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ABSTRACT 

In this study, we develop a general expression for the linearized properties of swollen 

elastomers undergoing large deformations. The free energy function of swollen 

elastomers is assumed to obey the Frenkel–Flory–Rehner hypothesis, i.e., the elastic and 

mixing contributions are additive. The elastic strain energy is not assumed to have a 

particular form but is assumed only to be a function of a set of strain-invariants. A 

linearization procedure is used to obtain the general expression for the Young’s modulus 

and Poisson’s ratio under an arbitrary base state. The derived expression includes a 

characteristic term, which has the ability to describe a transient state between the 

extreme states prescribed by two distinct conditions. The verification is performed by 

estimating the shear modulus and considering the original Flory–Rehner framework. In 

addition, to show the usefulness, an extended Gent model is examined to elucidate the 

interactions between limiting chain extensibility and the second strain-invariant.  

 

Keywords: Constitutive behavior, Swelling, Hyperelasticity, Solvent migration, Finite 

strain 
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1. Introduction 

 

The Frenkel–Flory–Rehner (FFR) hypothesis (Frenkel, 1940; Flory and Rehner, 

1943) provides a basis for interpreting the mechanical and swelling behavior of swollen 

elastomers, including polymeric gels such as hydrogels (Flory, 1953; Treloar, 1975; Doi, 

2013). The FFR hypothesis assumes that the free energy function of swollen elastomers 

consists of the sum of two terms associated with polymer stretching (i.e., the elastic 

strain energy) and the mixing of polymer and solvent molecules (i.e., the mixing 

energy). In the Flory–Rehner (FR) framework (Flory and Rehner, 1943), the elastic and 

mixing contributions are derived from the Gaussian network theory (i.e., a Neo–

Hookean (NH) model) and the Flory–Huggins solution theory, respectively. The NH 

model can be replaced by a more sophisticated strain-energy function for rubber 

elasticity. Chester and Anand (2010, 2011) and Li et al. (2014) introduced the Arruda–

Boyce and Gent models, respectively, to the FR framework, to consider the 

non-Gaussian chain effect, i.e., the effect of limiting chain extensibility (Okumura and 

Chester, 2018). Further, Okumura et al. (2016, 2018) extended the NH model using two 

scaling exponents to reproduce two independent effects of swelling on the Young’s 

modulus and the osmotic pressure of the swollen elastomers. There is no doubt that the 

strain-energy function in the FR framework will become more complex with 

experimental observations and model refinements (e.g., Davidson and Goulbourne, 

2013; Drozdov and Christiansen, 2013; Mao and Anand, 2018).  

 

Hong et al. (2009) demonstrated that the FR framework is systematically 

implemented in commercially available finite element software because the free energy 

function takes an explicit form as a function of the deformation gradient and the 

chemical potential of the external solvent. The boundary value problem of swollen 

elastomers is equivalent to that of a compressible hyperelastic material. The elasticity 

tensor is calculated from the first and second derivatives of the free energy function 

with respect to the strain-invariants (Holzapfel, 2000). For example, the finite element 

package Abaqus provides the user-defined material subroutine UHYPER (Abaqus, 

2014) in which only the equations of the derivatives have to be defined (cf. Kang and 

Huang, 2010a). This subroutine allows researchers to perform finite element analyses of 
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various problems focused on the mechanical and swelling behavior of swollen 

elastomers (Hong et al., 2009; Liu et al., 2015; Okumura et al., 2014, 2015). Solvent 

migration in a transient state can also be analyzed by assuming a diffusion model (Hong 

et al., 2008; Bouklas et al., 2015; Toh et al., 2015). In contrast, if researchers intend to 

develop and investigate an extended version of the FR framework, they will need to 

solve the boundary value problem via finite element analysis. However, that is a time 

consuming procedure that requires special skills. Accordingly, a simple analytical 

procedure is needed for estimating and understanding the constitutive behavior 

predicted by such extended model.  

 

The effects of swelling on the Young’s modulus E and Poisson’s ratio  of swollen 

elastomers were analyzed by a linearization procedure (Boyce and Arruda, 2001; 

Bouklas and Huang, 2012). The NH model predicts E = Ed J 1/3, where Ed is the 

Young’s modulus of the dry state and J is the volume swelling ratio. This simple relation 

is derived when J is preserved so that  = 1/2. When the change in J is allowed and the 

chemical potential of the external solvent is preserved, the FR framework with the NH 

model predicts  = 0.2–0.5, which depends on a set of material parameters including the 

Flory–Huggins interaction parameter . As  decreases from 1 to 0 (where good 

solvents have a low ),  decreases from 0.5 to 0.2 (Bouklas and Huang, 2012). This is 

caused by an increase, or decrease, of the volume swelling ratio under uniaxial tension 

or compression when the chemical potential is fixed (Flory, 1953; Treloar, 1975), 

leading to Young’s modulus being expressed as E = (2/3)(1 + ) Ed J 1/3. If the NH 

model is extended by two scaling exponents,  can also take a negative value (Okumura 

et al., 2016, 2018). These studies assumed the base state to be stress-free and 

isotropically swollen (i.e., free swelling). However, other base states are also critical and 

important for swollen elastomers undergoing large deformations. For instance, when a 

gel column and a gel film bonded on a rigid substrate or sandwiched between rigid 

plates are analyzed using nonlinear buckling theories, various base states should be 

considered (Liu et al., 2011). It is thus worthwhile developing a general expression for 

the linearized properties of swollen elastomers without prior determination of the 

strain-energy function and the base state. 

 



5 
 

In this study, a general expression for the linearized properties of swollen elastomers 

undergoing large deformations is derived and analyzed. Section 2 presents the 

fundamental relations obtained from the FR framework. No particular form is 

considered to be the strain-energy function, which is only assumed only to be a function 

of a set of strain-invariants. Section 3 reports on a linearization procedure that yields a 

matrix form of the linearized properties in terms of principal stretches. In Section 4, a 

general expression of Young’s modulus and Poisson’s ratio is derived considering 

various typical base states. The derived expression includes a characteristic term, which 

has the ability to describe a transient state between the extreme states prescribed by two 

distinct conditions. The verification is performed by estimating the shear modulus and 

considering the original FR framework. Section 5 is devoted to showing the usefulness 

of the derived expression. An extended Gent model is examined as the strain-energy 

function to elucidate the interactions of limiting chain extensibility and the second 

strain-invariant. Finally, conclusions are presented in Section 6. 

 

 

2. Fundamental relations of swollen elastomers 

 

The FFR hypothesis and FR framework (Frenkel, 1940; Flory and Rehner, 1943) 

assume that to describe the mechanical and swelling behavior of swollen elastomers, the 

free energy function W is expressed as the sum of the elastic strain energy We and the 

mixing energy Wm, i.e.,  

e 1 2 m( , , ) ( )W W I I J W C  ,  (1) 

where I1, I2 and J are strain-invariants and C is the nominal concentration of solvent 

molecules. The employment of the principal stretches i (i =1, 2, 3) leads to 
2 2 2

1 1 2 3I      , 2 2 2 2 2 2
2 1 2 2 3 3 1I          and 1 2 3J    . Although the original FR 

framework was developed based on the specific forms of We and Wm derived from the 

Gaussian network theory (i.e., the NH model) and the Flory–Huggins solution theory, 

respectively, the present study considers a different version of We and assumes that We is 

a function of a set of strain-invariants, namely I1, I2 and J.  

 

Considering the incompressibility of a network of a polymer and liquid solvent, the 
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volume of swollen elastomers is expressed as the sum of the volume of the dry network 

and that of the solvent (Flory, 1953; Treloar, 1975; Hong et al., 2009). The volume 

swelling ratio of the swollen elastomers is equal to J and is expressed as  

1J C  ,  (2) 

where  is the volume per solvent molecule. When a Lagrange multiplier is used in Eq. 

(1) to impose the constraint of Eq. (2), then  

e 1 2 m( , , ) ( ) (1 )W W I I J W C C J     ,  (3) 

where  is the Lagrange multiplier and is referred to as the osmotic pressure caused by 

mixing in the present study (Kang and Huang, 2010a; Li et al., 2014).  

 

It is remarked here that in the present study, the principal components are used (i.e.,
2 2 2

1 1 2 3I      , 2 2 2 2 2 2
2 1 2 2 3 3 1I          and 1 2 3J    ) and there is no need to 

consider shear components using the deformation gradient because the Young’s 

modulus and Poisson’s ratio are estimated in a linearization procedure (see Sections 3 

and 4). It is also remarked that although the present study considers the molecular 

incompressibility for simplicity, if the compressibility of the elastomer is introduced in 

Eqs. (2) and (3), J is separated into elastic and swelling components, Je and Js (i.e., J = 

Je Js), so that the contribution of Je should be added as a volumetric term in We 

(Chester and Anand, 2011). 

 

Eq. (3) gives the nominal stress in each direction of the principal stretches (i =1, 2, 

3),  

2e e e
1

1 2

2 2 ( )i i i i
i i

W W WW J
s I

I I J
  

 
              

,   no sum on i, (4) 

where 1 / 2i iI     , 2
2 1/ 2 ( )i i iI I       and / /i iJ J    . The nominal stress 

is transformed into the true stress ti as /i i it s J  (no sum on i). When the chemical 

potential, , of the solvent in the swollen elastomer, Eqs. (2) and (3) lead to  

mWW

C J
         

.  (5) 

When is balanced with the chemical potential of the external solvent,  = 0 expresses 
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the equilibrium swelling state in practice (Kang and Huang, 2010b; Okumura et al., 

2015). In contrast, in the transient state, the gradient of  drives solvent migration (i.e., 

causes the changes in J and C). A diffusion model provides an evolution equation for J 

and C (e.g., Hong et al., 2008; Bouklas et al., 2015; Toh et al., 2015). The evolution 

equation is used to update the values of J and C so that the value of  is also estimated 

from Eq. (5). Because J = 1 and C = 0 at    , the transient state is prescribed in the 

range between 0   .  

 

In addition, Eq. (5) shows that J depends on  and , while Eq. (4) shows that  

depends on the combination of si and i. When s3 = 0 is explicitly considered, Eqs. (4) 

and (5) give a specific relation of  as follows: 

2
23 e e em

1 3
1 2

2
( )

W W WW
I

J J I I J

 


   
           

,   when s3 = 0.  (6) 

In this specific case, since  is expressed using We instead of  and Wm, and various 

base states can be prescribed using s3 = 0, Eq. (6) is convenient and will be used in 

Section 4.5 and Appendix B. 

 

 

3. Matrix form of the linearized properties 

 

This section is devoted to deriving a matrix form of the linearized properties of 

swollen elastomers. The matrix form is obtained by linearizing Eqs. (4) and (5). Bouklas 

and Huang (2012) used this approach to derive the linear elastic properties of swollen 

elastomers from the original FR framework. They assumed the base state to be 

stress-free and isotropically swollen (i.e., si = 0 and i = J 1/3) and no change of the 

chemical potential from the base state (i.e.,  = 0). Here  is the small perturbation of 

the chemical potential from the base state. Okumura et al. (2016) assumed the same 

base state but the effect of J = 0 as well as  = 0 was investigated. Here J is the 

small perturbation of the volume swelling ratio (i.e., the third strain-invariant) from the 

base state. In the present study, these assumptions are not imposed in advance so that a 

matrix form of the linearized properties is derived from an arbitrary base state. To this 

end, (*) is defined as a small perturbation of a variable (*), e.g., si for si and i for 
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i. 

 

The present study focuses on the physical meaning of the two specific conditions, 

J = 0 and  = 0, because the two conditions have the ability to estimate the transient 

effects cause by solvent migration in the linearization procedure, although a diffusion 

model describes the transient effects as the resulting value of ( 0   ) in the base 

state (Section 2). First, when a very short time is given for the small perturbations, 

diffusion needs time so that solvent migration is prohibited (i.e., J = 0). The condition, 

J = 0, predicts the instantaneous response and maintains the volume swelling ratio, J, 

of the base state. In contrast, when a very sufficient time is given for the small 

perturbations, solvent migration is allowed to achieve equilibrium swelling (i.e.,  = 0). 

The condition,  = 0, predicts the equilibrium response and maintains the chemical 

potential, , of the base state. In the linearization procedure (this section and Section 4), 

the transient effects are simply established by considering a transient state between the 

extreme states prescribed by the two distinct conditions, J = 0 and  = 0, and the 

physical meaning is very clear.  

 

To derive the matrix form, Eq. (4) is first linearized using small perturbations, i.e.,  

 2e e e
1 1

1 1 2

2 e e e
1 2

2

2 2 2 ( 3 )

2 ( )

i i i i i i

i
i i

i i i

W W W
s I I

I I I

W J W WJ J
I

I J J

    

 
  

   
             

                                   

,  (7) 

where  

2 2 2
e e e e

1 22
1 1 1 2 1

2 2 2
e e e e

1 22
2 1 2 2 2

2 2 2
e e e e

1 2 2
1 2

W W W W
I I J

I I I I J I

W W W W
I I J

I I I I I J

W W W W
I I J

J J I I J J

     
              
                   
                   

,  (8) 
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 
 

1 1 1 2 2 3 3

2 2 2
2 1 1 1 1 1 2 2 2 1 3 3 3

1 1 2 2 3 3

2( )

2 ( ) ( ) ( )

/ / /

I

I I I I

J J

     

        

     

      

         
      

.  (9) 

Eq. (5) is also linearized and gives  

2
m

2

W
J

J





   


.  (10) 

Eqs. (8)–(10) allow si in Eq. (7) to be expressed as a linear function of i and  

because i and  are the known values at an arbitrary base state that is prescribed using 

Eqs. (4) and (5) (not a specific base state). Eqs. (7) and (10) are the linearized relations 

between si, ,  and i.  

 

When the small perturbations of the strain and stress in the principal directions are 

defined as  

i
i

i





  ,   no sum on i,  (11) 

i i
i

s

J

 
  ,   no sum on i,  (12) 

a matrix form of the linearized properties is consequently given as  

1 11 1 12 31 1

2 22 2 23 2

3 33 3 3

1

1

sym. 1

S D S S

S D S

S D

 
 


 

         
                

               

.  (13) 

The components of Sij and Di are derived and shown in Appendix A. The 3 3 matrix of 

Sij also has a different expression decomposed into 6 components, namely  

6
( ) ( )

1

n n
ij ij

n

S k S


  , (14) 

where k(n) (n = 1, 2, 3,…, 6) are scalar values that consist of derivatives of We and Wm 

with respect to I1, I2 and J, i.e.,  

2
(1) e e

2
2 1

4 W W
k

J I I

  
    

,  (15) 
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2
(2) e

1 2

4 W
k

J I I




 
,  (16) 

2
(3) e

2
2

4 W
k

J I





,  (17) 

2
(4) e

1

2
W

k
I J




 
,  (18) 

2
(5) e

2

2
W

k
I J




 
,  (19) 

2 2
(6) e em

2 2

W WW
k J

J J J

  
       

,  (20) 

while ( )n
ijS  (n = 1, 2, 3,…, 6) are the 3 3 matrices that are formed as combinations of 

i, i.e.,  

(1) 2 2 (1)
ij i j jiS S   ,  (21) 

 (2) 2 2 2 2 (2)
1 1( ) ( )ij i j i j jiS I I S        ,  (22) 

(3) 2 2 2 2 (3)
1 1( )( )ij i j i j jiS I I S       ,  (23) 

(4) 2 2 (4)
ij i j jiS S    ,  (24) 

(5) 2 2 2 2 (5)
1 1( ) ( )ij i i j j jiS I I S        ,  (25) 

(6) (6)1ij jiS S  .  (26) 

In addition, Di is rewritten as (Appendix A) 

2
2e e e

1
1 2

2
( 3 )i

i i

W W W
D I

J I I J

 
   

        
.  (27) 

 

Eqs. (21)–(26) indicate that ( )n
ijS  are symmetric matrices so that Sij is also 

symmetric because of Eq. (14). It is noted that if the small perturbation of the nominal 

or true stress, si or ti, is used instead of i to assemble Eq. (13), the resulting matrix 

of Sij can be asymmetric depending on the base state. The employment of Eq. (12) 
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maintains the symmetry of Sij at an arbitrary base state. In addition, Eqs. (9) and (11) 

give  

1 2 3( )J J          ,  (28) 

which can be used to rewrite the second term of the right hand side of Eq. (13), leading 

to  

1 11 1 12 31 1

2 22 2 23 2

3 33 3 3sym.

J J J
J J J

J J
J J

J
J

S D S S

S D S

S D

  
  

 
 




 
 
 

  
  

 
 




         
             

           

.  (29) 

Eqs. (13) and (29) show that the matrix connecting i and i is symmetric regardless 

of the existence of J and . This ensures that the Young’s moduli and Poisson’s ratios, 

which will be derived in Section 4, obey the reciprocal relations (e.g., Vannucci, 2018).  

 

It is incidentally noted that J = 0 and  = 0 may be regarded as undrained and 

drained conditions in the poroelasticity literature, but they are not identically the same 

because of the fundamental relations (see Section 2). Thus, those expressions are not 

used in the present study. 

 

 

4. General expression for Young’s modulus and Poisson’s ratio 

 

Although Eq. (13) provides the three Young’s moduli for loading in the three 

principal directions and the three distinct Poisson’s ratios (owing to the reciprocal 

relations), the present study does not focus on deriving the whole set of them (Vannucci, 

2018) but focuses on considering the effects of solvent migration and base states.  

 

Section 4.1 is devoted to the definition of the Young’s modulus and Poisson’s ratio, 

which are derived from Eq. (13) and depend on the two distinct conditions (J = 0 and 

 = 0). Sections 4.2 and 4.4 show the explicit expressions by considering three typical 

base states (Fig. 1), which are referred to as State 0 (equilibrium free swelling), State I 

(equilibrium swelling under uniaxial loading) and State II (equilibrium swelling under 

equibiaxial loading). Here, a specific negative value of  ( < 0) can also be used for 
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the base states. However, to avoid confusion, the value of  is just fixed as  = 0 and the 

effects caused by J = 0 and  = 0 are in particular investigated here. In Section 4.3, 

the shear modulus for State 0 is also estimated using Eq. (13). In Section 4.5, the 

derived expressions are verified by considering the original FR framework.  
 

 

Fig. 1.  Schematic illustrations of typical base states; (a) the initial, undeformed dry state, (b) 
equilibrium free swelling (State 0), (c) equilibrium swelling under uniaxial loading (State I) and 
(d) equilibrium swelling under equibiaxial loading (State II). For the individual base states, the 
relations for s,  and J are obtained from Eqs. (4) and (5). The present study just considers  = 0 
for simplicity, but a specific negative value of  ( < 0) can also be used for the base states. 

 

4.1. Definition of Young’s modulus and Poisson’s ratio 

 

For uniaxial loading by the principal stress 1, the Young’s modulus, E1, and 

Poisson’s ratios, 21 and 31, are defined as  

2 3

31 2
1 21 31

1 1 1

0

, ,E

 
  

  

   


         

,  (30) 

Eq. (30) indicates that uniaxial loading is given to the small perturbations, i and i 

(not si and i). It is thus noted that 21 and 31 should be distinct from the Poisson 

function calculated from i (see the definition in Beatty and Stalnaker (1986)). Eq. (30) 

transforms Eq. (13) into  

12 31 1 11 1

22 2 23 21 12
1

23 33 3 31 31

1 1

0 1

0 1

S S E S D

S D S S

S S D S


 



       
                            

.  (31) 
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Since the base state is prescribed by si, i and , Sij and Di are known so that Eq. (31) 

can be solved with an unknown term of 1/ ( )    .  

 

In Eq. (31), the effects caused by the base state are included in Sij and Di (see 

Sections 4.2 and 4.4), while 
1/ ( )     is considered to take a specific value related 

with an transient state between the extreme states described by the two distinct 

conditions for the small perturbations (see Section 3), i.e.,  

21 31

0

0 1 =0J


 

 
    

,  (32) 

where  = 0 (i.e., 1/ ( )     = 0) is the condition that solvent migration is allowed 

( 0J  ) to maintain the chemical potential, , of the base state, while J = 0 is the 

condition that solvent migration is prohibited to maintain the volume swelling ratio, J, 

of the base state. Here, 21 311 =0    is obtained from Eqs. (28) and (30). Eqs. (7) and 

(10) imply that when J = 0,  can take on a specific non-zero value ( 0  ). This 

indicates that the value of  (i.e., 1/ ( )    ) describes a transient state and can take 

on a value in a range between 0 and the specific value related to J = 0 (Sections 4.2 

and 4.4). The swelling effects are established by considering the two distinct conditions 

of Eq. (32). 

 

In fact, swollen elastomers need sufficient time to reach  = 0 because the change 

in  can also be assumed to obey a diffusion model (Hong et al., 2008; Bouklas et al., 

2015; Toh et al., 2015). Thus,  is estimated as a result of the time-dependent behavior 

of solvent migration in swollen elastomers, while 
1  can also be time-dependent if 

the elastomers are assumed to be viscoelastic. The variation in the term of 1/ ( )     

is found to be determined by the ratio of the two different time-dependent behaviors. 

However, the present study does not directly consider these time-dependent behaviors 

and just evaluates the swelling effects using the two distinct conditions given in Eq. 

(32).  

 

4.2. Explicit expressions for State 0  

 

For State 0 (Fig. 1b), the base state of equilibrium free swelling is expressed as 
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1/3
1 2 3 1 2 30, , 0s s s J          ,   State 0,  (33) 

which falls into the base state proposed by Bouklas and Huang (2012); they assumed 

the base state to be stress-free (si = 0) and isotropically swollen (i = J 1/3), i.e., free 

swelling with a non-zero value of . Eq. (33) is regarded as the most standard base state 

since this state is commonly adopted in experimental measurements (McKenna et al., 

1989; Bitoh et al., 2011).  

 

Substituting Eq. (33) into Eqs. (21)–(27), it is found that all the components in Sij 

and Di take identical values, i.e.,  

0

0

( =1, 2, 3,  =1, 2, 3)

( 1,  2,  3)
ij

i

S S i j

D D i


  

,   for State 0.  (34) 

From Eqs. (31) and (34), the Young’s modulus, E0 (= E1 for State 0) and the Poisson’s 

ratio, 0 (=21 = 31 for State 0), are derived as follows  

10
0

0 0

0 0 0

2

(1 )

S

D S

E D


 




 





  


,   for State 0.  (35) 

The two conditions of Eq. (32), = 0 and J = 0, which estimate the effects caused by 

solvent migration, provide  

0 0

0 0 0 0

0

0

1

1
1 , with =0

2 2 2

1
, with =0

2 2

S D

D S D S

D
J






 

  
        

    

,   for State 0. (36) 

It is thus found that E0 and 0 have very simple expressions consisting of S0 and D0 (D0 

> 0), and that  in a transient state caused by solvent migration can take on a value in 

the range from –(D0/2)1 to 0 under tension ( 1  > 0) or from 0 to –(D0/2)1 

under compression ( 1  < 0). It is further found that the transient effects on E0 are 

introduced only via 0 (Eq. (35)). 

 

4.3 Estimation of shear modulus 
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In this subsection, pure shear is considered to estimate the shear modulus of swollen 

elastomers. When 1 2 ps        and 1 2 ps        are considered as pure 

shear, Eq. (13) is rewritten as  

ps 0 0 0 0 ps

ps 0 0 0 ps

0 0 3

1

1

0 sym. 1

S D S S

S D S

S D

 
 




         
                

              

.  (37)  

It is noted here that to simplify discussion, State 0 (equilibrium free swelling) is just 

used as the base state (i.e., Eq. (34)). Eq. (37) gives 

3
0 0 0

1 1

S D S

 
 
 

  


,  (38)  

where S0 and D0 are commonly non-zero values so that this identical equation (Eq. (38)) 

results in  = 0. Further. J = 0 is derived from Eq. (28) because of 3 = 0. It is thus 

found that pure shear needs both of  = 0 and J = 0 (not  = 0 or J = 0 as the two 

distinct states). Consequently, when the shear modulus is defined as G0 =ps/(2ps), 

Eq. (37) gives  

ps 0
0

ps2 2

D
G





 


.  (39)  

This means that the shear modulus does not depend on the swelling process because J 

= 0 needs no solvent migration and the combination of 1 2 ps        leads to no 

change in  in total (i.e.,  = 0).  

 

When D0 is eliminated using E0 and 0 (i.e., using Eq. (35)), a very popular relation 

is obtained as  

0
0

02(1 )

E
G





.  (40)  

Eq. (40) is identical with the relation for isotropic linear elasticity. Eq. (40) was first 

confirmed by Bouklas and Huang (2012). However, their verification was restricted to 

using both of the original FR framework and a specific condition of  = 0. In contrast, 

the present study demonstrated that Eq. (40) is always established for State 0 regardless 
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of considering  = 0 or J = 0 as well as regardless of the particular form of the 

strain-energy function.  

 

4.4. Explicit expressions for States I and II  

 

In the same way with State 0 (Section 4.2), the different base states (States I and II) 

are used to derive the corresponding Young’s moduli and Poisson’s ratios. State I (Fig. 

1c), the base state of equilibrium swelling under uniaxial loading, is expressed as  

1/2 1/2
1 2 3 1 2 3, 0, , , 0s s s s J            ,   State I,  (41) 

where the directions of 1 and s1 are identical. By substituting Eq. (41) into Eqs. (21)–

(27), Sij and Di are found to have the following relations for State I:  

11 Ia

22 33 23 Ib

12 31 Ic

1 Ia

2 3 Ib

S S

S S S S

S S S

D D

D D D


     
 

 

,   for State I. (42) 

The Young’s modulus, EI (= E1 for State I), and the Poisson’s ratio, I (=21 = 31 for 

State I), are derived from Eqs. (31) and (42), and are expressed in terms of SIa, SIb, SIc, 

DIa and DIb as follows:  

1Ic
I

Ib Ib

I Ia Ib I Ia Ib Ib Ic I

2

( )(1 2 )

S

D S

E D D S S S S


 

 


 





       


,   for State I. (43) 

The two conditions of Eq. (32), = 0 and J = 0, provide  

Ic Ib Ib Ic

Ib Ib Ib Ib

I

Ib
Ib Ic

1

2 21
1 , with =0

2 2 2

1
, with =0

2 2

S D S S

D S D S

D
J S S






 

   
        

      

,   for State I. (44) 
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It is worthwhile to show that when  = J1/3 and s = 0 in Eq. (41), the base state for 

State I is reduced to that for State 0 (Eq. (33)). This reduction gives SIa = SIb = SIc = S0 

and DIa = DIb = D0, so that EI and I for State I (Eqs. (43) and (44)) are properly reduced 

to E0 and 0 for State 0 (Eqs. (35) and (36)), respectively. This implies that when  is 

in a transient state, it can take a value in the range from (–DIb/2 – SIb + SIc)1 to 0 if 

1  > 0 or from 0 to (–DIb/2 – SIb + SIc)1 if 1  < 0. Additionally, State I can also 

express a different base state as well as equilibrium swelling under uniaxial loading. For 

instance, when the value of  in Eq. (41) is fixed as a constant, the reduced base state 

expresses equilibrium swelling of an elastomer film sandwiched between rigid plates. 

Eqs. (43) and (44) are available if the base state to be considered falls into State I.  

 

Finally, for State II (Fig. 1d), the following base state is considered,  

2
1 2 3 1 2 3, 0, , , 0s s s s J            ,   State II,  (45) 

which expresses equilibrium swelling under equibiaxial loading. Further, if  is fixed as 

a constant, the reduced base state expresses equilibrium swelling of an elastomer film 

bonded onto a rigid substrate. Eq. (45) gives the relations of Sij and Di as  

11 22 12 IIa

33 IIb

23 31 IIc

1 2 IIa

3 IIb

S S S S

S S

S S S

D D D

D D

  
   
  



,   for State II. (46) 

If Eq. (46) is substituted into Eq. (31), the explicit relations can be obtained for the 

Young’s modulus, EII (=E1 for State II), and the two distinct Poisson’s ratios, II2 and 

II3 (= 21 and = 31 for State II, respectively). The derived relations become more 

complex than those for States 0 and I (Eqs. (35) and (36) for State 0 and Eqs. (43) and 

(44) for State I). In fact, as the most general state, Eq. (31) can be directly estimated 

without reductions such as States 0, I and II (ref. anisotropic elasticity, see Vannucci, 

(2018)). The equations are not explicitly shown here although they can be calculated in 

a similar way as for the analysis of States 0 and I. From now on, we use States 0 and I to 

focus on demonstrating the usefulness of the derived general expression and to study the 

effects of solvent migration and the base state on the Young’s modulus and Poisson’s 
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ratio of swollen elastomers (see Section 5). 

 

4.5. Verification using the original FR framework  

 

It is shown here that if the free energy function consists of simple forms of We and 

Wm, explicit relations for the Young’s modulus and Poisson’s ratio are obtained from the 

general expressions derived in Sections 4.2–4.4. The original FR framework (Flory and 

Rehner, 1943) is employed to determine the forms of We and Wm, i.e.,   

ref
e 1( 3 2 log )

6

E
W I J   ,   the NH model, (47) 

m

1
log 1

1

kT
W C

C C


  

          
,  (48) 

which are derived from the Gaussian network theory and the Flory–Huggins solution 

theory, respectively. Here, Eref is the reference Young’s modulus of the elastomers and  

is the Flory–Huggins interaction parameter. For the NH model, Eref is simply regarded 

as the Young’s modulus of the undeformed, unswollen state at 1 =2 =3 = 1.  

 

Eq. (47) shows that the NH model includes terms that are independent with respect 

to I1 and J. Most of the derivatives of We become zero, leading to k(1) = k(2) = k(3) = k(4) = 

k(5) = 0 and k(6)
 0 for Eqs. (15)–(20). It is found that Sij and Di (Eqs. (14) and (27)) have 

remarkably simple relations, i.e.,  

2ref
3

ref

2 2ref
3

3 1 2
1 ( =1, 2, 3,  =1, 2, 3)

3 1

( ) ( 1,  2,  3)
3

ij

i i

E kT
S i j

J E J J

E
D i

J




 

            
   

,  (49) 

To derive Eq. (49), Eq. (6) can be used to replace  with terms based on We because Eq. 

(6) is available in the case of s3 = 0, i.e., for States 0, I and II.  

 

When equilibrium free swelling is considered to be State 0, Eqs. (35), (36) and (40) 

give the explicit expressions using Eq. (49), i.e.,  
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12/3

ref

0

1/3
ref

1

1 3 1 2
1 , with =0

2 2 1

1 1
, with =0

2 3

J kT

E J J

J E J

 





 





             
 

    

,   for State 0,  (50) 

1/3
0 0 ref

2
(1 )

3
E E J   .   for State 0,  (51) 

1/3
0 ref

1

3
G E J  .   for State 0.  (52) 

Eq. (50) with  = 0 is identical to the one derived by Bouklas and Huang (2012) while 

when 0 = 1/2 with J = 0, E0 = Eref J 1/3 of Eq. (51) is the well-known relation (Boyce 

and Arruda, 2001). Further, Eq. (50) shows that 0 in a transient state caused by solvent 

migration can be estimated by taking the value of 1/ ( )     between –(1/3) Eref J 1/3 

and 0 in Eq. (35). In addition, as discussed in Section 4.3, G0 is independent of  = 0 

and J = 0. 

 

For State I (i.e., equilibrium swelling under uniaxial loading), the explicit 

expressions of Eqs. (43) and (44) are also simply derived using Eq. (49), i.e.,  

11

ref

I

1
ref

1

1 3 1 2
1 , with =0

2 2 1

1 1
, with =0

2 3

J kT

E J J

J E

  



 

 





             
 

    

,   for State I, (53) 

 1 2 1
I ref I

1
(1 2 )

3
E E J       ,   for State I,  (54) 

where  is the stretch in the loading direction (Fig. 1c). It may be convenient to replace 

 with J1/3  (i.e.,  = J1/3 ) because  is separated into two different contributions, 

namely J1/3 owing to swelling and  owing to uniaxial loading. It is obvious that EI and 

I (Eqs. (53) and (54)) reduce to E0 and 0 (Eqs. (50) and (51)) when = 1 (i.e.,  = J 
1/3).  

 

The general expressions developed in Sections 4.2–4.4 were verified here using the 

original FR framework. Eqs. (50)–(54) indicate that the explicit expressions are 
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remarkably simple because in the original FR framework, most of the derivatives of We 

become zero. This implies that when a more complex form of We is defined as a 

nonlinear function of I1, I2 and J, it is not realistic to show the explicit expressions. It is, 

however, without a doubt that the general expressions play a key role in calculating and 

estimating the linearized properties of swollen elastomers that depend on solvent 

migration and the base state. For instance, Horgan (2015) reviewed numerous 

developments of the Gent model, which was extended by introducing the I2 term to well 

reproduce the responses of soft biomaterials (Puglisi and Saccomandi, 2016; Destrade et 

al., 2017). In Section 5, as analytical examples, an extended Gent model is examined to 

elucidate the interactions of limiting chain extensibility and the I2 term. 

 

 

5. Analytical examples 

 

5.1. An extended Gent model with the I2 term 

 

To demonstrate the usefulness of the general expression for the linearized properties 

of swollen elastomers (Section 4), instead of the NH model, we employ the Gent model 

extended by the I2 term, which is expressed as (Horgan, 2015; Puglisi and Saccomandi, 

2016; Destrade et al., 2017) 

ref ref1 2
e m

m

(1 ) 3
log 1 2log log

6 2 3

c E cEI I
W J J

J

              
    

.  (55) 

Here, Jm is a material constant to describe the limiting chain extensibility (Horgan and 

Saccomandi, 2002; Okumura and Chester, 2018), and c = 0–1 is the ratio of the 

contributions of the original Gent model and the added I2 term. If c = 0, Eq. (55) is 

reduced to the original Gent model, while as c increases the contribution of the I2 term 

increases. The necessity of the I2 term in the elastic strain energy has been historically 

discussed and is not discussed here (e.g., Treloar, 1975). It is noted that Eq. (55) has the 

ability to well reproduce the responses of soft biomaterials (Puglisi and Saccomandi, 

2016; Destrade et al., 2017). The present study investigates the effect of a simple 

logarithmic version as the I2 term. 
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The extended Gent model (Eq. (55)) is a nonlinear function that includes all the 

independent terms with respect to the three strain-invariants. Eqs. (15)–(20) indicate k(2) 

= k(4) = k(5) = 0 but k(1)
 k(3)

 k(6)
 0. The specific forms of k(n) and Di (Eq. (27)) are 

shown in Appendix B. The calculations using k(n) and Di allow us to estimate the 

Young’s modulus and Poisson’s ratio including the effects of solvent migration and the 

base state (Section 4). The interactions of limiting chain extensibility and the I2 term 

(i.e., Jm and I2 via c) are also investigated.  

 

In Sections 5.2 and 5.3, States 0 and I are analyzed as analytical examples. For 

simplicity, the non-dimensional Young’s modulus, Eref /(3kT) (Bouklas and Huang, 

2012; Okumura et al., 2016), is fixed as Eref /(3kT) = 0.0001, whereas Jm, c and  are 

parameterized as Jm = 10, 100 and ∞, c = 0, 1/3, 2/3 and 0.95, and  = 0–1.2. In the case 

of Jm = ∞, the original Gent model is reduced to the NH model. In that case Eq. (55) is 

reduced to the NH model extended by the I2 term. Moreover, if c = 0 is additionally 

imposed, Eq. (55) is just the NH model (Eq. (47)). 

 

5.2. Case of State 0 (equilibrium free swelling)  

 

When the base state is prescribed by State 0, the volume swelling ratio, J, for 

equilibrium free swelling (si = 0 and = 0) is calculated from Eqs. (4) and (5). Fig. 2 

plots J as a function of the interaction parameter, . Fig. 2 shows the responses for the 

different values of Jm = 10, 100 and ∞, while in the individual panels the effect of the I2 

term is parameterized by c = 0, 1/3, 2/3 and 0.95. According to Okumura and Chester 

(2018), the ultimate value of J is predicted to be Jult = (Jm/3 + 1)3/2; the values of Jult are 

also plotted in the figure’s panels.  

 

Fig. 2 shows that if  > 0.5 (i.e., for a poor solvent), the effects of limiting chain 

extensibility and the I2 term are negligible. This tendency is characteristic of the FR 

framework and the relatively small value of Eref /(3kT) (Okumura et al., 2016). 

Remarkably, the effect appears for  < 0.5 (i.e., for a good solvent). Fig. 2a shows that 

as the contribution of the I2 term increases (i.e., c increases), J increases. The I2 term is 
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found to decrease the repulsive force against swelling. Next, Figs. 2b,c show that the 

decrease of Jm results in the decrease of Jult. As a result, the effect of the I2 term is 

gradually reduced as Jm decreases. Fig. 2c shows that the effect of the I2 term is 

essentially negligible because the small value of Jm does not allow a value of J that is 

larger than Jult for < 0.5.  

 

 

Fig. 2.  Volume swelling ratio J at equilibrium free swelling (State 0) as a function of the 
interaction parameter  for Eref /(3kT)=0.0001 with (a) Jm = ∞, (b) Jm =100 and (c) Jm =10, 
which are obtained from the fundamental equations of Eqs. (4) and (5). To investigate the 
effects of limiting chain extensibility and the I2 term in the extended Gent model, Jm, c and  are 
parameterized as Jm =10, 100 and ∞, c = 0, 1/3, 2/3 and 0.95, and  = 0–1.2. The ultimate value 
of J is given as Jult = (Jm / 3 + 1)3/2, which depends only on Jm and is independent of the additive 
I2 term (Okumura and Chester, 2018). 

 

Figs. 3 and 4 show the Poisson’s ratio, 0, and the Young’s modulus, E0, for 

equilibrium free swelling, respectively, that are predicted from the general expressions 

developed in Section 4 (Eqs. (35) and (36)). As described below, these figures 

successfully elucidate the characteristic behaviors of swollen elastomers that cannot be 

discerned from Fig. 2.  
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Fig. 3.  Poisson’s ratio 0 at equilibrium free swelling (State 0) as a function of the interaction 
parameter  for Eref /(3kT)=0.0001 with (a) Jm = ∞, (b) Jm =100 and (c) Jm =10, which are 
predicted from the general expression of Eq. (36). The swelling effects caused by solvent 
migration gradually vanish as Jm decreases from ∞ to 10, i.e., as J approaches Jult. The increase 
of c accelerates this tendency by causing J to increase. 

 

 

Fig. 4.  Young’s modulus E0 at equilibrium free swelling (State 0) as a function of the volume 
swelling ratio J for Eref /(3kT)=0.0001 with (a) Jm = ∞, (b) Jm =100 and (c) Jm =10, which are 
predicted from the general expression of Eqs. (35) and (36). As  decreases from 1.2 to 0, J 
increases monotonically. The I2 term contributes to the additional decrease of E0; meanwhile, 
limiting chain extensibility causes this dramatic increase of E0 as J approaches Jult. In contrast, 
the swelling effects caused by solvent migration are comparatively small.  

 

First, Fig. 3a shows that the contribution of the I2 term is negligible for 0 in the case 

of Jm = ∞, i.e., 0 = 0.5 for J = 0 and 0 ≈ 0.25 for = 0, regardless of the change in c. 

This result indicates that under a transient state of solvent migration, 0 can take on a 
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value from 0.25 to 0.5. It is interesting to compare Fig. 3a-c because the effect of 

limiting chain extensibility, which appears for  < 0.5 in Fig. 3b,c, increases 0 with 

= 0 from 0.25 to 0.5. The remarkable increases occur as J approaches the ultimate 

value of Jult (see Fig. 2). Consequently, the range of 0 in a transient state of solvent 

migration becomes smaller as the contribution of the I2 term becomes larger (i.e., c 

increases from 0 to 1). Fig. 3c shows that when J comes sufficiently close to Jult, 0 ≈ 

0.5 regardless of the values of  and J. This surprising behavior can be understood 

by considering that the extreme situation of J ≈ Jult does not allow an additional increase 

of J even with  = 0. It is found that the swelling effects caused by solvent migration 

gradually vanish as J approaches Jult.  

 

Fig. 4 shows the Young’s modulus, E0, as a function of the volume swelling ratio, J. 

In these figures, J increases from about 1 to a larger value because the value of  is 

parameterized from 1.2 to 0. Fig. 4a demonstrates that the combination of Jm = ∞, c = 0 

and J =0 results in E0 = Eref J 1/3 (Eqs. (50) and (51)). The increase of the contribution 

of the I2 term is found to accelerate the decrease of E0 as J increases. In contrast, the 

comparison of the responses with  and J = 0 shows that the swelling effects 

caused by solvent migration are comparatively smaller. The data in Fig. 4b,c are focused 

on understanding the interactions between Jm and c. The approach of J to Jult causes an 

increase of E0 to infinity because of the effect of limiting chain extensibility (Okumura 

and Chester, 2018). It is found that although the I2 term contributes to the additional 

decrease of E0 as J increases, limiting chain extensibility is what causes the dramatic 

increase of E0 as J approaches the ultimate value. The individual profiles depicted in Fig. 

4 are caused by a combination of the two effects owing to Jm and c. 

 

5.3. Case of State I (equilibrium swelling under uniaxial loading) 

 

Fig. 5 shows the stress, s, and volume swelling ratio, J, as a function of the stretch, , 

at equilibrium swelling under uniaxial loading (State I), which are calculated from Eqs. 

(4) and (5). Okumura and Chester (2018) reported that limiting chain extensibility 

contributes to providing the limit values of the stretch and volume swelling ratio under 

uniaxial loading, which are plotted as lim and Jlim, respectively (Fig. 5b,d). These 
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values are given as lim = (Jm + 3)1/2 and Jlim =(/2)(Jm + 3  2), which depend only on 

Jm and are independent of the additive I2 term because of the form of Eq. (55). 

Additionally, in Fig. 5a,b, the responses with J = 1 (i.e.,  = ∞) are also plotted for 

comparison. 

 

 

Fig. 5.  Stress s and volume swelling ratio J as a function of stretch  at equilibrium swelling 
under uniaxial loading (State I) for Eref /(3kT) = 0.0001 and  =0.3, which are obtained from 
the fundamental equations of Eqs. (4) and (5). (a) s– for Jm = ∞, (b) s– for Jm = 100, (c) J– 
for Jm = ∞, and (d) J– for Jm =100. According to Okumura and Chester (2018), the limit values 
are given as lim = (Jm + 3)1/2 and Jlim = (/2)(Jm + 3  2), which depend only on Jm and are 
independent of the additive I2 term. When  approaches lim, deswelling can occur even under 
tension. In Fig. 5a,b, the response with the constant J = 1 (i.e.,  =  ∞) is also plotted for 
comparison.  

 

Fig. 5a,c shows that for Jm = ∞, the stress and volume swelling ratio increase 

monotonically as  increases. The increase of c has the tendency to decrease s and 

increase J. The decrease in s is the reason that the I2 term is used to well reproduce the 

experimentally measured stress–stretch curves of elastomers (Puglisi and Saccomandi, 
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2016; Destrade et al., 2017), while the increase in J latter is the swelling contribution 

resulting from the I2 term (see Fig. 2 for State 0). Fig. 5b,d shows the interactions 

between c and Jm, i.e., the I2 term and limiting chain extensibility. It is found that the 

increase of c allows J to approach Jlim (Fig. 5d) and that regardless of the value of c, s 

increases steeply with an infinitely large gradient as  approaches to lim (Fig. 5c). In 

this singular situation, J decreases again to 1 (Fig. 5d), i.e., deswelling occurs even 

under tension (Okumura and Chester, 2018). If further discussions are to be provided 

via the analysis of the Young’s modulus and Poisson’s ratio, it is worthwhile 

understanding the characteristic behavior of swollen elastomers predicted by the 

extended Gent model.  

 

Fig. 6a,b shows the Poisson ratio, I, as a function of the stretch, , as predicted 

from the general expressions (Eqs. (43) and (44)). For Jm = ∞, Fig. 6a indicates that I 

with = 0 is not sensitive to changes of  under tension and compression and that the 

effect of solvent migration has a monotonic effect on the change of I in the range from 

0.25–0.5. In contrast, a finite value of Jm, i.e., the effect of limiting chain extensibility, 

causes an unbelievable change in Poisson’s ratio (Fig. 6b). Although at s = 0, I has a 

finite value between 0.25 and 0.5 (also see Fig. 3b), the value of I with = 0 

increases dramatically beyond 1 when  approaches lim under tension. Further, under 

compression, the value of I decreases to 0 as  decreases to a limit value under 

compression (the value is almost 0). Fig. 6a,b demonstrates that when the value of Jm is 

finite, the value of I characteristically varies significantly as a result of the interactions 

of solvent migration and limiting chain extensibility. In this case, the contribution of the 

I2 term is found to be qualitative in a secondary manner. 

 

By focusing on the variations in the value of I (Fig. 6b), the mechanism can be 

explained as a specific contribution caused by deswelling, as described below. First, 

when  approaches the limit values under tension and compression, deswelling occurs 

with = 0 (Fig. 5d). The volume swelling ratio J attempts to decrease to 1, i.e., 

approaches the perfectly dry state (Okumura and Chester, 2018). In an extreme state 

under tension, a further tensile stretch induces additional deswelling, i.e., J gradually 

approaches 1 (but not below 1) so that the value of I is above 0.5 and steadily increases 
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with an infinite gradient. Conversely, deswelling induces I to gradually decrease to 0 

under compression.  

 

 

Fig. 6.  Poisson’s ratio I and Young’s modulus EI as a function of stretch  at equilibrium 
swelling under uniaxial loading (State I) for Eref /(3kT) = 0.0001 and  = 0.3, as predicted 
from the general expression of Eqs. (43) and (44). (a) I– for Jm = ∞, (b) I– for Jm = 100, 
(c) EI– for Jm = ∞, and (d) EI– for Jm = 100. The predicted values are highly variable and are 
a result of the interactions of solvent migration, limiting chain extensibility and the I2 term 
effect, i.e., the combination of J, , Jm and c. 

 

Moreover, Fig. 6c,d show the Young’s modulus, EI, as a function of the stretch, . 

The value of EI decreases as c increases, which is caused by the contribution of the I2 

term. In contrast, the contribution caused by limiting chain extensibility shows that the 

degree of the increase of EI is accelerated as  increases under tension, or decreases 

under compression. This is due to the finite value of Jm, which yields the limit values of 

 under tension and compression. When the linearized properties of swollen elastomers 

are predicted for the extended FR framework, the general expression developed in 
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Section 4 successfully provides the individual values that include the interactions of 

solvent migration and the nonlinearity of the elastic free energy.  

 

 

6. Conclusions 

 

In the present study, we developed the general expression for the linearized 

properties of swollen elastomers undergoing large deformations. The FFR hypothesis 

and FR framework were assumed to describe the free energy function of swollen 

elastomers. However, no particular form was assumed to be the strain-energy function, 

which was instead assumed only to be a function of a set of strain-invariants. A 

linearization procedure was used to obtain the general expression of the Young’s 

modulus and Poisson’s ratio from an arbitrary base state. A characteristic term in the 

derived expression has the ability to describe a transient state between the extreme 

conditions prescribed by the two distinct conditions, J = 0 and  = 0. The verification 

was performed by estimating the shear modulus and considering the original Flory–

Rehner framework. In addition, to show the usefulness, an extended Gent model was 

examined to elucidate the interactions between limiting chain extensibility and the 

second strain-invariant with the swelling effects caused by solvent migration. 

 

The developed analytical procedure should provide a simple but comprehensive 

understanding of the response of swollen elastomers. Although the present study 

focused on one of the extended Gent models as an example, the general expression 

developed here allows more advanced strain-energy functions to be systematically 

analyzed. Recently, Horgan (2015) reviewed the numerous developments, extensions 

and widespread applications not only in rubber elasticity but also in the area of 

biomechanics of soft biomaterials. As reported by Destrade et al. (2009), soft 

biomaterials, such as soft tissues, arteries, dura matters, and muscles, need an extremely 

small value of Jm. The range for soft biomaterials is about 0.1 < Jm < 10, while the range 

for rubbers is 20 < Jm < 200 (Destrade et al., 2009). This discrepancy may be resolved 

as a characteristic response of swollen elastomers because soft biomaterials are often 

modeled as swollen elastomers. The effects and interactions discussed in the present 
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study and in Okumura and Chester (2018) are expected to play a key role in 

demonstrating the mechanics of soft biomaterials.  

 

Finally, readers are reminded that the linearized properties derived here are only 

valid for small perturbations applied to a given base state and not for large deformations 

from the dry state. We envision this would be useful for experimentalists as well as 

those interested in instabilities in swollen elastomers where the linearized properties are 

essential (e.g., Liu et al., 2011). It must be very important to compare the predictions 

with experiments. The comparison is not simple because the swelling process depends 

on many external stimuli (e.g., Zheng et al., 2018). Although the present study has just 

focused on developing a simple analytical procedure to estimate and understand the 

constitutive behavior based on the FFR hypothesis, there is no doubt that developments 

of the experimental procedures for measurements are also needed to quantitatively 

compare and validate the developed theories, such as the extended Gent model. 
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Appendix A. Derivation of Eq. (13) 

 

When the small perturbations of the strain and stress are defined in Eqs. (11) and 

(12), i.e., i = i /i and i = (i /J) si (no sum on i), the matrix form between i 

and i is derived as Eq. (13). In Eq. (13), the components of Sij and Di are expressed as   

ij ik kl lj ij

i ik k

S N H L M

D N h

 
 

,  (A.1) 

where  
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Although Eq. (A.1) does not clearly show the symmetry of Sij = Sji, a different 

expression for Sij is shown in Eq. (14) using k(n) and Sij
(n) (n =1, 2, 3,…, 6) (Eqs. (15)–

(26)). Since the individual matrices of Sij
(n) are symmetric, Sij is also symmetric. This 

symmetry yields the reciprocal relations, which reduce the number of distinct Poisson’s 

ratios from six to only three (e.g., Vannucci, 2018). Thus, Eqs. (13) and (29) have the 

ability to provide the three Young’s moduli and three Poisson’s ratios depending on an 

arbitrary base state.  
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Appendix B. Derivation of k(n) and Di for Eq. (55)  

 

When the extended Gent model (Eq. (55)) is used as the elastic strain energy in the 

FR framework, then k(2) = k(4) = k(5) = 0; however, k(1)
 k(3)

 k(6)
 0 in Eqs. (15)–(20). 

The non-zero variables are given as  

(1) ref m
2

2 m 1
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3( 3)

E c Jc
k
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where k(6) is obtained using Eq. (6) to replace  with terms based on We because Eq. (6) 

can be used in the case of s3 = 0, i.e., in States 0, I and II.  

 

Eqs. (B.1)–(B.3) give the specific form of Sij (Eq. (14)) as  

(1) (1) (3) (3) (6) (6)
ij ij ij ijS k S k S k S   ,  (B.4) 

where Sij
(1), Sij

(3) and Sij
(6) are shown in Eqs. (21), (23) and (26), respectively. Further, Eq. 

(27) gives the specific form of Di, and is expressed as  
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which is derived using Eq. (6) in the same way as Eq. (B.3). It is obvious that if Jm = ∞ 

and c = 0, Eqs. (B.1)–(B.5) are reduced to the equations for the original FR framework, 

i.e., k(1) = k(3) = 0 and Sij = k(6) (i =1, 2, 3, j =1, 2, 3) (cf. Eq. (49)). 

 

 

  



32 
 

References 

 

Abaqus 6.14 User Documentation, 2014, Dassault Systems SIMULIA Coorporation. 

Beatty, M.F., Stalnaker, D.O., 1986. The Poisson function of finite elasticity. J. Appl. 

Mech. 53, 807–813. 

Bitoh, Y., Urayama, K., Takigawa, T., Ito, K., 2011. Biaxial strain testing of extremely 

soft polymer gels. Soft Matter 7, 2632–2638. 

Bouklas, N., Huang, R., 2012. Swelling kinetics of polymer gels: comparison of linear 

and nonlinear theories. Soft Matter 8, 8194–8203. 

Bouklas, N., Landis, C.M., Huang, R., 2015. A nonlinear, transient finite element 

method for coupled solvent diffusion and large deformation of hydrogels. J. Mech. 

Phys. Solids 79, 21–43. 

Boyce, M.C., Arruda, E.M., 2001. Swelling and mechanical stretching of elastomeric 

materials. Math. Mech. Solids 6, 641–659. 

Chester, S.A., Anand, L., 2010. A coupled theory of fluid permeation and large 

deformations for elastomeric materials. J. Mech. Phys. Solids 58, 1879–1906. 

Chester, S.A., Anand, L., 2011. A thermo-mechanically coupled theory for fluid 

permeation in elastomeric materials: application to thermally responsive gels. J. 

Mech. Phys. Solids 59, 1978–2006. 

Davidson, J.D., Goulbourne, N.C., 2013. A nonaffine network model for elastomers 

undergoing finite deformations. J. Mech. Phys. Solids 61, 1784–1797. 

Destrade, M., Annaidh, A.N., Coman, C.D., 2009. Bending instabilities of soft 

biological tissues. Int. J. Solids Struct. 46, 4322–4330. 

Destrade, M., Saccomandi, G., Sgura, I., 2017. Methodical fitting for mathematical 

models of rubber-like materials. Proc. R. Soc. A473, 20160811. 

Doi, M., 2013. Soft Matter Physics. Oxford University Press: Oxford, UK. 

Drozdov, A.D., Christiansen, J.deC., 2013. Stress–strain relations for hydrogels under 

multiaxial deformation. Int. J. Solids Struct. 50, 3570–3585. 

Flory, P.J., 1953. Principles of Polymer Chemistry; Cornell University Press: Ithaca, 

NY. 

Flory, P.J., Rehner, J., 1943. Statistical mechanics of cross-linked polymer networks II. 

Swelling. J. Chem. Phys. 11, 521–526. 



33 
 

Frenkel, J., 1940. A theory of elasticity, viscosity and swelling in polymeric rubber-like 

substances. Rubber Chem. Technol. 13, 264–274. 

Holzapfel, G.A., 2000. Nonlinear Solid Mechanics, A Continuum Approach for 

Engineering. John Wiley & Sons Ltd, England. 

Hong, W., Liu, Z.S., Suo, Z., 2009. Inhomogeneous swelling of a gel in equilibrium 

with a solvent and mechanical load. Int. J. Solids Struct. 46, 3282–3289. 

Hong, W., Zhao, X., Zhou, J., Suo, Z., 2008. A theory of coupled diffusion and large 

deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779–1793. 

Horgan, C.O., 2015. The remarkable Gent constitutive model for hyperelastic materials. 

Int. J. Non-Linear Mech. 68, 9–16. 

Horgan, C.O., Saccomandi, G., 2002. A molecular-statistical basis for the Gent 

constitutive model of rubber elasticity. J. Elasticity 68, 167–176. 

Kang, M.K., Huang, R., 2010a. A variational approach and finite element 

implementation for swelling of polymeric hydrogels under geometric constraints. J. 

Appl. Mech. 77, 061004. 

Kang, M.K., Huang, R., 2010b. Swelling-induced surface instability of confined 

hydrogel layers on substrates. J. Mech. Phys. Solids 58, 1582–1598. 

Li, J., Suo, Z., Vlassak, J.J., 2014. A model of ideal elastomeric gels for polyelectrolyte 

gels. Soft Matter 10, 2582–2590. 

Liu, Z.S., Swaddiwudhipong, S., Cui, F.S., Hong, W., Suo, Z., Zhang, Y.W., 2011. 

Analytical solutions of polymeric gel structures under buckling and wrinkle. Int. J. 

Appl. Mech. 3, 235–257. 

Liu, Z.S., Toh, W., Ng, T.Y., 2015. Advances in mechanics of soft materials: a review of 

large deformation behavior of hydrogels. Int. J. Appl. Mech. 7, 1530001. 

Mao, Y., Anand, L., 2018. A theory for fracture of polymeric gels. J. Mech. Phys. Solids 

115, 30–53. 

McKenna, G.B., Flynn, K.M., Chen, Y., 1989. Experiments on the elasticity of dry and 

swollen networks: implications for the Frenkel–Flory–Rehner hypothesis. 

Macromolecules 22, 4507–4512. 

Okumura, D., Chester, S.A., 2018. Ultimate swelling described by limiting chain 

extensibility of swollen elastomers. Int. J. Mech. Sci. 144, 531–539. 

Okumura, D., Inagaki, T., Ohno, N., 2015. Effect of prestrains on swelling-induced 



34 
 

buckling patterns in gel films with a square lattice of holes. Int. J. Solids Struct. 58, 

288–300. 

Okumura, D., Kondo, A., Ohno, N., 2016. Using two scaling exponents to describe the 

mechanical properties of swollen elastomers. J. Mech. Phys. Solids 90, 61–76. 

Okumura, D., Kuwayama, T., Ohno, N., 2014. Effect of geometrical imperfections on 

swelling-induced buckling patterns in gel films with a square lattice of holes. Int. J. 

Solids Struct. 51, 154–163. 

Okumura, D., Mizutani, M., Tanaka, H., Uchida, M., 2018. Effects of two scaling 

exponents on biaxial deformation and mass transport of swollen elastomers. Int. J. 

Mech. Sci. 146–147, 507–516. 

Puglisi, G., Saccomandi, G., 2016. Multi-scale modelling of rubber-like materials and 

soft tissues: an appraisal. Proc. R. Soc. A472, 20160060. 

Toh, W., Ding, Z., Ng, T.Y., Liu, Z.S., 2015. Wrinkling of a polymeric gel during 

transient swelling. J. Appl. Mech. 82, 061004. 

Treloar, L.R.G., 1975. The Physics of Rubber Elasticity, 3rd ed.; Clarendon Press: 

Oxford. 

Vannucci, P., 2018. Anisotropic Elasticity. Lecture Notes in Applied and Computational 

Mechanics 85, Springer, Singapore.  

Zheng, S., Li, Z., Liu, Z.S., 2018. The fast homogeneous diffusion of hydrogel under 

different stimuli. Int. J. Mech. Sci. 137, 263–270. 

 


