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Abdominal artery segmentation method from CT
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Abstract Purpose The purpose of this paper is to present a fully auto-
mated abdominal artery segmentation method from a CT volume. Three-
dimensional (3D) blood vessel structure information is important for diag-
nosis and treatment. Information about blood vessels (including arteries) can
be used in patient-specific surgical planning and intra-operative navigation.
Since blood vessels have large inter-patient variations in branching patterns
and positions, a patient-specific blood vessel segmentation method is neces-
sary. Even though deep-learning-based segmentation methods provide good
segmentation accuracy among large organs, small organs such as blood vessels

M. Oda · H.R. Roth
Graduate School of Informatics, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
Tel.: +81-(0)52-789-5688
Fax: +81-(0)52-789-3815
E-mail: moda@mori.m.is.nagoya-u.ac.jp

T. Kitasaka
School of Information Science, Aichi Institute of Technology,
1247 Yachigusa, Yagusa-cho, Toyota, Aichi, Japan

K. Misawa
Aichi Cancer Center,
1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan

M. Fujiwara
Nagoya University Graduate School of Medicine,
65 Tsurumai-cho, Syouwa-ku, Nagoya, Aichi, Japan

K. Mori
Graduate School of Informatics, Nagoya University,
Research Center for Medical Bigdata, National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan



2 Masahiro Oda et al.

are not well segmented. We propose a deep-learning-based abdominal artery
segmentation method from a CT volume. Because the artery is one of small
organs that is difficult to segment, we introduced an original training sample
generation method and a three-plane segmentation approach to improve seg-
mentation accuracy.
Method Our proposed method segments abdominal arteries from an abdom-
inal CT volume with a fully convolutional network (FCN). To segment small
arteries, we employ a 2D patch-based segmentation method and an area imbal-
ance reduced training patch generation (AIRTPG) method. AIRTPG adjusts
patch number imbalances between patches with artery regions and patches
without them. These methods improved the segmentation accuracies of small
artery regions. Furthermore, we introduced a three-plane segmentation ap-
proach to obtain clear 3D segmentation results from 2D patch-based processes.
In the three-plane approach, we performed three segmentation processes us-
ing patches generated on axial, coronal, and sagittal planes and combined the
results to generate a 3D segmentation result.
Results The evaluation results of the proposed method using 20 cases of ab-
dominal CT volumes show that the averaged F-measure, precision, and recall
rates were 87.1%, 85.8%, and 88.4%, respectively. This result outperformed
our previous automated FCN-based segmentation method. Our method offers
competitive performance compared to the previous blood vessel segmentation
methods from 3D volumes.
Conclusions We developed an abdominal artery segmentation method us-
ing FCN. The 2D patch-based and AIRTPG methods effectively segmented
the artery regions. In addition, the three-plane approach generated good 3D
segmentation results.

Keywords Abdominal artery · CT image · Segmentation · Fully convolutional
network

1 Introduction

The abdominal arteries supply blood flow to many organs. The three-dimensional
(3D) position and structure information of blood vessels (including arteries)
is important for diagnosis and treatment. Since blood vessel information is
used to identify organ positions [1,2] and to analyze cancer metastasis in diag-
nosis, such information is critical in surgical assistance. Surgeons control the
blood flow in the operative field by clamping blood vessels, and blood ves-
sel information guides them to identify the target blood vessels for clamping.
If blood vessel information is poorly understood by surgeons, blood vessels
might be damaged during surgery. Such trouble happens in laparoscopic surg-
eries due to distorted anatomy [3] and the limited viewing field of laparoscopes.
Blood vessel information reduces complications. Various methods for assisting
laparoscopic surgeries utilizing blood vessel information have been proposed
[4–7]. Abdominal blood vessels have large inter-patient variations in branching
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patterns, branch positions, and branch lengths. If patient-specific blood ves-
sel information is obtained prior to surgery, surgeons can confirm the blood
vessel positions and structures in pre-operative surgery simulations. This infor-
mation is also used to perform intra-operative navigation [5,6] that indicates
blood vessel positions during surgery. Therefore, the patient-specific 3D posi-
tion and structure information of abdominal blood vessels, including arteries,
is important.

Deep learning techniques, which have significantly impacted the medical
image processing field, have also been applied to organ segmentation from
medical images, where they have achieved high segmentation accuracy [16–
18]. Deep learning techniques are expected to improve blood vessel segmen-
tation performance. Most current deep-learning-based blood vessel segmen-
tation methods have been applied to segmentation from 2D images. Many
approaches have been proposed to segment retinal blood vessels from retinal
images [19–25]. Among these, convolutional neural networks (CNNs) [19–22]
and fully convolutional networks (FCNs) [23–25] have been utilized. The po-
sitional variation of the blood vessels in retinal images is limited compared
to that of blood vessels in 3D volumes. Therefore, segmentation of the retinal
blood vessels is relatively easy to perform.

Many blood vessel segmentation methods from medical images have been
proposed [8,9], including 3D segmentation methods using model fitting [10,
11], the Hessian-based enhancement filter [12,13], and Sequential Monte Carlo
tracking [14]. Recently, blood vessel segmentation methods from 3D volumes,
such as computed tomography (CT) and magnetic resonance (MR) volumes,
have been proposed [26–30]. Chen et al. [26] proposed an artery segmentation
method from MR volumes of the brain. They employed a 3D patch (small
image) based segmentation approach using an original FCN having a posi-
tion input path. The position and shape of the arteries in the brain may
have relationships to the positions in a MR volume. Therefore, they added
a patch position input path to their FCN. The FCN has an encoder-decoder
style similar to the 3D U-Net [31]. The sensitivity of their result was low,
indicating that many false negatives were produced. From this result, patch
position information is not useful for improving segmentation accuracy. Tet-
teh et al. [27] proposed a blood vessel segmentation method from MR volumes
of the brain. They employed a 2D patch-based segmentation approach. The
2D patch is made by combining multiple images in a sequence of slices in a
volume. They used an FCN without skip connection, which can be seen in
the U-Net [34]. The skip connection is important to reflect spatial informa-
tion to the segmentation results. Nardelli et al. [28] proposed a pulmonary
artery and vein segmentation method from CT volumes. They used CNNs to
segment the blood vessels and then apply the graph-cut to refine the results.
The pulmonary blood vessels have clear contrast to the surrounding air region.
The difficulty of their segmentation lies in the differentiation of blood vessels
and small airways. Kitrungrotsakul et al. [29,30] proposed hepatic blood ves-
sel segmentation methods from CT volumes. They also employed patch-based
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segmentation approaches. Their segmentation target was the blood vessels in
the liver region.

Deep-learning-based blood vessel segmentation from 3D volumetric images,
including CT or MR volumes, is difficult due to the significant imbalance of
volumes between blood vessels and other regions. Deep learning networks,
which are trained to output a pixel-wise label value from a spatial intensity
distribution on a CT volume, minimize the differences between the estimated
and ground truth label values by minimizing a loss function. This is commonly
performed in organ segmentation methods from CT volumes using FCNs [16,
17]. In these methods, large organs such as the liver and spleen are segmented
with high accuracy. However, the blood vessels were not well segmented, which
means that small blood vessels were not segmented and the segmented regions
were fragmented into many regions. This result was caused by the significant
volume imbalance between blood vessels and other regions. The blood vessels
occupy a very small volume in CT volumes. Abdominal arteries occupy about
0.2% of the volume in the abdominal CT volumes in our dataset. Figure 1
shows examples of abdominal artery regions. Abdominal artery regions indi-
cated by red are small in the CT volume. Commonly used loss functions such
as the cross entropy loss fail to adequately reflect the existence of small regions
[32,33]. Since deep learning networks tend to be trained to correctly segment
regions with larger volumes, the segmentation accuracy of blood vessel regions
is low.

To deal with the problem caused by the significant imbalance of volumes
between blood vessels and other regions, we developed two strategies: a three-
plane approach combining 2D patch-based segmentation processes and an area
imbalance reduced training patch generation (AIRTPG) method. These two
strategies provide accurate segmentation of blood vessels including small to
large parts. Consequently, we solve the volume imbalance problem using these
strategies. Other approaches tried to solve this problem by introducing loss
functions having weights to reduce the effect of volume imbalance [33]. Gener-
alized Dice loss is popular among them. However, finding their optimal weight
values is difficult, and use of sub-optimal weight values reduces segmentation
accuracy.

We propose a fully automated abdominal artery segmentation method from
a CT volume using the two strategies described above. Our method uses an
FCN, which is an image-to-organ likelihood regression network that estimates
organ likelihood at each voxel in an input image. We tested FCNs, which
are modified versions of U-Net [34], to perform segmentation. We utilize a
small 2D patch based segmentation process to increase the occupancy of the
artery regions in images. The use of small patches helps to improve segmen-
tation accuracy. We also apply the AIRTPG method to create patches for
FCN training. This method adjusts the imbalance of areas between artery and
non-artery regions in patches and maintains high segmentation accuracy for
small targets in the patch-based segmentation approach. In the segmentation
process, the three-plane approach obtains good 3D segmentation results. This
approach performs segmentation processes using patches generated on the ax-
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(a) (b) (c)

Fig. 1 Examples of abdominal artery regions in CT volume: (a) 3D volume rendered image.
Artery regions are shown as red. Black frames indicate corners of CT volume. (b) and (c)
axial and coronal slice images.

ial, coronal, and sagittal planes. Consequently, three segmentation results are
combined to obtain a 3D segmentation result.

A preliminary report related to our proposed method was published at a
conference [35]. The report [35] was included in the conference proceedings
published as a supplemental issue of IJCARS. This method does not utilize
any area imbalance reduction between the artery and non-artery regions in
the patch generation; it only utilizes patches generated on the axial plane. The
segmentation accuracy of the method [35] was low, and the segmented regions
were fragmented into many regions. In the proposed method, these problems
were solved by introducing the AIRTPG method and the three-plane approach
in the segmentation process. AIRTPG reduces the class imbalance of training
samples found in the preliminary report. This contributes to improving the
segmentation accuracy of small targets such as an artery. We obtained higher
segmentation accuracy and clearer 3D artery segmentation results with these
methods.

2 Artery segmentation method

2.1 Overview

The proposed method segments the artery region from an arterial phase con-
trasted abdominal CT volume. We use a U-Net based FCN to perform the
segmentation. The proposed method consists of training and segmentation
parts (Fig. 2). In the training part, three FCNs are trained to perform seg-
mentation using patches generated on the axial, coronal, and sagittal planes.
After the training part, we performed artery-region segmentation from a CT
volume. Patch-based segmentations were performed using the three FCNs. The
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Fig. 2 Flowchart of artery segmentation method: Red, green, and blue process and data
blocks use patches generated on axial, coronal, and sagittal planes, respectively.

patch-based segmentation results are reconstructed to make an artery-region
segmentation result volume.

2.2 Training part

2.2.1 Area imbalance reduced training patch generation (AIRTPG)

Patches are generated as 2D clipped images on the axial, coronal, or sagittal
planes from CT volumes and ground truth artery volumes. If the patches are
clipped from these volumes in a uniform interval of positions, the number of
patches containing artery regions becomes too small. The FCN cannot extract
enough features to perform artery segmentation from such patches. To solve
this problem, we generate about the same number of artery and non-artery
patches. An artery patch contains an artery pixel at the center pixel of the
patch. The center pixel of the non-artery patch is a non-artery pixel. These
patches are generated at voxels in the volumes that meet the above condi-
tion. To generate about the same number of artery and non-artery patches,
we densely and sparsely sample patches from artery and non-artery pixels,
respectively.

We used a set of artery and non-artery patches for FCN training. Among
them, patches generated from the CT volumes are called CT patches and
those generated from ground truth artery volumes are called label patches.
The intensity values in the patch are normalized to take values within 0 to 1.
The intensity values of the label patches are 1 in the artery regions and 0 in
the other regions.
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2.2.2 Patch generation using AIRTPG

We use a set of training CT volumes and ground truth artery volumes. A
median smoothing filter of a 3× 3× 3-voxel size is applied to the CT volumes.
We generated CT and label patches of s× s voxels from these volumes on the
axial, coronal, and sagittal planes using the AIRTPG method. A set of patches
generated on the axial plane is described as Pa = {Ia, La}, where Ia is a set
of CT patches and La is a set of label patches. The sets of patches generated
on the coronal and sagittal planes are also defined as Pc and Ps.

2.2.3 FCN training

We use FCNs to perform segmentation. We make three FCNs and train them
to perform segmentation using patches generated on the axial, coronal, and
sagittal planes using Pa, Pc, and Ps, respectively. The FCNs are trained to
output a label patch from a CT patch given to the FCNs. The optimization
algorithm of the FCNs is Adam [40]. We use binary cross entropy as the loss
function that is minimized in the optimization. The minibatch size is set to 100.
We experimentally selected the number of epochs in training. We performed
experiments using 15 cases of CT volumes for training and five cases of CT
volumes for evaluation, they were used in 3.1. We performed segmentations
using the CT volumes for evaluation. We calculated the rate of matched voxels
(between segmentation results and the ground truth) among all voxels. Among
our experiments using different epoch numbers, training in 25 epochs gave good
value of the rate of matched voxels. The FCNs are trained in 25 epochs. The
FCN structures used here are explained below.

U-Net with batch normalization U-Net [34] is one of the FCNs used for seg-
mentation. In the original paper [34], cell segmentation was performed from
microscopic images. After U-Net’s proposal, many U-Net-based segmentation
methods were proposed [36–39]. U-Net-based networks performed segmenta-
tion from CT, MR, and laparoscopic images, demonstrating that U-Net is
applicable to segmentation from various image modalities.

We use an FCN based on U-Net to perform artery segmentation in patches.
The network structure is shown in Fig. 3 (a). The left part consists of convolu-
tion and max-pooling layers called the analysis path, which extracts features
for segmentation from the input image. The right part consists of convolution
and up-convolution layers called the synthesis path, which generates output
images from the features. We added batch normalization after each convolu-
tion layer, which normalizes the mean and variance of features propagating the
network. The use of batch normalization can reduce overfitting of the network
to the training data.

Shallow U-Net with batch normalization Because the size of the patch is small,
shallow FCN may extract enough features from the patches to perform segmen-
tation. We made an FCN that has a U-Net-like structure but with a smaller
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(a)

(b)

Fig. 3 FCN structures. (a) U-Net with batch normalization and (b) shallow U-Net with
batch normalization. FCN network structure for patch-based artery segmentation: Boxes in
network represent sets of feature maps. Numbers shown under boxes indicate amounts of
feature maps or kernels.

number of layers than in its original structure. The network structure is shown
in Fig. 3 (b).

U-Net with residual unit The residual unit is used to improve the performances
of CNNs and FCNs. We used the Deep Residual U-Net [41], which has residual
units in the U-Net structure.

2.3 Segmentation part

Three segmentation processes that use patches generated on the axial, coronal,
and sagittal planes are carried out separately. As an example, we explain
a segmentation process using patches that were generated on axial planes.
Similar processes were also performed using patches generated on coronal and
sagittal planes.



Abdominal artery segmentation method using fully convolutional neural network 9

2.3.1 Patch generation

We perform a segmentation for a CT volume by applying a median 3× 3× 3-
voxel sized smoothing filter to it.

We generate CT patches by clipping 2D images on axial planes from the
CT volume. The size of the CT patch is s × s pixels. The CT patches are
clipped from an axial plane in the CT volume at (x, y) = (s/2, s/2)-pixel
strides. x and y are mutually perpendicular coordinate axes aligned along the
axial plane. We apply this clipping process to all of the axial planes in the CT
volume. The intensity values in the CT patches are normalized to take values
from 0 to 1.

2.3.2 Segmentation

We use FCN for the axial plane to perform patch-based segmentation. The
CT patches are given to the FCN, which gives as output the estimated label
patches.

2.3.3 Volume reconstruction

We reconstruct estimated label patches to a volume with the same size as the
CT volume using the correspondence between a CT patch (used to estimate
a label patch) and its clipped position in the CT volume. A pixel value in
an estimated label patch is copied to the value of a voxel at a corresponding
position in the reconstructed volume. Estimated label patches are overlapped
up to four times in the reconstruction process (Fig. 4). We calculate the av-
erage pixel value in the overlapped patches to use as a voxel value in the
reconstructed volume. By using the estimated label patches, we can obtain a
reconstructed volume that contains a 3D artery segmentation result. We call
this the artery volume obtained using patches on axial planes.

We also applied segmentation processes using patches generated on coronal
and sagittal planes, thus allowing us to obtain three artery volumes generated
with patches on the axial, coronal, and sagittal planes.

2.3.4 Postprocess

The three artery volumes are combined into a segmentation result volume by
storing the maximum intensity value among them to the segmentation result
volume at each voxel. We apply threshold value t to the segmentation result
volume as well as dilation and erosion operations (structure element: sphere
of radius r mm) to the regions in the volume to smoothen them. Among the
remaining regions, we removed the connected components whose volume is
smaller than v mm3. The result of these processes is the final segmentation
result.
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Fig. 4 Reconstruction of volume from 2D estimated label patches: 2D estimated label
patches (s × s voxels) are aligned on axial planes with strides of s/2 voxels. Pixel value in
estimated label patch is copied to value of voxel in volume at corresponding position. In
overlapped parts of patches, average pixel values are copied to values of voxel in volume.

3 Experiments and Results

3.1 Experimental settings

The proposed method was evaluated using 20 cases of arterial phase-contrasted
abdominal CT volumes whose acquisition parameters were as follows: 512×512
pixel image size, 753–1051 slices, 0.63–0.78 mm pixel spacing, and 1.0 mm
slice spacing. The ground truth artery volumes were manually made. The
parameters in the postprocess were set at t = 0.75, r = 2 mm, and v = 200
mm3.

The FCNs were trained using 15 cases of the CT volumes. About 300,000
patches were generated from these CT volumes and used in the training pro-
cess. Because we have a large number of patches, no data augmentation tech-
nique was used. We performed the artery segmentation process using the five
remaining cases of CT volumes.

We used an NVIDIA TITAN V GPU equipped in a Windows 10 PC (CPU:
Intel Xeon E5-2667 v4 3.2GHz, RAM: 64GB). We used the Keras to perform
the training and inference of FCNs. Training and inference times are shown in
Table 1.

We used the precision rate, the recall rate, and the F-measure (Dice coef-
ficient) as the evaluation criteria of segmentation accuracy and defined them
as

Precision =
TP

TP + FP
, (1)
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Table 1 Training and inference times of FCNs. Times are averages of processing times
of patches generated on axial, coronal, and sagittal planes. U-Net BN: U-Net with batch
normalization, S U-Net BN: shallow U-Net with batch normalization, and U-Net res: U-Net
with residual unit [41]. s =32-voxel sized patches were used.

FCN structure Training time (minutes) Inference time (minutes)

U-Net BN 125.1 4.6
S U-net BN 83.5 3.0
U-Net Res 118.5 4.1

Table 2 Evaluation results of artery segmentation method. Results were compared among
three patch sizes.

F-measure (%) Precision rate (%) Recall rate (%)
Patch size Ave. Min. Max. Ave. Min. Max. Ave. Min. Max.

s =32 87.1 83.3 89.3 85.8 80.9 89.0 88.4 85.5 90.4
s =48 86.9 82.6 89.0 86.1 80.1 89.9 87.6 84.3 89.8
s =64 86.4 83.2 88.2 83.9 79.2 87.1 89.0 86.2 92.0

Recall =
TP

TP + FN
, (2)

F −measure = 2
Precision ·Recall

Precision + Recall
, (3)

where TP, FP, and FN are the numbers of the true positive, false positive, and
false negative voxels in a segmentation result, respectively.

3.2 Evaluation using three patch sizes

We evaluated the segmentation accuracies of the proposed method using dif-
ferent sizes of patches: s =32, 48, and 64 voxels. The size of the smallest patch,
s =32 voxels, is close in value to the diameter of the largest abdominal artery
(aorta). The larger patches contain more tissue regions surrounding the artery
than the smaller patches. These three sizes of patches were selected to con-
firm the relationships between segmentation accuracies and the textures of the
artery and surrounding regions in patches. Examples of the patches are shown
in Fig. 5.

The accuracies of the artery segmentation results for five cases of CT vol-
umes are shown in Table 2 using the three patch sizes. We found small dif-
ferences in accuracies among the three patch sizes. The highest averaged F-
measure was obtained using the smallest patch size of s = 32 voxels. These ac-
curacies were F-measure: 87.1%, precision rate: 85.8%, and recall rate: 88.4%.

The segmented regions are shown in Figs. 6 and 7. Most of the artery
regions were segmented by the proposed method. The segmented artery re-
gions were three-dimensionally connected components, representing not only
a branch’s shape but also the connections between branches.
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Fig. 5 Examples of three sizes of patches generated from axial planes. In each size, upper
images are CT patches and lower binary images are label patches. Label patches are gen-
erated from ground truth artery regions as explained in 2.2.1. Larger patches contain more
tissue regions surrounding an artery than smaller patches.

3.3 Evaluation using single- and three-patch planes

In the proposed method, we used patches that were generated on three planes:
axial, coronal, and sagittal. We confirmed the effectiveness of the three-plane
approach by comparing the results of two schemes: (1) the three-plane ap-
proach (proposed method) and (2) a single-plane approach. The single-plane
approach, which employs a process flow that resembles the proposed method,
uses only patches generated on the axial plane; it does not use any patch gen-
erated on the coronal or sagittal planes. We used patches of s =32 voxel size
in this experiment.

The accuracies of the artery segmentation results using the two approaches
are shown in Table 3. The averaged F-measure of the three-plane approach
was higher than that of the single-plane approach. The overall segmentation
performance of the three-plane approach was also higher. However, in the
averaged precision rate, the single-plane approach showed higher performance;
fewer FPs were generated in it. In the recall rate, the three-plane approach
showed higher performance because it reduced the number of FNs.

The segmented regions are compared in Figs. 8 and 9. In these results,
the single-plane approach failed to segment enough small arteries. The seg-
mentation results of the three-plane approach contained many small artery
regions.

3.4 Evaluation using three FCN structures

We confirmed the difference of segmentation accuracies using three FCN struc-
tures: (1) U-Net with batch normalization, (2) shallow U-Net with batch nor-
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(a) (b)

(c) (d)

Fig. 6 Artery segmentation results of case 1: (a) ground truth. Segmentation results ob-
tained using patch sizes: (b) s = 32, (c) s = 48, and (d) s = 64 voxels. The differences
among three segmentation results are indicated by arrows. Some small arteries were not
segmented.

malization, and (3) U-Net with residual unit [41]. We used patches of s =32
voxel size and the three-plane approach in this experiment.

The accuracies of the artery segmentation results using the three FCN
structures are shown in Table 4. The difference of the accuracies between three
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(a) (b)

(c) (d)

Fig. 7 Artery segmentation results of case 2: (a) ground truth. Segmentation results ob-
tained using patch sizes: (b) s = 32, (c) s = 48, and (d) s = 64 voxels. The differences
among three segmentation results are indicated by arrows. Red and blue arrows indicate
false positives and unsegmented regions. The false positives are part of the vein regions.

FCN structures were very small. The U-Net with residual unit gave slightly
higher accuracies among the FCNs.
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Table 3 Evaluation results of three-plane approach (proposed method using patches gen-
erated on axial, coronal, and sagittal planes) and single-plane approach (patches generated
on axial plane): s =32-voxel sized patches were used.

F-measure (%) Precision rate (%) Recall rate (%)
Approach Ave. Min. Max. Ave. Min. Max. Ave. Min. Max.

Three-plane 87.1 83.3 89.3 85.8 80.9 89.0 88.4 85.5 90.4
Single-plane 83.2 78.8 86.3 92.7 89.1 94.6 75.5 67.7 79.7

(a) (b) (c)

(d) (e)

Fig. 8 Artery segmentation results of case 1: (a) ground truth. Segmentation results ob-
tained using (b, d) three-plane approach and (c, e) single-plane approach. (d) and (e) are
coronal slices showing segmentation results corresponding to boxed regions in (b) and (c).

4 Discussion

The proposed method segmented most of the artery regions from CT volumes.
Because it employs a fully automated process, it can be used for diagnosis and
surgical assistance. The segmentation accuracy of the previous semi-automated
artery segmentation method [13] was 91.3% precision and 80.0% recall. The
proposed method has greater competitive accuracy (precision rate: 85.9%, re-
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(a) (b) (c)

(d) (e)

Fig. 9 Artery segmentation results of case 2: (a) ground truth. Segmentation results ob-
tained using (b, d) three-plane approach and (c, e) single-plane approach. (d) and (e) are
coronal slices showing segmentation results corresponding to boxed regions in (b) and (c).

Table 4 Evaluation results of three FCN structures. U-Net BN: U-Net with batch normal-
ization, S U-Net BN: shallow U-Net with batch normalization, and U-Net res: U-Net with
residual unit [41]. s =32-voxel sized patches and three-plane approach were used.

F-measure (%) Precision rate (%) Recall rate (%)
FCN structure Ave. Min. Max. Ave. Min. Max. Ave. Min. Max.

U-Net BN 87.1 83.3 89.3 85.8 80.9 89.0 88.4 85.5 90.4
S U-Net BN 87.0 83.2 89.1 85.8 81.3 88.7 88.2 85.1 90.3
U-Net Res 87.2 83.0 89.5 85.9 80.5 88.8 88.5 85.4 90.9

call rate: 88.5%) compared to the previous method while also achieving com-
plete automation. Because the proposed method employed a machine learning
method, further improvement of segmentation accuracy would be expected
if it were trained using more training data. The previous artery segmenta-
tion method using an FCN [35] obtained an 81.4% recall rate. Our proposed
method has a higher recall rate than this previous method. Consequently, the
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AIRTPG method and the three-plane approach improved segmentation accu-
racy. Among the previous blood vessel segmentation methods from 3D volumes
[26–30], image modality and the segmentation target of the hepatic blood ves-
sel segmentation methods proposed by Kitrungrotsakul et al. [29,30] are close
to the proposed method. Their hepatic blood vessel segmentation accuracies
were 83.0% [29] and 87.9% [30] in Dice coefficient (definition of the Dice coef-
ficient is the same as the F-measure in voxel-wise comparison of regions). Our
segmentation target contains arteries related to most of the abdominal organs.
Their positions and branching patterns vary widely compared to blood vessels
in a single organ. However, our proposed method still segmented arteries with
competitive accuracy against the other methods. This means our proposed
method has high segmentation performance.

We compared the segmentation results obtained using three patch sizes.
The segmentation accuracies show little difference among the three patch sizes.
Using the smallest patch (s = 32 voxels) resulted in the highest averaged F-
measure. These results indicate that the area of the surrounding structures
of the segmentation target in a patch is unrelated to segmentation accuracy.
From the viewpoint of computational resource usage, the smallest patch is a
reasonable choice because the required amounts of training time and memory
consumption are small.

We used patches generated on three planes: axial, coronal, and sagittal.
This three-plane approach resulted in a great reduction of FNs in the ex-
perimental results. The single-plane approach failed to segment enough small
arteries (Figs. 8 (c,e) and 9 (c,e)). Segmenting small artery regions only from
patches on the axial planes is difficult because many other tissues have sim-
ilar texture patterns to small arteries. In such a case, artery specific texture
patterns can be found in patches on the coronal or sagittal planes. Utiliza-
tion of patches generated on the three planes improves the chances of finding
artery-specific texture patterns. This resulted in a high averaged F-measure
and recall rate. The precision rate decreased when we used the three-plane ap-
proach. This means more FPs were found in the result. The FPs include part
of the vein region as shown in Figs. 7 (b) and (d). The trade-off between FN
and FP voxel numbers are commonly discussed in segmentation. Among them,
the reduction of FN has great importance because the chance of overlooking
a target region must be reduced in medical applications. The three-plane ap-
proach reduced more FNs compared to the single-plane approach. We believe
the three-plane approach generates better segmentation results for medical ap-
plications. Nevertheless, we need to reduce FPs by training FCNs using more
patches of the vein regions as non-artery samples.

We compared the segmentation accuracies using three FCN structures. The
accuracies in the all evaluation criteria, including the F-measure, the precision
rate, and the recall rate, were almost same among the FCN structures. The
shallow U-Net with batch normalization has the lowest F-measure. This means
deeper networks are suitable for the segmentation. The U-Net with residual
unit [41] has slightly higher accuracies among the FCN structures. This means
the residual unit is effective for the segmentation.
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From Table 1, the proposed method took 83.5 to 125.1 minutes to train the
FCNs. The inference times were 3.0 to 4.6 minutes. Because we employed the
small 2D patch-based segmentation process, the training and inference times
were short. Furthermore, uses of the GPU memory of both the training and
inference fit in the GPU memory sizes of common GPUs (8GB). This means
the proposed method works with sufficiently short processing time even in
normal computers. The proposed method can be deployed on computer sys-
tems in hospitals with small investment in equipment. The proposed method
is suitable for practical use.

5 Conclusions

This paper proposed a fully automated abdominal artery segmentation method
from CT volumes. The volumes of the artery regions are very small in the
abdominal CT volumes. To segment artery regions, we employed a 2D patch-
image-based segmentation method using FCNs. In our method, we processed
2D patches generated on axial, coronal, and sagittal planes to segment 3D
artery regions. In our training patch generation, the AIRTPG method de-
creased the effect of a significant number imbalance between the artery and
non-artery patches in the segmentation result. The FCNs were trained using
the generated patches. In our segmentation process, these trained FCNs per-
formed patch-based segmentation. The patches were reconstructed to a 3D
volume to obtain a 3D segmentation result. In our experiments using 20 cases
of CT volumes, the segmentation accuracies of the artery regions were 87.1%
in F-measure, 85.8% in precision rate, and 88.4% in recall rate, all of which are
competitive performances for a semi-automated segmentation method. Future
work will use of 3D information in the patch-based segmentation process and
introduce global blood vessel structure features in the segmentation process.
Future work also involves developing applications for the segmentation of other
blood vessels, including portal veins and other veins.
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