvature fHow. Then, we verified that &
satisfies the KdV equation (1).

It is very interesting that the KdV equation appears in such two completely different
objects, the Bott-Virasoro group and the space of equicentroatfine curves M. We thought
that there may exist some mathematical connection behind them, and this was one of our
motivations for the main results.



In Chapter 3, we reviewed two well-known forms, the canonical symplectic form 46 on
(7 = g* and the Kirillov-Kostant-Souriau form wrrs on g°. We introduced a right action
of ¢ on ¢ =« g*. Denoting by [ its fundamental vector field and pr, : & = g* — g* the
projection map, we proved:

Theorem 1. For the Kirillov-Kostant-Souriau form wype on g* and the canonical sym-
plectic form d© on G x g*, we have

pr;wﬁf{.‘f{ﬁ[g,ajrz{g.a}} = de[E{g,n]: E[g,nj):«
where UV € g and (g,0) € ¢ x g, [ |

On. the other hand. we defined a function E on ¢ = g". Let Xg be the symplectic
gradient of F with respect to d6 and (. £) its integral curve. We showed that £ satisfies
the Euler equation. Setting (¢ to be the Bott-Virasoro group, we verified that £ satisfies:
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which is only different from the KdV equation (1) by a minus sign. Observing this, we
deduced that we may find a wayv to explain why the KdV equation appears in hoth cases
by revealing the relationship between 48 and @y, as well as X and X,y As a result, we
proved that:

Theorem 2. Given v € M, we take v € Diff(S') such that v = c-1b. Let oy : M — G g*
be a map on M given by

ayly) = ((v,0), (—wdr @ dz, —2)),
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where k is the equicentroaffine curvature of 5. Then, we have
a;d® = iy

where dB is the canonical symplectic form on G« g* and @ the Fujioka-Kurose 2-form

on M. |
By making use of the map ;. we obtained a relation between Xy and Xg:
a(Xuly)) = Xela(v) + X (4)
where X € T, (((Diff(S§') x g R) = (X(S") x, R)") is a tangent vector such that
A X, .01 Z) =10 (5)

for all Z € T- M. The existence of X in (4) may keep us from getting a strong relation
between Xy and X . But what we proved in the last theorem cleared the obstruction.
This helped ns finally answer the question why the KdV equation appears for the space
of equicentroaffine curves.



