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Introduction

As the title says, in this thesis, we would like to build a bridge between two different
mathematical objects: the Bott-Virasoro group and the space of equicentroaffine curves.
The key will be the Korteweg-de Vries equation:

∂u

∂t
= −a∂

3u

∂t3
− 3u

∂u

∂x
, (1)

where u : S1 × R→ R is a function of (x, t) ∈ S1 × R and a a positive constant.
In [14], Khesin and Wendt provided a procedure to derive the KdV equation with the

help of the Euler equation. In Chapter 1, we will review their method. Let G be a Lie
group which can be infinite-dimensional and g its Lie algebra. Let rg denote the right
group multiplication by g ∈ G and rg∗ its differential that acts on the tangent bundle.
Let 〈−,−〉 : g × g → R be a fixed inner product and A : g → g∗ the corresponding
isomorphism, called the inertia operator. Given a curve c : R→ G, we define m : R→ g∗

to be a curve in the dual Lie algebra by

m(t) := A(rc(t)−1∗ċ(t)), (2)

where ċ denotes the derivative with respect to t. Then, the curve c is a geodesic in G
with respect to the right-invariant metric induced from 〈−,−〉 if and only if m satisfies
the following:

ṁ(t) = ad∗A−1m(t)m(t), (3)

which is called the Euler equation (see Section 1.1.2). Let Diff(S1) denote the orientation-
preserving diffeomorphism group of S1. In Section 1.3.2, we will take G to be the Bott-
Virasoro group, which is denoted by Diff(S1)×BR. This group is defined as a set {(ϕ, a) |
ϕ ∈ Diff(S1), a ∈ R} with multiplication

(ϕ, a)(ψ, b) := (ϕ ◦ ψ, a+ b+B(ϕ, ψ)).

Here, B : Diff(S1)×Diff(S1)→ R is the Bott cocycle given by

B(ϕ, ψ) :=
1

2

∫
S1

log(ϕ′ ◦ ψ)d logψ′.

Let X(S1) ×ω R denote the Lie algebra of the Bott-Virasoro group, called the Virasoro
algebra (see Section 1.2.2). As a linear space, it is isomorphic to X(S1) × R. Imposing
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〈−,−〉 as the L2-inner product over the Virasoro algebra, we will see that the Euler
equation (3) yields the KdV equation (1) as the X(S1)∗-part of the corresponding curve
m in the dual Virasoro algebra.

By introducing the H1
α,β-inner product instead of the L2-inner product, Khesin and

Wendt also obtained a generalization of the KdV equation:

α(u̇+ 3uu′)− β(u̇′′ + 2u′u′′ + uu′′′) + au′′′ = 0. (4)

When α = 1, β = 0, it reduces to the KdV equation. When α = β = 1, it reduces to the
Camassa-Holm equation and when α = 0, β = 1, the Hunter-Saxton equation.

On the other hand, we would like to generalize the KdV equation by changing the
Bott-Virasoro group while keeping the L2-inner product. It is known that there are two
independent group 2-cocycles on Diff(S1): the Euler cocycle and the Bott cocycle B. By
using these two cocycles, we can construct central extensions which are distinct from the
Bott-Virasoro group. Let Λ = χαR + βB be a group 2-cocycle and Diff(S1) ×Λ R the
corresponding central extension (see Section 1.2.3 for the precise definition). Then, by
taking G as Diff(S1)×Λ R, we can prove the first main result:

Theorem 1 (Theorem 1.46). Let ϕ : R → Diff(S1) and d, a : R → R be smooth curves
and let u : S1 × R→ R be a smooth function of (x, t) ∈ S1 × R. Set c := (ϕ, d) : R→ G
and m := (udx⊗ dx, a) : R→ X(S1)∗ × R, where X(S1)∗ × R is naturally identified with
Lie(G)∗. Suppose that m is the curve corresponding to c in equation (2). Then, c is a
geodesic with respect to the right-invariant metric induced from the L2-inner product if
and only if

(u̇dx⊗ dx, ȧ) = ((−3uu′ − βau′′′ + αau′)dx⊗ dx, 0), (5)

where u̇ and ȧ denotes the derivatives with respect to t, and u′ with respect to x.

We rewrite (5) as

u̇ = −3uu′ − βau′′′ + αau′. (6)

By setting u = v + 1
3
aα, and β = 1, the equation (6) amounts to

v̇ = −3vv′ − av′′′,

which is nothing but the KdV equation (1).
In Chapter 2, we will turn our attention toM, the connected component of the space

of equicentroaffine curves containing the unit circle c0. An element inM is a plain curve
γ : S1 → R2 satisfying

det(γ, γ′) = 1

(see Section 2.1.1 for the details). Given γ ∈M, there exists an equicentroaffine curvature
κ : S1 → R which is determined by

γ′′ + κγ = 0.
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A tangent vector X ∈ TγM over M is identified with a vector field along γ, which has
the form

X = −1

2
λ′γ + λγ′,

where λ : S1 → R is a certain function on S1. In [7], Fujioka and Kurose discussed two
presymplectic forms ω̂0 and ω̂1 on M, which are given by

ω̂0(X, Y ) :=

∫
S1

λµ′dx,

called the Pinkall 2-form, and

ω̂1(X, Y ) :=

∫
S1

λ(
1

2
µ′′′ + 2κµ′ + κ′µ)dx,

which we will call the Fujioka-Kurose 2-form, where X = −1
2
λ′γ + λγ′, Y = −1

2
µ′γ +

µγ′ ∈ TγM. They also introduced a Hamiltonian function H onM, whose presymplectic
gradient XH with respect to ω̂1 satisfies

XH(γ) =
1

2
κ′γ − κγ′,

where κ is the equicentroaffine curvature of γ. Due to Pinkall as one of the main results in
[20], given an integral curve γ̃ : R→M ofXH , let κ̃(−, t) : S1 → R be the equicentroaffine
curvature of γ̃(t), where we consider κ̃ as a function of (x, t) ∈ S1 × R. Then, we can
verify that κ̃ satisfies the KdV equation (1):

˙̃κ = −1

2
κ̃′′′ − 3κ̃′κ̃. (7)

It is very interesting that the KdV equation appears in such two completely different
objects, the Bott-Virasoro group and the space of equicentroaffine curves. We think
that there may exist some mathematical connection behind them, and this becomes an
important motivation for us to obtain the main results in Chapter 3.

In Section 2.2, we will introduce a right S1-action and a left SL(2,R)-action on M.
Setting M0 := M/S1 and M1 := SL(2,R) \ M to be the quotient spaces, we will
see that the presymplectic forms ω̂i(i = 0, 1) descend to symplectic forms ωi on Mi,
respectively. Moreover, due to Fujioka, Kurose and Moriyoshi in [8], we will see that
there are momentum maps µi(i = 0, 1) onMi corresponding to certain actions as well as
the symplectic forms ωi on Mi, respectively (see Section 2.4).

In Chapter 3, we will finally focus on the relations between the Bott-Virasoro group
and the space of equicentroaffine curves. A powerful tool will be the well-known canon-
ical symplectic form dΘ (see Definition 3.5) related to the cotangent bundle T ∗G. In
Section 3.1, we will introduce the canonical symplectic form dΘ and discuss its relation
to the Kirillov-Kostant-Souriau form ωKKS. Given a Lie group G, which can be infinite-
dimensional, we will introduce a right action of G on the semidirect product Gn g∗ given
by

(g, α) · h = (gh,Ad∗h−1α), (8)
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where (g, α) ∈ G n g∗ and h ∈ G. For U ∈ g, let U be the fundamental vector field
corresponding to the action (8) (see Section 2.1.2). Let pr2 : G n g∗ → g∗ denote the
projection onto g∗. We will prove that:

Theorem 2 (Theorem 3.11). For the Kirillov-Kostant-Souriau form ωKKS on g∗ and the
canonical symplectic form dΘ on Gn g∗, we have

pr∗2ωKKS(U (g,σ), V (g,σ)) = dΘ(U (g,σ), V (g,σ)),

where U, V ∈ g and (g, σ) ∈ Gn g∗.

In Section 3.1.2, we will introduce a Hamiltonian function E on G n g∗. Let XE be its
symplectic gradient with respect to dΘ and (ϕ, ξ) an integral curve of XE. By taking G
as the Bott-Virasoro group, we can verify that the curve ξ satisfies:

ξ̇ =
1

2
ξ′′′ + 3ξ′ξ, (9)

which is only different from the KdV equation (1) by a minus sign. Since the KdV equation
(7) is related to the presymplectic form ω̂1 and the vector field XH , the discussion above
shows that we may answer why the KdV equation (7) appears by revealing the relationship
between the forms dΘ and ω̂1 as well as the relationship between the vector fields XE and
XH . It is known that there is a right Diff(S1)-action onM, which is called Pinkall’s right
action. In Section 3.2, setting G to be the Bott-Virasoro group and g∗ the dual Virasoro
algebra, we will prove that:

Theorem 3 (Theorem 3.12). Given γ ∈ M, we take ψ ∈ Diff(S1) such that γ = c0 · ψ,
where · denotes Pinkall’s right action. Let σ0 :M→ Gn g∗ be a map on M given by

σ0(γ) := ((ψ−1, 0), (−1

2
(ψ−1)′2dx⊗ dx, 0)),

Then, we have

σ∗0dΘ = ω̂0,

where dΘ is the canonical symplectic form on Gng∗ and ω̂0 the Pinkall 2-form onM.

Theorem 4 (Theorem 3.14). Given γ ∈ M, we take ψ ∈ Diff(S1) such that γ = c0 · ψ.
Let σ1 :M→ Gn g∗ be a map on M given by

σ1(γ) := ((ψ, 0), (−κdx⊗ dx,−1

2
)),

where κ is the equicentroaffine curvature of γ. Then, we have

σ∗1dΘ = ω̂1

where dΘ is the canonical symplectic form on G n g∗ and ω̂1 the Fujioka-Kurose 2-form
on M.
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As corollaries of the theorems above and Theorem 2, we can show the relationship between
the Kirillov-Kostant-Souriau form ωKKS and ωi(i = 0, 1):

Corollary 5 (Corollary 3.13). Let ω0 be the Pinkall symplectic form and ωKKS the
Kirillov-Kostant-Souriau form on g∗. Then, we have

µ∗0ωKKS = −ω0,

where µ0 :M0 → g∗ is the momentum map mentioned in Section 2.4.1.

Corollary 6 (Corollary 3.15). Let ω1 be the Fujioka-Kurose symplectic form and ωKKS
the Kirillov-Kostant-Souriau form on g∗. Then, we have

µ∗1ωKKS = ω1,

where µ1 :M1 → g∗ is the momentum map mentioned in Section 2.4.2.

With the help of these theorems and corollaries, we will finally build a bridge between
the Bott-Virasoro group and the space of equicentroaffine curves. To sum up, we will
construct the following commutative diagram:

Equicentroaffine Curve Bott-Virasoro Group

(M1, ω1)
µ1

++
(M0, ω0)

µ0 // ((X(S1)×ω R)∗, ωKKS)

((Diff(S1)×B R) n (X(S1)×ω R)∗, dΘ)

pr2

OO

(M, ω̂0, ω̂1)

π0

cc
π1

OO

σ0,σ1
33

where

µ0 ◦ π0 = −pr2 ◦ σ0 and µ1 ◦ π1 = pr2 ◦ σ1.

In Section 3.2.3, by making use of the map σ1, we will obtain a relation between XH and
XE:

σ1(XH(γ)) = XE(σ1(γ)) +X (10)

where X ∈ Tσ1(γ)((Diff(S1)×B R) n (X(S1)×ω R)∗) is a tangent vector such that

dΘ(Xσ1(γ), σ1∗Z) = 0 (11)

for all Z ∈ TγM. The existence of X in (10) may keep us from getting a strong relation
between XH and XE. But what we will prove in Theorem 3.17 shows that the (X(S1)×ω
R)∗-part of X vanishes. This will help us finally answer the question why κ̃ leads to the
KdV equation (7) as the Euler equation applied to the Bott-Virasoro group does (see
Section 3.2.3).
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Chapter 1

The Euler Equation for Generalized
Bott-Virasoro Groups

In this chapter, we will provide some basic knowledge and derive a generalized version of
the KdV equation. In Section 1.1, we will introduce the Euler equation. In Section 1.3,
we will apply the Euler equation to the Bott-Virasoro group to obtain the KdV equation.

1.1 The Euler Equation

In this section, we will introduce the Euler equation, which appears as a characterization
of geodesics in a Lie group G. Then, we will employ the Euler equation and the group
Diff(S1) to obtain Burgers’ equation. The content in this section is mainly adapted from
Khesin and Wendt [14], Michor and Ratio [17], Tu [22] and Vizman [23].

1.1.1 Adjoint and Coadjoint Actions

For a smooth map f : M → N between two manifolds, we denote by f∗,x : TxM → Tf(x)N
the differential of f at x.

Definition 1.1 ([14, Definition 2.1]). Let G be a Lie group and g its Lie algebra. For
any g ∈ G, let cg : G→ G be a map given by

cg(h) := ghg−1.

Then, the adjoint action of G is defined to be a map Ad : G → Aut(g) such that for
any g ∈ G we set

Adg := cg∗,1G ,

and the adjoint action of g is defined to be the differential of the adjoint action of G
at 1G, denoted by ad : g→ End(g)
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Remark 1.2 ([22, p.119]). For any X ∈ g, there is a corresponding left-invariant vector
field X̃ ∈ X(G) such that for any g ∈ G we have

X̃g := lg∗,1GX,

where lg : G→ G is the left multiplication by g.

The following lemma and its proof essentially appear in Tu [22].

Lemma 1.3 ([22, Proposition 15.15]). For any X, Y ∈ g, we have

adXY = [X, Y ],

where the right-hand side is the usual Lie bracket induced by the left-invariant vector
fields.

Definition 1.4 ([14, Definition 2.4]). Let g∗ be the dual space of g. Then, the coadjoint
action of G is a map Ad∗ : G→ Aut(g∗) such that for any ξ ∈ g∗ and X ∈ g, we have

(Ad∗gξ)(X) = ξ(Adg−1X),

and the coadjoint action of g is the differential of the coadjoint action of G at 1G,
denoted by ad∗ : g→ End(g∗).

Remark 1.5 ([14, p.20]). Note that for any X,Z ∈ g and ξ ∈ g∗, we have

(ad∗Zξ)(X) = −ξ(adZX),

by the definition of the coadjoint action of G and the coadjoint action of g.

1.1.2 The Euler Equation on Lie Groups

Definition 1.6 ([22, p.198]). Let G be a Lie group. Then, the left Maurer-Cartan
form is defined to be a g-valued 1-form θ : TG→ g given by

θ(X) := lg−1∗X,

where X ∈ TgG.

Definition 1.7 ([23, p.3]). For any inner product 〈−,−〉 over g, there is an induced
isomorphism A : g→ g∗ given by

A(X) := 〈X,−〉,

which is called the inertia operator .

11



Definition 1.8 ([23, p.2]). For any inner product 〈−,−〉 over g, there is an induced
left-invariant metric (−,−) over G given by

(X, Y ) := 〈θ(X), θ(Y )〉, (1.1)

where X, Y ∈ TgG. Let C denote the space of smooth curves over G. Then, the energy
function E : C → R is defined by

E(c) =
1

2

∫ b

a

(ċ(t), ċ(t))dt, (1.2)

where c : [a, b]→ G is a smooth curve in G.

Definition 1.9 ([23, pp.2-3]). For any smooth curve c : [a, b]→ G, a variation of c is a
smooth map c̃ : [a, b]× [−ε, ε]→ C such that c̃(−, 0) = c. The curve c is called a geodesic
if any variation c̃ of c with fixed endpoints satisfies

d

ds

∣∣∣∣
s=0

E(c̃(−, s)) = 0, (1.3)

where s denotes the parameter along the variation, and t along the curve.

Given a curve c : [a, b] → G, define m : [a, b] → g∗ to be a curve in the dual Lie algebra
g∗ by

m(t) := A(θ(ċ(t))). (1.4)

In the following theorem, we will present the Euler equation, which appears as a charac-
terization of geodesics in a Lie group. The proof is essentially given by Vizman [23].

Theorem 1.10 ([23, Theorem 1]). A smooth curve c : [a, b]→ G is a geodesic with respect
to the left-invariant metric mentioned in (1.1) if and only if

ṁ(t) = −ad∗A−1(m(t))m(t), (1.5)

where m is the curve given in (1.4) and ṁ denotes the derivative with respect to t.

Proof. For any variation c̃ : [−ε, ε]→ C of c with fixed endpoints, we define the velocity
field u : [a, b]× [−ε, ε]→ g by

u(t, s) := θ(∂1|(t,s)c̃)

and the Jacobian field v : [a, b]× [−ε, ε]→ g by

v(t, s) := θ(∂2|(t,s)c̃),

where ∂1 and ∂2 denote the directional derivatives with respect to the parameters t and
s, respectively. We first show that

−∂1|(t,s)v + ∂2|(t,s)u = [u(t, s), v(t, s)].
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By the definition of the left Maurer-Cartan form, for any X, Y ∈ TgG we have

dθ(X, Y ) = dθ(θ̃(X), θ̃(Y ))(g) = −θ([θ̃(X), θ̃(Y )])(g) = −[θ(X), θ(Y )].

It follows that

[u(t, s), v(t, s)] = [θ(∂1|(t,s)c̃), θ(∂2|(t,s)c̃))]
= −dθ(∂1|(t,s)c̃, ∂2|(t,s)c̃))
= −c̃∗dθ(∂1|(t,s), ∂2|(t,s))
= −∂1|(t,s)c̃∗θ(∂2) + ∂2|(t,s)c̃∗θ(∂1)

= −∂1|(t,s)v + ∂2|(t,s)u,
Therefore,

d

ds

∣∣∣∣
s=0

E(c̃(−, s)) =

∫ b

a

〈∂2|(t,0)u, u(t, 0)〉dt =

∫ b

a

〈∂1|(t,0)v + [u(t, 0), v(t, 0)], u(t, 0)〉dt.

Since v(a, s) = v(b, s) = 0 for all s ∈ [−ε, ε], we see that∫ b

a

〈∂1|(t,0)v, u(t, 0)〉dt =

∫ b

a

∂1|(t,0)〈v, u〉dt−
∫ b

a

〈v(t, 0), ∂1|(t,0)u〉dt

= −
∫ b

a

〈v(t, 0), ∂1|(t,0)u〉dt.

It follows that

d

ds

∣∣∣∣
s=0

E(c̃(−, s)) =

∫ b

a

(〈[u(t, 0), v(t, 0)], u(t, 0)〉 − 〈v(t, 0), ∂1|(t,0)u〉)dt

=

∫ b

a

(A(u(t, 0))(adu(t,0)v(t, 0))− A(∂1|(t,0)u)(v(t, 0)))dt

=

∫ b

a

(−ad∗u(t,0)A(u(t, 0))− A(∂1|(t,0)u)(v(t, 0))dt.

By (1.3), the curve c is a geodesic if and only if

A(∂1|(t,0)u) = −ad∗u(t,0)A(u(t, 0)). (1.6)

By the definition of the velocity field, we have

u(t, 0) = θ(ċ(t)). (1.7)

Substituting (1.7) into (1.6), we finally obtain the Euler equation.

Remark 1.11 ([14, Remark 4.16]). Instead of using the left-invariant metric on G, we
can also use the right-invariant one. In this case, the corresponding curve m : [a, b]→ g∗

in the dual Lie algebra is given by

m(t) := A(rc(t)−1∗ċ(t)), (1.8)

where rg denotes the right group multiplication by g ∈ G, and the Euler equation becomes

ṁ(t) = ad∗A−1(m(t))m(t), (1.9)

which is only different from the Euler equation in Theorem 1.10 by a minus sign.
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1.1.3 Burgers’ Equation

Let Diff(S1) be the orientation-preserving diffeomorphism group of S1. By setting

D̃iff(S1) := {f ∈ C∞(R) | f ′(x) > 0 and f(x+ 2π) = f(x) + 2π for all x ∈ R},

we can identify Diff(S1) with a quotient space:

Diff(S1) = D̃iff(S1)/ ∼,

where f ∼ g if and only if f + 2nπ = g for some n ∈ Z. The Lie algebra of Diff(S1) is
X(S1), the space of vector fields over S1. An element in X(S1) is denoted by u∂x, where
u ∈ C∞(S1) can be regarded as a smooth function of x ∈ R with period 2π. The Lie
bracket [−,−] over X(S1) is given by

[u∂x, v∂x] = (u′v − uv′)∂x, (1.10)

where u′ denotes the derivative with respect to x. The dual space of X(S1) is identified
with the space of quadratic forms {udx⊗ dx | u ∈ C∞(S1)}, denoted by X(S1)∗. For any
udx⊗ dx ∈ X(S1)∗ and v∂x ∈ X(S1), we have

(udx⊗ dx)(v∂x) =

∫
S1

uvdx.

Define 〈−,−〉 to be the inner product over X(S1) by

〈u∂x, v∂x〉 =

∫
S1

uvdx, (1.11)

and call it the L2-inner product . Its induced inertia operator A : X(S1) → X(S1)∗ is
given by

A(u∂x) = udx⊗ dx.

The following lemma and its proof essentially appear in Michor and Ratio [17].

Lemma 1.12 ([17, p.9]). For the orientation-preserving diffeomorphism group Diff(S1),
the coadjoint action of X(S1) is given by

ad∗u∂x(vdx⊗ dx) = (−2u′v − uv′)dx⊗ dx.

for any u∂x ∈ X(S1) and vdx⊗ dx ∈ X(S1)∗.

Proof. Let u∂x, w∂x ∈ X(S1) and vdx⊗ dx ∈ X(S1)∗. By (1.10), we see that

(ad∗u∂xvdx⊗ dx)(w∂x) = −(vdx⊗ dx)(adu∂xw∂x)

= −(vdx⊗ dx)((u′w − uw′)∂x)

= −
∫
S1

v(u′w − uw′)dx

=

∫
S1

(−2u′v − uv′)wdx

= ((−2u′v − uv′)dx⊗ dx)(w∂x),

which implies the claim.
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Now, by the Euler equation, Lemma 1.12 and a direct calculation, we can show that:

Theorem 1.13 ([17, p.10]). Given c : R → Diff(S1) and u : S1 × R → R a function of
(x, t) ∈ S1 × R, suppose that m := udx ⊗ dx : R → X(S1)∗ is the curve corresponding
to c in (1.4). Then, c is a geodesic in Diff(S1) with respect to the right-invariant metric
induced from the L2-inner product if and only if

u̇dx⊗ dx = −3u′udx⊗ dx, (1.12)

where u̇ denotes the derivative with respect to t and u′ with respect to x.

By rewriting (1.12), we finally obtain

u̇ = −3u′u, (1.13)

which is called Burgers’ Equation. As a corollary, we will apply Burgers’ equation to
obtain the geodesic equation for Diff(S1) in the following. The proof essentially appears
in Michor and Ratio [17].

Corollary 1.14 ([17, p.3]). The geodesic equation for Diff(S1) is given by

2ċ′ċ+ c̈c′ = 0, (1.14)

where c : [a, b]→ Diff(S1) is a smooth curve in Diff(S1).

Proof. The velocity field u : [a, b]→ C∞(S1) of c is computed as

u(−, t) = rc(−,t)−1∗(ċ(−, t)) =
d

ds

∣∣∣∣
s=t

c(−, s) ◦ c(−, t)−1 = ċ(−, t) ◦ c(−, t)−1,

where rϕ denotes the right group multiplication by ϕ ∈ Diff(S1). It follows that

u̇(−, t) = (ċ′(−, t) ◦ c(−, t)−1)(c(−, t)−1)t + c̈(−, t) ◦ c(−, t)−1

Since

c(−, t) ◦ c(−, t)−1 = idS1 ,

we see that

(c′(−, t) ◦ c(−, t)−1)(c(−, t)−1)t + ċ(−, t) ◦ c(−, t)−1 = 0,

which implies that

(c(−, t)−1)t = − ċ(−, t) ◦ c(−, t)
−1

c′(−, t) ◦ c(−, t)−1
.

Therefore, we have

u̇(−, t) = −(ċ(−, t) ◦ c(−, t)−1)(ċ′(−, t) ◦ c(−, t)−1)

c′(−, t) ◦ c(−, t)−1
+ c̈(−, t) ◦ c(−, t)−1 (1.15)
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Similarly, we have

u′(−, t) =
ċ′(−, t) ◦ c(−, t)−1

c′(−, t) ◦ c(−, t)−1
. (1.16)

Substituting (1.15) and (1.16) into Burgers’ equation, we obtain

2ċ′ċ+ c̈c′ = 0,

which implies the claim.

Definition 1.15 ([22, Definition 15.8]). The exponential map for a Lie group G with
Lie algebra g is the map exp : g→ G given by

exp(X) = ϕX̃(1),

where ϕX̃ represents the integral curve of the vector field X̃ with initial vector X, called
the exponential curve . Since

exp(tX) = ϕt̃X(1) = ϕX̃(t),

we see that exp((−)X) can also be used to denote the exponential curve.

As a corollary, we will apply the geodesic equation (1.14) to provide a condition to deter-
mine whether an exponential curve in Diff(S1) is a geodesic or not in the following.

Corollary 1.16. For any u∂x ∈ X(S1), the exponential curve exp(tu∂x) in Diff(S1) is a
geodesic if and only if u = const 6= 0.

Proof. Denote by ϕũ∂x the exponential curve. It’s easy to see that

ϕ̇ũ∂x(t) = ũ∂xϕ
ũ∂x

(t) = lϕ
ũ∂x

(t)∗
(u∂x) =

d

ds

∣∣∣∣
s=0

ϕũ∂x(t) ◦ cu∂x(s) = ϕũ∂x(t)
′u, (1.17)

where cu∂x is a curve in Diff(S1) with initial vector u∂x ∈ X(S1). It follows that

ϕ̈ũ∂x(t) = ϕ̇ũ∂x(t)
′u = (ϕũ∂x(t)

′u)′u = ϕũ∂x(t)
′′u2 + ϕũ∂x(t)

′u′u. (1.18)

Moreover, we have

ϕ̇ũ∂x(t)
′ = (ϕũ∂x(t)

′u)′ = ϕũ∂x(t)
′′u+ ϕũ∂x(t)

′u′. (1.19)

Substituting (1.17), (1.18) and (1.19) into (1.14), we have

(ϕ′′
ũ∂x
u2 + ϕ′

ũ∂x
u′u)ϕ′

ũ∂x
+ 2(ϕ′′

ũ∂x
u+ ϕ′

ũ∂x
u′)(ϕ′

ũ∂x
u) = 0.

If ϕ′
ũ∂x

= 0, then ϕũ∂x(0) = const 6= idS1 , which contradicts to the definition of the integral

curve ϕũ∂x . It follows that

(ϕ′
ũ∂x
u)′ = 0,
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which implies that

ϕũ∂x(t)
′u = f(t), (1.20)

where f is a smooth function with the parameter t. Substituting t = 0 into (1.20) , we
have

u = f(0)

which implies the claim.

1.2 Generalized Bott-Virasoro Groups

In this section, we will use the connection cochain which is introduced by Moriyoshi [19]
to obtain a smooth Euler cocycle (see Ghys [9] for instance) on Diff(S1). In Section 1.2.1,
we will discuss the Bott-Virasoro group and its relationship to Hill’s operator (see [14] for
instance for the details of Hill’s operator). In Section 1.2.3, with the help of the smooth
Euler cocycle, we will construct the generalized Bott-Virasoro group. The content in this
section is mainly adapted from Khesin and Wendt [14] and Moriyoshi [19].

1.2.1 Connection Cochain

Definition 1.17 ([19, Definition 1]). A central extension of a group G is an exact
sequence of groups

1 // A // G̃
π // G // 1 (1.21)

such that the image of A lies in the center of G̃. A map τ : G̃→ A such that

τ(g̃a) = τ(g̃) + a,

for all g̃ ∈ G̃ and a ∈ A, is called a connenction cochain.

Remark 1.18. If all the groups in (1.21) are Lie groups and all maps are smooth, then
(1.21) is called a smooth central extension . In our thesis, when focusing on a smooth
central extension, it is enough to consider A as a vector space.

The following lemma essentially appears in Moriyoshi [19] and we refer the readers to it
for the proof.

Lemma 1.19 ([19, Proposition 1]). Let τ : G̃→ A be a connection cochain of the central
extension (1.21). Then, there exists a well-defined 2-cocycle σ : G×G→ A given by

σ(g1, g2) := τ(g̃1)− τ(g̃1g̃2) + τ(g̃2),

where g̃1, g̃2 ∈ G̃ lift g1, g2 ∈ G, respectively, called the curvature of τ .
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Definition 1.20. For the central extension (1.21), let s : G→ G̃ be a section of π. Then,
the Euler cocycle χ : G×G→ A of (1.21) induced from s is defined by

χ(g1, g2) = s(g1)s(g2)s(g1g2)−1,

for any g1, g2 ∈ G.

We will discuss the relationship between the connection cochain and the Euler cocycle in
the following remark.

Remark 1.21 ([19, Proposition 2]). Let τ : G̃→ A be a connection cochain of the central
extension (1.21) and σ its curvature. Choose a section s : G→ G̃ given by

s(g) := g̃τ(g̃)−1,

where g̃ ∈ G̃ is a lift of g ∈ G. By the definition of connection cochain, the section s is
well-defined. Let χ be the Euler cocycle induced from s. Then, for any g1, g2 ∈ G, we
have

χ(g1, g2) = s(g1)s(g2)s(g1g2)−1

= g̃1τ(g̃1)−1g̃2τ(g̃2)−1τ(g̃1g̃2)g̃−1
2 g̃−1

1

= −τ(g̃1) + τ(g̃1g̃2)− τ(g̃2)

= −σ(g1, g2),

where g̃1, g̃2 ∈ G̃ lift g1, g2 ∈ G, respectively.

Definition 1.22 ([14, Definition 2.11]). Two central extensions are said to be equivalent
if there exists a commutative diagram:

1 // A //

id
��

G̃ //

Φ
��

G

id
��

// 1

1 // A // G̃′ // G // 1

where Φ : G̃→ G̃′ is an isomorphism.

Example 1.23 ([14, p.25]). Let χ be the Euler cocycle for (1.21) induced from s, and
G×χ A a group with multiplication

(g, a)(h, b) = (gh, a+ b+ χ(g, h)). (1.22)

It’s easy to see that the Euler cocycle satisfies the cocycle condition

χ(g1g2, g3)χ(g1, g2) = χ(g1, g2g3)χ(g2, g3),

which ensures that G ×χ A becomes a group. By (1.22) and the definition of the Euler
cocycle, the unit element of this group is (1G,−s(1G)). Now, consider the following central
extension

1 // A // G×χ A
pr1 // G // 1 . (1.23)
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We can see that it is equivalent to the central extension (1.21) with the isomorphism
Φ : G̃→ G×χ A given by

Φ(g̃) := (g, g̃s(g)−1)

where g̃ ∈ G̃ lifts g ∈ G.

Remark 1.24. When the central extension (1.21) is smooth, it is still possible to construct
the Euler cocycle χ and the group G ×χ A, with the procedures used in Definition 1.20
and Example 1.23. However, only when the section s is smooth, can the group G ×χ A
be a Lie group and (1.23) be equivalent to (1.21) as smooth central extensions.

By Lemma 1.3, and a direct calculation, we can prove that:

Lemma 1.25 ([14, Proposition 3.14]). Suppose that (1.21) is a smooth central extension
with A being a vector space. Let χ be the Euler cocycle induced from a smooth section
s and e : g× g→ A a map given by

e(X, Y ) =
d2

dsdt

∣∣∣∣
t=s=0

χ(cX(t), cY (s))− d2

dsdt

∣∣∣∣
t=s=0

χ(cY (s), cX(t)),

where cX and cY are curves in G with initial vectors X and Y , respectively. Then, the
Lie algebra of G×χ A assumes the form g×e A with Lie bracket [−,−] given by

[(X, a), (Y, b)] = ([X, Y ], e(X, Y )),

where [−,−] on the right-hand side is the Lie bracket over g.

Remark 1.26 ([19, Remark 1]). Suppose that we have the central extension (1.21) and
a homomorphism ι : A→ B, where B is an abelian group. Then, a map τ : G̃→ B such
that

τ(g̃a) = τ(g̃) + ι(a)

for all g̃ ∈ G and a ∈ A, is called a connection cochain with values in B. Setting
the quotient space G̃ ×A,ι B := (G̃ × B)/ ∼ where (g̃1, b1) ∼ (g̃2, b2) if and only if
(g̃1a, b1 − ι(a)) = (g̃2, b2) for some a ∈ A, and defining its multiplication by

[g̃1, b1][g̃2, b2] = [g̃1g̃2, b1 + b2],

we construct the following central extension

1 // B // G̃×A,ι B // G // 1 . (1.24)

Let τB : G̃×A,ι B → B be a map given by

τB([g̃, b]) := τ(g̃) + b, (1.25)

which is obviously well-defined. Since

τB([g̃, b1]b2) = τB([g̃, b1 + b2]) = τ(g̃) + b1 + b2 = τB([g̃, b1]) + b2,

by Definition 1.17, we see that the map τB is a connection cochain of (1.24).
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1.2.2 The Bott-Virasoro Group

The Bott-Virasoro group, denoted by Diff(S1) ×B R, is defined to be a set {(ϕ, a) |
ϕ ∈ Diff(S1), a ∈ R} with multiplication

(ϕ, a)(ψ, b) = (ϕ ◦ ψ, a+ b+B(ϕ, ψ)),

where B : Diff(S1)×Diff(S1)→ R is the Bott cocycle given by

B(ϕ, ψ) =
1

2

∫
S1

log(ϕ′ ◦ ψ)d logψ′.

The Lie algebra of the Bott-Virasoro group has the form X(S1)×ω R, where ω : X(S1)×
X(S1)→ R is the Gelfand-Fuchs cocycle given by

ω(u∂x, v∂x) =

∫
S1

u′v′′dx,

called the Virasoro algebra . The dual space of the Virasoro algebra is identified with
{(udx ⊗ dx, a)|u ∈ C∞(S1), a ∈ R}, denoted by (X(S1)×ω R)∗. For any (udx ⊗ dx, a) ∈
(X(S1)×ω R)∗ and (v∂x, b) ∈ X(S1)×ω R, we have

(udx⊗ dx, a)(v∂x, b) =

∫
S1

uvdx+ ab.

Given ϕ ∈ Diff(S1), the Schwarzian derivative is defined to be

S(ϕ) :=
ϕ′ϕ′′′ − 3

2
(ϕ′′)2

(ϕ′)2
.

In the following, we will present an expression of the coadjoint action of the Bott-Virasoro
group, and provide an alternative proof.

Lemma 1.27 ([14, Proposition 2.7]). For (ϕ, a) ∈ Diff(S1) ×B R and (udx ⊗ dx, b) ∈
(X(S1)×ω R)∗, the coadjoint action of the Bott-Virasoro group is given by

Ad∗(ϕ,a)(udx⊗ dx, b) = (((u ◦ ϕ−1)((ϕ−1)′)2 + bS(ϕ−1))dx⊗ dx, b). (1.26)

Proof. First, we compute the adjoint action of the Bott-Virasoro group. Given (ϕ, a) ∈
Diff(S1)×B R and (v∂x, c) ∈ X(S1)×ω R, let ϕv∂x be the flow of v∂x ∈ X(S1). It is known
that ϕv∂x can be regarded as a curve in Diff(S1) with initial vector v∂x. By the definition
of the adjoint action, we have

Ad(ϕ−1,−a)(v∂x, c) =
d

dt

∣∣∣∣
t=0

(ϕ−1,−a)(ϕv∂x(t), ct)(ϕ, a)

=
d

dt

∣∣∣∣
t=0

(ϕ−1 ◦ ϕv∂x(t) ◦ ϕ, ct+B(ϕv∂x(t), ϕ) +B(ϕ−1, ϕv∂x(t) ◦ ϕ))

= (((ϕ−1)′ ◦ ϕ)(v ◦ ϕ)∂x, c+
d

dt

∣∣∣∣
t=0

(B(ϕv∂x(t), ϕ) +B(ϕ−1, ϕv∂x(t) ◦ ϕ))).
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Note that

d

dt

∣∣∣∣
t=0

B(ϕv∂x(t), ϕ) =
1

2

d

dt

∣∣∣∣
t=0

∫
S1

log(ϕv∂x(t)
′ ◦ ϕ)d logϕ′

=
1

2

∫
S1

(v′ ◦ ϕ)d logϕ′

=
1

2

∫
S1

(v′ ◦ ϕ)ϕ′′

ϕ′
dx

=
1

2

∫
S1

v′(ϕ′′ ◦ ϕ−1)

ϕ′ ◦ ϕ−1
(ϕ−1)′dx

=
1

2

∫
S1

v′(ϕ′′ ◦ ϕ−1)((ϕ−1)′)2dx

= −1

2

∫
S1

((ϕ′′ ◦ ϕ−1)′((ϕ−1)′)2 + 2(ϕ′′ ◦ ϕ−1)(ϕ−1)′(ϕ−1)′′)vdx.

Since

0 = (ϕ ◦ ϕ−1)′′ = ((ϕ′ ◦ ϕ−1)(ϕ−1)′)′ = (ϕ′′ ◦ ϕ−1)((ϕ−1)′)2 + (ϕ′ ◦ ϕ−1)(ϕ−1)′′,

we see that

ϕ′′ ◦ ϕ−1 = −(ϕ′ ◦ ϕ−1)(ϕ−1)′′

((ϕ−1)′)2
= − (ϕ−1)′′

((ϕ−1)′)3
. (1.27)

It follows that

(ϕ′′ ◦ ϕ−1)′ = −(ϕ−1)′′′((ϕ−1)′)3 − 3(ϕ−1)′′((ϕ−1)′)2(ϕ−1)′′

((ϕ−1)′)6

=
−(ϕ−1)′′′(ϕ−1)′ + 3((ϕ−1)′′)2

((ϕ−1)′)4
.

(1.28)

Substituting (1.27) and (1.28), we have

d

dt

∣∣∣∣
t=0

B(ϕv∂x(t), ϕ) = −1

2

∫
S1

(
−(ϕ−1)′′′(ϕ−1)′ + 3((ϕ−1)′′)2

((ϕ−1)′)2
− 2

((ϕ−1)′′)2

((ϕ−1)′)2
)vdx

=
1

2

∫
S1

(ϕ−1)′′′(ϕ−1)′ − ((ϕ−1)′′)2

((ϕ−1)′)2
vdx.
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Similarly, we can obtain

d

dt

∣∣∣∣
t=0

B(ϕ−1, ϕv∂x(t) ◦ ϕ)) =
1

2

d

dt

∣∣∣∣
t=0

∫
S1

log(ϕ−1 ◦ ϕv∂x(t) ◦ ϕ)′d log(ϕv∂x(t) ◦ ϕ)′

=
1

2

∫
S1

(((ϕ−1)′ ◦ ϕ)(v ◦ ϕ))′d logϕ′

=
1

2

∫
S1

(((ϕ−1)′′ ◦ ϕ)ϕ′(v ◦ ϕ) + ((ϕ−1)′ ◦ ϕ)(v′ ◦ ϕ)ϕ′)ϕ′′

ϕ′
dx

=
1

2

∫
S1

(((ϕ−1)′′ ◦ ϕ)(v ◦ ϕ)ϕ′′ + ((ϕ−1)′ ◦ ϕ)(v′ ◦ ϕ)ϕ′′)dx

=
1

2

∫
S1

((ϕ−1)′′(ϕ′′ ◦ ϕ−1)(ϕ−1)′v + ((ϕ−1)′)2(ϕ′′ ◦ ϕ−1)v′)dx

=
1

2

∫
S1

(−((ϕ−1)′′)2

((ϕ−1)′)2
+

(ϕ−1)′′′(ϕ−1)′ − ((ϕ−1)′′)2

((ϕ−1)′)2
)vdx.

It follows that

Ad(ϕ−1,−a)(v∂x, c) = (((ϕ−1)′ ◦ ϕ)(v ◦ ϕ)∂x, c+

∫
S1

(ϕ−1)′′′(ϕ−1)′ − 3
2
((ϕ−1)′′)2

((ϕ−1)′)2
vdx)

= (((ϕ−1)′ ◦ ϕ)(v ◦ ϕ)∂x, c+

∫
S1

S(ϕ−1)vdx)

Now, for (udx⊗ dx, b) ∈ (X(S1)×ω R)∗, since

(Ad∗(ϕ,a)(udx⊗ dx, b))(v∂x, c) = (udx⊗ dx, b)(Ad(ϕ−1,−a)(v∂x, c))

= (udx⊗ dx, b)(((ϕ−1)′ ◦ ϕ)(v ◦ ϕ)∂x, c+

∫
S1

S(ϕ−1)vdx)

=

∫
S1

((u ◦ ϕ−1)((ϕ−1)′)2 + bS(ϕ−1))vdx+ bc

= (((u ◦ ϕ−1)((ϕ−1)′)2 + bS(ϕ−1))dx⊗ dx, b)(v∂x, c),

we finally get the claim.

By a direct computation, we can show that:

Lemma 1.28 ([14, p.73]). The Schwarzian derivative satisfies

S(ϕ ◦ ψ) = (S(ϕ) ◦ ψ)(ψ′)2 + S(ψ), (1.29)

for any ϕ, ψ ∈ Diff(S1).

Now, we will show the significance of the expression (1.26) of the coadjoint action of the
Bott-Virasoro group in the following remark.
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Remark 1.29. Given a, b ∈ R, define Πa : Diff(S1) → (X(S1) ×ω R)∗ to be a map on
Diff(S1) by

Πa,b(ϕ) := ((aS(ϕ) + b(ϕ′)2)dx⊗ dx, a).

The Bott-Virasoro group acts on Diff(S1) naturally such that for any (ψ, d) ∈ Diff(S1)×B
R, we have

ϕ · (ψ, d) := ϕ ◦ ψ (1.30)

By the expression of the coadjoint action, since

Πa,b(ϕ · (ψ, d)) = Πa,b(ϕ ◦ ψ)

= ((aS(ϕ ◦ ψ) + b((ϕ ◦ ψ)′)2)dx⊗ dx, a)

= (((aS(ϕ) + b(ϕ′)2) ◦ ψ)(ψ′)2 + aS(ψ))dx⊗ dx, a)

= Ad∗(ψ−1,−d)((aS(ϕ) + b(ϕ′)2)dx⊗ dx, a)

= Ad∗(ψ−1,−d)Πa,b(ϕ),

(1.31)

we see that Πa,b is equivariant with respect to the natural action (1.30) and the coadjoint
action of the Bott-Virasoro group. In this computation, the expression of the coadjoint
action (1.26) is essential. Moreover, it is the R-part of the map Πa,b that ensures it to be
equivariant. This shows the significance of the R-part.

Remark 1.30 ([14, Corollary 2.10]). For a, b, c, d ∈ R such that ad− bc = 1, the diffeo-
morphism ϕ : R ∪ {∞} → R ∪ {∞} given by

ϕ(x) :=
ax+ b

cx+ d
,

is called a Mobius transformation. It’s easy to verify that

S(ϕ) = 0.

Since R ∪ {∞} is diffeomorphic to S1, such Mobius transformation ϕ can be regarded as
an element in Diff(S1).

By the similar method we have used in the proof of Lemma 1.12, we can show that:

Lemma 1.31 ([14, p.73]). The coadjoint action of the Virasoro algebra is given by

ad∗(u∂x,a)(vdx⊗ dx, b) = ((−bu′′′ − 2u′v − uv′)dx⊗ dx, 0), (1.32)

where (u∂x, a) ∈ X(S1)×ω R and (vdx⊗ dx, b) ∈ (X(S1)×ω R)∗.

Remark 1.32 ([14, p.74]). It is convenient to consider the dual Virasoro algebra as the
space of Hill’s operator {a∂2

x + u | u ∈ C∞(S1), a ∈ R}. Let a = 1 and f, g be two
independent solutions of the corresponding Hill’s differential equation

(∂2
x + u)y = 0, (1.33)

for an unknown function y. In this case, although the equation (1.33) has periodic coef-
ficients, the solutions need not be periodic, but instead are functions over R.
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The following proposition and its proof essentially appear in Khesin and Wendt [14].

Proposition 1.33 ([14, Proposition 2.9]). Define η : R→ R∪{∞} to be the ratio map
on R by

η(x) :=
f(x)

g(x)
.

Then, for the differential equation (1.33), we have u = S(η)/2.

Proof. First, we note tht the Wronskian given by

W (f, g) := det

[
f f ′

g g′

]
= fg′ − f ′g

is constant, since W ′ = 0. It follows that

η′ =
f ′g − fg′

g2
= −W

g2
,

and

η′′ =
2Wg′

g3
.

Moreover, we have

η′′′ =
2W (g′′g − 3(g′)2)

g4
.

Therefore, we see that

S(η) =
η′η′′′ − 3

2
(η′′)2

(η′)2
=
−W
g2

2W (g′′g−3(g′)2)
g4

− 3
2
(2Wg′

g3
)2

(−W
g2

)2
=
−2g′′g + 6(g′)2 − 6(g′)2

g2
= 2u,

which implies the claim.

The following lemma and its proof essentially appear in Khesin and Wendt [14].

Lemma 1.34 ([14, Corollary 2.10]). For a, b, c, d ∈ R such that ad− bc = 1, let η be the
ratio map of two independent solutions of (1.33). Then, we have

S(η) = S(
aη + b

cη + d
).

This means that S is invariant under the Mobius transformation.
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1.2.3 Generalized Bott-Virasoro Groups

Consider the central extension of the diffeomorphism group Diff(S1):

1 // Z // D̃iff(S1) // Diff(S1) // 1,

where D̃iff(S1) is defined in Section 1.1.3. An integer k ∈ Z is regarded as a element in

D̃iff(S1) such that

k(x) = x+ 2kπ.

For any α ∈ R, we regard it as a function over Z such that for any k ∈ Z we have

α(k) = −α2kπ2.

Let τα : D̃iff(S1)→ R be a map given by

τα(f̃) := −α
2

∫ 2π

0

f̃(x)dx+ απ2,

where f̃ ∈ D̃iff(S1). Since

τα(f̃ ◦ k) = −α
2

∫ 2π

0

f̃(x+ 2kπ)dx+ απ2

= −α
2

∫ 2π

0

f̃(x)dx− α2kπ2 + απ2

= τα(f̃) + α(k),

we see that τα is a connection cochain with values in R, where the homomorphism ι
mentioned in Remark 1.26 is replaced by the function α. As (1.23), we can construct the
following central extension

1 // R // D̃iff(S1)×Z,α R // Diff(S1) // 1 , (1.34)

By the discussion in Remark 1.26, the map ταR : D̃iff(S1)×Z,α R→ R defined by

ταR ([f̃ , a]) = τα(f̃) + a

is a connection cochain of (1.34). Let sαR : Diff(S1)→ D̃iff(S1)×Z,αR be a section defined
by

sαR(f) := [f̃ ,−ταR ([f̃ , 0])].

Since for any k ∈ Z,

[f̃ ◦ k,−ταR ([f̃ ◦ k, 0])] = [f̃ ,−ταR ([f̃ , 0])], (1.35)
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we see that the section sαR is well-defined. Note that sαR is smooth since we can always

choose local smooth sections s : Diff(S1)→ D̃iff(S1) such that

sαR(f) = [s(f),−ταR ([s(f), 0])].

and by (1.35), sαR is independent of the choices of s. By Definition 1.20, the Euler cocycle
χαR : Diff(S1)×Diff(S1)→ R of the central extension (1.34) induced from sαR is given by

χαR(f1, f2) = sαR(f1)sαR(f2)sαR(f1f2)−1

= [f̃1,−ταR ([f̃1, 0])][f̃2,−ταR ([f̃2, 0])][f̃−1
2 ◦ f̃−1

1 , ταR ([f̃1 ◦ f̃2, 0])]

= −α
2

∫ 2π

0

(f̃1 ◦ f̃2(x)− f̃1(x)− f̃2(x))dx− απ2.

Then, we can define the generalized Bott-Virasoro group in the following.

Definition 1.35. Given α, β ∈ R, the generalized Bott-Virasoro group is defined
to be Diff(S1)×χαR+βB R.

Denote by e : X(S1)× X(S1)→ R the cocycle on X(S1) given by

e(u∂x, v∂x) =

∫
S1

uv′dx.

By Lemma 1.25, since for any u∂x, v∂x ∈ X(S1) we have

d2

dsdt

∣∣∣∣
t=s=0

χαR(cu∂x(t), cv∂x(s)) = −α
2

d2

dsdt

∣∣∣∣
t=s=0

∫ 2π

0

(c̃u∂x(t) ◦ c̃v∂x(s)(x))dx

=
α

2

∫
S1

uv′dx,

where cu∂x and cv∂x are two curves in Diff(S1) with initial vectors u∂x and v∂x respectively,
we see that the Lie algebra of the generalized Bott-Virasoro group assumes the form
X(S1) ×αe+βω R, which is called the generalized Virasoro algebra . With the similar
method we have used in the proof of Lemma 1.12, we can prove that:

Lemma 1.36. The coadjoint action of the generalized Virasoro algebra on (X(S1)×αe+βω
R)∗ is computed as

ad∗(u∂x,a)(vdx⊗ dx, b) = ((−2u′v − uv′ − βbu′′′ + αbu′)dx⊗ dx, 0).

where (u∂x, a) ∈ X(S1)×αe+βω R and (vdx⊗ dx, b) ∈ (X(S1)×αe+βω R)∗.

1.3 The Generalized Korteweg–de Vries Equation

In this section, we will employ the generalized Bott-Virasoro group and the Euler equation
to obtain a generalized version of the KdV equation. This will be our first main result.
Moreover, we will provide some basic knowledge on symplectic forms and Poisson brackets.
The content in Section 1.3.1 and Section 1.3.2 is mainly adapted from Khesin and Wendt
[14] and Kolev [15].
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1.3.1 Symplectic Forms and Poisson Brackets

Definition 1.37 ([15, Definition 2.1]). For a manifold M , a symplectic form is a closed
nondegenerate 2-form ω over M . Since ω is nondegenerate, for any smooth function
f ∈ C∞(M), there exists a vector field Xf ∈ X(M) such that

iXfω = −df,

called the symplectic gradient .

Definition 1.38 ([15, Definition 2.2]). Let M be a manifold. Then, a Poisson bracket
over M is a skew-symmetric bilinear map {−,−} : C∞(M)×C∞(M)→ C∞(M) satisfying

1. (Jacobi identity) for any f, g, h ∈ C∞(M) we have∑
cycl

{{f, g}, h} = 0;

2. (Leibniz rule) for any f, g, h ∈ C∞(M) we have

{f, gh} = {f, g}h+ {f, h}g.

Note that by the Leibniz rule, for any smooth function H ∈ C∞(M), there exists a vector
field XH such that

XHg = {H, g}

for any g ∈ C∞(M), called the Hamiltonian vector field .

The following lemma and its proof essentially appear in Kolev [15].

Lemma 1.39 ([15, pp.3-5]). Let ω be a symplectic form over M . Then, there exists a
Poisson bracket such that the Hamiltonian vector field of a function f ∈ C∞(M) coincides
with its symplectic gradient.

Proof. For any f, g ∈ C∞(M), let Xf , Xg ∈ X(M) be the symplectic gradients of f, g,
respectively. Then, define the Poisson bracket {−,−}ω over C∞(M) by

{f, g}ω := ω(Xf , Xg).

It’s easy to see that {−,−}ω is indeed a Poisson bracket. For any f ∈ C∞(M), denote
by X̄f its Hamiltonian vector field. Since

X̄fg = {f, g} = ω(Xf , Xg) = −iXgω(Xf ) = dg(Xf ),

where g ∈ C∞(M), we see that the symplectic gradient of f coincides with its the Hamil-
tonian vector field.
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Definition 1.40 ([14, Definition 4.8]). Let G be a Lie group with Lie algebra g. The
Lie-Poisson bracket {−,−}LP : C∞(g∗)× C∞(g∗)→ C∞(g∗) is defined by

{f, g}LP (x) := x([df(x), dg(x)]),

where df(x) is regarded as an element in g such that

m(df(x)) =
d

dt

∣∣∣∣
t=0

f(x+ tm),

for any m ∈ g∗.

The following proposition and its proof essentially appear in Khesin and Wendt [14].

Proposition 1.41 ([14, Proposition 4.9]). The Hamiltonian equation of a function H
with respect to the Lie-Poisson bracket over C∞(g∗) is given by

ṁ(t) = −ad∗dH(m(t))m(t),

where m is the integral curve of the Hamiltonian vector field XH .

Proof. For any x ∈ g∗, the tangent vector XH(x) is identified with an element in g∗. It
follows that

(XH(x))(df(x)) =
d

dt

∣∣∣∣
t=0

f(x+ tXH(x))

= (XHf)(x)

= {H, f}(x)

= x([dH(x), df(x)])

= (−ad∗dH(x)x)(df(x)),

where f ∈ C∞(M), which implies the claim.

Definition 1.42 ([14, Definition 4.20]). The constant Poisson bracket associated to
a point x0 ∈ g∗ is defined to be a bracket {−,−}x0 : C∞(g∗)× C∞(g∗) such that

{f, g}x0(x) := x0([df(x), dg(x)]),

for any f, g ∈ C∞(g∗).

We refers the readers to Khesin and Wendt [14] for the proof of the following lemma.

Lemma 1.43 ([14, Lemma 4.21]). The Hamiltonian equation corresponding to a function
H and the constant Lie-Poisson bracket over C∞(g∗) with freezing point m0 is given by

ṁ(t) = −ad∗dH(m(t))m0(t),

where m is the integral curve of the Hamiltonian vector field XH .

Remark 1.44. Let M be a manifold and C∞(M)0 a subset of C∞(M). Then, a Poisson
bracket {−,−}C∞(M)0 over C∞(M)0 can also be defined similarly as Definition 1.38, as
long as for any f, g ∈ C∞(M)0 we have

{f, g}C∞(M)0 ∈ C∞(M)0,

and {−,−}C∞(M)0 satisfies the conditions for the Poisson brackets.
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1.3.2 The Korteweg-de Vries Equation

Consider the Bott-Virasoro group and the Virasoro algebra. Define the L2-inner product
〈−,−〉 over the Virasoro algebra by

〈(u∂x, a), (v∂x, b)〉 :=

∫
S1

uvdx+ ab, (1.36)

where (u∂x, a), (v∂x, b) ∈ X(S1) ×ω R. By Definition 1.7, the induced inertia operator A
on the Virasoro algebra is given by

A(u∂x, a) = (udx⊗ dx, a).

Then, by Remark 1.11 and (1.32), the Euler equation applied to the Bott-Virasoro group
corresponding to the right-invariant metric induced from the L2-inner product is expressed
as

(u̇dx⊗ dx, ȧ) = ad∗A−1(udx⊗dx,a)(udx⊗ dx, a)

= ad∗(u∂x,a)(udx⊗ dx, a)

= ((−3u′u− au′′′)dx⊗ dx, 0),

(1.37)

where (udx⊗ dx, a) is a curve in the dual Virasoro algebra. We rewrite (1.37) as

u̇ = −3u′u− au′′′, (1.38)

which is called the Korteweg–de Vries equation.

Remark 1.45 ([14, Theorem 2.20]). The KdV equation can also obtained from the Hamil-
tonian equation over the dual Virasoro algebra. Let {−,−}(− 1

2
dx⊗dx,0) be the constant Lie-

Poisson bracket on C∞((X(S1)×ωR)∗) with freezing point (−1
2
dx⊗dx, 0) ∈ (X(S1)×ωR)∗.

Define H : (X(S1)×ω R)∗ → R by

H(udx⊗ dx, a) :=

∫
S1

(
1

2
u3 − a

2
(u′)2)dx.

Then, it’s easy to see that for any (udx⊗ dx, a), (vdx⊗ dx, b) ∈ (X(S1)×ω R)∗, we have

(vdx⊗ dx, b)(dH(udx⊗ dx, a)) =
d

dt

∣∣∣∣
t=0

H((udx⊗ dx, a) + t(vdx⊗ dx, b))

=
d

dt

∣∣∣∣
t=0

∫
S1

(
1

2
(u+ tv)3 − a+ tb

2
((u+ tv)′)2)dx

=

∫
S1

(
3

2
u2v − b

2
(u′)2 − au′v′)dx

= (vdx⊗ dx, b)((3

2
u2 + au′′)∂x,−

1

2

∫
S1

(u′)2dx),
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which implies that

dH(udx⊗ dx, a) = ((
3

2
u2 + au′′)∂x,−

1

2

∫
S1

(u′)2dx).

Then, by Lemma 1.43, we see that the Hamiltonian equation of H is expressed as

(u̇dx⊗ dx, ȧ) = −ad∗(( 3
2
u2+au′′)∂x,− 1

2

∫
S1 (u′)2dx)(−

1

2
dx⊗ dx, 0)

= (−(
3

2
u2 + au′′)′dx⊗ dx, 0)

= ((−3u′u− au′′′)dx⊗ dx, 0),

where (udx⊗dx, a) is a curve in the dual Virasoro algebra, which is nothing but the KdV
equation.

1.3.3 The Generalized Korteweg-de Vries Equation

In this section, we would like to apply the Euler equation to the generalized Bott-Virasoro
group G := Diff(S1) ×χαR+βB R. Let 〈−,−〉 be the L2-inner product over the generalized
Virasoro algebra Lie(G) = X(S1) ×αe+βω R. Then, as one of our main results, we will
prove that:

Theorem 1.46. Let ϕ : R → Diff(S1) and d, a : R → R be smooth curves and let
u : S1 × R → R be a smooth function of (x, t) ∈ S1 × R. Set c := (ϕ, d) : R → G and
m := (udx ⊗ dx, a) : R → X(S1)∗ × R, where X(S1)∗ × R is naturally identified with
Lie(G)∗. Suppose that m and c satisfy the condition (1.4). Then, c is a geodesic with
respect to the right-invariant metric induced from the L2-inner product if and only if

(u̇dx⊗ dx, ȧ) = ((−3uu′ − βau′′′ + αau′)dx⊗ dx, 0), (1.39)

where u̇ and ȧ denotes the derivatives with respect to t, and u′ with respect to x.

Proof. It’s easy to see that the induced inertia operator A : Lie(G)→ Lie(G)∗ is given by

(v∂x, b) 7→ (vdx⊗ dx, b).
Then, with the help of the computation of the coadjoint action of the generalized Virasoro
algeara in Lemma 1.36, and applying the Euler equation, we see that

(u̇dx⊗ dx, ȧ) = ad∗A−1(udx⊗dx,a)(udx⊗ dx, a)

= ad∗(u∂x,a)(udx⊗ dx, a)

= ((−3uu′ − βau′′′ + αau′)dx⊗ dx, 0),

which implies the claim.

We rewrite (1.39) as

u̇ = −3uu′ − βau′′′ + αau′. (1.40)

By setting u = v + 1
3
aα, and β = 1, the equation (1.40) amounts to

v̇ = −3vv′ − av′′′,
which is nothing but the KdV equation.
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Chapter 2

Hamiltonian Equations for the Space
of Equicentroaffine Curves

In this chapter, we will focus on the space of equicentroaffine curves M, which is intro-
duced by Ulrich Pinkall in [20]. In Section 2.2, we will provide two presymplectic forms
onM, one of which, denoted by ω̂1, is constructed in [7], by Fujioka and Kurose. We will
see that a presymplectic gradient with respect to ω̂1 also leads to the KdV equation as
the Euler equation does in (1.38). However, in this case, there is no metric involved. We
will compare these two cases in Chapter 3.

2.1 The Space of Equicentroaffine Curves

In this section, we will introduce the space of equicentroaffine curvesM. In Section 2.1.1,
we will provide some basic knowledge of M, making use of Hill’s operator. In Remark
2.6, we will see that the KdV equation appears, which involves a presymplectic form on
M. In Section 2.1.2, we will present a right action introduced by Pinkall, and derive a
formula for the Lie bracket of the fundamental vector fields corresponding to this action.
The content in this section is mainly adapted from Fujioka-Kurose [7], Pinkall [20] and
Tu [22].

2.1.1 Basic Concepts

Definition 2.1 ([20, p.328]). An equicentroaffine curve is a smooth curve γ : S1 → R2

satisfying

det(γ, γ′) = 1. (2.1)

We will denote by M̂ the space of equicentroaffine curves andM the connected component
of M̂ contaning the unit circle c.
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Remark 2.2 ([20, p.328]). Given a equicentroaffine curve γ =

[
γ1

γ2

]
, there is a unique

function κ : S1 → R determined by

γ′′ + κγ = 0,

called the equicentroaffine curvature of γ. By Remark 1.32,

[
γ1

γ2

]
is nothing but a

pair of independent solutions of Hill’s equation

(∂2
x + κ)y = 0.

Here, both the potential κ and and the solutions

[
γ1

γ2

]
have period 2π. By Proposision

1.33, setting η = γ1/γ2 to be the ratio map, we have κ = S(η)/2.

Example 2.3. Let γ =

[
a cosx
b sinx

]
be an ellipse, where a, b ∈ R not equal to zero. Since

det(γ, γ′) = det

[
a cosx −a sinx
b sinx b cosx

]
= ab,

we see that when ab = 1, the ellipse γ will be an equicentroaffine curve.

The following lemma and its proof essentially appear in Pinkall [20].

Lemma 2.4 ([20, p.330]). Let X ∈ TγM be a tangent vector over M. Then X has the
form

X = −1

2
λ′γ + λγ′,

where λ ∈ C∞(S1).

Proof. Note that a tangent vector X ∈ TγM over M could be expressed as

X = µγ + λγ′,

where µ, λ ∈ C∞(S1). Suppose that γ̃ is a variation of γ with initial vector X. By (2.1),
we have

det( ˙̃γ, γ̃′) + det(γ̃, ˙̃γ′) = 0,

where γ̃′ stands for the derivative with respect to the parameter x along the curve and ˙̃γ
to the parameter t along the variation. Setting t = 0, we have

det(µγ + λγ′, γ′) + det(γ, (µγ + λγ′)′) = 0.

It follows that

µ = −1

2
λ′,

which implies the claim.
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Remark 2.5 ([7, p.2]). By (2.1), we have

κ = det(κγ, γ′) = det(γ′, γ′′). (2.2)

Given γ ∈M, let γ̃ be a variation of γ with respect to (x, t) ∈ S1 × [−ε, ε], whose initial
vector is ˙̃γ|t=0 = −1

2
λ′γ + λγ′ for some λ ∈ C∞(S1). Let κ̃(−, t) be the equicentroaffine

curvature of γ̃(−, t) and call κ̃ the equicentroaffine curvature flow of γ̃. By (2.2),
we see that

˙̃κ = det( ˙̃γ′, γ̃′′) + det(γ̃′, ˙̃γ′′).

Setting t = 0, we have

˙̃κ|t=0 = det((−1

2
λ′γ + λγ′)′, γ′′) + det(γ′, (−1

2
λ′γ + λγ′)′′) =

1

2
λ′′′ + 2κλ′ + κ′λ. (2.3)

If we make use the operator Ω := 1
2
∂2
x + 2κ+ κ′∂−1

x introduced by Fujioka and Kurose [7],
the equation (2.3) can be rewritten as

˙̃κ|t=0 = Ωλ′. (2.4)

By the expression of the coadjoint action of the Virasoro algebra mentioned in Lemma
1.31, for (κdx⊗ dx, 1

2
) ∈ (X(S1)×ω R)∗ and (λ∂x, 0) ∈ X(S1)×ω R, we have

((Ωλ′)dx⊗ dx, 0) = −ad∗(λ∂x,0)(κdx⊗ dx,
1

2
). (2.5)

This implies that Ω may not be considered as a new operator.

Remark 2.6 ([20, p.331]). Let X1
H ∈ X(M) be a vector filed over M defined by

X1
H(γ) =

1

2
κ′γ − κγ′,

where κ is the equicentroaffine curvature of γ. Suppose that γ̃ is an integral curve of X1
H

inM and κ̃ its equicentroaffine curvature flow. By the discussion in Remark 2.5, we have

˙̃κ = Ω(−κ̃)′ = −1

2
κ̃′′′ − 3κ̃′κ̃, (2.6)

which means that the equicentroaffine curvature flow κ̃ also leads to the KdV equation
as the Euler equation applied to the Bott-Virasoro group does. In order to find an
explanation for (2.6), we will study the vector field X1

H in Section 2.3.2

2.1.2 Fundamental Vector Fields over M
Definition 2.7 ([20, p.332]). There is a well-defined right action of Diff(S1) on M such
that for any ϕ ∈ Diff(S1) and any γ ∈M, we have

γ · ϕ := (
√

(ϕ−1)′γ) ◦ ϕ =
γ ◦ ϕ√
ϕ′
,

which is called Pinkall’s right action of Diff(S1) on M.
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Remark 2.8. It is known that there is a bijection I : Diff(S1)→M given by

ψ 7→ c · ψ.

For any A =

[
a b
c d

]
∈ SL(2,R), let fA : [−π

2
, 3

2
π]→ [−π

2
, 3

2
π] be a function defined by

fA(x) =

{
arctan c cosx+d sinx

a cosx+b sinx
+ π a cosx+ b sinx < 0

arctan c cosx+d sinx
a cosx+b sinx

a cosx+ b sinx ≥ 0
.

We can consider fA as an element in Diff(S1). Thus, there is a left action of SL(2,R) on
Diff(S1) given by

A · ψ = fA ◦ ψ.

On the other hand, there is a left action of SL(2,R) on M given by

A · γ = Aγ.

We claim that the bijection I is an equivariant map with respect to these two actions.
Indeed, it’s easy to see that

I(fA ◦ idA) = c · fA =
c ◦ fA√
f ′A

=

[
(cos(arctan c cosx+d sinx

a cosx+b sinx
))

(sin(arctan c cosx+d sinx
a cosx+b sinx

))

]
1√

(a cosx+b sinx)2+(c cosx+d sinx)2

= Ac,

which implies the claim. As you can see, the action of SL(2,R) is very complicated on
Diff(S1). However, by using the bijection I and identifying an element in Diff(S1) with a
geometric element inM, such an action becomes very simple. This is one of the geometric
natures of the space of equicentroaffine curves M.

Definition 2.9 ([22, p.247]). Let G be a Lie group acting on a manifold M . Then, for
any element V ∈ g, the corresponding fundamental vector field over M is given by

V x =
d

dt

∣∣∣∣
t=0

cV (t) · x, (2.7)

where cV (t) is a curve in G with initial vector V .

The following lemma provides an expression for the Lie bracket of the fundamental vector
fields corresponding to Pinkall’s right action of Diff(S1) onM, which essentially appears
in Pinkall [20]. We will give an alternative proof here.

Lemma 2.10 ([20, p.332]). Consider Pinkall’s right action of Diff(S1) on M. For any
λ∂x, µ∂x ∈ X(S1) in the Lie algebra of Diff(S1), let λ∂x, µ∂x ∈ X(M) be the corresponding
fundamental vector fields respectively. Then, we have

[λ∂x, µ∂x] = (λ′µ− λµ′)∂x,

for the Lie bracket of vector fields.
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Proof. For any λ∂x ∈ X(S1), let ϕλ∂x be the flow of λ∂x and regard it as a curve in Diff(S1)
with initial vector λ∂x. By (2.7), the fundamental vector field is computed as

λ∂xγ =
d

dt

∣∣∣∣
t=0

γ · ϕλ∂x(t) =
d

dt

∣∣∣∣
t=0

(
√

(ϕλ∂x(t)
−1)′γ) ◦ ϕλ∂x(t) = −1

2
λ′γ + λγ′. (2.8)

It follows that for any γ ∈M, we have

d

ds

∣∣∣∣
s=t

γ · ϕλ∂x(s) =
d

ds

∣∣∣∣
s=0

γ · ϕλ∂x(s+ t) =
d

ds

∣∣∣∣
s=0

(γ · ϕλ∂x(t)) · ϕλ∂x(s) = λ∂xγ·ϕλ∂x (t)
.

Therefore, we see that

ϕλ∂x(−, t) = (−) · ϕλ∂x(t), (2.9)

where ϕλ∂x(−, t) stands for the flow of the fundamental vector field λ∂x ∈ X(M) overM.
It follows that for any λ∂x, µ∂x ∈ X(S1) and f ∈ C∞(M) we have

(λ∂xµ∂xf)(γ) =
d

dt

∣∣∣∣
t=0

(µ∂xγ·ϕλ∂x (t)
f)

=
d

dt

∣∣∣∣
t=0

(f∗(
d

ds

∣∣∣∣
s=0

γ · ϕλ∂x(t) · ϕµ∂x(s)))

= f∗(
d2

dtds

∣∣∣∣
t=s=0

γ · ϕλ∂x(t) · ϕµ∂x(s))

= f∗(−
1

2
µ′(−1

2
λ′γ + λγ′) + µ(−1

2
λ′γ + λγ′)′),

which implies that

(λ∂xµ∂x)(γ) = −1

2
µ′(−1

2
λ′γ + λγ′) + µ(−1

2
λ′γ + λµ′)′.

Similarly, we can compute (µ∂xλ∂x)(γ). It follows that

[λ∂x, µ∂x]γ = (λ∂xµ∂x − µ∂xλ∂x)(γ)

= −1

2
(λ′µ− λµ′)′γ + (λ′µ− λµ′)γ′

= (λ′µ− λµ′)∂x
γ
,

which implies the claim.

2.2 Symplectic Forms for the Space of Equicentroaffine

Curves

In this section, we will present two presymplectic forms ω̂i(i = 0, 1) on M, introduced
by Pinkall, Fujioka and Kurose. In Theorem 2.14 and Theorem 2.20, we will show that
ω̂i descends to a symplectic form on quotient spaces Mi. The content in this section is
mainly adapted from Fujioka and Kurose [7] and Pinkall [20].
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2.2.1 The Pinkall 2-Form

Definition 2.11 ([20, p.330]). Given tangent vectorsX = −1
2
λ′γ+λγ′, Y = −1

2
µ′γ+µγ′ ∈

TγM, define ω̂0 to be a 2-form on M by

ω̂0(X, Y ) :=

∫
S1

λµ′dx,

called the Pinkall 2-form .

The following lemma essentially appears in Pinkall [20]. We will provide a proof here.

Lemma 2.12 ([20, p.330]). The Pinkall 2-form ω̂0 is closed.

Proof. For any tangent vectors X = −1
2
λ′γ + λγ′, Y = −1

2
µ′γ + µγ′, Z = −1

2
ν ′γ + νγ′ ∈

TγM, by the discussion in Lemma 2.10, the fundamental vector fields λ∂x, µ∂x, ν∂x ∈
X(M) of λ∂x, µ∂x, ν∂x ∈ X(S1) extend X, Y, Z, respectively. It follows that

dω̂0(X, Y, Z) = dω̂0(λ∂x, µ∂x, ν∂x)(γ)

=
∑
cycl

λ∂xγω̂0(µ∂x, ν∂x)−
∑
cycl

ω̂0([λ∂x, µ∂x], ν∂x)(γ).

By Definition 2.11, the value of ω̂0(µ∂x, ν∂x) is independent of γ ∈M. Thus, we have∑
cycl

λ∂xγω̂0(µ∂x, ν∂x) = 0.

On the other hand, by Lemma 2.10, we have

dω̂0(X, Y, Z) = −
∑
cycl

ω̂0([λ∂x, µ∂x], ν∂x)(γ)

= −
∑
cycl

ω̂0((λ′µ− λµ′)∂x, ν∂x)(γ)

= −
∑
cycl

∫
S1

(λ′µ− λµ′)ν ′dx

= 0,

which implies the claim.

Remark 2.13 ([20, p.330]). Let ∈ S1 act onM such that for any z ∈ S1 and γ ∈M we
have

α · z := α ◦ z,

where we regard z ∈ S1 as an element in Diff(S1). Set M0 := M/S1. For any tangent
vector V ∈ T[γ]M0 over M0, there exists a lift V̂ ∈ TγM over M such that π0∗V̂ = V ,
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where π0 :M→M0 represents the projection. If X ∈ TγM satisfies π0∗X = 0, then we
have

X =
d

dt

∣∣∣∣
t=0

γ · (tλ) =
d

dt

∣∣∣∣
t=0

γ ◦ (tλ) = λγ′, (2.10)

for some λ ∈ R.

The following theorem and its proof essentially appear in Pinkall [20].

Theorem 2.14 ([20, p.330]). The Pinkall 2-form ω̂0 descends to a symplectic form ω0 on
M0, called the Pinkall symplectic form.

Proof. Given tangent vectors X, Y ∈ T[γ]M0, define ω0 to be a 2-form on M0 by

ω0(X, Y ) := ω̂0(X̂, Ŷ ), (2.11)

where X̂ = −1
2
λ′γ + λγ′, Ŷ = −1

2
µ′γ + µγ′ ∈ TγM lift X, Y , respectively. First, we show

that (2.11) is well-defined. Suppose that X̂ ′ ∈ TγM is another lift of X. Since

π0∗(X̂ − X̂ ′) = X −X = 0,

by (2.10), we see that there exists λ ∈ R such that

X̂ − X̂ ′ = λγ′.

It follows that

ω̂0(X̂, Ŷ )− ω̂0(X̂ ′, Ŷ ) =

∫
S1

λµ′dx = 0. (2.12)

Suppose that Ŷ ′ ∈ TγM is another lift of Y . By (2.12), we have

ω̂0(X̂ ′, Ŷ ′) = ω̂0(X̂ ′, Ŷ ) = ω̂0(X̂, Ŷ ),

which implies that (2.11) is independent of the choices of the lifts of tangent vectors at
a fixed representative γ of [γ]. For another representative γ ◦ z of [γ], where z ∈ S1, let
X̂ ′′, Ŷ ′′ ∈ Tγ◦zM lift X, Y , respectively. Suppose that γ̃ is a smooth curve in M with

initial vector X̂. Then, we have

rz∗X̂ =
d

dt

∣∣∣∣
t=0

γ̃(t) ◦ z = (−1

2
λ′γ + λγ′) ◦ z,

where rz : M →M denote the action of z. Similarly, we can compute rz∗Ŷ . It follows
that

ω̂0(rz∗X̂, rz∗Ŷ ) =

∫
S1

(λ ◦ z)(µ ◦ z)′dx =

∫
S1

λµ′dx = ω̂0(X̂, Ŷ ).
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Since rz∗X̂, rz∗Ŷ and X̂ ′′, Ŷ ′′ are both lifts over M at γ ◦ z of X, Y respectively, by the
first part of the proof, we have

ω̂0(X̂, Ŷ ) = ω̂0(rz∗X̂, rz∗Ŷ ) = ω̂0(X̂ ′′, Ŷ ′′).

This implies that ω0 is well-defined, and

π∗0ω0 = ω̂0.

By Lemma 2.12, ω1 is closed. Therefore, it leaves us to prove that ω0 is nondegenerate.
Suppose that X ∈ T[γ]M0 belongs to the kernel of ω0. Then, a lift X̂ = −1

2
λ′γ + λγ′ ∈

TγM of X belongs to the kernel of ω̂0. By the definition of ω̂1, we have λ′ = 0. Hence,

X = π0∗X̂ =
d

dt

∣∣∣∣
t=0

π0(γ ◦ (tλ)) =
d

dt

∣∣∣∣
t=0

[γ] = 0,

which implies that ω̂0 is nondegenerate.

2.2.2 The Fujioka-Kurose 2-Form

Definition 2.15 ([7, p.3]). Given tangent vectors X = −1
2
λ′γ + λγ′, Y = −1

2
µ′γ + µγ′ ∈

TγM, with κ the equicentroaffine curvature of γ, define ω̂1 to be a 2-form on M by

ω̂1(X, Y ) :=

∫
S1

λ(
1

2
µ′′′ + 2κµ′ + κ′µ)dx =

∫
S1

λΩµ′dx,

which is called the Fujioka-Kurose 2-form .

Remark 2.16. Since for any X = −1
2
λ′γ + λγ′, Y = −1

2
µ′γ + µγ′ ∈ TγM we have

ω̂1(Y,X) =

∫
S1

µΩλ′dx

=

∫
S1

µ(
1

2
λ′′′ + 2κλ′ + κ′λ)dx

= −
∫
S1

λ(
1

2
µ′′′ + 2κµ′ + κ′µ)dx

= −ω̂1(X, Y ),

we see that ω̂1 does be a 2-form.

The following lemma essentially appears in Fujioka and Kurose [7]. We will provide an
alternative proof here.

Lemma 2.17 ([7, Theorem 2]). The Fujioka-Kurose 2-form ω̂1 is closed.
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Proof. By the discussion in the proof of Lemma 2.10, for any tangent vectors X = −1
2
λ′γ+

λγ′, Y = −1
2
µ′γ + µγ′, Z = −1

2
ν ′γ + νγ′ ∈ TγM, we have

dω̂1(X, Y, Z) =
∑
cycl

λ∂xγω̂1(ν∂x, ν∂x)−
∑
cycl

ω̂1([λ∂x, µ∂x], ν∂x)(γ). (2.13)

Let ϕλ∂x be the flow of λ∂x ∈ X(S1). By (2.9), we have

λ∂xγω̂1(µ∂x, ν∂x) =
d

dt

∣∣∣∣
t=0

ω̂1(µ∂xγ·ϕλ∂x (t)
, ν∂xγ·ϕλ∂x (t)

)

Let κ̃ be the equicentroaffine curvature flow of γ · ϕλ∂x . By (2.3), we have

λ∂xγω̂1(µ∂x, ν∂x) =
d

dt

∣∣∣∣
t=0

∫
S1

µ(
1

2
ν ′′′ + 2κ̃(t)ν ′ + κ̃(t)′ν)dx

=
d

dt

∣∣∣∣
t=0

∫
S1

µ(2κ̃(t)ν ′ + κ̃(t)′ν)dx

=

∫
S1

µ(2(Ωλ′)ν ′ + (Ωλ′)′ν)dx

=

∫
S1

(µν ′ − µ′ν)Ωλ′dx.

It follows that∑
cycl

λ∂xγω̂1(µ∂x, ν∂x) =
∑
cycl

∫
S1

(µν ′ − µ′ν)Ωλ′dx

=
∑
cycl

∫
S1

(µν ′ − µ′ν)(
1

2
λ′′′ + 2κλ′ + κ′λ)dx

= 0.

For the second term in (2.13), we have∑
cycl

ω̂1([λ∂x, µ∂x], ν∂x)(γ) =
∑
cycl

ω̂1((λ′µ− λµ′)∂x, ν∂x)(γ)

=
∑
cycl

∫
S1

(λ′µ− λµ′)Ων ′dx

= −
∑
cycl

λ∂xγω̂1(µ∂x, ν∂x)

= 0.

It follows that the Fujioka-Kurose 2-form ω̂1 is closed.

Remark 2.18 ([7, p.4]). We have already defined a left action of SL(2,R) on M, such
that for any A ∈ SL(2,R) and γ ∈M we have

A · γ = Aγ.
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Let M1 := SL(2,R) \M. For any X ∈ TγM such that π1∗X = 0, where π1 :M→M0

represents the projection, there exists V ∈ sl(2,R) such that

X =
d

dt

∣∣∣∣
t=0

exp(tV ) · γ.

By Lemma 1.34, the equicentroaffine curvature flow of the curve exp((−)X) · γ in M
is independent of t. On the other hand, if γ̃ is a variation of γ with equicentroaffine
curvature flow κ̃ such that ˙̃κ|t=0 = 0, then there exists a curve A in SL(2,R) such that

˙̃γ|t=0 =
d

dt

∣∣∣∣
t=0

A(t) · γ,

for the initial vector of γ̃.

Remark 2.19 ([7, p.3]). Given tangent vectors X = −1
2
λγ + λγ′, Y = −1

2
µ′γ + µγ′ ∈

TγM, it’s easy to verify that

ω̂1(X, Y ) =

∫
S1

det(X, (∂2
x + κ)Y )dx, (2.14)

where κ is the equicentroaffine curvature of γ. On the other hand, by (2.4), setting γ̃ to
be a variation of γ with initial vector Y , we have

ω̂1(X, Y ) =

∫
S1

λΩµ′dx =
d

dt

∣∣∣∣
t=0

∫
S1

λκ̃(t)dx. (2.15)

where κ̃(t) is the equicentroaffine curvature of γ̃(t).

The following theorem and its proof essentially appear in Fujioka and Kurose [7].

Theorem 2.20 ([7, p.4]). The Fujioka-Kurose 2-form ω̂1 descends to a symplectic form
ω1 on M1, which is called the Fujioka-Kurose symplectic form.

Proof. Given tangent vectors X, Y ∈ T[γ]M1, define ω1 to be a 2-form on M1 by

ω1(X, Y ) := ω̂1(X̂, Ŷ ), (2.16)

where X̂, Ŷ ∈ TγM lift X, Y , respectively. First, we prove that (2.16) is well-deifned. Let

X̂ ′ ∈ TγM be another lift of X over M at γ . By the discussion in Remark 2.18, there
exists V ∈ sl(2,R) such that

X̂ − X̂ ′ = d

dt

∣∣∣∣
t=0

exp(tV ) · γ.

Let κ̃ be the equicentroaffine curvature flow of exp((−)V )·γ. By Remark 2.18 and Remark
2.19, we have

ω̂1(X̂, Ŷ )− ω(X̂ ′, Ŷ ) = −ω̂1(Ŷ , X̂ − X̂ ′) = − d

dt

∣∣∣∣
t=0

∫
S1

µκ̃(t)dx = 0. (2.17)
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Suppose that Ŷ ′ ∈ TγM is another lift at γ of Y . By (2.17), we have

ω̂1(X̂ ′, Ŷ ′) = ω̂1(X̂, Ŷ ′) = ω̂1(X̂, Ŷ ).

It follows that (2.16) is independent of the choices of the lifts of tangent vectors at a
fixed representative γ of [γ]. For another representative Aγ of [γ], where A ∈ SL(2,R),
let X̂ ′′, Ŷ ′′ ∈ TAγM be tangent vectors overM at Aγ lifting X, Y respectively. Since the
equicentroaffine curvature of Aγ is same to the one of γ, by (2.14), we have

ω(lA∗X̂, lA∗Ŷ ) = ω̂1(AX̂,AŶ )

=

∫
S1

det(AX̂, (∂2
x + κ)AŶ )dx

=

∫
S1

det(A) det(X̂, (∂2
x + κ)Ŷ )dx

= ω̂1(X̂, Ŷ ),

where lA : M → M denotes the left action of A ∈ SL(2,R). Since both lA∗X̂, lA∗Ŷ ∈
TAγM and X̂ ′′, Ŷ ′′ are lifts of X, Y over M at Aγ respectively, by the first part of the
proof, we see that

ω̂1(X̂, Ŷ ) = ω̂1(lA∗X̂, lA∗Ŷ ) = ω̂1(X̂ ′′, Ŷ ′′).

It follows that ω1 is well-defined, and

π∗1ω1 = ω̂1.

By Lemma 2.17, ω1 is closed. Therefore, it leaves us to prove that ω1 is nondegenerate.
Suppose that X ∈ T[γ]M1 belongs to the kernel of ω1. Then, a lift X̂ = −1

2
λ′γ + λγ′ ∈

TγM of X over M belongs to the kernel of ω̂1, which means that Ωλ′ = 0. Let γ̃ be a

variation of γ with inital vector X̂ and κ̃ its equicentroaffine curvature flow. Then,

d

dt

∣∣∣∣
t=0

κ̃(t) = Ωλ′ = 0.

By the discussion in Remark 2.18, the variation γ̃ can be expressed as Aγ, where A is a
curve in SL(2,R). It follows that

X = π1∗X̂ =
d

dt

∣∣∣∣
t=0

π1(A(t)γ) =
d

dt

∣∣∣∣
t=0

[γ] = 0,

which implies that ω1 is nondegenerate.

2.3 Poisson Brackets for the Space of Equicentroaffine

Curves

In this section, we will present two Poisson brackets {−,−}i(i = 0, 1) forM (see Fujioka
and Kurose [7]). We will show the relationship between {−,−}i and {−,−}ωi . In Example
2.25, we will see that the vector field X1

H mentioned in Remark 2.6 is nothing but the
presymplectic gradient of a Hamiltonian function on M. The content in this section is
mainly adapted from Fujioka and Kurose [7].
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2.3.1 A Poisson Bracket for M0

Let C∞(M)κ be the space consisting of the functions over M in the following form

F (γ) =

∫
S1

f(κ, κ′, · · · , κ(n))dx,

where κ is the equicentroaffine curvature of γ and f is a polynomial of κ, κ′, · · · , κ(n) for
some n ∈ N+. The following lemma shows that such F is a Hamiltonian function with
respect to ω̂0, which essentially appears in Fujioka and Kurose [7]. We will provide a proof
here.

Lemma 2.21 ([7, Proposition 1]). For any F ∈ C∞(M)κ, there is a well-defined vector
field X0

F ∈ X(M) given by

X0
F (γ) =

1

2
(Ω(δF )′)γ − (

1

2
(δF )′′ + 2(κ(δF ))′ − f(κ, κ′, · · · , κ(n)))γ′

where

δF :=
∂f

∂κ
(κ, κ′, · · · , κ(n))− ∂f

∂κ′
(κ, κ′, · · · , κ(n))′ + · · ·

such that

iX0
F
ω̂0 = −dF. (2.18)

This means that X0
F is the presymplectic gradient of F with respect to ω̂0.

Proof. Since

f(κ, κ′, · · · , κ(n))′ = (

∫ (−)

0

f(κ, κ′, · · · , κ(n))′ds)′

= (

∫ (−)

0

(
∂f

∂κ
(κ, κ′, · · · , κ(n))κ′ +

∂f

∂κ′
(κ, κ′, · · · , κ(n))κ′′ + · · · )ds)′

= (

∫ (−)

0

κ′(δF )ds)′

= κ′(δF ),

we see that

(
1

2
(δF )′′ + 2(κ(δF ))′ − f(κ, κ′, · · · , κ(n)))′ =

1

2
(δF )′′′ + 2κ(δF )′ + κ′(δF ) = Ω(δF )′,

which implies that X0
F (γ) does be a well-defined tangent vector over M by Lemma 2.4.

For any X = −1
2
λ′γ + λγ′ ∈ TγM, let γ̃ be a variation of γ with initial vector X and κ̃
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its equicentroaffine curvature flow. Since

dF (γ)(X) =
d

dt

∣∣∣∣
t=0

F (γ̃(t))

=
d

dt

∣∣∣∣
t=0

∫
S1

f(κ̃(t), κ̃(t)′, · · · , κ̃(t)(n))dx

=

∫
S1

(
∂f

∂κ
(κ̃, κ̃′, · · · , κ̃(n)) ˙̃κ+

∂f

∂κ′
(κ̃, κ̃′, · · · , κ̃(n)) ˙̃κ′ + · · · )dx

∣∣∣∣
t=0

=

∫
S1

(
∂f

∂κ
(κ, κ′, · · ·κ(n))Ωλ′ +

∂f

∂κ′
(κ, κ′, · · ·κ(n))(Ωλ′)′ + · · · )dx

=

∫
S1

(
∂f

∂κ
(κ, κ′, · · ·κ(n))− ∂f

∂κ′
(κ, κ′, · · ·κ(n))′ + · · · )(Ωλ′)dx

=

∫
S1

(δF )(Ωλ′)dx

we see that

−iX0
F
ω̂0(X) = ω̂0(X,X0

F (γ)) = −
∫
S1

λ(Ω(δF )′)dx =

∫
S1

(δF )(Ωλ′)dx = dF (γ)(X),

which implies the claim.

Theorem 2.22. Given F ∈ C∞(M)κ and [γ] ∈ M, define ι0 : C∞(M)κ → C∞(M0) to
be a map by

ι0(F )([γ]) := F (γ)

where γ ∈ M is a representative of [γ]. Let {−,−}0 : C∞(M)κ × C∞(M)κ → C∞(M)κ
be a bracket over C∞(M)κ given by

{F,G}0(γ) := ω̂0(X0
F (γ), X0

G(γ)).

Then, for any F,G ∈ C∞(M)κ and γ ∈M0 we have

{F,G}0(γ) = {ι0(F ), ι0(F )}ω0([γ]),

where {−,−}ω0 is the Poisson bracket induced by the Pinkall symplectic form ω0.

Proof. First, we prove that ι0 is well-defined. For any [γ] ∈ M, let γ and γ ◦ z be two
representatives for [γ], where z ∈ S1. Suppose that η is the ratio of γ. Then, η ◦ z is the
ratio of γ ◦ z. By Remark 1.28 and Lemma 1.33, we have

κγ◦z =
1

2
S(η ◦ z) =

1

2
((S(η) ◦ z)(z′)2 + S(z)) =

1

2
S(η) ◦ z = κ ◦ z,

where κ is the equicentroaffine curvature of γ and κγ◦z the one of γ ◦ z. It follows that

F (γ ◦ z) =

∫
S1

f(κ ◦ z, κ′ ◦ z, · · · , κ(n) ◦ z)dx =

∫
S1

f(κ, κ′, · · · , κ(n))dx = F (γ),
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which implies ι0 is well-defined. Since for any γ ∈M, we have

π∗0(ι0(F ))(γ) = ι0(F )([γ]) = F (γ),

we see that

π∗0(dι0(F )) = d(π∗0(ι0(F ))) = dF.

It follows that for any tangent vector X ∈ T[γ]M0 over M0, we have

ω0(π0∗(X
0
F (γ)), X) = ω0(π0∗(X

0
F (γ)), π0∗X̂)

= π∗0ω0(X0
F (γ), X̂)

= ω̂0(X0
F (γ), X̂)

= −dF (X̂)

= −π∗0(dι0(F ))(X̂)

= −d(ι0(F ))(X)

= ω0(Xι0(F )([γ]), X),

where X̂ ∈ TγM is a lift of X overM and Xι0(F ) is the symplectic gradient of ι0(F ) with
respect to ω0. Since the Pinkall symplectic form ω0 is nondegenerate, we see that

π0∗(X
0
F (γ)) = Xι0(F )([γ]).

Therefore, by the definition of ω0, we have

{F,G}0(γ) = ω̂0(X0
F (γ), X0

G(γ)) = ω0(Xι0(F )([γ]), Xι0(G)[γ]) = {ι0(F ), ι0(G)}ω0([γ]),

which implies the claim.

The following theorem essentially appears in Fujioka and Kurose [7]. We will provide a
proof here.

Theorem 2.23 ([7, p.6]). The bracket {−,−}0 on C∞(M)κ is a Poisson bracket.

Proof. For any F,G ∈ C∞(M)κ, since

{F,G}0 = ω̂0(X0
F , X

0
G) = −ω̂0(X0

G, X
0
F ) = {G,F}0,

we see that {−,−}0 is anti-symmetric. For any F,G ∈ C∞(M)0 and [γ] ∈ M0, by the
discussion in Theorem 2.22, we have

ι0({F,G}0)([γ]) = {F,G}0(γ) = {ι0(F ), ι0(G)}ω0([γ]).

It follows that for any F,G,H ∈ C∞(M)κ and γ ∈M, we have∑
cycl

{{F,G}0, H}0(γ) =
∑
cycl

{ι0({F,G}0), ι0(H)}ω0([γ])

=
∑
cycl

{{ι0(F ), ι0(G)}ω0 , ι0(H)}ω0

= 0.
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Therefore, {−,−}0 satisfies the Jacobi identity. Moreover, since

{F,GH}0(γ) = {ι0(F ), ι0(G)ι0(H)}ω0([γ])

= ι0(G)([γ]){ι0(F ), ι0(H)}ω0([γ]) + ι0(H)([γ]){ι0(F ), ι0(G)}ω0([γ])

= G(γ){F,H}0(γ) +H(γ){F,G}0(γ),

we see that {−,−}0 satisfies the Leibniz rule. It follows that {−,−}0 is a Poisson bracket
on C∞(M)κ.

2.3.2 A Poisson Bracket for M1

Definition 2.24 ([7, Theorem 2]). For any F ∈ C∞(M)κ, define X1
F ∈ X(M) to be a

vector field over M such that for any γ ∈M we have

X1
F (γ) :=

1

2
(δF )′γ − (δF )γ′. (2.19)

Note that by the computation in Lemma 2.21, for any X = −1
2
λ′γ + λγ′ ∈ TγM we have

dF (γ)(X) =

∫
S1

(δF )(Ωλ′)dx = −ω̂1(X1
F (γ), X) = −iX1

F
ω̂1(X).

This means that X1
F is the presymplectic gradient of F with respect to ω̂1.

Example 2.25 ([7], Theorem 1). Take H :M→ R as the function F in Definition 2.3.2
defined by

H(γ) :=
1

2

∫
S1

κ2dx,

where κ is the equicentroaffine curvature of γ. By (2.19) its presymplectic gradient X1
H

with respect to ω̂1 assumes the form

X1
H(γ) =

1

2
κ′γ − κγ′. (2.20)

Observing the expression (2.20), we see that X1
H is precisely the vector field mentioned in

Remark 2.6 which yields the KdV equation.

By the similar method we have used in the proofs of Theorem 2.22 and Theorem 2.23, we
can show the following theorem, which essentially appears in Fujioka and Kurose [7].

Theorem 2.26 ([7, p.6]). The bracket {−,−}1 : C∞(M)κ×C∞(M)κ → C∞(M)κ defined
by

{F,G}1(γ) := ω̂1(X1
F (γ), X1

G(γ))

is a Poisson bracket over C∞(M)κ.
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By the similar method we have used in the proof of Theorem 2.22, we can show the
following theorem.

Theorem 2.27. Let ι1 : C∞(M)κ → C∞(M1) be the inclusion given by

ι1(F )([γ]) := F (γ).

Then, we have

{F,G}1(γ) = {ι1(F ), ι1(G)}ω1([γ])

for all γ ∈M.

2.4 Momentum Maps for the Space of Equicentroaffine

Curves

In this section, we will present a left action of the Bott-Virasoro group on M, called the
spatial left action, and two momentum maps µi(i = 0, 1) onMi, which are introduced by
Fujioka, Kurose and Moriyoshi, such that the spatial left action and Pinkall’s right action
are Hamiltonian. The content in this section is mainly adapted from Fujioka, Kurose and
Moriyoshi [8] and Heckman [10].

2.4.1 A Momentum Map on M0

Definition 2.28 ([10, Definition 1.2]). Let G be a Lie group and g its Lie algebra.
Suppose that G acts on a manifold M with a symplectic form ω. Then, a equivariant
map µ : M → g∗ such that

d(µ(−)V ) = −iV ω

for all V ∈ g is called a momentum map of the action, where the momentum map µ is
equivariant in the sense that

µ(g · x) = Ad∗g(µ(x)),

for all g ∈ G and x ∈M . The action is called Hamiltonian if there exists a momentum
map and the action leaves ω invariant.

Definition 2.29. The Bott-Virasoro group acts on M from the left such that for any
(ϕ, a) ∈ Diff(S1)×B R and γ ∈M, we have

(ϕ, a) · γ := c · (ϕ ◦ ψ) (2.21)

where γ = c · ψ, for some ψ ∈ Diff(S1), with the help of Pinkall’s right action discussed
in Definition 2.7, called the spatial left action of the Bott-Virasoro group on M.
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Definition 2.30. The spatial left action of the Bott-Virasoro group can also be defined
on M0. For any (ϕ, a) ∈ Diff(S1)×B R and [γ] ∈M0, we have

(ϕ, a) · [γ] = [c · (ϕ ◦ ψ)], (2.22)

where γ is a representative of [γ] such that γ = c · ψ for some ψ ∈ Diff(S1), called the
spatial left action of the Bott-Virasoro group on M0. Note that for any other
representative γ ◦ z of [γ], where z ∈ S1, since

γ ◦ z = (c · ψ) ◦ z = (
√

(ψ−1)′γ) ◦ ψ ◦ z = (
√

((ψ ◦ z)−1)′) ◦ (ψ ◦ z) = c · (ψ ◦ z),

and

c · (ϕ ◦ ψ ◦ z) = (c · (ϕ ◦ ψ)) ◦ z,

we see that the spatial left action (2.22) is well-defined.

Definition 2.31. Given [γ] ∈M0, define µ0 :M0 → (X(S1)×ω R)∗ to be a map by

µ0([γ]) := (
1

2
((ψ−1)′)2dx⊗ dx, 0), (2.23)

where ψ ∈ Diff(S1) such that γ = c · ψ for some representative γ of [γ]. Let γ ◦ z be
another representative of [γ], where z ∈ S1. Since

((ψ ◦ z)−1)′ = ((z−1)′ ◦ ψ−1)(ψ−1)′ = (ψ−1)′,

we see that µ0 is well-defined.

Lemma 2.32. The map µ0 is equivariant.

Proof. For any [γ] ∈M0, let γ = c · ψ be a representative of [γ], where ψ ∈ Diff(S1). By
(1.26), for any (ϕ, a) ∈ Diff(S1)×B R we have

µ0((ϕ, a) · [γ]) = µ0([c · (ϕ ◦ ψ)])

= (
1

2
((ψ−1 ◦ ϕ−1)′)2dx⊗ dx, 0)

= (
1

2
(((ψ−1)′)2 ◦ ϕ−1)((ϕ−1)′)2dx⊗ dx, 0)

= Ad∗(ϕ,a)(
1

2
((ψ−1)′)2dx⊗ dx, 0)

= Ad∗(ϕ,a)(µ0([γ])),

which implies the claim.

Lemma 2.33. For any (ν∂x, a) ∈ X(S1) ×ω R, the fundamental vector field (ν∂x, a) ∈
X(M) with respect to the spatial left action of the Bott-Virasoro group on M has the
form

(ν∂x, a)
γ

= −1

2
(
ν ◦ ψ
ψ′

)′γ +
ν ◦ ψ
ψ′

γ′

where γ = c · ψ with some ψ ∈ Diff(S1).
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Proof. Let ϕc∂x be the flow of ν∂x ∈ X(S1). Then, we have

(ν∂x, a)
γ

=
d

dt

∣∣∣∣
t=0

(ϕν∂x(t), at) · γ

=
d

dt

∣∣∣∣
t=0

c · (ϕν∂x(t) ◦ ψ)

=
d

dt

∣∣∣∣
t=0

(c · ϕν∂x(t)) · ψ

= (
√

(ψ−1)′ ◦ ψ)((
d

dt

∣∣∣∣
t=0

c · ϕν∂x(t)) ◦ ψ)

= ((−1

2
ν ′c+ νc′) ◦ ψ)(

√
(ψ−1)′ ◦ ψ)

= −1

2
(ν ′ ◦ ψ)(c · ψ) + (ν ◦ ψ)(c′ ◦ ψ)(

√
(ψ−1)′ ◦ ψ)

= −1

2
(ν ′ ◦ ψ)(c · ψ) + (ν ◦ ψ)

c′ ◦ ψ√
ψ′

where we have used the computation in Lemma 2.10 for the fundamental vector fields of
Pinkall’s right action of Diff(S1) on M and

(ψ−1)′ =
1

ψ′ ◦ ψ−1
.

Since

(c · ψ)′ = (
c ◦ ψ√
ψ′

)′ =
(c′ ◦ ψ)ψ′

√
ψ′ − (c ◦ ψ) 1

2
√
ψ′
ψ′′

ψ′
=
c′ ◦ ψ√
ψ′
ψ′ − 1

2
(c · ψ)

ψ′′

ψ′
,

we see that

(ν
d

dx
, a)

γ

= −1

2
(ν ′ ◦ ψ)(c · ψ) + (ν ◦ ψ)

(c · ψ)′ + 1
2
(c · ψ)ψ

′′

ψ′

ψ′

= −1

2
(ν ′ ◦ ψ − (ν ◦ ψ)ψ′′

(ψ′)2
)(c · ψ) +

ν ◦ ψ
ψ′

(c · ψ)′

= −1

2
(
ν ◦ ψ
ψ′

)′γ +
ν ◦ ψ
ψ′

γ′,

which implies the claim.

Lemma 2.34. The map µ0 is the momentum map with respect to the spatial left action
of the Bott-Virasoro group on M0.

Proof. By Definition 2.28 and Lemma 2.32, it leaves us to to prove that

d(µ0(−)(ν∂x, a)) = −i(ν∂x,a)ω0.
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For any tangent vector X ∈ T[γ]M0 over M0, suppose that X̂ = −1
2
λ′γ + λγ′ ∈ TγM is

a lift of X over M. Let ϕλ∂x be the flow of λ∂x ∈ X(S1). It’s easy to see that

d(µ0(−)(ν∂x, a))(X) =
d

dt

∣∣∣∣
t=0

µ0([γ · ϕλ∂x(t)])(ν∂x, a)

=
d

dt

∣∣∣∣
t=0

µ0([c · (ψ ◦ ϕλ∂x(t))])(ν∂x, a),

where ψ ∈ Diff(S1) such that γ = c · ψ for some representative γ of [γ]. By the definition
of µ0 in (2.23), we have

d(µ0(−)(ν∂x, a))(X) =
d

dt

∣∣∣∣
t=0

(
1

2
((ϕλ∂x(t)

−1 ◦ ψ−1)′)2dx⊗ dx, 0)(ν∂x, a)

=
d

dt

∣∣∣∣
t=0

∫
S1

1

2
((ϕλ∂x(t)

−1 ◦ ψ−1)′)2νdx

= −
∫
S1

(λ′ ◦ ψ−1)((ψ−1)′)2νdx

= −
∫
S1

ν ◦ ψ
ψ′

λ′dx

= −ω̂0((ν∂x, a)
γ
, X̂),

where (ν∂x, a)
γ

denotes the fundamental vector field of (v∂x, a) valued at γ with respect

to the spatial left action of the Bott-Virasoro group onM, computed in Lemma 2.33. By
(2.22), we have

π0∗(ν∂x, a)
γ

=
d

dt

∣∣∣∣
t=0

[(ϕν∂x(t), at) · γ]

=
d

dt

∣∣∣∣
t=0

[c · (ϕν∂x(t) ◦ ψ)]

=
d

dt

∣∣∣∣
t=0

(ϕν∂x(t), at) · [γ]

= (ν∂x, a)
[γ]
,

where (ν∂x, a)
[γ]

denotes the fundamental vector field of (v∂x, a) valued at [γ] with respect

to the spatial left action of the Bott-Virasoro group on M0 . By the definition of ω0, we
have

d(µ0(−)(ν∂x, a))(X) = −ω̂0((ν∂x, a)
γ
, X̂) = −ω0((ν∂x, a)

[γ]
, X) = −i(ν∂x,a)ω0(X),

which implies the claim.

Lemma 2.35. The spatial left action of the Bott-Virasoro group onM0 leaves ω0 invari-
ant.
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Proof. Suppose that X̂ = −1
2
λ′γ+λγ′ ∈ TγM is a tangent vector overM, where γ = c ·ψ

for some ψ ∈ Diff(S1). Let ϕλ∂x be the flow of λ∂x ∈ X(S1). Then, it’s easy to see that
for any (ϕ, a) ∈ Diff(S1)×B R, we have

l(ϕ,a)∗X̂ =
d

dt

∣∣∣∣
t=0

(ϕ, a) · (γ · ϕλ∂x(t))

=
d

dt

∣∣∣∣
t=0

c · ϕ · ψ · ϕλ∂x(t)

=
d

dt

∣∣∣∣
t=0

((ϕ, a) · γ) · ϕλ∂x(t)

= −1

2
λ′((ϕ, a) · γ) + λ((ϕ, a) · γ)′,

(2.24)

where l(ϕ,a) denotes the spatial left action of the Bott-Virasoro group on M. Let l(ϕ,a)

also denote the spatial left action of the Bott-Virasoro group on M0. Since

l(ϕ,a) ◦ π0(γ) = l(ϕ,a)([γ]) = [c · (ϕ ◦ ψ)] = [l(ϕ,a)(γ)] = π0 ◦ l(ϕ,a)(γ), (2.25)

we see that for any X, Y ∈ T[γ]M0, with lifts X̂ = −1
2
λ′γ + λγ′, Ŷ = −1

2
µ′γ +µγ′ ∈ TγM

respectively,

l∗(ϕ,a)ω0(X, Y ) = π∗0l
∗
(ϕ,a)ω0(X̂, Ŷ )

= l∗(ϕ,a)π
∗
0ω0(X̂, Ŷ )

= l∗(ϕ,a)ω̂0(X̂, Ŷ )

= ω̂0(l(ϕ,a)∗X̂, l(ϕ,a)∗Ŷ ).

Thus, by the computation in (2.24), we have

l∗(ϕ,a)ω0(X, Y ) = ω̂0(l(ϕ,a)∗X̂, l(ϕ,a)∗Ŷ ) =

∫
S1

λµ′dx = ω̂0(X̂, Ŷ ) = ω0(X, Y ),

which implies the claim.

By showing Lemma 2.32, Lemma 2.34 and Lemma 2.35, we have indeed proved the
following theorem, which is one of the main results in Fujioka, Kurose and Moriyoshi [8].

Theorem 2.36 ([8]). The spatial left action of the Bott-Virasoro group on M0 is Hamil-
tonian with momentum map µ0.

2.4.2 A Momentum Map on M1

Definition 2.37. Recalling Definition 2.7, given (ϕ, a) ∈ Diff(S1)×B R and γ ∈ M, we
define a similar action on M by

γ · (ϕ, a) := γ · ϕ = (
√

((ϕ−1)′)γ) ◦ ϕ =
γ ◦ ϕ√
ϕ′
, (2.26)

and call it Pinkall’s right action of the Bott-Virasoro group on M.
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Remark 2.38. The action (2.26) can also be defined onM1. Given (ϕ, a) ∈ Diff(S1)×BR
and [γ] ∈M1, we set

[γ] · (ϕ, a) := [γ · ϕ], (2.27)

and call it Pinkall’s right action of the Bott-Virasoro group on M1. Let A ∈
SL(2,R) and Aγ be another representative of γ. Since

(Aγ) · ϕ =
(Aγ) ◦ ϕ√

ϕ′
=
A(γ ◦ ϕ)√

ϕ′
= A(γ · ϕ),

we see that (2.27) is well-defined.

Lemma 2.39. Pinkall’s right action leaves ω1 invariant.

Proof. For any tangent vector X̂ = 1
2
λ′γ + λγ′ ∈ TγM over M, let ϕλ∂x be the flow of

λ∂x. By the computation in the proof of Lemma 2.33, given (ϕ, a) ∈ Diff(S1) ×B R, we
have

r(ϕ,a)∗X̂ =
d

dt

∣∣∣∣
t=0

(γ · ϕλ∂x(t)) · (ϕ, a)

=
d

dt

∣∣∣∣
t=0

γ · ϕλ∂x(t) · ϕ

= −1

2
(
λ ◦ ϕ
ϕ′

)′(γ · (ϕ, a)) +
λ ◦ ϕ
ϕ′

(γ · (ϕ, a))′,

(2.28)

where r(ϕ,a) denotes Pinkall’s right action of the Bott-Virasoro group on M. Let r(ϕ,a)

also denote Pinkall’s right action of the Bott-Virasoro group onM1. It’s easy to see that

r(ϕ,a) ◦ π1 = π1 ◦ r(ϕ,a).

Given tangent vectors X, Y ∈ T[γ]M1, suppose that X̂ = −1
2
λ′γ+λγ′, Ŷ = −1

2
µ′γ+µγ′ ∈

TγM lift X, Y , respectively. Then, we have

r∗(ϕ,a)ω1(X.Y ) = π∗1r
∗
(ϕ,a)ω1(X̂, Ŷ ) = r∗(ϕ,a)π

∗
1ω1(X̂, Ŷ ) = ω̂1(r(ϕ,a)∗X̂, r(ϕ,a)∗Ŷ ).

Let ϕµ∂x be the flow of µ∂x and κ̃ the equicentroaffine curvature flow of the variation

γ ·ϕµ∂x ·ϕ whose initial vector is r(ϕ,a)∗Ŷ . By the computation in (2.28) and the discussion
in Remark 2.19, we have

r∗(ϕ,a)ω1(X, Y ) = ω̂1(r(ϕ,a)∗X̂, r(ϕ,a)∗Ŷ ) =

∫
S1

λ ◦ ϕ
ϕ′

Ω(
µ ◦ ϕ
ϕ′

)′dx =
d

dt

∣∣∣∣
t=0

∫
S1

λ ◦ ϕ
ϕ′

κ̃(t)dx.

Let η be the ratio of γ, which is mentioned in Proposition 1.33. By the definition of
Pinkall’s right action of Diff(S1) on M, the ratio of γ · ϕµ∂x · ϕ is η ◦ ϕµ∂x ◦ ϕ. Then, by
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the discussion in Remark 2.2, we have

d

dt

∣∣∣∣
t=0

κ̃(t) =
d

dt

∣∣∣∣
t=0

S(η ◦ ϕµ∂x(t) ◦ ϕ)

2

=
d

dt

∣∣∣∣
t=0

(S(η ◦ ϕµ∂x(t)) ◦ ϕ)(ϕ′)2 + S(ϕ)

2

=
d

dt

∣∣∣∣
t=0

((
S(η)

2
◦ ϕµ∂x(t) ◦ ϕ)((ϕµ∂x(t)

′)2 ◦ ϕ) +
S(ϕµ∂x(t))

2
◦ ϕ)(ϕ′)2

=
d

dt

∣∣∣∣
t=0

((κ ◦ ϕµ∂x(t) ◦ ϕ)((ϕµ∂x(t)
′)2 ◦ ϕ) +

S(ϕµ∂x(t))

2
◦ ϕ)(ϕ′)2

= ((κ′ ◦ ϕ)(µ ◦ ϕ) + 2(κ ◦ ϕ)(µ′ ◦ ϕ) +
1

2
(µ′′′ ◦ ϕ))(ϕ′)2,

where κ is the equicentroaffine curvature of γ and we have used the property of the
Schwarzian derivative mentioned in Lemma 1.28. It follows that

r∗(ϕ,a)ω1(X, Y ) =

∫
S1

λ ◦ ϕ
ϕ′

((κ′ ◦ ϕ)(µ ◦ ϕ) + 2(κ ◦ ϕ)(µ′ ◦ ϕ) +
1

2
(µ′′′ ◦ ϕ))(ϕ′)2dx.

=

∫
S1

λΩµ′dx

= ω̂1(X̂, Ŷ )

= ω1(X, Y ),

which implies the claim.

Definition 2.40 ([8]). Given [γ] ∈M1, define µ1 :M1 → (X(S1)×ω R)∗ to be a map on
M1 by

µ1([γ]) := (−κdx⊗ dx,−1

2
),

where κ is the equicentroaffine curvature of a representative γ of [γ]. By Lemma 1.34, the
map µ1 is well-defined.

Lemma 2.41. The map µ1 is equivariant.

In the following remark, we will discuss the role of the R-part in the definition of the map
µ1, which will also contain the proof of Lemma 2.41.

Remark 2.42. Given γ ∈M, define Π :M→ (X(S1)×ω R)∗ to be a map by

Π(γ) = (−1

2
S(η)dx⊗ dx,−1

2
),

where η = γ1/γ2 is the ratio map and S the Schwarzian derivative. It’s easy to see that
we have the following commutative diagram

M
Π

**
Diff(S1)

I

OO

Π− 1
2 ,−1

// (X(S1)×ω R)∗
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where I is the bijection mentioned in Remark 2.8, and Π−1/2.−1 in Remark 1.29. Indeed,
for any ψ ∈ Diff(S1), we have

Π ◦ I(ψ) = Π(c · ψ)

= (−1

2
S(cot ◦ψ)dx⊗ dx,−1

2
)

= ((−1

2
(S(cot) ◦ ψ)(ψ′)2 − 1

2
S(ψ))dx⊗ dx,−1

2
)

= ((−1

2
S(ψ)− (ψ′)2)dx⊗ dx,−1

2
)

= Π− 1
2
,−1(ψ),

since S(cot) = 2. Now, by the discussion in Remark 1.29, we see that Π is equivariant
with respect to Pinkall’s right action on M and the coadjoint action on the Virasoro
algebra. Given [γ] ∈ M, choose a representative γ ∈ M and denote it by s([γ]). By the
discussion above, we see that µ1 = Π ◦ s is equivariant. Note that without the occurrence
of −1

2
in the expression of µ1, the map Π−1/2.−1 will not be involved, and µ1 can not be

equivariant. This shows the role of the R-part in the definition of µ1.

Lemma 2.43. The map µ1 is a momentum map of Pinkall’s right action of the Bott-
Virasoro group on M1.

Proof. By Definition 2.28 and Lemma 2.39, it is sufficient for us to prove that for any
(ν∂x, a) ∈ X(S1)×ω R, we have

d(µ1(−)(ν∂x, a)) = −i(ν∂x,a)ω1.

Let X ∈ T[γ]M1 be a tangent vector overM1 and X̂ = −1
2
λ′γ+λγ′ ∈ TγM a lift of X over

M. Suppose that γ̃ is a variation in M with initial vector X̂, and κ̃ its equicentroaffine
curvature flow. It’s easy to see that

d(µ1(−)(ν∂x, a))(X) =
d

dt

∣∣∣∣
t=0

µ1([γ̃(t)])(ν∂x, a)

= − d

dt

∣∣∣∣
t=0

(κ̃(t)dx⊗ dx, 1

2
)(ν∂x, a)

= − d

dt

∣∣∣∣
t=0

∫
S1

νκ̃(t)dx

= −
∫
S1

νΩλ′dx

= −ω̂1((ν∂x, a)
γ
, X̂),

where (ν∂x, a)
γ

is the fundamental vector field of (ν∂x, a) with respect to Pinkall’s right

action of the Bott-Virasoro group on M valued at γ, given by

(ν∂x, a)
γ

= −1

2
ν ′γ + νγ′.
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Let ϕν∂x be the flow of ν∂x ∈ X(S1). By (2.27), we have

π1∗(ν∂x, a)
γ

=
d

dt

∣∣∣∣
t=0

[γ · ϕν∂x(t)] =
d

dt

∣∣∣∣
t=0

[γ] · (ϕν∂x(t), at) = (ν∂x, a)
[γ]
,

where (ν∂x, a)
[γ]

is the fundamental vector field of (ν∂x, a) with respect to Pinkall’s right

action of the Bott-Virasoro group on M1 valued at [γ]. By the definition of ω1, we see
that

d(µ1(−)(ν∂x, a))(X) = −ω̂1((ν∂x, a)
γ
, X̂) = −ω1((ν∂x, a)

[γ]
, X) = −i(ν d

dx
,a)ω1(X),

which implies the claim.

By showing Lemma 2.41 and Lemma 2.43, we have indeed proved the following theorem,
which is one of the main results in Fujioka, Kurose and Moriyoshi [8].

Theorem 2.44 ([8]). Pinkall’s right action of the Bott-Virasoro group on M1 is Hamil-
tonian with momentum map µ1.
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Chapter 3

Relations between the Bott-Virasoro
Group and the Space of
Equicentroaffine Curves

In this chapter, we will discover the relationship between the Kirillov-Kostant-Souriau
form, the Pinkall 2-form, the Fujioka-Kurose form, and the canonical symplectic form.
In particular, by clarifying the connection between the Fujioka-Kurose 2-form and the
canonical symplectic form for the Bott-Virasoro group, we can show why the equicen-
troaffine curvature flow of the vector field X1

H mentioned in Example 2.25 must satisfy
the KdV equation.

3.1 The Kirillov-Kostant-Souriau Form and Canoni-

cal Symplectic Form

In this section, we will show the relationship between the canonical symplectic form on
G n g∗ and the Kirillov-Kostant-Souriau form on g∗. We will derive an explicit formula
for the canonical symplectic form and show how it yields the Euler equation. In Theorem
3.11, we will construct an action on Gn g∗, and show that the pullback of the KKS form
by a projection map is precisely the canonical symplectic form restricted to the oribts.
This will be one of our main results. The content in Section 3.1.1 and Section 3.1.2 is
mainly adapted from Baues and Cortes [2], Dwivedi, Herman, Jeffrey and Hurk [11] and
Kumar [16].

3.1.1 The Kirillov-Kostant Souriau Form

The following theorem essentially appears in Dwivedi, Herman, Jeffrey, and Hurk T. [11].
We refer the readers to it for the proof.

Theorem 3.1 ([11], Theorem 5.1). Suppose that G is a Lie group and g its Lie algebra.
For any λ ∈ g∗, let Oλ be the coajoint orbit of G at λ. Then, Oλ carries a symplectic
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form ωOλ such that for any tangent vectors X, Y ∈ TξOλ along Oλ with ξ ∈ Oλ, we have

ωOλ(X, Y ) = ξ([U, V ]),

where U, V ∈ g such that ad∗U(ξ) = X, ad∗V (ξ) = Y .

Remark 3.2. In Theorem 3.1, we have used the fact that any tangent vector X ∈ TξOλ
along the coadjoint orbit of G has the form

X = ad∗U(ξ),

for some U ∈ g.

Definition 3.3. The family of 2-forms {ωOλ ∈ Ω2(Oλ) | λ ∈ g} is called the Kirillov-
Kostant-Souriau form , denoted by ωKKS.

Remark 3.4. For any U ∈ g, let F : g∗ → R be a function on g∗ defined by

F (m) := m(U). (3.1)

In Definition 1.40, we have shown that dF (ξ) can be regarded as an element in g. For
any η ∈ g∗, since

η(dF (ξ)) =
d

dt

∣∣∣∣
t=0

F (ξ + tη) =
d

dt

∣∣∣∣
t=0

(ξ + tη)(U) = η(U),

we see that

dF (ξ) = U.

Similarly, for any V ∈ g, let H : g∗ → R be the function over g∗ defined by

H(m) := m(V ).

It follows that given tangent vectors ad∗U(ξ), ad∗V (ξ) ∈ TξOλ along the coadjoint orbit Oλ
of G, we have

ωKKS(ad∗U(ξ), ad∗V (ξ)) = ωKKS(ad∗dF (ξ)(ξ), ad∗dH(ξ)(ξ))

= ξ([dF (ξ), dH(ξ)])

= {F,H}LP (ξ).

This shows the relationship between the KKS Form and the Lie-Poisson bracket.
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3.1.2 Canonical Symplectic Form

Definition 3.5 ([2, pp.49]). Let G be a Lie group and g its Lie algebra. Set G n g∗ to
be the semidirect product with multiplication

(g, α)(h, β) = (gh,Ad∗h−1α + β).

Given α ∈ g∗, a tangent vector in Tαg
∗ is expressed as βα, where β ∈ g∗. Then, the 1-form

Θ : T (Gn g∗)→ R on Gn g∗ defined by

Θ(Xg, βα) := α(lg−1∗Xg),

where (Xg, βα) ∈ TgG × Tαg∗ = T(g,α)(G n g∗), is called the tautological 1-form , the
exterior differential dΘ of which is called the canonical symplectic form .

Remark 3.6 ([2, pp.48-49]). Usually, the tautological 1-form refers to the 1-form Θ̃ :
T (T ∗G)→ R defined by

Θ̃(Xαg) = αg(π∗Xαg),

where Xαg ∈ Tαg(T ∗G) is a tangent vector over T ∗G, and the canonical symplectic form

refers to the exterior differential dΘ̃. However, there is a group isomorphism Φ : T ∗G→
Gn g∗ given by

Φ(αg) := (g, αg ◦ lg∗),

where the cotangent bundle T ∗G holds the multiplication

αgβh := αg ◦ rh−1∗ + βh ◦ lg−1∗,

such that

Φ∗Θ = Θ̃,

since for any Xαg ∈ Tαg(T ∗G), we have

Φ∗Θ(Xαg) = Θ(
d

dt

∣∣∣∣
t=0

Φ(cXαg (t)))

= Θ(
d

dt

∣∣∣∣
t=0

π(cXαg (t)),
d

dt

∣∣∣∣
t=0

cXαg (t) ◦ lπ(cXαg (t))∗
)

= αg ◦ lg∗ ◦ lg−1∗(
d

dt

∣∣∣∣
t=0

π(cXαg (t)))

= αg(π∗Xαg)

= Θ̃(Xαg),

where cXαg is a curve in T ∗G with initial vector Xαg and π : T ∗G→ G the projection on
T ∗G. This is the reason why we use Θ as the tautological 1-form and it turns out that it
is enough for our later discussion.
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The following theorem essentially appear in Baues O., Cortes V. [2]. We provide a proof
here.

Theorem 3.7 ([2, Proposition 4.3]). The canonical symplectic form dΘ can be computed
as

dΘ((Xg, ασ), (Yg, βσ)) = α(lg−1∗Yg)− β(lg−1∗Xg)− σ([lg−1∗Xg, lg−1∗Yg]),

where (Xg, ασ), (Yg, βσ) ∈ T(g,σ)(Gn g∗) are tangent vectors.

Proof. For any element (V, β) ∈ g× g∗ in the Lie algebra of Gn g∗, we have

Θ((̃V, β)(g,σ)) = Θ(
d

dt

∣∣∣∣
t=0

(g, σ)(cV (t), βt))

= Θ(
d

dt

∣∣∣∣
t=0

(gcV (t),Ad∗cV (t)−1σ + βt))

= Θ(Ṽg,−ad∗V σ + β)

= σ(V ),

where cV is a curve in G with initial vector V . It follows that for any (U, α), (V, β) ∈ g×g∗
we have

(̃U, α)(g,σ)(Θ((̃V, β))) = (Θ((̃V, β))∗(̃U, α)(g,σ)

= (Θ((̃V, β)))∗l(g,σ)∗(U, α)

=
d

dt

∣∣∣∣
t=0

Θ((̃V, β)(g,σ)(cU (t),αt))

=
d

dt

∣∣∣∣
t=0

Θ((̃V, β)(gcU (t),Ad∗
cU (t)−1σ+αt))

=
d

dt

∣∣∣∣
t=0

(Ad∗cU (t)−1σ + αt)(V )

= σ([U, V ]) + α(V ).

where (g, σ) ∈ Gn g∗ and cU is a curve in G with initial vector U . Since

[(U, α), (V, β)] = ad(U,α)(V, β)

=
d

dt

∣∣∣∣
t=0

Ad(cU (t),αt)(V, β)

=
d2

dsdt

∣∣∣∣
t=s=0

(cU(t), αt)(cV (s), βs)(cU(t)−1,−Ad∗cU (t)αt)

=
d2

dsdt

∣∣∣∣
t=s=0

(cU(t)cV (s),Ad∗cV (s)−1αt+ βs)(cU(t)−1,−Ad∗cU (t)αt)

=
d2

dsdt

∣∣∣∣
t=s=0

(cU(t)cV (s)cU(t)−1,Ad∗cU (t)(Ad∗cV (s)−1αt+ βs)− Ad∗cU (t)αt)

= ([U, V ], ad∗Uβ − ad∗V α).
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we see that

Θ([(̃U, α), (̃V, β)](g,σ)) = Θ( ˜[(U, α), (V, β)](g,σ))

= Θ( ˜([U, V ], ad∗Uβ − ad∗V α)(g,σ))

= σ([U, V ]).

It follows that

dΘ((̃U, α)(g,σ), (̃V, β)(g,σ)) = (̃U, α)(g,σ)(Θ((̃V, β)))− (̃V, β)(g,σ)(Θ((̃U, α)))−Θ([(̃U, α), (̃V, β)](g,σ))

= σ([U, V ]) + α(V )− σ([V, U ])− β(U)− σ([U, V ])

= α(V )− β(U) + σ([U, V ]).

Note that for any tangent vector (Xg, ασ) ∈ T(g,σ)(Gn g∗), we have

l(g−1,−Ad∗gσ)(Xg, ασ) =
d

dt

∣∣∣∣
t=0

(g−1,−Ad∗gσ)(cXg(t), σ + αt)

=
d

dt

∣∣∣∣
t=0

(g−1cXg(t),−Ad∗cXg (t)−1gσ + σ + αt)

= (lg−1∗Xg, ad∗lg−1∗
Xgσ + α),

where cXg is a curve in G with initial vector Xg. It follows that

dΘ((Xg, ασ), (Yg, βσ)) = dΘ( ˜(lg−1∗Xg, ad∗lg−1∗
Xgσ + α)

(g,σ)
, ˜(lg−1∗Yg, ad∗lg−1∗

Ygσ + β)
(g,σ)

)

= (ad∗lg−1∗
Xgσ + α)(lg−1∗Yg)− (ad∗lg−1∗

Ygσ + β)(lg−1∗Xg) + σ([lg−1∗Xg, lg−1∗Yg])

= α(lg−1∗Yg)− β(lg−1∗Xg)− σ([lg−1∗Xg, lg−1∗Yg]),

which gives the claim.

The following lemma essentially appears in Baues O., Cortes V. [2]. We will provide a
proof here.

Lemma 3.8 ([2, p.49]). The canonical symplectic form dΘ does be symplectic over Gng∗.

Proof. It’s sufficient to show that dΘ is nondegenerate. Suppose that (Xg, ασ) ∈ T(g,σ)(Gn
g∗) belongs to the kernel of dΘ. Choose an inner product 〈−,−〉 over g and let A be the
induced inertia operator. By Theorem 3.7, we have

dΘ((Xg, ασ), (0g, (A(lg−1∗Xg))σ)) = −A(lg−1∗Xg)(lg−1∗Xg) = 0.

It follows that Xg = 0. Since

dΘ((0g, ασ), (lg∗(A
−1(α)), 0σ)) = α(A−1(α)) = 0,

we see that α = 0, which implies the claim.
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The following theorem essentially appears in Kumar [16]. We will provide a proof here.

Theorem 3.9 ([16, Proposition 13]). Let 〈−,−〉 be an inner product and let A : g→ g∗

be the induced inertia operator. Define E : Gn g∗ → R by

E(g, α) :=
1

2
α(A−1(α)).

Suppose that XE ∈ X(Gng∗) is the symplectic gradient of E and (ϕ, ξ) its integral curve.
Then, ϕ is a geodesic in G.

Proof. For any tangent vector (Xg, ασ) ∈ T(g,σ)(G n g∗), let cXg be a curve in G with
initial vector Xg. Then, we have

dE(Xg, ασ) =
d

dt

∣∣∣∣
t=0

E(cXg(t), σ + αt) =
d

dt

∣∣∣∣
t=0

1

2
(σ + αt)(A−1(σ + αt)) = α(A−1(σ)).

By Theorem 3.7, since

dΘ((lg∗(A
−1(σ)),−ad∗A−1(σ)σ), (Xg, ασ)) = −α(A−1(σ)) = −dE(Xg, ασ), (3.2)

we see that

XE(g, σ) = (lg∗A
−1(σ),−ad∗A−1(σ)σ). (3.3)

Suppose that m is the curve in g∗ corresponding to the curve ϕ in G satisfying (1.4), i.e.,

m(t) = A(θ(ϕ̇(t))).

Then, by (3.3), we have

m(t) = A(lϕ(t)−1∗ϕ̇(t)) = A(lϕ(t)−1∗lϕ(t)∗A
−1(ξ(t))) = ξ(t).

It follows that

ṁ(t) = ξ̇(t) = −ad∗A−1(ξ(t))ξ(t) = −ad∗A−1(m(t))m(t),

which means that m satisfies the Euler equation in Theorem 1.10. This implies that ϕ is
a geodesic in G with respect to the left-invariant metric induced from the inner product
〈−,−〉.

Remark 3.10. From the proof of Theorem 3.9, in terms of the integral curve (ϕ, ξ) of
XE, we see that ϕ and ξ satisfies the condition (1.4) in Theorem 1.10, i.e.,

ξ̇(t) = A(θ(ϕ̇(t))).

From (3.3), we see that ξ satisfies the Euler equation.
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3.1.3 The Kirillov-Kostant-Sauriau Form and Canonical Sym-
plectic Form

Let G act on Gn g∗ such that for any h ∈ G and (g, α) ∈ Gn g∗ we have

(g, α) · h = (gh,Ad∗h−1α), (3.4)

Given U ∈ g, let U ∈ X(Gn g∗) denote the fundamental vector field with respect to the
action (3.4). Moreover, denoting by pr2 : G n g∗ → g∗ the projection onto g∗, we can
prove that:

Theorem 3.11. For the Kirillov-Kostant-Souriau form ωKKS on g∗ and the canonical
symplectic form dΘ on Gn g∗, we have

pr∗2ωKKS(U (g,σ), V (g,σ)) = dΘ(U (g,σ), V (g,σ)),

where U, V ∈ g and (g, σ) ∈ Gn g∗.

Proof. It’s easy to see that

pr∗2ωKKS(U (g,σ), V (g,σ)) = ωKKS(pr2∗(Ũg,−ad∗Uσ), pr2∗(Ṽg,−ad∗V σ))

= ωKKS(−ad∗Uσ,−ad∗V σ)

= σ([U, V ]).

On the other hand, by the computation in Theorem 3.7, we have

dΘ(U (g,σ), V (g,σ)) = dΘ((Ũg,−ad∗Uσ), (Ṽg,−ad∗V σ)) = σ([U, V ])

which implies the claim.

3.2 Canonical Symplectic Form, the Pinkall 2-Form

and the Fujioka-Kurose 2-Form

In Theorem 3.12 and Theorem 3.14 of this section, we will construct two maps σ0 and
σ1 on M and show the relationships between the canonical symplectic form, the Pinkall
2-form and the Fujioka-Kurose 2-form. In Corollary 3.13 and Corollary 3.15, with the
help of these results and Theorem 3.11, we will show the relationship between the KKS
form, the Pinkall symplectic form and the Fujioka-Kurose symplectic form. In Section
3.2.3, we will reveal the reason why the presymplectic gradient XH also leads to the KdV
equation as the Euler equation applied to the Bott-Virasoro group does, by using the map
σ1 and the vector field XE mentioned in Theorem 3.9. Even if it seems to be difficult to
obtain a strong relationship between XE and XH , but Theorem 3.17 we will prove will
clear the obstruction.
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3.2.1 Canonical Symplectic Form and the Pinkall 2-Form

Let c be the unit circle. Denoting by G the Bott-Virasoro group and g∗ its Lie algebra,
we can prove that:

Theorem 3.12. Given γ ∈M, we take ψ ∈ Diff(S1) such that γ = c ·ψ, where · denotes
Pinkall’s right action. Let σ0 :M→ Gn g∗ be a map on M given by

σ0(γ) := ((ψ−1, 0), (−1

2
(ψ−1)′2dx⊗ dx, 0)),

Then, we have

σ∗0dΘ = ω̂0,

where dΘ is the canonical symplectic form on Gn g∗ and ω̂0 the Pinkall 2-form on M.

Proof. Let X = −1
2
λ′γ + λγ′ ∈ TγM be a tangent vector overM with γ = c · ψ for some

ψ ∈ Diff(S1). Suppose that ϕλ∂x is the flow of λ∂x ∈ X(S1). Then, by the discussion in
the proof of Lemma 2.10, c ·ψ ·ϕλ∂x is a curve inM with initial vector X. It follows that

σ0∗X =
d

dt

∣∣∣∣
t=0

((ϕλ∂x(t)
−1 ◦ ψ−1, 0), (−1

2
(ϕλ∂x(t)

−1 ◦ ψ−1)′2dx⊗ dx, 0))

= ((−λ ◦ ψ−1, 0), ((λ′ ◦ ψ−1)(ψ−1)′2dx⊗ dx, 0)).

(3.5)

Therefore, we have

σ∗0dΘ(X, Y ) = dΘ((−λ ◦ ψ−1, 0), ((λ′ ◦ ψ−1)(ψ−1)′2, 0)), ((−µ ◦ ψ−1, 0), ((µ′ ◦ ψ−1)(ψ−1)′2, 0))),

where the symbol dx⊗ dx is omitted. Note that

l(ψ,0)∗(−λ ◦ ψ
−1, 0) =

d

dt

∣∣∣∣
t=0

(ψ, 0)(ϕλ∂x(t)
−1 ◦ ψ−1, 0)

=
d

dt

∣∣∣∣
t=0

(ψ ◦ ϕλ∂x(t)−1 ◦ ψ−1, B(ψ, ϕλ∂x(t)
−1 ◦ ψ−1))

= (−(ψ′ ◦ ψ−1)(λ ◦ ψ−1)∂x, Bλ)

= (−λ ◦ ψ
−1

(ψ−1)′
∂x, Bλ)

(3.6)

where Bλ denotes the value of the derivative of the corresponding Bott cocycle. Moreover,
it’s easy to see that

[(
λ ◦ ψ−1

(ψ−1)′
∂x, Bλ), (

µ ◦ ψ−1

(ψ−1)′
∂x, Bµ)] = (

(λ′ ◦ ψ−1)(µ ◦ ψ−1)− (λ ◦ ψ−1)(µ′ ◦ ψ−1)

(ψ−1)′
∂x, ωλµ),

where ωλµ denotes value of the corresponding Gelfand-Fuchs cocycle. By the formula for
the canonical symplectic form mentioned in Theorem 3.7 and subsituting these results,
we have

σ∗0dΘ(X, Y ) =

∫
S1

(−λ′µ+ λµ′ +
1

2
(λ′µ− λµ′))dx =

∫
S1

λµ′dx,

which implies the claim.
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The following corollary is one of the main results in Fujioka, Kurose and Moriyoshi [8].
By using Theorem 3.11 and Theorem 3.12, we can provide an alternative proof here.

Corollary 3.13 ([8]). Let ω0 be the Pinkall symplectic form and ωKKS the Kirillov-
Kostant-Souriau form on g∗. Then, we have

µ∗0ωKKS = −ω0,

where µ0 :M0 → g∗ is the momentum map mentioned in Section 2.4.1.

Proof. For any tangent vector X = 1
2
λ′γ + λγ′ ∈ TγM over M, where γ = c · ψ with

ψ ∈ Diff(S1), by the computation in (3.5) and (3.6), we have

σ0∗X = (−λ ◦ ψ−1, 0), ((λ′ ◦ ψ−1)((ψ−1)′)2dx⊗ dx, 0)

= (
˜

(−λ ◦ ψ
−1

ψ−1
∂x, Bλ)

(ψ−1,0)

,−ad∗
(−λ◦ψ−1

ψ−1 ∂x,Bλ)
(−1

2
((ψ−1)′)2dx⊗ dx, 0))

= (−λ ◦ ψ
−1

ψ−1
∂x, Bλ)

((ψ−1,0),(− 1
2

((ψ−1)′)2)dx⊗dx,0))

where Bλ is the value of the derivative of the corresponding Bott cocycle. This implies
that σ0∗X does be the value of a fundamental vector field with respect to the action (3.4).
Note that

pr2 ◦ σ0 = −µ0 ◦ π0.

By Theorem 3.12 and Theorem 3.11, we have

π∗0ω0 = ω̂0 = σ∗0dΘ = σ∗0pr∗2ωKKS = −π∗0µ∗0ωKKS,

which implies the claim.

3.2.2 Canonical Symplectic Form and the Fujioka-Kurose 2-Form

Let c be the unit circle. Denoting by G the Bott-Virasoro group and g∗ its Lie algebra,
we can prove that:

Theorem 3.14. Given γ ∈ M, we take ψ ∈ Diff(S1) such that γ = c · ψ. Let σ1 :M→
Gn g∗ be a map on M given by

σ1(γ) := ((ψ, 0), (−κdx⊗ dx,−1

2
)),

where κ is the equicentroaffine curvature of γ. Then, we have

σ∗1dΘ = ω̂1

where dΘ is the canonical symplectic form on G n g∗ and ω̂1 the Fujioka-Kurose 2-form
on M.
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Proof. Let X = −1
2
λ′γ + λγ′ ∈ TγM be a tangent vector with γ = c · ψ for some

ψ ∈ Diff(S1). Suppose that ϕλ∂x is the flow of λ∂x ∈ X(S1). Then, we have

σ1∗X =
d

dt

∣∣∣∣
t=0

σ1(c · ψ · ϕλ∂x(t))

=
d

dt

∣∣∣∣
t=0

((ψ ◦ ϕλ∂x(t), 0), (−κ̃(t)dx⊗ dx,−1

2
))

(3.7)

where κ̃ is the equicentroaffine curvature flow of c · ψ · ϕλ∂x . Now, by (2.4), we see that

σ1∗X = ((ψ′λ, 0), (−Ωλ′dx⊗ dx, 0)). (3.8)

It follows that for tangent vectors X = −1
2
λ′γ + λγ′, Y = −1

2
µ′γ + µγ′ ∈ TγM, we have

σ∗1dΘ(X, Y ) = dΘ(((ψ′λ, 0), (−Ωλ′dx⊗ dx, 0)), ((ψ′µ, 0), (−Ωµ′dx⊗ dx, 0))).

Note that

l(ψ−1,0)∗(ψ
′µ, 0) =

d

dt

∣∣∣∣
t=0

(ψ−1, 0)(ψ ◦ ϕµ∂x(t), 0) = (µ∂x, Bµ),

where Bµ denotes the value of the derivatie of the corresponding Bott-cocycle. Moreover,
it’s easy to see that

[(λ∂x, Bλ), (µ∂x, Bµ)] = ((λ′µ− λµ)∂x, ω(λ∂x, µ∂x)).

Thus, by Theorem 3.7, we have

σ∗1dΘ(X, Y ) =(−Ωλ′, 0)(µ,Bµ)− (−Ωµ′, 0)(λ,Bλ)− (−κ,−1

2
)(λ′µ− λµ, ω(λ, µ))

=−
∫
S1

µΩλ′dx+

∫
S1

λΩµ′dx+

∫
S1

κ(λ′µ− λµ′)dx+
1

2

∫
S1

λ′µ′′dx

=

∫
S1

λΩµ′dx,

where the symbols dx⊗ dx and ∂x are omitted, which implies the claim.

By the similar method we have used in the proof of Lemma 3.13, we can prove that
the following corollary, which is indeed one of the main results in Fujioka, Kurose and
Moriyoshi [8].

Corollary 3.15 ([8]). Let ω1 be the Fujioka-Kurose symplectic form and ωKKS the
Kirillov-Kostant-Souriau form on g∗. Then, we have

µ∗1ωKKS = ω1,

where µ1 :M1 → g∗ is the momentum map mentioned in Section 2.4.2.
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3.2.3 Conclusions

In Section 2.3.2, we have introduced a function H :M→ R, whose presymplectic gradient
with respect to ω̂1 is given by

XH(γ) =
1

2
κ′γ − κγ′,

where κ is the equicentroaffine curvature of γ. Let γ̃ be the integral curve of X1
H in M

and κ̃ its equicentroaffine curvature flow. Then, by (2.4), we have

˙̃κ = Ω(−κ̃)′ = −1

2
κ̃′′′ − 3κ̃′κ̃, (3.9)

which is precisely the KdV equation.

Remark 3.16. We are going to give another explanation that why the equicentroaffine
curvature flow κ̃ also leads to the KdV equation in (3.9) as the Euler equation applied
to the Bott-Virasoro group does. Let G be a Lie group and g its Lie algebra. Let 〈−,−〉
be an inner product on g and A its induced inertia operator. In Theorem 3.9, we have
introduced a symplectic gradient XE ∈ X(G n g∗) of a function E with respect to the
canonical symplectic form dΘ. In particular, the g∗-part of its integral curve (ϕ, ξ) satisfies
the Euler equation, i.e.,

ξ̇(t) = −ad∗A−1(ξ(t))ξ(t). (3.10)

When G is setted to be the Bott-Virasoro group and 〈−,−〉 the L2-inner product, the
equation (3.10) becomes

ξ̇ =
1

2
ξ′′′ + 3ξ′ξ.

By observing this, the main method we would like to try is to find the relationship between
the vector fields XE and X1

H , as well as the relationship between the forms dΘ and ω̂1.
Since the relationship between the forms has already been showed in Theorem 3.14, i.e.,

σ∗1dΘ = ω̂1,

where σ1 :M→ Gn g∗ is a map on M given by

σ1(γ) := ((ψ, 0), (−κdx⊗ dx,−1

2
)),

what we need to to show now is the relationship between the vector fields. First, we
study the relationship between the Hamiltonian functions E and H. Here, the function
E : Gn g∗ → R becomes

E((ϕ, a), (udx⊗ dx, b)) =
1

2

∫
S1

u2dx+
b2

2
.
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By compositing E with the map σ1, we see that the map E ◦ σ1 :M→ R is given by

E ◦ σ1(γ) = E((ψ, 0), (−κdx⊗ dx,−1

2
)) =

1

2

∫
S1

κ2dx+
1

8
= H(γ) +

1

8
.

Since X1
H is the presymplectic gradient of H with respect to ω̂1, we have

d(E ◦ σ1) = d(H +
1

8
) = −iX1

H
ω̂1 = −ω̂1(X1

H ,−) = −σ∗1dΘ(X1
H ,−). (3.11)

On the other hand, since XE is the symplectic gradient of E with respect to dΘ, we see
that

d(E ◦ σ1) = dE ◦ σ1∗ = −iXE(dΘ) ◦ σ1∗ = −dΘ(XE, σ1∗(−)). (3.12)

It follows that as a 1-form on M, we have

dΘ(σ1∗X
1
H , σ1∗(−)) = dΘ(XE, σ1∗(−)).

Since dΘ is a symplectic form by Lemma 3.8, we see that for any γ ∈M,

σ1∗(X
1
H(γ)) = XE(σ1(γ)) +X, (3.13)

where X ∈ Tσ1(γ)(Gn g∗) is a tangent vector over Gn g∗ such that

dΘ(X, σ1∗(Z)) = 0, (3.14)

for all tangent vectors Z ∈ TγM.

In Remark 3.16, the existence of the tangent vector X in the equation (3.13) is an obstruc-
tion that keeps us from obtaining a strong relationship between XE and X1

H . However,
by proving the following theorem, such obstruction will be cleared.

Theorem 3.17. Let γ ∈M be an element in M. Suppose that X ∈ Tσ1(γ)(Gn g∗) is the
tangent vector in (3.13) which satisfies (3.14). Then X has the form

X = (K, (0dx⊗ dx, 0))

where K represents a tangent vector over G.

Proof. Let ((u∂x, a), (vdx ⊗ dx, b)) ∈ g × g∗ be an element in the Lie algebra of G n g∗

such that

lσ1(γ)−1∗X = ((u∂x, a), (vdx⊗ dx, b)).

Suppose that γ = c ·ψ for some ψ ∈ Diff(S1). Let ϕu∂x be the flow of u∂x ∈ X(S1). Then,
we have

X = lσ1(γ)∗((u∂x, a), (vdx⊗ dx, b))

=
d

dt

∣∣∣∣
t=0

((ψ, 0), (−κdx⊗ dx,−1

2
))((ϕu∂x(t), at), (vtdx⊗ dx, bt))

=
d

dt

∣∣∣∣
t=0

((ψ ◦ ϕu∂x(t), at+B(ψ, ϕu∂x(t)),Ad∗(ϕu∂x (t)−1,−at)(−κdx⊗ dx,−
1

2
) + (vdx⊗ dx, b))).
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where κ is the equicentroaffine curvature of γ. Denoting by Bu the value of the derivative
of the corresponding Bott cocycle, we have

X = ((ψ′u,Bu + a), ad∗(−u∂x,−a)(−κdx⊗ dx,−
1

2
) + (vdx⊗ dx, b)).

By the expression of the coadjoint action of g in (1.32), we see that

X = ((ψ′u,Bu + a), ((−1

2
u′′′ − 2κu′ − κ′u+ v)dx⊗ dx, b)). (3.15)

By using the operator Ω := 1
2
∂2
x + 2κ+ κ′∂−1

x mentioned in (2.4), the equation (3.15) can
be rewritten as

X = ((ψ′u,Bu + a), ((−Ωu′ + v)dx⊗ dx, b)). (3.16)

By (3.8), all the tangent vectors σ1∗Z ∈ Tσ1(γ)(Gn g∗) has the following form

σ1∗Z = ((ψ′λ, 0), (−Ωλ′dx⊗ dx, 0)), (3.17)

for some λ ∈ C∞(S1). Thus, by condition (3.14), we have

dΘ(X, ((ψ′λ, 0), (−Ωλ′dx⊗ dx, 0))) = 0, (3.18)

for all λ ∈ C∞(S1). Substituting (3.16) into (3.18) and using the formula for the canonical
symplectic form provided in Theorem 3.7, we have

dΘ(X, ((ψ′λ, 0), (−Ωλ′, 0))) = (−Ωu′ + v, b)(λ,Bλ)− (−Ωλ′, 0)(u, a)− (−κ,−1

2
)(u′λ− uλ′, ω(u, λ))

=

∫
S1

(−λΩu′ + λv + uΩλ′ − uΩλ′)dx+ bBλ

=

∫
S1

λ(v − Ωu′)dx+ bBλ.

where Bλ is the value of the derivative of the corresponding Bott cocycle and the symbols
dx⊗ dx and ∂x are omitted. It follows that∫

S1

λ(v − Ωu′)dx+ bBλ = 0, (3.19)

for all λ ∈ C∞(S1). By the expression for the vector field XE in (3.3), we have

XE(σ1(γ)) = (K0,−ad∗(−κ∂x,− 1
2

)(−κdx⊗ dx,−
1

2
))

= (K0, ((
1

2
κ′′′ + 3κ′κ)dx⊗ dx, 0)),

(3.20)

where K0 is a tangent vector over G. On the other hand, by (3.17) we have

σ1∗(XH(γ)) = (K1, (αdx⊗ dx, 0)) (3.21)
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where K1 is a tangent vector over G and α ∈ C∞(S1). Substituting (3.20) and (3.21) into
(3.13) and comparing the coefficients, we see that

b = 0.

Thus, by (3.19), we have

v = Ωu′.

It follows that

X = ((ψ′u,Bu + a), (0dx⊗ dx, 0))

which implies the claim.

Now, with all these theorems in hands, we can give an alternative explanation that why
the equicentroaffine curvature flow κ̃ must satisfy the KdV equation (3.9), i.e.,

Corollary 3.18. Let γ̃ be an integral curve of X1
H . Then, we have

˙̃κ = −1

2
κ̃′′′ − 3κ̃′κ̃,

where κ̃ is the equicentroaffine curvature of γ̃.

Proof. Let ψ̃ be a curve in Diff(S1) such that γ̃(t) = c · ψ̃(t). By the definition of σ1, we
have

σ1∗( ˙̃γ) = ((( ˙̃ψ, 0), (− ˙̃κdx⊗ dx, 0))).

By the expression for XE in (3.3), the condition (3.13) and Theorem 3.17, we have

((( ˙̃ψ, 0), (− ˙̃κdx⊗ dx, 0))) = (K4,−ad∗(−κ̃dx⊗dx,− 1
2

)(−κ̃dx⊗ dx,−
1

2
) + (0dx⊗ dx, 0)),

where K4 is a tangent vector over G. It follows that

−( ˙̃κdx⊗ dx, 0) = −ad∗(−κ̃∂x,− 1
2

)(−κ̃dx⊗ dx,−
1

2
)

which implies that

˙̃κ = −1

2
κ̃′′′ − 3κ̃′κ̃,

which is nothing but the KdV equation.

Thus, by revealing the relationship between the forms σ1 and dΘ in Theorem 3.14, as
well as the relationship between the vector fields XE and X1

H in this section, we finally
understand why the equicentraoffine curvature flow κ̃ must satisfy the KdV equation.
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