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Abstract

Rapid advances in medical image-processing technology have brought the goal of fully

automatic computer-aided diagnosis (CAD) systems. With the assists of computers,

doctors can obtain precise diagnostic information efficiently. An accurate and reliable

CAD system is the basis for realizing this vision. CAD system is composed of a

lot of medical image-processing techniques, such as image segmentation, detection,

classification and registration. Always, a combination of these processing techniques

is required to constitute a CAD system for one specific clinical problem. Among

these techniques, segmentation has always been a fundamental part of CAD system.

Segmentation is the process of extracting meaningful part from an image. In medical

imaging-processing field, the objects of segmentation often correspond to different

tissues, organs, or other anatomically relevant structures.

Due to the complexity of human body, segmentation of different anatomical struc-

tures may have different factors need to be considered when designing the segmen-

tation methods. Different structures have different appearances in medical imaging.

For instance, blood vessels have a bright elongated appearance in contrast-enhanced

CT scans, while bronchi are shown in a dark luminal appearance. This thesis mainly

focuses on tubular organ and solid organ segmentation. Tubular organ segmentation

methods can be used to extract blood vessels and bronchi, solid organ segmentation

method can be used to extract abdominal solid organs such as kidneys, livers. To

improve the segmentation accuracy, the proposed methods put attention on capturing

geometrical and anatomical information for tubular organs and solid organs.

This thesis presents three segmentation methods and two clinical applications to
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kidney-related diagnosis. They are categorized into three research topics.

The first research topic presents two segmentation methods designed for tubular

organs. These two segmentation methods for tubular structures use different method-

ologies. One is a traditional image-processing based method, and the other is modern

supervised deep-learning based method. Both of these two methods attempt to ex-

ploit the geometrical information in their own methodologies. Experimental results

showed that the proposed methods outperformed comparative methods in blood ves-

sels and bronchi segmentation tasks.

The second research topic focuses on solid organ segmentation. In this research,

deep-learning based method is adopted to segment the organs. To better capture the

anatomical information, a spatially aware unit is introduced to explicitly encode the

spatial location information. By using this auxiliary module, the proposed network

is able to achieve competitive performance compared to other methods with larger

training data.

The third research topic presents two clinical applications using the proposed

segmentation methods. In this topic, two kidney-related diagnosis applications are

demonstrated to evaluate the clinical value of our CAD techniques. The first appli-

cation presents presurgical simulation method for partial nephrectomy, the second

application investigates the renal function variation between pre- and post-operation.

Although, large-scale clinical validations have not been conducted yet. From physi-

cian’s feedback, the proposed CAD systems indeed helped them in real clinical use.

In summary, this thesis presents segmentation methods for both tubular and solid

organs. The key point of the proposed methods is capturing the geometrical and

anatomical information for specific organs. Clinical applications are also demon-

strated to show the clinical value of the proposed CAD systems. Chapter 1 provides

an introduction, background and brief overview of each research topic. In Chapter 2,

3, 4 and 5, detailed descriptions of each research topic are given. Finally, in Chapter

6, this thesis is summarized and further research is discussed.
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Chapter 1

Introduction

With the rapid development of image-processing technology, more and more novel

applications have been proposed which significantly improve the social efficiency. For

instance, face recognition technique can be used for more convenient security check,

scene recognition can be foundation for autonomous driving system, and anomaly

detection can be used for video monitoring. Rapid advances in the medical image-

processing field also have changed the medical world. Medical image-processing tech-

niques remarkably improve diagnostic efficiency. For example, accurate pulmonary

nodule detection helps clinicians to find the lung nodule more easily, and also enabling

rapid improvement in early detection of lung cancer. Blood vessel segmentation en-

ables vascular quantitative analysis. Surgery navigation helps physicians to better

understand surgical scene, which can improve surgical safety.

This thesis mainly discusses the contribution of medical image-processing tech-

niques in computer-aided kidney diagnosis. In this chapter, I will give a brief in-

troduction of the background this research in Section 1.1 including the aim of this

research and overview of computer-aided diagnosis (CAD) in Section 1.1.1 and 1.1.2.

1.1 Background

In this section, I will briefly introduce the aim of our research and literature overview

of computer aided diagnosis (CAD). This research is mainly focus on tubular and

1



solid organ segmentation problems. Specifically, these approaches are applied to

computer-aided kidney diagnosis.

1.1.1 Aim of this study

This research aims to proposed tubular (blood vessel) and organ (kidney) segmenta-

tion methods with higher accuracy which meet the real clinical demand. By using

the proposed methods, it is possible to contribute to realize reliable and quantitative

computer-aided kidney diagnosis techniques.

Medical doctors have benefited from the development of image-processing tech-

niques, we called the digital image-processing techniques that assist doctors in the

interpretation of medical images, computer-aided diagnosis (CAD). Tracing back to

the late 1950s, CAD have over 50 years history used for clinical applications. The

basis of CAD system is pattern recognition techniques. Here we list several major

categories of CAD system: preprocessing, detection, segmentation, classification, and

registration. CAD system has been used in many diagnosis fields, such as breast, lung,

prostate and vasculature. We give a more detailed introduction in the next section.

The performance of pattern recognition techniques will directly affect the accuracy of

CAD system. Improving accuracy of image-processing methods has always been one

of our research topics.

This thesis mainly focuses on computer-aided kidney diagnosis. The kidneys are

significantly important solid organs in vertebrates. They are responsible for filtering

impurities in the blood, maintaining body water balance and electrolyte balance.

According to the statistics from the national kidney foundation, 10% of the world

population is suffering from kidney diseases. Every year, millions of patients died

because of unaffordable treatments [1]. The development of computer-aided kidney

diagnosis become a pressing need. Two main components for analyzing kidney are

renal artery and solid kidney tissue. Therefore, the segmentation of renal artery

and kidneys become the fundamental tasks for building the computer-aided kidney
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diagnosis systems.

1.1.2 Computer-aided diagnosis

Computer-aided diagnosis (CAD) and Computer-aided surgery (CAS) are two major

research subjects in medical image-processing field. The development of CAD system

can be traced back to early 1960s [3–6]. With the rapid development of image-

processing technology, more and more image-processing approaches have incorporated

in this filed to realize an accurate and reliable diagnostic and surgical system. The

contributions from CAD and CAS have significantly improved people’s medical level.

The 21st century is the era of big data. Especially in hospital, such as ultrasound

scans, computed tomography (CT) scans, and magnetic resonance imaging (MRI)

scans have become common tools for baseline diseases diagnosis. One example of 3D

contrast-enhanced CT (CE-CT) data is shown in Fig. 1.1. Manual diagnosis of these

large amount of data has already become a worldwide problems. With the power of

computers, CAD and CAS can provide efficient diagnosis for clinicians. For examples,

clinicians and radiologists can immediately obtain the computerized diagnosis results

as “second option” and make their final decisions by using CAD systems. One CAD

system for diagnosing colorectal lesions with endocytoscopic is shown in Fig. 1.2.

Endocytoscopic vascular patterns are automatically classified by machine-learning

based method [2]. Physicians can better understand the surgical scene in minimally

invasive surgery with the navigation information provided by CAS system. A lot of

research suggests that CAD can help clinicians improve the diagnostic performance

in real medical applications [7–9].

One major subject of CAD is lesion detection from medical images. Finding small

lesions in large 3D medical images is a difficult and time-consuming task. By using

the computer-aided detection system, radiologists can quickly localize the lesions

and even able to obtain quantitative analysis results. For example, there has been

proposed a lot of breast cancer detection research in the literature [10–12]. Detection
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(a) One CE-CT slice

(b) 3D volume rendering of CT data

Figure 1.1: One example of 3D contrast-enhanced CT scans
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Figure 1.2: CAD system for diagnosing colorectal lesions with endocytoscopic images.
Photo is based on material from [2].

of lung nodule is also spotted task in this field [13–16]. Recently, not only these

traditional lesion detection tasks but also new detection tasks were introduced with

the development of medical imaging technology and new demands. Such as polyp

detection in endoscopy videos [17, 18].

Another major subject of CAD is disease diagnosis. With the rapid development

of machine learning techniques, computer-aided diagnosis can take full advantage

of big-data. Diagnosis often follows after a lesion detection. Traditional machine-

learning based methods have been proposed such as Linear Discriminant Analysis

(LDA) based methods [19–21], support vector machines (SVMs) based methods [22,

23], and other methods such as genetic algorithm [24], random forest algorithm [25].

Recently, deep learning techniques also have been incorporated for diagnosis tasks.

Convolutional neural networks (CNNs) have been used in a lot of related research

[26–28].

Segmentation is another important subject in the CAD field, which is also main

research topic of this thesis. Generally speaking, segmentation aims to extract target

object from images. In medical image-processing field, these target objects can be
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organs, tissues, bones, and other body structures. In this thesis, segmentation denotes

pixel-/voxel-wise segmentation, which is different with detection tasks. We will give

a more detailed introduction of segmentation in Section 1.2.

Besides aforementioned tasks, other research topics also have attracted much at-

tention in CAD field. Such as image registration [29, 30], disease prediction [31–33],

and medical reports generation [34, 35]. As we can see from these tasks which cover

almost tasks required by clinicians and physicians, CAD techniques aims to make

contributions to a better medical environment.

1.2 Segmentation for CAD

In this section, we will give an introduction about segmentation for CAD systems.

Segmentation plays a fundamental role in CAD field. Many research subjects are

based on segmentation results. Image segmentation has a long history in computer

vision field tracing back to 1970s [36, 37]. Image segmentation is a process of divid-

ing pixels/voxels of image into distinct groups. Classical approaches such as region

growing [38] and active contour model (snakes) [39] have been early proposed for

image segmentation tasks. Based on these fundamental works, more and more excel-

lent approaches have been proposed. Such as geodesic snakes is proposed based on

traditional snakes [40], solving the non-intrinsic problem of traditional snakes. Fur-

thermore, inspired by snakes, novel methods such as level-set method (LSM) [41] and

gradient vector field (GVF) method [42] were proposed. These methods were not only

used for natural images but also medical images. Malladi et al. firstly incorporated

LSM to segment organs from CT images [43]. Snakes-based approaches also have

been used to extract organs [44, 45].

Four major image-related difficulties in medical image segmentation: 1) noise, is

mostly introduced at medical imaging processes, such as ring artifact and metal ar-

tifact. These noises can alter image intensity and affect segmentation performances.
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2) image non-uniformity, is mainly caused by different imaging hardware and con-

figurations. Different pixel/voxel sizes, reconstruction functions and scanning time

will lead to different image appearances. This non-uniformity will definitely increase

the difficulty of segmentation. 3) poor imaging quality, is a fundamental problem in

medical image processing. Due to the limitation of imaging techniques, it is impos-

sible to obtain ideal images for specific processing tasks. For example, segmentation

for MRI images is difficult due to its low image resolution. Although, CT scans have

much higher resolution than MRI, organ segmentation still need to face new prob-

lems, such as angiography. Imperfect angiography will directly increase segmentation

difficulty such as blood vessel segmentation and pancreas segmentation. 4) uncertain

boundary, is mainly caused by complex human anatomical structure. It is difficult

to segment adjacent tissues when they have similar intensity. In these cases, other

prior information would play an important role in segmentation task, such as shape

information and spatial information.

1.2.1 Geometrical and anatomical information

As mentioned in earlier, medical image segmentation remains a difficult topic in

image processing field. A lot of efforts have been made in this field to contribute to

more accurate and reliable CAD approaches. At early stage, many low-level image

process techniques were utilized for segmentation tasks. Most of them are realized by

applying filters to images. Those methods are also called heuristic method. Such as

thresholding, region growing [46], and region split/merge [47].

Toward further improvement of segmentation accuracy, more abundant features

and more better representations are needed. Therefore, high-level approaches have

been proposed to achieve better performance. As previously mentioned, deformable

models have been successfully applied to medical image-processing field. Such as LSM

[43] and GVF [42] have achieved good performance. Considering the particularity of

medical image-processing tasks, there have been proposed many specific approaches
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designed for medical tasks. Such as statistical shape models (SSMs) [48], atlas-based

methods [49] and rule-based methods [50]. SSMs is able to represent a large range of

expected and evidence-based variation based on average shape calculated from large

training dataset. Since human organs share similar shapes. SSMs is quite effective

in organ segmentation problem. Taking advantage of anatomical information, atlas-

based methods are able to capture spatial information of organs. Similarly, rule-

based methods also use the prior-knowledge of anatomical information. Besides these

introduced methods, many other methods also aim to better represent geometrical

and anatomical information of specific medical images. Such as model-fitting based

methods [51], guided active contour model [52], skeleton representation [53].

The above-mentioned methods mainly focus on capture geometrical and anatom-

ical information from medical images. They are two important features for medical

image-processing problems. Our research mainly focuses on tubular and solid organ

segmentation tasks which have attracted a lot of attention in CAD field. In the

next section, we will give a brief introduction of blood vessel and organ segmentation

methods using geometrical and anatomical information.

1.2.2 Blood vessel segmentation

Vascular disease is one of the most urgently need to be resolved health issues around

world. A large amount of research has been done in vascular related research topics.

Among these topics, blood vessel segmentation is indeed a fundamental task. Based

on the segmentation of vascular structures, it will be possible for further vascular

analysis such as diagnosis assistance and surgical planning. One example of annotated

blood vessel is rendered in Fig. 1.3.

However, automated and complete segmentation of intricate tubular structures

remains a major challenge in medical image-processing field. As we mentioned in

Section 1.2, three general difficulties of medical image processing. The tiny structures

of blood vessel may even amplify these negative effects. Noises, uniformity, and image

8



Figure 1.3: One example of abdominal blood vessels. Left is volume rendering of
CE-CT data. Right is volume rendering of annotated label of blood vessel.

quality problems may have larger effects on blood vessels than normal solid organs.

A lot of works have been done in blood vessel segmentation problem using vari-

ous approaches [54]. In this section, we mainly focus on methods using geometrical

information. Because we think in blood vessel segmentation tasks, geometrical infor-

mation is more important than anatomical information. Bright tubular structure is

the key characteristic of blood vessel observed in medical images. This feature can

be effectively captured by geometric-based methods.

In this thesis, we decide to category blood vessel segmentation methods based on

the feature representation manner: explicit model and implicit model. Explicit model

denotes explicitly generation of vascular models for searching blood vessels. Implicit

model means encoding the geometrical features from images for further analysis.

1.2.2.1 Explicit vascular models

Explicitly generation of vascular models is one major methodology of geometric-based

methods. de Bruijne et al. utilized active shape models (ASMs) to learn tubular
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Figure 1.4: Illustration of 2D cross-section based blood vessel segmentation. Given
the centerline, blood vessel segmentation is performed by using 2D snakes. Illustration
is based on material from [56].

shape from vascular structures of abdominal aortic aneurysms [55]. Both shape and

appearance models of ASM are modified for a better shape approximation of aortic

aneurysms. The ASM is considered as a variation of active contour model. The ASM

incorporates model-based regularity into active contour model.

Active contour models are also used to address tubular structure segmentation

problem. In contrast to the original active contour model [39] which was designed

for general purpose, in tubular structure segmentation problem, tubular geometrical

information is taken into consideration [57–60]. Derived from active contour model,

level-set method (LSM) has also been adopted to vessel segmentation problem [61,

62].

Many parametric methods have been investigated on vascular centerline. Frangi

et al. created B-spline tensor surfaces to model blood vessel segments with a central

vessel axis curve coupled to a vessel wall surface [63]. B-spline algorithm was also
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Figure 1.5: Parametric superellipsoids model proposed by Tyrrell et al.. ϵ is a shape
parameter controlling the model shape. Figure is based on material from their work
[69].

widely used for approximate vascular centerline in other works [64, 65].

Along the vascular centerline, 2D cross-section models are generated to segment

the blood vessel step-by-step [56, 66]. Example of 2D cross-section method [56] is

illustrated in Fig. 1.4. Combination of centerline and cross-section can be considered

as a discrete cylinder type model. Friman et al. proposed a parametric template

cylinder model to track the blood vessels [67]. The generated cylinder model is de-

signed based on a Gaussian line appearance model, consisted with contrast term,

template model term, background term and noise term. Similarly, Lacoste et al. uti-

lized small cylinder model as particles and performed marked point process algorithm

[68]. Tyrrell et al. presented a more flexible parametric superellipsoids model [69].

Examples of superellipsoids are illustrated in Fig. 1.5

However, modelling anomalies including stenoses and aneurysms is difficult for

explicit vascular models. Next, we will give a brief introduction of implicit modeling

of vascular structures.

1.2.2.2 Implicit vascular model

In this thesis, implicit vascular model mainly denotes segmentation methods repre-

senting vascular characteristic by extracting vessel-specific features. The features can

be extracted from basic intensity information to first- and second-order derivative

based detectors.

First-order derivative based methods mainly use image gradient information to
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present vascular features. Weickert et al. proposed “structure tensor” [70], computing

the covariance matrix of gradient vectors. Wiemker et al. [71] utilized radial struc-

ture tensor, a variation of original structure tensor, to encode tubular and nodular

structures. Nergiz et al. [72] enhanced the anisotropy between the principal eigen-

values of structure tensors, and segmented retinal vessels by using Otsu thresholding

[73] on tensors. Agam et al. [74] presented a vesselness enhancement filter based on

the eigenvalues of structure tensors. This filter makes it possible to distinguish be-

tween vascular structures, bifurcations and nodules. Another well-known first-order

derivative based method is earlier mentioned “gradient vector field” (GVF). GVF-

based methods have also been used in vessel segmentation problem [75, 76]. Another

first-order derivative based method is the optimally oriented flux (OOF)[77] which

aims to exploit the distribution of gradient vectors. By measuring the gradient flux

through the boundary of local spherical region, OOF is able to suppress the effect of

other nearby structures compared to Hessian-based measures.

Second-order derivative information is a very effective feature to characterize the

vascular geometry. The assumption of second-order derivative based methods is that

tubular structures can be discriminated by the direction and cross-sectional plane,

and these two features can be well captured by second-order derivative information.

Among the proposed second-order derivative based methods, Hessian matrix is the

most widely used tool to encode the vascular geometrical information. It is first

used by Koller et al. [79] to estimate the vascular orientations. The most commonly

used Hessian-based vesselness filters are proposed by Sato et al. [80] and Frangi et

al. [81]. The main contributions of their works are the introduction of a multi-

scale Hessian eigenvalues criterion for measuring the relations between the Hessian

eigenvalues to distinguish between tubular-, plane- and blob-like structures. Based

on these vesselness filters, a lot of blood vessel segmentation approaches have been

proposed [78, 82–84]. Illustration of the concept of Hessian matrix is shown in Fig.

1.6. Enhancement results on clinical CT volume is shown in Fig. 1.7. Both single
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Figure 1.6: Illustration of the concept of Hessian matrix. The ellipsoid shape is defined
based on the eigenvalues of Hessian matrix (λ1, λ2, λ3). Typically, blood vessels match
the bright tubular prototype, and bronchi match the dark tubular prototype. More
detailed please refer to [78]. Illustration is based on material from [78].

scale and multi-scale enhancement results are shown.

Another second-order derivative based method is Weingarten-based filters [85, 86].

Compared to Hessian matrix, Weingarten matrix is less used in the literature, con-

sidering possible reason is that Weingarten-based filters was reported to suffer from

sensitivity problem to local deformations such as stenoses and aneurysms [54].

As conclusions, in this section, we mainly introduced different blood vessel methods

focusing on capture vascular geometrical information. Vascular geometrical informa-
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Figure 1.7: Enhancement results of Hessian-based vesselness enhancement filter [81].
Results of both single scale and multi-scale are shown with different scale(σ) settings.

tion is the main characteristic of blood vessels compared to other human tissues. We

believe that capturing the geometrical information is one of the most effective and

robust approaches for blood vessel segmentation problems. The introduced methods

have been summarized in Table 1.1. The reader may refer to [54] for more detailed

overview of blood vessel segmentation methods.

1.2.3 Organ segmentation

Organ segmentation is a big segmentation category because human has numerous

body organs. In this thesis, our organ segmentation mainly focuses on segmenting

solid organs, such as liver, spleen, kidneys, adrenals, pancreas, and lung. Unlike

vascular system shares similar geometrical feature, organs have various shapes and

appearances on CT images.

Therefore, besides geometrical information, anatomical information is also im-

portant for organ segmentation problems. One commonly used anatomical prior-

knowledge is the organ position. Atlas-based models are widely used for organ seg-

mentation problem. Atlases are reference anatomical templates which are learned
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Figure 1.8: One example of multiple abdominal organs. Left is volume rendering of
abdominal CE-CT data. Right is volume rendering of annotated labels of multiple
organs

from a mount of annotated data. Atlas-based models, including probabilistic atlas-

based models and multi-atlas-based models, can capture both organ shape and spatial

locations. There have been proposed a fair amount of research using atlas for organ

segmentation. Pancreas [49], liver [87] bone [88], and multi-organ [89–91] segmenta-

tion have been realized by using atlas-based methods.

Although atlas-based models can effectively capture spatial location information,

they do not explicitly capture the internal relations between organs. Atlas-based

models and other shape-based models can be regarded as a kind of individual mod-

els, which only capture individual features for each target organ. Unlike individual

models, sequential models have been introduced to tackle the inter-organ relation

issue.

Sequential models perform step-wise processes for multiple organs. The key as-

sumption is that the analysis of stable and related organs can benefit other related

and challenging organs. For instance, to improve the segmentation accuracy of pan-

creas and gallbladder which are challenging tasks, a lot of works has been done to

use surrounding organs such as spleen and liver which are much easier to segment
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[92–95]. Benefit from human anatomical prior-information, sequential models have

quite good performances compared to common individual models.

Lots of research has been done to exploited the human anatomical information.

For instance, Camara et al. utilized the symmetry of left and right kidney for kidney

segmentation [96], the inclusion relation between lung and thoracic cavity [96, 97],

and the intersection relation of hepatic vasculature inside liver [98].

Except for above introduced traditional methods, machine-learning and deep-learning

based techniques also have been incorporated in organ segmentation problems. Cri-

minisi et al. utilized random forest as regressor to localization multiple organs [99].

They captured the intra-organ spatial relations by using context-rich features. Graph-

ical models directly model the inter-organ relations as their edge connections, and

organ features as nodes. Nimura et al. and Bhole et al. utilized conditional random

field to extract multiple organs from CT scans [100, 101].

With the development of deep-learning techniques, deep-learning based methods

have achieved significant progress. Deep-learning techniques tackle the shortage of

traditional machine-learning based methods which need handcraft feature design.

Deep-learning is a kind of data-driven learning technique. Features can be learned

from prepared training data automatically. In organ segmentation problem, many

related deep-learning based methods have been done. Thanks to the power of deep-

learning techniques, effective features can be learned without handcraft design pro-

cess. At early stage, many works utilized general 2D convolutional neural networks

(CNNs) to segment organs [102–104]. Segmentation problem is performed by classi-

fying pixels or patches.

Recently, 3D end-to-end fully convolutional networks (FCN) have been widely used

in organ segmentation problems. Milletari et al. have validated that using 3D data

has better performances than 2D and 2.5D data for brain segmentation from MRI

and ultrasound volumes [105]. One of the most popular FCN for organ segmentation

is U-Net architecture [106, 107]. It has been used for many segmentation works
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as backbone network [108–112], and achieved several state-of-the-art performances

of organ segmentation challenges [108, 113]. With the progressive understanding of

deep-learning techniques, more and more novel architectures and modules have been

proposed in medical image-processing field. The potential of multiple networks have

been explored for organ segmentation [114, 115]. New loss function, Dice loss, has

been presented for organ segmentation instead of traditional cross-entropy loss [116].

In this section, we give a brief introduction of several organ segmentation methods

including traditional non-machine-learning methods, machine-learning based methods

and deep-learning based methods. From the introduction, we can find that besides

geometrical information, anatomical information also plays an important role in organ

segmentation problems. Compared to deep-learning based methods, non-machine-

learning based methods are more explicit to adopt anatomical prior-knowledge. We

believe the anatomical information can also contribute to deep-learning based method

to achieve better performances.

1.3 Research overview

Segmentation is a fundamental task in medical image-processing field. Especially in

CAD, segmentation plays an indispensable role. Many follow-up diagnosis processes

are based on segmentation results. This thesis mainly focuses on tubular and solid or-

gan segmentation, and demonstrate clinical applications about computer-aided kidney

diagnosis using our approaches. In Table 1.2, we briefly categorize the segmentation

targets of tubular and solid organs.

All of segmentation approaches presented in this thesis are designed for 3D CT

scan imagery. The high resolution and contrast make it possible to achieve high

performance available for real clinical practice. Like many other segmentation studies,

the first priority of this research is to achieve high accuracy, compared to computing

speed and operational complexity.
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Table 1.2: Simple categories of segmentation targets in this thesis.

In the literature In this thesis

Tubular organ segmentation
Blood vessel [55–69], bronchus [117–120],

nervous system [121, 122], etc.
Renal artery, bronchus

Solid organ segmentation
Liver [87], spleen [123],

pancreas [49, 111, 124], lung [125],etc.
Kidney

The first research topic focuses on tubular organ segmentation, including blood

vessel and bronchus. Two main methods are represented in Chapter 2 and 3. We tried

to tackle tubular structure segmentation problem from both traditional unsupervised

image-processing method and modern supervised deep-learning technique routes. The

second topic is organ segmentation and its application to kidney segmentation. By

incorporating anatomical information into neural network, segmentation performance

has been significantly improved. The third research topic is clinical applications.

Based on our developed approaches, this research demonstrates the significance of

CAD system in contributing to clinical kidney-related applications.

1.3.1 Topic 1: Tubular organ segmentation

In this research topic, two methods for tubular organ segmentation problems are pre-

sented. As we introduced in Section 1.2.2, tubular structure segmentation remains

a challenging task such as blood vessel segmentation. In this thesis, we present two

segmentation methods for tubular structure using different methodologies. The first

one is a traditional image-processing based method. The second is a modern su-

pervised deep-learning based method. To take advantage of human prior-knowledge,

the proposed traditional image-processing based method is performed in unsuper-

vised fashion. One advantage of this type of methods is that they do not need

annotated training data. Generating annotated labels for 3D tubular structures is

time-consuming and labor-intensive. In contrast, the second proposed method is a

supervised deep-learning based method. Thanks to the power of deep-learning tech-
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niques, deep-learning based methods can automatically learn useful features from

manually labelled data, making it possible to further improve segmentation accuracy

compared to classic methods.

We have introduced related research working on blood vessel segmentation prob-

lem in Section 1.2.2. We mainly focus on the methods using geometrical information.

We believe the geometrical information plays a very important role tubular structure

segmentation problem. Our first method, named “tensor-cut”, captures the geo-

metrical feature by second-order tensor. First-order Markov random field (MRF) is

constructed by incorporating both intensity and tensor information. By this strategy,

both appearance (bright intensity) and geometry (tubular structure) can be modelling

into one unifying model. We successfully applied tensor-cut to kidney blood vessel

segmentation problem and achieved better performance than other classical blood

vessel segmentation.

Deep-learning technique is adopted in the second tubular structure segmentation

method. We aimed to exploit the potential of 3D FCN in tubular structure segmenta-

tion problem. Conventional neural networks still suffer under-segmentation problem

for tiny tubular structures. To address this problem, we presented two new modules

designed for tubular structures: 3D recurrent convolutional layer and radial distance

loss. These two modules can be easily Incorporated into general FCN architecture.

Experimental results showed that our modules significantly improved the segmenta-

tion accuracy.

1.3.2 Topic 2: Solid organ segmentation

Organ segmentation is also an important research topic in CAD field. Like blood ves-

sel segmentation, organ segmentation is a fundamental step for many other medical

processes. In this research topic, we present one deep-learning based organ segmen-

tation method.

Conventionally, we utilized semi-automatic approach to segment organs from CT
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scans. Graph-cut algorithm is used to semi-automatically extract specific organs.

Although graph-cut algorithm is a high computational efficiency and easy-to-use seg-

mentation tool. The semi-automatic procedure is not suitable for large dataset. Fully

automated organ segmentation methods are the expected approaches for real clinical

practices.

We present a spatially aware fully convolutional network for organ segmentation.

By explicitly introduce spatially aware unit, we can directly capture the anatomical

information (relative spatial location). Contrast to atlas-based methods which en-

code the spatial information as probabilistic model, we explicitly encode the organ’s

relative spatial location information as latent representation, and feed into FCNs. Ex-

perimental results demonstrated that our spatially aware unit can effectively capture

the spatial information and improved the segmentation accuracy.

1.3.3 Topic 3: Applications to computer-aided kidney
diagnosis

Although our segmentation methods are generally designed. They can be adopted into

other applications. In this thesis, we focus on computer-aided kidney diagnosis. In

this topic, we will demonstrate how to fully support computer-aided kidney diagnosis

using our approaches, and how clinical applications can benefit from CAD system.

In Chapter 5, we will give two clinical applications about kidney diagnosis. Differ-

ent organs may have different analysis processes for various clinical needs. A combina-

tion with other processes may need to meet specific clinical needs. In kidney-related

CAD systems, one major research subject is nephrectomy-related diagnosis. Nephrec-

tomy surgery is one common treatment for kidney cancer. Consequently, a lot of effort

has been put into the development of CAD system for nephrectomy.

The first application aims to to provide computer-aided diagnostics for the presur-

gical simulation of partial nephrectomy surgery. This research can directly contribute

to help physicians design a better surgical plan for partial nephrectomy. The medical
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contribution of this research is to provide a quantitative standard for partial nephrec-

tomy. To accomplish this task, we need pixel-wise labels for kidney region, renal

arteries, and renal vascular dominant regions. In our research, by using our proposed

methods, this three information can be extracted automatically from CT scans, which

significantly reduced manual labor. The experimental results demonstrate that our

CAD framework can achieve reasonable accuracy for presurgical simulation.

The second application aims to quantitative analyze the renal function variation

between pre- and post-surgery. The quantitative analysis can give a better under-

standing of renal function changes influenced by nephrectomy. The renal cortex and

renal medulla are two main regions of the kidney. The volume change is one major

index to reflect renal function variation. Therefore, segmentation of kidney, renal cor-

tex and medulla become a necessary step for follow-up analysis. In this application,

we utilized LSM-based methods to extract renal cortex and medulla regions from

kidney regions which is pre-extracted by our proposed FCN described in Chapter 4.

1.4 Thesis structure

This thesis consists of six chapters one appendix. An overview of the relationship

between each chapter is illustrated in Fig. 1.9.

Chapter 1 has discussed the background, related works of this research, and also has

given a brief overview of each research topic. Through this chapter, we hope readers

can have a basic understanding of motivation and contributions of our research.

Chapter 2 and 3 give a detailed descriptions of our proposed tubular organ segmen-

tation methods. Two methods have been validated in different applications. Tradi-

tional non-machine-leaning method, tensor-cut, was validated in renal artery segmen-

tation problem. Deep-learning based method described in Chapter 3 was evaluated

in bronchus segmentation problem.

Chapter 4 describes our proposed spatially aware FCN method for organ segmen-
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Figure 1.9: Overview of the chapters of this thesis.

tation, accuracy evaluation was performed on kidney segmentation problem.

Chapter 5 presents the third research topic: applications to computer-aided kid-

ney diagnosis. In this chapter, several kidney-related clinical applications are briefly

introduced. We want to demonstrate the contribution of CAD system in real clinical

practices.

Chapter 6 contains the summary and future research of research area.
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Chapter 2

Tubular organ segmentation:
Tensor-cut

2.1 Background

In Chapter 1, we have introduced the importance of segmentation methods in CAD

system. Segmentation objects can be any anatomical structure in medical images,

such as heart, lung, liver, and prostate. We can roughly classify these structures

into several categories: solid organs, hollow organs, tubular organs, and lesions. Solid

organs have firm internal tissue consistency, such as liver, spleen, pancreas, kidney. In

contrast, hollow organs have a cavity which serves vital functions, such as stomach,

prostate, and bladder. Lesions indicate abnormal human tissues such as nodules,

cancers. As for tubular organs, typical tubular organs contain blood vessel, bronchus,

and nerve. Because the processing methodology for tubular organs may large differ

from other organs, thus we separate these objects as a single category.

As we introduced in Section 1.2.2, numerous blood vessel segmentation methods

have already been proposed in the literature for various blood vessels. Different image

modalities, such as digital subtraction angiography, fundus photography, CE-CT, and

MRI angiography, have different characteristics of vessel features. Even in the same

modality, blood vessels in different tissues may still have slight differences in feature

representations due to signal intensity variations, inhomogeneous contrast filling, or
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imaging artifacts. Therefore, a lot of existing techniques exploit such vessel prior

knowledge as tubular structures.

The method we present in this chapter is initially designed for kidney blood ves-

sels segmentation problem. However, due to the generally designed methodology, we

found this method also can be applied to other vasculature, theoretically. The moti-

vation of this work is to propose a blood vessel segmentation which is able to extract

tiny vessels in an unsupervised fashion. In Chapter 3, we present another tubular

structure segmentation method which aims to extract tubular organs in a supervised

fashion. Deep-learning techniques have been utilized to achieve high segmentation

accuracy. Supervised deep-learning based methods are highly data-demanded. Man-

ual annotation process is very time-consuming and labor-intensive, especially in 3D

medical image processing field. The proposed method described in this chapter is

developed for unsupervised processing, which means no additional annotated labels

are needed for segmentation task.

2.2 Related works

A general introduction of blood vessel segmentation methods is described in Section

1.2.2. In this section, we will introduce several previous research more closely related

to our method. In section 2.2.1, we will introduce direct related works which inspired

our work. In section 2.2.2, we will describe our previous attempts to propose fine

blood vessel segmentation methods. We hope readers can have a brief understanding

of the history of our research.

2.2.1 Related segmentation methods

We attempted to capture vascular geometrical information by using second-order

derivative of intensity information. Second-order derivatives information, such as

the widely used Hessian matrix, models the tubular geometric structure of blood
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vessels [80, 81]. For 3D data, Hessian matrix is a 3 × 3 symmetric matrix. The

magnitudes of its three eigenvalues indicate the local geometric structure of the local

image. A fair amount of approaches use Hessian-based vesselness features for tubular

structure representation [78, 83, 126, 127]. We also used Hessian-matrix to capture

the geometrical information in our works.

The second closely related work is graph-cut algorithm. The graph-cut algorithm,

which has been widely used for many such low-level computer vision problems as

segmentation and registration [128–130], can find the exact solution in polynomial

time for submodular energy. However, the local neighboring Markov random field

(MRF) model, where the voxels are only connected to their neighboring voxels, has a

side effect, short-boundary bias, which results from the influence of the pairwise term,

which penalizes the elongated boundaries. A high-order MRF model has been pre-

sented to tackle this problem by coupling similar edges [131–133]. Many approaches

have also adopted graph-cuts into blood vessel segmentation problems using addi-

tional information, such as shape prior [134] and geometrical moments [135].

The third related work is multi-scale nonlinear structure tensor (MSNST) pro-

posed by Han et al. [136]. Han et al. constructed a MSNST space to extract textures

from natural images, and calculate dissimilarity measure and probability distribution

of features in the Riemannian space instead of Euclidean space. The authors suc-

ceed in evaluating structure tensors in Riemannian space. Furthermore, they also

incorporated graph-cut algorithm in solving the optimization problem. Our method,

tensor-cut, is also directly inspired by Han et al.’s work.

2.2.2 Previously proposed methods

Before introducing our proposed “tensor-cut” approach, we first give a brief intro-

duction of our previously proposed methods putting efforts on capturing tubular

geometrical information using Hessian-matrix. Our previous approaches will be in-

troduced in next sections. Section 2.2.2.1 briefly describes a hybrid method combine
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Figure 2.1: A simple workflow of hybrid method.

graph-cut with model-fitting methods. In Section 2.2.2.2, another proposed concept

is briefly introduced.

2.2.2.1 Hybrid method

For renal artery segmentation, hybrid method utilizes the graph-cut method for a

rough segmentation to extract the thick blood vessels, and utilize template model

tracking to focus on the tiny blood vessels. After rough segmentation of thick blood

vessels, template model tracking will continue to extract the tiny blood vessels from

the end of each thick blood vessel branch. A simple workflow of hybrid method is

illustrated in Fig. 2.1. To utilize the graph-cut method for segmentation, foreground

and background information should be specified (i.e. the voxels belong to source S or

sink T). Therefore, we utilize a Hessian-based vesselness enhancement filter to extract

the foreground region. Detailed process is described in Section 2.4.

After thick blood vessel is extracted, multiple hypothesis template model tracking

(MHT) [67] will start at the end point of each branch and continue to extract the tiny

blood vessels. A cylinder model is generated based on a Gaussian line appearance

model, consisted with contrast term, template model term, background term and

noise term. The image model M(x) is described as

M(x) = kT (x; r,x0, v̂) +m+ ϵ(x), (2.1)

where k is the vessel contrast, m is the image background intensity and ϵ(x) represents
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(a) (b)

Figure 2.2: Illustration of template model. (a) Illustration of 2D template model. (b)
Illustration of generation of candidate models in 3D space.

noise. T (x; r, x0, v̂) is the template function which is given by:

T (x; r,x0, v̂) =
rγ

(d2(x;x0, v̂))γ/2 + rγ
, (2.2)

where r is the radius of the template model, x0 is the center point of the template

model, v̂ is the direction, γ is the steepness parameter and d is the distance from

voxel x to the centerline of the model. A 2D template model is illustrated in Fig. 2.2.

Furthermore, the mathematically defined model has a low computation cost. Levenberg-

Marquardt algorithm is applied to solve the non-linear problem in model fitting pro-

cedure. The following minimization problem

min
r,x0,v̂,k,m

∥W(r,x0, v̂)[kT (r,x0, v̂) +m1n − I]∥ (2.3)

is solved to find the best parameters of template model to fit the image, where

W(r,x0, v̂) is a diagonal matrix to localize the template model as a weight func-

tion. I is CT image data. 1n is a vector with a constant 1. Illustration of generation

of candidate models is shown in Fig. 2.2. A set of candidate models is generated

along the spherical surface in 3D space.

2.2.2.2 Euclidean ellipsoid

In this work, we attempt to exploit the potential of Hessian matrix in graphical model

at first time. We involve Hessian matrix analysis approach to graph-cut to improve
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Figure 2.3: Illustration of ellipsoid, three principle axes depend on eigenvalues and
eigenvectors of Hessian matrix. Length of principle semi-axis is |λi|, direction is
normalized eigenvector v̂i.

the tubular structure segmentation performance.

Conventionally Euclidean distance of intensity is utilized which is given by

Vm,n(xm,xn) =
exp−η|I(xm)−I(xn)|

dist(xm,xn)
, (2.4)

where dist(·) is the Euclidean distance operator, parameter η makes the smoothness

term applicable to different contrast images. I(x) denotes the intensity of voxels x of

3D data.

We use GMM to model the foreground and background intensity distributions,

and utilizing Hessian matrix analysis method to obtain a novel dissimilarity measure

between neighboring voxels. The new smoothness term takes advantage of local

geometrical information calculated by Hessian matrix. This scheme will make graph-

cut more suitable for tubular structure segmentation problem.

In the Hessian-based vesselness filter, we obtained eigenvalues {λ1, λ2, λ3} and

eigenvectors {v1,v2,v3} of every voxel. To calculate the dissimilarity of these struc-

ture features, we construct an ellipsoid to unite these features. This idea is inspired

by DTI imaging techniques. We utilize Hessian matrix analysis method to simulate
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the DTI signals. Assuming that a 3-D ellipsoid EP is centered at origin (0, 0, 0), the

columns of 3 × 3 orthogonal matrix U are unit vectors in the directions of ellipsoid

EP ’s principal axes. Let Σ be the diagonal matrix with elements Σii = σi, where

1/σi represents half of the length of EP ’s ith principal axis. Thus ellipsoid EP is

given by

EP ≡ {x|xTUΣ2UTx ≤ 1}. (2.5)

Therefore, σi = 1/λi, U = [v̂1, v̂2, v̂3], where v̂i is unit eigenvector, x are voxels.

More details about representation of ellipsoids can be found in Stephen’s work [137].

An illustration of the ellipsoid is shown in Fig. 2.3.

To simplify the dissimilarity measure, Euclidean distance is utilized to measure

the dissimilarity between the ellipsoids [138]. The dissimilarity between ellipsoid pair

(EPi, EPj) is given by

s(EPi, EPj) = e−∥ci−cj∥ · e−∥sinθ∥ · e−∥ξi−ξj∥, (2.6)

where c is the center of ellipsoid. θ is the angle between EPi and EPj. In this

work, only the direction of major principle axis A1 = ∥λ1∥v̂1 is calculated, viz., θ =

arccos(Ai1 ·Aj1/|Ai1||Aj1|). ξ represents shape features that ξ = (1/σ1, 1/σ2, 1/σ3)
T .

An example of dissimilarity map is shown in Fig. 2.4. Finally, we can obtain the

segmented blood vessels assigned with label LF utilizing the proposed dissimilarity

map.

2.3 Contributions

1. Capturing geometrical information using second-order tensor in Riemannian

space.

Instead of using Euclidean metric to reduce high dimensional geometrical infor-

mation to 1 dimensional space, we second-order tensors to represent geometrical

31



(a) (b) (c)

Figure 2.4: Dissimilarity maps. (a) One slice of original CT volume. (b) Conventional
intensity-based dissimilarity map. (c) The proposed Hessian-based dissimilarity map.

features, and directly measure tensors in high dimensional space using Rieman-

nian metric.

2. Use tensor and intensity info to create 1st-order Markov random field, and use

graph-cuts optimization algorithm to get the best solution.

This method incorporates both tensor and intensity information into one unified

model. Tensor and intensity are used to represent geometrical and appearance

features.

3. A fine blood vessel segmentation approach designed for 3D artery. High seg-

mentation accuracy on both simulated and clinical dataset.

To validate the method, we prepared two datasets: simulated vascular dataset

and clinical renal artery dataset. Experimental results confirmed the improve-

ments on both simulated and clinical dataset. Especially on clinical dataset,

significant improvements were achieved compared to other methods. Renal

artery segmentation remains a difficult problem in this field. High segmenta-

tion accuracy on renal arteries is a remarkable progress.
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Figure 2.5: Flowchart of proposed algorithm.

2.4 Tensor-cut: a tensor-based graph-cut method

2.4.1 Overview

In this section, we give a detailed description of the proposed method, tensor-cut,

a tensor-based graph-cut method designed for vascular structures. By using this

method, we attempt to tackle the short-boundary bias issue by introducing tubular

geometrical information to the MRF to exploit the advantages of both graph-cut and

vesselness-enhancement filtering. We use both intensity and tensor information to

construct a first-order MRF. Using tensors for image processing can be traced back

to 1980s, Bigün et al. first presented structure tensor using gradient information [139,

140]. Knutsson et al. presented a local energy-based method to calculated the local

structure tensor by analysing the responses of a set of quadrature filters [141]. Linde-

berg et al. presented Gaussian scale-space for a multi-scale representation for tensors

[142]. Our proposed method exploits the second-order information of the geometry

structure of blood vessels. Unlike many existing blood vessel segmentation methods

that only use the high-dimensional geometrical information in low-dimensional Eu-
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clidean space, the proposed method directly utilizes the geometrical information in

manifold space that can contribute to a more accurate model. The detailed descrip-

tion of this method is based on material from our published work [143]. The flowchart

of this work is shown in Fig. 2.5.

2.4.2 Tensor field

As we described in section 2.2.1, Han et al. constructed a multi-scale nonlinear

structure tensor (MSNST) space to extract textures from natural images [136]. First,

a multi-scale structure tensor (MSST) is constructed by calculating gradient Ds(x, y)

(omitted as Ds) of image I at scale s:

τ s = α−2s

⎡⎣ (Ds
x)

2 (Ds
xD

s
y)

(Ds
xD

s
y) (Ds

y)
2

⎤⎦ , (2.7)

where s ∈ (0, S), S is the total of the scales. Ds
x and Ds

y represent two gradient

components along the x and y directions. Ds
x(x, y) = ∂(I ∗ θs)(x, y)/∂x, Ds

y(x, y) =

∂(I ∗θs)(x, y)/∂y. θ(x, y) is a 2D differential function, and α is a constant parameter.

Then, a nonlinear anisotropic filter [144] is applied to each MSST to obtain the

MSNST space. Each pixel in an image is represented as a MSNST T:

T = {τ̂0, τ̂1, ..., τ̂s−1}. (2.8)

In this work, instead of using first-order structure tensor to capture the texture

features, we utilize a Hessian matrix to describe the tubular geometric features. Unlike

the previous work [136], we do not construct a multi-scale tensor space. Using a

multi-scale vesselness-enhancement filter, we get the best scale to represent the blood

vessels. This strategy effectively reduces the computing time.

The 3D Hessian matrix at scale s is given:

∇2Is(x) =

⎡⎢⎢⎢⎣
Isxx(x) Isxy(x) Isxz(x)

Isyx(x) Isyy(x) Isyz(x)

Iszx(x) Iszy(x) Iszz(x)

⎤⎥⎥⎥⎦ . (2.9)
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Here I ij(x) =
∂2

∂i∂j
I(x), (i, j ∈ {x, y, z}) represents the second-order partial deriva-

tives of local image I at voxel x. This symmetric matrix resembles a second-order

tensor T H . A multi-scale Hessian-based vesselness-enhancement filter [80, 81] is uti-

lized to find the most appropriate scale to represent the tubular structure. Vesselness-

measure Vs at scale s is given:

Vs =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|λs

3|
(
λs
2

λs
3

)γ23 (
1 +

λs
1

|λs
2|

)γ12

, if λs
3 < λs

2, λ
s
1 ≤ 0,

|λs
3|
(
λs
2

λs
3

)γ23 (
1− α

λs
1

|λs
2|

)γ12

, if λs
3 < λs

2, 0 < λs
1 <
|λs

2|
α

,

0, otherwise.

(2.10)

where λs
1, λ

s
2, and λs

3 are the eigenvalues of the Hessian matrix at scale s, (λs
1 > λs

2 >

λs
3). Scale s ∈ (0, S), S is the total number of scales. γ12 and γ23 are constant

parameters. α is introduced to provide an asymmetrical characteristic [80]. The scale

with highest vesselness-response Vmax is the most appropriate scale to represent the

blood vessels, and the most appropriate scale s′ = argmaxs Vs, s ∈ (0, S).

However, scale s′ can be obtained for every voxel of image I(x) even if its structure

is not tubular. Therefore, we add a constraint to reduce these noisy tensors. In this

paper, we introduce diagonal tensor T D to replace these non-vessel tensors that can

be expressed:

T =

{
T H , Vmax > 0

T D, Vmax ≤ 0
, (2.11)

where T D =

⎡⎢⎢⎢⎣
λ1 0 0

0 λ2 0

0 0 λ3

⎤⎥⎥⎥⎦ and λ3 ≫ λ2 ≈ λ1 > 0. Here T D represents a plate-

like structure. This diagonal tensor provides a non-tubular tensor for those voxels

that do not belong to the tubular structures. Tensor field T can be constructed.

T = {T0, T1, ..., Tn}, n ∈ N.Ti ∈ {T H , T D}, ∀i ∈ N . N denotes voxel number. A

visualized example of a tensor field is shown in Fig. 2.6 where only tubular tensors

are illustrated. The tensor visualization technique was previously presented [145].

Ellipsoids are constructed with the eigenvalues and the eigenvectors of the Hessian
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Figure 2.6: Constructed tensor field of one CT slice. Only tensors with Vmax > 0 are
shown.

matrix.

2.4.3 Tensor metric in Riemannian space

In this section, we briefly review the Riemannian metrics for computing tensor statis-

tics. Since second-order tensors cannot be handled by traditional linear statistical

methods, non-linear metrics are required for computing statistics on tensors. In our

previous work described in Section 2.2.2, we modeled a tensor as an ellipsoid and

used Euclidean metrics to calculate the dissimilarity between ellipsoids [146].

Many studies have made efforts on computing the statistics of tensors [147–149].

Tensors are not in traditional vector space so that traditional vector operations cannot

applied to tensor computing. Actually, the tensor space forms a type of manifold,

viz., a Riemannian manifold. Riemannian manifolds (M, g) are smooth manifolds

M with Riemannian metric g. A manifold consists of a series of linear Euclidean

subspaces. Similar to any other curved surfaces, the geodesic distances between two

vectors on a manifold is a continuous collection of projection distances in a tangent

space at each point. Riemannian metric g makes it possible to calculate the statistics

of the manifolds, such as mean value, geodesic distances, and geodesic interpolation.

The Riemannian metrics handle symmetric positive definite (SPD) matrices, which

form a convex half-cone in the vector space of the matrices. Many standard opera-

tions are stable in this space [148]. However, the Hessian matrix may have negative
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Figure 2.7: Illustration of geodesic distance computing on manifold. x and y denote
two tensors on manifoldM. Σ is a vector on tangent space TxM at x. Σ is projected
by a logarithmic mapping logx(y) from tensor x to tangent space, and exponential
mapping expx(Σ) projects Σ back to manifold.

eigenvalues, i.e., since it is an indefinite matrix.

In our previous work [150], we used a transformation trick to convert the indefinite

Hessian matrices to SPD matrices. The transformation helps map a Hessian matrix to

a Riemannian manifold. Let T − denotes an indefinite Hessian matrix with negative

eigenvalues, and let U denotes an invertible orthogonal matrix with columns that

correspond to eigenvectors. We have T − = UDU−1 = UDUT , where D is a diagonal

matrix. D = diag(di), where di is the i-th eigenvalue. Positive definite tensor T + can

be obtained:

T + = abs(T −) = Udiag(abs(di))U
T , T + ∈ Sym+. (2.12)

However, this transformation assumes that tensors are in ideal tubular shape: λ2 ≈

λ3, |λ2| ≫ |λ1| ≈ 0. In this work, we directly use the absolute value of generalized

eigenvalues of the tensors to transform the Hessian tensors to a semi-Riemannian

space. The revised transformation is given in Eq. 2.13, which is more mathematically

reasonable than previous transformation.

Pennec et al. and Moakher et al. described an affine invariant Riemannian metric
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for statistics to compute SPD matrices (tensors) [148, 151]. As shown in Fig. 2.7, the

geodesic path between tensors x and y on manifoldM is the shortest curve shown in

the dotted line. The geodesic distance is defined as d(x,y) = ∥−→xy∥x. −→xy is a vector

in tangent space TxM, which is projected by a logarithmic mapping: −→xy = logx(y).

In our case, the geodesic distance between two tensors can be written:

d(T1, T2) = ∥logT1(T2)∥T1 =

(
d∑

i=1

log2 abs
(
λi(T1, T2)

))1
2

, (2.13)

where λi(T1, T2) is the generalized eigenvalues of tensors T1 and T2. d denotes the

order of the SPD matrix, which is d = 3. Actually, Eq. 2.13 is a kind of semi-

Riemannian metric (a.k.a pseudo-Riemannian metric) to handle our Hessian matrices.

Semi-Riemannian manifold, is a differentiable manifold, in which the requirement of

SPD constraint is relaxed. In semi-Riemannian space, tensors need not be positive

definite at every point which allows us to calculate semi-distance between Hessian

tensors.

We calculated the mean and the variance of the tensors using the same method

given in a previous work [148]. A simple introduction is described in the appendix.

A more detailed description is also available [148].

2.4.4 Graph-cut using tensors

A graph-cut is a powerful optimization tool for solving low-level vision problems [128,

152]. Based on the max-flow/min-cut theorem, the minimum cut that corresponds

to the best solution of a sub-modular energy function can be found in polynomial

time. A traditional graph-cut is based on a first-order Markov random field (MRF),

which means that only adjacent nodes are considered. This graphical model easily

leads to a short-boundary bias. For blood vessel segmentation problems, this short-

boundary bias causes serious under-segmentation of tiny blood vessels. This problem

can be addressed with a high-order MRF instead of a first-order MRF considering

high-order cliques can also effectively avoid local minimum cuts [132, 133]. Another
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direct method to avoid short-boundary bias is to make a more accurate objective

distribution model to prevent local minimal cuts. In this paper, we use the local

geometric information presented as tensors to improve the accuracy of the GMM

model.

The minimum cut problem, also known as s-t cut, needs pre-specified source nodes

(s nodes) and sink nodes (t nodes). However, for 3D blood vessel segmentation,

manually creating these terminal nodes is time-consuming (including s and t nodes).

In this work, we automatically generate terminal nodes using K-means algorithm. Let

IV(x) be an image filtered by a vesselness-enhancement filter, and then we extract

the most probable blood vessel region as s nodes with K-means clustering. The most

probable cluster c′max is given:

C′ = argmin
C

K∑
i=1

∑
x∈ci

||IV(x)− Īci ||2, ci ∈ C (2.14)

c′max = argmax
c′i

1

|c′i|
∑
x∈c′i

|IV(x)|, c′i ∈ C′, (2.15)

where ci is the i-th cluster of total K clusters C. Īci denotes the mean intensity of the

voxels in cluster ci. C
′ is the final clusters. In Eq. 2.15, cluster c′max with the highest

mean intensity is selected as the foreground region: the s nodes. In practice, cluster

number K is set to five in this paper. An example of a generated foreground region is

shown in Fig. 2.8. For the possible background region, we first dilate the foreground

region with radius r = 3 and use the complement of the dilated foreground region as

a possible background region (t nodes).

As same as previous work [129], for improved accuracy, we used a Gaussian mixture

model (GMM) to estimate the probability distribution of the blood vessels and the

background region instead of histogram approaches. Two GMMs withKg components

are required: one for the foreground region and another for the background region. A

GMM can generally be written as Pr(u) =
∑

k ηkN (u|µk, σk) (k ∈ Kg). N (u) denotes

the Gaussian distribution. ηk is a weight parameter for each Gaussian component.
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(a) (b)

Figure 2.8: Generated foreground region using K-means clustering: (a) Vesselness-
enhancement result IV(x). (b) Most probable blood vessel region c′max extracted using
K-means (K = 5).

GMMs for intensity and tensors are given:

Pr(x) =

Kg∑
k=1

γkN (x|Īk, σk
I )

Pr(T ) =
Kg∑
k=1

θkN (T |T̄ k, σk
T )

, (2.16)

where Ī and σI denote the mean and the variance of the intensity. T̄ and σT denote the

mean and the variance of the tensors; detailed descriptions are given in the appendix.

γ and θ are weight parameters that can be obtained using the EM algorithm [153].

For a graph-cut, we utilized both the intensity and tensor information. The energy

function is described:

E(L) =
∑
x∈X

− log Pr(Lx|x)  
data term

+λI

∑
{xm,xn}∈N

Vm,n(xm,xn)  
smoothness term  

intensity term

+ ω

(∑
T ∈T

− log Pr(LT |T ) + λT

∑
{Tm,Tn}∈N ′

Um,n(Tm, Tn)  
tensor term

)
,

(2.17)

where L = {LF , LB} denotes labels and LF and LB are foreground and background

labels. ω represents the weight parameter to adjust the weight between the intensity
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and tensor term energy. The λI and λT parameters adjust the weight between the

data term and the smoothness term in the graphical model. Pr(Lx|x) and Pr(LT |T )

denote conditional probabilities of voxels x and tensors T derived using Bayes rule.

In this paper, we use a first-order MRF, which means that we only consider the

edges between neighboring voxels. N and N ′ denote pair sets of neighboring voxels

and tensors. Vm,n(·, ·) and Um,n(·, ·) denote a dissimilarity measure for a pair of

neighboring voxels and tensors: the energy of the edges. The dissimilarity measure

for both voxels and tensors are given:

Vm,n(xm,xn) =
exp (−ξd2(xm,xn))

dist(xm,xn)

Um,n(Tm, Tn) =
exp (−ξd2(Tm, Tn))

dist(Tm, Tn)

, (2.18)

where ξ is a constant parameter that can be estimated as the noise level and dist(·, ·)

denotes the Euclidean distance between two voxels or tensors, i.e. the physical dis-

tance between two points.

Finally, the minimum cut can be found by the graph-cut algorithm for a given

energy function in Eq. 2.17. The terminal nodes belonging to the source are the final

segmentation result. A simple pseudocode for our tensor-based graph-cut is shown in

Algorithm 1.

Algorithm 1 Tensor-based graph-cut

Input: x ∈ I, T ∈ T
Output: Segmentation L = {LF , LB}
Initialize: T̄0 = T1, t = 0, ϵ = 0.001
Calculate

c′max ▷ Terminal nodes (Eq. 2.15)
Pr(x),Pr(T ), (x ∈ c′max, T ∈ c′max) ▷ GMM (Eq. 2.16)
− log Pr(Lx|x),− log Pr(LT |T ) ▷ Data terms
Vm,n(xm,xn), Um,n(Tm, Tn) ▷ Smoothness terms

L← min-cut/max-flow algorithms [152]
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(a) (b) (c) (d)

Figure 2.9: Four phantom vascular pieces of data generated by VascuSynth with
different bifurcation numbers: (a), (b), (c), and (d) respectively have 200, 250, 300,
and 400 bifurcations.

2.5 Experimental results

2.5.1 Material

In this work, we did experiments both on simulated data and on clinical contrast-

enhanced CT data to validate our proposed algorithm.

We used eleven cases of phantom data, all of which were generated using a public

tubular structure generator called vascular synthesizer (VascuSynth)[154], which is a

simulated vascular synthesizer that generates vascular structure based on such user-

defined vascular properties as bifurcation number, oxygen demand map, and other

tunable parameters. To the best of our knowledge, VascuSynth is the state-of-the-

art vascular synthesizer in the literature. However, public vascular datasets1 have

few bifurcation nodes, which can easily be segmented by all methods. Therefore, we

generated the phantom datasets with more bifurcation nodes and small bifurcation

angles. Four generated pieces of phantom data are shown in Fig. 2.9. In this work,

we generated phantom data with different bifurcation numbers that ranged from

200 to 400, and oxygen demand maps and other parameters were randomly decided.

Gaussian white noise was added to obtain the final simulated data. We added two

noise levels to each phantom data with Gaussian variations σn = 0.3 and 0.8; Thus

in the simulated experiments, we have 22 synthetic datasets. To make the simulated

1http://vascusynth.cs.sfu.ca
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Figure 2.10: Examples of final simulated data: Original phantom data without noise
are shown in first row. Simulated data in second row are applied with white noise
of σn = 0.3, and third row is applied with σn = 0.8. (a) and (b) two axial slices of
the simulated data. (c) maximum intensity projection (MIP) images. Compared to
original phantom data, many details are lost by adding white noise and smoothing.

data more closely resemble the clinical CT data, we applied a Gaussian-smoothing

filter with a 2.0mm radius to the phantom data. An example of the final generated

data is shown in Fig. 2.10. Compared to its original phantom data without noise,

many tiny vascular structures are lost by applying with noise and smoothing filters.

The sizes of all the 22 simulated bits of data are 160 × 160 × 160 with identical

resolution 1.0× 1.0× 1.0 mm3.

We used 19 cases of clinical CT data for the experiments and focused on the renal

artery segmentation problem. As pre-processing for the clinical CT data, the volumes
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(a) (b) (c)

Figure 2.11: Volume of interest showing kidney in CT data: (a) and (b) one axial
and sagittal slice, respectively. (c) MIP of image of VOI data.

of interest (VOIs) of the kidney region were extracted manually. One bit of VOI data

contains an entire kidney region. One example of kidney VOI data is shown in Fig.

2.11. Detailed VOI data specification is summarized in Table 2.1.

2.5.2 Reference approaches

We consider six reference approaches in this paper. As the basic ideas of our pro-

posed method, evaluations of the classic vesselness-enhancement filter (VEF) [80]

and the graph-cut algorithm (GC) [152] are critical for proving the effectiveness of

our proposed method. Our method is benchmarked against four competing state-

of-the-art unsupervised blood vessel segmentation methods: multiscale spherical flux

(MSF) [155], multiple hypothesis tracking (MHT) [67], super-ellipsoids (SE) [69], and

commercial image processing software AMIRA [156].

VEF: VEF’s two main parameters, αV and γV , control the trade-off between

branch detection and noise suppression. Based on a previous work [80], αV = 0.25

Table 2.1: Kidney VOI specification

Slice size [pixels] (98 – 166)× (90 – 148)

Slice number [slices] 157 – 270

Pixel spacing [mm] 0.5 – 0.7

Slice pitch [mm] 0.4 – 0.8
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and γV = 1.0 can optimize the trade-off and get robust results. We used this pa-

rameter setting for all the experiments in this paper, including both the simulated

and clinical CT data. Since VEF is an enhancement filter, we manually threshold

the segmentation results to get the best binary segmentation result for a quantitative

evaluation. We implemented VEF in C++ based on a previous work [80].

GC: Unlike an interactive segmentation scheme [152], we still use the automatic

segmentation scheme cited in Section 2.4.4. The foreground seed region is calculated

by K-means, and the possible background region is the complement region of the

dilated foreground region. GMM estimates the posterior probability. The energy

function is identical as Eq. 2.17 without tensor terms. GC was implemented mainly

based on a previous work [152].

MSF: Law et al. presented an efficient implement of a multiscale spherical flux

computation method [155], which is useful for practical vascular segmentation prob-

lems. Multiscale spherical-flux based method was first proposed by Vasilevskiy et al.

[157]. By measuring the gradient flux through the boundaries of multiscale spheres,

divergence of image gradients can be calculated. The maximum response can be ob-

tained when the sphere is located at the centerline of blood vessel with radius same

with blood vessel. To accelerate the computation speed, a multiscale spherical flux

computation is performed in the Fourier domain. Vesselness is directly formulated

to the response of the spherical flux. Similar to other methods [80, 81], MSF is a

vascular enhancement filter. An appropriate threshold is needed to obtain the final

binary segmentation result. 0.005 is the best threshold value for clinical experiments

on MRA data [155]. We used the public Matlab implementation provided by Law et

al.2.

SE: SE is a typical model-fitting-based tubular structure segmentation method. A

combination of parameterized superellipsoid and intensity appearance model is built

for representing tubular structures. Maximum-likelihood method is used to estimate

2http://www.cse.ust.hk/∼maxlawwk/
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the parameters of superellipsoid models. The corresponding between vessel model

and real blood vessel is verified using a generalized likelihood ratio test. Tracking

starts from the multiple random seed points for experiments on clinical data and

only evaluates the segmentation results inside the kidney mask are evaluated. Model

fitting is performed using cylindrical super-ellipsoids to detect the tubular structures.

The algorithm was implemented on their Farsight software platform3. We used the

default parameters in our experiments except for the detection radii.

MHT: MHT obtained the highest score in the coronary artery centerline extrac-

tion challenge [158]. Unlike the SE method, a template vessel model is designed based

on Gaussian line appearance model instead of super-ellipsoids. Student t-test is used

to verify the corresponding instead of likelihood ratio test used in SE. To avoid early

stopping caused by a local minimum score, MHT introduces a multiple hypothesis

tracking scheme to further improve the segmentation accuracy. The multiple hypoth-

esis approach starts multiple tracking process in parallel, and keep the tracking with

the maximum score as the success tracking. The implementation we used is provided

on their MeVisLab software platform4. The pruning and termination thresholds are

the two primary parameters that affect the segmentation performance. In our exper-

iments, the termination thresholds were set twice as high as the pruning thresholds,

based on the official suggestion [67]. Since MHT is a semi-automatic method, the

initial seed points must be manually specified. For all the experiments, we randomly

put ten seed points at each branch level.

AMIRA: AMIRA is commercial biomedical software for visualization and image

processing [156]. We used a module named AutoSkeleton for segmentation and imple-

mented a vascular structure segmentation method [159] that can extract the skeleton

and the diameter of tubular structures with a distance map. First, distance map

is computed using adjusted chamfer distance [160]. Then, centerline and diameter

3http://www.farsight-toolkit.org/
4https://www.mevislab.de
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are calculated using adapt distance ordered homotopic thinning (DOHT) algorithm.

In this, work, we directly applied thresholding to distance maps to obtain the final

binary segmentation results.

2.5.3 Measurements

We used three types of measurements to validate the segmentation performances in

this work: sensitivity (Se), specificity (Spc), centerline overlap (CO), and centerline

error (CE). Se, or the true positive rate (TPR), measures the algorithm’s ability to

correctly extract the target region (blood vessels). Spc, or the true negative rate

(TNR), refers to its ability to correctly extract the background region (non-blood

vessels). Se and Spc are given:

Se =
TP

TP + FN
, Spc =

TN

TN + FP
, (2.19)

where TP , FN , TN , and FP respectively denote the voxel numbers of true positives,

false negatives, true negatives, and false positives.

The Dice coefficient (DC) is generally used for evaluating the overlap between the

ground truth and segmentation results. However, the DC metric is heavily influenced

by the volume of the target region [161]. A small volumetric variation of segmented,

thick blood vessels may have greater influence than the volumetric variation of tiny

blood vessels. Therefore, instead of DC, we introduce the CO index to improve the

accuracy evaluation for tiny blood vessel segmentation and use centerline overlap

measures [162]. Fig. 2.12 describes how to calculate the centerline overlap ratio.

ΩG(x) and ΩS(x) denote the centerlines of the ground truth and segmentation results,

respectively. Overlap region OΩ = {x|x ∈ ΩS(x) ∩ x ∈ U(x)}, where U(x) is dilated

ΩG(x) with a two-voxels radius. The CO index is given:

CO =
2 ∗ ∥OΩ∥
∥ΩG∥+ ∥ΩS∥

, (2.20)

where ∥·∥ represents the length.
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Figure 2.12: Illustration of calculation of centerline overlap CO. Tubular structure in
black is gold standard blood vessel, and its centerline ΩG(x) is shown as blue dash-dot
line. Tube U(x) is generated by dilating centerline of a two-voxel radius. Red dash
line denotes centerline of segmented vessels ΩS(x).

Centerline error (CE) has also been used in many blood vessel segmentation works

[162, 163] especially for coronary artery which needs quantitative analysis. CE mainly

measures the distance between segmentation and ground truth. In this work, our CE

index is defined:

CE =
h(ΩG(x),ΩS(x)) + h(ΩS(x),ΩG(x))

2
, (2.21)

where h(·) denotes average centerline distance. Definition of centerline distance h is

given:

h(ΩG(x),ΩS(x)) =
1

∥ΩG∥
∑

pG∈ΩG

min
pS∈ΩS

(|pG − pS|) (2.22)

For both CO and CE, we only compute the scores on the longest connected vascular

trees. Pre-processing is performed to extract the maximum connected voxels. Tensor-

cut has three primary parameters that must be specified: λI , λT , and ω. In both

simulated and clinical experiments, we performed a grid search to select these three

parameters and to plot the upper bounds of all the results in the ROC curves.

2.5.4 Experimental results on simulated data

We tested the segmentation methods on 22 simulated pieces of data, including two

noise levels for each phantom data. The objective of the simulated experiments is

to evaluate the general segmentation ability of the tubular structures. Experiments

with different noise levels can evaluate the robustness against the noise. The receiver

operating characteristic (ROC) curve of three cases is shown in Fig. 2.13. The x- and
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Figure 2.13: ROC curves of three simulated vascular data generated by VascuSynth
with different bifurcation number. Cases 1, 2, and 3 have 250, 300, and 350 bifurca-
tions. Experimental results of two noise levels (σn = 0.3 and σn = 0.8) are shown in
first and second rows.

y-axes denote 1 - Spc (FPR) and Se (TPR), both of which are measured voxel-wise.

No post-processing is performed on the segmentation results. As for methods which

have multiple parameters, such as TC and SE, the ROC curves indicate the upper

bound of all experimental results using grid-search approach. From the ROC curves,

tensor-cut (TC) and MSF have the best performances among the six tested methods

on the simulated dataset with a noise level of σn = 0.3. However, TC outperformed

MSF on the simulated data with a noise level of σn = 0.8, which proved its robustness

against different noise levels.

Experimental results showed that TC had better performances than GC and VEF,

which proves the effectiveness of our proposed method. ROC indicates that the TC

curves extended the GC curves, which means that TC extracted more structures than

GC; i.e., introducing a tensor term effectively suppresses the short-boundary problem.

Two cases are visualized in Fig. 2.14. From the visualized results, TC outper-

formanced the other approaches. VEF and GC under-segmented the tiny tubular

structures. MSF also has good sensitivity, although it is susceptible to noise. MSF
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Figure 2.14: Segmentation results of simulated data of Cases 1 and 3. For each,
segmentation results of two noise levels (σn = 0.3 and σn = 0.8) are shown in the first
and second rows.

achieved similar segmentation results to TC under the σn = 0.3, but underperformed

TC under σn = 0.8 condition. The model-fitting-based methods (SE and MHT) are

limited to the detection of small tubular structures. ROC also showed that SE and

MHT obtained poor results under both two noise levels. The quantitative statistical

results of all 22 simulated bits of data are given in Table 2.2 that show the mean Se

and Spc with their respective standard deviations.

2.5.5 Experimental results on clinical CT data

We performed experiments on the 19 clinical CT data (VOI data). To increase the

algorithm’s focus on the renal arteries, we manually created a kidney mask using the

standard graph-cut algorithm [152].

In clinical experiments, the SE and MHT methods did not achieve comparable

results on the clinical dataset. The latter only extracted one or two main thick

branches, and the former failed to extract renal arteries. Therefore, we omitted
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Table 2.2: Quantitative statistical results of simulated dataset. Two noise levels with
σn = 0.3 and σn = 0.8 are shown in two columns for each approach. Mean sensitivity,
specificity, and centerline errors with their standard deviations are also shown.

Se (%) Spc (%) CE (mm)

σn = 0.3 σn = 0.8 σn = 0.3 σn = 0.8 σn = 0.3 σn = 0.8

TC 85.5±3.8 75.3±5.4 99.2±0.1 99.3±0.1 1.65±0.23 2.82±0.91

GC 62.2±7.6 66.0±6.4 99.8±0.1 99.6±0.2 5.57±1.98 5.16±1.67

VEF 72.9±4.2 71.2±4.2 98.9±0.2 99.0±0.1 1.57±0.57 3.07±1.09

MSF 87.2±4.2 64.5±6.2 99.0±0.2 99.6±0.1 1.96±0.50 3.84±1.13

SE 67.0±5.1 64.2±5.3 98.7±0.1 98.3±0.1 8.81±3.46 8.09±1.78

MHT 68.0±7.2 60.7±5.6 98.9±0.2 98.8±0.2 3.54±1.22 5.40±1.22

these two methods from our comparisons in the clinical experiments. Although the

performances on the simulated and clinical data are different, our proposed method

(TC) almost got the best segmentation performances. The quantitative CO and CE

evaluation of 19 cases is demonstrated in Fig. 2.15. The TC method outperformed

the other methods, and its performances are more robust.

2.6 Discussion and conclusions

2.6.1 Discussion

Our experiment results on both the simulated and clinical CT data show a high

performance of the tensor-cut method for tubular structure segmentation. In this

study, we used both the ROC curves (TPR against FPR) and the CO curves (CO

against FP) to evaluate the performances of the methods. The ROC curves measure

the general segmentation ability, and the CO curves measure the segmentation ability

for tiny tubular structures.

Our experiments on simulated data show the segmentation ability for general tubu-

lar structures. In Table 2.2, the experimental results with a noise level of σn = 0.3
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(a) CO

(b) CE

Figure 2.15: Quantitative evaluation of 19 clinical cases. For each case, we selected
the best segmentation results with the highest CO index and the lowest CE index.
Red lines indicate median values, and tops and bottoms of blue boxes indicate 25th

and 75th percentiles. Upper and lower bounds indicate maximum and minimal CO
and CE values.

show that TC and MSF outperformed all the reference approaches. However, on the

noisier simulated data with a noise level of σn = 0.8, TC and VEF outperformed

the other reference approaches. The experimental results with different noise levels
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Figure 2.16: Volume rendering of six clinical cases.

indicate that TC is robust to noise and has a stable, higher performance than the

other reference approaches. From Fig. 2.14, we identified the limitations of the ability

of the model-fitting-based methods (SE and MHT) to segment tiny structures. This

weakness results from the size limitation of a single vascular model. Other voxel-wise

methods (including TC) do not suffer from this weakness.

Our experiments on clinical CT data aim to show the segmentation ability of

blood vessels in actual clinical scenes. We show the overall quantitative CO and CE

evaluation of 19 clinical cases (Fig. 2.15). In Fig. 2.15, we plot the best CO and CE

53



index of each case. TC achieved the best and most robust segmentation performance

of all the reference approaches. TC’s mean CO index is 84.0% and outperformed the

second-best GC of 73.2%. TC’s mean CE is 1.37mm outperforming the second-best

GC of 2.11mm.

We show several detailed segmentation results on actual clinical CT slices in

Fig. 2.17. The arrows indicate tiny renal arteries with small radii and low contrast

against the surrounding renal cortex. Although these tiny renal arteries are easily

overlooked by humans, our proposed method can segment them.

Similar to the simulated experimental results, TC outperformed the GC and VEF

methods in the clinical experiments. GC achieved good segmentation results in Cases

2, 3, and 4 because high-quality CT angiographic data simplify the generation of

good initial terminal nodes that contain tiny tubular structures. We show detailed

comparison results of Cases 1 and 3 in Fig. 2.18 to evaluate the influence of the

initial seed voxels on the segmentation results. GC’s performance heavily depends

on the initial seed voxels. The poorly extracted initial seeds directly lead to poor

segmentation results. TC is more robust to the initial seeds. Owing to the tensor

term adopted in TC, the short-boundary bias was suppressed. More tiny blood vessels

were extracted by TC than GC for Case 1 (Fig. 2.18).

2.6.2 Conclusions

We presented a novel unsupervised blood vessel segmentation approach using a tensor-

based graph-cut method. Our simulated and clinical experiments showed that our

proposed method has higher segmentation performances than other reference ap-

proaches. In this work, we focused on renal artery segmentation. Our clinical experi-

mental results show that our tensor-cut method is robust and outperformed the other

reference methods, especially on tiny blood vessels. Accurate vascular topology is the

foundation of follow-up processing such as estimation of vascular dominant regions.
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3D volume rendering 2D CT slice

Figure 2.17: Segmentation performances on CT slices: Segmented tiny blood vessels
are indicated by arrows on CT slices. These tiny renal arteries can be extracted by
our proposed method.
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Figure 2.18: Comparison between GC and TC on clinical Cases 1 and 3: Initial
foreground seed voxels (s nodes) are shown in upper-right. Segmentation results of
GC and TC are shown in lower rows.
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Chapter 3

Tubular organ segmentation:
Tubular-oriented FCN

3.1 Background

We have introduced the unsupervised blood vessel segmentation method in Chapter

2. In this chapter, we introduce our second tubular structure segmentation method

based on supervised deep-learning techniques. Different from traditional unsuper-

vised segmentation approaches, supervised deep-learning based approaches is able to

learn the essential features from manual annotated labels (i.e. ground truth) auto-

matically. No handcrafted feature-design is needed. As previously mentioned, one

major advantage of traditional unsupervised approaches is that they do not need any

additional annotated labels. One major disadvantage is the manually-designed fea-

tures. As contrast, supervised deep-learning based approaches automatically learn

the features from the annotated data. They can derive benefits from the big data.

However, it is also one disadvantage of supervised deep learning techniques. Generat-

ing annotated labels for 3D medical images is a time-consuming and labor-intensive

task.

With the rapid development of deep-learning techniques, the medical image-processing

community also has adopted the advances of deep-learning techniques, naturally.

Compared to traditional machine learning-based methods, deep-learning based meth-
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ods do not depend on handcrafted features. One natural advance of deep-learning

architecture is that it is able to learn the useful from the training data automatically.

Over the past few years, deep learning methods have become the dominant approach

in many data analysis fields and also have achieved remarkable advances in the med-

ical image analysis field [164]. There already exists lots of research using deep neural

networks for their medical image-processing tasks, including organ segmentation, le-

sion detection and disease classification. Deep-learning based methods have already

showed their significant advances over other traditional methods.

Airways and vasculature pose high demands on image analysis as they are elon-

gated fine structures with calibers ranging from several tens of voxels to voxel-level

resolution, branching in deeply multi-scale fashion, and with complex topological

and spatial relationships. Recently, airways and vasculature image analysis have also

been approached using deep convolutional neural networks (ConvNets) instead of the

traditional filter banks and machine learning methods.

In this work, we made efforts to exploit the potential of 3D neural network in tubu-

lar structure segmentation problem. With the power of deep-learning techniques, we

attempt to build a general segmentation method for tubular structures including vas-

culature and bronchi. Conventional neural networks still suffer under-segmentation

problem for tiny tubular structures. To address this problem, we presented two new

modules designed for tubular structures: 3D recurrent convolutional layer and radial

distance loss. These two modules can be easily Incorporated into general FCN ar-

chitecture. Experimental results showed that our modules significantly improved the

segmentation accuracy.
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3.2 Related works

3.2.1 Fully convolutional network

This work is constructed based on fully convolutional network (FCN) architecture.

FCN architecture has been more and more popular in segmentation or self-learning

tasks. It was first proposed by Long et al. [165]. The main feature of FCN is

that it enables a end-to-end and pixel-to-pixel segmentation process, instead of a

patch-based classification manner. Recently, a widely used FCN architecture U-Net

[106] incorporates the concept of skip-connection [166] into FCN, and exceed the

state-of-the-art performance in medical segmentation tasks. In this work, 3D U-Net

architecture [107] is selected to be the backbone network.

3.2.2 Deep-learning in tubular organ segmentation

Many studies have been made using 2D/2.5D image patches to train their networks

[117, 167]. Oda et al. [168] used multiple fully connected networks (FCNs) to tackle

the problem of segmenting tiny abdominal arteries. Three 2D U-Net networks were

employed to respectively segment 2D patches on three anatomical planes, and three

2D segmentation results were merged as a final volumetric segmentation. Similarly,

Yun et al. [117] used 2D patches on three anatomical planes to train three ConvNets as

classifiers to classify whether a voxel belongs to the bronchus. To explore the inherent

relationship between such orthogonal 2D patches, Tetteh et al. [167] presented 2D

orthogonal cross-hair filters to make use of 3D context information but with a reduced

computational burden. The above approaches made use of local contexts to address

the tubular-structure segmentation. Although, they achieved good performance, the

problem remains of taking full advantages of large-range information in the field of

view (FOV), which can provide global queues unavailable from small local patches.

Meng et al. [118] attempted to use an original 3D U-Net combined with a traditional

bronchus tracking method to improve bronchus segmentation accuracy. Huang et al.
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[169] presented a liver-vessel segmentation method using a 3D U-Net with variant Dice

loss function. Both works used a large 3D sub-volume size of around 100× 100× 100

voxels.

Compared to 2D local patch-based methods, 3D FCNs for tubular-structure seg-

mentation has some limitations that need to be addressed. Foremost is the severe

imbalance in the sizes of the large background area when compared to the small

foreground (tubular structure). Second, it’s unclear whether FCNs can learn useful

features from the abundant contexts of 3D data that while capturing coarse-scale

long-range interrelationships are also accurate to detect tubular details and topologi-

cal correctness at finer scales. The motivation of this work is to improve the accuracy

of tubular-structure segmentation in respect to these two concerns.

3.3 Contributions

1. We introduce 3D recurrent convolutional layer in FCN architecture for tubular-

structure segmentation.

3D recurrent convolutional layer enables a more effective message-passing mech-

anism. This will significantly help networks learn the tiny elongate structure

more effectively.

2. We propose a novel radial distance loss for 3D tubular-structure segmentation

that helps the networks to recover tiny tubular structures.

Weighted loss functions have been used to solve the imbalance problem between

the background and foreground. Tubular organs have a large variation of scales.

However, no loss function has been proposed to address the intra-imbalance

problem inside the foreground. Our proposed radial distance loss is designed

for tubular structures. It aims to solve the imbalance problem inside the tubular

structures.
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Figure 3.1: Overview architecture

3. Both 3D recurrent convolution layer and radial distance loss are generic and

flexible, so they can be easily incorporated in other state-of-the-art networks

and used in other applications.

The proposed two modules are generic designed. They can be easily incorpo-

rated in other networks to share the advances of new network architectures.

3.4 Tubular-oriented fully convolutional network

3.4.1 Overview

Our main contribution is twofold from the viewpoint of tackling both network ar-

chitecture and its loss function. The motivation of this work is to design a new

end-to-end FCN for 3D-tubular structure segmentation. Compared with traditional

layer-by-layer convolutional layers, the proposed slice-by-slice convolutional layer per-

mits messages to efficiently pass slices. Our proposed loss function places more weight

on the centerline of a tubular structure than on the outer border which can help the

network pay more attention to tiny structures. Description of the proposed method is

based on our published work [170]. A simple illustration of our architecture is shown

in Fig. 3.1.

3.4.2 3D spatial FCN

Spatial-CNN was first proposed to address the traffic lane detection problem [171].

The main contribution of spatial-CNN is the introduction of a slice-by-slice convolu-
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tional layer. Different from the traditional layer-by-layer CNN, slice-by-slice convo-

lutions perform like recurrent neural networks. The in-layer recurrent convolutions

provide more efficient message-passing between neurons in the same layer. This can

help networks reinforce structures with strong spatial constraints [171].

In this work, we incorporated Recurrent Convolutional Layers (RCLs) in a 3D

FCN architecture for 3D medical imaging applications. Detailed structure of RCLs

is illustrated in Fig. 3.2. Convolutions are performed in both forward and backward

directions along the width, height, and depth dimensions. As shown in Fig. 3.2,

RCLw, RCLh, and RCLd denote RCLs with convolutions in front-to-back direction

along the three dimensions. RCL
′

w, RCL
′

h, and RCL
′

d denote RCLs with convolutions

in the reverse direction. Forward computation of RCLw can be defined as

Zc,i,j,k =

{
Xc,i,j,k, if i = 0

Xc,i,j,k + f(Zc,i−1,j,k ∗K), if 0 < i ≤ W ,
(3.1)

where X denote an input 4D feature tensor of size C×W×H×D, and Z denotes the

output of RCLw. Let c, i, j, k denote the index of channel, width, height and depth

dimensions. K is a 3D convolution kernel of size w×w×w. f(·) denotes a nonlinear

activation function. RELU is used in this work. Similarly, forwarding for RCLh and

RCLd can be easily derived based on Eq. 3.1.

By introducing skip-connection between encoding and decoding paths, U-net like

architecture achieved state-of-the-art performance in many computer vision tasks.

Figure 3.2: RCL architecture: Feature map represents the output of the last convolu-
tional layer with a shape of N×C×W ×H×D. Slice-by-slice recurrent convolutions
are performed in each RCL.
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Figure 3.3: Volume rendering of binary ground truth and corresponding radial dis-
tance map. Radial distance maps of both artery and bronchus are shown. Radial
distance map shown on the right is rendered with pseudo color mapping 0 to blue,
and 1 to red.

In this work, we chose U-Net architecture [107, 124] with three multi-scale levels as

our backbone FCN. As shown in Fig. 3.1, we placed the RCLs directly after the

deepest feature map, i.e. the compressed low-dimensional representation. In previous

spatial-CNN [171], the authors placed the RCLs after the output of CNN, under the

assumption that the top hidden layer with rich semantic information is an ideal place

to apply RCLs. However, in our FCN architecture, applying RCLs to the deepest

representation provides better performance than using top hidden layer.

3.4.3 Radial distance loss

The use of Dice loss for medical segmentation tasks was first proposed by Milletari et

al. [116]. They showed that Dice loss outperformed other losses, especially in severe

data-imbalance situations [116]. More recently, Hausdorff distance loss and contour

loss were proposed for localization and segmentation tasks [172, 173]. Dice loss mea-

sures volumetric variation, and Hausdorff distance loss and contour loss measure the
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distance between boundaries. However, no losses were specifically designed for tubu-

lar structures. In this work, we propose a novel radial distance loss (RD loss) for

tubular structures. The motivation of our proposed loss is to capture the geometric

topology loss believed to be more important than volume loss in the tubular-structure

segmentation.

The proposal of RD loss is inspired by the centerline overlap (CO) metric used for

evaluating blood vessel segmentation [150]. Wang et al. used the CO metric to give

a more accurate description of tiny blood vessel segmentation than conventional Dice

similarity coefficient (DSC). To take advantage of the CO metric while keeping a

volumetric measurement, our proposed RD loss is defined as

L = −1

2

1∑
k=0

Wk

(
2
∑N

i pi,kdi,k∑N
i p2i,k +

∑N
i d2i,k

)
, (3.2)

where pi ∈ P and di ∈ D denote the i-th voxel predicted binary result and the radial

distance map. Voxel index i ∈ [1, N ]. k ∈ [0, 1] denote class. Class weights W is

defined as reciprocal volume ratio of each class. Notice that Eq. 3.2 is similar to

traditional Dice loss [116] except that we use radial distance map D instead of binary

ground truth G. D is defined as:

D = − 1

max(F)
F+ 1, (3.3)

where F = {fi, i ∈ N} denotes a distance map created by a Euclidean distance

transformation from the centerline of ground truth. F is defined as:

fi =

{
min{d(fi, sj); sj = 1}, if sj = 0,

0, if sj = 1 or gi = 0.
(3.4)

Here, sj ∈ S denotes the j-th voxel of centerline data S extracted from G. Finally,

we obtained radial distance map D by normalizing F from 0 to 1 using a simple

monomial form. An example of a radial distance map is shown in Fig. 3.3. RD loss

can be weighted combination of centerline loss and Dice loss.
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(a) DSC ′ (b) CO′ (c) CO′′

Figure 3.4: Validation results. Dot markers represent actual validation scores. For a
clearer visualization, we plot smoothed results in dashed line using Gaussian filter.

3.5 Experimental results

3.5.1 Materials

In this work, to evaluate our proposed method, we performed bronchus segmenta-

tion experiments on 3D clinical CT scans acquired with a standard dose. The sizes

of CT slices were 512 × 512 pixels with a resolution of 0.63 − 0.97 mm. The num-

ber of CT slices ranged from 238 to 851 with varying thickness of 0.63 − 1.00 mm.

Monte Carlo cross-validation (MCCV) was conducted three times. All 38 CT images

were randomly divided into the training and validation subsets containing 35 and 3

cases. The model with the best validation accuracy is tested on three unseen datasets

acquired in a different hospital than those used for training.

3.5.2 Experimental results on bronchus segmentation

Since we chose U-Net as our backbone FCN, we performed comparison experiments

using U-Net with Dice loss as a baseline. U-Net with only RCL structures and U-Net

with only radial distance loss were also validated to prove the effectiveness of each

proposal. We also compared our proposed method with two other methods, one is a

variant U-Net architecture, V-Net [116] (Dice loss and RD loss), 3D voxelwise residual

networks, VoxResNet [174] and the other is traditional bronchi tracking method [119].

In training phase, for each epoch, 4 sub-volumes with a size of 64× 64× 64 voxels

were randomly cropped from each CT image for all 35 training cases. No data aug-
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Table 3.1: Quantitative comparison results. All measurement was shown with mean
± standard deviation values.

Method Dataset DSC ′ (%) DSC ′′(%) Se (%) CO′ (%) CO′′ (%)

(1) In-house dataset

Yun et al. [117]
Train: 59

Test:8
89.9± 8.9 - - - -

Meng et al. [118]
Train: 30

Test:20
86.6 - 79.6 - -

(2) Our bronchus dataset

Kitasaka et al. [119] 87.4± 2.3 82.8± 3.9 58.2± 7.8 49.1± 10.7 94.8± 1.1

VoxResNet (Dice loss) [174] 79.6± 3.7 90.0± 3.4 72.3± 5.0 39.2± 2.7 31.0± 2.1

V-Net (Dice loss) [116] 65.4± 9.9 91.0± 2.0 69.0± 2.0 28.3± 3.9 19.8± 1.1

V-Net (RD loss)

MCCV

Test:3
83.3± 2.0 88.4± 0.7 76.3± 4.6 53.8± 1.0 66.6± 4.9

U-Net (Dice loss) [124] 64.0± 19.5 92.4± 1.6 82.9± 5.7 47.2± 18.1 54.3± 9.0

Our proposed 88.7± 1.2 94.5± 0.8 86.5± 1.0 76.6± 6.0 80.6± 5.6

mentation was performed in our experiments. Random cropping was performed in

this work. The initial learning rate was set to 0.01, and it decayed by 0.2 every 150

epochs. The optimization was realized via stochastic gradient descent (SGD).

DSC and CO were used for quantitative validation. To validate the general seg-

mentation ability of each method, DSC ′ was measured on the segmentation results

with no post-processing, and DSC ′′ was only measured on thick branches (before

2nd generation of dichotomous branching). We computed CO scores on the results

with two post-processing strategies. One is measured on the largest connected com-

ponent extracted from the segmentation results. The other one is measured on tiny

bronchi after the 2nd generation of dichotomous branching and masked by a dilated

ground truth with 5 voxels to remove false positives. These two measures are denoted

CO′ and CO′′. CO′ measures the ability to segment tubular structures, while CO′′

measures the ability of tiny structures. Figure 3.4 shows validation results. Volume

rendering of two validation cases are shown in Fig. 3.5. Quantitative comparison

results are shown in Table 3.1. Other than DSC and CO, we also compute sensitiv-

ity (Se). More detailed comparison results are shown in Fig. 3.6 and 3.7. In Fig.
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3.7, we also show a failed case. As we can see from the figure, even in failed case,

our proposed method has better performance than other methods. Furthermore, To

demonstrate robustness of method, segmentation results of three unseen test data are

shown in Fig. 3.8.

3.6 Discussion and conclusions

In this work, we proposed 3D recurrent convolutional layer and radial distance loss,

and demonstrated the implementation of these proposals in a widely used U-Net

architecture. As experimental results showed, our proposed approaches achieved sig-

nificant improvement over our baseline architecture, and obtained competitive results

with state-of-the-art methods. Our proposed extensions, viz. 3D RCL and radial dis-

tance loss, are generic and flexible component that they can be easily incorporated

in other deep learning architectures. We demonstrated an application on V-Net ar-

chitecture using our RD loss, remarkable improvement was obtained comparing with

the one using Dice loss.

Figure 3.5 and 3.6 show that thick bronchi are slightly under-segmented. This

is a side effect of radial distance loss, since we decreased the weight of the most

peripheral voxels. The normalization strategy in Eq. 3.3 can be improved to use

more complex functions beyond a simple monomial. However, from Table. 1, DSC ′′

shows our segmentation accuracy of thick branches is still better than baseline U-Net.

Segmentation results of three unseen datasets acquired in different hospital illustrated

the robustness of our method. Visually, good segmentation accuracy was achieved.

In conclusion, we choose the challenging bronchus segmentation task to prove the

effectiveness of our proposed method regarding general tubular structure segmenta-

tion. Experimental results showed that our proposed approaches are proven to be

effective in bronchus segmentation task. However, we only evaluate the segmentation

performance on bronchus segmentation. Our approaches should theoretically work
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(a) Test case 1 (b) Test case 2 (c) Test case 3

Figure 3.8: Segmentation results of three unseen test data. For a clearer visualization,
we removed outliers under volume size of 10 voxels.

on blood vessel segmentation problem. Application on blood vessel segmentation will

be one of our future works. Additionally, more state-of-the-art networks incorporated

with our approaches need to be investigated.
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Chapter 4

Solid organ segmentation:
Spatially aware FCN

4.1 Background

In this chapter, we introduce another main topic of our research: organ segmentation.

Organ segmentation is another important research topic in medical image-processing

field. In this work, we present a general designed fully convolutional neural network

for organ segmentation and applied it to kidney segmentation. As we introduced

in Chapter 1, we have introduced lot of research working on exploiting anatomical

information in organ segmentation problem including both traditional methods and

machine-learning based method. Although significant improvement has been achieved

in organ segmentation with the power of deep-learning techniques, we believe better

integrating with anatomical information can contribute to better performance for

deep-learning based methods.

4.2 Contributions

1. 3D spatially aware FCN architecture is presented for organ segmentation task.

In this work, a spatially aware unit is proposed to explicitly capture the anatom-

ical information. This auxiliary module can effectively capture the relative
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spatial location information. By integrating this information to the neural net-

work, it enables to explicitly learn the organ’s spatial information effectively.

This help to suppress the false positives.

4.3 Spatially aware fully convolutional network

4.3.1 Overview

In this section, we describe our proposed methods in detail. We segment the kidney

regions with a 3D U-Net-like fully convolutional network (FCN) architecture. U-Net

architecture [106, 107], which is an extended version of FCN architecture, consists

of a contracting path and a symmetric-expanding path. U-Net can achieve high

segmentation accuracy with sparse annotated data [107]. Recently, many U-Net-like

architectures have been proposed for segmentation tasks [109, 116, 124, 175–179].

Detailed description of our proposed spatially aware fully convolutional network is

based on material from our published work [180].

4.3.2 Spatially aware unit

Our network is based on previous 3D U-Net-like architecture [124, 175]. Roth et

al. presented a U-Net-like architecture for organ segmentation on 3D medical im-

ages and achieved state-of-the-art segmentation results [124]. To tackle the GPU

memory limitation problem, they used a sliding-windows strategy for large medical

data. However, these cropped sub-volumes were trained independently, i.e., the spa-

tial position information of the sub-volumes was ignored during training. Spatial

information is a critical feature for organ segmentation because the relative spatial

position of the human organs is generally unchanged between patients. Exploiting

spatial information should improve organ segmentation accuracy. Many works have

involved spatial information into networks. Brust et al. directly incorporated abso-

lute position information into fully connected layers [181]. Akoury et al. presented
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Figure 4.1: Architecture of our presented FCN.

a “Spatial PixelCNN” to impose spatial prior information to maintain the coherence

of generated synthetic images [182]. Chen et al. incorporated spatial information

into the end of an encoder (a bottom feature map) [183, 184]. Zhu et al. incorpo-

rated spatially structured learning in an adversarial FCN for mammographic mass

segmentation [179].

Inspired by the work of Chen et al. [183], we introduce spatial position informa-

tion into 3D U-Net-like architecture to impose the spatial information of each cropped

sub-volume into our FCN architecture. Our proposed network is illustrated in Fig.

4.1. The backbone U-Net-like structure, which is based on a previous work [185], con-

sists of four resolution levels. At each level, a skip connection links the contracting

path and the corresponding symmetric-expanding path to provide higher resolution

features to the symmetric-expanding path. Unlike original U-Net architecture, the

skip connections in this network are summation instead of concatenation. Summation

connections were first incorporated in U-Net by Roth et al. [109]. Their experimen-

tal results show that summation connections are slightly better than the original

concatenation connections in the pancreas segmentation task. Each resolution level

contains two series of convolutional layers, batch normalization and ReLU activation,
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Figure 4.2: Illustration of spatially aware unit. Figure shows an example of spatially
aware unit in 3 level FCN with input CT subvolume size of 32× 32× 32 voxels.

in both the contracting and symmetric-expanding paths. The kernel sizes of all the

convolutional and deconvolutional layers in our network are fixed to 3 × 3 × 3. The

kernel size of the max pooling layers is fixed to 2× 2× 2.

We concatenated a three-channel feature map, including x, y, z coordinates, to

the bottom feature map to introduce the position information to FCN. The input

coordinate information is the relative coordinates of the input sub-volume in the

entire CT normalized to [0, 1]. Let P be the three-channel spatial feature map, thus

P is defined as P = [ x
W
, y
H
, z
D
], where x, y, and z denote coordinates of voxels

in a sub-volume. W,H, and D denote width, height and depth of a CT image.

Unlike a previous study [183] that only considered the center coordinates of the input

sub-volume, we used all of the position information and resized the position volume

(containing coordinate information) to a suitable input size. An simple illustration

of spatially aware unit is shown in Fig. 4.2

Training In this work, the input volume size of our network is fixed to Nx ×Ny ×

Nz. At each epoch, n sub-volumes are cropped from the original CT volume and

fed to the neural network. Here n denotes the batch size. To achieve the best

segmentation performance, we exploit the transfer learning technique and pre-train

our model on a multi-organ segmentation dataset [109, 175], which doesn’t contain

any kidney annotation, and fine-tune the model on our kidney dataset. This multi-

organ segmentation dataset contains 377 cases, with 340 cases used for pre-training
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(a) Original sub-volume (b) Rigid transformation

(c) Elastic transformation (d) Hybrid transformation

Figure 4.3: Examples of data augmentation: (a) original sub-volume extracted from
CT data. Red region indicates ground-truth label of kidney. (b) and (c) rigid and
elastic transformation results. (d) transformation result containing both rigid and
elastic transformations

and 37 cases used for validation. The model with the best validation performance

is used for fine-tuning. We used all pre-trained layers except the last classification

layer. Fine-tuning was done on all layers.

Similar to previous works [106, 107, 109, 124, 175], we used a data-augmentation

technique to increase the data variety and robustness. We performed both rigid and

elastic transformations to each cropped sub-volume. Rigid transformation includes a

translation with a range of [−10,+10] pixels at each dimension and a rotation with
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range of [−15◦,+15◦]. A B-spline deformation is employed as an elastic transforma-

tion to each sub-volume, like in previous works [107, 109, 124]. For each sub-volume,

the deformation fields are randomly sampled from a uniform distribution with a max-

imum displacement of 3, and the number of B-spline control points in each dimension

is set to 3 for all data-augmented experiments. In this work, we performed an in-

place deformation operation. In a single iteration, we fed one original sub-volume

and n− 1 hybrid deformed sub-volumes to the network. A data-augmentation exam-

ple is shown in Fig. 4.3. We individually show the rigid transformation, the elastic

transformation, and the hybrid transformation, which combines the rigid and elastic

transformations. Deformation is computed on-the-fly at each epoch during training.

In this work, we use pseudo Dice loss instead of conventional cross-entropy loss.

Dice loss was first introduced in 2016 [116]. The definition of multi-class Dice coeffi-

cient loss D used in this work can be written:

D = − 1

K

K∑
k=1

(
2
∑N

i pi,kgi,k∑N
i p2i,k +

∑N
i g2i,k

)
. (4.1)

where gi,k ∈ G and pi,k ∈ P denote voxels from the ground-truth volume and seg-

mentation results for class k of total K classes. N is the total voxel amount of the

volume.

Testing The input volume size for testing is the same as in the training. We

used a sliding-window strategy to obtain sub-volumes with size Nx × Ny × Nz for

testing. After predicting all of the sub-volumes, we restored these predictions to a

complete 3D labeling data based on their respective positions. The probabilities of

the overlapping regions were computed as average probabilities: p(x) = 1
R

∑R
r pr(x),

where pr(x) denotes the probability of voxel x from r-th sub-volume, r ∈ R.

78



(a) Pre-trained (b) Fine-tuned

Figure 4.4: Pre-training and fine-tuning learning curves: Blue curve denotes training
Dice coefficient (DSC), and black curve denotes validation DSC. Maximum valida-
tion DSC of pre-training achieved 88.8%, and maximum validation DSC of kidney
segmentation achieved 96.7%.

4.4 Experimental results

4.4.1 Materials

In this work, we used 27 pieces of abdominal contrast-enhanced CT volume data to

evaluate the performance of our proposed method. The pixel spacing ranged from

0.665 to 0.742 mm, and slice pitch ranged from 0.4 to 2.0 mm. All 27 cases containing

54 kidneys were used to evaluate the accuracy of the kidney segmentation. Eight cases

containing 14 kidneys were used for evaluating the dominant-region estimation. The

ground truth of the kidneys was created by an engineer with medical knowledge.

4.4.2 Experimental results on kidney segmentation

We used an 8-fold cross-validation scheme to evaluate the accuracy of kidney segmen-

tation. We divided all 27 CT volume data into train/validation/test splits at a ratio

of 0.8/0.1/0.1. The model with the best validation performance is to be used for test.

For a quantitative evaluation, we used three measures: the Dice Similarity coefficient

(DSC), Sensitivity (Se), and the Hausdorff distance (HD). DSC is a commonly

used measure in image segmentation. It is able to reflect the general segmentation
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ability. Se, also known as recall rate, measures the ability of the method to extract

correct kidney regions. HD is introduced to measure the surface distance between

segmentation results and ground truth. We use the HD metric to focus on segmen-

tation accuracy of the kidney itself. Therefore, as post-processing, we extracted the

top 2 largest connected components as kidney regions. HD is used to measure the

post-processed segmentation results, to reflect the actual segmentation ability of end-

to-end FCN, DSC and Se are still used to measured the original segmentation results

without any post-processing. DSC, Se, and HD are defined as follows:

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
, Se =

TP

TP + FN
,

HD = max(h(Sgt, Sseg), h(Sseg, Sgt)),

(4.2)

where True Positive (TP), False Positive (FP), True Negative (TN), and False Neg-

ative (FN) were measured in a voxel-wise way. h(Sgt, Sseg) = maxpgt∈Sgt minpseg∈Sseg

∥pgt − pseg∥, where p denotes the voxel coordinate that belongs to surface S. Sgt

and Sseg represent the surfaces of the manually annotated ground-truth label and

post-processed segmentation results.

Experiments were performed on an NVIDIA Quadro P6000 with 24 GB memory.

Training on 21 cases took about 7−8 hours for 4000 iterations, and the testing phase

took about five minutes for a single case. For all experiments in this work, we set

the learning rate to 0.01, the batch size n to 6, the sub-volume size Nx ×Ny ×Nz to

64×64×64, and the epoch number to 4000 for fine-tuning and 16000 for pre-training.

The FCN model was first pre-trained on a multi-organ dataset of seven organ la-

bels, including the liver, the spleen, the stomach, and the pancreas. This multi-organ

dataset did not contain any kidney labels. Its latest segmentation DSC is given

in previous work [175], which achieved an average accuracy of 87.3% (excluding the

background regions). The pre-training curve of our FCN model is plotted in Fig.

4.4(a). The maximum validation DSC score was 88.8%. The learning curve of the

first fold’s fine-tuning on the kidney dataset is shown in Fig. 4.4(b). The maxi-

mum validation DSC score of this fold was 96.7%. To demonstrate the improvement
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Figure 4.5: Validation DSC of U-Net [124], V-Net [116], and our proposed spatially
aware FCN. All three of these networks were pre-trained on a multi-organ dataset.
Points on curves denote median values of all 8-fold cross validations. Upper and lower
bounds of error bars denote the first and third quartiles.

made by introducing the spatial unit, we also evaluated the baseline U-Net [124], i.e.

the proposed architecture without the spatial unit. Furthermore, we implemented a

variant U-Net architecture, V-Net [116], for comparison on our kidney dataset. All

comparison experiments have the same hyperparameter settings. Validation results

of these three methods are shown in Fig. 4.5. The quantitative results of unseen test

data of all 8-fold cross validations are shown in Table. 4.1. For reference, we also list

several similar works on the kidney segmentation task, even though we used a differ-

ent dataset and annotations. Two detailed segmentation examples using the proposed

approach are shown in Fig. 4.6. Comparison segmentation results are shown in Fig.

4.7.
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Table 4.1: Comparison of kidney segmentation methods. Three measurements, Dice
coef., sensitivity, and Hausdorff distance, are shown with median[1st - 3rd quartile]
or mean ± standard deviation values. CE-CT denotes contrast-enhanced CT, LOO
denotes leave-one-out cross-validation, and 8-fold denotes 8-fold cross validation. All
listed methods used own in-house dataset.

Method Modality Case num
DSC (%)

Se (%)
HD (mm)

Left Right Left Right

(1) In-house dataset

Atlas-based random forest [186] CT
Train: 233

Test: 179

96.0

[93.0-97.0]

96.0

[93.0-97.0]
- 7.0± 10.0 7.0± 6.0

Atlas-based graph-cut [187]
CT

(portal-phase)
100 (LOO) 90.0± 5.0 - -

CNN+MSL [188]
CE-CT

(multi-phase)

Train: 370

Test: 78
90.5 - -

Shape-constrained Level-set [189] CE-CT 10 86.2 - 19.6

2D patch-based CNN [190] CE-CT
Train: 79

Test: 20

93.6

[92.0-95.0]

92.5

[88.8-94.5]

93.78

[90.7–95.6]

4.8

[2.7-9.5]

7.0

[4.1-17.5]

(2) Our kidney dataset

Baseline U-Net [124] CE-CT 27 (8-fold)
84.6

[79.6-90.3]

91.0

[84.5-92.7]

91.1

[83.1-94.2]

12.0

[7.3-15.4]

5.2

[4.8-8.0]

V-Net [116] CE-CT 27 (8-fold)
84.1

[74.3-95.1]

86.7

[74.6-92.9]

85.6

[81.5-94.5]

13.9

[7.5-20.8]

8.1

[5.2-28.1]

Ours CE-CT 27 (8-fold)
87.3

[83.0-90.8]

94.7

[86.4-95.5]

90.5

[86.3-95.5]

7.1

[5.0-9.8]

4.6

[3.8-6.9]

4.5 Discussion and conclusions

4.5.1 Discussion

As shown in Table 4.1, compared with other U-Net-like architectures, our proposed

spatially aware FCN achieved better segmentation results. Figure 4.7 shows that

the introduced spatial information effectively suppressed the FPs. Furthermore, our

approach demonstrated competitive segmentation accuracy with related kidney seg-

mentation methods. In this work, our DSC and Se are directly measured on the

segmentation results without any post-processing. A 2D patch-based CNN method

[190] performed post-processing, including opening, closing and extraction of two

largest connected components. Therefore, a comparison of HD is more useful for
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Figure 4.6: Two kidney segmentation examples using proposed FCN. Both 3D volume
rendering and 2D segmented kidneys ROIs are shown. Red and green lines indicate
contour lines of segmented kidneys. Yellow and blue sections shown in volume ren-
dering correspond to 2D ROIs with same colors.

(a) Ground truth (b) U-Net

(c) V-Net (d) Our proposed

(a) Ground truth (b) U-Net

(c) V-Net (d) Our proposed

Figure 4.7: Two comparison examples. (a), (b), (c), and (d) denote ground truth and
segmentation results of U-Net [124], V-net [116], our proposed network.

demonstrating our segmentation ability. Considering our limited dataset, we believe

our proposed spatially aware FCN architecture has potential to achieve competitive

results with state-of-the-art kidney-segmentation methods. Furthermore, the spa-

tially aware unit can be easily incorporated in other architectures.

Although our network achieved good kidney segmentation results, its performance

remains limited on such pathology patterns as kidney cysts and some late stage cancer.

Several segmentation results are shown in Fig. 4.8. Figs. 4.8(a) and (b) show the

under-segmented results of kidney cysts. Fig. 4.8(c) shows a case with late-stage
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(a) (b) (c)

Figure 4.8: Limited segmentation performance: Yellow arrows indicate under-
segmented regions. (a) and (b): limited segmentation performance on kidney cysts.
(c): a case with kidney cancer at late stage.

cancer, and the proposed method failed to segment the whole kidney. One reason is

that we have only one case that contains this pattern in our dataset; increasing the

data with this pattern may improve the segmentation performance. Among all 27

tested cases, two cases failed in segmentation (DSC < 20%). This has also happened

in other experiments using U-Net and V-Net. The major reason for this is that the

slice thickness of these two failed cases is 2.0 mm, while that of all other cases ranges

from 0.4 to 0.8 mm.

4.5.2 Conclusions

Our proposed automatic organ segmentation method achieved competitive results

with state-of-the-art methods for kidney segmentation problem in our in-house data.

Since our network is generally designed, it can be also adopted to other organ seg-

mentation problem, theoretically. In our research, we mainly focus on kidney-related

CAD system. The high segmentation accuracy of kidney helped us build a reliable

CAD system in the future.
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Chapter 5

Computer-aided kidney diagnosis

5.1 Overview

All the methods we proposed in this thesis can be utilized for real clinical applications.

CAD system will become meaningless without clinical applications. In this chapter,

we introduce three clinical kidney-related applications based on our proposed method:

optimizing surgical planning, quantitative analysis of renal function variation, and

quantitative evaluation of kidney tumors.

Kidneys are very important solid organs in vertebrates. They are responsible for

filtering impurities in the blood, maintaining body water balance and electrolyte bal-

ance. They also have endocrine functions to regulate blood pressure. An illustration

of human urinary system is shown in Fig. 5.1. Kidneys are important part of human

urinary system. As the figure shows, the kidney has three main anatomical regions:

cortex region at outside, medulla region in the middle, and the renal pelvis. Nephrons,

which is the minimal functional unit of kidney, located in renal cortex and medulla

regions. In other words, renal cortex and medulla are the main functional regions of

kidney.

Nephrology and urology are two medical specialties address kidney diseases. Urol-

ogy mainly addresses kidney diseases such as renal cancer, renal cysts and kidney

stones. Urology prefers physical treatments to address these diseases. In our research,

we also focus on urology. According to the guidelines of renal cancer treatment from
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Figure 5.1: Illustration of human urinary system. On the right, the internal anatom-
ical structures of kidney is shown. Photo is based on the materials from [191].

both the U.S. [192] and Japan [193], nephrectomy is the most recommended treatment

of renal cancer. Our three applications are also related with nephrectomy. Although

we cannot give a quantitative medical validation of our CAD methods, we mainly

focus on the concept of our CAD methods. We hope our application can contribute

to realize a better computer-aided kidney diagnosis system.

5.2 Applications

5.2.1 Presurgical simulation of partial nephrectomy

5.2.1.1 Background

Partial nephrectomy (PN), which has recently become one of the most common treat-

ments for kidney cancer, can maintain a high residual renal function during surgery

[194–196]. A critical problem during PN is that blood vessel clamping directly in-

fluences the quality of the surgery. However, PN remains unstandardized. Due to

the trade-off between residual renal function and surgical difficulty, it is difficult to

design a criterion for PN surgery. In this work, we provide a better and more accurate
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computer-assisted diagnosis for PN by estimating the dominant region of each renal

artery that facilitates identifying the blood vessels which feed the tumor. Physicians

can easily make a surgical plan using such diagnosis information to determine the

blood vessel clamping.

The feasibility of computer-aided diagnosis (CAD) for PN has been proven [197–

199]. Ukimura et al. [197] performed PN on four patients who underwent 3D recon-

struction for surgical navigation. The kidney surface was extracted by thresholding,

the renal arteries were segmented by a simple region-growing method, and the tumor

was manually segmented. Komai et al. [198] and Isotani et al. [199] used commer-

cial software called “Vincent” to perform the computer analysis for PN clamping.

The kidney was extracted by a semi-automatic region-growing method, and the renal

arteries were segmented by applying facial detection technology using multi-phase in-

formation. Then the vascular dominant regions were estimated by applying a Voronoi

diagram. All of the above research focused on the clinical study of CAD’s feasibility

and its accuracy for PN surgery rather than engineering studies.

The main contribution of this work is the computer-aided kidney diagnosis frame-

work using our proposed automated and precise renal vascular dominant estimation

approach. As a preliminary study on CAD system for PN, this work shows the

potential of using medical image-processing techniques in improving precise PN.

5.2.1.2 Methodological Overview

The workflow of this CAD framework is shown in Fig. 5.2. First, the kidney regions

are extracted using a deep learning approach. Second, a fine renal artery segmentation

method is performed to segment the renal arteries inside the bounding-box of the

kidney regions. After extracting the kidneys and the renal arteries, we estimate the

vascular dominant regions with a Voronoi diagram. The relative statistics of the

dominant regions are calculated for further surgical planning.

The kidney segmentation and renal artery segmentation methods are described
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Figure 5.2: Workflow: Our precise estimation approach can be divided into three
parts: kidney segmentation, renal artery segmentation and estimation of vascular
dominant regions.

in Chapter 4 and 2. These two methods constitute the basis of this CAD system.

Combining with other general image-processing methods, this CAD system can be

constructed successfully.

5.2.1.3 Estimation of vascular dominant region

We estimated the renal vascular dominant regions with a Voronoi diagram that is

widely used for calculating vascular dominant regions [197–199]. Considering the

capillaries along the arteries, each branch of the renal arteries is treated as a set of

seed points of a Voronoi diagram instead of using the end points of arteries. Let

Bi ∈ B, (i ∈ R) be a branch of renal arteries, and define Voronoi cell Ci function:

Ci = {x ∈ Xv|d(x, Bi) ≤ d(x, Bj)}, for all i ̸= j, (5.1)

where image voxels x are inside of kidney region Xv extracted by the FCN approach.

d(·) is the Euclidean distance between two points, and d(x, Bi) denotes the minimal

Euclidean distance from point x to vessel branch Bi. This is a simple simulation of a

real cell getting nutrition from blood vessels.
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Table 5.1: Quantitative evaluation results of renal dominant regions. Eight cases were
tested. Second and third rows present number of kidneys and dominant regions of
each case. Fourth-row shows Dice score, and median values with 1st and 3rd quartiles
values are demonstrated for each case.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Mean

Kidney # 2 2 2 2 1 1 2 2

Regions # 12 22 16 10 12 7 10 14

Dice coef. (%)
81.3

[70.2 - 85.1]

77.2

[66.9 - 87.8]

79.7

[73.3 - 86.0]

82.6

[71.9 - 87.0]

82.2

[78.0 - 87.9]

77.3

[73.0 - 81.2]

80.0

[70.6 - 82.4]

77.5

[70.4 - 87.2]

79.9

[70.4 - 86.2]

Figure 5.3: Experimental result of Voronoi diagram performed on original 3-D CT
volume. Left: Abdominal blood vessels segmentation result. Thick blood vessels
are segmented by region-grow semi-automatically, and renal arteries are extracted by
proposed method. Right: Estimation result of renal vascular dominant regions that
utilized Voronoi diagram.

As demonstrated in Eq. 5.1, the main factors affecting the accuracy of a Voronoi

diagram are kidney region Xv and renal artery branches B. To obtain a quantitative

measure for the estimation of the vascular dominant regions, we calculated the volume

and the volume ratio of each dominant region denoted by V ol and R. If dominant

regions are adjacent to a tumor, we also calculated the contact area of each adjacent

region.

5.2.1.4 Experimental results

We conducted a quantitative evaluation of the estimation of dominant regions in eight

cases involving 14 kidneys. We measured each estimated dominant region’s Dice coef.

with the ground truth. Since we cannot obtain the anatomical ground truth of the
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Figure 5.4: Left: Segmented renal arteries labelled with different colors for each
branch. Right: Estimation result of vascular dominant regions. Colors correspond
to their dominated blood vessels. 5-mm margin was taken outside of tumor. Blue,
yellow, green, and fuchsia regions are directly adjacent to a tumor.

renal dominant regions, we used the ground truth of both kidney and renal artery to

calculate a simulated ground truth of the dominant regions. The quantitative results

are shown in Table 5.1. One partition example on the original CT volume is shown

in Fig. 5.3.

Furthermore, one clinical validation was performed. The quantitative analysis

results are shown in Table 5.2. Two measures were investigated: the volume of

the vascular dominant region (V ol) and the area of the dominant region adjacent to

tumor (Area). Nine regions were partitioned utilizing Voronoi diagram. Visualization

of vascular dominant regions is shown in Fig. 5.4. Among these regions, regions 1, 5,

6, and 7 are directly adjacent to tumors. Nephrectomy surgery was performed using

a selective artery clamping scheme shown in Fig. 5.5.

5.2.1.5 Discussion and conclusions

In this work, we present a CAD system for assisting partial nephrectomy (PN). We

attempt to propose a reliable and standardized PN. Our proposed kidney and renal

artery segmentation methods (described in Chapter 2 and 4) can achieve high accurate

segmentation results. They are the basis of this CAD system.

From the quantitative analysis results of the clinical case, we confirmed that four
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Table 5.2: Estimation result of renal vascular dominant regions. Regions 1, 5, 6, and
7 are directly adjacent to tumors. Vol denotes volume of dominant region, and Area
denotes adjacent area of dominant region and tumor. Ratio of both Vol and Area are
given in next row.

1 2 3 4 5 6 7 8 9 all

Yellow Blue Light-green Orange Light-blue Fuchsia Green Gray Brown

V ol (mm3) 49596.7 22567.1 22311.6 14275.1 20234 1603.6 8986.3 460101 16719.3 160895

V ol Ratio (%) 30.8 14.0 13.9 8.9 12.6 1.0 5.6 2.9 10.4 100

Area (mm3) 17.6 – – – 761.5 174.9 22.5 – – 976.5

Area Ratio (%) 1.8 – – – 78.0 17.9 2.3 – – 100

regions are adjacent to the tumor, and thus at most four blood vessel branches should

be clamped based on our simulated results. Actually, surgeons clamped two blood

vessel branches that dominate regions 5 and 6. An operation report shows that slight

bleeding remains in regions 1 and 7. However, this is considered as a valuable trade-

off is found between surgical quality and residual renal function. From surgeon’s

feedback, our proposed approach helped surgeons build preoperative surgical plans

and focus on critical arteries during operations. This is the aim of this research. We

hope surgeon can benefit from our CAD system for PN.

As a pilot study on the estimation of renal vascular dominant regions, our ex-

perimental results in 8 cases demonstrated that our estimation approach achieved

reasonable accuracy. It shows the potential of our system in real clinical applications.

However, more clinical evaluations using large-scale database are needed to prove the

feasibility of our approach for clinical PN surgical planning.

5.2.2 Quantitative analysis of renal function variation

5.2.2.1 Background

In this work, we aim to quantitatively analyze the renal functional variation between

pre- and post-operation. Kidney has a self-healing mechanism when kidney is injured.

However, there has been no related work to exploit the detailed healing process.

Through this work, we hope to give a more detailed description of the self-healing
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Figure 5.5: Selective artery clamping is performed in nephrectomy surgery. Blood
vessel in light blue shown in Fig. 5.4 is clamped to prevent bleeding. Blood vessel in
fuchsia is cut off permanently because it is the main blood vessel supply of nutrition
to tumors.

mechanism.

The renal cortex and renal medulla are two main functional regions of kidney.

The volume change of these two regions is one major index to reflect renal function

variation. To have a better understanding of renal functional variation between pre-

and post-operation, extracting the cortex and medulla regions from CT volumes is

necessary for quantitative analysis.

However, it is a time-consuming task to segment these regions manually. To solve

this problem, we present a semi-automatic computerized analysis approach to quan-

titative evaluate the functional variation between pre- and post-operation. Like the

first application described in Section 5.2.1, to realize the quantitative evaluation, esti-

mation of vascular dominant region is essential. Therefore, kidney segmentation and
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Figure 5.6: Simple workflow of The renal cortex and medulla segmentation.

renal artery segmentation is also necessary in this work. The kidney and renal artery

segmentation methods are same with the ones used in the first application. Besides,

we used Gaussian mixture model and LSM methods to extract the renal cortex and

medulla regions.

5.2.2.2 Methodological overview

As we mentioned above, the methods extracting kidney and renal arteries are same

with the first application. Two methods are detailed described in Chapters 2 and 4,

respectively. However, this work focuses on quantitative analysis of renal function not

methodology. All processing results are manually checked for ensuring the correctness.

In this work, after kidney is extracted, the Gaussian mixture model (GMM) and the

LSM is used to extract the renal cortex and medulla regions from kidney region.

Then, Voronoi diagram is used to estimate the vascular dominant regions of both

renal cortex and medulla regions. In the next section, we mainly describe the renal

cortex and medulla regions segmentation approaches. A simple workflow in shown in

Fig. 5.6

5.2.2.3 The renal cortex and medulla segmentation

In this paper, the Gaussian mixture model (GMM) and the LSM is used to extract the

renal cortex and medulla regions. The LSM is one kind of active contour method. By

adding an auxiliary dimension to active contour function, it can be solved by perform-
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Figure 5.7: (a) ROC curve of the LSM. (b) Segmentation result of the LSM without
post-processing. Segmented renal cortex region is shown in red, the renal medulla is
shown in yellow.

ing numerical computations rather than parameterizing the surface. We also newly

introduce a confidence interval to remove the over-segmentation of kidney regions.

The objective function of the LSM is consisted of three terms, propagation term,

advection term and curvature term, parameters α, β and γ can be adjusted to control

these three terms, respectively. The speed function g(I) of the LSM used in this work

is given as: g(I) = exp(−|(∇∗Gσ)|), II denotes image, Gσ is a Gaussian kernel with

standard deviation σ.

The GMM is used to extract the renal cortex and medulla roughly. The boundary

of the extracted regions will be used as initial contour for the LSM. Firstly, the K-

Means is used to cluster the voxels inside of kidney region into 2 classes, the renal

cortex and medulla. Then, the MAP estimation will be performed on the voxels in

each class to estimate their intensity distributions. We use the boundary of roughly

extracted renal cortex and medulla regions as the initial boundary of the LSM. The

input of the LSM is CT volume and initial boundary data. Segmented renal cortex

and medulla regions can be obtained as final output. Closing operator with radius r

will be performed as a post-processing.
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5.2.2.4 Experimental results

Since all the processing results are finally checked manually. Better segmentation

results can decrease human labor on manual annotation process. In this work, eight

cases of CT data were tested. We used one case to obtain the optimal parameters

using grid search method. Segmentation and evaluation of the rest seven cases were

performed using the optimal parameters. ROC curve is shown in Fig. 5.7(a). Figure

5.7 shows one slice of segmented result. Parameters were set as: σ = 2.0, β = 3.0, γ =

0.2, r = 2, iteration number of the LSM was set to 30. Mean Dice coefficient of seven

cases was 88.2%, mean sensitivity was 89.7%, mean specificity was 99.1%.

One clinical case is demonstrated to show the renal function variation between

pre- and post-nephrectomy. As shown in Fig. 5.8, the kidney region in red and green

color are partially removed by operation. Volume of these two regions are decreased.

However, the volume of kidney region in yellow increases after nephrectomy.

5.2.2.5 Discussion and conclusions

According to the clinical experimental result, we confirmed that kidney has self-

healing mechanism when kidney is injured. In partial nephrectomy, kidney increases

part of its functional region to cover the lost renal function. Traditionally, physicians

only know that when one side kidney is removed in radical nephrectomy, the other

one will grow to cover the lost renal function. Though this work, we confirmed that

in partial nephrectomy, even in single kidney, it has self-healing mechanism to heal

itself. Moreover, we suppose that this self-healing mechanism has some underlying

rules. From the clinical result, we can find that only kidney region in yellow increases.

In contrast, the kidney region in blue remain unchanged. Such behavior may reveal

another research topic in a deeper analysis of how the kidneys work.

In conclusion, this section presented a CAD method for quantitatively analysis of

renal functional variation between pre- and post-operation. By using our method, we

can easily analyze the renal functional variation from CT data. Our work confirms
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Figure 5.8: One clinical case of pre- and post-nephrectomy.

kidney’s self-healing mechanism in partial nephrectomy. A fully-automatic and high

accurate method is one of our future works.
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5.3 Conclusions

In this chapter, two kidney-related clinical applications are presented. For both appli-

cations, the segmentation of kidney and renal arteries are necessary. They constitute

the basic processes of kidney-related CAD system. In the first application, we pro-

vide necessary precise diagnostic for surgeons. Surgeons can make better surgical plan

based on the quantitative results. As a pilot study, this work confirmed that this CAD

framework can contribute to realize a standardized partial nephrectomy. However,

this complex CAD framework is far from large-scale clinical use. Both precision and

reliability need to been proven by more clinical validation. The second application

focus on renal function analysis. Unlike the first application, the second one does

not directly relate to nephrectomy or treatment. The newly discovered behavior may

reveal another research topic in a deeper analysis of how the kidneys work.

The presented two applications demonstrate how our segmentation methods sup-

port the computer-aided kidney diagnosis, and also show the importance of precision

of segmentation methods. More precise methods help to build a more accurate and

reliable CAD system. It is the basis of a CAD system for its practical use in real

clinical scene.
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Chapter 6

Conclusion and future overview

6.1 Summary

The research described in this thesis aims to present tubular and solid organ seg-

mentation methods with high accuracy. Combination of these segmentation methods

constitutes a reliable and accurate CAD system. Recent years, CAD techniques

have been rapidly developed benefiting from the fast development of medical image-

processing techniques. CAD systems have already played a huge role in many real

clinical applications, such as lesion detection, early disease diagnosis, and quantita-

tive pathological analysis. Such applications have already been used in hospitals to

support doctors for diagnosis. To realize these applications, segmentation of tubular

organ and solid organ has always been the fundamental task for other complex CAD

system. We can extract useful diagnostic information from the segmentation results

for further analysis. In this thesis, our research mainly focuses on tubular organ and

solid organ segmentation, and also demonstrate two clinical applications using our

methods to assist kidney-related diagnosis.

The first topic, presented in Chapters 2 and 3, proposed two methods aiming to ad-

dress the fine tubular organ segmentation problem. Segmentation of tubular organs,

such as blood vessel and bronchus, remains a challenge medical image-processing task.

In Chapter 2, tensor-based graph-cut method was used to perform a highly precise

blood vessel segmentation. There have already been proposed amount of research
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working on precise blood vessel segmentation. I believe that capturing the geometri-

cal information (tubular structure) of blood vessel is the key of this problem. Based

on this assumption, a tensor-based graph-cut method is proposed, named tensor-cut,

to capture both geometrical and appearance information. Geometrical information

is modeled by a second-order tensor using Hessian matrix. Then, both tensor and

intensity are integrated using a graphical model. Tensor (geometrical) and intensity

(appearance) are combined into one unified model. The experimental results show

that our method outperforms other competitive methods, and have a good perfor-

mance in renal artery segmentation task.

In Chapter 3, deep-learning technique was adopted in tubular organ segmenta-

tion problem. We attempted to exploit the potential of deep-learning techniques in

3D tubular structure segmentation problem. In this work, we presented two deep-

learning based modules designed for tubular structure segmentation: 3D recurrent

convolutional layer (RCL) and radial distance loss (RD loss). 3D RCL structure en-

ables a more effective message-passing mechanism. It leads to a strong prior-shape

constraint. Tubular structures can be then emphasized. Another module, RD loss,

makes efforts on proposing a new loss function designed for tubular structures. This

new loss function pays more attention on skeleton rather than volume. This strategy

can effectively solve the imbalance problem inside of tubular structures which have

large variance in scales.

The second topic, presented in Chapter 4, used an spatially aware fully convolu-

tional network to address the solid organ segmentation problem. Many works have

incorporated anatomical information in their methods to improve the organ segmen-

tation accuracy. In this work, we explicitly integrated anatomical information, i.e.

relative spatial location, to deep neural network. This allows the method to more

effectively capture the anatomical information from the 3D CT data. Deep-learning

is a large data-demand technique. Large annotated training dataset is required to an

accurate deep-learning model. By explicitly feeding auxiliary information to neural
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network, the proposed method can work with less training data. The experimental

results demonstrate that the proposed network successfully captured the anatomical

information of organs. False positives can be effectively suppressed.

The third topic, presented in Chapter 5, described two clinical applications con-

structed based on our tubular and solid organ segmentation methods. Normally, CAD

system is developed to serve real clinical applications. The true value of CAD system

will be reflected in clinical applications. In this topic, two kidney-related diagnosis

applications were given to evaluate the clinical value of our CAD techniques. More

specifically, we mainly focus on nephrectomy-related diagnosis. Nephrectomy has

been a commonly used and recommended physical treatment for renal cancer. Par-

tial nephrectomy is highly recommended than radical nephrectomy. However, partial

nephrectomy still remains unstandardized. Due to the trade-off between residual re-

nal function and surgical difficulty, it is hard to design a criterion for surgical plan of

partial nephrectomy.

Our first CAD system aims to provide more accurate computer-assisted diagnostic

information by estimating the dominant regions of renal arteries that facilitates iden-

tifying the blood vessels feeding the tumor. One clinical validation shows that our

CAD system successfully helped surgeons make a better surgical plan. The second

application attempt to explore the self-healing mechanism of kidney. There has been

no related work to exploit the detailed healing process. In this work, by measure

the volume changes of renal cortex and medulla regions, we can have an estima-

tion of renal function variation between pre- and post-nephrectomy. To realize this

quantitative analysis, processing methods, such as blood vessel segmentation, organ

segmentation, are also necessary. According to the clinical experimental result, we

confirm that kidney has self-healing mechanism when kidney is injured. Furthermore,

we find renal self-healing also happens in single kidney. Such behavior shows another

future work to explore the deeper analysis of how kidney works.

These three topics summarized above constitute my major works during my Ph.D
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study. The first and second topic mainly contribute to medical image-processing

field from an engineering perspective. These methods have the potential to form a

useful basis for a accurate and reliable organ segmentation system. The third topic

mainly contribute to clinical medicine field. Our kidney-related CAD systems show

the feasibility in supporting physicians in real nephrectomy applications.

6.2 Future research

Although, we have proposed several segmentation problems to address specific issues

in medical image segmentation. They are still far from perfect. Nowadays, CAD

usually cannot substitute doctors, but rather plays a supporting role. This situation

is similar with autonomous driving technology, which also plays a supporting role

in current applications. Precision and reliability still remain challenging tasks for

most CAD systems. These issues will become major research topics in the medical

image-processing field. Here, we show some our opinions on this question.

Improving accuracy is a natural demand for most engineering approaches. More

specifically, in our research, improve the segmentation accuracy of tubular and solid

organs has always been the first priority of our research topics. Needless to say, deep-

learning techniques have taken CAD to another level in both accuracy and robustness.

Deep-learning techniques are still fast developing. Many new methods are proposed

in this field, such as graph convolutional networks (GCNs), attention mechanism. At

early stage, we just adopted deep-learning to medical image-processing field without

modification. Now, more and more research have proposed specific neural networks

using particular information extracted from medical images. In our solid organ seg-

mentation method, we explicitly use anatomical information extract from 3D CT data

to improve the segmentation accuracy. As one future research direction, we believe

integrate prior-knowledge of medicine to deep-learning can effectively improve perfor-

mance. For instance, Qin et al. proposed a neural network using the prior-knowledge
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that tiny structures of bronchi mostly locate near the lung borders [120]. Therefore,

we think taking advantage of prior-knowledge is one potential research direction to

improve performance.

In some clinical applications, reliability can be more important than precision. In

our consideration, beside of algorithm robustness, another important research topic

is uncertainty estimation. This topic has also attracted a lot of attention in this field

[200–203]. One future application of uncertainty estimation is used to improve accu-

racy and robustness by minimizing the uncertainty. Another application is to show

the uncertainty to the doctors. Understanding of both certain processed results and

uncertain information is vital for doctors to make definite, informed conclusions. We

think the auxiliary uncertainty information can contribute to realize a more reliable

CAD system.

6.3 Conclusions

Computer-aided diagnosis (CAD) system contributes to help doctors have a precise

and efficient computer-assisted diagnosis. The basis of CAD system is the medical

image-processing algorithms. Better processing methods can help to realize more

accurate and reliable CAD system.

As stated in Chapter 1, this research aims to proposed tubular and organ seg-

mentation methods with higher accuracy which meet the real clinical demand. The

proposed methods presented in Chapter 2, 3 and 4 have demonstrated accurate and

reliable segmentation results. In Chapter 2, tensor-cut algorithm has address the

under-segmentation problem of tiny blood vessels comparing with other unsupervised

methods. In Chapter 3, deep-learning technique has been adopted in tubular structure

segmentation problem. 3D U-Net architecture is used incorporated with the proposed

modules, 3D RCL and RD loss. This method has explored the potential of 3D FCN

architecture in tubular structure segmentation problem. In Chapter 4, spatially aware
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FCN architecture is used for solid organ segmentation task. The explicitly integrated

spatial location helps the network more easily capture the anatomical information.

The segmentation methods presented in this thesis take fully advantage of geomet-

rical and anatomical information. As the technology develops, CAD techniques will

be subdivided into more specific research fields. Single unified framework is difficult

to handle all these topics. Capturing the anatomical features of each specific research

target will become more important.

In the future, CAD system will without doubt play an important role in modern

medical field. We can imagine in the near future, such applications like automatic

full-body pre-diagnosis, standardized and low-risky surgery will become reality. With

the improved diagnosis efficiency, hospital appointments will become more convenient.

It is very likely that CAD systems will become essential equipment in hospitals and

change everyone’s medical experience.
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“A radial structure tensor and its use for shape-encoding medical visualization
of tubular and nodular structures,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 3, pp. 353–366, 2012.

[72] M. Nergiz and M. Akın, “Retinal vessel segmentation via structure tensor
coloring and anisotropy enhancement,” Symmetry, vol. 9, no. 11, p. 276, 2017.

[73] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[74] G. Agam and C. Wu, “Probabilistic modeling based vessel enhancement in tho-
racic CT scans,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. 2, 2005, pp. 649–654.

110



[75] C. Bauer and H. Bischof, “A novel approach for detection of tubular objects
and its application to medical image analysis,” in Joint Pattern Recognition
Symposium, 2008, pp. 163–172.

[76] C. J. Goch, X. Wang, H.-P. Meinzer, and I. Wegner, “Liver vessel segmentation
using gradient vector flow,” in Bildverarbeitung für die Medizin 2011, 2011,
pp. 104–108.

[77] M. W. Law and A. C. Chung, “Three dimensional curvilinear structure de-
tection using optimally oriented flux,” in European Conference on Computer
Vision, 2008, pp. 368–382.

[78] Q. Lin, “Enhancement, extraction, and visualization of 3D volume data,” PhD
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[172] J. Ribera, D. Güera, Y. Chen, and E. Delp, “Weighted hausdorff distance: A
loss function for object localization,” arXiv preprint arXiv:1806.07564, 2018.

[173] S. Jia, A. Despinasse, Z. Wang, H. Delingette, X. Pennec, P. Jäıs, H. Cochet,
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Appendix A: Statistics of Hessian
tensors

This section simply describes the mean and variance of Hessian tensors. The Fréchet
mean generalizes the centroids to arbitrary matrix space by minimizing the Fréchet
variance:

T̄ = argmin
T ∈T

ρ(T ), (A.1)

where ρ(T ) denotes sum-of-squared distance which is defined:

ρ(T ) = 1

2N

N∑
i=1

d2(T̄ , Ti). (A.2)

Geometric mean tensor T̄ is the center point on a manifold at which the Fréchet vari-
ance is minimized for any tensor T ∈ T. The existence and uniqueness of geometric
mean has been proven by Karcher [204]. Then, Newton gradient descent solves the
given minimization problem in Eq. A.1. Also, the gradient of ρ(T ) is given by

∇ρ(T ) = − 1

N

N∑
i=1

logT (Ti). (A.3)

Initialize T̄0 with arbitrary tensor T ∈ T, and the t + 1 step of the Newton gradient
descent procedure is given:

T̄t+1 = expT̄

(
1

N

N∑
i=1

logT̄t(Ti)

)
= T̄

1
2

t exp

(
1

N

N∑
i=1

log(T̄
−1
2

t TiT̄
−1
2

t )
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T̄
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2

t . (A.4)

As shown in Fig. 2.7, expx(Σ) is called exponential mapping, which is an inverse
mapping of logarithmic mapping. Here exponential mapping is to delineates the
arithmetic mean in the tangent space back to the manifold space. Gradient descent
algorithm workflow is given in Algorithm 2. Detailed deduction information is avail-
able [148].
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Algorithm 2 Calculate geometric mean tensor T̄
Input: Ti ∈ T, (i = 1, 2, ..., N)
Output: Mean tensor T̄
Initialize: T̄0 = T1, t = 0, ϵ = 0.001
Do

t = t+ 1 ▷ Update step

Xt =
1

N

∑N
k=1 logT̄t(Tk) ▷ Gradient

T̄t+1 = expT̄t(Xt) ▷ Update mean tensor

While ∥Xt∥ > ϵ

Since we know how to calculate the distance and the mean, the variance of tensors
σ2
T is given:

σ2
T = E [d2(T̄ , T )] = 1

N

N∑
i=1

d2(T̄ , Ti), (A.5)

where E [·] denotes the expectation, and E [d2(T̄ , T )] is the expectation of the squared
deviation from mean tensor T̄ . The statistics of the tensors given above, geodesic dis-
tance, geometric mean and variance, are used to compute a Gaussian mixture model
(GMM) to estimate the probability distribution of the foreground and background
voxels.
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